]> code.delx.au - gnu-emacs/blob - src/intervals.c
1e5a3782ef9d6c1b86cc373233ad2b307a1fed12
[gnu-emacs] / src / intervals.c
1 /* Code for doing intervals.
2 Copyright (C) 1993, 1994, 1995 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* NOTES:
23
24 Have to ensure that we can't put symbol nil on a plist, or some
25 functions may work incorrectly.
26
27 An idea: Have the owner of the tree keep count of splits and/or
28 insertion lengths (in intervals), and balance after every N.
29
30 Need to call *_left_hook when buffer is killed.
31
32 Scan for zero-length, or 0-length to see notes about handling
33 zero length interval-markers.
34
35 There are comments around about freeing intervals. It might be
36 faster to explicitly free them (put them on the free list) than
37 to GC them.
38
39 */
40
41
42 #include <config.h>
43 #include "lisp.h"
44 #include "intervals.h"
45 #include "buffer.h"
46 #include "puresize.h"
47 #include "keyboard.h"
48
49 /* The rest of the file is within this conditional. */
50 #ifdef USE_TEXT_PROPERTIES
51
52 /* Test for membership, allowing for t (actually any non-cons) to mean the
53 universal set. */
54
55 #define TMEM(sym, set) (CONSP (set) ? ! NILP (Fmemq (sym, set)) : ! NILP (set))
56
57 #define min(x, y) ((x) < (y) ? (x) : (y))
58
59 Lisp_Object merge_properties_sticky ();
60 \f
61 /* Utility functions for intervals. */
62
63
64 /* Create the root interval of some object, a buffer or string. */
65
66 INTERVAL
67 create_root_interval (parent)
68 Lisp_Object parent;
69 {
70 INTERVAL new;
71
72 CHECK_IMPURE (parent);
73
74 new = make_interval ();
75
76 if (BUFFERP (parent))
77 {
78 new->total_length = (BUF_Z (XBUFFER (parent))
79 - BUF_BEG (XBUFFER (parent)));
80 BUF_INTERVALS (XBUFFER (parent)) = new;
81 }
82 else if (STRINGP (parent))
83 {
84 new->total_length = XSTRING (parent)->size;
85 XSTRING (parent)->intervals = new;
86 }
87
88 new->parent = (INTERVAL) parent;
89 new->position = 1;
90
91 return new;
92 }
93
94 /* Make the interval TARGET have exactly the properties of SOURCE */
95
96 void
97 copy_properties (source, target)
98 register INTERVAL source, target;
99 {
100 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
101 return;
102
103 COPY_INTERVAL_CACHE (source, target);
104 target->plist = Fcopy_sequence (source->plist);
105 }
106
107 /* Merge the properties of interval SOURCE into the properties
108 of interval TARGET. That is to say, each property in SOURCE
109 is added to TARGET if TARGET has no such property as yet. */
110
111 static void
112 merge_properties (source, target)
113 register INTERVAL source, target;
114 {
115 register Lisp_Object o, sym, val;
116
117 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
118 return;
119
120 MERGE_INTERVAL_CACHE (source, target);
121
122 o = source->plist;
123 while (! EQ (o, Qnil))
124 {
125 sym = Fcar (o);
126 val = Fmemq (sym, target->plist);
127
128 if (NILP (val))
129 {
130 o = Fcdr (o);
131 val = Fcar (o);
132 target->plist = Fcons (sym, Fcons (val, target->plist));
133 o = Fcdr (o);
134 }
135 else
136 o = Fcdr (Fcdr (o));
137 }
138 }
139
140 /* Return 1 if the two intervals have the same properties,
141 0 otherwise. */
142
143 int
144 intervals_equal (i0, i1)
145 INTERVAL i0, i1;
146 {
147 register Lisp_Object i0_cdr, i0_sym, i1_val;
148 register i1_len;
149
150 if (DEFAULT_INTERVAL_P (i0) && DEFAULT_INTERVAL_P (i1))
151 return 1;
152
153 if (DEFAULT_INTERVAL_P (i0) || DEFAULT_INTERVAL_P (i1))
154 return 0;
155
156 i1_len = XFASTINT (Flength (i1->plist));
157 if (i1_len & 0x1) /* Paranoia -- plists are always even */
158 abort ();
159 i1_len /= 2;
160 i0_cdr = i0->plist;
161 while (!NILP (i0_cdr))
162 {
163 /* Lengths of the two plists were unequal. */
164 if (i1_len == 0)
165 return 0;
166
167 i0_sym = Fcar (i0_cdr);
168 i1_val = Fmemq (i0_sym, i1->plist);
169
170 /* i0 has something i1 doesn't. */
171 if (EQ (i1_val, Qnil))
172 return 0;
173
174 /* i0 and i1 both have sym, but it has different values in each. */
175 i0_cdr = Fcdr (i0_cdr);
176 if (! EQ (Fcar (Fcdr (i1_val)), Fcar (i0_cdr)))
177 return 0;
178
179 i0_cdr = Fcdr (i0_cdr);
180 i1_len--;
181 }
182
183 /* Lengths of the two plists were unequal. */
184 if (i1_len > 0)
185 return 0;
186
187 return 1;
188 }
189 \f
190 static int icount;
191 static int idepth;
192 static int zero_length;
193
194 /* Traverse an interval tree TREE, performing FUNCTION on each node.
195 Pass FUNCTION two args: an interval, and ARG. */
196
197 void
198 traverse_intervals (tree, position, depth, function, arg)
199 INTERVAL tree;
200 int position, depth;
201 void (* function) ();
202 Lisp_Object arg;
203 {
204 if (NULL_INTERVAL_P (tree))
205 return;
206
207 traverse_intervals (tree->left, position, depth + 1, function, arg);
208 position += LEFT_TOTAL_LENGTH (tree);
209 tree->position = position;
210 (*function) (tree, arg);
211 position += LENGTH (tree);
212 traverse_intervals (tree->right, position, depth + 1, function, arg);
213 }
214 \f
215 #if 0
216 /* These functions are temporary, for debugging purposes only. */
217
218 INTERVAL search_interval, found_interval;
219
220 void
221 check_for_interval (i)
222 register INTERVAL i;
223 {
224 if (i == search_interval)
225 {
226 found_interval = i;
227 icount++;
228 }
229 }
230
231 INTERVAL
232 search_for_interval (i, tree)
233 register INTERVAL i, tree;
234 {
235 icount = 0;
236 search_interval = i;
237 found_interval = NULL_INTERVAL;
238 traverse_intervals (tree, 1, 0, &check_for_interval, Qnil);
239 return found_interval;
240 }
241
242 static void
243 inc_interval_count (i)
244 INTERVAL i;
245 {
246 icount++;
247 if (LENGTH (i) == 0)
248 zero_length++;
249 if (depth > idepth)
250 idepth = depth;
251 }
252
253 int
254 count_intervals (i)
255 register INTERVAL i;
256 {
257 icount = 0;
258 idepth = 0;
259 zero_length = 0;
260 traverse_intervals (i, 1, 0, &inc_interval_count, Qnil);
261
262 return icount;
263 }
264
265 static INTERVAL
266 root_interval (interval)
267 INTERVAL interval;
268 {
269 register INTERVAL i = interval;
270
271 while (! ROOT_INTERVAL_P (i))
272 i = i->parent;
273
274 return i;
275 }
276 #endif
277 \f
278 /* Assuming that a left child exists, perform the following operation:
279
280 A B
281 / \ / \
282 B => A
283 / \ / \
284 c c
285 */
286
287 static INTERVAL
288 rotate_right (interval)
289 INTERVAL interval;
290 {
291 INTERVAL i;
292 INTERVAL B = interval->left;
293 int old_total = interval->total_length;
294
295 /* Deal with any Parent of A; make it point to B. */
296 if (! ROOT_INTERVAL_P (interval))
297 if (AM_LEFT_CHILD (interval))
298 interval->parent->left = B;
299 else
300 interval->parent->right = B;
301 B->parent = interval->parent;
302
303 /* Make B the parent of A */
