]> code.delx.au - gnu-emacs/blob - doc/lispref/sequences.texi
18120dad575730a9219252a2df694c8e0bca010b
[gnu-emacs] / doc / lispref / sequences.texi
1 @c -*-texinfo-*-
2 @c This is part of the GNU Emacs Lisp Reference Manual.
3 @c Copyright (C) 1990-1995, 1998-1999, 2001-2015 Free Software
4 @c Foundation, Inc.
5 @c See the file elisp.texi for copying conditions.
6 @node Sequences Arrays Vectors
7 @chapter Sequences, Arrays, and Vectors
8 @cindex sequence
9
10 The @dfn{sequence} type is the union of two other Lisp types: lists
11 and arrays. In other words, any list is a sequence, and any array is
12 a sequence. The common property that all sequences have is that each
13 is an ordered collection of elements.
14
15 An @dfn{array} is a fixed-length object with a slot for each of its
16 elements. All the elements are accessible in constant time. The four
17 types of arrays are strings, vectors, char-tables and bool-vectors.
18
19 A list is a sequence of elements, but it is not a single primitive
20 object; it is made of cons cells, one cell per element. Finding the
21 @var{n}th element requires looking through @var{n} cons cells, so
22 elements farther from the beginning of the list take longer to access.
23 But it is possible to add elements to the list, or remove elements.
24
25 The following diagram shows the relationship between these types:
26
27 @example
28 @group
29 _____________________________________________
30 | |
31 | Sequence |
32 | ______ ________________________________ |
33 | | | | | |
34 | | List | | Array | |
35 | | | | ________ ________ | |
36 | |______| | | | | | | |
37 | | | Vector | | String | | |
38 | | |________| |________| | |
39 | | ____________ _____________ | |
40 | | | | | | | |
41 | | | Char-table | | Bool-vector | | |
42 | | |____________| |_____________| | |
43 | |________________________________| |
44 |_____________________________________________|
45 @end group
46 @end example
47
48 @menu
49 * Sequence Functions:: Functions that accept any kind of sequence.
50 * Arrays:: Characteristics of arrays in Emacs Lisp.
51 * Array Functions:: Functions specifically for arrays.
52 * Vectors:: Special characteristics of Emacs Lisp vectors.
53 * Vector Functions:: Functions specifically for vectors.
54 * Char-Tables:: How to work with char-tables.
55 * Bool-Vectors:: How to work with bool-vectors.
56 * Rings:: Managing a fixed-size ring of objects.
57 @end menu
58
59 @node Sequence Functions
60 @section Sequences
61
62 This section describes functions that accept any kind of sequence.
63
64 @defun sequencep object
65 This function returns @code{t} if @var{object} is a list, vector,
66 string, bool-vector, or char-table, @code{nil} otherwise.
67 @end defun
68
69 @defun length sequence
70 @cindex string length
71 @cindex list length
72 @cindex vector length
73 @cindex sequence length
74 @cindex char-table length
75 This function returns the number of elements in @var{sequence}. If
76 @var{sequence} is a dotted list, a @code{wrong-type-argument} error is
77 signaled. Circular lists may cause an infinite loop. For a
78 char-table, the value returned is always one more than the maximum
79 Emacs character code.
80
81 @xref{Definition of safe-length}, for the related function @code{safe-length}.
82
83 @example
84 @group
85 (length '(1 2 3))
86 @result{} 3
87 @end group
88 @group
89 (length ())
90 @result{} 0
91 @end group
92 @group
93 (length "foobar")
94 @result{} 6
95 @end group
96 @group
97 (length [1 2 3])
98 @result{} 3
99 @end group
100 @group
101 (length (make-bool-vector 5 nil))
102 @result{} 5
103 @end group
104 @end example
105 @end defun
106
107 @noindent
108 See also @code{string-bytes}, in @ref{Text Representations}.
109
110 If you need to compute the width of a string on display, you should use
111 @code{string-width} (@pxref{Size of Displayed Text}), not @code{length},
112 since @code{length} only counts the number of characters, but does not
113 account for the display width of each character.
114
115 @defun elt sequence index
116 @cindex elements of sequences
117 This function returns the element of @var{sequence} indexed by
118 @var{index}. Legitimate values of @var{index} are integers ranging
119 from 0 up to one less than the length of @var{sequence}. If
120 @var{sequence} is a list, out-of-range values behave as for
121 @code{nth}. @xref{Definition of nth}. Otherwise, out-of-range values
122 trigger an @code{args-out-of-range} error.
123
124 @example
125 @group
126 (elt [1 2 3 4] 2)
127 @result{} 3
128 @end group
129 @group
130 (elt '(1 2 3 4) 2)
131 @result{} 3
132 @end group
133 @group
134 ;; @r{We use @code{string} to show clearly which character @code{elt} returns.}
135 (string (elt "1234" 2))
136 @result{} "3"
137 @end group
138 @group
139 (elt [1 2 3 4] 4)
140 @error{} Args out of range: [1 2 3 4], 4
141 @end group
142 @group
143 (elt [1 2 3 4] -1)
144 @error{} Args out of range: [1 2 3 4], -1
145 @end group
146 @end example
147
148 This function generalizes @code{aref} (@pxref{Array Functions}) and
149 @code{nth} (@pxref{Definition of nth}).
150 @end defun
151
152 @defun copy-sequence sequence
153 @cindex copying sequences
154 This function returns a copy of @var{sequence}. The copy is the same
155 type of object as the original sequence, and it has the same elements
156 in the same order.
157
158 Storing a new element into the copy does not affect the original
159 @var{sequence}, and vice versa. However, the elements of the new
160 sequence are not copies; they are identical (@code{eq}) to the elements
161 of the original. Therefore, changes made within these elements, as
162 found via the copied sequence, are also visible in the original
163 sequence.
164
165 If the sequence is a string with text properties, the property list in
166 the copy is itself a copy, not shared with the original's property
167 list. However, the actual values of the properties are shared.
168 @xref{Text Properties}.
169
170 This function does not work for dotted lists. Trying to copy a
171 circular list may cause an infinite loop.
172
173 See also @code{append} in @ref{Building Lists}, @code{concat} in
174 @ref{Creating Strings}, and @code{vconcat} in @ref{Vector Functions},
175 for other ways to copy sequences.
