]> code.delx.au - gnu-emacs/blob - src/lisp.h
1fc18d5d737510a2ed4d0a568dc325f15b5cb2e5
[gnu-emacs] / src / lisp.h
1 /* Fundamental definitions for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2014 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #ifndef EMACS_LISP_H
22 #define EMACS_LISP_H
23
24 #include <setjmp.h>
25 #include <stdalign.h>
26 #include <stdarg.h>
27 #include <stddef.h>
28 #include <float.h>
29 #include <inttypes.h>
30 #include <limits.h>
31
32 #include <intprops.h>
33 #include <verify.h>
34
35 INLINE_HEADER_BEGIN
36
37 /* Define a TYPE constant ID as an externally visible name. Use like this:
38
39 DEFINE_GDB_SYMBOL_BEGIN (TYPE, ID)
40 # define ID (some integer preprocessor expression of type TYPE)
41 DEFINE_GDB_SYMBOL_END (ID)
42
43 This hack is for the benefit of compilers that do not make macro
44 definitions or enums visible to the debugger. It's used for symbols
45 that .gdbinit needs. */
46
47 #ifdef MAIN_PROGRAM
48 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) type const id EXTERNALLY_VISIBLE
49 # define DEFINE_GDB_SYMBOL_END(id) = id;
50 #else
51 # define DEFINE_GDB_SYMBOL_BEGIN(type, id)
52 # define DEFINE_GDB_SYMBOL_END(val)
53 #endif
54
55 /* The ubiquitous max and min macros. */
56 #undef min
57 #undef max
58 #define max(a, b) ((a) > (b) ? (a) : (b))
59 #define min(a, b) ((a) < (b) ? (a) : (b))
60
61 /* Number of elements in an array. */
62 #define ARRAYELTS(arr) (sizeof (arr) / sizeof (arr)[0])
63
64 /* Number of bits in a Lisp_Object tag. */
65 DEFINE_GDB_SYMBOL_BEGIN (int, GCTYPEBITS)
66 #define GCTYPEBITS 3
67 DEFINE_GDB_SYMBOL_END (GCTYPEBITS)
68
69 /* The number of bits needed in an EMACS_INT over and above the number
70 of bits in a pointer. This is 0 on systems where:
71 1. We can specify multiple-of-8 alignment on static variables.
72 2. We know malloc returns a multiple of 8. */
73 #if (defined alignas \
74 && (defined GNU_MALLOC || defined DOUG_LEA_MALLOC || defined __GLIBC__ \
75 || defined DARWIN_OS || defined __sun || defined __MINGW32__ \
76 || defined CYGWIN))
77 # define NONPOINTER_BITS 0
78 #else
79 # define NONPOINTER_BITS GCTYPEBITS
80 #endif
81
82 /* EMACS_INT - signed integer wide enough to hold an Emacs value
83 EMACS_INT_MAX - maximum value of EMACS_INT; can be used in #if
84 pI - printf length modifier for EMACS_INT
85 EMACS_UINT - unsigned variant of EMACS_INT */
86 #ifndef EMACS_INT_MAX
87 # if INTPTR_MAX <= 0
88 # error "INTPTR_MAX misconfigured"
89 # elif INTPTR_MAX <= INT_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
90 typedef int EMACS_INT;
91 typedef unsigned int EMACS_UINT;
92 # define EMACS_INT_MAX INT_MAX
93 # define pI ""
94 # elif INTPTR_MAX <= LONG_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
95 typedef long int EMACS_INT;
96 typedef unsigned long EMACS_UINT;
97 # define EMACS_INT_MAX LONG_MAX
98 # define pI "l"
99 /* Check versus LLONG_MAX, not LLONG_MAX >> NONPOINTER_BITS.
100 In theory this is not safe, but in practice it seems to be OK. */
101 # elif INTPTR_MAX <= LLONG_MAX
102 typedef long long int EMACS_INT;
103 typedef unsigned long long int EMACS_UINT;
104 # define EMACS_INT_MAX LLONG_MAX
105 # define pI "ll"
106 # else
107 # error "INTPTR_MAX too large"
108 # endif
109 #endif
110
111 /* Number of bits to put in each character in the internal representation
112 of bool vectors. This should not vary across implementations. */
113 enum { BOOL_VECTOR_BITS_PER_CHAR =
114 #define BOOL_VECTOR_BITS_PER_CHAR 8
115 BOOL_VECTOR_BITS_PER_CHAR
116 };
117
118 /* An unsigned integer type representing a fixed-length bit sequence,
119 suitable for bool vector words, GC mark bits, etc. Normally it is size_t
120 for speed, but it is unsigned char on weird platforms. */
121 #if BOOL_VECTOR_BITS_PER_CHAR == CHAR_BIT
122 typedef size_t bits_word;
123 # define BITS_WORD_MAX SIZE_MAX
124 enum { BITS_PER_BITS_WORD = CHAR_BIT * sizeof (bits_word) };
125 #else
126 typedef unsigned char bits_word;
127 # define BITS_WORD_MAX ((1u << BOOL_VECTOR_BITS_PER_CHAR) - 1)
128 enum { BITS_PER_BITS_WORD = BOOL_VECTOR_BITS_PER_CHAR };
129 #endif
130 verify (BITS_WORD_MAX >> (BITS_PER_BITS_WORD - 1) == 1);
131
132 /* Number of bits in some machine integer types. */
133 enum
134 {
135 BITS_PER_CHAR = CHAR_BIT,
136 BITS_PER_SHORT = CHAR_BIT * sizeof (short),
137 BITS_PER_LONG = CHAR_BIT * sizeof (long int),
138 BITS_PER_EMACS_INT = CHAR_BIT * sizeof (EMACS_INT)
139 };
140
141 /* printmax_t and uprintmax_t are types for printing large integers.
142 These are the widest integers that are supported for printing.
143 pMd etc. are conversions for printing them.
144 On C99 hosts, there's no problem, as even the widest integers work.
145 Fall back on EMACS_INT on pre-C99 hosts. */
146 #ifdef PRIdMAX
147 typedef intmax_t printmax_t;
148 typedef uintmax_t uprintmax_t;
149 # define pMd PRIdMAX
150 # define pMu PRIuMAX
151 #else
152 typedef EMACS_INT printmax_t;
153 typedef EMACS_UINT uprintmax_t;
154 # define pMd pI"d"
155 # define pMu pI"u"
156 #endif
157
158 /* Use pD to format ptrdiff_t values, which suffice for indexes into
159 buffers and strings. Emacs never allocates objects larger than
160 PTRDIFF_MAX bytes, as they cause problems with pointer subtraction.
161 In C99, pD can always be "t"; configure it here for the sake of
162 pre-C99 libraries such as glibc 2.0 and Solaris 8. */
163 #if PTRDIFF_MAX == INT_MAX
164 # define pD ""
165 #elif PTRDIFF_MAX == LONG_MAX
166 # define pD "l"
167 #elif PTRDIFF_MAX == LLONG_MAX
168 # define pD "ll"
169 #else
170 # define pD "t"
171 #endif
172
173 /* Extra internal type checking? */
174
175 /* Define Emacs versions of <assert.h>'s 'assert (COND)' and <verify.h>'s
176 'assume (COND)'. COND should be free of side effects, as it may or
177 may not be evaluated.
178
179 'eassert (COND)' checks COND at runtime if ENABLE_CHECKING is
180 defined and suppress_checking is false, and does nothing otherwise.
181 Emacs dies if COND is checked and is false. The suppress_checking
182 variable is initialized to 0 in alloc.c. Set it to 1 using a
183 debugger to temporarily disable aborting on detected internal
184 inconsistencies or error conditions.
185
186 In some cases, a good compiler may be able to optimize away the
187 eassert macro even if ENABLE_CHECKING is true, e.g., if XSTRING (x)
188 uses eassert to test STRINGP (x), but a particular use of XSTRING
189 is invoked only after testing that STRINGP (x) is true, making the
190 test redundant.
191
192 eassume is like eassert except that it also causes the compiler to
193 assume that COND is true afterwards, regardless of whether runtime
194 checking is enabled. This can improve performance in some cases,
195 though it can degrade performance in others. It's often suboptimal
196 for COND to call external functions or access volatile storage. */
197
198 #ifndef ENABLE_CHECKING
199 # define eassert(cond) ((void) (false && (cond))) /* Check COND compiles. */
200 # define eassume(cond) assume (cond)
201 #else /* ENABLE_CHECKING */
202
203 extern _Noreturn void die (const char *, const char *, int);
204
205 extern bool suppress_checking EXTERNALLY_VISIBLE;
206
207 # define eassert(cond) \
208 (suppress_checking || (cond) \
209 ? (void) 0 \
210 : die (# cond, __FILE__, __LINE__))
211 # define eassume(cond) \
212 (suppress_checking \
213 ? assume (cond) \
214 : (cond) \
215 ? (void) 0 \
216 : die (# cond, __FILE__, __LINE__))
217 #endif /* ENABLE_CHECKING */
218
219 \f
220 /* Use the configure flag --enable-check-lisp-object-type to make
221 Lisp_Object use a struct type instead of the default int. The flag
222 causes CHECK_LISP_OBJECT_TYPE to be defined. */
223
224 /***** Select the tagging scheme. *****/
225 /* The following option controls the tagging scheme:
226 - USE_LSB_TAG means that we can assume the least 3 bits of pointers are
227 always 0, and we can thus use them to hold tag bits, without
228 restricting our addressing space.
229
230 If ! USE_LSB_TAG, then use the top 3 bits for tagging, thus
231 restricting our possible address range.
232
233 USE_LSB_TAG not only requires the least 3 bits of pointers returned by
234 malloc to be 0 but also needs to be able to impose a mult-of-8 alignment
235 on the few static Lisp_Objects used: all the defsubr as well
236 as the two special buffers buffer_defaults and buffer_local_symbols. */
237
238 enum Lisp_Bits
239 {
240 /* 2**GCTYPEBITS. This must be a macro that expands to a literal
241 integer constant, for MSVC. */
242 #define GCALIGNMENT 8
243
244 /* Number of bits in a Lisp_Object value, not counting the tag. */
245 VALBITS = BITS_PER_EMACS_INT - GCTYPEBITS,
246
247 /* Number of bits in a Lisp fixnum tag. */
248 INTTYPEBITS = GCTYPEBITS - 1,
249
250 /* Number of bits in a Lisp fixnum value, not counting the tag. */
251 FIXNUM_BITS = VALBITS + 1
252 };
253
254 #if GCALIGNMENT != 1 << GCTYPEBITS
255 # error "GCALIGNMENT and GCTYPEBITS are inconsistent"
256 #endif
257
258 /* The maximum value that can be stored in a EMACS_INT, assuming all
259 bits other than the type bits contribute to a nonnegative signed value.
260 This can be used in #if, e.g., '#if VAL_MAX < UINTPTR_MAX' below. */
261 #define VAL_MAX (EMACS_INT_MAX >> (GCTYPEBITS - 1))
262
263 /* Whether the least-significant bits of an EMACS_INT contain the tag.
264 On hosts where pointers-as-ints do not exceed VAL_MAX, USE_LSB_TAG is:
265 a. unnecessary, because the top bits of an EMACS_INT are unused, and
266 b. slower, because it typically requires extra masking.
267 So, USE_LSB_TAG is true only on hosts where it might be useful. */
268 DEFINE_GDB_SYMBOL_BEGIN (bool, USE_LSB_TAG)
269 #define USE_LSB_TAG (EMACS_INT_MAX >> GCTYPEBITS < INTPTR_MAX)
270 DEFINE_GDB_SYMBOL_END (USE_LSB_TAG)
271
272 #if !USE_LSB_TAG && !defined WIDE_EMACS_INT
273 # error "USE_LSB_TAG not supported on this platform; please report this." \
274 "Try 'configure --with-wide-int' to work around the problem."
275 error !;
276 #endif
277
278 #ifndef alignas
279 # define alignas(alignment) /* empty */
280 # if USE_LSB_TAG
281 # error "USE_LSB_TAG requires alignas"
282 # endif
283 #endif
284
285 /* This should work on GNU/Linux with GCC. Other configurations may be
286 problematic and/or not tested yet. Clang is known to have problems,
287 see http://lists.gnu.org/archive/html/emacs-devel/2014-09/msg00506.html.
288 Also http://lists.gnu.org/archive/html/emacs-devel/2014-09/msg00422.html
289 describes an issues with 32-bit MS-Windows. */
290 #ifndef USE_STACK_LISP_OBJECTS
291 # if defined (GNU_LINUX) && defined (__GNUC__) && !defined (__clang__)
292 # define USE_STACK_LISP_OBJECTS true
293 # else
294 # define USE_STACK_LISP_OBJECTS false
295 # endif
296 #endif
297
298 #if defined HAVE_STRUCT_ATTRIBUTE_ALIGNED && USE_STACK_LISP_OBJECTS
299 # define GCALIGNED __attribute__ ((aligned (GCALIGNMENT)))
300 #else
301 # define GCALIGNED /* empty */
302 #endif
303
304 /* Some operations are so commonly executed that they are implemented
305 as macros, not functions, because otherwise runtime performance would
306 suffer too much when compiling with GCC without optimization.
307 There's no need to inline everything, just the operations that
308 would otherwise cause a serious performance problem.
309
310 For each such operation OP, define a macro lisp_h_OP that contains
311 the operation's implementation. That way, OP can be implemented
312 via a macro definition like this:
313
314 #define OP(x) lisp_h_OP (x)
315
316 and/or via a function definition like this:
317
318 LISP_MACRO_DEFUN (OP, Lisp_Object, (Lisp_Object x), (x))
319
320 which macro-expands to this:
321
322 Lisp_Object (OP) (Lisp_Object x) { return lisp_h_OP (x); }
323
324 without worrying about the implementations diverging, since
325 lisp_h_OP defines the actual implementation. The lisp_h_OP macros
326 are intended to be private to this include file, and should not be
327 used elsewhere.
328
329 FIXME: Remove the lisp_h_OP macros, and define just the inline OP
330 functions, once most developers have access to GCC 4.8 or later and
331 can use "gcc -Og" to debug. Maybe in the year 2016. See
332 Bug#11935.
333
334 Commentary for these macros can be found near their corresponding
335 functions, below. */
336
337 #if CHECK_LISP_OBJECT_TYPE
338 # define lisp_h_XLI(o) ((o).i)
339 # define lisp_h_XIL(i) ((Lisp_Object) { i })
340 #else
341 # define lisp_h_XLI(o) (o)
342 # define lisp_h_XIL(i) (i)
343 #endif
344 #define lisp_h_CHECK_LIST_CONS(x, y) CHECK_TYPE (CONSP (x), Qlistp, y)
345 #define lisp_h_CHECK_NUMBER(x) CHECK_TYPE (INTEGERP (x), Qintegerp, x)
346 #define lisp_h_CHECK_SYMBOL(x) CHECK_TYPE (SYMBOLP (x), Qsymbolp, x)
347 #define lisp_h_CHECK_TYPE(ok, predicate, x) \
348 ((ok) ? (void) 0 : (void) wrong_type_argument (predicate, x))
349 #define lisp_h_CONSP(x) (XTYPE (x) == Lisp_Cons)
350 #define lisp_h_EQ(x, y) (XLI (x) == XLI (y))
351 #define lisp_h_FLOATP(x) (XTYPE (x) == Lisp_Float)
352 #define lisp_h_INTEGERP(x) ((XTYPE (x) & ~Lisp_Int1) == 0)
353 #define lisp_h_MARKERP(x) (MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Marker)
354 #define lisp_h_MISCP(x) (XTYPE (x) == Lisp_Misc)
355 #define lisp_h_NILP(x) EQ (x, Qnil)
356 #define lisp_h_SET_SYMBOL_VAL(sym, v) \
357 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value = (v))
358 #define lisp_h_SYMBOL_CONSTANT_P(sym) (XSYMBOL (sym)->constant)
359 #define lisp_h_SYMBOL_VAL(sym) \
360 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value)
361 #define lisp_h_SYMBOLP(x) (XTYPE (x) == Lisp_Symbol)
362 #define lisp_h_VECTORLIKEP(x) (XTYPE (x) == Lisp_Vectorlike)
363 #define lisp_h_XCAR(c) XCONS (c)->car
364 #define lisp_h_XCDR(c) XCONS (c)->u.cdr
365 #define lisp_h_XCONS(a) \
366 (eassert (CONSP (a)), (struct Lisp_Cons *) XUNTAG (a, Lisp_Cons))
367 #define lisp_h_XHASH(a) XUINT (a)
368 #define lisp_h_XPNTR(a) ((void *) (intptr_t) (XLI (a) & VALMASK))
369 #define lisp_h_XSYMBOL(a) \
370 (eassert (SYMBOLP (a)), (struct Lisp_Symbol *) XUNTAG (a, Lisp_Symbol))
371 #ifndef GC_CHECK_CONS_LIST
372 # define lisp_h_check_cons_list() ((void) 0)
373 #endif
374 #if USE_LSB_TAG
375 # define lisp_h_make_number(n) \
376 XIL ((EMACS_INT) ((EMACS_UINT) (n) << INTTYPEBITS))
377 # define lisp_h_XFASTINT(a) XINT (a)
378 # define lisp_h_XINT(a) (XLI (a) >> INTTYPEBITS)
379 # define lisp_h_XTYPE(a) ((enum Lisp_Type) (XLI (a) & ~VALMASK))
380 # define lisp_h_XUNTAG(a, type) ((void *) (XLI (a) - (type)))
381 #endif
382
383 /* When compiling via gcc -O0, define the key operations as macros, as
384 Emacs is too slow otherwise. To disable this optimization, compile
385 with -DINLINING=false. */
386 #if (defined __NO_INLINE__ \
387 && ! defined __OPTIMIZE__ && ! defined __OPTIMIZE_SIZE__ \
388 && ! (defined INLINING && ! INLINING))
389 # define XLI(o) lisp_h_XLI (o)
390 # define XIL(i) lisp_h_XIL (i)
391 # define CHECK_LIST_CONS(x, y) lisp_h_CHECK_LIST_CONS (x, y)
392 # define CHECK_NUMBER(x) lisp_h_CHECK_NUMBER (x)
393 # define CHECK_SYMBOL(x) lisp_h_CHECK_SYMBOL (x)
394 # define CHECK_TYPE(ok, predicate, x) lisp_h_CHECK_TYPE (ok, predicate, x)
395 # define CONSP(x) lisp_h_CONSP (x)
396 # define EQ(x, y) lisp_h_EQ (x, y)
397 # define FLOATP(x) lisp_h_FLOATP (x)
398 # define INTEGERP(x) lisp_h_INTEGERP (x)
399 # define MARKERP(x) lisp_h_MARKERP (x)
400 # define MISCP(x) lisp_h_MISCP (x)
401 # define NILP(x) lisp_h_NILP (x)
402 # define SET_SYMBOL_VAL(sym, v) lisp_h_SET_SYMBOL_VAL (sym, v)
403 # define SYMBOL_CONSTANT_P(sym) lisp_h_SYMBOL_CONSTANT_P (sym)
404 # define SYMBOL_VAL(sym) lisp_h_SYMBOL_VAL (sym)
405 # define SYMBOLP(x) lisp_h_SYMBOLP (x)
406 # define VECTORLIKEP(x) lisp_h_VECTORLIKEP (x)
407 # define XCAR(c) lisp_h_XCAR (c)
408 # define XCDR(c) lisp_h_XCDR (c)
409 # define XCONS(a) lisp_h_XCONS (a)
410 # define XHASH(a) lisp_h_XHASH (a)
411 # define XPNTR(a) lisp_h_XPNTR (a)
412 # define XSYMBOL(a) lisp_h_XSYMBOL (a)
413 # ifndef GC_CHECK_CONS_LIST
414 # define check_cons_list() lisp_h_check_cons_list ()
415 # endif
416 # if USE_LSB_TAG
417 # define make_number(n) lisp_h_make_number (n)
418 # define XFASTINT(a) lisp_h_XFASTINT (a)
419 # define XINT(a) lisp_h_XINT (a)
420 # define XTYPE(a) lisp_h_XTYPE (a)
421 # define XUNTAG(a, type) lisp_h_XUNTAG (a, type)
422 # endif
423 #endif
424
425 /* Define NAME as a lisp.h inline function that returns TYPE and has
426 arguments declared as ARGDECLS and passed as ARGS. ARGDECLS and
427 ARGS should be parenthesized. Implement the function by calling
428 lisp_h_NAME ARGS. */
429 #define LISP_MACRO_DEFUN(name, type, argdecls, args) \
430 INLINE type (name) argdecls { return lisp_h_##name args; }
431
432 /* like LISP_MACRO_DEFUN, except NAME returns void. */
433 #define LISP_MACRO_DEFUN_VOID(name, argdecls, args) \
434 INLINE void (name) argdecls { lisp_h_##name args; }
435
436
437 /* Define the fundamental Lisp data structures. */
438
439 /* This is the set of Lisp data types. If you want to define a new
440 data type, read the comments after Lisp_Fwd_Type definition
441 below. */
442
443 /* Lisp integers use 2 tags, to give them one extra bit, thus
444 extending their range from, e.g., -2^28..2^28-1 to -2^29..2^29-1. */
445 #define INTMASK (EMACS_INT_MAX >> (INTTYPEBITS - 1))
446 #define case_Lisp_Int case Lisp_Int0: case Lisp_Int1
447
448 /* Idea stolen from GDB. Pedantic GCC complains about enum bitfields,
449 MSVC doesn't support them, and xlc and Oracle Studio c99 complain
450 vociferously about them. */
451 #if (defined __STRICT_ANSI__ || defined _MSC_VER || defined __IBMC__ \
452 || (defined __SUNPRO_C && __STDC__))
453 #define ENUM_BF(TYPE) unsigned int
454 #else
455 #define ENUM_BF(TYPE) enum TYPE
456 #endif
457
458
459 enum Lisp_Type
460 {
461 /* Integer. XINT (obj) is the integer value. */
462 Lisp_Int0 = 0,
463 Lisp_Int1 = USE_LSB_TAG ? 1 << INTTYPEBITS : 1,
464
465 /* Symbol. XSYMBOL (object) points to a struct Lisp_Symbol. */
466 Lisp_Symbol = 2,
467
468 /* Miscellaneous. XMISC (object) points to a union Lisp_Misc,
469 whose first member indicates the subtype. */
470 Lisp_Misc = 3,
471
472 /* String. XSTRING (object) points to a struct Lisp_String.
473 The length of the string, and its contents, are stored therein. */
474 Lisp_String = USE_LSB_TAG ? 1 : 1 << INTTYPEBITS,
475
476 /* Vector of Lisp objects, or something resembling it.
477 XVECTOR (object) points to a struct Lisp_Vector, which contains
478 the size and contents. The size field also contains the type
479 information, if it's not a real vector object. */
480 Lisp_Vectorlike = 5,
481
482 /* Cons. XCONS (object) points to a struct Lisp_Cons. */
483 Lisp_Cons = 6,
484
485 Lisp_Float = 7
486 };
487
488 /* This is the set of data types that share a common structure.
489 The first member of the structure is a type code from this set.
490 The enum values are arbitrary, but we'll use large numbers to make it
491 more likely that we'll spot the error if a random word in memory is
492 mistakenly interpreted as a Lisp_Misc. */
493 enum Lisp_Misc_Type
494 {
495 Lisp_Misc_Free = 0x5eab,
496 Lisp_Misc_Marker,
497 Lisp_Misc_Overlay,
498 Lisp_Misc_Save_Value,
499 /* Currently floats are not a misc type,
500 but let's define this in case we want to change that. */
501 Lisp_Misc_Float,
502 /* This is not a type code. It is for range checking. */
503 Lisp_Misc_Limit
504 };
505
506 /* These are the types of forwarding objects used in the value slot
507 of symbols for special built-in variables whose value is stored in
508 C variables. */
509 enum Lisp_Fwd_Type
510 {
511 Lisp_Fwd_Int, /* Fwd to a C `int' variable. */
512 Lisp_Fwd_Bool, /* Fwd to a C boolean var. */
513 Lisp_Fwd_Obj, /* Fwd to a C Lisp_Object variable. */
514 Lisp_Fwd_Buffer_Obj, /* Fwd to a Lisp_Object field of buffers. */
515 Lisp_Fwd_Kboard_Obj /* Fwd to a Lisp_Object field of kboards. */
516 };
517
518 /* If you want to define a new Lisp data type, here are some
519 instructions. See the thread at
520 http://lists.gnu.org/archive/html/emacs-devel/2012-10/msg00561.html
521 for more info.
522
523 First, there are already a couple of Lisp types that can be used if
524 your new type does not need to be exposed to Lisp programs nor
525 displayed to users. These are Lisp_Save_Value, a Lisp_Misc
526 subtype; and PVEC_OTHER, a kind of vectorlike object. The former
527 is suitable for temporarily stashing away pointers and integers in
528 a Lisp object. The latter is useful for vector-like Lisp objects
529 that need to be used as part of other objects, but which are never
530 shown to users or Lisp code (search for PVEC_OTHER in xterm.c for
531 an example).
532
533 These two types don't look pretty when printed, so they are
534 unsuitable for Lisp objects that can be exposed to users.
535
536 To define a new data type, add one more Lisp_Misc subtype or one
537 more pseudovector subtype. Pseudovectors are more suitable for
538 objects with several slots that need to support fast random access,
539 while Lisp_Misc types are for everything else. A pseudovector object
540 provides one or more slots for Lisp objects, followed by struct
541 members that are accessible only from C. A Lisp_Misc object is a
542 wrapper for a C struct that can contain anything you like.