304 i = B->right;
305 B->right = interval;
306 interval->parent = B;
307
308 /* Make A point to c */
309 interval->left = i;
310 if (! NULL_INTERVAL_P (i))
311 i->parent = interval;
312
313 /* A's total length is decreased by the length of B and its left child. */
314 interval->total_length -= B->total_length - LEFT_TOTAL_LENGTH (interval);
315
316 /* B must have the same total length of A. */
317 B->total_length = old_total;
318
319 return B;
320 }
321
322 /* Assuming that a right child exists, perform the following operation:
323
324 A B
325 / \ / \
326 B => A
327 / \ / \
328 c c
329 */
330
331 static INTERVAL
332 rotate_left (interval)
333 INTERVAL interval;
334 {
335 INTERVAL i;
336 INTERVAL B = interval->right;
337 int old_total = interval->total_length;
338
339 /* Deal with any parent of A; make it point to B. */
340 if (! ROOT_INTERVAL_P (interval))
341 if (AM_LEFT_CHILD (interval))
342 interval->parent->left = B;
343 else
344 interval->parent->right = B;
345 B->parent = interval->parent;
346
347 /* Make B the parent of A */
348 i = B->left;
349 B->left = interval;
350 interval->parent = B;
351
352 /* Make A point to c */
353 interval->right = i;
354 if (! NULL_INTERVAL_P (i))
355 i->parent = interval;
356
357 /* A's total length is decreased by the length of B and its right child. */
358 interval->total_length -= B->total_length - RIGHT_TOTAL_LENGTH (interval);
359
360 /* B must have the same total length of A. */
361 B->total_length = old_total;
362
363 return B;
364 }
365 \f
366 /* Balance an interval tree with the assumption that the subtrees
367 themselves are already balanced. */
368
369 static INTERVAL
370 balance_an_interval (i)
371 INTERVAL i;
372 {
373 register int old_diff, new_diff;
374
375 while (1)
376 {
377 old_diff = LEFT_TOTAL_LENGTH (i) - RIGHT_TOTAL_LENGTH (i);
378 if (old_diff > 0)
379 {
380 new_diff = i->total_length - i->left->total_length
381 + RIGHT_TOTAL_LENGTH (i->left) - LEFT_TOTAL_LENGTH (i->left);
382 if (abs (new_diff) >= old_diff)
383 break;
384 i = rotate_right (i);
385 balance_an_interval (i->right);
386 }
387 else if (old_diff < 0)
388 {
389 new_diff = i->total_length - i->right->total_length
390 + LEFT_TOTAL_LENGTH (i->right) - RIGHT_TOTAL_LENGTH (i->right);
391 if (abs (new_diff) >= -old_diff)
392 break;
393 i = rotate_left (i);
394 balance_an_interval (i->left);
395 }
396 else
397 break;
398 }
399 return i;
400 }
401
402 /* Balance INTERVAL, potentially stuffing it back into its parent
403 Lisp Object. */
404
405 static INLINE INTERVAL
406 balance_possible_root_interval (interval)
407 register INTERVAL interval;
408 {
409 Lisp_Object parent;
410
411 if (interval->parent == NULL_INTERVAL)
412 return interval;
413
414 parent = (Lisp_Object) (interval->parent);
415 interval = balance_an_interval (interval);
416
417 if (BUFFERP (parent))
418 BUF_INTERVALS (XBUFFER (parent)) = interval;
419 else if (STRINGP (parent))
420 XSTRING (parent)->intervals = interval;
421
422 return interval;
423 }
424
425 /* Balance the interval tree TREE. Balancing is by weight
426 (the amount of text). */
427
428 static INTERVAL
429 balance_intervals_internal (tree)
430 register INTERVAL tree;
431 {
432 /* Balance within each side. */
433 if (tree->left)
434 balance_intervals_internal (tree->left);
435 if (tree->right)
436 balance_intervals_internal (tree->right);
437 return balance_an_interval (tree);
438 }
439
440 /* Advertised interface to balance intervals. */
441
442 INTERVAL
443 balance_intervals (tree)
444 INTERVAL tree;
445 {
446 if (tree == NULL_INTERVAL)
447 return NULL_INTERVAL;
448
449 return balance_intervals_internal (tree);
450 }
451 \f
452 /* Split INTERVAL into two pieces, starting the second piece at
453 character position OFFSET (counting from 0), relative to INTERVAL.
454 INTERVAL becomes the left-hand piece, and the right-hand piece
455 (second, lexicographically) is returned.
456
457 The size and position fields of the two intervals are set based upon
458 those of the original interval. The property list of the new interval
459 is reset, thus it is up to the caller to do the right thing with the
460 result.
461
462 Note that this does not change the position of INTERVAL; if it is a root,
463 it is still a root after this operation. */
464
465 INTERVAL
466 split_interval_right (interval, offset)
467 INTERVAL interval;
468 int offset;
469 {
470 INTERVAL new = make_interval ();
471 int position = interval->position;
472 int new_length = LENGTH (interval) - offset;
473
474 new->position = position + offset;
475 new->parent = interval;
476
477 if (NULL_RIGHT_CHILD (interval))
478 {
479 interval->right = new;
480 new->total_length = new_length;
481
482 return new;
483 }
484
485 /* Insert the new node between INTERVAL and its right child. */
486 new->right = interval->right;
487 interval->right->parent = new;
488 interval->right = new;
489 new->total_length = new_length + new->right->total_length;
490
491 balance_an_interval (new);
492 balance_possible_root_interval (interval);
493
494 return new;
495 }
496
497 /* Split INTERVAL into two pieces, starting the second piece at
498 character position OFFSET (counting from 0), relative to INTERVAL.
499 INTERVAL becomes the right-hand piece, and the left-hand piece
500 (first, lexicographically) is returned.
501
502 The size and position fields of the two intervals are set based upon
503 those of the original interval. The property list of the new interval
504 is reset, thus it is up to the caller to do the right thing with the
505 result.
506
507 Note that this does not change the position of INTERVAL; if it is a root,
508 it is still a root after this operation. */
509
510 INTERVAL
511 split_interval_left (interval, offset)
512 INTERVAL interval;
513 int offset;
514 {
515 INTERVAL new = make_interval ();
516 int position = interval->position;
517 int new_length = offset;
518
519 new->position = interval->position;
520 interval->position = interval->position + offset;
521 new->parent = interval;
522
523 if (NULL_LEFT_CHILD (interval))
524 {
525 interval->left = new;
526 new->total_length = new_length;
527
528 return new;
529 }
530
531 /* Insert the new node between INTERVAL and its left child. */
532 new->left = interval->left;
533 new->left->parent = new;
534 interval->left = new;
535 new->total_length = new_length + new->left->total_length;
536
537 balance_an_interval (new);
538 balance_possible_root_interval (interval);
539
540 return new;
541 }
542 \f
543 /* Find the interval containing text position POSITION in the text
544 represented by the interval tree TREE. POSITION is a buffer
545 position; the earliest position is 1. If POSITION is at the end of
546 the buffer, return the interval containing the last character.