176
177 @example
178 @group
179 (setq bar '(1 2))
180 @result{} (1 2)
181 @end group
182 @group
183 (setq x (vector 'foo bar))
184 @result{} [foo (1 2)]
185 @end group
186 @group
187 (setq y (copy-sequence x))
188 @result{} [foo (1 2)]
189 @end group
190
191 @group
192 (eq x y)
193 @result{} nil
194 @end group
195 @group
196 (equal x y)
197 @result{} t
198 @end group
199 @group
200 (eq (elt x 1) (elt y 1))
201 @result{} t
202 @end group
203
204 @group
205 ;; @r{Replacing an element of one sequence.}
206 (aset x 0 'quux)
207 x @result{} [quux (1 2)]
208 y @result{} [foo (1 2)]
209 @end group
210
211 @group
212 ;; @r{Modifying the inside of a shared element.}
213 (setcar (aref x 1) 69)
214 x @result{} [quux (69 2)]
215 y @result{} [foo (69 2)]
216 @end group
217 @end example
218 @end defun
219
220 @defun reverse sequence
221 @cindex string reverse
222 @cindex list reverse
223 @cindex vector reverse
224 @cindex sequence reverse
225 This function creates a new sequence whose elements are the elements
226 of @var{sequence}, but in reverse order. The original argument @var{sequence}
227 is @emph{not} altered. Note that char-tables cannot be reversed.
228
229 @example
230 @group
231 (setq x '(1 2 3 4))
232 @result{} (1 2 3 4)
233 @end group
234 @group
235 (reverse x)
236 @result{} (4 3 2 1)
237 x
238 @result{} (1 2 3 4)
239 @end group
240 @group
241 (setq x [1 2 3 4])
242 @result{} [1 2 3 4]
243 @end group
244 @group
245 (reverse x)
246 @result{} [4 3 2 1]
247 x
248 @result{} [1 2 3 4]
249 @end group
250 @group
251 (setq x "xyzzy")
252 @result{} "xyzzy"
253 @end group
254 @group
255 (reverse x)
256 @result{} "yzzyx"
257 x
258 @result{} "xyzzy"
259 @end group
260 @end example
261 @end defun
262
263 @defun nreverse sequence
264 @cindex reversing a string
265 @cindex reversing a list
266 @cindex reversing a vector
267 This function reverses the order of the elements of @var{sequence}.
268 Unlike @code{reverse} the original @var{sequence} may be modified.
269
270 For example:
271
272 @example
273 @group
274 (setq x '(a b c))
275 @result{} (a b c)
276 @end group
277 @group
278 x
279 @result{} (a b c)
280 (nreverse x)
281 @result{} (c b a)
282 @end group
283 @group
284 ;; @r{The cons cell that was first is now last.}
285 x
286 @result{} (a)
287 @end group
288 @end example
289
290 To avoid confusion, we usually store the result of @code{nreverse}
291 back in the same variable which held the original list:
292
293 @example
294 (setq x (nreverse x))
295 @end example
296
297 Here is the @code{nreverse} of our favorite example, @code{(a b c)},
298 presented graphically:
299
300 @smallexample
301 @group
302 @r{Original list head:} @r{Reversed list:}
303 ------------- ------------- ------------
304 | car | cdr | | car | cdr | | car | cdr |
305 | a | nil |<-- | b | o |<-- | c | o |
306 | | | | | | | | | | | | |
307 ------------- | --------- | - | -------- | -
308 | | | |
309 ------------- ------------
310 @end group
311 @end smallexample
312
313 For the vector, it is even simpler because you don't need setq:
314
315 @example
316 (setq x [1 2 3 4])
317 @result{} [1 2 3 4]
318 (nreverse x)
319 @result{} [4 3 2 1]
320 x
321 @result{} [4 3 2 1]
322 @end example
323
324 Note that unlike @code{reverse}, this function doesn't work with strings.
325 Although you can alter string data by using @code{aset}, it is strongly
326 encouraged to treat strings as immutable.
327
328 @end defun
329
330 @defun sort sequence predicate
331 @cindex stable sort
332 @cindex sorting lists
333 @cindex sorting vectors
334 This function sorts @var{sequence} stably. Note that this function doesn't work
335 for all sequences; it may be used only for lists and vectors. If @var{sequence}
336 is a list, it is modified destructively. This functions returns the sorted
337 @var{sequence} and compares elements using @var{predicate}. A stable sort is
338 one in which elements with equal sort keys maintain their relative order before
339 and after the sort. Stability is important when successive sorts are used to
340 order elements according to different criteria.
341
342 The argument @var{predicate} must be a function that accepts two
343 arguments. It is called with two elements of @var{sequence}. To get an
344 increasing order sort, the @var{predicate} should return non-@code{nil} if the
345 first element is ``less than'' the second, or @code{nil} if not.
346
347 The comparison function @var{predicate} must give reliable results for
348 any given pair of arguments, at least within a single call to
349 @code{sort}. It must be @dfn{antisymmetric}; that is, if @var{a} is
350 less than @var{b}, @var{b} must not be less than @var{a}. It must be
351 @dfn{transitive}---that is, if @var{a} is less than @var{b}, and @var{b}
352 is less than @var{c}, then @var{a} must be less than @var{c}. If you
353 use a comparison function which does not meet these requirements, the
354 result of @code{sort} is unpredictable.
355
356 The destructive aspect of @code{sort} for lists is that it rearranges the
357 cons cells forming @var{sequence} by changing @sc{cdr}s. A nondestructive
358 sort function would create new cons cells to store the elements in their
359 sorted order. If you wish to make a sorted copy without destroying the
360 original, copy it first with @code{copy-sequence} and then sort.
361
362 Sorting does not change the @sc{car}s of the cons cells in @var{sequence};
363 the cons cell that originally contained the element @code{a} in
364 @var{sequence} still has @code{a} in its @sc{car} after sorting, but it now
365 appears in a different position in the list due to the change of
366 @sc{cdr}s. For example:
367
368 @example
369 @group
370 (setq nums '(1 3 2 6 5 4 0))
371 @result{} (1 3 2 6 5 4 0)
372 @end group
373 @group
374 (sort nums '<)
375 @result{} (0 1 2 3 4 5 6)
376 @end group
377 @group
378 nums
379 @result{} (1 2 3 4 5 6)
380 @end group
381 @end example
382
383 @noindent
384 @strong{Warning}: Note that the list in @code{nums} no longer contains
385 0; this is the same cons cell that it was before, but it is no longer
386 the first one in the list. Don't assume a variable that formerly held
387 the argument now holds the entire sorted list! Instead, save the result
388 of @code{sort} and use that. Most often we store the result back into
389 the variable that held the original list:
390
391 @example
392 (setq nums (sort nums '<))
393 @end example
394
395 For the better understanding of what stable sort is, consider the following
396 vector example. After sorting, all items whose @code{car} is 8 are grouped
397 at the beginning of @code{vector}, but their relative order is preserved.