543
544 Explicit freeing is discouraged for Lisp objects in general. But if
545 you really need to exploit this, use Lisp_Misc (check free_misc in
546 alloc.c to see why). There is no way to free a vectorlike object.
547
548 To add a new pseudovector type, extend the pvec_type enumeration;
549 to add a new Lisp_Misc, extend the Lisp_Misc_Type enumeration.
550
551 For a Lisp_Misc, you will also need to add your entry to union
552 Lisp_Misc (but make sure the first word has the same structure as
553 the others, starting with a 16-bit member of the Lisp_Misc_Type
554 enumeration and a 1-bit GC markbit) and make sure the overall size
555 of the union is not increased by your addition.
556
557 For a new pseudovector, it's highly desirable to limit the size
558 of your data type by VBLOCK_BYTES_MAX bytes (defined in alloc.c).
559 Otherwise you will need to change sweep_vectors (also in alloc.c).
560
561 Then you will need to add switch branches in print.c (in
562 print_object, to print your object, and possibly also in
563 print_preprocess) and to alloc.c, to mark your object (in
564 mark_object) and to free it (in gc_sweep). The latter is also the
565 right place to call any code specific to your data type that needs
566 to run when the object is recycled -- e.g., free any additional
567 resources allocated for it that are not Lisp objects. You can even
568 make a pointer to the function that frees the resources a slot in
569 your object -- this way, the same object could be used to represent
570 several disparate C structures. */
571
572 #ifdef CHECK_LISP_OBJECT_TYPE
573
574 typedef struct { EMACS_INT i; } Lisp_Object;
575
576 #define LISP_INITIALLY_ZERO {0}
577
578 #undef CHECK_LISP_OBJECT_TYPE
579 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = true };
580 #else /* CHECK_LISP_OBJECT_TYPE */
581
582 /* If a struct type is not wanted, define Lisp_Object as just a number. */
583
584 typedef EMACS_INT Lisp_Object;
585 #define LISP_INITIALLY_ZERO 0
586 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = false };
587 #endif /* CHECK_LISP_OBJECT_TYPE */
588
589 /* Convert a Lisp_Object to the corresponding EMACS_INT and vice versa.
590 At the machine level, these operations are no-ops. */
591 LISP_MACRO_DEFUN (XLI, EMACS_INT, (Lisp_Object o), (o))
592 LISP_MACRO_DEFUN (XIL, Lisp_Object, (EMACS_INT i), (i))
593
594 /* In the size word of a vector, this bit means the vector has been marked. */
595
596 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, ARRAY_MARK_FLAG)
597 # define ARRAY_MARK_FLAG PTRDIFF_MIN
598 DEFINE_GDB_SYMBOL_END (ARRAY_MARK_FLAG)
599
600 /* In the size word of a struct Lisp_Vector, this bit means it's really
601 some other vector-like object. */
602 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, PSEUDOVECTOR_FLAG)
603 # define PSEUDOVECTOR_FLAG (PTRDIFF_MAX - PTRDIFF_MAX / 2)
604 DEFINE_GDB_SYMBOL_END (PSEUDOVECTOR_FLAG)
605
606 /* In a pseudovector, the size field actually contains a word with one
607 PSEUDOVECTOR_FLAG bit set, and one of the following values extracted
608 with PVEC_TYPE_MASK to indicate the actual type. */
609 enum pvec_type
610 {
611 PVEC_NORMAL_VECTOR,
612 PVEC_FREE,
613 PVEC_PROCESS,
614 PVEC_FRAME,
615 PVEC_WINDOW,
616 PVEC_BOOL_VECTOR,
617 PVEC_BUFFER,
618 PVEC_HASH_TABLE,
619 PVEC_TERMINAL,
620 PVEC_WINDOW_CONFIGURATION,
621 PVEC_SUBR,
622 PVEC_OTHER,
623 /* These should be last, check internal_equal to see why. */
624 PVEC_COMPILED,
625 PVEC_CHAR_TABLE,
626 PVEC_SUB_CHAR_TABLE,
627 PVEC_FONT /* Should be last because it's used for range checking. */
628 };
629
630 enum More_Lisp_Bits
631 {
632 /* For convenience, we also store the number of elements in these bits.
633 Note that this size is not necessarily the memory-footprint size, but
634 only the number of Lisp_Object fields (that need to be traced by GC).
635 The distinction is used, e.g., by Lisp_Process, which places extra
636 non-Lisp_Object fields at the end of the structure. */
637 PSEUDOVECTOR_SIZE_BITS = 12,
638 PSEUDOVECTOR_SIZE_MASK = (1 << PSEUDOVECTOR_SIZE_BITS) - 1,
639
640 /* To calculate the memory footprint of the pseudovector, it's useful
641 to store the size of non-Lisp area in word_size units here. */
642 PSEUDOVECTOR_REST_BITS = 12,
643 PSEUDOVECTOR_REST_MASK = (((1 << PSEUDOVECTOR_REST_BITS) - 1)
644 << PSEUDOVECTOR_SIZE_BITS),
645
646 /* Used to extract pseudovector subtype information. */
647 PSEUDOVECTOR_AREA_BITS = PSEUDOVECTOR_SIZE_BITS + PSEUDOVECTOR_REST_BITS,
648 PVEC_TYPE_MASK = 0x3f << PSEUDOVECTOR_AREA_BITS
649 };
650 \f
651 /* These functions extract various sorts of values from a Lisp_Object.
652 For example, if tem is a Lisp_Object whose type is Lisp_Cons,
653 XCONS (tem) is the struct Lisp_Cons * pointing to the memory for
654 that cons. */
655
656 /* Mask for the value (as opposed to the type bits) of a Lisp object. */
657 DEFINE_GDB_SYMBOL_BEGIN (EMACS_INT, VALMASK)
658 # define VALMASK (USE_LSB_TAG ? - (1 << GCTYPEBITS) : VAL_MAX)
659 DEFINE_GDB_SYMBOL_END (VALMASK)
660
661 /* Largest and smallest representable fixnum values. These are the C
662 values. They are macros for use in static initializers. */
663 #define MOST_POSITIVE_FIXNUM (EMACS_INT_MAX >> INTTYPEBITS)
664 #define MOST_NEGATIVE_FIXNUM (-1 - MOST_POSITIVE_FIXNUM)
665
666 /* Extract the pointer hidden within A. */
667 LISP_MACRO_DEFUN (XPNTR, void *, (Lisp_Object a), (a))
668
669 #if USE_LSB_TAG
670
671 LISP_MACRO_DEFUN (make_number, Lisp_Object, (EMACS_INT n), (n))
672 LISP_MACRO_DEFUN (XINT, EMACS_INT, (Lisp_Object a), (a))
673 LISP_MACRO_DEFUN (XFASTINT, EMACS_INT, (Lisp_Object a), (a))
674 LISP_MACRO_DEFUN (XTYPE, enum Lisp_Type, (Lisp_Object a), (a))
675 LISP_MACRO_DEFUN (XUNTAG, void *, (Lisp_Object a, int type), (a, type))
676
677 #else /* ! USE_LSB_TAG */
678
679 /* Although compiled only if ! USE_LSB_TAG, the following functions
680 also work when USE_LSB_TAG; this is to aid future maintenance when
681 the lisp_h_* macros are eventually removed. */
682
683 /* Make a Lisp integer representing the value of the low order
684 bits of N. */
685 INLINE Lisp_Object
686 make_number (EMACS_INT n)
687 {
688 if (USE_LSB_TAG)
689 {
690 EMACS_UINT u = n;
691 n = u << INTTYPEBITS;
692 }
693 else
694 n &= INTMASK;
695 return XIL (n);
696 }
697
698 /* Extract A's value as a signed integer. */
699 INLINE EMACS_INT
700 XINT (Lisp_Object a)
701 {
702 EMACS_INT i = XLI (a);
703 if (! USE_LSB_TAG)
704 {
705 EMACS_UINT u = i;
706 i = u << INTTYPEBITS;
707 }
708 return i >> INTTYPEBITS;
709 }
710
711 /* Like XINT (A), but may be faster. A must be nonnegative.
712 If ! USE_LSB_TAG, this takes advantage of the fact that Lisp
713 integers have zero-bits in their tags. */
714 INLINE EMACS_INT
715 XFASTINT (Lisp_Object a)
716 {
717 EMACS_INT n = USE_LSB_TAG ? XINT (a) : XLI (a);
718 eassert (0 <= n);
719 return n;
720 }
721
722 /* Extract A's type. */
723 INLINE enum Lisp_Type
724 XTYPE (Lisp_Object a)
725 {
726 EMACS_UINT i = XLI (a);
727 return USE_LSB_TAG ? i & ~VALMASK : i >> VALBITS;
728 }
729
730 /* Extract A's pointer value, assuming A's type is TYPE. */
731 INLINE void *
732 XUNTAG (Lisp_Object a, int type)
733 {
734 if (USE_LSB_TAG)
735 {
736 intptr_t i = XLI (a) - type;
737 return (void *) i;
738 }
739 return XPNTR (a);
740 }
741
742 #endif /* ! USE_LSB_TAG */
743
744 /* Extract A's value as an unsigned integer. */
745 INLINE EMACS_UINT
746 XUINT (Lisp_Object a)
747 {
748 EMACS_UINT i = XLI (a);
749 return USE_LSB_TAG ? i >> INTTYPEBITS : i & INTMASK;
750 }
751
752 /* Return A's (Lisp-integer sized) hash. Happens to be like XUINT
753 right now, but XUINT should only be applied to objects we know are
754 integers. */
755 LISP_MACRO_DEFUN (XHASH, EMACS_INT, (Lisp_Object a), (a))
756
757 /* Like make_number (N), but may be faster. N must be in nonnegative range. */
758 INLINE Lisp_Object
759 make_natnum (EMACS_INT n)
760 {
761 eassert (0 <= n && n <= MOST_POSITIVE_FIXNUM);
762 return USE_LSB_TAG ? make_number (n) : XIL (n);
763 }
764
765 /* Return true if X and Y are the same object. */
766 LISP_MACRO_DEFUN (EQ, bool, (Lisp_Object x, Lisp_Object y), (x, y))
767
768 /* Value is true if I doesn't fit into a Lisp fixnum. It is
769 written this way so that it also works if I is of unsigned
770 type or if I is a NaN. */
771
772 #define FIXNUM_OVERFLOW_P(i) \
773 (! ((0 <= (i) || MOST_NEGATIVE_FIXNUM <= (i)) && (i) <= MOST_POSITIVE_FIXNUM))
774
775 INLINE ptrdiff_t
776 clip_to_bounds (ptrdiff_t lower, EMACS_INT num, ptrdiff_t upper)
777 {
778 return num < lower ? lower : num <= upper ? num : upper;
779 }
780 \f
781 /* Forward declarations. */
782
783 /* Defined in this file. */
784 union Lisp_Fwd;
785 INLINE bool BOOL_VECTOR_P (Lisp_Object);
786 INLINE bool BUFFER_OBJFWDP (union Lisp_Fwd *);
787 INLINE bool BUFFERP (Lisp_Object);
788 INLINE bool CHAR_TABLE_P (Lisp_Object);
789 INLINE Lisp_Object CHAR_TABLE_REF_ASCII (Lisp_Object, ptrdiff_t);
790 INLINE bool (CONSP) (Lisp_Object);
791 INLINE bool (FLOATP) (Lisp_Object);
792 INLINE bool functionp (Lisp_Object);
793 INLINE bool (INTEGERP) (Lisp_Object);
794 INLINE bool (MARKERP) (Lisp_Object);
795 INLINE bool (MISCP) (Lisp_Object);
796 INLINE bool (NILP) (Lisp_Object);
797 INLINE bool OVERLAYP (Lisp_Object);
798 INLINE bool PROCESSP (Lisp_Object);
799 INLINE bool PSEUDOVECTORP (Lisp_Object, int);
800 INLINE bool SAVE_VALUEP (Lisp_Object);
801 INLINE void set_sub_char_table_contents (Lisp_Object, ptrdiff_t,
802 Lisp_Object);
803 INLINE bool STRINGP (Lisp_Object);
804 INLINE bool SUB_CHAR_TABLE_P (Lisp_Object);
805 INLINE bool SUBRP (Lisp_Object);
806 INLINE bool (SYMBOLP) (Lisp_Object);
807 INLINE bool (VECTORLIKEP) (Lisp_Object);
808 INLINE bool WINDOWP (Lisp_Object);
809 INLINE struct Lisp_Save_Value *XSAVE_VALUE (Lisp_Object);
810
811 /* Defined in chartab.c. */
812 extern Lisp_Object char_table_ref (Lisp_Object, int);
813 extern void char_table_set (Lisp_Object, int, Lisp_Object);
814
815 /* Defined in data.c. */
816 extern Lisp_Object Qarrayp, Qbufferp, Qbuffer_or_string_p, Qchar_table_p;
817 extern Lisp_Object Qconsp, Qfloatp, Qintegerp, Qlambda, Qlistp, Qmarkerp, Qnil;
818 extern Lisp_Object Qnumberp, Qstringp, Qsymbolp, Qt, Qvectorp;
819 extern Lisp_Object Qbool_vector_p;
820 extern Lisp_Object Qvector_or_char_table_p, Qwholenump;
821 extern Lisp_Object Qwindow;
822 extern _Noreturn Lisp_Object wrong_type_argument (Lisp_Object, Lisp_Object);
823 extern _Noreturn void wrong_choice (Lisp_Object, Lisp_Object);
824
825 /* Defined in emacs.c. */
826 extern bool might_dump;
827 /* True means Emacs has already been initialized.
828 Used during startup to detect startup of dumped Emacs. */
829 extern bool initialized;
830
831 /* Defined in eval.c. */
832 extern Lisp_Object Qautoload;
833
834 /* Defined in floatfns.c. */
835 extern double extract_float (Lisp_Object);
836
837 /* Defined in process.c. */
838 extern Lisp_Object Qprocessp;
839
840 /* Defined in window.c. */
841 extern Lisp_Object Qwindowp;
842
843 /* Defined in xdisp.c. */
844 extern Lisp_Object Qimage;
845 \f
846
847 /* Extract a value or address from a Lisp_Object. */
848
849 LISP_MACRO_DEFUN (XCONS, struct Lisp_Cons *, (Lisp_Object a), (a))
850
851 INLINE struct Lisp_Vector *
852 XVECTOR (Lisp_Object a)
853 {
854 eassert (VECTORLIKEP (a));
855 return XUNTAG (a, Lisp_Vectorlike);
856 }
857
858 INLINE struct Lisp_String *
859 XSTRING (Lisp_Object a)
860 {
861 eassert (STRINGP (a));
862 return XUNTAG (a, Lisp_String);
863 }
864
865 LISP_MACRO_DEFUN (XSYMBOL, struct Lisp_Symbol *, (Lisp_Object a), (a))
866
867 INLINE struct Lisp_Float *
868 XFLOAT (Lisp_Object a)
869 {
870 eassert (FLOATP (a));
871 return XUNTAG (a, Lisp_Float);
872 }
873
874 /* Pseudovector types. */
875
876 INLINE struct Lisp_Process *
877 XPROCESS (Lisp_Object a)
878 {
879 eassert (PROCESSP (a));
880 return XUNTAG (a, Lisp_Vectorlike);
881 }
882
883 INLINE struct window *
884 XWINDOW (Lisp_Object a)
885 {
886 eassert (WINDOWP (a));
887 return XUNTAG (a, Lisp_Vectorlike);
888 }
889
890 INLINE struct terminal *
891 XTERMINAL (Lisp_Object a)
892 {
893 return XUNTAG (a, Lisp_Vectorlike);
894 }
895
896 INLINE struct Lisp_Subr *
897 XSUBR (Lisp_Object a)
898 {
899 eassert (SUBRP (a));
900 return XUNTAG (a, Lisp_Vectorlike);
901 }
902
903 INLINE struct buffer *
904 XBUFFER (Lisp_Object a)
905 {
906 eassert (BUFFERP (a));
907 return XUNTAG (a, Lisp_Vectorlike);
908 }
909
910 INLINE struct Lisp_Char_Table *
911 XCHAR_TABLE (Lisp_Object a)
912 {
913 eassert (CHAR_TABLE_P (a));
914 return XUNTAG (a, Lisp_Vectorlike);
915 }
916
917 INLINE struct Lisp_Sub_Char_Table *
918 XSUB_CHAR_TABLE (Lisp_Object a)
919 {
920 eassert (SUB_CHAR_TABLE_P (a));
921 return XUNTAG (a, Lisp_Vectorlike);
922 }
923
924 INLINE struct Lisp_Bool_Vector *
925 XBOOL_VECTOR (Lisp_Object a)
926 {
927 eassert (BOOL_VECTOR_P (a));
928 return XUNTAG (a, Lisp_Vectorlike);
929 }
930
931 /* Construct a Lisp_Object from a value or address. */
932
933 INLINE Lisp_Object
934 make_lisp_ptr (void *ptr, enum Lisp_Type type)
935 {
936 EMACS_UINT utype = type;
937 EMACS_UINT typebits = USE_LSB_TAG ? type : utype << VALBITS;
938 Lisp_Object a = XIL (typebits | (uintptr_t) ptr);
939 eassert (XTYPE (a) == type && XUNTAG (a, type) == ptr);
940 return a;
941 }
942
943 INLINE Lisp_Object
944 make_lisp_proc (struct Lisp_Process *p)
945 {
946 return make_lisp_ptr (p, Lisp_Vectorlike);
947 }
948
949 #define XSETINT(a, b) ((a) = make_number (b))
950 #define XSETFASTINT(a, b) ((a) = make_natnum (b))
951 #define XSETCONS(a, b) ((a) = make_lisp_ptr (b, Lisp_Cons))
952 #define XSETVECTOR(a, b) ((a) = make_lisp_ptr (b, Lisp_Vectorlike))
953 #define XSETSTRING(a, b) ((a) = make_lisp_ptr (b, Lisp_String))
954 #define XSETSYMBOL(a, b) ((a) = make_lisp_ptr (b, Lisp_Symbol))
955 #define XSETFLOAT(a, b) ((a) = make_lisp_ptr (b, Lisp_Float))
956 #define XSETMISC(a, b) ((a) = make_lisp_ptr (b, Lisp_Misc))
957
958 /* Pseudovector types. */
959
960 #define XSETPVECTYPE(v, code) \
961 ((v)->header.size |= PSEUDOVECTOR_FLAG | ((code) << PSEUDOVECTOR_AREA_BITS))
962 #define XSETPVECTYPESIZE(v, code, lispsize, restsize) \
963 ((v)->header.size = (PSEUDOVECTOR_FLAG \
964 | ((code) << PSEUDOVECTOR_AREA_BITS) \
965 | ((restsize) << PSEUDOVECTOR_SIZE_BITS) \
966 | (lispsize)))
967
968 /* The cast to struct vectorlike_header * avoids aliasing issues. */
969 #define XSETPSEUDOVECTOR(a, b, code) \
970 XSETTYPED_PSEUDOVECTOR (a, b, \
971 (((struct vectorlike_header *) \
972 XUNTAG (a, Lisp_Vectorlike)) \
973 ->size), \
974 code)
975 #define XSETTYPED_PSEUDOVECTOR(a, b, size, code) \
976 (XSETVECTOR (a, b), \
977 eassert ((size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK)) \
978 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS))))
979
980 #define XSETWINDOW_CONFIGURATION(a, b) \
981 (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW_CONFIGURATION))
982 #define XSETPROCESS(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_PROCESS))
983 #define XSETWINDOW(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW))
984 #define XSETTERMINAL(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_TERMINAL))
985 #define XSETSUBR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUBR))
986 #define XSETCOMPILED(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_COMPILED))
987 #define XSETBUFFER(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BUFFER))
988 #define XSETCHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_CHAR_TABLE))
989 #define XSETBOOL_VECTOR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BOOL_VECTOR))
990 #define XSETSUB_CHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUB_CHAR_TABLE))
991
992 /* Type checking. */
993
994 LISP_MACRO_DEFUN_VOID (CHECK_TYPE,
995 (int ok, Lisp_Object predicate, Lisp_Object x),
996 (ok, predicate, x))
997
998 /* Deprecated and will be removed soon. */
999
1000 #define INTERNAL_FIELD(field) field ## _
1001
1002 /* See the macros in intervals.h. */
1003
1004 typedef struct interval *INTERVAL;
1005
1006 struct GCALIGNED Lisp_Cons
1007 {
1008 /* Car of this cons cell. */
1009 Lisp_Object car;
1010
1011 union
1012 {
1013 /* Cdr of this cons cell. */
1014 Lisp_Object cdr;
1015
1016 /* Used to chain conses on a free list. */
1017 struct Lisp_Cons *chain;
1018 } u;
1019 };
1020
1021 /* Take the car or cdr of something known to be a cons cell. */
1022 /* The _addr functions shouldn't be used outside of the minimal set
1023 of code that has to know what a cons cell looks like. Other code not
1024 part of the basic lisp implementation should assume that the car and cdr
1025 fields are not accessible. (What if we want to switch to
1026 a copying collector someday? Cached cons cell field addresses may be
1027 invalidated at arbitrary points.) */
1028 INLINE Lisp_Object *
1029 xcar_addr (Lisp_Object c)
1030 {
1031 return &XCONS (c)->car;
1032 }
1033 INLINE Lisp_Object *
1034 xcdr_addr (Lisp_Object c)
1035 {
1036 return &XCONS (c)->u.cdr;
1037 }
1038
1039 /* Use these from normal code. */
1040 LISP_MACRO_DEFUN (XCAR, Lisp_Object, (Lisp_Object c), (c))
1041 LISP_MACRO_DEFUN (XCDR, Lisp_Object, (Lisp_Object c), (c))
1042
1043 /* Use these to set the fields of a cons cell.
1044
1045 Note that both arguments may refer to the same object, so 'n'
1046 should not be read after 'c' is first modified. */
1047 INLINE void
1048 XSETCAR (Lisp_Object c, Lisp_Object n)
1049 {
1050 *xcar_addr (c) = n;
1051 }
1052 INLINE void
1053 XSETCDR (Lisp_Object c, Lisp_Object n)
1054 {
1055 *xcdr_addr (c) = n;
1056 }
1057
1058 /* Take the car or cdr of something whose type is not known. */
1059 INLINE Lisp_Object
1060 CAR (Lisp_Object c)
1061 {
1062 return (CONSP (c) ? XCAR (c)
1063 : NILP (c) ? Qnil
1064 : wrong_type_argument (Qlistp, c));
1065 }
1066 INLINE Lisp_Object
1067 CDR (Lisp_Object c)
1068 {
1069 return (CONSP (c) ? XCDR (c)
1070 : NILP (c) ? Qnil
1071 : wrong_type_argument (Qlistp, c));
1072 }
1073
1074 /* Take the car or cdr of something whose type is not known. */
1075 INLINE Lisp_Object
1076 CAR_SAFE (Lisp_Object c)
1077 {
1078 return CONSP (c) ? XCAR (c) : Qnil;
1079 }
1080 INLINE Lisp_Object
1081 CDR_SAFE (Lisp_Object c)
1082 {
1083 return CONSP (c) ? XCDR (c) : Qnil;
1084 }
1085
1086 /* In a string or vector, the sign bit of the `size' is the gc mark bit. */
1087
1088 struct Lisp_String
1089 {
1090 ptrdiff_t size;
1091 ptrdiff_t size_byte;
1092 INTERVAL intervals; /* Text properties in this string. */
1093 unsigned char *data;
1094 };
1095
1096 /* True if STR is a multibyte string. */
1097 INLINE bool
1098 STRING_MULTIBYTE (Lisp_Object str)
1099 {
1100 return 0 <= XSTRING (str)->size_byte;
1101 }
1102
1103 /* An upper bound on the number of bytes in a Lisp string, not
1104 counting the terminating null. This a tight enough bound to
1105 prevent integer overflow errors that would otherwise occur during
1106 string size calculations. A string cannot contain more bytes than
1107 a fixnum can represent, nor can it be so long that C pointer
1108 arithmetic stops working on the string plus its terminating null.
1109 Although the actual size limit (see STRING_BYTES_MAX in alloc.c)
1110 may be a bit smaller than STRING_BYTES_BOUND, calculating it here
1111 would expose alloc.c internal details that we'd rather keep
1112 private.