547
548 The `position' field, which is a cache of an interval's position,
549 is updated in the interval found. Other functions (e.g., next_interval)
550 will update this cache based on the result of find_interval. */
551
552 INLINE INTERVAL
553 find_interval (tree, position)
554 register INTERVAL tree;
555 register int position;
556 {
557 /* The distance from the left edge of the subtree at TREE
558 to POSITION. */
559 register int relative_position = position - BEG;
560
561 if (NULL_INTERVAL_P (tree))
562 return NULL_INTERVAL;
563
564 if (relative_position > TOTAL_LENGTH (tree))
565 abort (); /* Paranoia */
566
567 tree = balance_possible_root_interval (tree);
568
569 while (1)
570 {
571 if (relative_position < LEFT_TOTAL_LENGTH (tree))
572 {
573 tree = tree->left;
574 }
575 else if (! NULL_RIGHT_CHILD (tree)
576 && relative_position >= (TOTAL_LENGTH (tree)
577 - RIGHT_TOTAL_LENGTH (tree)))
578 {
579 relative_position -= (TOTAL_LENGTH (tree)
580 - RIGHT_TOTAL_LENGTH (tree));
581 tree = tree->right;
582 }
583 else
584 {
585 tree->position =
586 (position - relative_position /* the left edge of *tree */
587 + LEFT_TOTAL_LENGTH (tree)); /* the left edge of this interval */
588
589 return tree;
590 }
591 }
592 }
593 \f
594 /* Find the succeeding interval (lexicographically) to INTERVAL.
595 Sets the `position' field based on that of INTERVAL (see
596 find_interval). */
597
598 INTERVAL
599 next_interval (interval)
600 register INTERVAL interval;
601 {
602 register INTERVAL i = interval;
603 register int next_position;
604
605 if (NULL_INTERVAL_P (i))
606 return NULL_INTERVAL;
607 next_position = interval->position + LENGTH (interval);
608
609 if (! NULL_RIGHT_CHILD (i))
610 {
611 i = i->right;
612 while (! NULL_LEFT_CHILD (i))
613 i = i->left;
614
615 i->position = next_position;
616 return i;
617 }
618
619 while (! NULL_PARENT (i))
620 {
621 if (AM_LEFT_CHILD (i))
622 {
623 i = i->parent;
624 i->position = next_position;
625 return i;
626 }
627
628 i = i->parent;
629 }
630
631 return NULL_INTERVAL;
632 }
633
634 /* Find the preceding interval (lexicographically) to INTERVAL.
635 Sets the `position' field based on that of INTERVAL (see
636 find_interval). */
637
638 INTERVAL
639 previous_interval (interval)
640 register INTERVAL interval;
641 {
642 register INTERVAL i;
643 register position_of_previous;
644
645 if (NULL_INTERVAL_P (interval))
646 return NULL_INTERVAL;
647
648 if (! NULL_LEFT_CHILD (interval))
649 {
650 i = interval->left;
651 while (! NULL_RIGHT_CHILD (i))
652 i = i->right;
653
654 i->position = interval->position - LENGTH (i);
655 return i;
656 }
657
658 i = interval;
659 while (! NULL_PARENT (i))
660 {
661 if (AM_RIGHT_CHILD (i))
662 {
663 i = i->parent;
664
665 i->position = interval->position - LENGTH (i);
666 return i;
667 }
668 i = i->parent;
669 }
670
671 return NULL_INTERVAL;
672 }
673 \f
674 #if 0
675 /* Traverse a path down the interval tree TREE to the interval
676 containing POSITION, adjusting all nodes on the path for
677 an addition of LENGTH characters. Insertion between two intervals
678 (i.e., point == i->position, where i is second interval) means
679 text goes into second interval.
680
681 Modifications are needed to handle the hungry bits -- after simply
682 finding the interval at position (don't add length going down),
683 if it's the beginning of the interval, get the previous interval
684 and check the hungry bits of both. Then add the length going back up
685 to the root. */
686
687 static INTERVAL
688 adjust_intervals_for_insertion (tree, position, length)
689 INTERVAL tree;
690 int position, length;
691 {
692 register int relative_position;
693 register INTERVAL this;
694
695 if (TOTAL_LENGTH (tree) == 0) /* Paranoia */
696 abort ();
697
698 /* If inserting at point-max of a buffer, that position
699 will be out of range */
700 if (position > TOTAL_LENGTH (tree))
701 position = TOTAL_LENGTH (tree);
702 relative_position = position;
703 this = tree;
704
705 while (1)
706 {
707 if (relative_position <= LEFT_TOTAL_LENGTH (this))
708 {
709 this->total_length += length;
710 this = this->left;
711 }
712 else if (relative_position > (TOTAL_LENGTH (this)
713 - RIGHT_TOTAL_LENGTH (this)))
714 {
715 relative_position -= (TOTAL_LENGTH (this)
716 - RIGHT_TOTAL_LENGTH (this));
717 this->total_length += length;
718 this = this->right;
719 }
720 else
721 {
722 /* If we are to use zero-length intervals as buffer pointers,
723 then this code will have to change. */
724 this->total_length += length;
725 this->position = LEFT_TOTAL_LENGTH (this)
726 + position - relative_position + 1;
727 return tree;
728 }
729 }
730 }
731 #endif
732
733 /* Effect an adjustment corresponding to the addition of LENGTH characters
734 of text. Do this by finding the interval containing POSITION in the
735 interval tree TREE, and then adjusting all of its ancestors by adding
736 LENGTH to them.
737
738 If POSITION is the first character of an interval, meaning that point
739 is actually between the two intervals, make the new text belong to
740 the interval which is "sticky".
741
742 If both intervals are "sticky", then make them belong to the left-most
743 interval. Another possibility would be to create a new interval for
744 this text, and make it have the merged properties of both ends. */
745
746 static INTERVAL
747 adjust_intervals_for_insertion (tree, position, length)
748 INTERVAL tree;
749 int position, length;
750 {
751 register INTERVAL i;
752 register INTERVAL temp;
753 int eobp = 0;
754
755 if (TOTAL_LENGTH (tree) == 0) /* Paranoia */
756 abort ();
757
758 /* If inserting at point-max of a buffer, that position will be out
759 of range. Remember that buffer positions are 1-based. */
760 if (position >= BEG + TOTAL_LENGTH (tree)){
761 position = BEG + TOTAL_LENGTH (tree);
762 eobp = 1;
763 }
764
765 i = find_interval (tree, position);
766
767 /* If in middle of an interval which is not sticky either way,
768 we must not just give its properties to the insertion.
769 So split this interval at the insertion point. */
770 if (! (position == i->position || eobp)
771 && END_NONSTICKY_P (i)
772 && ! FRONT_STICKY_P (i))
773 {
774 temp = split_interval_right (i, position - i->position);
775 copy_properties (i, temp);
776 i = temp;
777 }
778
779 /* If we are positioned between intervals, check the stickiness of
780 both of them. We have to do this too, if we are at BEG or Z. */
781 if (position == i->position || eobp)
782 {
783 register INTERVAL prev;
784
785 if (position == BEG)
786 prev = 0;
787 else if (eobp)
788 {
789 prev = i;
790 i = 0;
791 }
792 else
793 prev = previous_interval (i);
794
795 /* Even if we are positioned between intervals, we default
796 to the left one if it exists. We extend it now and split
797 off a part later, if stickiness demands it. */
798 for (temp = prev ? prev : i;! NULL_INTERVAL_P (temp); temp = temp->parent)
799 {
800 temp->total_length += length;
801 temp = balance_possible_root_interval (temp);
802 }
803
804 /* If at least one interval has sticky properties,
805 we check the stickiness property by property. */
806 if (END_NONSTICKY_P (prev) || FRONT_STICKY_P (i))
807 {
808 Lisp_Object pleft, pright;
809 struct interval newi;
810
811 pleft = NULL_INTERVAL_P (prev) ? Qnil : prev->plist;
812 pright = NULL_INTERVAL_P (i) ? Qnil : i->plist;
813 newi.plist = merge_properties_sticky (pleft, pright);
814
815 if(! prev) /* i.e. position == BEG */
816 {
817 if (! intervals_equal (i, &newi))
818 {
819 i = split_interval_left (i, length);
820 i->plist = newi.plist;
821 }
822 }
823 else if (! intervals_equal (prev, &newi))
824 {
825 prev = split_interval_right (prev,
826 position - prev->position);
827 prev->plist = newi.plist;
828 if (! NULL_INTERVAL_P (i)
829 && intervals_equal (prev, i))
830 merge_interval_right (prev);
831 }
832
833 /* We will need to update the cache here later. */
834 }
835 else if (! prev && ! NILP (i->plist))
836 {
837 /* Just split off a new interval at the left.