398 All items whose @code{car} is 9 are grouped at the end of @code{vector},
399 but their relative order is also preserved:
400
401 @example
402 @group
403 (setq
404 vector
405 (vector '(8 . "xxx") '(9 . "aaa") '(8 . "bbb") '(9 . "zzz")
406 '(9 . "ppp") '(8 . "ttt") '(8 . "eee") '(9 . "fff")))
407 @result{} [(8 . "xxx") (9 . "aaa") (8 . "bbb") (9 . "zzz")
408 (9 . "ppp") (8 . "ttt") (8 . "eee") (9 . "fff")]
409 @end group
410 @group
411 (sort vector (lambda (x y) (< (car x) (car y))))
412 @result{} [(8 . "xxx") (8 . "bbb") (8 . "ttt") (8 . "eee")
413 (9 . "aaa") (9 . "zzz") (9 . "ppp") (9 . "fff")]
414 @end group
415 @end example
416
417 @xref{Sorting}, for more functions that perform sorting.
418 See @code{documentation} in @ref{Accessing Documentation}, for a
419 useful example of @code{sort}.
420 @end defun
421
422 @cindex sequence functions in seq
423 @cindex seq library
424 The @file{seq.el} library provides the following additional sequence
425 manipulation macros and functions, prefixed with @code{seq-}. To use
426 them, you must first load the @file{seq} library.
427
428 All functions defined in this library are free of side-effects;
429 i.e., they do not modify any sequence (list, vector, or string) that
430 you pass as an argument. Unless otherwise stated, the result is a
431 sequence of the same type as the input. For those functions that take
432 a predicate, this should be a function of one argument.
433
434 @defun seq-drop sequence n
435 This function returns all but the first @var{n} (an integer)
436 elements of @var{sequence}. If @var{n} is negative or zero,
437 the result is @var{sequence}.
438
439 @example
440 @group
441 (seq-drop [1 2 3 4 5 6] 3)
442 @result{} [4 5 6]
443 @end group
444 @group
445 (seq-drop "hello world" -4)
446 @result{} "hello world"
447 @end group
448 @end example
449 @end defun
450
451 @defun seq-take sequence n
452 This function returns the first @var{n} (an integer) elements of
453 @var{sequence}. If @var{n} is negative or zero, the result
454 is @code{nil}.
455
456 @example
457 @group
458 (seq-take '(1 2 3 4) 3)
459 @result{} (1 2 3)
460 @end group
461 @group
462 (seq-take [1 2 3 4] 0)
463 @result{} []
464 @end group
465 @end example
466 @end defun
467
468 @defun seq-take-while predicate sequence
469 This function returns the members of @var{sequence} in order,
470 stopping before the first one for which @var{predicate} returns @code{nil}.
471
472 @example
473 @group
474 (seq-take-while (lambda (elt) (> elt 0)) '(1 2 3 -1 -2))
475 @result{} (1 2 3)
476 @end group
477 @group
478 (seq-take-while (lambda (elt) (> elt 0)) [-1 4 6])
479 @result{} []
480 @end group
481 @end example
482 @end defun
483
484 @defun seq-drop-while predicate sequence
485 This function returns the members of @var{sequence} in order,
486 starting from the first one for which @var{predicate} returns @code{nil}.
487
488 @example
489 @group
490 (seq-drop-while (lambda (elt) (> elt 0)) '(1 2 3 -1 -2))
491 @result{} (-1 -2)
492 @end group
493 @group
494 (seq-drop-while (lambda (elt) (< elt 0)) [1 4 6])
495 @result{} [1 4 6]
496 @end group
497 @end example
498 @end defun
499
500 @defun seq-filter predicate sequence
501 @cindex filtering sequences
502 This function returns a list of all the elements in @var{sequence}
503 for which @var{predicate} returns non-@code{nil}.
504
505 @example
506 @group
507 (seq-filter (lambda (elt) (> elt 0)) [1 -1 3 -3 5])
508 @result{} (1 3 5)
509 @end group
510 @group
511 (seq-filter (lambda (elt) (> elt 0)) '(-1 -3 -5))
512 @result{} nil
513 @end group
514 @end example
515 @end defun
516
517 @defun seq-remove predicate sequence
518 @cindex removing from sequences
519 This function returns a list of all the elements in @var{sequence}
520 for which @var{predicate} returns @code{nil}.
521
522 @example
523 @group
524 (seq-remove (lambda (elt) (> elt 0)) [1 -1 3 -3 5])
525 @result{} (-1 -3)
526 @end group
527 @group
528 (seq-remove (lambda (elt) (< elt 0)) '(-1 -3 -5))
529 @result{} nil
530 @end group
531 @end example
532 @end defun
533
534 @defun seq-reduce function sequence initial-value
535 @cindex reducing sequences
536 This function returns the result of calling @var{function} with
537 @var{initial-value} and the first element of @var{sequence}, then calling
538 @var{function} with that result and the second element of @var{sequence},
539 then with that result and the third element of @var{sequence}, etc.
540 @var{function} should be a function of two arguments. If
541 @var{sequence} is empty, this returns @var{initial-value} without
542 calling @var{function}.
543
544 @example
545 @group
546 (seq-reduce #'+ [1 2 3 4] 0)
547 @result{} 10
548 @end group
549 @group
550 (seq-reduce #'+ '(1 2 3 4) 5)
551 @result{} 15
552 @end group
553 @group
554 (seq-reduce #'+ '() 3)
555 @result{} 3
556 @end group
557 @end example
558 @end defun
559
560 @defun seq-some predicate sequence
561 This function returns non-@code{nil} if @var{predicate} returns
562 non-@code{nil} for any element of @var{sequence}. If so, the returned
563 value is the value returned by @var{predicate}.
564
565 @example
566 @group
567 (seq-some #'numberp ["abc" 1 nil])
568 @result{} t
569 @end group
570 @group
571 (seq-some #'numberp ["abc" "def"])
572 @result{} nil
573 @end group
574 @group
575 (seq-some #'null ["abc" 1 nil])
576 @result{} t
577 @end group
578 @end example
579 @end defun
580
581 @defun seq-find predicate sequence &optional sentinel
582 This function returns the first element for which @var{predicate}
583 returns non-@code{nil} in @var{sequence}. If no element matches
584 @var{predicate}, @var{sentinel} is returned if non-@code{nil},
585 @code{nil} otherwise.
586
587 Note that this function has an ambiguity if the found element is
588 @code{nil}, and if no @var{sentinel} is specified, as it cannot be
589 known if an element was found or not.
590
591 @example
592 @group
593 (seq-find #'numberp ["abc" 1 nil])
594 @result{} 1
595 @end group
596 @group
597 (seq-find #'numberp ["abc" "def"])
598 @result{} nil
599 @end group
600 @end example
601 @end defun
602
603 @defun seq-every-p predicate sequence
604 This function returns non-@code{nil} if applying @var{predicate}
605 to every element of @var{sequence} returns non-@code{nil}.