1113
1114 This is a macro for use in static initializers. The cast to
1115 ptrdiff_t ensures that the macro is signed. */
1116 #define STRING_BYTES_BOUND \
1117 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, min (SIZE_MAX, PTRDIFF_MAX) - 1))
1118
1119 /* Mark STR as a unibyte string. */
1120 #define STRING_SET_UNIBYTE(STR) \
1121 do { \
1122 if (EQ (STR, empty_multibyte_string)) \
1123 (STR) = empty_unibyte_string; \
1124 else \
1125 XSTRING (STR)->size_byte = -1; \
1126 } while (false)
1127
1128 /* Mark STR as a multibyte string. Assure that STR contains only
1129 ASCII characters in advance. */
1130 #define STRING_SET_MULTIBYTE(STR) \
1131 do { \
1132 if (EQ (STR, empty_unibyte_string)) \
1133 (STR) = empty_multibyte_string; \
1134 else \
1135 XSTRING (STR)->size_byte = XSTRING (STR)->size; \
1136 } while (false)
1137
1138 /* Convenience functions for dealing with Lisp strings. */
1139
1140 INLINE unsigned char *
1141 SDATA (Lisp_Object string)
1142 {
1143 return XSTRING (string)->data;
1144 }
1145 INLINE char *
1146 SSDATA (Lisp_Object string)
1147 {
1148 /* Avoid "differ in sign" warnings. */
1149 return (char *) SDATA (string);
1150 }
1151 INLINE unsigned char
1152 SREF (Lisp_Object string, ptrdiff_t index)
1153 {
1154 return SDATA (string)[index];
1155 }
1156 INLINE void
1157 SSET (Lisp_Object string, ptrdiff_t index, unsigned char new)
1158 {
1159 SDATA (string)[index] = new;
1160 }
1161 INLINE ptrdiff_t
1162 SCHARS (Lisp_Object string)
1163 {
1164 return XSTRING (string)->size;
1165 }
1166
1167 #ifdef GC_CHECK_STRING_BYTES
1168 extern ptrdiff_t string_bytes (struct Lisp_String *);
1169 #endif
1170 INLINE ptrdiff_t
1171 STRING_BYTES (struct Lisp_String *s)
1172 {
1173 #ifdef GC_CHECK_STRING_BYTES
1174 return string_bytes (s);
1175 #else
1176 return s->size_byte < 0 ? s->size : s->size_byte;
1177 #endif
1178 }
1179
1180 INLINE ptrdiff_t
1181 SBYTES (Lisp_Object string)
1182 {
1183 return STRING_BYTES (XSTRING (string));
1184 }
1185 INLINE void
1186 STRING_SET_CHARS (Lisp_Object string, ptrdiff_t newsize)
1187 {
1188 XSTRING (string)->size = newsize;
1189 }
1190
1191 /* Header of vector-like objects. This documents the layout constraints on
1192 vectors and pseudovectors (objects of PVEC_xxx subtype). It also prevents
1193 compilers from being fooled by Emacs's type punning: XSETPSEUDOVECTOR
1194 and PSEUDOVECTORP cast their pointers to struct vectorlike_header *,
1195 because when two such pointers potentially alias, a compiler won't
1196 incorrectly reorder loads and stores to their size fields. See
1197 Bug#8546. */
1198 struct vectorlike_header
1199 {
1200 /* The only field contains various pieces of information:
1201 - The MSB (ARRAY_MARK_FLAG) holds the gcmarkbit.
1202 - The next bit (PSEUDOVECTOR_FLAG) indicates whether this is a plain
1203 vector (0) or a pseudovector (1).
1204 - If PSEUDOVECTOR_FLAG is 0, the rest holds the size (number
1205 of slots) of the vector.
1206 - If PSEUDOVECTOR_FLAG is 1, the rest is subdivided into three fields:
1207 - a) pseudovector subtype held in PVEC_TYPE_MASK field;
1208 - b) number of Lisp_Objects slots at the beginning of the object
1209 held in PSEUDOVECTOR_SIZE_MASK field. These objects are always
1210 traced by the GC;
1211 - c) size of the rest fields held in PSEUDOVECTOR_REST_MASK and
1212 measured in word_size units. Rest fields may also include
1213 Lisp_Objects, but these objects usually needs some special treatment
1214 during GC.
1215 There are some exceptions. For PVEC_FREE, b) is always zero. For
1216 PVEC_BOOL_VECTOR and PVEC_SUBR, both b) and c) are always zero.
1217 Current layout limits the pseudovectors to 63 PVEC_xxx subtypes,
1218 4095 Lisp_Objects in GC-ed area and 4095 word-sized other slots. */
1219 ptrdiff_t size;
1220 };
1221
1222 /* A regular vector is just a header plus an array of Lisp_Objects. */
1223
1224 struct Lisp_Vector
1225 {
1226 struct vectorlike_header header;
1227 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1228 };
1229
1230 /* C11 prohibits alignof (struct Lisp_Vector), so compute it manually. */
1231 enum
1232 {
1233 ALIGNOF_STRUCT_LISP_VECTOR
1234 = alignof (union { struct vectorlike_header a; Lisp_Object b; })
1235 };
1236
1237 /* A boolvector is a kind of vectorlike, with contents like a string. */
1238
1239 struct Lisp_Bool_Vector
1240 {
1241 /* HEADER.SIZE is the vector's size field. It doesn't have the real size,
1242 just the subtype information. */
1243 struct vectorlike_header header;
1244 /* This is the size in bits. */
1245 EMACS_INT size;
1246 /* The actual bits, packed into bytes.
1247 Zeros fill out the last word if needed.
1248 The bits are in little-endian order in the bytes, and
1249 the bytes are in little-endian order in the words. */
1250 bits_word data[FLEXIBLE_ARRAY_MEMBER];
1251 };
1252
1253 INLINE EMACS_INT
1254 bool_vector_size (Lisp_Object a)
1255 {
1256 EMACS_INT size = XBOOL_VECTOR (a)->size;
1257 eassume (0 <= size);
1258 return size;
1259 }
1260
1261 INLINE bits_word *
1262 bool_vector_data (Lisp_Object a)
1263 {
1264 return XBOOL_VECTOR (a)->data;
1265 }
1266
1267 INLINE unsigned char *
1268 bool_vector_uchar_data (Lisp_Object a)
1269 {
1270 return (unsigned char *) bool_vector_data (a);
1271 }
1272
1273 /* The number of data words and bytes in a bool vector with SIZE bits. */
1274
1275 INLINE EMACS_INT
1276 bool_vector_words (EMACS_INT size)
1277 {
1278 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1279 return (size + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
1280 }
1281
1282 INLINE EMACS_INT
1283 bool_vector_bytes (EMACS_INT size)
1284 {
1285 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1286 return (size + BOOL_VECTOR_BITS_PER_CHAR - 1) / BOOL_VECTOR_BITS_PER_CHAR;
1287 }
1288
1289 /* True if A's Ith bit is set. */
1290
1291 INLINE bool
1292 bool_vector_bitref (Lisp_Object a, EMACS_INT i)
1293 {
1294 eassume (0 <= i && i < bool_vector_size (a));
1295 return !! (bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR]
1296 & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR)));
1297 }
1298
1299 INLINE Lisp_Object
1300 bool_vector_ref (Lisp_Object a, EMACS_INT i)
1301 {
1302 return bool_vector_bitref (a, i) ? Qt : Qnil;
1303 }
1304
1305 /* Set A's Ith bit to B. */
1306
1307 INLINE void
1308 bool_vector_set (Lisp_Object a, EMACS_INT i, bool b)
1309 {
1310 unsigned char *addr;
1311
1312 eassume (0 <= i && i < bool_vector_size (a));
1313 addr = &bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR];
1314
1315 if (b)
1316 *addr |= 1 << (i % BOOL_VECTOR_BITS_PER_CHAR);
1317 else
1318 *addr &= ~ (1 << (i % BOOL_VECTOR_BITS_PER_CHAR));
1319 }
1320
1321 /* Some handy constants for calculating sizes
1322 and offsets, mostly of vectorlike objects. */
1323
1324 enum
1325 {
1326 header_size = offsetof (struct Lisp_Vector, contents),
1327 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
1328 word_size = sizeof (Lisp_Object)
1329 };
1330
1331 /* Conveniences for dealing with Lisp arrays. */
1332
1333 INLINE Lisp_Object
1334 AREF (Lisp_Object array, ptrdiff_t idx)
1335 {
1336 return XVECTOR (array)->contents[idx];
1337 }
1338
1339 INLINE Lisp_Object *
1340 aref_addr (Lisp_Object array, ptrdiff_t idx)
1341 {
1342 return & XVECTOR (array)->contents[idx];
1343 }
1344
1345 INLINE ptrdiff_t
1346 ASIZE (Lisp_Object array)
1347 {
1348 return XVECTOR (array)->header.size;
1349 }
1350
1351 INLINE void
1352 ASET (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1353 {
1354 eassert (0 <= idx && idx < ASIZE (array));
1355 XVECTOR (array)->contents[idx] = val;
1356 }
1357
1358 INLINE void
1359 gc_aset (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1360 {
1361 /* Like ASET, but also can be used in the garbage collector:
1362 sweep_weak_table calls set_hash_key etc. while the table is marked. */
1363 eassert (0 <= idx && idx < (ASIZE (array) & ~ARRAY_MARK_FLAG));
1364 XVECTOR (array)->contents[idx] = val;
1365 }
1366
1367 /* If a struct is made to look like a vector, this macro returns the length
1368 of the shortest vector that would hold that struct. */
1369
1370 #define VECSIZE(type) \
1371 ((sizeof (type) - header_size + word_size - 1) / word_size)
1372
1373 /* Like VECSIZE, but used when the pseudo-vector has non-Lisp_Object fields
1374 at the end and we need to compute the number of Lisp_Object fields (the
1375 ones that the GC needs to trace). */
1376
1377 #define PSEUDOVECSIZE(type, nonlispfield) \
1378 ((offsetof (type, nonlispfield) - header_size) / word_size)
1379
1380 /* Compute A OP B, using the unsigned comparison operator OP. A and B
1381 should be integer expressions. This is not the same as
1382 mathematical comparison; for example, UNSIGNED_CMP (0, <, -1)
1383 returns true. For efficiency, prefer plain unsigned comparison if A
1384 and B's sizes both fit (after integer promotion). */
1385 #define UNSIGNED_CMP(a, op, b) \
1386 (max (sizeof ((a) + 0), sizeof ((b) + 0)) <= sizeof (unsigned) \
1387 ? ((a) + (unsigned) 0) op ((b) + (unsigned) 0) \
1388 : ((a) + (uintmax_t) 0) op ((b) + (uintmax_t) 0))
1389
1390 /* True iff C is an ASCII character. */
1391 #define ASCII_CHAR_P(c) UNSIGNED_CMP (c, <, 0x80)
1392
1393 /* A char-table is a kind of vectorlike, with contents are like a
1394 vector but with a few other slots. For some purposes, it makes
1395 sense to handle a char-table with type struct Lisp_Vector. An
1396 element of a char table can be any Lisp objects, but if it is a sub
1397 char-table, we treat it a table that contains information of a
1398 specific range of characters. A sub char-table is like a vector but
1399 with two integer fields between the header and Lisp data, which means
1400 that it has to be marked with some precautions (see mark_char_table
1401 in alloc.c). A sub char-table appears only in an element of a char-table,
1402 and there's no way to access it directly from Emacs Lisp program. */
1403
1404 enum CHARTAB_SIZE_BITS
1405 {
1406 CHARTAB_SIZE_BITS_0 = 6,
1407 CHARTAB_SIZE_BITS_1 = 4,
1408 CHARTAB_SIZE_BITS_2 = 5,
1409 CHARTAB_SIZE_BITS_3 = 7
1410 };
1411
1412 extern const int chartab_size[4];
1413
1414 struct Lisp_Char_Table
1415 {
1416 /* HEADER.SIZE is the vector's size field, which also holds the
1417 pseudovector type information. It holds the size, too.
1418 The size counts the defalt, parent, purpose, ascii,
1419 contents, and extras slots. */
1420 struct vectorlike_header header;
1421
1422 /* This holds a default value,
1423 which is used whenever the value for a specific character is nil. */
1424 Lisp_Object defalt;
1425
1426 /* This points to another char table, which we inherit from when the
1427 value for a specific character is nil. The `defalt' slot takes
1428 precedence over this. */
1429 Lisp_Object parent;
1430
1431 /* This is a symbol which says what kind of use this char-table is
1432 meant for. */
1433 Lisp_Object purpose;
1434
1435 /* The bottom sub char-table for characters of the range 0..127. It
1436 is nil if none of ASCII character has a specific value. */
1437 Lisp_Object ascii;
1438
1439 Lisp_Object contents[(1 << CHARTAB_SIZE_BITS_0)];
1440
1441 /* These hold additional data. It is a vector. */
1442 Lisp_Object extras[FLEXIBLE_ARRAY_MEMBER];
1443 };
1444
1445 struct Lisp_Sub_Char_Table
1446 {
1447 /* HEADER.SIZE is the vector's size field, which also holds the
1448 pseudovector type information. It holds the size, too. */
1449 struct vectorlike_header header;
1450
1451 /* Depth of this sub char-table. It should be 1, 2, or 3. A sub
1452 char-table of depth 1 contains 16 elements, and each element
1453 covers 4096 (128*32) characters. A sub char-table of depth 2
1454 contains 32 elements, and each element covers 128 characters. A
1455 sub char-table of depth 3 contains 128 elements, and each element
1456 is for one character. */
1457 int depth;
1458
1459 /* Minimum character covered by the sub char-table. */
1460 int min_char;
1461
1462 /* Use set_sub_char_table_contents to set this. */
1463 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1464 };
1465
1466 INLINE Lisp_Object
1467 CHAR_TABLE_REF_ASCII (Lisp_Object ct, ptrdiff_t idx)
1468 {
1469 struct Lisp_Char_Table *tbl = NULL;
1470 Lisp_Object val;
1471 do
1472 {
1473 tbl = tbl ? XCHAR_TABLE (tbl->parent) : XCHAR_TABLE (ct);
1474 val = (! SUB_CHAR_TABLE_P (tbl->ascii) ? tbl->ascii
1475 : XSUB_CHAR_TABLE (tbl->ascii)->contents[idx]);
1476 if (NILP (val))
1477 val = tbl->defalt;
1478 }
1479 while (NILP (val) && ! NILP (tbl->parent));
1480
1481 return val;
1482 }
1483
1484 /* Almost equivalent to Faref (CT, IDX) with optimization for ASCII
1485 characters. Do not check validity of CT. */
1486 INLINE Lisp_Object
1487 CHAR_TABLE_REF (Lisp_Object ct, int idx)
1488 {
1489 return (ASCII_CHAR_P (idx)
1490 ? CHAR_TABLE_REF_ASCII (ct, idx)
1491 : char_table_ref (ct, idx));
1492 }
1493
1494 /* Equivalent to Faset (CT, IDX, VAL) with optimization for ASCII and
1495 8-bit European characters. Do not check validity of CT. */
1496 INLINE void
1497 CHAR_TABLE_SET (Lisp_Object ct, int idx, Lisp_Object val)
1498 {
1499 if (ASCII_CHAR_P (idx) && SUB_CHAR_TABLE_P (XCHAR_TABLE (ct)->ascii))
1500 set_sub_char_table_contents (XCHAR_TABLE (ct)->ascii, idx, val);
1501 else
1502 char_table_set (ct, idx, val);
1503 }
1504
1505 /* This structure describes a built-in function.
1506 It is generated by the DEFUN macro only.
1507 defsubr makes it into a Lisp object. */
1508
1509 struct Lisp_Subr
1510 {
1511 struct vectorlike_header header;
1512 union {
1513 Lisp_Object (*a0) (void);
1514 Lisp_Object (*a1) (Lisp_Object);
1515 Lisp_Object (*a2) (Lisp_Object, Lisp_Object);
1516 Lisp_Object (*a3) (Lisp_Object, Lisp_Object, Lisp_Object);
1517 Lisp_Object (*a4) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1518 Lisp_Object (*a5) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1519 Lisp_Object (*a6) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1520 Lisp_Object (*a7) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1521 Lisp_Object (*a8) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1522 Lisp_Object (*aUNEVALLED) (Lisp_Object args);
1523 Lisp_Object (*aMANY) (ptrdiff_t, Lisp_Object *);
1524 } function;
1525 short min_args, max_args;
1526 const char *symbol_name;
1527 const char *intspec;
1528 const char *doc;
1529 };
1530
1531 enum char_table_specials
1532 {
1533 /* This is the number of slots that every char table must have. This
1534 counts the ordinary slots and the top, defalt, parent, and purpose
1535 slots. */
1536 CHAR_TABLE_STANDARD_SLOTS = PSEUDOVECSIZE (struct Lisp_Char_Table, extras),
1537
1538 /* This is an index of first Lisp_Object field in Lisp_Sub_Char_Table
1539 when the latter is treated as an ordinary Lisp_Vector. */
1540 SUB_CHAR_TABLE_OFFSET = PSEUDOVECSIZE (struct Lisp_Sub_Char_Table, contents)
1541 };
1542
1543 /* Return the number of "extra" slots in the char table CT. */
1544
1545 INLINE int
1546 CHAR_TABLE_EXTRA_SLOTS (struct Lisp_Char_Table *ct)
1547 {
1548 return ((ct->header.size & PSEUDOVECTOR_SIZE_MASK)
1549 - CHAR_TABLE_STANDARD_SLOTS);
1550 }
1551
1552 /* Make sure that sub char-table contents slot
1553 is aligned on a multiple of Lisp_Objects. */
1554 verify ((offsetof (struct Lisp_Sub_Char_Table, contents)
1555 - offsetof (struct Lisp_Sub_Char_Table, depth)) % word_size == 0);
1556
1557 /***********************************************************************
1558 Symbols
1559 ***********************************************************************/
1560
1561 /* Interned state of a symbol. */
1562
1563 enum symbol_interned
1564 {
1565 SYMBOL_UNINTERNED = 0,
1566 SYMBOL_INTERNED = 1,
1567 SYMBOL_INTERNED_IN_INITIAL_OBARRAY = 2
1568 };
1569
1570 enum symbol_redirect
1571 {
1572 SYMBOL_PLAINVAL = 4,
1573 SYMBOL_VARALIAS = 1,
1574 SYMBOL_LOCALIZED = 2,
1575 SYMBOL_FORWARDED = 3
1576 };
1577
1578 struct Lisp_Symbol
1579 {
1580 bool_bf gcmarkbit : 1;
1581
1582 /* Indicates where the value can be found:
1583 0 : it's a plain var, the value is in the `value' field.
1584 1 : it's a varalias, the value is really in the `alias' symbol.
1585 2 : it's a localized var, the value is in the `blv' object.
1586 3 : it's a forwarding variable, the value is in `forward'. */
1587 ENUM_BF (symbol_redirect) redirect : 3;
1588
1589 /* Non-zero means symbol is constant, i.e. changing its value
1590 should signal an error. If the value is 3, then the var
1591 can be changed, but only by `defconst'. */
1592 unsigned constant : 2;
1593
1594 /* Interned state of the symbol. This is an enumerator from
1595 enum symbol_interned. */
1596 unsigned interned : 2;
1597
1598 /* True means that this variable has been explicitly declared
1599 special (with `defvar' etc), and shouldn't be lexically bound. */
1600 bool_bf declared_special : 1;
1601
1602 /* True if pointed to from purespace and hence can't be GC'd. */
1603 bool_bf pinned : 1;
1604
1605 /* The symbol's name, as a Lisp string. */
1606 Lisp_Object name;
1607
1608 /* Value of the symbol or Qunbound if unbound. Which alternative of the
1609 union is used depends on the `redirect' field above. */
1610 union {
1611 Lisp_Object value;
1612 struct Lisp_Symbol *alias;
1613 struct Lisp_Buffer_Local_Value *blv;
1614 union Lisp_Fwd *fwd;
1615 } val;
1616
1617 /* Function value of the symbol or Qnil if not fboundp. */
1618 Lisp_Object function;
1619
1620 /* The symbol's property list. */
1621 Lisp_Object plist;
1622
1623 /* Next symbol in obarray bucket, if the symbol is interned. */
1624 struct Lisp_Symbol *next;
1625 };
1626
1627 /* Value is name of symbol. */
1628
1629 LISP_MACRO_DEFUN (SYMBOL_VAL, Lisp_Object, (struct Lisp_Symbol *sym), (sym))
1630
1631 INLINE struct Lisp_Symbol *
1632 SYMBOL_ALIAS (struct Lisp_Symbol *sym)
1633 {
1634 eassert (sym->redirect == SYMBOL_VARALIAS);
1635 return sym->val.alias;
1636 }
1637 INLINE struct Lisp_Buffer_Local_Value *
1638 SYMBOL_BLV (struct Lisp_Symbol *sym)
1639 {
1640 eassert (sym->redirect == SYMBOL_LOCALIZED);
1641 return sym->val.blv;
1642 }
1643 INLINE union Lisp_Fwd *
1644 SYMBOL_FWD (struct Lisp_Symbol *sym)
1645 {
1646 eassert (sym->redirect == SYMBOL_FORWARDED);
1647 return sym->val.fwd;
1648 }
1649
1650 LISP_MACRO_DEFUN_VOID (SET_SYMBOL_VAL,
1651 (struct Lisp_Symbol *sym, Lisp_Object v), (sym, v))
1652
1653 INLINE void
1654 SET_SYMBOL_ALIAS (struct Lisp_Symbol *sym, struct Lisp_Symbol *v)
1655 {
1656 eassert (sym->redirect == SYMBOL_VARALIAS);
1657 sym->val.alias = v;
1658 }
1659 INLINE void
1660 SET_SYMBOL_BLV (struct Lisp_Symbol *sym, struct Lisp_Buffer_Local_Value *v)
1661 {
1662 eassert (sym->redirect == SYMBOL_LOCALIZED);
1663 sym->val.blv = v;
1664 }
1665 INLINE void
1666 SET_SYMBOL_FWD (struct Lisp_Symbol *sym, union Lisp_Fwd *v)
1667 {
1668 eassert (sym->redirect == SYMBOL_FORWARDED);
1669 sym->val.fwd = v;
1670 }
1671
1672 INLINE Lisp_Object
1673 SYMBOL_NAME (Lisp_Object sym)
1674 {
1675 return XSYMBOL (sym)->name;
1676 }
1677
1678 /* Value is true if SYM is an interned symbol. */
1679
1680 INLINE bool
1681 SYMBOL_INTERNED_P (Lisp_Object sym)
1682 {
1683 return XSYMBOL (sym)->interned != SYMBOL_UNINTERNED;
1684 }
1685
1686 /* Value is true if SYM is interned in initial_obarray. */
1687
1688 INLINE bool
1689 SYMBOL_INTERNED_IN_INITIAL_OBARRAY_P (Lisp_Object sym)
1690 {
1691 return XSYMBOL (sym)->interned == SYMBOL_INTERNED_IN_INITIAL_OBARRAY;
1692 }
1693
1694 /* Value is non-zero if symbol is considered a constant, i.e. its
1695 value cannot be changed (there is an exception for keyword symbols,
1696 whose value can be set to the keyword symbol itself). */
1697
1698 LISP_MACRO_DEFUN (SYMBOL_CONSTANT_P, int, (Lisp_Object sym), (sym))
1699
1700 #define DEFSYM(sym, name) \
1701 do { (sym) = intern_c_string ((name)); staticpro (&(sym)); } while (false)
1702
1703 \f
1704 /***********************************************************************
1705 Hash Tables
1706 ***********************************************************************/
1707
1708 /* The structure of a Lisp hash table. */
1709
1710 struct hash_table_test
1711 {
1712 /* Name of the function used to compare keys. */
1713 Lisp_Object name;
1714
1715 /* User-supplied hash function, or nil. */
1716 Lisp_Object user_hash_function;
1717
1718 /* User-supplied key comparison function, or nil. */
1719 Lisp_Object user_cmp_function;
1720
1721 /* C function to compare two keys. */
1722 bool (*cmpfn) (struct hash_table_test *t, Lisp_Object, Lisp_Object);
1723
1724 /* C function to compute hash code. */
1725 EMACS_UINT (*hashfn) (struct hash_table_test *t, Lisp_Object);
1726 };
1727
1728 struct Lisp_Hash_Table
1729 {
1730 /* This is for Lisp; the hash table code does not refer to it. */
1731 struct vectorlike_header header;
1732
1733 /* Nil if table is non-weak. Otherwise a symbol describing the
1734 weakness of the table. */
1735 Lisp_Object weak;
1736
1737 /* When the table is resized, and this is an integer, compute the
1738 new size by adding this to the old size. If a float, compute the
1739 new size by multiplying the old size with this factor. */
1740 Lisp_Object rehash_size;
1741
1742 /* Resize hash table when number of entries/ table size is >= this
1743 ratio, a float. */
1744 Lisp_Object rehash_threshold;
1745
1746 /* Vector of hash codes. If hash[I] is nil, this means that the
1747 I-th entry is unused. */
1748 Lisp_Object hash;
1749
1750 /* Vector used to chain entries. If entry I is free, next[I] is the
1751 entry number of the next free item. If entry I is non-free,
1752 next[I] is the index of the next entry in the collision chain. */
1753 Lisp_Object next;
1754
1755 /* Index of first free entry in free list. */
1756 Lisp_Object next_free;
1757
1758 /* Bucket vector. A non-nil entry is the index of the first item in
1759 a collision chain. This vector's size can be larger than the
1760 hash table size to reduce collisions. */
1761 Lisp_Object index;
1762
1763 /* Only the fields above are traced normally by the GC. The ones below
1764 `count' are special and are either ignored by the GC or traced in
1765 a special way (e.g. because of weakness). */
1766
1767 /* Number of key/value entries in the table. */
1768 ptrdiff_t count;
1769
1770 /* Vector of keys and values. The key of item I is found at index
1771 2 * I, the value is found at index 2 * I + 1.