838 Since I wasn't front-sticky, the empty plist is ok. */
839 i = split_interval_left (i, length);
840 }
841 }
842
843 /* Otherwise just extend the interval. */
844 else
845 {
846 for (temp = i; ! NULL_INTERVAL_P (temp); temp = temp->parent)
847 {
848 temp->total_length += length;
849 temp = balance_possible_root_interval (temp);
850 }
851 }
852
853 return tree;
854 }
855
856 /* Any property might be front-sticky on the left, rear-sticky on the left,
857 front-sticky on the right, or rear-sticky on the right; the 16 combinations
858 can be arranged in a matrix with rows denoting the left conditions and
859 columns denoting the right conditions:
860 _ __ _
861 _ FR FR FR FR
862 FR__ 0 1 2 3
863 _FR 4 5 6 7
864 FR 8 9 A B
865 FR C D E F
866
867 left-props = '(front-sticky (p8 p9 pa pb pc pd pe pf)
868 rear-nonsticky (p4 p5 p6 p7 p8 p9 pa pb)
869 p0 L p1 L p2 L p3 L p4 L p5 L p6 L p7 L
870 p8 L p9 L pa L pb L pc L pd L pe L pf L)
871 right-props = '(front-sticky (p2 p3 p6 p7 pa pb pe pf)
872 rear-nonsticky (p1 p2 p5 p6 p9 pa pd pe)
873 p0 R p1 R p2 R p3 R p4 R p5 R p6 R p7 R
874 p8 R p9 R pa R pb R pc R pd R pe R pf R)
875
876 We inherit from whoever has a sticky side facing us. If both sides
877 do (cases 2, 3, E, and F), then we inherit from whichever side has a
878 non-nil value for the current property. If both sides do, then we take
879 from the left.
880
881 When we inherit a property, we get its stickiness as well as its value.
882 So, when we merge the above two lists, we expect to get this:
883
884 result = '(front-sticky (p6 p7 pa pb pc pd pe pf)
885 rear-nonsticky (p6 pa)
886 p0 L p1 L p2 L p3 L p6 R p7 R
887 pa R pb R pc L pd L pe L pf L)
888
889 The optimizable special cases are:
890 left rear-nonsticky = nil, right front-sticky = nil (inherit left)
891 left rear-nonsticky = t, right front-sticky = t (inherit right)
892 left rear-nonsticky = t, right front-sticky = nil (inherit none)
893 */
894
895 Lisp_Object
896 merge_properties_sticky (pleft, pright)
897 Lisp_Object pleft, pright;
898 {
899 register Lisp_Object props, front, rear;
900 Lisp_Object lfront, lrear, rfront, rrear;
901 register Lisp_Object tail1, tail2, sym, lval, rval, cat;
902 int use_left, use_right;
903 int lpresent;
904
905 props = Qnil;
906 front = Qnil;
907 rear = Qnil;
908 lfront = textget (pleft, Qfront_sticky);
909 lrear = textget (pleft, Qrear_nonsticky);
910 rfront = textget (pright, Qfront_sticky);
911 rrear = textget (pright, Qrear_nonsticky);
912
913 /* Go through each element of PRIGHT. */
914 for (tail1 = pright; ! NILP (tail1); tail1 = Fcdr (Fcdr (tail1)))
915 {
916 sym = Fcar (tail1);
917
918 /* Sticky properties get special treatment. */
919 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
920 continue;
921
922 rval = Fcar (Fcdr (tail1));
923 for (tail2 = pleft; ! NILP (tail2); tail2 = Fcdr (Fcdr (tail2)))
924 if (EQ (sym, Fcar (tail2)))
925 break;
926
927 /* Indicate whether the property is explicitly defined on the left.
928 (We know it is defined explicitly on the right
929 because otherwise we don't get here.) */
930 lpresent = ! NILP (tail2);
931 lval = (NILP (tail2) ? Qnil : Fcar (Fcdr (tail2)));
932
933 use_left = ! TMEM (sym, lrear) && lpresent;
934 use_right = TMEM (sym, rfront);
935 if (use_left && use_right)
936 {
937 if (NILP (lval))
938 use_left = 0;
939 else if (NILP (rval))
940 use_right = 0;
941 }
942 if (use_left)
943 {
944 /* We build props as (value sym ...) rather than (sym value ...)
945 because we plan to nreverse it when we're done. */
946 props = Fcons (lval, Fcons (sym, props));
947 if (TMEM (sym, lfront))
948 front = Fcons (sym, front);
949 if (TMEM (sym, lrear))
950 rear = Fcons (sym, rear);
951 }
952 else if (use_right)
953 {
954 props = Fcons (rval, Fcons (sym, props));
955 if (TMEM (sym, rfront))
956 front = Fcons (sym, front);
957 if (TMEM (sym, rrear))
958 rear = Fcons (sym, rear);
959 }
960 }
961
962 /* Now go through each element of PLEFT. */
963 for (tail2 = pleft; ! NILP (tail2); tail2 = Fcdr (Fcdr (tail2)))
964 {
965 sym = Fcar (tail2);
966
967 /* Sticky properties get special treatment. */
968 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
969 continue;
970
971 /* If sym is in PRIGHT, we've already considered it. */
972 for (tail1 = pright; ! NILP (tail1); tail1 = Fcdr (Fcdr (tail1)))
973 if (EQ (sym, Fcar (tail1)))
974 break;
975 if (! NILP (tail1))
976 continue;
977
978 lval = Fcar (Fcdr (tail2));
979
980 /* Since rval is known to be nil in this loop, the test simplifies. */
981 if (! TMEM (sym, lrear))
982 {
983 props = Fcons (lval, Fcons (sym, props));
984 if (TMEM (sym, lfront))
985 front = Fcons (sym, front);
986 }
987 else if (TMEM (sym, rfront))
988 {
989 /* The value is nil, but we still inherit the stickiness
990 from the right. */
991 front = Fcons (sym, front);
992 if (TMEM (sym, rrear))
993 rear = Fcons (sym, rear);
994 }
995 }
996 props = Fnreverse (props);
997 if (! NILP (rear))
998 props = Fcons (Qrear_nonsticky, Fcons (Fnreverse (rear), props));
999
1000 cat = textget (props, Qcategory);
1001 if (! NILP (front)
1002 &&
1003 /* If we have inherited a front-stick category property that is t,
1004 we don't need to set up a detailed one. */
1005 ! (! NILP (cat) && SYMBOLP (cat)
1006 && EQ (Fget (cat, Qfront_sticky), Qt)))
1007 props = Fcons (Qfront_sticky, Fcons (Fnreverse (front), props));
1008 return props;
1009 }
1010
1011 \f
1012 /* Delete an node I from its interval tree by merging its subtrees
1013 into one subtree which is then returned. Caller is responsible for
1014 storing the resulting subtree into its parent. */
1015
1016 static INTERVAL
1017 delete_node (i)
1018 register INTERVAL i;
1019 {
1020 register INTERVAL migrate, this;
1021 register int migrate_amt;
1022
1023 if (NULL_INTERVAL_P (i->left))
1024 return i->right;
1025 if (NULL_INTERVAL_P (i->right))
1026 return i->left;
1027
1028 migrate = i->left;
1029 migrate_amt = i->left->total_length;
1030 this = i->right;
1031 this->total_length += migrate_amt;
1032 while (! NULL_INTERVAL_P (this->left))
1033 {
1034 this = this->left;
1035 this->total_length += migrate_amt;
1036 }
1037 this->left = migrate;
1038 migrate->parent = this;
1039
1040 return i->right;
1041 }
1042
1043 /* Delete interval I from its tree by calling `delete_node'
1044 and properly connecting the resultant subtree.