606
607 @example
608 @group
609 (seq-every-p #'numberp [2 4 6])
610 @result{} t
611 @end group
612 @group
613 (seq-some #'numberp [2 4 "6"])
614 @result{} nil
615 @end group
616 @end example
617 @end defun
618
619 @defun seq-empty-p sequence
620 This function returns non-@code{nil} if @var{sequence} is empty.
621
622 @example
623 @group
624 (seq-empty-p "not empty")
625 @result{} nil
626 @end group
627 @group
628 (seq-empty-p "")
629 @result{} t
630 @end group
631 @end example
632 @end defun
633
634 @defun seq-count predicate sequence
635 This function returns the number of elements in @var{sequence} for which
636 @var{predicate} returns non-@code{nil}.
637
638 @example
639 (seq-count (lambda (elt) (> elt 0)) [-1 2 0 3 -2])
640 @result{} 2
641 @end example
642 @end defun
643
644 @cindex sorting sequences
645 @defun seq-sort function sequence
646 This function returns a copy of @var{sequence} that is sorted
647 according to @var{function}, a function of two arguments that returns
648 non-@code{nil} if the first argument should sort before the second.
649 @end defun
650
651 @defun seq-contains sequence elt &optional function
652 This function returns the first element in @var{sequence} that is equal to
653 @var{elt}. If the optional argument @var{function} is non-@code{nil},
654 it is a function of two arguments to use instead of the default @code{equal}.
655
656 @example
657 @group
658 (seq-contains '(symbol1 symbol2) 'symbol1)
659 @result{} symbol1
660 @end group
661 @group
662 (seq-contains '(symbol1 symbol2) 'symbol3)
663 @result{} nil
664 @end group
665 @end example
666
667 @end defun
668
669 @defun seq-uniq sequence &optional function
670 This function returns a list of the elements of @var{sequence} with
671 duplicates removed. If the optional argument @var{function} is non-@code{nil},
672 it is a function of two arguments to use instead of the default @code{equal}.
673
674 @example
675 @group
676 (seq-uniq '(1 2 2 1 3))
677 @result{} (1 2 3)
678 @end group
679 @group
680 (seq-uniq '(1 2 2.0 1.0) #'=)
681 @result{} [3 4]
682 @end group
683 @end example
684 @end defun
685
686 @defun seq-subseq sequence start &optional end
687 This function returns a subset of @var{sequence} from @var{start}
688 to @var{end}, both integers (@var{end} defaults to the last element).
689 If @var{start} or @var{end} is negative, it counts from the end of
690 @var{sequence}.
691
692 @example
693 @group
694 (seq-subseq '(1 2 3 4 5) 1)
695 @result{} (2 3 4 5)
696 @end group
697 @group
698 (seq-subseq '[1 2 3 4 5] 1 3)
699 @result{} [2 3]
700 @end group
701 @group
702 (seq-subseq '[1 2 3 4 5] -3 -1)
703 @result{} [3 4]
704 @end group
705 @end example
706 @end defun
707
708 @defun seq-concatenate type &rest sequences
709 This function returns a sequence of type @var{type} made of the
710 concatenation of @var{sequences}. @var{type} may be: @code{vector},
711 @code{list} or @code{string}.
712
713 @example
714 @group
715 (seq-concatenate 'list '(1 2) '(3 4) [5 6])
716 @result{} (1 2 3 5 6)
717 @end group
718 @group
719 (seq-concatenate 'string "Hello " "world")
720 @result{} "Hello world"
721 @end group
722 @end example
723 @end defun
724
725 @defun seq-mapcat function sequence &optional type
726 This function returns the result of applying @code{seq-concatenate}
727 to the result of applying @var{function} to each element of
728 @var{sequence}. The result is a sequence of type @var{type}, or a
729 list if @var{type} is @code{nil}.
730
731 @example
732 @group
733 (seq-mapcat #'seq-reverse '((3 2 1) (6 5 4)))
734 @result{} (1 2 3 4 5 6)
735 @end group
736 @end example
737 @end defun
738
739 @defun seq-partition sequence n
740 This function returns a list of the elements of @var{sequence}
741 grouped into sub-sequences of length @var{n}. The last sequence may
742 contain less elements than @var{n}. @var{n} must be an integer. If
743 @var{n} is a negative integer or 0, nil is returned.
744
745 @example
746 @group
747 (seq-partition '(0 1 2 3 4 5 6 7) 3)
748 @result{} ((0 1 2) (3 4 5) (6 7))
749 @end group
750 @end example
751 @end defun
752
753 @defun seq-intersection sequence1 sequence2 &optional function
754 This function returns a list of the elements that appear both in
755 @var{sequence1} and @var{sequence2}. If the optional argument
756 @var{function} is non-@code{nil}, it is a function of two arguments to
757 use to compare elements instead of the default @code{equal}.
758
759 @example
760 @group
761 (seq-intersection [2 3 4 5] [1 3 5 6 7])
762 @result{} (3 5)
763 @end group
764 @end example
765 @end defun
766
767
768 @defun seq-difference sequence1 sequence2 &optional function
769 This function returns a list of the elements that appear in
770 @var{sequence1} but not in @var{sequence2}. If the optional argument
771 @var{function} is non-@code{nil}, it is a function of two arguments to
772 use to compare elements instead of the default @code{equal}.
773
774 @example
775 @group
776 (seq-difference '(2 3 4 5) [1 3 5 6 7])
777 @result{} (2 4)
778 @end group
779 @end example
780 @end defun
781
782 @defun seq-group-by function sequence
783 This function separates the elements of @var{sequence} into an alist
784 whose keys are the result of applying @var{function} to each element
785 of @var{sequence}. Keys are compared using @code{equal}.
786
787 @example
788 @group
789 (seq-group-by #'integerp '(1 2.1 3 2 3.2))
790 @result{} ((t 1 3 2) (nil 2.1 3.2))
791 @end group
792 @group
793 (seq-group-by #'car '((a 1) (b 2) (a 3) (c 4)))
794 @result{} ((b (b 2)) (a (a 1) (a 3)) (c (c 4)))
795 @end group
796 @end example
797 @end defun
798
799 @defun seq-into sequence type
800 This function converts the sequence @var{sequence} into a sequence
801 of type @var{type}. @var{type} can be one of the following symbols:
802 @code{vector}, @code{string} or @code{list}.
803
804 @example
805 @group
806 (seq-into [1 2 3] 'list)
807 @result{} (1 2 3)
808 @end group
809 @group
810 (seq-into nil 'vector)
811 @result{} []
812 @end group
813 @group
814 (seq-into "hello" 'vector)
815 @result{} [104 101 108 108 111]
816 @end group
817 @end example
818 @end defun
819
820 @defun seq-min sequence
821 This function returns the smallest element of
822 @var{sequence}. @var{sequence} must be a sequence of numbers or
823 markers.