1772 This is gc_marked specially if the table is weak. */
1773 Lisp_Object key_and_value;
1774
1775 /* The comparison and hash functions. */
1776 struct hash_table_test test;
1777
1778 /* Next weak hash table if this is a weak hash table. The head
1779 of the list is in weak_hash_tables. */
1780 struct Lisp_Hash_Table *next_weak;
1781 };
1782
1783
1784 INLINE struct Lisp_Hash_Table *
1785 XHASH_TABLE (Lisp_Object a)
1786 {
1787 return XUNTAG (a, Lisp_Vectorlike);
1788 }
1789
1790 #define XSET_HASH_TABLE(VAR, PTR) \
1791 (XSETPSEUDOVECTOR (VAR, PTR, PVEC_HASH_TABLE))
1792
1793 INLINE bool
1794 HASH_TABLE_P (Lisp_Object a)
1795 {
1796 return PSEUDOVECTORP (a, PVEC_HASH_TABLE);
1797 }
1798
1799 /* Value is the key part of entry IDX in hash table H. */
1800 INLINE Lisp_Object
1801 HASH_KEY (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1802 {
1803 return AREF (h->key_and_value, 2 * idx);
1804 }
1805
1806 /* Value is the value part of entry IDX in hash table H. */
1807 INLINE Lisp_Object
1808 HASH_VALUE (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1809 {
1810 return AREF (h->key_and_value, 2 * idx + 1);
1811 }
1812
1813 /* Value is the index of the next entry following the one at IDX
1814 in hash table H. */
1815 INLINE Lisp_Object
1816 HASH_NEXT (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1817 {
1818 return AREF (h->next, idx);
1819 }
1820
1821 /* Value is the hash code computed for entry IDX in hash table H. */
1822 INLINE Lisp_Object
1823 HASH_HASH (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1824 {
1825 return AREF (h->hash, idx);
1826 }
1827
1828 /* Value is the index of the element in hash table H that is the
1829 start of the collision list at index IDX in the index vector of H. */
1830 INLINE Lisp_Object
1831 HASH_INDEX (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1832 {
1833 return AREF (h->index, idx);
1834 }
1835
1836 /* Value is the size of hash table H. */
1837 INLINE ptrdiff_t
1838 HASH_TABLE_SIZE (struct Lisp_Hash_Table *h)
1839 {
1840 return ASIZE (h->next);
1841 }
1842
1843 /* Default size for hash tables if not specified. */
1844
1845 enum DEFAULT_HASH_SIZE { DEFAULT_HASH_SIZE = 65 };
1846
1847 /* Default threshold specifying when to resize a hash table. The
1848 value gives the ratio of current entries in the hash table and the
1849 size of the hash table. */
1850
1851 static double const DEFAULT_REHASH_THRESHOLD = 0.8;
1852
1853 /* Default factor by which to increase the size of a hash table. */
1854
1855 static double const DEFAULT_REHASH_SIZE = 1.5;
1856
1857 /* Combine two integers X and Y for hashing. The result might not fit
1858 into a Lisp integer. */
1859
1860 INLINE EMACS_UINT
1861 sxhash_combine (EMACS_UINT x, EMACS_UINT y)
1862 {
1863 return (x << 4) + (x >> (BITS_PER_EMACS_INT - 4)) + y;
1864 }
1865
1866 /* Hash X, returning a value that fits into a fixnum. */
1867
1868 INLINE EMACS_UINT
1869 SXHASH_REDUCE (EMACS_UINT x)
1870 {
1871 return (x ^ x >> (BITS_PER_EMACS_INT - FIXNUM_BITS)) & INTMASK;
1872 }
1873
1874 /* These structures are used for various misc types. */
1875
1876 struct Lisp_Misc_Any /* Supertype of all Misc types. */
1877 {
1878 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_??? */
1879 bool_bf gcmarkbit : 1;
1880 unsigned spacer : 15;
1881 };
1882
1883 struct Lisp_Marker
1884 {
1885 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Marker */
1886 bool_bf gcmarkbit : 1;
1887 unsigned spacer : 13;
1888 /* This flag is temporarily used in the functions
1889 decode/encode_coding_object to record that the marker position
1890 must be adjusted after the conversion. */
1891 bool_bf need_adjustment : 1;
1892 /* True means normal insertion at the marker's position
1893 leaves the marker after the inserted text. */
1894 bool_bf insertion_type : 1;
1895 /* This is the buffer that the marker points into, or 0 if it points nowhere.
1896 Note: a chain of markers can contain markers pointing into different
1897 buffers (the chain is per buffer_text rather than per buffer, so it's
1898 shared between indirect buffers). */
1899 /* This is used for (other than NULL-checking):
1900 - Fmarker_buffer
1901 - Fset_marker: check eq(oldbuf, newbuf) to avoid unchain+rechain.
1902 - unchain_marker: to find the list from which to unchain.
1903 - Fkill_buffer: to only unchain the markers of current indirect buffer.
1904 */
1905 struct buffer *buffer;
1906
1907 /* The remaining fields are meaningless in a marker that
1908 does not point anywhere. */
1909
1910 /* For markers that point somewhere,
1911 this is used to chain of all the markers in a given buffer. */
1912 /* We could remove it and use an array in buffer_text instead.
1913 That would also allow to preserve it ordered. */
1914 struct Lisp_Marker *next;
1915 /* This is the char position where the marker points. */
1916 ptrdiff_t charpos;
1917 /* This is the byte position.
1918 It's mostly used as a charpos<->bytepos cache (i.e. it's not directly
1919 used to implement the functionality of markers, but rather to (ab)use
1920 markers as a cache for char<->byte mappings). */
1921 ptrdiff_t bytepos;
1922 };
1923
1924 /* START and END are markers in the overlay's buffer, and
1925 PLIST is the overlay's property list. */
1926 struct Lisp_Overlay
1927 /* An overlay's real data content is:
1928 - plist
1929 - buffer (really there are two buffer pointers, one per marker,
1930 and both points to the same buffer)
1931 - insertion type of both ends (per-marker fields)
1932 - start & start byte (of start marker)
1933 - end & end byte (of end marker)
1934 - next (singly linked list of overlays)
1935 - next fields of start and end markers (singly linked list of markers).
1936 I.e. 9words plus 2 bits, 3words of which are for external linked lists.
1937 */
1938 {
1939 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Overlay */
1940 bool_bf gcmarkbit : 1;
1941 unsigned spacer : 15;
1942 struct Lisp_Overlay *next;
1943 Lisp_Object start;
1944 Lisp_Object end;
1945 Lisp_Object plist;
1946 };
1947
1948 /* Types of data which may be saved in a Lisp_Save_Value. */
1949
1950 enum
1951 {
1952 SAVE_UNUSED,
1953 SAVE_INTEGER,
1954 SAVE_FUNCPOINTER,
1955 SAVE_POINTER,
1956 SAVE_OBJECT
1957 };
1958
1959 /* Number of bits needed to store one of the above values. */
1960 enum { SAVE_SLOT_BITS = 3 };
1961
1962 /* Number of slots in a save value where save_type is nonzero. */
1963 enum { SAVE_VALUE_SLOTS = 4 };
1964
1965 /* Bit-width and values for struct Lisp_Save_Value's save_type member. */
1966
1967 enum { SAVE_TYPE_BITS = SAVE_VALUE_SLOTS * SAVE_SLOT_BITS + 1 };
1968
1969 enum Lisp_Save_Type
1970 {
1971 SAVE_TYPE_INT_INT = SAVE_INTEGER + (SAVE_INTEGER << SAVE_SLOT_BITS),
1972 SAVE_TYPE_INT_INT_INT
1973 = (SAVE_INTEGER + (SAVE_TYPE_INT_INT << SAVE_SLOT_BITS)),
1974 SAVE_TYPE_OBJ_OBJ = SAVE_OBJECT + (SAVE_OBJECT << SAVE_SLOT_BITS),
1975 SAVE_TYPE_OBJ_OBJ_OBJ = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ << SAVE_SLOT_BITS),
1976 SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
1977 = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ_OBJ << SAVE_SLOT_BITS),
1978 SAVE_TYPE_PTR_INT = SAVE_POINTER + (SAVE_INTEGER << SAVE_SLOT_BITS),
1979 SAVE_TYPE_PTR_OBJ = SAVE_POINTER + (SAVE_OBJECT << SAVE_SLOT_BITS),
1980 SAVE_TYPE_PTR_PTR = SAVE_POINTER + (SAVE_POINTER << SAVE_SLOT_BITS),
1981 SAVE_TYPE_FUNCPTR_PTR_OBJ
1982 = SAVE_FUNCPOINTER + (SAVE_TYPE_PTR_OBJ << SAVE_SLOT_BITS),
1983
1984 /* This has an extra bit indicating it's raw memory. */
1985 SAVE_TYPE_MEMORY = SAVE_TYPE_PTR_INT + (1 << (SAVE_TYPE_BITS - 1))
1986 };
1987
1988 /* Special object used to hold a different values for later use.
1989
1990 This is mostly used to package C integers and pointers to call
1991 record_unwind_protect when two or more values need to be saved.
1992 For example:
1993
1994 ...
1995 struct my_data *md = get_my_data ();
1996 ptrdiff_t mi = get_my_integer ();
1997 record_unwind_protect (my_unwind, make_save_ptr_int (md, mi));
1998 ...
1999
2000 Lisp_Object my_unwind (Lisp_Object arg)
2001 {
2002 struct my_data *md = XSAVE_POINTER (arg, 0);
2003 ptrdiff_t mi = XSAVE_INTEGER (arg, 1);
2004 ...
2005 }
2006
2007 If ENABLE_CHECKING is in effect, XSAVE_xxx macros do type checking of the
2008 saved objects and raise eassert if type of the saved object doesn't match
2009 the type which is extracted. In the example above, XSAVE_INTEGER (arg, 2)
2010 and XSAVE_OBJECT (arg, 0) are wrong because nothing was saved in slot 2 and
2011 slot 0 is a pointer. */
2012
2013 typedef void (*voidfuncptr) (void);
2014
2015 struct Lisp_Save_Value
2016 {
2017 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Save_Value */
2018 bool_bf gcmarkbit : 1;
2019 unsigned spacer : 32 - (16 + 1 + SAVE_TYPE_BITS);
2020
2021 /* V->data may hold up to SAVE_VALUE_SLOTS entries. The type of
2022 V's data entries are determined by V->save_type. E.g., if
2023 V->save_type == SAVE_TYPE_PTR_OBJ, V->data[0] is a pointer,
2024 V->data[1] is an integer, and V's other data entries are unused.
2025
2026 If V->save_type == SAVE_TYPE_MEMORY, V->data[0].pointer is the address of
2027 a memory area containing V->data[1].integer potential Lisp_Objects. */
2028 ENUM_BF (Lisp_Save_Type) save_type : SAVE_TYPE_BITS;
2029 union {
2030 void *pointer;
2031 voidfuncptr funcpointer;
2032 ptrdiff_t integer;
2033 Lisp_Object object;
2034 } data[SAVE_VALUE_SLOTS];
2035 };
2036
2037 /* Return the type of V's Nth saved value. */
2038 INLINE int
2039 save_type (struct Lisp_Save_Value *v, int n)
2040 {
2041 eassert (0 <= n && n < SAVE_VALUE_SLOTS);
2042 return (v->save_type >> (SAVE_SLOT_BITS * n) & ((1 << SAVE_SLOT_BITS) - 1));
2043 }
2044
2045 /* Get and set the Nth saved pointer. */
2046
2047 INLINE void *
2048 XSAVE_POINTER (Lisp_Object obj, int n)
2049 {
2050 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2051 return XSAVE_VALUE (obj)->data[n].pointer;
2052 }
2053 INLINE void
2054 set_save_pointer (Lisp_Object obj, int n, void *val)
2055 {
2056 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2057 XSAVE_VALUE (obj)->data[n].pointer = val;
2058 }
2059 INLINE voidfuncptr
2060 XSAVE_FUNCPOINTER (Lisp_Object obj, int n)
2061 {
2062 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_FUNCPOINTER);
2063 return XSAVE_VALUE (obj)->data[n].funcpointer;
2064 }
2065
2066 /* Likewise for the saved integer. */
2067
2068 INLINE ptrdiff_t
2069 XSAVE_INTEGER (Lisp_Object obj, int n)
2070 {
2071 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2072 return XSAVE_VALUE (obj)->data[n].integer;
2073 }
2074 INLINE void
2075 set_save_integer (Lisp_Object obj, int n, ptrdiff_t val)
2076 {
2077 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2078 XSAVE_VALUE (obj)->data[n].integer = val;
2079 }
2080
2081 /* Extract Nth saved object. */
2082
2083 INLINE Lisp_Object
2084 XSAVE_OBJECT (Lisp_Object obj, int n)
2085 {
2086 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_OBJECT);
2087 return XSAVE_VALUE (obj)->data[n].object;
2088 }
2089
2090 /* A miscellaneous object, when it's on the free list. */
2091 struct Lisp_Free
2092 {
2093 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Free */
2094 bool_bf gcmarkbit : 1;
2095 unsigned spacer : 15;
2096 union Lisp_Misc *chain;
2097 };
2098
2099 /* To get the type field of a union Lisp_Misc, use XMISCTYPE.
2100 It uses one of these struct subtypes to get the type field. */
2101
2102 union Lisp_Misc
2103 {
2104 struct Lisp_Misc_Any u_any; /* Supertype of all Misc types. */
2105 struct Lisp_Free u_free;
2106 struct Lisp_Marker u_marker;
2107 struct Lisp_Overlay u_overlay;
2108 struct Lisp_Save_Value u_save_value;
2109 };
2110
2111 INLINE union Lisp_Misc *
2112 XMISC (Lisp_Object a)
2113 {
2114 return XUNTAG (a, Lisp_Misc);
2115 }
2116
2117 INLINE struct Lisp_Misc_Any *
2118 XMISCANY (Lisp_Object a)
2119 {
2120 eassert (MISCP (a));
2121 return & XMISC (a)->u_any;
2122 }
2123
2124 INLINE enum Lisp_Misc_Type
2125 XMISCTYPE (Lisp_Object a)
2126 {
2127 return XMISCANY (a)->type;
2128 }
2129
2130 INLINE struct Lisp_Marker *
2131 XMARKER (Lisp_Object a)
2132 {
2133 eassert (MARKERP (a));
2134 return & XMISC (a)->u_marker;
2135 }
2136
2137 INLINE struct Lisp_Overlay *
2138 XOVERLAY (Lisp_Object a)
2139 {
2140 eassert (OVERLAYP (a));
2141 return & XMISC (a)->u_overlay;
2142 }
2143
2144 INLINE struct Lisp_Save_Value *
2145 XSAVE_VALUE (Lisp_Object a)
2146 {
2147 eassert (SAVE_VALUEP (a));
2148 return & XMISC (a)->u_save_value;
2149 }
2150 \f
2151 /* Forwarding pointer to an int variable.
2152 This is allowed only in the value cell of a symbol,
2153 and it means that the symbol's value really lives in the
2154 specified int variable. */
2155 struct Lisp_Intfwd
2156 {
2157 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Int */
2158 EMACS_INT *intvar;
2159 };
2160
2161 /* Boolean forwarding pointer to an int variable.
2162 This is like Lisp_Intfwd except that the ostensible
2163 "value" of the symbol is t if the bool variable is true,
2164 nil if it is false. */
2165 struct Lisp_Boolfwd
2166 {
2167 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Bool */
2168 bool *boolvar;
2169 };
2170
2171 /* Forwarding pointer to a Lisp_Object variable.
2172 This is allowed only in the value cell of a symbol,
2173 and it means that the symbol's value really lives in the
2174 specified variable. */
2175 struct Lisp_Objfwd
2176 {
2177 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Obj */
2178 Lisp_Object *objvar;
2179 };
2180
2181 /* Like Lisp_Objfwd except that value lives in a slot in the
2182 current buffer. Value is byte index of slot within buffer. */
2183 struct Lisp_Buffer_Objfwd
2184 {
2185 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Buffer_Obj */
2186 int offset;
2187 /* One of Qnil, Qintegerp, Qsymbolp, Qstringp, Qfloatp or Qnumberp. */
2188 Lisp_Object predicate;
2189 };
2190
2191 /* struct Lisp_Buffer_Local_Value is used in a symbol value cell when
2192 the symbol has buffer-local or frame-local bindings. (Exception:
2193 some buffer-local variables are built-in, with their values stored
2194 in the buffer structure itself. They are handled differently,
2195 using struct Lisp_Buffer_Objfwd.)
2196
2197 The `realvalue' slot holds the variable's current value, or a
2198 forwarding pointer to where that value is kept. This value is the
2199 one that corresponds to the loaded binding. To read or set the
2200 variable, you must first make sure the right binding is loaded;
2201 then you can access the value in (or through) `realvalue'.
2202
2203 `buffer' and `frame' are the buffer and frame for which the loaded
2204 binding was found. If those have changed, to make sure the right
2205 binding is loaded it is necessary to find which binding goes with
2206 the current buffer and selected frame, then load it. To load it,
2207 first unload the previous binding, then copy the value of the new
2208 binding into `realvalue' (or through it). Also update
2209 LOADED-BINDING to point to the newly loaded binding.
2210
2211 `local_if_set' indicates that merely setting the variable creates a
2212 local binding for the current buffer. Otherwise the latter, setting
2213 the variable does not do that; only make-local-variable does that. */
2214
2215 struct Lisp_Buffer_Local_Value
2216 {
2217 /* True means that merely setting the variable creates a local
2218 binding for the current buffer. */
2219 bool_bf local_if_set : 1;
2220 /* True means this variable can have frame-local bindings, otherwise, it is
2221 can have buffer-local bindings. The two cannot be combined. */
2222 bool_bf frame_local : 1;
2223 /* True means that the binding now loaded was found.
2224 Presumably equivalent to (defcell!=valcell). */
2225 bool_bf found : 1;
2226 /* If non-NULL, a forwarding to the C var where it should also be set. */
2227 union Lisp_Fwd *fwd; /* Should never be (Buffer|Kboard)_Objfwd. */
2228 /* The buffer or frame for which the loaded binding was found. */
2229 Lisp_Object where;
2230 /* A cons cell that holds the default value. It has the form
2231 (SYMBOL . DEFAULT-VALUE). */
2232 Lisp_Object defcell;
2233 /* The cons cell from `where's parameter alist.
2234 It always has the form (SYMBOL . VALUE)
2235 Note that if `forward' is non-nil, VALUE may be out of date.
2236 Also if the currently loaded binding is the default binding, then
2237 this is `eq'ual to defcell. */
2238 Lisp_Object valcell;
2239 };
2240
2241 /* Like Lisp_Objfwd except that value lives in a slot in the
2242 current kboard. */
2243 struct Lisp_Kboard_Objfwd
2244 {
2245 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Kboard_Obj */
2246 int offset;
2247 };
2248
2249 union Lisp_Fwd
2250 {
2251 struct Lisp_Intfwd u_intfwd;
2252 struct Lisp_Boolfwd u_boolfwd;
2253 struct Lisp_Objfwd u_objfwd;
2254 struct Lisp_Buffer_Objfwd u_buffer_objfwd;
2255 struct Lisp_Kboard_Objfwd u_kboard_objfwd;
2256 };
2257
2258 INLINE enum Lisp_Fwd_Type
2259 XFWDTYPE (union Lisp_Fwd *a)
2260 {
2261 return a->u_intfwd.type;
2262 }
2263
2264 INLINE struct Lisp_Buffer_Objfwd *
2265 XBUFFER_OBJFWD (union Lisp_Fwd *a)
2266 {
2267 eassert (BUFFER_OBJFWDP (a));
2268 return &a->u_buffer_objfwd;
2269 }
2270 \f
2271 /* Lisp floating point type. */
2272 struct Lisp_Float
2273 {
2274 union
2275 {
2276 double data;
2277 struct Lisp_Float *chain;
2278 } u;
2279 };
2280
2281 INLINE double
2282 XFLOAT_DATA (Lisp_Object f)
2283 {
2284 return XFLOAT (f)->u.data;
2285 }
2286
2287 /* Most hosts nowadays use IEEE floating point, so they use IEC 60559
2288 representations, have infinities and NaNs, and do not trap on
2289 exceptions. Define IEEE_FLOATING_POINT if this host is one of the
2290 typical ones. The C11 macro __STDC_IEC_559__ is close to what is
2291 wanted here, but is not quite right because Emacs does not require
2292 all the features of C11 Annex F (and does not require C11 at all,
2293 for that matter). */
2294 enum
2295 {
2296 IEEE_FLOATING_POINT
2297 = (FLT_RADIX == 2 && FLT_MANT_DIG == 24
2298 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
2299 };
2300
2301 /* A character, declared with the following typedef, is a member
2302 of some character set associated with the current buffer. */
2303 #ifndef _UCHAR_T /* Protect against something in ctab.h on AIX. */
2304 #define _UCHAR_T
2305 typedef unsigned char UCHAR;
2306 #endif
2307
2308 /* Meanings of slots in a Lisp_Compiled: */
2309
2310 enum Lisp_Compiled
2311 {
2312 COMPILED_ARGLIST = 0,
2313 COMPILED_BYTECODE = 1,
2314 COMPILED_CONSTANTS = 2,
2315 COMPILED_STACK_DEPTH = 3,
2316 COMPILED_DOC_STRING = 4,
2317 COMPILED_INTERACTIVE = 5
2318 };
2319
2320 /* Flag bits in a character. These also get used in termhooks.h.