1045
1046 I is presumed to be empty; that is, no adjustments are made
1047 for the length of I. */
1048
1049 void
1050 delete_interval (i)
1051 register INTERVAL i;
1052 {
1053 register INTERVAL parent;
1054 int amt = LENGTH (i);
1055
1056 if (amt > 0) /* Only used on zero-length intervals now. */
1057 abort ();
1058
1059 if (ROOT_INTERVAL_P (i))
1060 {
1061 Lisp_Object owner;
1062 owner = (Lisp_Object) i->parent;
1063 parent = delete_node (i);
1064 if (! NULL_INTERVAL_P (parent))
1065 parent->parent = (INTERVAL) owner;
1066
1067 if (BUFFERP (owner))
1068 BUF_INTERVALS (XBUFFER (owner)) = parent;
1069 else if (STRINGP (owner))
1070 XSTRING (owner)->intervals = parent;
1071 else
1072 abort ();
1073
1074 return;
1075 }
1076
1077 parent = i->parent;
1078 if (AM_LEFT_CHILD (i))
1079 {
1080 parent->left = delete_node (i);
1081 if (! NULL_INTERVAL_P (parent->left))
1082 parent->left->parent = parent;
1083 }
1084 else
1085 {
1086 parent->right = delete_node (i);
1087 if (! NULL_INTERVAL_P (parent->right))
1088 parent->right->parent = parent;
1089 }
1090 }
1091 \f
1092 /* Find the interval in TREE corresponding to the relative position
1093 FROM and delete as much as possible of AMOUNT from that interval.
1094 Return the amount actually deleted, and if the interval was
1095 zeroed-out, delete that interval node from the tree.
1096
1097 Note that FROM is actually origin zero, aka relative to the
1098 leftmost edge of tree. This is appropriate since we call ourselves
1099 recursively on subtrees.
1100
1101 Do this by recursing down TREE to the interval in question, and
1102 deleting the appropriate amount of text. */
1103
1104 static int
1105 interval_deletion_adjustment (tree, from, amount)
1106 register INTERVAL tree;
1107 register int from, amount;
1108 {
1109 register int relative_position = from;
1110
1111 if (NULL_INTERVAL_P (tree))
1112 return 0;
1113
1114 /* Left branch */
1115 if (relative_position < LEFT_TOTAL_LENGTH (tree))
1116 {
1117 int subtract = interval_deletion_adjustment (tree->left,
1118 relative_position,
1119 amount);
1120 tree->total_length -= subtract;
1121 return subtract;
1122 }
1123 /* Right branch */
1124 else if (relative_position >= (TOTAL_LENGTH (tree)
1125 - RIGHT_TOTAL_LENGTH (tree)))
1126 {
1127 int subtract;
1128
1129 relative_position -= (tree->total_length
1130 - RIGHT_TOTAL_LENGTH (tree));
1131 subtract = interval_deletion_adjustment (tree->right,
1132 relative_position,
1133 amount);
1134 tree->total_length -= subtract;
1135 return subtract;
1136 }
1137 /* Here -- this node. */
1138 else
1139 {
1140 /* How much can we delete from this interval? */
1141 int my_amount = ((tree->total_length
1142 - RIGHT_TOTAL_LENGTH (tree))
1143 - relative_position);
1144
1145 if (amount > my_amount)
1146 amount = my_amount;
1147
1148 tree->total_length -= amount;
1149 if (LENGTH (tree) == 0)
1150 delete_interval (tree);
1151
1152 return amount;
1153 }
1154
1155 /* Never reach here. */
1156 }
1157
1158 /* Effect the adjustments necessary to the interval tree of BUFFER to
1159 correspond to the deletion of LENGTH characters from that buffer
1160 text. The deletion is effected at position START (which is a
1161 buffer position, i.e. origin 1). */
1162
1163 static void
1164 adjust_intervals_for_deletion (buffer, start, length)
1165 struct buffer *buffer;
1166 int start, length;
1167 {
1168 register int left_to_delete = length;
1169 register INTERVAL tree = BUF_INTERVALS (buffer);
1170 register int deleted;
1171
1172 if (NULL_INTERVAL_P (tree))
1173 return;
1174
1175 if (start > BEG + TOTAL_LENGTH (tree)
1176 || start + length > BEG + TOTAL_LENGTH (tree))
1177 abort ();
1178
1179 if (length == TOTAL_LENGTH (tree))
1180 {
1181 BUF_INTERVALS (buffer) = NULL_INTERVAL;
1182 return;
1183 }
1184
1185 if (ONLY_INTERVAL_P (tree))
1186 {
1187 tree->total_length -= length;
1188 return;
1189 }
1190
1191 if (start > BEG + TOTAL_LENGTH (tree))
1192 start = BEG + TOTAL_LENGTH (tree);
1193 while (left_to_delete > 0)
1194 {
1195 left_to_delete -= interval_deletion_adjustment (tree, start - 1,
1196 left_to_delete);
1197 tree = BUF_INTERVALS (buffer);
1198 if (left_to_delete == tree->total_length)
1199 {
1200 BUF_INTERVALS (buffer) = NULL_INTERVAL;
1201 return;
1202 }
1203 }
1204 }
1205 \f
1206 /* Make the adjustments necessary to the interval tree of BUFFER to
1207 represent an addition or deletion of LENGTH characters starting
1208 at position START. Addition or deletion is indicated by the sign
1209 of LENGTH. */
1210
1211 INLINE void
1212 offset_intervals (buffer, start, length)
1213 struct buffer *buffer;
1214 int start, length;
1215 {
1216 if (NULL_INTERVAL_P (BUF_INTERVALS (buffer)) || length == 0)
1217 return;
1218
1219 if (length > 0)
1220 adjust_intervals_for_insertion (BUF_INTERVALS (buffer), start, length);
1221 else
1222 adjust_intervals_for_deletion (buffer, start, -length);
1223 }
1224 \f
1225 /* Merge interval I with its lexicographic successor. The resulting
1226 interval is returned, and has the properties of the original
1227 successor. The properties of I are lost. I is removed from the
1228 interval tree.
1229
1230 IMPORTANT:
1231 The caller must verify that this is not the last (rightmost)
1232 interval. */
1233
1234 INTERVAL
1235 merge_interval_right (i)
1236 register INTERVAL i;
1237 {
1238 register int absorb = LENGTH (i);
1239 register INTERVAL successor;
1240
1241 /* Zero out this interval. */
1242 i->total_length -= absorb;
1243
1244 /* Find the succeeding interval. */
1245 if (! NULL_RIGHT_CHILD (i)) /* It's below us. Add absorb
1246 as we descend. */
1247 {
1248 successor = i->right;
1249 while (! NULL_LEFT_CHILD (successor))
1250 {
1251 successor->total_length += absorb;
1252 successor = successor->left;
1253 }
1254
1255 successor->total_length += absorb;
1256 delete_interval (i);
1257 return successor;
1258 }
1259
1260 successor = i;
1261 while (! NULL_PARENT (successor)) /* It's above us. Subtract as
1262 we ascend. */
1263 {
1264 if (AM_LEFT_CHILD (successor))
1265 {
1266 successor = successor->parent;
1267 delete_interval (i);
1268 return successor;
1269 }
1270
1271 successor = successor->parent;
1272 successor->total_length -= absorb;
1273 }
1274
1275 /* This must be the rightmost or last interval and cannot
1276 be merged right. The caller should have known. */
1277 abort ();
1278 }
1279 \f
1280 /* Merge interval I with its lexicographic predecessor. The resulting
1281 interval is returned, and has the properties of the original predecessor.