824
825 @example
826 @group
827 (seq-min [3 1 2])
828 @result{} 1
829 @end group
830 @group
831 (seq-min "Hello")
832 @result{} 72
833 @end group
834 @end example
835 @end defun
836
837 @defun seq-max sequence
838 This function returns the largest element of
839 @var{sequence}. @var{sequence} must be a sequence of numbers or
840 markers.
841
842 @example
843 @group
844 (seq-max [1 3 2])
845 @result{} 3
846 @end group
847 @group
848 (seq-max "Hello")
849 @result{} 111
850 @end group
851 @end example
852 @end defun
853
854 @defmac seq-doseq (var sequence) body@dots{}
855 @cindex sequence iteration
856 This macro is like @code{dolist}, except that @var{sequence} can be a list,
857 vector or string (@pxref{Iteration} for more information about the
858 @code{dolist} macro). This is primarily useful for side-effects.
859 @end defmac
860
861 @defmac seq-let arguments sequence body@dots{}
862 @cindex sequence destructuring
863 This macro binds the variables defined in @var{arguments} to the
864 elements of the sequence @var{sequence}. @var{arguments} can itself
865 include sequences allowing for nested destructuring.
866
867 The @var{arguments} sequence can also include the @code{&rest} marker
868 followed by a variable name to be bound to the rest of
869 @code{sequence}.
870
871 @example
872 @group
873 (seq-let [first second] [1 2 3 4]
874 (list first second))
875 @result{} (1 2)
876 @end group
877 @group
878 (seq-let (_ a _ b) '(1 2 3 4)
879 (list a b))
880 @result{} (2 4)
881 @end group
882 @group
883 (seq-let [a [b [c]]] [1 [2 [3]]]
884 (list a b c))
885 @result{} (1 2 3)
886 @end group
887 @group
888 (seq-let [a b &rest others] [1 2 3 4]
889 others)
890 @end group
891 @result{} [3 4]
892 @end example
893 @end defmac
894
895
896 @node Arrays
897 @section Arrays
898 @cindex array
899
900 An @dfn{array} object has slots that hold a number of other Lisp
901 objects, called the elements of the array. Any element of an array
902 may be accessed in constant time. In contrast, the time to access an
903 element of a list is proportional to the position of that element in
904 the list.
905
906 Emacs defines four types of array, all one-dimensional:
907 @dfn{strings} (@pxref{String Type}), @dfn{vectors} (@pxref{Vector
908 Type}), @dfn{bool-vectors} (@pxref{Bool-Vector Type}), and
909 @dfn{char-tables} (@pxref{Char-Table Type}). Vectors and char-tables
910 can hold elements of any type, but strings can only hold characters,
911 and bool-vectors can only hold @code{t} and @code{nil}.
912
913 All four kinds of array share these characteristics:
914
915 @itemize @bullet
916 @item
917 The first element of an array has index zero, the second element has
918 index 1, and so on. This is called @dfn{zero-origin} indexing. For
919 example, an array of four elements has indices 0, 1, 2, @w{and 3}.
920
921 @item
922 The length of the array is fixed once you create it; you cannot
923 change the length of an existing array.
924
925 @item
926 For purposes of evaluation, the array is a constant---i.e.,
927 it evaluates to itself.
928
929 @item
930 The elements of an array may be referenced or changed with the functions
931 @code{aref} and @code{aset}, respectively (@pxref{Array Functions}).
932 @end itemize
933
934 When you create an array, other than a char-table, you must specify
935 its length. You cannot specify the length of a char-table, because that
936 is determined by the range of character codes.
937
938 In principle, if you want an array of text characters, you could use
939 either a string or a vector. In practice, we always choose strings for
940 such applications, for four reasons:
941
942 @itemize @bullet
943 @item
944 They occupy one-fourth the space of a vector of the same elements.
945
946 @item
947 Strings are printed in a way that shows the contents more clearly
948 as text.
949
950 @item
951 Strings can hold text properties. @xref{Text Properties}.
952
953 @item
954 Many of the specialized editing and I/O facilities of Emacs accept only
955 strings. For example, you cannot insert a vector of characters into a
956 buffer the way you can insert a string. @xref{Strings and Characters}.
957 @end itemize
958
959 By contrast, for an array of keyboard input characters (such as a key
960 sequence), a vector may be necessary, because many keyboard input
961 characters are outside the range that will fit in a string. @xref{Key
962 Sequence Input}.
963
964 @node Array Functions
965 @section Functions that Operate on Arrays
966
967 In this section, we describe the functions that accept all types of
968 arrays.
969
970 @defun arrayp object
971 This function returns @code{t} if @var{object} is an array (i.e., a
972 vector, a string, a bool-vector or a char-table).
973
974 @example
975 @group
976 (arrayp [a])
977 @result{} t
978 (arrayp "asdf")
979 @result{} t
980 (arrayp (syntax-table)) ;; @r{A char-table.}
981 @result{} t
982 @end group
983 @end example
984 @end defun
985
986 @defun aref array index
987 @cindex array elements
988 This function returns the @var{index}th element of @var{array}. The
989 first element is at index zero.
990
991 @example
992 @group
993 (setq primes [2 3 5 7 11 13])
994 @result{} [2 3 5 7 11 13]
995 (aref primes 4)
996 @result{} 11
997 @end group
998 @group
999 (aref "abcdefg" 1)
1000 @result{} 98 ; @r{@samp{b} is @acronym{ASCII} code 98.}
1001 @end group
1002 @end example
1003
1004 See also the function @code{elt}, in @ref{Sequence Functions}.
1005 @end defun
1006
1007 @defun aset array index object
1008 This function sets the @var{index}th element of @var{array} to be
1009 @var{object}. It returns @var{object}.
1010
1011 @example
1012 @group
1013 (setq w [foo bar baz])
1014 @result{} [foo bar baz]
1015 (aset w 0 'fu)
1016 @result{} fu
1017 w
1018 @result{} [fu bar baz]
1019 @end group
1020
1021 @group
1022 (setq x "asdfasfd")
1023 @result{} "asdfasfd"
1024 (aset x 3 ?Z)
1025 @result{} 90
1026 x
1027 @result{} "asdZasfd"
1028 @end group
1029 @end example
1030
1031 If @var{array} is a string and @var{object} is not a character, a
1032 @code{wrong-type-argument} error results. The function converts a
1033 unibyte string to multibyte if necessary to insert a character.
1034 @end defun
1035
1036 @defun fillarray array object
1037 This function fills the array @var{array} with @var{object}, so that
1038 each element of @var{array} is @var{object}. It returns @var{array}.