2321 Richard Stallman <rms@gnu.ai.mit.edu> thinks that MULE
2322 (MUlti-Lingual Emacs) might need 22 bits for the character value
2323 itself, so we probably shouldn't use any bits lower than 0x0400000. */
2324 enum char_bits
2325 {
2326 CHAR_ALT = 0x0400000,
2327 CHAR_SUPER = 0x0800000,
2328 CHAR_HYPER = 0x1000000,
2329 CHAR_SHIFT = 0x2000000,
2330 CHAR_CTL = 0x4000000,
2331 CHAR_META = 0x8000000,
2332
2333 CHAR_MODIFIER_MASK =
2334 CHAR_ALT | CHAR_SUPER | CHAR_HYPER | CHAR_SHIFT | CHAR_CTL | CHAR_META,
2335
2336 /* Actually, the current Emacs uses 22 bits for the character value
2337 itself. */
2338 CHARACTERBITS = 22
2339 };
2340 \f
2341 /* Data type checking. */
2342
2343 LISP_MACRO_DEFUN (NILP, bool, (Lisp_Object x), (x))
2344
2345 INLINE bool
2346 NUMBERP (Lisp_Object x)
2347 {
2348 return INTEGERP (x) || FLOATP (x);
2349 }
2350 INLINE bool
2351 NATNUMP (Lisp_Object x)
2352 {
2353 return INTEGERP (x) && 0 <= XINT (x);
2354 }
2355
2356 INLINE bool
2357 RANGED_INTEGERP (intmax_t lo, Lisp_Object x, intmax_t hi)
2358 {
2359 return INTEGERP (x) && lo <= XINT (x) && XINT (x) <= hi;
2360 }
2361
2362 #define TYPE_RANGED_INTEGERP(type, x) \
2363 (INTEGERP (x) \
2364 && (TYPE_SIGNED (type) ? TYPE_MINIMUM (type) <= XINT (x) : 0 <= XINT (x)) \
2365 && XINT (x) <= TYPE_MAXIMUM (type))
2366
2367 LISP_MACRO_DEFUN (CONSP, bool, (Lisp_Object x), (x))
2368 LISP_MACRO_DEFUN (FLOATP, bool, (Lisp_Object x), (x))
2369 LISP_MACRO_DEFUN (MISCP, bool, (Lisp_Object x), (x))
2370 LISP_MACRO_DEFUN (SYMBOLP, bool, (Lisp_Object x), (x))
2371 LISP_MACRO_DEFUN (INTEGERP, bool, (Lisp_Object x), (x))
2372 LISP_MACRO_DEFUN (VECTORLIKEP, bool, (Lisp_Object x), (x))
2373 LISP_MACRO_DEFUN (MARKERP, bool, (Lisp_Object x), (x))
2374
2375 INLINE bool
2376 STRINGP (Lisp_Object x)
2377 {
2378 return XTYPE (x) == Lisp_String;
2379 }
2380 INLINE bool
2381 VECTORP (Lisp_Object x)
2382 {
2383 return VECTORLIKEP (x) && ! (ASIZE (x) & PSEUDOVECTOR_FLAG);
2384 }
2385 INLINE bool
2386 OVERLAYP (Lisp_Object x)
2387 {
2388 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Overlay;
2389 }
2390 INLINE bool
2391 SAVE_VALUEP (Lisp_Object x)
2392 {
2393 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Save_Value;
2394 }
2395
2396 INLINE bool
2397 AUTOLOADP (Lisp_Object x)
2398 {
2399 return CONSP (x) && EQ (Qautoload, XCAR (x));
2400 }
2401
2402 INLINE bool
2403 BUFFER_OBJFWDP (union Lisp_Fwd *a)
2404 {
2405 return XFWDTYPE (a) == Lisp_Fwd_Buffer_Obj;
2406 }
2407
2408 INLINE bool
2409 PSEUDOVECTOR_TYPEP (struct vectorlike_header *a, int code)
2410 {
2411 return ((a->size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK))
2412 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS)));
2413 }
2414
2415 /* True if A is a pseudovector whose code is CODE. */
2416 INLINE bool
2417 PSEUDOVECTORP (Lisp_Object a, int code)
2418 {
2419 if (! VECTORLIKEP (a))
2420 return false;
2421 else
2422 {
2423 /* Converting to struct vectorlike_header * avoids aliasing issues. */
2424 struct vectorlike_header *h = XUNTAG (a, Lisp_Vectorlike);
2425 return PSEUDOVECTOR_TYPEP (h, code);
2426 }
2427 }
2428
2429
2430 /* Test for specific pseudovector types. */
2431
2432 INLINE bool
2433 WINDOW_CONFIGURATIONP (Lisp_Object a)
2434 {
2435 return PSEUDOVECTORP (a, PVEC_WINDOW_CONFIGURATION);
2436 }
2437
2438 INLINE bool
2439 PROCESSP (Lisp_Object a)
2440 {
2441 return PSEUDOVECTORP (a, PVEC_PROCESS);
2442 }
2443
2444 INLINE bool
2445 WINDOWP (Lisp_Object a)
2446 {
2447 return PSEUDOVECTORP (a, PVEC_WINDOW);
2448 }
2449
2450 INLINE bool
2451 TERMINALP (Lisp_Object a)
2452 {
2453 return PSEUDOVECTORP (a, PVEC_TERMINAL);
2454 }
2455
2456 INLINE bool
2457 SUBRP (Lisp_Object a)
2458 {
2459 return PSEUDOVECTORP (a, PVEC_SUBR);
2460 }
2461
2462 INLINE bool
2463 COMPILEDP (Lisp_Object a)
2464 {
2465 return PSEUDOVECTORP (a, PVEC_COMPILED);
2466 }
2467
2468 INLINE bool
2469 BUFFERP (Lisp_Object a)
2470 {
2471 return PSEUDOVECTORP (a, PVEC_BUFFER);
2472 }
2473
2474 INLINE bool
2475 CHAR_TABLE_P (Lisp_Object a)
2476 {
2477 return PSEUDOVECTORP (a, PVEC_CHAR_TABLE);
2478 }
2479
2480 INLINE bool
2481 SUB_CHAR_TABLE_P (Lisp_Object a)
2482 {
2483 return PSEUDOVECTORP (a, PVEC_SUB_CHAR_TABLE);
2484 }
2485
2486 INLINE bool
2487 BOOL_VECTOR_P (Lisp_Object a)
2488 {
2489 return PSEUDOVECTORP (a, PVEC_BOOL_VECTOR);
2490 }
2491
2492 INLINE bool
2493 FRAMEP (Lisp_Object a)
2494 {
2495 return PSEUDOVECTORP (a, PVEC_FRAME);
2496 }
2497
2498 /* Test for image (image . spec) */
2499 INLINE bool
2500 IMAGEP (Lisp_Object x)
2501 {
2502 return CONSP (x) && EQ (XCAR (x), Qimage);
2503 }
2504
2505 /* Array types. */
2506 INLINE bool
2507 ARRAYP (Lisp_Object x)
2508 {
2509 return VECTORP (x) || STRINGP (x) || CHAR_TABLE_P (x) || BOOL_VECTOR_P (x);
2510 }
2511 \f
2512 INLINE void
2513 CHECK_LIST (Lisp_Object x)
2514 {
2515 CHECK_TYPE (CONSP (x) || NILP (x), Qlistp, x);
2516 }
2517
2518 LISP_MACRO_DEFUN_VOID (CHECK_LIST_CONS, (Lisp_Object x, Lisp_Object y), (x, y))
2519 LISP_MACRO_DEFUN_VOID (CHECK_SYMBOL, (Lisp_Object x), (x))
2520 LISP_MACRO_DEFUN_VOID (CHECK_NUMBER, (Lisp_Object x), (x))
2521
2522 INLINE void
2523 CHECK_STRING (Lisp_Object x)
2524 {
2525 CHECK_TYPE (STRINGP (x), Qstringp, x);
2526 }
2527 INLINE void
2528 CHECK_STRING_CAR (Lisp_Object x)
2529 {
2530 CHECK_TYPE (STRINGP (XCAR (x)), Qstringp, XCAR (x));
2531 }
2532 INLINE void
2533 CHECK_CONS (Lisp_Object x)
2534 {
2535 CHECK_TYPE (CONSP (x), Qconsp, x);
2536 }
2537 INLINE void
2538 CHECK_VECTOR (Lisp_Object x)
2539 {
2540 CHECK_TYPE (VECTORP (x), Qvectorp, x);
2541 }
2542 INLINE void
2543 CHECK_BOOL_VECTOR (Lisp_Object x)
2544 {
2545 CHECK_TYPE (BOOL_VECTOR_P (x), Qbool_vector_p, x);
2546 }
2547 /* This is a bit special because we always need size afterwards. */
2548 INLINE ptrdiff_t
2549 CHECK_VECTOR_OR_STRING (Lisp_Object x)
2550 {
2551 if (VECTORP (x))
2552 return ASIZE (x);
2553 if (STRINGP (x))
2554 return SCHARS (x);
2555 wrong_type_argument (Qarrayp, x);
2556 }
2557 INLINE void
2558 CHECK_ARRAY (Lisp_Object x, Lisp_Object predicate)
2559 {
2560 CHECK_TYPE (ARRAYP (x), predicate, x);
2561 }
2562 INLINE void
2563 CHECK_BUFFER (Lisp_Object x)
2564 {
2565 CHECK_TYPE (BUFFERP (x), Qbufferp, x);
2566 }
2567 INLINE void
2568 CHECK_WINDOW (Lisp_Object x)
2569 {
2570 CHECK_TYPE (WINDOWP (x), Qwindowp, x);
2571 }
2572 #ifdef subprocesses
2573 INLINE void
2574 CHECK_PROCESS (Lisp_Object x)
2575 {
2576 CHECK_TYPE (PROCESSP (x), Qprocessp, x);
2577 }
2578 #endif
2579 INLINE void
2580 CHECK_NATNUM (Lisp_Object x)
2581 {
2582 CHECK_TYPE (NATNUMP (x), Qwholenump, x);
2583 }
2584
2585 #define CHECK_RANGED_INTEGER(x, lo, hi) \
2586 do { \
2587 CHECK_NUMBER (x); \
2588 if (! ((lo) <= XINT (x) && XINT (x) <= (hi))) \
2589 args_out_of_range_3 \
2590 (x, \
2591 make_number ((lo) < 0 && (lo) < MOST_NEGATIVE_FIXNUM \
2592 ? MOST_NEGATIVE_FIXNUM \
2593 : (lo)), \
2594 make_number (min (hi, MOST_POSITIVE_FIXNUM))); \
2595 } while (false)
2596 #define CHECK_TYPE_RANGED_INTEGER(type, x) \
2597 do { \
2598 if (TYPE_SIGNED (type)) \
2599 CHECK_RANGED_INTEGER (x, TYPE_MINIMUM (type), TYPE_MAXIMUM (type)); \
2600 else \
2601 CHECK_RANGED_INTEGER (x, 0, TYPE_MAXIMUM (type)); \
2602 } while (false)
2603
2604 #define CHECK_NUMBER_COERCE_MARKER(x) \
2605 do { \
2606 if (MARKERP ((x))) \
2607 XSETFASTINT (x, marker_position (x)); \
2608 else \
2609 CHECK_TYPE (INTEGERP (x), Qinteger_or_marker_p, x); \
2610 } while (false)
2611
2612 INLINE double
2613 XFLOATINT (Lisp_Object n)
2614 {
2615 return extract_float (n);
2616 }
2617
2618 INLINE void
2619 CHECK_NUMBER_OR_FLOAT (Lisp_Object x)
2620 {
2621 CHECK_TYPE (FLOATP (x) || INTEGERP (x), Qnumberp, x);
2622 }
2623
2624 #define CHECK_NUMBER_OR_FLOAT_COERCE_MARKER(x) \
2625 do { \
2626 if (MARKERP (x)) \
2627 XSETFASTINT (x, marker_position (x)); \
2628 else \
2629 CHECK_TYPE (INTEGERP (x) || FLOATP (x), Qnumber_or_marker_p, x); \
2630 } while (false)
2631
2632 /* Since we can't assign directly to the CAR or CDR fields of a cons
2633 cell, use these when checking that those fields contain numbers. */
2634 INLINE void
2635 CHECK_NUMBER_CAR (Lisp_Object x)
2636 {
2637 Lisp_Object tmp = XCAR (x);
2638 CHECK_NUMBER (tmp);
2639 XSETCAR (x, tmp);
2640 }
2641
2642 INLINE void
2643 CHECK_NUMBER_CDR (Lisp_Object x)
2644 {
2645 Lisp_Object tmp = XCDR (x);
2646 CHECK_NUMBER (tmp);
2647 XSETCDR (x, tmp);
2648 }
2649 \f
2650 /* Define a built-in function for calling from Lisp.
2651 `lname' should be the name to give the function in Lisp,
2652 as a null-terminated C string.
2653 `fnname' should be the name of the function in C.
2654 By convention, it starts with F.
2655 `sname' should be the name for the C constant structure
2656 that records information on this function for internal use.
2657 By convention, it should be the same as `fnname' but with S instead of F.
2658 It's too bad that C macros can't compute this from `fnname'.
2659 `minargs' should be a number, the minimum number of arguments allowed.
2660 `maxargs' should be a number, the maximum number of arguments allowed,
2661 or else MANY or UNEVALLED.
2662 MANY means pass a vector of evaluated arguments,
2663 in the form of an integer number-of-arguments
2664 followed by the address of a vector of Lisp_Objects
2665 which contains the argument values.
2666 UNEVALLED means pass the list of unevaluated arguments
2667 `intspec' says how interactive arguments are to be fetched.
2668 If the string starts with a `(', `intspec' is evaluated and the resulting
2669 list is the list of arguments.
2670 If it's a string that doesn't start with `(', the value should follow
2671 the one of the doc string for `interactive'.
2672 A null string means call interactively with no arguments.
2673 `doc' is documentation for the user. */
2674
2675 /* This version of DEFUN declares a function prototype with the right
2676 arguments, so we can catch errors with maxargs at compile-time. */
2677 #ifdef _MSC_VER
2678 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2679 Lisp_Object fnname DEFUN_ARGS_ ## maxargs ; \
2680 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2681 { { (PVEC_SUBR << PSEUDOVECTOR_AREA_BITS) \
2682 | (sizeof (struct Lisp_Subr) / sizeof (EMACS_INT)) }, \
2683 { (Lisp_Object (__cdecl *)(void))fnname }, \
2684 minargs, maxargs, lname, intspec, 0}; \
2685 Lisp_Object fnname
2686 #else /* not _MSC_VER */
2687 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2688 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2689 { { PVEC_SUBR << PSEUDOVECTOR_AREA_BITS }, \
2690 { .a ## maxargs = fnname }, \
2691 minargs, maxargs, lname, intspec, 0}; \
2692 Lisp_Object fnname
2693 #endif
2694
2695 /* Note that the weird token-substitution semantics of ANSI C makes
2696 this work for MANY and UNEVALLED. */
2697 #define DEFUN_ARGS_MANY (ptrdiff_t, Lisp_Object *)
2698 #define DEFUN_ARGS_UNEVALLED (Lisp_Object)
2699 #define DEFUN_ARGS_0 (void)
2700 #define DEFUN_ARGS_1 (Lisp_Object)
2701 #define DEFUN_ARGS_2 (Lisp_Object, Lisp_Object)
2702 #define DEFUN_ARGS_3 (Lisp_Object, Lisp_Object, Lisp_Object)
2703 #define DEFUN_ARGS_4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
2704 #define DEFUN_ARGS_5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
2705 Lisp_Object)
2706 #define DEFUN_ARGS_6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
2707 Lisp_Object, Lisp_Object)
2708 #define DEFUN_ARGS_7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
2709 Lisp_Object, Lisp_Object, Lisp_Object)
2710 #define DEFUN_ARGS_8 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
2711 Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
2712
2713 /* True if OBJ is a Lisp function. */
2714 INLINE bool
2715 FUNCTIONP (Lisp_Object obj)
2716 {
2717 return functionp (obj);
2718 }
2719
2720 /* defsubr (Sname);
2721 is how we define the symbol for function `name' at start-up time. */
2722 extern void defsubr (struct Lisp_Subr *);
2723
2724 enum maxargs
2725 {
2726 MANY = -2,
2727 UNEVALLED = -1
2728 };
2729
2730 extern void defvar_lisp (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2731 extern void defvar_lisp_nopro (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2732 extern void defvar_bool (struct Lisp_Boolfwd *, const char *, bool *);
2733 extern void defvar_int (struct Lisp_Intfwd *, const char *, EMACS_INT *);
2734 extern void defvar_kboard (struct Lisp_Kboard_Objfwd *, const char *, int);
2735
2736 /* Macros we use to define forwarded Lisp variables.
2737 These are used in the syms_of_FILENAME functions.
2738
2739 An ordinary (not in buffer_defaults, per-buffer, or per-keyboard)
2740 lisp variable is actually a field in `struct emacs_globals'. The
2741 field's name begins with "f_", which is a convention enforced by
2742 these macros. Each such global has a corresponding #define in
2743 globals.h; the plain name should be used in the code.
2744
2745 E.g., the global "cons_cells_consed" is declared as "int
2746 f_cons_cells_consed" in globals.h, but there is a define:
2747
2748 #define cons_cells_consed globals.f_cons_cells_consed
2749
2750 All C code uses the `cons_cells_consed' name. This is all done
2751 this way to support indirection for multi-threaded Emacs. */
2752
2753 #define DEFVAR_LISP(lname, vname, doc) \
2754 do { \
2755 static struct Lisp_Objfwd o_fwd; \
2756 defvar_lisp (&o_fwd, lname, &globals.f_ ## vname); \
2757 } while (false)
2758 #define DEFVAR_LISP_NOPRO(lname, vname, doc) \
2759 do { \
2760 static struct Lisp_Objfwd o_fwd; \
2761 defvar_lisp_nopro (&o_fwd, lname, &globals.f_ ## vname); \
2762 } while (false)
2763 #define DEFVAR_BOOL(lname, vname, doc) \
2764 do { \
2765 static struct Lisp_Boolfwd b_fwd; \
2766 defvar_bool (&b_fwd, lname, &globals.f_ ## vname); \
2767 } while (false)
2768 #define DEFVAR_INT(lname, vname, doc) \
2769 do { \
2770 static struct Lisp_Intfwd i_fwd; \
2771 defvar_int (&i_fwd, lname, &globals.f_ ## vname); \
2772 } while (false)
2773
2774 #define DEFVAR_BUFFER_DEFAULTS(lname, vname, doc) \
2775 do { \
2776 static struct Lisp_Objfwd o_fwd; \
2777 defvar_lisp_nopro (&o_fwd, lname, &BVAR (&buffer_defaults, vname)); \
2778 } while (false)
2779
2780 #define DEFVAR_KBOARD(lname, vname, doc) \
2781 do { \
2782 static struct Lisp_Kboard_Objfwd ko_fwd; \
2783 defvar_kboard (&ko_fwd, lname, offsetof (KBOARD, vname ## _)); \
2784 } while (false)
2785 \f
2786 /* Save and restore the instruction and environment pointers,
2787 without affecting the signal mask. */
2788
2789 #ifdef HAVE__SETJMP
2790 typedef jmp_buf sys_jmp_buf;
2791 # define sys_setjmp(j) _setjmp (j)
2792 # define sys_longjmp(j, v) _longjmp (j, v)
2793 #elif defined HAVE_SIGSETJMP
2794 typedef sigjmp_buf sys_jmp_buf;
2795 # define sys_setjmp(j) sigsetjmp (j, 0)
2796 # define sys_longjmp(j, v) siglongjmp (j, v)
2797 #else
2798 /* A platform that uses neither _longjmp nor siglongjmp; assume
2799 longjmp does not affect the sigmask. */
2800 typedef jmp_buf sys_jmp_buf;
2801 # define sys_setjmp(j) setjmp (j)
2802 # define sys_longjmp(j, v) longjmp (j, v)
2803 #endif
2804
2805 \f
2806 /* Elisp uses several stacks:
2807 - the C stack.
2808 - the bytecode stack: used internally by the bytecode interpreter.
2809 Allocated from the C stack.
2810 - The specpdl stack: keeps track of active unwind-protect and
2811 dynamic-let-bindings. Allocated from the `specpdl' array, a manually
2812 managed stack.
2813 - The handler stack: keeps track of active catch tags and condition-case
2814 handlers. Allocated in a manually managed stack implemented by a
2815 doubly-linked list allocated via xmalloc and never freed. */
2816
2817 /* Structure for recording Lisp call stack for backtrace purposes. */
2818
2819 /* The special binding stack holds the outer values of variables while
2820 they are bound by a function application or a let form, stores the
2821 code to be executed for unwind-protect forms.
2822
2823 NOTE: The specbinding union is defined here, because SPECPDL_INDEX is
2824 used all over the place, needs to be fast, and needs to know the size of
2825 union specbinding. But only eval.c should access it. */
2826
2827 enum specbind_tag {
2828 SPECPDL_UNWIND, /* An unwind_protect function on Lisp_Object. */
2829 SPECPDL_UNWIND_PTR, /* Likewise, on void *. */
2830 SPECPDL_UNWIND_INT, /* Likewise, on int. */
2831 SPECPDL_UNWIND_VOID, /* Likewise, with no arg. */
2832 SPECPDL_BACKTRACE, /* An element of the backtrace. */
2833 SPECPDL_LET, /* A plain and simple dynamic let-binding. */
2834 /* Tags greater than SPECPDL_LET must be "subkinds" of LET. */
2835 SPECPDL_LET_LOCAL, /* A buffer-local let-binding. */
2836 SPECPDL_LET_DEFAULT /* A global binding for a localized var. */
2837 };
2838
2839 union specbinding
2840 {
2841 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2842 struct {
2843 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2844 void (*func) (Lisp_Object);
2845 Lisp_Object arg;
2846 } unwind;
2847 struct {
2848 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2849 void (*func) (void *);
2850 void *arg;
2851 } unwind_ptr;
2852 struct {
2853 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2854 void (*func) (int);
2855 int arg;
2856 } unwind_int;
2857 struct {
2858 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2859 void (*func) (void);
2860 } unwind_void;
2861 struct {
2862 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2863 /* `where' is not used in the case of SPECPDL_LET. */
2864 Lisp_Object symbol, old_value, where;
2865 } let;
2866 struct {
2867 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2868 bool_bf debug_on_exit : 1;
2869 Lisp_Object function;
2870 Lisp_Object *args;
2871 ptrdiff_t nargs;
2872 } bt;
2873 };
2874
2875 extern union specbinding *specpdl;
2876 extern union specbinding *specpdl_ptr;
2877 extern ptrdiff_t specpdl_size;
2878
2879 INLINE ptrdiff_t
2880 SPECPDL_INDEX (void)
2881 {
2882 return specpdl_ptr - specpdl;
2883 }
2884
2885 /* This structure helps implement the `catch/throw' and `condition-case/signal'
2886 control structures. A struct handler contains all the information needed to
2887 restore the state of the interpreter after a non-local jump.
2888
2889 handler structures are chained together in a doubly linked list; the `next'
2890 member points to the next outer catchtag and the `nextfree' member points in
2891 the other direction to the next inner element (which is typically the next
2892 free element since we mostly use it on the deepest handler).
2893
2894 A call like (throw TAG VAL) searches for a catchtag whose `tag_or_ch'
2895 member is TAG, and then unbinds to it. The `val' member is used to
2896 hold VAL while the stack is unwound; `val' is returned as the value
2897 of the catch form.
2898
2899 All the other members are concerned with restoring the interpreter
2900 state.
2901
2902 Members are volatile if their values need to survive _longjmp when
2903 a 'struct handler' is a local variable. */
2904
2905 enum handlertype { CATCHER, CONDITION_CASE };
2906
2907 struct handler
2908 {
2909 enum handlertype type;
2910 Lisp_Object tag_or_ch;
2911 Lisp_Object val;
2912 struct handler *next;
2913 struct handler *nextfree;
2914
2915 /* The bytecode interpreter can have several handlers active at the same
2916 time, so when we longjmp to one of them, it needs to know which handler
2917 this was and what was the corresponding internal state. This is stored
2918 here, and when we longjmp we make sure that handlerlist points to the
2919 proper handler. */
2920 Lisp_Object *bytecode_top;
2921 int bytecode_dest;
2922
2923 /* Most global vars are reset to their value via the specpdl mechanism,
2924 but a few others are handled by storing their value here. */
2925 #if true /* GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS, but defined later. */
2926 struct gcpro *gcpro;
2927 #endif
2928 sys_jmp_buf jmp;
2929 EMACS_INT lisp_eval_depth;
2930 ptrdiff_t pdlcount;
2931 int poll_suppress_count;
2932 int interrupt_input_blocked;
2933 struct byte_stack *byte_stack;
2934 };
2935
2936 /* Fill in the components of c, and put it on the list. */
2937 #define PUSH_HANDLER(c, tag_ch_val, handlertype) \
2938 if (handlerlist->nextfree) \
2939 (c) = handlerlist->nextfree; \
2940 else \
2941 { \
2942 (c) = xmalloc (sizeof (struct handler)); \
2943 (c)->nextfree = NULL; \
2944 handlerlist->nextfree = (c); \
2945 } \
2946 (c)->type = (handlertype); \
2947 (c)->tag_or_ch = (tag_ch_val); \
2948 (c)->val = Qnil; \
2949 (c)->next = handlerlist; \
2950 (c)->lisp_eval_depth = lisp_eval_depth; \
2951 (c)->pdlcount = SPECPDL_INDEX (); \
2952 (c)->poll_suppress_count = poll_suppress_count; \
2953 (c)->interrupt_input_blocked = interrupt_input_blocked;\
2954 (c)->gcpro = gcprolist; \
2955 (c)->byte_stack = byte_stack_list; \
2956 handlerlist = (c);
2957
2958
2959 extern Lisp_Object memory_signal_data;
2960
2961 /* An address near the bottom of the stack.
2962 Tells GC how to save a copy of the stack. */
2963 extern char *stack_bottom;
2964
2965 /* Check quit-flag and quit if it is non-nil.
2966 Typing C-g does not directly cause a quit; it only sets Vquit_flag.
2967 So the program needs to do QUIT at times when it is safe to quit.
2968 Every loop that might run for a long time or might not exit
2969 ought to do QUIT at least once, at a safe place.
2970 Unless that is impossible, of course.
2971 But it is very desirable to avoid creating loops where QUIT is impossible.
2972
2973 Exception: if you set immediate_quit to true,
2974 then the handler that responds to the C-g does the quit itself.
2975 This is a good thing to do around a loop that has no side effects
2976 and (in particular) cannot call arbitrary Lisp code.
2977
2978 If quit-flag is set to `kill-emacs' the SIGINT handler has received
2979 a request to exit Emacs when it is safe to do. */
2980
2981 extern void process_pending_signals (void);
2982 extern bool volatile pending_signals;
2983
2984 extern void process_quit_flag (void);
2985 #define QUIT \
2986 do { \
2987 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
2988 process_quit_flag (); \
2989 else if (pending_signals) \
2990 process_pending_signals (); \
2991 } while (false)
2992
2993
2994 /* True if ought to quit now. */
2995
2996 #define QUITP (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
2997 \f
2998 extern Lisp_Object Vascii_downcase_table;
2999 extern Lisp_Object Vascii_canon_table;
3000 \f
3001 /* Structure for recording stack slots that need marking. */
3002
3003 /* This is a chain of structures, each of which points at a Lisp_Object
3004 variable whose value should be marked in garbage collection.
3005 Normally every link of the chain is an automatic variable of a function,
3006 and its `val' points to some argument or local variable of the function.
3007 On exit to the function, the chain is set back to the value it had on entry.
3008 This way, no link remains in the chain when the stack frame containing the
3009 link disappears.
3010
3011 Every function that can call Feval must protect in this fashion all
3012 Lisp_Object variables whose contents will be used again. */
3013
3014 extern struct gcpro *gcprolist;
3015
3016 struct gcpro
3017 {
3018 struct gcpro *next;
3019
3020 /* Address of first protected variable. */
3021 volatile Lisp_Object *var;
3022
3023 /* Number of consecutive protected variables. */
3024 ptrdiff_t nvars;
3025
3026 #ifdef DEBUG_GCPRO
3027 /* File name where this record is used. */
3028 const char *name;
3029
3030 /* Line number in this file. */
3031 int lineno;
3032
3033 /* Index in the local chain of records. */
3034 int idx;
3035
3036 /* Nesting level. */
3037 int level;
3038 #endif
3039 };
3040
3041 /* Values of GC_MARK_STACK during compilation:
3042
3043 0 Use GCPRO as before
3044 1 Do the real thing, make GCPROs and UNGCPRO no-ops.
3045 2 Mark the stack, and check that everything GCPRO'd is
3046 marked.
3047 3 Mark using GCPRO's, mark stack last, and count how many
3048 dead objects are kept alive.
3049
3050 Formerly, method 0 was used. Currently, method 1 is used unless
3051 otherwise specified by hand when building, e.g.,
3052 "make CPPFLAGS='-DGC_MARK_STACK=GC_USE_GCPROS_AS_BEFORE'".