1282 The properties of I are lost. Interval node I is removed from the tree.
1283
1284 IMPORTANT:
1285 The caller must verify that this is not the first (leftmost) interval. */
1286
1287 INTERVAL
1288 merge_interval_left (i)
1289 register INTERVAL i;
1290 {
1291 register int absorb = LENGTH (i);
1292 register INTERVAL predecessor;
1293
1294 /* Zero out this interval. */
1295 i->total_length -= absorb;
1296
1297 /* Find the preceding interval. */
1298 if (! NULL_LEFT_CHILD (i)) /* It's below us. Go down,
1299 adding ABSORB as we go. */
1300 {
1301 predecessor = i->left;
1302 while (! NULL_RIGHT_CHILD (predecessor))
1303 {
1304 predecessor->total_length += absorb;
1305 predecessor = predecessor->right;
1306 }
1307
1308 predecessor->total_length += absorb;
1309 delete_interval (i);
1310 return predecessor;
1311 }
1312
1313 predecessor = i;
1314 while (! NULL_PARENT (predecessor)) /* It's above us. Go up,
1315 subtracting ABSORB. */
1316 {
1317 if (AM_RIGHT_CHILD (predecessor))
1318 {
1319 predecessor = predecessor->parent;
1320 delete_interval (i);
1321 return predecessor;
1322 }
1323
1324 predecessor = predecessor->parent;
1325 predecessor->total_length -= absorb;
1326 }
1327
1328 /* This must be the leftmost or first interval and cannot
1329 be merged left. The caller should have known. */
1330 abort ();
1331 }
1332 \f
1333 /* Make an exact copy of interval tree SOURCE which descends from
1334 PARENT. This is done by recursing through SOURCE, copying
1335 the current interval and its properties, and then adjusting
1336 the pointers of the copy. */
1337
1338 static INTERVAL
1339 reproduce_tree (source, parent)
1340 INTERVAL source, parent;
1341 {
1342 register INTERVAL t = make_interval ();
1343
1344 bcopy (source, t, INTERVAL_SIZE);
1345 copy_properties (source, t);
1346 t->parent = parent;
1347 if (! NULL_LEFT_CHILD (source))
1348 t->left = reproduce_tree (source->left, t);
1349 if (! NULL_RIGHT_CHILD (source))
1350 t->right = reproduce_tree (source->right, t);
1351
1352 return t;
1353 }
1354
1355 #if 0
1356 /* Nobody calls this. Perhaps it's a vestige of an earlier design. */
1357
1358 /* Make a new interval of length LENGTH starting at START in the
1359 group of intervals INTERVALS, which is actually an interval tree.
1360 Returns the new interval.
1361
1362 Generate an error if the new positions would overlap an existing
1363 interval. */
1364
1365 static INTERVAL
1366 make_new_interval (intervals, start, length)
1367 INTERVAL intervals;
1368 int start, length;
1369 {
1370 INTERVAL slot;
1371
1372 slot = find_interval (intervals, start);
1373 if (start + length > slot->position + LENGTH (slot))
1374 error ("Interval would overlap");
1375
1376 if (start == slot->position && length == LENGTH (slot))
1377 return slot;
1378
1379 if (slot->position == start)
1380 {
1381 /* New right node. */
1382 split_interval_right (slot, length);
1383 return slot;
1384 }
1385
1386 if (slot->position + LENGTH (slot) == start + length)
1387 {
1388 /* New left node. */
1389 split_interval_left (slot, LENGTH (slot) - length);
1390 return slot;
1391 }
1392
1393 /* Convert interval SLOT into three intervals. */
1394 split_interval_left (slot, start - slot->position);
1395 split_interval_right (slot, length);
1396 return slot;
1397 }
1398 #endif
1399 \f
1400 /* Insert the intervals of SOURCE into BUFFER at POSITION.
1401 LENGTH is the length of the text in SOURCE.
1402
1403 This is used in insdel.c when inserting Lisp_Strings into the
1404 buffer. The text corresponding to SOURCE is already in the buffer
1405 when this is called. The intervals of new tree are a copy of those
1406 belonging to the string being inserted; intervals are never
1407 shared.
1408
1409 If the inserted text had no intervals associated, and we don't
1410 want to inherit the surrounding text's properties, this function
1411 simply returns -- offset_intervals should handle placing the
1412 text in the correct interval, depending on the sticky bits.
1413
1414 If the inserted text had properties (intervals), then there are two
1415 cases -- either insertion happened in the middle of some interval,
1416 or between two intervals.
1417
1418 If the text goes into the middle of an interval, then new
1419 intervals are created in the middle with only the properties of
1420 the new text, *unless* the macro MERGE_INSERTIONS is true, in
1421 which case the new text has the union of its properties and those
1422 of the text into which it was inserted.
1423
1424 If the text goes between two intervals, then if neither interval
1425 had its appropriate sticky property set (front_sticky, rear_sticky),
1426 the new text has only its properties. If one of the sticky properties
1427 is set, then the new text "sticks" to that region and its properties
1428 depend on merging as above. If both the preceding and succeeding
1429 intervals to the new text are "sticky", then the new text retains
1430 only its properties, as if neither sticky property were set. Perhaps
1431 we should consider merging all three sets of properties onto the new
1432 text... */
1433
1434 void
1435 graft_intervals_into_buffer (source, position, length, buffer, inherit)
1436 INTERVAL source;
1437 int position, length;
1438 struct buffer *buffer;
1439 int inherit;
1440 {
1441 register INTERVAL under, over, this, prev;
1442 register INTERVAL tree;
1443 int middle;
1444
1445 tree = BUF_INTERVALS (buffer);
1446
1447 /* If the new text has no properties, it becomes part of whatever
1448 interval it was inserted into. */
1449 if (NULL_INTERVAL_P (source))
1450 {
1451 Lisp_Object buf;
1452 if (!inherit && ! NULL_INTERVAL_P (tree))
1453 {
1454 XSETBUFFER (buf, buffer);
1455 Fset_text_properties (make_number (position),
1456 make_number (position + length),
1457 Qnil, buf);
1458 }
1459 if (! NULL_INTERVAL_P (BUF_INTERVALS (buffer)))
1460 BUF_INTERVALS (buffer) = balance_an_interval (BUF_INTERVALS (buffer));
1461 return;
1462 }
1463
1464 if (NULL_INTERVAL_P (tree))
1465 {
1466 /* The inserted text constitutes the whole buffer, so
1467 simply copy over the interval structure. */
1468 if ((BUF_Z (buffer) - BUF_BEG (buffer)) == TOTAL_LENGTH (source))
1469 {
1470 Lisp_Object buf;
1471 XSETBUFFER (buf, buffer);
1472 BUF_INTERVALS (buffer) = reproduce_tree (source, buf);
1473 /* Explicitly free the old tree here. */
1474
1475 return;
1476 }
1477
1478 /* Create an interval tree in which to place a copy
1479 of the intervals of the inserted string. */
1480 {
1481 Lisp_Object buf;
1482 XSETBUFFER (buf, buffer);
1483 tree = create_root_interval (buf);
1484 }
1485 }
1486 else if (TOTAL_LENGTH (tree) == TOTAL_LENGTH (source))
1487 /* If the buffer contains only the new string, but
1488 there was already some interval tree there, then it may be
1489 some zero length intervals. Eventually, do something clever
1490 about inserting properly. For now, just waste the old intervals. */
1491 {
1492 BUF_INTERVALS (buffer) = reproduce_tree (source, tree->parent);
1493 /* Explicitly free the old tree here. */
1494
1495 return;
1496 }
1497 /* Paranoia -- the text has already been added, so this buffer
1498 should be of non-zero length. */
1499 else if (TOTAL_LENGTH (tree) == 0)
1500 abort ();
1501
1502 this = under = find_interval (tree, position);
1503 if (NULL_INTERVAL_P (under)) /* Paranoia */
1504 abort ();
1505 over = find_interval (source, 1);
1506
1507 /* Here for insertion in the middle of an interval.