1039
1040 @example
1041 @group
1042 (setq a [a b c d e f g])
1043 @result{} [a b c d e f g]
1044 (fillarray a 0)
1045 @result{} [0 0 0 0 0 0 0]
1046 a
1047 @result{} [0 0 0 0 0 0 0]
1048 @end group
1049 @group
1050 (setq s "When in the course")
1051 @result{} "When in the course"
1052 (fillarray s ?-)
1053 @result{} "------------------"
1054 @end group
1055 @end example
1056
1057 If @var{array} is a string and @var{object} is not a character, a
1058 @code{wrong-type-argument} error results.
1059 @end defun
1060
1061 The general sequence functions @code{copy-sequence} and @code{length}
1062 are often useful for objects known to be arrays. @xref{Sequence Functions}.
1063
1064 @node Vectors
1065 @section Vectors
1066 @cindex vector (type)
1067
1068 A @dfn{vector} is a general-purpose array whose elements can be any
1069 Lisp objects. (By contrast, the elements of a string can only be
1070 characters. @xref{Strings and Characters}.) Vectors are used in
1071 Emacs for many purposes: as key sequences (@pxref{Key Sequences}), as
1072 symbol-lookup tables (@pxref{Creating Symbols}), as part of the
1073 representation of a byte-compiled function (@pxref{Byte Compilation}),
1074 and more.
1075
1076 Like other arrays, vectors use zero-origin indexing: the first
1077 element has index 0.
1078
1079 Vectors are printed with square brackets surrounding the elements.
1080 Thus, a vector whose elements are the symbols @code{a}, @code{b} and
1081 @code{a} is printed as @code{[a b a]}. You can write vectors in the
1082 same way in Lisp input.
1083
1084 A vector, like a string or a number, is considered a constant for
1085 evaluation: the result of evaluating it is the same vector. This does
1086 not evaluate or even examine the elements of the vector.
1087 @xref{Self-Evaluating Forms}.
1088
1089 Here are examples illustrating these principles:
1090
1091 @example
1092 @group
1093 (setq avector [1 two '(three) "four" [five]])
1094 @result{} [1 two (quote (three)) "four" [five]]
1095 (eval avector)
1096 @result{} [1 two (quote (three)) "four" [five]]
1097 (eq avector (eval avector))
1098 @result{} t
1099 @end group
1100 @end example
1101
1102 @node Vector Functions
1103 @section Functions for Vectors
1104
1105 Here are some functions that relate to vectors:
1106
1107 @defun vectorp object
1108 This function returns @code{t} if @var{object} is a vector.
1109
1110 @example
1111 @group
1112 (vectorp [a])
1113 @result{} t
1114 (vectorp "asdf")
1115 @result{} nil
1116 @end group
1117 @end example
1118 @end defun
1119
1120 @defun vector &rest objects
1121 This function creates and returns a vector whose elements are the
1122 arguments, @var{objects}.
1123
1124 @example
1125 @group
1126 (vector 'foo 23 [bar baz] "rats")
1127 @result{} [foo 23 [bar baz] "rats"]
1128 (vector)
1129 @result{} []
1130 @end group
1131 @end example
1132 @end defun
1133
1134 @defun make-vector length object
1135 This function returns a new vector consisting of @var{length} elements,
1136 each initialized to @var{object}.
1137
1138 @example
1139 @group
1140 (setq sleepy (make-vector 9 'Z))
1141 @result{} [Z Z Z Z Z Z Z Z Z]
1142 @end group
1143 @end example
1144 @end defun
1145
1146 @defun vconcat &rest sequences
1147 @cindex copying vectors
1148 This function returns a new vector containing all the elements of
1149 @var{sequences}. The arguments @var{sequences} may be true lists,
1150 vectors, strings or bool-vectors. If no @var{sequences} are given,
1151 the empty vector is returned.
1152
1153 The value is either the empty vector, or is a newly constructed
1154 nonempty vector that is not @code{eq} to any existing vector.
1155
1156 @example
1157 @group
1158 (setq a (vconcat '(A B C) '(D E F)))
1159 @result{} [A B C D E F]
1160 (eq a (vconcat a))
1161 @result{} nil
1162 @end group
1163 @group
1164 (vconcat)
1165 @result{} []
1166 (vconcat [A B C] "aa" '(foo (6 7)))
1167 @result{} [A B C 97 97 foo (6 7)]
1168 @end group
1169 @end example
1170
1171 The @code{vconcat} function also allows byte-code function objects as
1172 arguments. This is a special feature to make it easy to access the entire
1173 contents of a byte-code function object. @xref{Byte-Code Objects}.
1174
1175 For other concatenation functions, see @code{mapconcat} in @ref{Mapping
1176 Functions}, @code{concat} in @ref{Creating Strings}, and @code{append}
1177 in @ref{Building Lists}.
1178 @end defun
1179
1180 The @code{append} function also provides a way to convert a vector into a
1181 list with the same elements:
1182
1183 @example
1184 @group
1185 (setq avector [1 two (quote (three)) "four" [five]])
1186 @result{} [1 two (quote (three)) "four" [five]]
1187 (append avector nil)
1188 @result{} (1 two (quote (three)) "four" [five])
1189 @end group
1190 @end example
1191
1192 @node Char-Tables
1193 @section Char-Tables
1194 @cindex char-tables
1195 @cindex extra slots of char-table
1196
1197 A char-table is much like a vector, except that it is indexed by
1198 character codes. Any valid character code, without modifiers, can be
1199 used as an index in a char-table. You can access a char-table's
1200 elements with @code{aref} and @code{aset}, as with any array. In
1201 addition, a char-table can have @dfn{extra slots} to hold additional
1202 data not associated with particular character codes. Like vectors,
1203 char-tables are constants when evaluated, and can hold elements of any
1204 type.
1205
1206 @cindex subtype of char-table
1207 Each char-table has a @dfn{subtype}, a symbol, which serves two
1208 purposes:
1209
1210 @itemize @bullet
1211 @item
1212 The subtype provides an easy way to tell what the char-table is for.
1213 For instance, display tables are char-tables with @code{display-table}
1214 as the subtype, and syntax tables are char-tables with
1215 @code{syntax-table} as the subtype. The subtype can be queried using
1216 the function @code{char-table-subtype}, described below.
1217
1218 @item
1219 The subtype controls the number of @dfn{extra slots} in the
1220 char-table. This number is specified by the subtype's
1221 @code{char-table-extra-slots} symbol property (@pxref{Symbol
1222 Properties}), whose value should be an integer between 0 and 10. If
1223 the subtype has no such symbol property, the char-table has no extra
1224 slots.