3053 Methods 2 and 3 are present mainly to debug the transition from 0 to 1. */
3054
3055 #define GC_USE_GCPROS_AS_BEFORE 0
3056 #define GC_MAKE_GCPROS_NOOPS 1
3057 #define GC_MARK_STACK_CHECK_GCPROS 2
3058 #define GC_USE_GCPROS_CHECK_ZOMBIES 3
3059
3060 #ifndef GC_MARK_STACK
3061 #define GC_MARK_STACK GC_MAKE_GCPROS_NOOPS
3062 #endif
3063
3064 /* Whether we do the stack marking manually. */
3065 #define BYTE_MARK_STACK !(GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
3066 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
3067
3068
3069 #if GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS
3070
3071 /* Do something silly with gcproN vars just so gcc shuts up. */
3072 /* You get warnings from MIPSPro... */
3073
3074 #define GCPRO1(varname) ((void) gcpro1)
3075 #define GCPRO2(varname1, varname2) ((void) gcpro2, (void) gcpro1)
3076 #define GCPRO3(varname1, varname2, varname3) \
3077 ((void) gcpro3, (void) gcpro2, (void) gcpro1)
3078 #define GCPRO4(varname1, varname2, varname3, varname4) \
3079 ((void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3080 #define GCPRO5(varname1, varname2, varname3, varname4, varname5) \
3081 ((void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3082 #define GCPRO6(varname1, varname2, varname3, varname4, varname5, varname6) \
3083 ((void) gcpro6, (void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, \
3084 (void) gcpro1)
3085 #define GCPRO7(a, b, c, d, e, f, g) (GCPRO6 (a, b, c, d, e, f), (void) gcpro7)
3086 #define UNGCPRO ((void) 0)
3087
3088 #else /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3089
3090 #ifndef DEBUG_GCPRO
3091
3092 #define GCPRO1(a) \
3093 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3094 gcprolist = &gcpro1; }
3095
3096 #define GCPRO2(a, b) \
3097 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3098 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3099 gcprolist = &gcpro2; }
3100
3101 #define GCPRO3(a, b, c) \
3102 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3103 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3104 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3105 gcprolist = &gcpro3; }
3106
3107 #define GCPRO4(a, b, c, d) \
3108 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3109 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3110 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3111 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3112 gcprolist = &gcpro4; }
3113
3114 #define GCPRO5(a, b, c, d, e) \
3115 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3116 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3117 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3118 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3119 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3120 gcprolist = &gcpro5; }
3121
3122 #define GCPRO6(a, b, c, d, e, f) \
3123 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3124 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3125 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3126 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3127 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3128 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3129 gcprolist = &gcpro6; }
3130
3131 #define GCPRO7(a, b, c, d, e, f, g) \
3132 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3133 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3134 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3135 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3136 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3137 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3138 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3139 gcprolist = &gcpro7; }
3140
3141 #define UNGCPRO (gcprolist = gcpro1.next)
3142
3143 #else /* !DEBUG_GCPRO */
3144
3145 extern int gcpro_level;
3146
3147 #define GCPRO1(a) \
3148 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3149 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3150 gcpro1.level = gcpro_level++; \
3151 gcprolist = &gcpro1; }
3152
3153 #define GCPRO2(a, b) \
3154 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3155 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3156 gcpro1.level = gcpro_level; \
3157 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3158 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3159 gcpro2.level = gcpro_level++; \
3160 gcprolist = &gcpro2; }
3161
3162 #define GCPRO3(a, b, c) \
3163 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3164 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3165 gcpro1.level = gcpro_level; \
3166 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3167 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3168 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3169 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3170 gcpro3.level = gcpro_level++; \
3171 gcprolist = &gcpro3; }
3172
3173 #define GCPRO4(a, b, c, d) \
3174 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3175 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3176 gcpro1.level = gcpro_level; \
3177 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3178 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3179 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3180 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3181 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3182 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3183 gcpro4.level = gcpro_level++; \
3184 gcprolist = &gcpro4; }
3185
3186 #define GCPRO5(a, b, c, d, e) \
3187 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3188 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3189 gcpro1.level = gcpro_level; \
3190 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3191 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3192 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3193 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3194 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3195 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3196 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3197 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3198 gcpro5.level = gcpro_level++; \
3199 gcprolist = &gcpro5; }
3200
3201 #define GCPRO6(a, b, c, d, e, f) \
3202 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3203 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3204 gcpro1.level = gcpro_level; \
3205 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3206 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3207 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3208 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3209 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3210 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3211 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3212 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3213 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3214 gcpro6.name = __FILE__; gcpro6.lineno = __LINE__; gcpro6.idx = 6; \
3215 gcpro6.level = gcpro_level++; \
3216 gcprolist = &gcpro6; }
3217
3218 #define GCPRO7(a, b, c, d, e, f, g) \
3219 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3220 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3221 gcpro1.level = gcpro_level; \
3222 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3223 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3224 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3225 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3226 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3227 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3228 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3229 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3230 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3231 gcpro6.name = __FILE__; gcpro6.lineno = __LINE__; gcpro6.idx = 6; \
3232 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3233 gcpro7.name = __FILE__; gcpro7.lineno = __LINE__; gcpro7.idx = 7; \
3234 gcpro7.level = gcpro_level++; \
3235 gcprolist = &gcpro7; }
3236
3237 #define UNGCPRO \
3238 (--gcpro_level != gcpro1.level \
3239 ? emacs_abort () \
3240 : (void) (gcprolist = gcpro1.next))
3241
3242 #endif /* DEBUG_GCPRO */
3243 #endif /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3244
3245
3246 /* Evaluate expr, UNGCPRO, and then return the value of expr. */
3247 #define RETURN_UNGCPRO(expr) \
3248 do \
3249 { \
3250 Lisp_Object ret_ungc_val; \
3251 ret_ungc_val = (expr); \
3252 UNGCPRO; \
3253 return ret_ungc_val; \
3254 } \
3255 while (false)
3256
3257 /* Call staticpro (&var) to protect static variable `var'. */
3258
3259 void staticpro (Lisp_Object *);
3260 \f
3261 /* Declare a Lisp-callable function. The MAXARGS parameter has the same
3262 meaning as in the DEFUN macro, and is used to construct a prototype. */
3263 /* We can use the same trick as in the DEFUN macro to generate the
3264 appropriate prototype. */
3265 #define EXFUN(fnname, maxargs) \
3266 extern Lisp_Object fnname DEFUN_ARGS_ ## maxargs
3267
3268 #include "globals.h"
3269
3270 /* Forward declarations for prototypes. */
3271 struct window;
3272 struct frame;
3273
3274 /* Copy COUNT Lisp_Objects from ARGS to contents of V starting from OFFSET. */
3275
3276 INLINE void
3277 vcopy (Lisp_Object v, ptrdiff_t offset, Lisp_Object *args, ptrdiff_t count)
3278 {
3279 eassert (0 <= offset && 0 <= count && offset + count <= ASIZE (v));
3280 memcpy (XVECTOR (v)->contents + offset, args, count * sizeof *args);
3281 }
3282
3283 /* Functions to modify hash tables. */
3284
3285 INLINE void
3286 set_hash_key_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3287 {
3288 gc_aset (h->key_and_value, 2 * idx, val);
3289 }
3290
3291 INLINE void
3292 set_hash_value_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3293 {
3294 gc_aset (h->key_and_value, 2 * idx + 1, val);
3295 }
3296
3297 /* Use these functions to set Lisp_Object
3298 or pointer slots of struct Lisp_Symbol. */
3299
3300 INLINE void
3301 set_symbol_function (Lisp_Object sym, Lisp_Object function)
3302 {
3303 XSYMBOL (sym)->function = function;
3304 }
3305
3306 INLINE void
3307 set_symbol_plist (Lisp_Object sym, Lisp_Object plist)
3308 {
3309 XSYMBOL (sym)->plist = plist;
3310 }
3311
3312 INLINE void
3313 set_symbol_next (Lisp_Object sym, struct Lisp_Symbol *next)
3314 {
3315 XSYMBOL (sym)->next = next;
3316 }
3317
3318 /* Buffer-local (also frame-local) variable access functions. */
3319
3320 INLINE int
3321 blv_found (struct Lisp_Buffer_Local_Value *blv)
3322 {
3323 eassert (blv->found == !EQ (blv->defcell, blv->valcell));
3324 return blv->found;
3325 }
3326
3327 /* Set overlay's property list. */
3328
3329 INLINE void
3330 set_overlay_plist (Lisp_Object overlay, Lisp_Object plist)
3331 {
3332 XOVERLAY (overlay)->plist = plist;
3333 }
3334
3335 /* Get text properties of S. */
3336
3337 INLINE INTERVAL
3338 string_intervals (Lisp_Object s)
3339 {
3340 return XSTRING (s)->intervals;
3341 }
3342
3343 /* Set text properties of S to I. */
3344
3345 INLINE void
3346 set_string_intervals (Lisp_Object s, INTERVAL i)
3347 {
3348 XSTRING (s)->intervals = i;
3349 }
3350
3351 /* Set a Lisp slot in TABLE to VAL. Most code should use this instead
3352 of setting slots directly. */
3353
3354 INLINE void
3355 set_char_table_defalt (Lisp_Object table, Lisp_Object val)
3356 {
3357 XCHAR_TABLE (table)->defalt = val;
3358 }
3359 INLINE void
3360 set_char_table_purpose (Lisp_Object table, Lisp_Object val)
3361 {
3362 XCHAR_TABLE (table)->purpose = val;
3363 }
3364
3365 /* Set different slots in (sub)character tables. */
3366
3367 INLINE void
3368 set_char_table_extras (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3369 {
3370 eassert (0 <= idx && idx < CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (table)));
3371 XCHAR_TABLE (table)->extras[idx] = val;
3372 }
3373
3374 INLINE void
3375 set_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3376 {
3377 eassert (0 <= idx && idx < (1 << CHARTAB_SIZE_BITS_0));
3378 XCHAR_TABLE (table)->contents[idx] = val;
3379 }
3380
3381 INLINE void
3382 set_sub_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3383 {
3384 XSUB_CHAR_TABLE (table)->contents[idx] = val;
3385 }
3386
3387 /* Defined in data.c. */
3388 extern Lisp_Object Qquote, Qunbound;
3389 extern Lisp_Object Qerror_conditions, Qerror_message, Qtop_level;
3390 extern Lisp_Object Qerror, Qquit, Qargs_out_of_range;
3391 extern Lisp_Object Qvoid_variable, Qvoid_function;
3392 extern Lisp_Object Qinvalid_read_syntax;
3393 extern Lisp_Object Qinvalid_function, Qwrong_number_of_arguments, Qno_catch;
3394 extern Lisp_Object Quser_error, Qend_of_file, Qarith_error, Qmark_inactive;
3395 extern Lisp_Object Qbeginning_of_buffer, Qend_of_buffer, Qbuffer_read_only;
3396 extern Lisp_Object Qtext_read_only;
3397 extern Lisp_Object Qinteractive_form;
3398 extern Lisp_Object Qcircular_list;
3399 extern Lisp_Object Qsequencep;
3400 extern Lisp_Object Qchar_or_string_p, Qinteger_or_marker_p;
3401 extern Lisp_Object Qfboundp;
3402
3403 extern Lisp_Object Qcdr;
3404
3405 extern Lisp_Object Qrange_error, Qoverflow_error;
3406
3407 extern Lisp_Object Qnumber_or_marker_p;
3408
3409 extern Lisp_Object Qbuffer, Qinteger, Qsymbol;
3410
3411 /* Defined in data.c. */
3412 extern Lisp_Object indirect_function (Lisp_Object);
3413 extern Lisp_Object find_symbol_value (Lisp_Object);
3414 enum Arith_Comparison {
3415 ARITH_EQUAL,
3416 ARITH_NOTEQUAL,
3417 ARITH_LESS,
3418 ARITH_GRTR,
3419 ARITH_LESS_OR_EQUAL,
3420 ARITH_GRTR_OR_EQUAL
3421 };
3422 extern Lisp_Object arithcompare (Lisp_Object num1, Lisp_Object num2,
3423 enum Arith_Comparison comparison);
3424
3425 /* Convert the integer I to an Emacs representation, either the integer
3426 itself, or a cons of two or three integers, or if all else fails a float.
3427 I should not have side effects. */
3428 #define INTEGER_TO_CONS(i) \
3429 (! FIXNUM_OVERFLOW_P (i) \
3430 ? make_number (i) \
3431 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16) \
3432 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16)) \
3433 && FIXNUM_OVERFLOW_P ((i) >> 16)) \
3434 ? Fcons (make_number ((i) >> 16), make_number ((i) & 0xffff)) \
3435 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16 >> 24) \
3436 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16 >> 24)) \
3437 && FIXNUM_OVERFLOW_P ((i) >> 16 >> 24)) \
3438 ? Fcons (make_number ((i) >> 16 >> 24), \
3439 Fcons (make_number ((i) >> 16 & 0xffffff), \
3440 make_number ((i) & 0xffff))) \
3441 : make_float (i))
3442
3443 /* Convert the Emacs representation CONS back to an integer of type
3444 TYPE, storing the result the variable VAR. Signal an error if CONS
3445 is not a valid representation or is out of range for TYPE. */
3446 #define CONS_TO_INTEGER(cons, type, var) \
3447 (TYPE_SIGNED (type) \
3448 ? ((var) = cons_to_signed (cons, TYPE_MINIMUM (type), TYPE_MAXIMUM (type))) \
3449 : ((var) = cons_to_unsigned (cons, TYPE_MAXIMUM (type))))
3450 extern intmax_t cons_to_signed (Lisp_Object, intmax_t, intmax_t);
3451 extern uintmax_t cons_to_unsigned (Lisp_Object, uintmax_t);
3452
3453 extern struct Lisp_Symbol *indirect_variable (struct Lisp_Symbol *);
3454 extern _Noreturn void args_out_of_range (Lisp_Object, Lisp_Object);
3455 extern _Noreturn void args_out_of_range_3 (Lisp_Object, Lisp_Object,
3456 Lisp_Object);
3457 extern Lisp_Object do_symval_forwarding (union Lisp_Fwd *);
3458 extern void set_internal (Lisp_Object, Lisp_Object, Lisp_Object, bool);
3459 extern void syms_of_data (void);
3460 extern void swap_in_global_binding (struct Lisp_Symbol *);
3461
3462 /* Defined in cmds.c */
3463 extern void syms_of_cmds (void);
3464 extern void keys_of_cmds (void);
3465
3466 /* Defined in coding.c. */
3467 extern Lisp_Object Qcharset;
3468 extern Lisp_Object detect_coding_system (const unsigned char *, ptrdiff_t,
3469 ptrdiff_t, bool, bool, Lisp_Object);
3470 extern void init_coding (void);
3471 extern void init_coding_once (void);
3472 extern void syms_of_coding (void);
3473
3474 /* Defined in character.c. */
3475 extern ptrdiff_t chars_in_text (const unsigned char *, ptrdiff_t);
3476 extern ptrdiff_t multibyte_chars_in_text (const unsigned char *, ptrdiff_t);
3477 extern void syms_of_character (void);
3478
3479 /* Defined in charset.c. */
3480 extern void init_charset (void);
3481 extern void init_charset_once (void);
3482 extern void syms_of_charset (void);
3483 /* Structure forward declarations. */
3484 struct charset;
3485
3486 /* Defined in syntax.c. */
3487 extern void init_syntax_once (void);
3488 extern void syms_of_syntax (void);
3489
3490 /* Defined in fns.c. */
3491 extern Lisp_Object QCrehash_size, QCrehash_threshold;
3492 enum { NEXT_ALMOST_PRIME_LIMIT = 11 };
3493 extern EMACS_INT next_almost_prime (EMACS_INT) ATTRIBUTE_CONST;
3494 extern Lisp_Object larger_vector (Lisp_Object, ptrdiff_t, ptrdiff_t);
3495 extern void sweep_weak_hash_tables (void);
3496 extern Lisp_Object Qcursor_in_echo_area;
3497 extern Lisp_Object Qstring_lessp;
3498 extern Lisp_Object QCsize, QCtest, QCweakness, Qequal, Qeq;
3499 EMACS_UINT hash_string (char const *, ptrdiff_t);
3500 EMACS_UINT sxhash (Lisp_Object, int);
3501 Lisp_Object make_hash_table (struct hash_table_test, Lisp_Object, Lisp_Object,
3502 Lisp_Object, Lisp_Object);
3503 ptrdiff_t hash_lookup (struct Lisp_Hash_Table *, Lisp_Object, EMACS_UINT *);
3504 ptrdiff_t hash_put (struct Lisp_Hash_Table *, Lisp_Object, Lisp_Object,
3505 EMACS_UINT);
3506 extern struct hash_table_test hashtest_eql, hashtest_equal;
3507 extern void validate_subarray (Lisp_Object, Lisp_Object, Lisp_Object,
3508 ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
3509 extern Lisp_Object substring_both (Lisp_Object, ptrdiff_t, ptrdiff_t,
3510 ptrdiff_t, ptrdiff_t);
3511 extern Lisp_Object merge (Lisp_Object, Lisp_Object, Lisp_Object);
3512 extern Lisp_Object do_yes_or_no_p (Lisp_Object);
3513 extern Lisp_Object concat2 (Lisp_Object, Lisp_Object);
3514 extern Lisp_Object concat3 (Lisp_Object, Lisp_Object, Lisp_Object);
3515 extern Lisp_Object nconc2 (Lisp_Object, Lisp_Object);
3516 extern Lisp_Object assq_no_quit (Lisp_Object, Lisp_Object);
3517 extern Lisp_Object assoc_no_quit (Lisp_Object, Lisp_Object);
3518 extern void clear_string_char_byte_cache (void);
3519 extern ptrdiff_t string_char_to_byte (Lisp_Object, ptrdiff_t);
3520 extern ptrdiff_t string_byte_to_char (Lisp_Object, ptrdiff_t);
3521 extern Lisp_Object string_to_multibyte (Lisp_Object);
3522 extern Lisp_Object string_make_unibyte (Lisp_Object);
3523 extern void syms_of_fns (void);
3524
3525 /* Defined in floatfns.c. */
3526 extern void syms_of_floatfns (void);
3527 extern Lisp_Object fmod_float (Lisp_Object x, Lisp_Object y);
3528
3529 /* Defined in fringe.c. */
3530 extern void syms_of_fringe (void);
3531 extern void init_fringe (void);
3532 #ifdef HAVE_WINDOW_SYSTEM
3533 extern void mark_fringe_data (void);
3534 extern void init_fringe_once (void);
3535 #endif /* HAVE_WINDOW_SYSTEM */
3536
3537 /* Defined in image.c. */
3538 extern Lisp_Object QCascent, QCmargin, QCrelief;
3539 extern Lisp_Object QCconversion;
3540 extern int x_bitmap_mask (struct frame *, ptrdiff_t);
3541 extern void reset_image_types (void);
3542 extern void syms_of_image (void);
3543
3544 /* Defined in insdel.c. */
3545 extern Lisp_Object Qinhibit_modification_hooks;
3546 extern Lisp_Object Qregion_extract_function;
3547 extern void move_gap_both (ptrdiff_t, ptrdiff_t);
3548 extern _Noreturn void buffer_overflow (void);
3549 extern void make_gap (ptrdiff_t);
3550 extern void make_gap_1 (struct buffer *, ptrdiff_t);
3551 extern ptrdiff_t copy_text (const unsigned char *, unsigned char *,
3552 ptrdiff_t, bool, bool);
3553 extern int count_combining_before (const unsigned char *,
3554 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3555 extern int count_combining_after (const unsigned char *,
3556 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3557 extern void insert (const char *, ptrdiff_t);
3558 extern void insert_and_inherit (const char *, ptrdiff_t);
3559 extern void insert_1_both (const char *, ptrdiff_t, ptrdiff_t,
3560 bool, bool, bool);
3561 extern void insert_from_gap (ptrdiff_t, ptrdiff_t, bool text_at_gap_tail);
3562 extern void insert_from_string (Lisp_Object, ptrdiff_t, ptrdiff_t,
3563 ptrdiff_t, ptrdiff_t, bool);
3564 extern void insert_from_buffer (struct buffer *, ptrdiff_t, ptrdiff_t, bool);
3565 extern void insert_char (int);
3566 extern void insert_string (const char *);
3567 extern void insert_before_markers (const char *, ptrdiff_t);
3568 extern void insert_before_markers_and_inherit (const char *, ptrdiff_t);
3569 extern void insert_from_string_before_markers (Lisp_Object, ptrdiff_t,
3570 ptrdiff_t, ptrdiff_t,
3571 ptrdiff_t, bool);
3572 extern void del_range (ptrdiff_t, ptrdiff_t);
3573 extern Lisp_Object del_range_1 (ptrdiff_t, ptrdiff_t, bool, bool);
3574 extern void del_range_byte (ptrdiff_t, ptrdiff_t, bool);
3575 extern void del_range_both (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t, bool);
3576 extern Lisp_Object del_range_2 (ptrdiff_t, ptrdiff_t,
3577 ptrdiff_t, ptrdiff_t, bool);
3578 extern void modify_text (ptrdiff_t, ptrdiff_t);
3579 extern void prepare_to_modify_buffer (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3580 extern void prepare_to_modify_buffer_1 (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3581 extern void invalidate_buffer_caches (struct buffer *, ptrdiff_t, ptrdiff_t);
3582 extern void signal_after_change (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3583 extern void adjust_after_insert (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3584 ptrdiff_t, ptrdiff_t);
3585 extern void adjust_markers_for_delete (ptrdiff_t, ptrdiff_t,
3586 ptrdiff_t, ptrdiff_t);
3587 extern void replace_range (ptrdiff_t, ptrdiff_t, Lisp_Object, bool, bool, bool);
3588 extern void replace_range_2 (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3589 const char *, ptrdiff_t, ptrdiff_t, bool);
3590 extern void syms_of_insdel (void);
3591
3592 /* Defined in dispnew.c. */
3593 #if (defined PROFILING \
3594 && (defined __FreeBSD__ || defined GNU_LINUX || defined __MINGW32__))
3595 _Noreturn void __executable_start (void);
3596 #endif
3597 extern Lisp_Object Vwindow_system;
3598 extern Lisp_Object sit_for (Lisp_Object, bool, int);
3599
3600 /* Defined in xdisp.c. */
3601 extern Lisp_Object Qinhibit_point_motion_hooks;
3602 extern Lisp_Object Qinhibit_redisplay;
3603 extern Lisp_Object Qmenu_bar_update_hook;
3604 extern Lisp_Object Qwindow_scroll_functions;
3605 extern Lisp_Object Qoverriding_local_map, Qoverriding_terminal_local_map;
3606 extern Lisp_Object Qtext, Qboth, Qboth_horiz, Qtext_image_horiz;
3607 extern Lisp_Object Qspace, Qcenter, QCalign_to;
3608 extern Lisp_Object Qbar, Qhbar, Qhollow;
3609 extern Lisp_Object Qleft_margin, Qright_margin;
3610 extern Lisp_Object QCdata, QCfile;
3611 extern Lisp_Object QCmap;
3612 extern Lisp_Object Qrisky_local_variable;
3613 extern bool noninteractive_need_newline;
3614 extern Lisp_Object echo_area_buffer[2];
3615 extern void add_to_log (const char *, Lisp_Object, Lisp_Object);
3616 extern void check_message_stack (void);
3617 extern void setup_echo_area_for_printing (int);
3618 extern bool push_message (void);
3619 extern void pop_message_unwind (void);
3620 extern Lisp_Object restore_message_unwind (Lisp_Object);
3621 extern void restore_message (void);
3622 extern Lisp_Object current_message (void);
3623 extern void clear_message (bool, bool);
3624 extern void message (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3625 extern void message1 (const char *);
3626 extern void message1_nolog (const char *);
3627 extern void message3 (Lisp_Object);
3628 extern void message3_nolog (Lisp_Object);
3629 extern void message_dolog (const char *, ptrdiff_t, bool, bool);
3630 extern void message_with_string (const char *, Lisp_Object, int);
3631 extern void message_log_maybe_newline (void);
3632 extern void update_echo_area (void);
3633 extern void truncate_echo_area (ptrdiff_t);
3634 extern void redisplay (void);
3635
3636 void set_frame_cursor_types (struct frame *, Lisp_Object);
3637 extern void syms_of_xdisp (void);
3638 extern void init_xdisp (void);
3639 extern Lisp_Object safe_eval (Lisp_Object);
3640 extern int pos_visible_p (struct window *, ptrdiff_t, int *,
3641 int *, int *, int *, int *, int *);
3642
3643 /* Defined in xsettings.c. */
3644 extern void syms_of_xsettings (void);
3645
3646 /* Defined in vm-limit.c. */
3647 extern void memory_warnings (void *, void (*warnfun) (const char *));
3648
3649 /* Defined in character.c. */
3650 extern void parse_str_as_multibyte (const unsigned char *, ptrdiff_t,
3651 ptrdiff_t *, ptrdiff_t *);
3652
3653 /* Defined in alloc.c. */
3654 extern void check_pure_size (void);
3655 extern void free_misc (Lisp_Object);
3656 extern void allocate_string_data (struct Lisp_String *, EMACS_INT, EMACS_INT);
3657 extern void malloc_warning (const char *);
3658 extern _Noreturn void memory_full (size_t);
3659 extern _Noreturn void buffer_memory_full (ptrdiff_t);
3660 extern bool survives_gc_p (Lisp_Object);
3661 extern void mark_object (Lisp_Object);
3662 #if defined REL_ALLOC && !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3663 extern void refill_memory_reserve (void);
3664 #endif
3665 extern const char *pending_malloc_warning;
3666 extern Lisp_Object zero_vector;
3667 extern Lisp_Object *stack_base;
3668 extern EMACS_INT consing_since_gc;
3669 extern EMACS_INT gc_relative_threshold;
3670 extern EMACS_INT memory_full_cons_threshold;
3671 extern Lisp_Object list1 (Lisp_Object);
3672 extern Lisp_Object list2 (Lisp_Object, Lisp_Object);
3673 extern Lisp_Object list3 (Lisp_Object, Lisp_Object, Lisp_Object);
3674 extern Lisp_Object list4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3675 extern Lisp_Object list5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object,
3676 Lisp_Object);
3677 enum constype {CONSTYPE_HEAP, CONSTYPE_PURE};
3678 extern Lisp_Object listn (enum constype, ptrdiff_t, Lisp_Object, ...);
3679
3680 /* Build a frequently used 2/3/4-integer lists. */
3681
3682 INLINE Lisp_Object
3683 list2i (EMACS_INT x, EMACS_INT y)
3684 {
3685 return list2 (make_number (x), make_number (y));
3686 }
3687
3688 INLINE Lisp_Object
3689 list3i (EMACS_INT x, EMACS_INT y, EMACS_INT w)
3690 {
3691 return list3 (make_number (x), make_number (y), make_number (w));
3692 }
3693
3694 INLINE Lisp_Object
3695 list4i (EMACS_INT x, EMACS_INT y, EMACS_INT w, EMACS_INT h)
3696 {
3697 return list4 (make_number (x), make_number (y),
3698 make_number (w), make_number (h));
3699 }
3700
3701 extern Lisp_Object make_uninit_bool_vector (EMACS_INT);
3702 extern Lisp_Object bool_vector_fill (Lisp_Object, Lisp_Object);
3703 extern _Noreturn void string_overflow (void);
3704 extern Lisp_Object make_string (const char *, ptrdiff_t);
3705 extern Lisp_Object local_string_init (struct Lisp_String *, char const *,
3706 ptrdiff_t);
3707 extern Lisp_Object make_formatted_string (char *, const char *, ...)