1508 Split off an equivalent interval to the right,
1509 then don't bother with it any more. */
1510
1511 if (position > under->position)
1512 {
1513 INTERVAL end_unchanged
1514 = split_interval_left (this, position - under->position);
1515 copy_properties (under, end_unchanged);
1516 under->position = position;
1517 prev = 0;
1518 middle = 1;
1519 }
1520 else
1521 {
1522 prev = previous_interval (under);
1523 if (prev && !END_NONSTICKY_P (prev))
1524 prev = 0;
1525 }
1526
1527 /* Insertion is now at beginning of UNDER. */
1528
1529 /* The inserted text "sticks" to the interval `under',
1530 which means it gets those properties.
1531 The properties of under are the result of
1532 adjust_intervals_for_insertion, so stickiness has
1533 already been taken care of. */
1534
1535 while (! NULL_INTERVAL_P (over))
1536 {
1537 if (LENGTH (over) < LENGTH (under))
1538 {
1539 this = split_interval_left (under, LENGTH (over));
1540 copy_properties (under, this);
1541 }
1542 else
1543 this = under;
1544 copy_properties (over, this);
1545 if (inherit)
1546 merge_properties (over, this);
1547 else
1548 copy_properties (over, this);
1549 over = next_interval (over);
1550 }
1551
1552 if (! NULL_INTERVAL_P (BUF_INTERVALS (buffer)))
1553 BUF_INTERVALS (buffer) = balance_an_interval (BUF_INTERVALS (buffer));
1554 return;
1555 }
1556
1557 /* Get the value of property PROP from PLIST,
1558 which is the plist of an interval.
1559 We check for direct properties, for categories with property PROP,
1560 and for PROP appearing on the default-text-properties list. */
1561
1562 Lisp_Object
1563 textget (plist, prop)
1564 Lisp_Object plist;
1565 register Lisp_Object prop;
1566 {
1567 register Lisp_Object tail, fallback;
1568 fallback = Qnil;
1569
1570 for (tail = plist; !NILP (tail); tail = Fcdr (Fcdr (tail)))
1571 {
1572 register Lisp_Object tem;
1573 tem = Fcar (tail);
1574 if (EQ (prop, tem))
1575 return Fcar (Fcdr (tail));
1576 if (EQ (tem, Qcategory))
1577 {
1578 tem = Fcar (Fcdr (tail));
1579 if (SYMBOLP (tem))
1580 fallback = Fget (tem, prop);
1581 }
1582 }
1583
1584 if (! NILP (fallback))
1585 return fallback;
1586 if (CONSP (Vdefault_text_properties))
1587 return Fplist_get (Vdefault_text_properties, prop);
1588 return Qnil;
1589 }
1590
1591 \f
1592 /* Set point in BUFFER to POSITION. If the target position is
1593 before an intangible character, move to an ok place. */
1594
1595 void
1596 set_point (position, buffer)
1597 register int position;
1598 register struct buffer *buffer;
1599 {
1600 register INTERVAL to, from, toprev, fromprev, target;
1601 int buffer_point;
1602 register Lisp_Object obj;
1603 int old_position = BUF_PT (buffer);
1604 int backwards = (position < old_position ? 1 : 0);
1605 int have_overlays;
1606 int original_position;
1607
1608 buffer->point_before_scroll = Qnil;
1609
1610 if (position == BUF_PT (buffer))
1611 return;
1612
1613 /* Check this now, before checking if the buffer has any intervals.
1614 That way, we can catch conditions which break this sanity check
1615 whether or not there are intervals in the buffer. */
1616 if (position > BUF_Z (buffer) || position < BUF_BEG (buffer))
1617 abort ();
1618
1619 have_overlays = (! NILP (buffer->overlays_before)
1620 || ! NILP (buffer->overlays_after));
1621
1622 /* If we have no text properties and overlays,
1623 then we can do it quickly. */
1624 if (NULL_INTERVAL_P (BUF_INTERVALS (buffer)) && ! have_overlays)
1625 {
1626 BUF_PT (buffer) = position;
1627 return;
1628 }
1629
1630 /* Set TO to the interval containing the char after POSITION,
1631 and TOPREV to the interval containing the char before POSITION.
1632 Either one may be null. They may be equal. */
1633 to = find_interval (BUF_INTERVALS (buffer), position);
1634 if (position == BUF_BEGV (buffer))
1635 toprev = 0;
1636 else if (to && to->position == position)
1637 toprev = previous_interval (to);
1638 else
1639 toprev = to;
1640
1641 buffer_point = (BUF_PT (buffer) == BUF_ZV (buffer)
1642 ? BUF_ZV (buffer) - 1
1643 : BUF_PT (buffer));
1644
1645 /* Set FROM to the interval containing the char after PT,
1646 and FROMPREV to the interval containing the char before PT.
1647 Either one may be null. They may be equal. */
1648 /* We could cache this and save time. */
1649 from = find_interval (BUF_INTERVALS (buffer), buffer_point);
1650 if (buffer_point == BUF_BEGV (buffer))
1651 fromprev = 0;
1652 else if (from && from->position == BUF_PT (buffer))
1653 fromprev = previous_interval (from);
1654 else if (buffer_point != BUF_PT (buffer))
1655 fromprev = from, from = 0;
1656 else
1657 fromprev = from;
1658
1659 /* Moving within an interval. */
1660 if (to == from && toprev == fromprev && INTERVAL_VISIBLE_P (to)
1661 && ! have_overlays)
1662 {
1663 BUF_PT (buffer) = position;
1664 return;
1665 }
1666
1667 original_position = position;
1668
1669 /* If the new position is between two intangible characters
1670 with the same intangible property value,
1671 move forward or backward until a change in that property. */
1672 if (NILP (Vinhibit_point_motion_hooks)
1673 && ((! NULL_INTERVAL_P (to) && ! NULL_INTERVAL_P (toprev))
1674 || have_overlays))
1675 {
1676 Lisp_Object intangible_propval;
1677 Lisp_Object pos;
1678
1679 XSETINT (pos, position);
1680
1681 if (backwards)
1682 {
1683 intangible_propval = Fget_char_property (make_number (position),
1684 Qintangible, Qnil);
1685
1686 /* If following char is intangible,
1687 skip back over all chars with matching intangible property. */
1688 if (! NILP (intangible_propval))
1689 while (XINT (pos) > BUF_BEGV (buffer)
1690 && EQ (Fget_char_property (make_number (XINT (pos) - 1),
1691 Qintangible, Qnil),
1692 intangible_propval))
1693 pos = Fprevious_char_property_change (pos, Qnil);
1694 }
1695 else
1696 {
1697 intangible_propval = Fget_char_property (make_number (position - 1),
1698 Qintangible, Qnil);
1699
1700 /* If following char is intangible,
1701 skip back over all chars with matching intangible property. */
1702 if (! NILP (intangible_propval))
1703 while (XINT (pos) < BUF_ZV (buffer)
1704 && EQ (Fget_char_property (pos, Qintangible, Qnil),
1705 intangible_propval))
1706 pos = Fnext_char_property_change (pos, Qnil);
1707
1708 }
1709
1710 position = XINT (pos);
1711 }
1712
1713 if (position != original_position)
1714 {
1715 /* Set TO to the interval containing the char after POSITION,
1716 and TOPREV to the interval containing the char before POSITION.