1225 @end itemize
1226
1227 @cindex parent of char-table
1228 A char-table can have a @dfn{parent}, which is another char-table. If
1229 it does, then whenever the char-table specifies @code{nil} for a
1230 particular character @var{c}, it inherits the value specified in the
1231 parent. In other words, @code{(aref @var{char-table} @var{c})} returns
1232 the value from the parent of @var{char-table} if @var{char-table} itself
1233 specifies @code{nil}.
1234
1235 @cindex default value of char-table
1236 A char-table can also have a @dfn{default value}. If so, then
1237 @code{(aref @var{char-table} @var{c})} returns the default value
1238 whenever the char-table does not specify any other non-@code{nil} value.
1239
1240 @defun make-char-table subtype &optional init
1241 Return a newly-created char-table, with subtype @var{subtype} (a
1242 symbol). Each element is initialized to @var{init}, which defaults to
1243 @code{nil}. You cannot alter the subtype of a char-table after the
1244 char-table is created.
1245
1246 There is no argument to specify the length of the char-table, because
1247 all char-tables have room for any valid character code as an index.
1248
1249 If @var{subtype} has the @code{char-table-extra-slots} symbol
1250 property, that specifies the number of extra slots in the char-table.
1251 This should be an integer between 0 and 10; otherwise,
1252 @code{make-char-table} raises an error. If @var{subtype} has no
1253 @code{char-table-extra-slots} symbol property (@pxref{Property
1254 Lists}), the char-table has no extra slots.
1255 @end defun
1256
1257 @defun char-table-p object
1258 This function returns @code{t} if @var{object} is a char-table, and
1259 @code{nil} otherwise.
1260 @end defun
1261
1262 @defun char-table-subtype char-table
1263 This function returns the subtype symbol of @var{char-table}.
1264 @end defun
1265
1266 There is no special function to access default values in a char-table.
1267 To do that, use @code{char-table-range} (see below).
1268
1269 @defun char-table-parent char-table
1270 This function returns the parent of @var{char-table}. The parent is
1271 always either @code{nil} or another char-table.
1272 @end defun
1273
1274 @defun set-char-table-parent char-table new-parent
1275 This function sets the parent of @var{char-table} to @var{new-parent}.
1276 @end defun
1277
1278 @defun char-table-extra-slot char-table n
1279 This function returns the contents of extra slot @var{n} (zero based)
1280 of @var{char-table}. The number of extra slots in a char-table is
1281 determined by its subtype.
1282 @end defun
1283
1284 @defun set-char-table-extra-slot char-table n value
1285 This function stores @var{value} in extra slot @var{n} (zero based) of
1286 @var{char-table}.
1287 @end defun
1288
1289 A char-table can specify an element value for a single character code;
1290 it can also specify a value for an entire character set.
1291
1292 @defun char-table-range char-table range
1293 This returns the value specified in @var{char-table} for a range of
1294 characters @var{range}. Here are the possibilities for @var{range}:
1295
1296 @table @asis
1297 @item @code{nil}
1298 Refers to the default value.
1299
1300 @item @var{char}
1301 Refers to the element for character @var{char}
1302 (supposing @var{char} is a valid character code).
1303
1304 @item @code{(@var{from} . @var{to})}
1305 A cons cell refers to all the characters in the inclusive range
1306 @samp{[@var{from}..@var{to}]}.
1307 @end table
1308 @end defun
1309
1310 @defun set-char-table-range char-table range value
1311 This function sets the value in @var{char-table} for a range of
1312 characters @var{range}. Here are the possibilities for @var{range}:
1313
1314 @table @asis
1315 @item @code{nil}
1316 Refers to the default value.
1317
1318 @item @code{t}
1319 Refers to the whole range of character codes.
1320
1321 @item @var{char}
1322 Refers to the element for character @var{char}
1323 (supposing @var{char} is a valid character code).
1324
1325 @item @code{(@var{from} . @var{to})}
1326 A cons cell refers to all the characters in the inclusive range
1327 @samp{[@var{from}..@var{to}]}.
1328 @end table
1329 @end defun
1330
1331 @defun map-char-table function char-table
1332 This function calls its argument @var{function} for each element of
1333 @var{char-table} that has a non-@code{nil} value. The call to
1334 @var{function} is with two arguments, a key and a value. The key
1335 is a possible @var{range} argument for @code{char-table-range}---either
1336 a valid character or a cons cell @code{(@var{from} . @var{to})},
1337 specifying a range of characters that share the same value. The value is
1338 what @code{(char-table-range @var{char-table} @var{key})} returns.
1339
1340 Overall, the key-value pairs passed to @var{function} describe all the
1341 values stored in @var{char-table}.
1342
1343 The return value is always @code{nil}; to make calls to
1344 @code{map-char-table} useful, @var{function} should have side effects.
1345 For example, here is how to examine the elements of the syntax table:
1346
1347 @example
1348 (let (accumulator)
1349 (map-char-table
1350 #'(lambda (key value)
1351 (setq accumulator
1352 (cons (list
1353 (if (consp key)
1354 (list (car key) (cdr key))
1355 key)
1356 value)
1357 accumulator)))
1358 (syntax-table))
1359 accumulator)
1360 @result{}
1361 (((2597602 4194303) (2)) ((2597523 2597601) (3))
1362 ... (65379 (5 . 65378)) (65378 (4 . 65379)) (65377 (1))
1363 ... (12 (0)) (11 (3)) (10 (12)) (9 (0)) ((0 8) (3)))
1364 @end example
1365 @end defun
1366
1367 @node Bool-Vectors
1368 @section Bool-vectors
1369 @cindex Bool-vectors
1370
1371 A bool-vector is much like a vector, except that it stores only the
1372 values @code{t} and @code{nil}. If you try to store any non-@code{nil}
1373 value into an element of the bool-vector, the effect is to store
1374 @code{t} there. As with all arrays, bool-vector indices start from 0,
1375 and the length cannot be changed once the bool-vector is created.
1376 Bool-vectors are constants when evaluated.
1377
1378 Several functions work specifically with bool-vectors; aside
1379 from that, you manipulate them with same functions used for other kinds
1380 of arrays.
1381
1382 @defun make-bool-vector length initial
1383 Return a new bool-vector of @var{length} elements,
1384 each one initialized to @var{initial}.
1385 @end defun
1386
1387 @defun bool-vector &rest objects
1388 This function creates and returns a bool-vector whose elements are the
1389 arguments, @var{objects}.
1390 @end defun
1391
1392 @defun bool-vector-p object
1393 This returns @code{t} if @var{object} is a bool-vector,
1394 and @code{nil} otherwise.