3708 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3709 extern Lisp_Object make_unibyte_string (const char *, ptrdiff_t);
3710
3711 /* Make unibyte string from C string when the length isn't known. */
3712
3713 INLINE Lisp_Object
3714 build_unibyte_string (const char *str)
3715 {
3716 return make_unibyte_string (str, strlen (str));
3717 }
3718
3719 extern Lisp_Object make_multibyte_string (const char *, ptrdiff_t, ptrdiff_t);
3720 extern Lisp_Object make_event_array (ptrdiff_t, Lisp_Object *);
3721 extern Lisp_Object make_uninit_string (EMACS_INT);
3722 extern Lisp_Object make_uninit_multibyte_string (EMACS_INT, EMACS_INT);
3723 extern Lisp_Object make_string_from_bytes (const char *, ptrdiff_t, ptrdiff_t);
3724 extern Lisp_Object make_specified_string (const char *,
3725 ptrdiff_t, ptrdiff_t, bool);
3726 extern Lisp_Object make_pure_string (const char *, ptrdiff_t, ptrdiff_t, bool);
3727 extern Lisp_Object make_pure_c_string (const char *, ptrdiff_t);
3728
3729 /* Make a string allocated in pure space, use STR as string data. */
3730
3731 INLINE Lisp_Object
3732 build_pure_c_string (const char *str)
3733 {
3734 return make_pure_c_string (str, strlen (str));
3735 }
3736
3737 /* Make a string from the data at STR, treating it as multibyte if the
3738 data warrants. */
3739
3740 INLINE Lisp_Object
3741 build_string (const char *str)
3742 {
3743 return make_string (str, strlen (str));
3744 }
3745
3746 extern Lisp_Object pure_cons (Lisp_Object, Lisp_Object);
3747 extern void make_byte_code (struct Lisp_Vector *);
3748 extern Lisp_Object Qautomatic_gc;
3749 extern Lisp_Object Qchar_table_extra_slots;
3750 extern struct Lisp_Vector *allocate_vector (EMACS_INT);
3751
3752 /* Make an uninitialized vector for SIZE objects. NOTE: you must
3753 be sure that GC cannot happen until the vector is completely
3754 initialized. E.g. the following code is likely to crash:
3755
3756 v = make_uninit_vector (3);
3757 ASET (v, 0, obj0);
3758 ASET (v, 1, Ffunction_can_gc ());
3759 ASET (v, 2, obj1); */
3760
3761 INLINE Lisp_Object
3762 make_uninit_vector (ptrdiff_t size)
3763 {
3764 Lisp_Object v;
3765 struct Lisp_Vector *p;
3766
3767 p = allocate_vector (size);
3768 XSETVECTOR (v, p);
3769 return v;
3770 }
3771
3772 /* Like above, but special for sub char-tables. */
3773
3774 INLINE Lisp_Object
3775 make_uninit_sub_char_table (int depth, int min_char)
3776 {
3777 int slots = SUB_CHAR_TABLE_OFFSET + chartab_size[depth];
3778 Lisp_Object v = make_uninit_vector (slots);
3779
3780 XSETPVECTYPE (XVECTOR (v), PVEC_SUB_CHAR_TABLE);
3781 XSUB_CHAR_TABLE (v)->depth = depth;
3782 XSUB_CHAR_TABLE (v)->min_char = min_char;
3783 return v;
3784 }
3785
3786 extern struct Lisp_Vector *allocate_pseudovector (int, int, enum pvec_type);
3787 #define ALLOCATE_PSEUDOVECTOR(typ,field,tag) \
3788 ((typ*) \
3789 allocate_pseudovector \
3790 (VECSIZE (typ), PSEUDOVECSIZE (typ, field), tag))
3791 extern struct Lisp_Hash_Table *allocate_hash_table (void);
3792 extern struct window *allocate_window (void);
3793 extern struct frame *allocate_frame (void);
3794 extern struct Lisp_Process *allocate_process (void);
3795 extern Lisp_Object local_vector_init (struct Lisp_Vector *, ptrdiff_t,
3796 Lisp_Object);
3797 extern struct terminal *allocate_terminal (void);
3798 extern bool gc_in_progress;
3799 extern bool abort_on_gc;
3800 extern Lisp_Object make_float (double);
3801 extern void display_malloc_warning (void);
3802 extern ptrdiff_t inhibit_garbage_collection (void);
3803 extern Lisp_Object make_save_int_int_int (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3804 extern Lisp_Object make_save_obj_obj_obj_obj (Lisp_Object, Lisp_Object,
3805 Lisp_Object, Lisp_Object);
3806 extern Lisp_Object make_save_ptr (void *);
3807 extern Lisp_Object make_save_ptr_int (void *, ptrdiff_t);
3808 extern Lisp_Object make_save_ptr_ptr (void *, void *);
3809 extern Lisp_Object make_save_funcptr_ptr_obj (void (*) (void), void *,
3810 Lisp_Object);
3811 extern Lisp_Object make_save_memory (Lisp_Object *, ptrdiff_t);
3812 extern void free_save_value (Lisp_Object);
3813 extern Lisp_Object build_overlay (Lisp_Object, Lisp_Object, Lisp_Object);
3814 extern void free_marker (Lisp_Object);
3815 extern void free_cons (struct Lisp_Cons *);
3816 extern void init_alloc_once (void);
3817 extern void init_alloc (void);
3818 extern void syms_of_alloc (void);
3819 extern struct buffer * allocate_buffer (void);
3820 extern int valid_lisp_object_p (Lisp_Object);
3821 extern int relocatable_string_data_p (const char *);
3822 #ifdef GC_CHECK_CONS_LIST
3823 extern void check_cons_list (void);
3824 #else
3825 INLINE void (check_cons_list) (void) { lisp_h_check_cons_list (); }
3826 #endif
3827
3828 #ifdef REL_ALLOC
3829 /* Defined in ralloc.c. */
3830 extern void *r_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3831 extern void r_alloc_free (void **);
3832 extern void *r_re_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3833 extern void r_alloc_reset_variable (void **, void **);
3834 extern void r_alloc_inhibit_buffer_relocation (int);
3835 #endif
3836
3837 /* Defined in chartab.c. */
3838 extern Lisp_Object copy_char_table (Lisp_Object);
3839 extern Lisp_Object char_table_ref_and_range (Lisp_Object, int,
3840 int *, int *);
3841 extern void char_table_set_range (Lisp_Object, int, int, Lisp_Object);
3842 extern void map_char_table (void (*) (Lisp_Object, Lisp_Object,
3843 Lisp_Object),
3844 Lisp_Object, Lisp_Object, Lisp_Object);
3845 extern void map_char_table_for_charset (void (*c_function) (Lisp_Object, Lisp_Object),
3846 Lisp_Object, Lisp_Object,
3847 Lisp_Object, struct charset *,
3848 unsigned, unsigned);
3849 extern Lisp_Object uniprop_table (Lisp_Object);
3850 extern void syms_of_chartab (void);
3851
3852 /* Defined in print.c. */
3853 extern Lisp_Object Vprin1_to_string_buffer;
3854 extern void debug_print (Lisp_Object) EXTERNALLY_VISIBLE;
3855 extern Lisp_Object Qstandard_output;
3856 extern Lisp_Object Qexternal_debugging_output;
3857 extern void temp_output_buffer_setup (const char *);
3858 extern int print_level;
3859 extern Lisp_Object Qprint_escape_newlines;
3860 extern void write_string (const char *, int);
3861 extern void print_error_message (Lisp_Object, Lisp_Object, const char *,
3862 Lisp_Object);
3863 extern Lisp_Object internal_with_output_to_temp_buffer
3864 (const char *, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3865 #define FLOAT_TO_STRING_BUFSIZE 350
3866 extern int float_to_string (char *, double);
3867 extern void init_print_once (void);
3868 extern void syms_of_print (void);
3869
3870 /* Defined in doprnt.c. */
3871 extern ptrdiff_t doprnt (char *, ptrdiff_t, const char *, const char *,
3872 va_list);
3873 extern ptrdiff_t esprintf (char *, char const *, ...)
3874 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3875 extern ptrdiff_t exprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3876 char const *, ...)
3877 ATTRIBUTE_FORMAT_PRINTF (5, 6);
3878 extern ptrdiff_t evxprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3879 char const *, va_list)
3880 ATTRIBUTE_FORMAT_PRINTF (5, 0);
3881
3882 /* Defined in lread.c. */
3883 extern Lisp_Object Qvariable_documentation, Qstandard_input;
3884 extern Lisp_Object Qbackquote, Qcomma, Qcomma_at, Qcomma_dot, Qfunction;
3885 extern Lisp_Object Qlexical_binding;
3886 extern Lisp_Object check_obarray (Lisp_Object);
3887 extern Lisp_Object intern_1 (const char *, ptrdiff_t);
3888 extern Lisp_Object intern_c_string_1 (const char *, ptrdiff_t);
3889 extern Lisp_Object intern_driver (Lisp_Object, Lisp_Object, ptrdiff_t);
3890 extern Lisp_Object oblookup (Lisp_Object, const char *, ptrdiff_t, ptrdiff_t);
3891 INLINE void
3892 LOADHIST_ATTACH (Lisp_Object x)
3893 {
3894 if (initialized)
3895 Vcurrent_load_list = Fcons (x, Vcurrent_load_list);
3896 }
3897 extern int openp (Lisp_Object, Lisp_Object, Lisp_Object,
3898 Lisp_Object *, Lisp_Object, bool);
3899 extern Lisp_Object string_to_number (char const *, int, bool);
3900 extern void map_obarray (Lisp_Object, void (*) (Lisp_Object, Lisp_Object),
3901 Lisp_Object);
3902 extern void dir_warning (const char *, Lisp_Object);
3903 extern void init_obarray (void);
3904 extern void init_lread (void);
3905 extern void syms_of_lread (void);
3906
3907 INLINE Lisp_Object
3908 intern (const char *str)
3909 {
3910 return intern_1 (str, strlen (str));
3911 }
3912
3913 INLINE Lisp_Object
3914 intern_c_string (const char *str)
3915 {
3916 return intern_c_string_1 (str, strlen (str));
3917 }
3918
3919 /* Defined in eval.c. */
3920 extern EMACS_INT lisp_eval_depth;
3921 extern Lisp_Object Qexit, Qinteractive, Qcommandp, Qmacro;
3922 extern Lisp_Object Qinhibit_quit, Qinternal_interpreter_environment, Qclosure;
3923 extern Lisp_Object Qand_rest;
3924 extern Lisp_Object Vautoload_queue;
3925 extern Lisp_Object Vsignaling_function;
3926 extern Lisp_Object inhibit_lisp_code;
3927 extern struct handler *handlerlist;
3928
3929 /* To run a normal hook, use the appropriate function from the list below.
3930 The calling convention:
3931
3932 if (!NILP (Vrun_hooks))
3933 call1 (Vrun_hooks, Qmy_funny_hook);
3934
3935 should no longer be used. */
3936 extern Lisp_Object Vrun_hooks;
3937 extern void run_hook_with_args_2 (Lisp_Object, Lisp_Object, Lisp_Object);
3938 extern Lisp_Object run_hook_with_args (ptrdiff_t nargs, Lisp_Object *args,
3939 Lisp_Object (*funcall)
3940 (ptrdiff_t nargs, Lisp_Object *args));
3941 extern _Noreturn void xsignal (Lisp_Object, Lisp_Object);
3942 extern _Noreturn void xsignal0 (Lisp_Object);
3943 extern _Noreturn void xsignal1 (Lisp_Object, Lisp_Object);
3944 extern _Noreturn void xsignal2 (Lisp_Object, Lisp_Object, Lisp_Object);
3945 extern _Noreturn void xsignal3 (Lisp_Object, Lisp_Object, Lisp_Object,
3946 Lisp_Object);
3947 extern _Noreturn void signal_error (const char *, Lisp_Object);
3948 extern Lisp_Object eval_sub (Lisp_Object form);
3949 extern Lisp_Object apply1 (Lisp_Object, Lisp_Object);
3950 extern Lisp_Object call0 (Lisp_Object);
3951 extern Lisp_Object call1 (Lisp_Object, Lisp_Object);
3952 extern Lisp_Object call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3953 extern Lisp_Object call3 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3954 extern Lisp_Object call4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3955 extern Lisp_Object call5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3956 extern Lisp_Object call6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3957 extern Lisp_Object call7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3958 extern Lisp_Object internal_catch (Lisp_Object, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3959 extern Lisp_Object internal_lisp_condition_case (Lisp_Object, Lisp_Object, Lisp_Object);
3960 extern Lisp_Object internal_condition_case (Lisp_Object (*) (void), Lisp_Object, Lisp_Object (*) (Lisp_Object));
3961 extern Lisp_Object internal_condition_case_1 (Lisp_Object (*) (Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3962 extern Lisp_Object internal_condition_case_2 (Lisp_Object (*) (Lisp_Object, Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3963 extern Lisp_Object internal_condition_case_n
3964 (Lisp_Object (*) (ptrdiff_t, Lisp_Object *), ptrdiff_t, Lisp_Object *,
3965 Lisp_Object, Lisp_Object (*) (Lisp_Object, ptrdiff_t, Lisp_Object *));
3966 extern void specbind (Lisp_Object, Lisp_Object);
3967 extern void record_unwind_protect (void (*) (Lisp_Object), Lisp_Object);
3968 extern void record_unwind_protect_ptr (void (*) (void *), void *);
3969 extern void record_unwind_protect_int (void (*) (int), int);
3970 extern void record_unwind_protect_void (void (*) (void));
3971 extern void record_unwind_protect_nothing (void);
3972 extern void clear_unwind_protect (ptrdiff_t);
3973 extern void set_unwind_protect (ptrdiff_t, void (*) (Lisp_Object), Lisp_Object);
3974 extern void set_unwind_protect_ptr (ptrdiff_t, void (*) (void *), void *);
3975 extern Lisp_Object unbind_to (ptrdiff_t, Lisp_Object);
3976 extern _Noreturn void error (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3977 extern _Noreturn void verror (const char *, va_list)
3978 ATTRIBUTE_FORMAT_PRINTF (1, 0);
3979 extern void un_autoload (Lisp_Object);
3980 extern Lisp_Object call_debugger (Lisp_Object arg);
3981 extern void init_eval_once (void);
3982 extern Lisp_Object safe_call (ptrdiff_t, Lisp_Object, ...);
3983 extern Lisp_Object safe_call1 (Lisp_Object, Lisp_Object);
3984 extern Lisp_Object safe_call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3985 extern void init_eval (void);
3986 extern void syms_of_eval (void);
3987 extern void unwind_body (Lisp_Object);
3988 extern ptrdiff_t record_in_backtrace (Lisp_Object, Lisp_Object *, ptrdiff_t);
3989 extern void mark_specpdl (void);
3990 extern void get_backtrace (Lisp_Object array);
3991 Lisp_Object backtrace_top_function (void);
3992 extern bool let_shadows_buffer_binding_p (struct Lisp_Symbol *symbol);
3993 extern bool let_shadows_global_binding_p (Lisp_Object symbol);
3994
3995
3996 /* Defined in editfns.c. */
3997 extern Lisp_Object Qfield;
3998 extern void insert1 (Lisp_Object);
3999 extern Lisp_Object format2 (const char *, Lisp_Object, Lisp_Object);
4000 extern Lisp_Object save_excursion_save (void);
4001 extern Lisp_Object save_restriction_save (void);
4002 extern void save_excursion_restore (Lisp_Object);
4003 extern void save_restriction_restore (Lisp_Object);
4004 extern _Noreturn void time_overflow (void);
4005 extern Lisp_Object make_buffer_string (ptrdiff_t, ptrdiff_t, bool);
4006 extern Lisp_Object make_buffer_string_both (ptrdiff_t, ptrdiff_t, ptrdiff_t,
4007 ptrdiff_t, bool);
4008 extern void init_editfns (void);
4009 extern void syms_of_editfns (void);
4010 extern void set_time_zone_rule (const char *);
4011
4012 /* Defined in buffer.c. */
4013 extern bool mouse_face_overlay_overlaps (Lisp_Object);
4014 extern _Noreturn void nsberror (Lisp_Object);
4015 extern void adjust_overlays_for_insert (ptrdiff_t, ptrdiff_t);
4016 extern void adjust_overlays_for_delete (ptrdiff_t, ptrdiff_t);
4017 extern void fix_start_end_in_overlays (ptrdiff_t, ptrdiff_t);
4018 extern void report_overlay_modification (Lisp_Object, Lisp_Object, bool,
4019 Lisp_Object, Lisp_Object, Lisp_Object);
4020 extern bool overlay_touches_p (ptrdiff_t);
4021 extern Lisp_Object other_buffer_safely (Lisp_Object);
4022 extern Lisp_Object get_truename_buffer (Lisp_Object);
4023 extern void init_buffer_once (void);
4024 extern void init_buffer (int);
4025 extern void syms_of_buffer (void);
4026 extern void keys_of_buffer (void);
4027
4028 /* Defined in marker.c. */
4029
4030 extern ptrdiff_t marker_position (Lisp_Object);
4031 extern ptrdiff_t marker_byte_position (Lisp_Object);
4032 extern void clear_charpos_cache (struct buffer *);
4033 extern ptrdiff_t buf_charpos_to_bytepos (struct buffer *, ptrdiff_t);
4034 extern ptrdiff_t buf_bytepos_to_charpos (struct buffer *, ptrdiff_t);
4035 extern void unchain_marker (struct Lisp_Marker *marker);
4036 extern Lisp_Object set_marker_restricted (Lisp_Object, Lisp_Object, Lisp_Object);
4037 extern Lisp_Object set_marker_both (Lisp_Object, Lisp_Object, ptrdiff_t, ptrdiff_t);
4038 extern Lisp_Object set_marker_restricted_both (Lisp_Object, Lisp_Object,
4039 ptrdiff_t, ptrdiff_t);
4040 extern Lisp_Object build_marker (struct buffer *, ptrdiff_t, ptrdiff_t);
4041 extern void syms_of_marker (void);
4042
4043 /* Defined in fileio.c. */
4044
4045 extern Lisp_Object Qfile_error;
4046 extern Lisp_Object Qfile_notify_error;
4047 extern Lisp_Object Qfile_exists_p;
4048 extern Lisp_Object Qfile_directory_p;
4049 extern Lisp_Object Qinsert_file_contents;
4050 extern Lisp_Object Qfile_name_history;
4051 extern Lisp_Object expand_and_dir_to_file (Lisp_Object, Lisp_Object);
4052 extern Lisp_Object write_region (Lisp_Object, Lisp_Object, Lisp_Object,
4053 Lisp_Object, Lisp_Object, Lisp_Object,
4054 Lisp_Object, int);
4055 extern void close_file_unwind (int);
4056 extern void fclose_unwind (void *);
4057 extern void restore_point_unwind (Lisp_Object);
4058 extern _Noreturn void report_file_errno (const char *, Lisp_Object, int);
4059 extern _Noreturn void report_file_error (const char *, Lisp_Object);
4060 extern bool internal_delete_file (Lisp_Object);
4061 extern Lisp_Object emacs_readlinkat (int, const char *);
4062 extern bool file_directory_p (const char *);
4063 extern bool file_accessible_directory_p (Lisp_Object);
4064 extern void init_fileio (void);
4065 extern void syms_of_fileio (void);
4066 extern Lisp_Object make_temp_name (Lisp_Object, bool);
4067 extern Lisp_Object Qdelete_file;
4068
4069 /* Defined in search.c. */
4070 extern void shrink_regexp_cache (void);
4071 extern void restore_search_regs (void);
4072 extern void record_unwind_save_match_data (void);
4073 struct re_registers;
4074 extern struct re_pattern_buffer *compile_pattern (Lisp_Object,
4075 struct re_registers *,
4076 Lisp_Object, bool, bool);
4077 extern ptrdiff_t fast_string_match (Lisp_Object, Lisp_Object);
4078 extern ptrdiff_t fast_c_string_match_ignore_case (Lisp_Object, const char *,
4079 ptrdiff_t);
4080 extern ptrdiff_t fast_string_match_ignore_case (Lisp_Object, Lisp_Object);
4081 extern ptrdiff_t fast_looking_at (Lisp_Object, ptrdiff_t, ptrdiff_t,
4082 ptrdiff_t, ptrdiff_t, Lisp_Object);
4083 extern ptrdiff_t find_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4084 ptrdiff_t, ptrdiff_t *, ptrdiff_t *, bool);
4085 extern ptrdiff_t scan_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4086 ptrdiff_t, bool);
4087 extern ptrdiff_t find_newline_no_quit (ptrdiff_t, ptrdiff_t,
4088 ptrdiff_t, ptrdiff_t *);
4089 extern ptrdiff_t find_before_next_newline (ptrdiff_t, ptrdiff_t,
4090 ptrdiff_t, ptrdiff_t *);
4091 extern void syms_of_search (void);
4092 extern void clear_regexp_cache (void);
4093
4094 /* Defined in minibuf.c. */
4095
4096 extern Lisp_Object Qcompletion_ignore_case;
4097 extern Lisp_Object Vminibuffer_list;
4098 extern Lisp_Object last_minibuf_string;
4099 extern Lisp_Object get_minibuffer (EMACS_INT);
4100 extern void init_minibuf_once (void);
4101 extern void syms_of_minibuf (void);
4102
4103 /* Defined in callint.c. */
4104
4105 extern Lisp_Object Qminus, Qplus;
4106 extern Lisp_Object Qprogn;
4107 extern Lisp_Object Qwhen;
4108 extern Lisp_Object Qmouse_leave_buffer_hook;
4109 extern void syms_of_callint (void);
4110
4111 /* Defined in casefiddle.c. */
4112
4113 extern Lisp_Object Qidentity;
4114 extern void syms_of_casefiddle (void);
4115 extern void keys_of_casefiddle (void);
4116
4117 /* Defined in casetab.c. */
4118
4119 extern void init_casetab_once (void);
4120 extern void syms_of_casetab (void);
4121
4122 /* Defined in keyboard.c. */
4123
4124 extern Lisp_Object echo_message_buffer;
4125 extern struct kboard *echo_kboard;
4126 extern void cancel_echoing (void);
4127 extern Lisp_Object Qdisabled, QCfilter;
4128 extern Lisp_Object Qup, Qdown;
4129 extern Lisp_Object last_undo_boundary;
4130 extern bool input_pending;
4131 #ifdef HAVE_STACK_OVERFLOW_HANDLING
4132 extern sigjmp_buf return_to_command_loop;
4133 #endif
4134 extern Lisp_Object menu_bar_items (Lisp_Object);
4135 extern Lisp_Object tool_bar_items (Lisp_Object, int *);
4136 extern void discard_mouse_events (void);
4137 #ifdef USABLE_SIGIO
4138 void handle_input_available_signal (int);
4139 #endif
4140 extern Lisp_Object pending_funcalls;
4141 extern bool detect_input_pending (void);
4142 extern bool detect_input_pending_ignore_squeezables (void);
4143 extern bool detect_input_pending_run_timers (bool);
4144 extern void safe_run_hooks (Lisp_Object);
4145 extern void cmd_error_internal (Lisp_Object, const char *);
4146 extern Lisp_Object command_loop_1 (void);
4147 extern Lisp_Object read_menu_command (void);
4148 extern Lisp_Object recursive_edit_1 (void);
4149 extern void record_auto_save (void);
4150 extern void force_auto_save_soon (void);
4151 extern void init_keyboard (void);
4152 extern void syms_of_keyboard (void);
4153 extern void keys_of_keyboard (void);
4154
4155 /* Defined in indent.c. */
4156 extern ptrdiff_t current_column (void);
4157 extern void invalidate_current_column (void);
4158 extern bool indented_beyond_p (ptrdiff_t, ptrdiff_t, EMACS_INT);
4159 extern void syms_of_indent (void);
4160
4161 /* Defined in frame.c. */
4162 extern Lisp_Object Qonly, Qnone;
4163 extern void store_frame_param (struct frame *, Lisp_Object, Lisp_Object);
4164 extern void store_in_alist (Lisp_Object *, Lisp_Object, Lisp_Object);
4165 extern Lisp_Object do_switch_frame (Lisp_Object, int, int, Lisp_Object);
4166 extern Lisp_Object get_frame_param (struct frame *, Lisp_Object);
4167 extern void frames_discard_buffer (Lisp_Object);
4168 extern void syms_of_frame (void);
4169
4170 /* Defined in emacs.c. */
4171 extern char **initial_argv;
4172 extern int initial_argc;
4173 #if defined (HAVE_X_WINDOWS) || defined (HAVE_NS)
4174 extern bool display_arg;
4175 #endif
4176 extern Lisp_Object decode_env_path (const char *, const char *, bool);
4177 extern Lisp_Object empty_unibyte_string, empty_multibyte_string;
4178 extern Lisp_Object Qfile_name_handler_alist;
4179 extern _Noreturn void terminate_due_to_signal (int, int);
4180 extern Lisp_Object Qkill_emacs;
4181 #ifdef WINDOWSNT
4182 extern Lisp_Object Vlibrary_cache;
4183 #endif
4184 #if HAVE_SETLOCALE
4185 void fixup_locale (void);
4186 void synchronize_system_messages_locale (void);
4187 void synchronize_system_time_locale (void);
4188 #else
4189 INLINE void fixup_locale (void) {}
4190 INLINE void synchronize_system_messages_locale (void) {}
4191 INLINE void synchronize_system_time_locale (void) {}
4192 #endif
4193 extern void shut_down_emacs (int, Lisp_Object);
4194
4195 /* True means don't do interactive redisplay and don't change tty modes. */
4196 extern bool noninteractive;
4197
4198 /* True means remove site-lisp directories from load-path. */
4199 extern bool no_site_lisp;
4200
4201 /* Pipe used to send exit notification to the daemon parent at
4202 startup. */
4203 extern int daemon_pipe[2];
4204 #define IS_DAEMON (daemon_pipe[1] != 0)
4205
4206 /* True if handling a fatal error already. */
4207 extern bool fatal_error_in_progress;
4208
4209 /* True means don't do use window-system-specific display code. */
4210 extern bool inhibit_window_system;
4211 /* True means that a filter or a sentinel is running. */
4212 extern bool running_asynch_code;
4213
4214 /* Defined in process.c. */
4215 extern Lisp_Object QCtype, Qlocal;
4216 extern void kill_buffer_processes (Lisp_Object);
4217 extern int wait_reading_process_output (intmax_t, int, int, bool, Lisp_Object,
4218 struct Lisp_Process *, int);
4219 /* Max value for the first argument of wait_reading_process_output. */
4220 #if __GNUC__ == 3 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 5)
4221 /* Work around a bug in GCC 3.4.2, known to be fixed in GCC 4.6.3.