1717 Either one may be null. They may be equal. */
1718 to = find_interval (BUF_INTERVALS (buffer), position);
1719 if (position == BUF_BEGV (buffer))
1720 toprev = 0;
1721 else if (to && to->position == position)
1722 toprev = previous_interval (to);
1723 else
1724 toprev = to;
1725 }
1726
1727 /* Here TO is the interval after the stopping point
1728 and TOPREV is the interval before the stopping point.
1729 One or the other may be null. */
1730
1731 BUF_PT (buffer) = position;
1732
1733 /* We run point-left and point-entered hooks here, iff the
1734 two intervals are not equivalent. These hooks take
1735 (old_point, new_point) as arguments. */
1736 if (NILP (Vinhibit_point_motion_hooks)
1737 && (! intervals_equal (from, to)
1738 || ! intervals_equal (fromprev, toprev)))
1739 {
1740 Lisp_Object leave_after, leave_before, enter_after, enter_before;
1741
1742 if (fromprev)
1743 leave_after = textget (fromprev->plist, Qpoint_left);
1744 else
1745 leave_after = Qnil;
1746 if (from)
1747 leave_before = textget (from->plist, Qpoint_left);
1748 else
1749 leave_before = Qnil;
1750
1751 if (toprev)
1752 enter_after = textget (toprev->plist, Qpoint_entered);
1753 else
1754 enter_after = Qnil;
1755 if (to)
1756 enter_before = textget (to->plist, Qpoint_entered);
1757 else
1758 enter_before = Qnil;
1759
1760 if (! EQ (leave_before, enter_before) && !NILP (leave_before))
1761 call2 (leave_before, old_position, position);
1762 if (! EQ (leave_after, enter_after) && !NILP (leave_after))
1763 call2 (leave_after, old_position, position);
1764
1765 if (! EQ (enter_before, leave_before) && !NILP (enter_before))
1766 call2 (enter_before, old_position, position);
1767 if (! EQ (enter_after, leave_after) && !NILP (enter_after))
1768 call2 (enter_after, old_position, position);
1769 }
1770 }
1771
1772 /* Set point temporarily, without checking any text properties. */
1773
1774 INLINE void
1775 temp_set_point (position, buffer)
1776 int position;
1777 struct buffer *buffer;
1778 {
1779 BUF_PT (buffer) = position;
1780 }
1781 \f
1782 /* Return the proper local map for position POSITION in BUFFER.
1783 Use the map specified by the local-map property, if any.
1784 Otherwise, use BUFFER's local map. */
1785
1786 Lisp_Object
1787 get_local_map (position, buffer)
1788 register int position;
1789 register struct buffer *buffer;
1790 {
1791 Lisp_Object prop, tem, lispy_position, lispy_buffer;
1792 int old_begv, old_zv;
1793
1794 /* Perhaps we should just change `position' to the limit. */
1795 if (position > BUF_Z (buffer) || position < BUF_BEG (buffer))
1796 abort ();
1797
1798 /* Ignore narrowing, so that a local map continues to be valid even if
1799 the visible region contains no characters and hence no properties. */
1800 old_begv = BUF_BEGV (buffer);
1801 old_zv = BUF_ZV (buffer);
1802 BUF_BEGV (buffer) = BUF_BEG (buffer);
1803 BUF_ZV (buffer) = BUF_Z (buffer);
1804
1805 /* There are no properties at the end of the buffer, so in that case
1806 check for a local map on the last character of the buffer instead. */
1807 if (position == BUF_Z (buffer) && BUF_Z (buffer) > BUF_BEG (buffer))
1808 --position;
1809 XSETFASTINT (lispy_position, position);
1810 XSETBUFFER (lispy_buffer, buffer);
1811 prop = Fget_char_property (lispy_position, Qlocal_map, lispy_buffer);
1812
1813 BUF_BEGV (buffer) = old_begv;
1814 BUF_ZV (buffer) = old_zv;
1815
1816 /* Use the local map only if it is valid. */
1817 /* Do allow symbols that are defined as keymaps. */
1818 if (SYMBOLP (prop) && !NILP (prop))
1819 prop = Findirect_function (prop);
1820 if (!NILP (prop)
1821 && (tem = Fkeymapp (prop), !NILP (tem)))
1822 return prop;
1823
1824 return buffer->keymap;
1825 }
1826 \f
1827 /* Produce an interval tree reflecting the intervals in
1828 TREE from START to START + LENGTH. */
1829
1830 INTERVAL
1831 copy_intervals (tree, start, length)
1832 INTERVAL tree;
1833 int start, length;
1834 {
1835 register INTERVAL i, new, t;
1836 register int got, prevlen;
1837
1838 if (NULL_INTERVAL_P (tree) || length <= 0)
1839 return NULL_INTERVAL;
1840
1841 i = find_interval (tree, start);
1842 if (NULL_INTERVAL_P (i) || LENGTH (i) == 0)
1843 abort ();
1844
1845 /* If there is only one interval and it's the default, return nil. */
1846 if ((start - i->position + 1 + length) < LENGTH (i)
1847 && DEFAULT_INTERVAL_P (i))
1848 return NULL_INTERVAL;
1849
1850 new = make_interval ();
1851 new->position = 1;
1852 got = (LENGTH (i) - (start - i->position));
1853 new->total_length = length;
1854 copy_properties (i, new);
1855
1856 t = new;
1857 prevlen = got;
1858 while (got < length)
1859 {
1860 i = next_interval (i);
1861 t = split_interval_right (t, prevlen);
1862 copy_properties (i, t);
1863 prevlen = LENGTH (i);
1864 got += prevlen;
1865 }
1866
1867 return balance_an_interval (new);
1868 }
1869
1870 /* Give STRING the properties of BUFFER from POSITION to LENGTH. */
1871
1872 INLINE void
1873 copy_intervals_to_string (string, buffer, position, length)
1874 Lisp_Object string;
1875 struct buffer *buffer;
1876 int position, length;
1877 {
1878 INTERVAL interval_copy = copy_intervals (BUF_INTERVALS (buffer),
1879 position, length);
1880 if (NULL_INTERVAL_P (interval_copy))
1881 return;
1882
1883 interval_copy->parent = (INTERVAL) string;
1884 XSTRING (string)->intervals = interval_copy;
1885 }
1886 \f
1887 /* Return 1 if string S1 and S2 have identical properties; 0 otherwise.
1888 Assume they have identical characters. */
1889
1890 int
1891 compare_string_intervals (s1, s2)
1892 Lisp_Object s1, s2;
1893 {
1894 INTERVAL i1, i2;
1895 int pos = 1;
1896 int end = XSTRING (s1)->size + 1;
1897
1898 /* We specify 1 as position because the interval functions
1899 always use positions starting at 1. */
1900 i1 = find_interval (XSTRING (s1)->intervals, 1);
1901 i2 = find_interval (XSTRING (s2)->intervals, 1);
1902
1903 while (pos < end)
1904 {
1905 /* Determine how far we can go before we reach the end of I1 or I2. */
1906 int len1 = (i1 != 0 ? INTERVAL_LAST_POS (i1) : end) - pos;
1907 int len2 = (i2 != 0 ? INTERVAL_LAST_POS (i2) : end) - pos;
1908 int distance = min (len1, len2);
1909
1910 /* If we ever find a mismatch between the strings,
1911 they differ. */
1912 if (! intervals_equal (i1, i2))
1913 return 0;
1914
1915 /* Advance POS till the end of the shorter interval,
1916 and advance one or both interval pointers for the new position. */
1917 pos += distance;
1918 if (len1 == distance)
1919 i1 = next_interval (i1);
1920 if (len2 == distance)
1921 i2 = next_interval (i2);
1922 }
1923 return 1;
1924 }
1925
1926 #endif /* USE_TEXT_PROPERTIES */