1395 @end defun
1396
1397 There are also some bool-vector set operation functions, described below:
1398
1399 @defun bool-vector-exclusive-or a b &optional c
1400 Return @dfn{bitwise exclusive or} of bool vectors @var{a} and @var{b}.
1401 If optional argument @var{c} is given, the result of this operation is
1402 stored into @var{c}. All arguments should be bool vectors of the same length.
1403 @end defun
1404
1405 @defun bool-vector-union a b &optional c
1406 Return @dfn{bitwise or} of bool vectors @var{a} and @var{b}. If
1407 optional argument @var{c} is given, the result of this operation is
1408 stored into @var{c}. All arguments should be bool vectors of the same length.
1409 @end defun
1410
1411 @defun bool-vector-intersection a b &optional c
1412 Return @dfn{bitwise and} of bool vectors @var{a} and @var{b}. If
1413 optional argument @var{c} is given, the result of this operation is
1414 stored into @var{c}. All arguments should be bool vectors of the same length.
1415 @end defun
1416
1417 @defun bool-vector-set-difference a b &optional c
1418 Return @dfn{set difference} of bool vectors @var{a} and @var{b}. If
1419 optional argument @var{c} is given, the result of this operation is
1420 stored into @var{c}. All arguments should be bool vectors of the same length.
1421 @end defun
1422
1423 @defun bool-vector-not a &optional b
1424 Return @dfn{set complement} of bool vector @var{a}. If optional
1425 argument @var{b} is given, the result of this operation is stored into
1426 @var{b}. All arguments should be bool vectors of the same length.
1427 @end defun
1428
1429 @defun bool-vector-subsetp a b
1430 Return @code{t} if every @code{t} value in @var{a} is also t in
1431 @var{b}, @code{nil} otherwise. All arguments should be bool vectors of the
1432 same length.
1433 @end defun
1434
1435 @defun bool-vector-count-consecutive a b i
1436 Return the number of consecutive elements in @var{a} equal @var{b}
1437 starting at @var{i}. @code{a} is a bool vector, @var{b} is @code{t}
1438 or @code{nil}, and @var{i} is an index into @code{a}.
1439 @end defun
1440
1441 @defun bool-vector-count-population a
1442 Return the number of elements that are @code{t} in bool vector @var{a}.
1443 @end defun
1444
1445 The printed form represents up to 8 boolean values as a single
1446 character:
1447
1448 @example
1449 @group
1450 (bool-vector t nil t nil)
1451 @result{} #&4"^E"
1452 (bool-vector)
1453 @result{} #&0""
1454 @end group
1455 @end example
1456
1457 You can use @code{vconcat} to print a bool-vector like other vectors:
1458
1459 @example
1460 @group
1461 (vconcat (bool-vector nil t nil t))
1462 @result{} [nil t nil t]
1463 @end group
1464 @end example
1465
1466 Here is another example of creating, examining, and updating a
1467 bool-vector:
1468
1469 @example
1470 (setq bv (make-bool-vector 5 t))
1471 @result{} #&5"^_"
1472 (aref bv 1)
1473 @result{} t
1474 (aset bv 3 nil)
1475 @result{} nil
1476 bv
1477 @result{} #&5"^W"
1478 @end example
1479
1480 @noindent
1481 These results make sense because the binary codes for control-_ and
1482 control-W are 11111 and 10111, respectively.
1483
1484 @node Rings
1485 @section Managing a Fixed-Size Ring of Objects
1486
1487 @cindex ring data structure
1488 A @dfn{ring} is a fixed-size data structure that supports insertion,
1489 deletion, rotation, and modulo-indexed reference and traversal. An
1490 efficient ring data structure is implemented by the @code{ring}
1491 package. It provides the functions listed in this section.
1492
1493 Note that several ``rings'' in Emacs, like the kill ring and the
1494 mark ring, are actually implemented as simple lists, @emph{not} using
1495 the @code{ring} package; thus the following functions won't work on
1496 them.
1497
1498 @defun make-ring size
1499 This returns a new ring capable of holding @var{size} objects.
1500 @var{size} should be an integer.
1501 @end defun
1502
1503 @defun ring-p object
1504 This returns @code{t} if @var{object} is a ring, @code{nil} otherwise.
1505 @end defun
1506
1507 @defun ring-size ring
1508 This returns the maximum capacity of the @var{ring}.
1509 @end defun
1510
1511 @defun ring-length ring
1512 This returns the number of objects that @var{ring} currently contains.
1513 The value will never exceed that returned by @code{ring-size}.
1514 @end defun
1515
1516 @defun ring-elements ring
1517 This returns a list of the objects in @var{ring}, in order, newest first.
1518 @end defun
1519
1520 @defun ring-copy ring
1521 This returns a new ring which is a copy of @var{ring}.
1522 The new ring contains the same (@code{eq}) objects as @var{ring}.
1523 @end defun
1524
1525 @defun ring-empty-p ring
1526 This returns @code{t} if @var{ring} is empty, @code{nil} otherwise.
1527 @end defun
1528
1529 The newest element in the ring always has index 0. Higher indices
1530 correspond to older elements. Indices are computed modulo the ring
1531 length. Index @minus{}1 corresponds to the oldest element, @minus{}2
1532 to the next-oldest, and so forth.
1533
1534 @defun ring-ref ring index
1535 This returns the object in @var{ring} found at index @var{index}.
1536 @var{index} may be negative or greater than the ring length. If
1537 @var{ring} is empty, @code{ring-ref} signals an error.
1538 @end defun
1539
1540 @defun ring-insert ring object
1541 This inserts @var{object} into @var{ring}, making it the newest
1542 element, and returns @var{object}.
1543
1544 If the ring is full, insertion removes the oldest element to
1545 make room for the new element.
1546 @end defun
1547
1548 @defun ring-remove ring &optional index
1549 Remove an object from @var{ring}, and return that object. The
1550 argument @var{index} specifies which item to remove; if it is
1551 @code{nil}, that means to remove the oldest item. If @var{ring} is
1552 empty, @code{ring-remove} signals an error.
1553 @end defun
1554
1555 @defun ring-insert-at-beginning ring object
1556 This inserts @var{object} into @var{ring}, treating it as the oldest
1557 element. The return value is not significant.
1558
1559 If the ring is full, this function removes the newest element to make
1560 room for the inserted element.
1561 @end defun
1562
1563 @cindex fifo data structure
1564 If you are careful not to exceed the ring size, you can
1565 use the ring as a first-in-first-out queue. For example:
1566
1567 @lisp
1568 (let ((fifo (make-ring 5)))
1569 (mapc (lambda (obj) (ring-insert fifo obj))
1570 '(0 one "two"))
1571 (list (ring-remove fifo) t
1572 (ring-remove fifo) t
1573 (ring-remove fifo)))
1574 @result{} (0 t one t "two")
1575 @end lisp