4222 The bug merely causes a bogus warning, but the warning is annoying. */
4223 # define WAIT_READING_MAX min (TYPE_MAXIMUM (time_t), INTMAX_MAX)
4224 #else
4225 # define WAIT_READING_MAX INTMAX_MAX
4226 #endif
4227 #ifdef HAVE_TIMERFD
4228 extern void add_timer_wait_descriptor (int);
4229 #endif
4230 extern void add_keyboard_wait_descriptor (int);
4231 extern void delete_keyboard_wait_descriptor (int);
4232 #ifdef HAVE_GPM
4233 extern void add_gpm_wait_descriptor (int);
4234 extern void delete_gpm_wait_descriptor (int);
4235 #endif
4236 extern void init_process_emacs (void);
4237 extern void syms_of_process (void);
4238 extern void setup_process_coding_systems (Lisp_Object);
4239
4240 /* Defined in callproc.c. */
4241 #ifndef DOS_NT
4242 _Noreturn
4243 #endif
4244 extern int child_setup (int, int, int, char **, bool, Lisp_Object);
4245 extern void init_callproc_1 (void);
4246 extern void init_callproc (void);
4247 extern void set_initial_environment (void);
4248 extern void syms_of_callproc (void);
4249
4250 /* Defined in doc.c. */
4251 extern Lisp_Object Qfunction_documentation;
4252 extern Lisp_Object read_doc_string (Lisp_Object);
4253 extern Lisp_Object get_doc_string (Lisp_Object, bool, bool);
4254 extern void syms_of_doc (void);
4255 extern int read_bytecode_char (bool);
4256
4257 /* Defined in bytecode.c. */
4258 extern void syms_of_bytecode (void);
4259 extern struct byte_stack *byte_stack_list;
4260 #if BYTE_MARK_STACK
4261 extern void mark_byte_stack (void);
4262 #endif
4263 extern void unmark_byte_stack (void);
4264 extern Lisp_Object exec_byte_code (Lisp_Object, Lisp_Object, Lisp_Object,
4265 Lisp_Object, ptrdiff_t, Lisp_Object *);
4266
4267 /* Defined in macros.c. */
4268 extern void init_macros (void);
4269 extern void syms_of_macros (void);
4270
4271 /* Defined in undo.c. */
4272 extern Lisp_Object Qapply;
4273 extern Lisp_Object Qinhibit_read_only;
4274 extern void truncate_undo_list (struct buffer *);
4275 extern void record_insert (ptrdiff_t, ptrdiff_t);
4276 extern void record_delete (ptrdiff_t, Lisp_Object, bool);
4277 extern void record_first_change (void);
4278 extern void record_change (ptrdiff_t, ptrdiff_t);
4279 extern void record_property_change (ptrdiff_t, ptrdiff_t,
4280 Lisp_Object, Lisp_Object,
4281 Lisp_Object);
4282 extern void syms_of_undo (void);
4283 /* Defined in textprop.c. */
4284 extern Lisp_Object Qmouse_face;
4285 extern Lisp_Object Qinsert_in_front_hooks, Qinsert_behind_hooks;
4286 extern Lisp_Object Qminibuffer_prompt;
4287
4288 extern void report_interval_modification (Lisp_Object, Lisp_Object);
4289
4290 /* Defined in menu.c. */
4291 extern void syms_of_menu (void);
4292
4293 /* Defined in xmenu.c. */
4294 extern void syms_of_xmenu (void);
4295
4296 /* Defined in termchar.h. */
4297 struct tty_display_info;
4298
4299 /* Defined in termhooks.h. */
4300 struct terminal;
4301
4302 /* Defined in sysdep.c. */
4303 #ifndef HAVE_GET_CURRENT_DIR_NAME
4304 extern char *get_current_dir_name (void);
4305 #endif
4306 extern void stuff_char (char c);
4307 extern void init_foreground_group (void);
4308 extern void sys_subshell (void);
4309 extern void sys_suspend (void);
4310 extern void discard_tty_input (void);
4311 extern void init_sys_modes (struct tty_display_info *);
4312 extern void reset_sys_modes (struct tty_display_info *);
4313 extern void init_all_sys_modes (void);
4314 extern void reset_all_sys_modes (void);
4315 extern void child_setup_tty (int);
4316 extern void setup_pty (int);
4317 extern int set_window_size (int, int, int);
4318 extern EMACS_INT get_random (void);
4319 extern void seed_random (void *, ptrdiff_t);
4320 extern void init_random (void);
4321 extern void emacs_backtrace (int);
4322 extern _Noreturn void emacs_abort (void) NO_INLINE;
4323 extern int emacs_open (const char *, int, int);
4324 extern int emacs_pipe (int[2]);
4325 extern int emacs_close (int);
4326 extern ptrdiff_t emacs_read (int, void *, ptrdiff_t);
4327 extern ptrdiff_t emacs_write (int, void const *, ptrdiff_t);
4328 extern ptrdiff_t emacs_write_sig (int, void const *, ptrdiff_t);
4329 extern void emacs_perror (char const *);
4330
4331 extern void unlock_all_files (void);
4332 extern void lock_file (Lisp_Object);
4333 extern void unlock_file (Lisp_Object);
4334 extern void unlock_buffer (struct buffer *);
4335 extern void syms_of_filelock (void);
4336 extern int str_collate (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4337
4338 /* Defined in sound.c. */
4339 extern void syms_of_sound (void);
4340
4341 /* Defined in category.c. */
4342 extern void init_category_once (void);
4343 extern Lisp_Object char_category_set (int);
4344 extern void syms_of_category (void);
4345
4346 /* Defined in ccl.c. */
4347 extern void syms_of_ccl (void);
4348
4349 /* Defined in dired.c. */
4350 extern void syms_of_dired (void);
4351 extern Lisp_Object directory_files_internal (Lisp_Object, Lisp_Object,
4352 Lisp_Object, Lisp_Object,
4353 bool, Lisp_Object);
4354
4355 /* Defined in term.c. */
4356 extern int *char_ins_del_vector;
4357 extern void syms_of_term (void);
4358 extern _Noreturn void fatal (const char *msgid, ...)
4359 ATTRIBUTE_FORMAT_PRINTF (1, 2);
4360
4361 /* Defined in terminal.c. */
4362 extern void syms_of_terminal (void);
4363
4364 /* Defined in font.c. */
4365 extern void syms_of_font (void);
4366 extern void init_font (void);
4367
4368 #ifdef HAVE_WINDOW_SYSTEM
4369 /* Defined in fontset.c. */
4370 extern void syms_of_fontset (void);
4371
4372 /* Defined in xfns.c, w32fns.c, or macfns.c. */
4373 extern Lisp_Object Qfont_param;
4374 #endif
4375
4376 /* Defined in gfilenotify.c */
4377 #ifdef HAVE_GFILENOTIFY
4378 extern void globals_of_gfilenotify (void);
4379 extern void syms_of_gfilenotify (void);
4380 #endif
4381
4382 /* Defined in inotify.c */
4383 #ifdef HAVE_INOTIFY
4384 extern void syms_of_inotify (void);
4385 #endif
4386
4387 #ifdef HAVE_W32NOTIFY
4388 /* Defined on w32notify.c. */
4389 extern void syms_of_w32notify (void);
4390 #endif
4391
4392 /* Defined in xfaces.c. */
4393 extern Lisp_Object Qdefault, Qfringe;
4394 extern Lisp_Object Qscroll_bar, Qcursor;
4395 extern Lisp_Object Qmode_line_inactive;
4396 extern Lisp_Object Qface;
4397 extern Lisp_Object Qnormal;
4398 extern Lisp_Object QCfamily, QCweight, QCslant;
4399 extern Lisp_Object QCheight, QCname, QCwidth, QCforeground, QCbackground;
4400 extern Lisp_Object Qextra_light, Qlight, Qsemi_light, Qsemi_bold;
4401 extern Lisp_Object Qbold, Qextra_bold, Qultra_bold;
4402 extern Lisp_Object Qoblique, Qitalic;
4403 extern Lisp_Object Vface_alternative_font_family_alist;
4404 extern Lisp_Object Vface_alternative_font_registry_alist;
4405 extern void syms_of_xfaces (void);
4406
4407 #ifdef HAVE_X_WINDOWS
4408 /* Defined in xfns.c. */
4409 extern void syms_of_xfns (void);
4410
4411 /* Defined in xsmfns.c. */
4412 extern void syms_of_xsmfns (void);
4413
4414 /* Defined in xselect.c. */
4415 extern void syms_of_xselect (void);
4416
4417 /* Defined in xterm.c. */
4418 extern void syms_of_xterm (void);
4419 #endif /* HAVE_X_WINDOWS */
4420
4421 #ifdef HAVE_WINDOW_SYSTEM
4422 /* Defined in xterm.c, nsterm.m, w32term.c. */
4423 extern char *x_get_keysym_name (int);
4424 #endif /* HAVE_WINDOW_SYSTEM */
4425
4426 #ifdef HAVE_LIBXML2
4427 /* Defined in xml.c. */
4428 extern void syms_of_xml (void);
4429 extern void xml_cleanup_parser (void);
4430 #endif
4431
4432 #ifdef HAVE_ZLIB
4433 /* Defined in decompress.c. */
4434 extern void syms_of_decompress (void);
4435 #endif
4436
4437 #ifdef HAVE_DBUS
4438 /* Defined in dbusbind.c. */
4439 void syms_of_dbusbind (void);
4440 #endif
4441
4442
4443 /* Defined in profiler.c. */
4444 extern bool profiler_memory_running;
4445 extern void malloc_probe (size_t);
4446 extern void syms_of_profiler (void);
4447
4448
4449 #ifdef DOS_NT
4450 /* Defined in msdos.c, w32.c. */
4451 extern char *emacs_root_dir (void);
4452 #endif /* DOS_NT */
4453
4454 /* Defined in lastfile.c. */
4455 extern char my_edata[];
4456 extern char my_endbss[];
4457 extern char *my_endbss_static;
4458
4459 /* True means ^G can quit instantly. */
4460 extern bool immediate_quit;
4461
4462 extern void *xmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4463 extern void *xzalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4464 extern void *xrealloc (void *, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
4465 extern void xfree (void *);
4466 extern void *xnmalloc (ptrdiff_t, ptrdiff_t) ATTRIBUTE_MALLOC_SIZE ((1,2));
4467 extern void *xnrealloc (void *, ptrdiff_t, ptrdiff_t)
4468 ATTRIBUTE_ALLOC_SIZE ((2,3));
4469 extern void *xpalloc (void *, ptrdiff_t *, ptrdiff_t, ptrdiff_t, ptrdiff_t);
4470
4471 extern char *xstrdup (const char *) ATTRIBUTE_MALLOC;
4472 extern char *xlispstrdup (Lisp_Object) ATTRIBUTE_MALLOC;
4473 extern void dupstring (char **, char const *);
4474
4475 /* Make DEST a copy of STRING's data. Return a pointer to DEST's terminating
4476 null byte. This is like stpcpy, except the source is a Lisp string. */
4477
4478 INLINE char *
4479 lispstpcpy (char *dest, Lisp_Object string)
4480 {
4481 ptrdiff_t len = SBYTES (string);
4482 memcpy (dest, SDATA (string), len + 1);
4483 return dest + len;
4484 }
4485
4486 extern void xputenv (const char *);
4487
4488 extern char *egetenv_internal (const char *, ptrdiff_t);
4489
4490 INLINE char *
4491 egetenv (const char *var)
4492 {
4493 /* When VAR is a string literal, strlen can be optimized away. */
4494 return egetenv_internal (var, strlen (var));
4495 }
4496
4497 /* Set up the name of the machine we're running on. */
4498 extern void init_system_name (void);
4499
4500 /* Return the absolute value of X. X should be a signed integer
4501 expression without side effects, and X's absolute value should not
4502 exceed the maximum for its promoted type. This is called 'eabs'
4503 because 'abs' is reserved by the C standard. */
4504 #define eabs(x) ((x) < 0 ? -(x) : (x))
4505
4506 /* Return a fixnum or float, depending on whether VAL fits in a Lisp
4507 fixnum. */
4508
4509 #define make_fixnum_or_float(val) \
4510 (FIXNUM_OVERFLOW_P (val) ? make_float (val) : make_number (val))
4511
4512 /* SAFE_ALLOCA normally allocates memory on the stack, but if size is
4513 larger than MAX_ALLOCA, use xmalloc to avoid overflowing the stack. */
4514
4515 enum MAX_ALLOCA { MAX_ALLOCA = 16 * 1024 };
4516
4517 extern void *record_xmalloc (size_t) ATTRIBUTE_ALLOC_SIZE ((1));
4518
4519 #define USE_SAFE_ALLOCA \
4520 ptrdiff_t sa_avail = MAX_ALLOCA; \
4521 ptrdiff_t sa_count = SPECPDL_INDEX (); bool sa_must_free = false
4522
4523 #define AVAIL_ALLOCA(size) (sa_avail -= (size), alloca (size))
4524
4525 /* SAFE_ALLOCA allocates a simple buffer. */
4526
4527 #define SAFE_ALLOCA(size) ((size) <= sa_avail \
4528 ? AVAIL_ALLOCA (size) \
4529 : (sa_must_free = true, record_xmalloc (size)))
4530
4531 /* SAFE_NALLOCA sets BUF to a newly allocated array of MULTIPLIER *
4532 NITEMS items, each of the same type as *BUF. MULTIPLIER must
4533 positive. The code is tuned for MULTIPLIER being a constant. */
4534
4535 #define SAFE_NALLOCA(buf, multiplier, nitems) \
4536 do { \
4537 if ((nitems) <= sa_avail / sizeof *(buf) / (multiplier)) \
4538 (buf) = AVAIL_ALLOCA (sizeof *(buf) * (multiplier) * (nitems)); \
4539 else \
4540 { \
4541 (buf) = xnmalloc (nitems, sizeof *(buf) * (multiplier)); \
4542 sa_must_free = true; \
4543 record_unwind_protect_ptr (xfree, buf); \
4544 } \
4545 } while (false)
4546
4547 /* SAFE_ALLOCA_STRING allocates a C copy of a Lisp string. */
4548
4549 #define SAFE_ALLOCA_STRING(ptr, string) \
4550 do { \
4551 (ptr) = SAFE_ALLOCA (SBYTES (string) + 1); \
4552 memcpy (ptr, SDATA (string), SBYTES (string) + 1); \
4553 } while (false)
4554
4555 /* SAFE_FREE frees xmalloced memory and enables GC as needed. */
4556
4557 #define SAFE_FREE() \
4558 do { \
4559 if (sa_must_free) { \
4560 sa_must_free = false; \
4561 unbind_to (sa_count, Qnil); \
4562 } \
4563 } while (false)
4564
4565
4566 /* SAFE_ALLOCA_LISP allocates an array of Lisp_Objects. */
4567
4568 #define SAFE_ALLOCA_LISP(buf, nelt) \
4569 do { \
4570 if ((nelt) <= sa_avail / word_size) \
4571 (buf) = AVAIL_ALLOCA ((nelt) * word_size); \
4572 else if ((nelt) <= min (PTRDIFF_MAX, SIZE_MAX) / word_size) \
4573 { \
4574 Lisp_Object arg_; \
4575 (buf) = xmalloc ((nelt) * word_size); \
4576 arg_ = make_save_memory (buf, nelt); \
4577 sa_must_free = true; \
4578 record_unwind_protect (free_save_value, arg_); \
4579 } \
4580 else \
4581 memory_full (SIZE_MAX); \
4582 } while (false)
4583
4584
4585 /* If USE_STACK_LISP_OBJECTS, define macros that and functions that
4586 allocate block-scoped conses and function-scoped vectors and
4587 strings. These objects are not managed by the garbage collector,
4588 so they are dangerous: passing them out of their scope (e.g., to
4589 user code) results in undefined behavior. Conversely, they have
4590 better performance because GC is not involved.
4591
4592 This feature is experimental and requires careful debugging.
4593 It's enabled by default on GNU/Linux with GCC. On other systems,
4594 brave users can compile with CPPFLAGS='-DUSE_STACK_LISP_OBJECTS'
4595 to get into the game. Also note that this feature requires
4596 GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS. */
4597
4598 /* A struct Lisp_Cons inside a union that is no larger and may be
4599 better-aligned. */
4600
4601 union Aligned_Cons
4602 {
4603 struct Lisp_Cons s;
4604 double d; intmax_t i; void *p;
4605 };
4606 verify (sizeof (struct Lisp_Cons) == sizeof (union Aligned_Cons));
4607
4608 /* Allocate a block-scoped cons. */
4609
4610 #define scoped_cons(car, cdr) \
4611 ((USE_STACK_LISP_OBJECTS \
4612 && alignof (union Aligned_Cons) % GCALIGNMENT == 0) \
4613 ? make_lisp_ptr (&((union Aligned_Cons) {{car, {cdr}}}).s, Lisp_Cons) \
4614 : Fcons (car, cdr))
4615
4616 /* Convenient utility macros similar to listX functions. */
4617
4618 #if USE_STACK_LISP_OBJECTS
4619 # define scoped_list1(a) scoped_cons (a, Qnil)
4620 # define scoped_list2(a, b) scoped_cons (a, scoped_list1 (b))
4621 # define scoped_list3(a, b, c) scoped_cons (a, scoped_list2 (b, c))
4622 # define scoped_list4(a, b, c, d) scoped_cons (a, scoped_list3 (b, c, d))
4623 #else
4624 # define scoped_list1(a) list1 (a)
4625 # define scoped_list2(a, b) list2 (a, b)
4626 # define scoped_list3(a, b, c) list3 (a, b, c)
4627 # define scoped_list4(a, b, c, d) list4 (a, b, c, d)
4628 #endif
4629
4630 /* Local allocators require both statement expressions and a
4631 GCALIGNMENT-aligned alloca. clang's alloca isn't properly aligned
4632 in some cases. In the absence of solid information, play it safe
4633 for other non-GCC compilers. */
4634 #if (USE_STACK_LISP_OBJECTS && HAVE_STATEMENT_EXPRESSIONS \
4635 && __GNUC__ && !__clang__)
4636 # define USE_LOCAL_ALLOCATORS
4637 #endif
4638
4639 #ifdef USE_LOCAL_ALLOCATORS
4640
4641 /* Return a function-scoped cons whose car is X and cdr is Y. */
4642
4643 # define local_cons(x, y) \
4644 ({ \
4645 struct Lisp_Cons *c_ = alloca (sizeof (struct Lisp_Cons)); \
4646 c_->car = (x); \
4647 c_->u.cdr = (y); \
4648 make_lisp_ptr (c_, Lisp_Cons); \
4649 })
4650
4651 # define local_list1(a) local_cons (a, Qnil)
4652 # define local_list2(a, b) local_cons (a, local_list1 (b))
4653 # define local_list3(a, b, c) local_cons (a, local_list2 (b, c))
4654 # define local_list4(a, b, c, d) local_cons (a, local_list3 (b, c, d))
4655
4656 /* Return a function-scoped vector of length SIZE, with each element
4657 being INIT. */
4658
4659 # define make_local_vector(size, init) \
4660 ({ \
4661 ptrdiff_t size_ = size; \
4662 Lisp_Object init_ = init; \
4663 Lisp_Object vec_; \
4664 if (size_ <= (MAX_ALLOCA - header_size) / word_size) \
4665 { \
4666 void *ptr_ = alloca (size_ * word_size + header_size); \
4667 vec_ = local_vector_init (ptr_, size_, init_); \
4668 } \
4669 else \
4670 vec_ = Fmake_vector (make_number (size_), init_); \
4671 vec_; \
4672 })
4673
4674 /* Return a function-scoped string with contents DATA and length NBYTES. */
4675
4676 # define make_local_string(data, nbytes) \
4677 ({ \
4678 char const *data_ = data; \
4679 ptrdiff_t nbytes_ = nbytes; \
4680 Lisp_Object string_; \
4681 if (nbytes_ <= MAX_ALLOCA - sizeof (struct Lisp_String) - 1) \
4682 { \
4683 struct Lisp_String *ptr_ \
4684 = alloca (sizeof (struct Lisp_String) + 1 + nbytes_); \
4685 string_ = local_string_init (ptr_, data_, nbytes_); \
4686 } \
4687 else \
4688 string_ = make_string (data_, nbytes_); \
4689 string_; \
4690 })
4691
4692 /* Return a function-scoped string with contents DATA. */
4693
4694 # define build_local_string(data) \
4695 ({ char const *data1_ = (data); \
4696 make_local_string (data1_, strlen (data1_)); })
4697
4698 #else
4699
4700 /* Safer but slower implementations. */
4701 INLINE Lisp_Object
4702 local_cons (Lisp_Object car, Lisp_Object cdr)
4703 {
4704 return Fcons (car, cdr);
4705 }
4706 INLINE Lisp_Object
4707 local_list1 (Lisp_Object a)
4708 {
4709 return list1 (a);
4710 }
4711 INLINE Lisp_Object
4712 local_list2 (Lisp_Object a, Lisp_Object b)
4713 {
4714 return list2 (a, b);
4715 }
4716 INLINE Lisp_Object
4717 local_list3 (Lisp_Object a, Lisp_Object b, Lisp_Object c)
4718 {
4719 return list3 (a, b, c);
4720 }
4721 INLINE Lisp_Object
4722 local_list4 (Lisp_Object a, Lisp_Object b, Lisp_Object c, Lisp_Object d)
4723 {
4724 return list4 (a, b, c, d);
4725 }
4726 INLINE Lisp_Object
4727 make_local_vector (ptrdiff_t size, Lisp_Object init)
4728 {
4729 return Fmake_vector (make_number (size), init);
4730 }
4731 INLINE Lisp_Object
4732 make_local_string (char const *str, ptrdiff_t nbytes)
4733 {
4734 return make_string (str, nbytes);
4735 }
4736 INLINE Lisp_Object
4737 build_local_string (const char *str)
4738 {
4739 return build_string (str);
4740 }
4741 #endif
4742
4743
4744 /* Loop over all tails of a list, checking for cycles.
4745 FIXME: Make tortoise and n internal declarations.
4746 FIXME: Unroll the loop body so we don't need `n'. */
4747 #define FOR_EACH_TAIL(hare, list, tortoise, n) \
4748 for ((tortoise) = (hare) = (list), (n) = true; \
4749 CONSP (hare); \
4750 (hare = XCDR (hare), (n) = !(n), \
4751 ((n) \
4752 ? (EQ (hare, tortoise) \
4753 ? xsignal1 (Qcircular_list, list) \
4754 : (void) 0) \
4755 /* Move tortoise before the next iteration, in case */ \
4756 /* the next iteration does an Fsetcdr. */ \
4757 : (void) ((tortoise) = XCDR (tortoise)))))
4758
4759 /* Do a `for' loop over alist values. */
4760
4761 #define FOR_EACH_ALIST_VALUE(head_var, list_var, value_var) \
4762 for ((list_var) = (head_var); \
4763 (CONSP (list_var) && ((value_var) = XCDR (XCAR (list_var)), true)); \
4764 (list_var) = XCDR (list_var))
4765
4766 /* Check whether it's time for GC, and run it if so. */
4767
4768 INLINE void
4769 maybe_gc (void)
4770 {
4771 if ((consing_since_gc > gc_cons_threshold
4772 && consing_since_gc > gc_relative_threshold)
4773 || (!NILP (Vmemory_full)
4774 && consing_since_gc > memory_full_cons_threshold))
4775 Fgarbage_collect ();
4776 }
4777
4778 INLINE bool
4779 functionp (Lisp_Object object)
4780 {
4781 if (SYMBOLP (object) && !NILP (Ffboundp (object)))
4782 {
4783 object = Findirect_function (object, Qt);
4784
4785 if (CONSP (object) && EQ (XCAR (object), Qautoload))
4786 {
4787 /* Autoloaded symbols are functions, except if they load
4788 macros or keymaps. */
4789 int i;
4790 for (i = 0; i < 4 && CONSP (object); i++)
4791 object = XCDR (object);
4792
4793 return ! (CONSP (object) && !NILP (XCAR (object)));
4794 }
4795 }
4796
4797 if (SUBRP (object))
4798 return XSUBR (object)->max_args != UNEVALLED;
4799 else if (COMPILEDP (object))
4800 return true;
4801 else if (CONSP (object))
4802 {
4803 Lisp_Object car = XCAR (object);
4804 return EQ (car, Qlambda) || EQ (car, Qclosure);
4805 }
4806 else
4807 return false;
4808 }
4809
4810 INLINE_HEADER_END
4811
4812 #endif /* EMACS_LISP_H */