]> code.delx.au - gnu-emacs/blob - src/alloc.c
3c9b2199e5239e2eb1348316a3c6fb8db67309be
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ALLOC_DEBUG
27 #undef INLINE
28 #endif
29
30 /* Note that this declares bzero on OSF/1. How dumb. */
31
32 #include <signal.h>
33
34 #ifdef HAVE_GTK_AND_PTHREAD
35 #include <pthread.h>
36 #endif
37
38 /* This file is part of the core Lisp implementation, and thus must
39 deal with the real data structures. If the Lisp implementation is
40 replaced, this file likely will not be used. */
41
42 #undef HIDE_LISP_IMPLEMENTATION
43 #include "lisp.h"
44 #include "process.h"
45 #include "intervals.h"
46 #include "puresize.h"
47 #include "buffer.h"
48 #include "window.h"
49 #include "keyboard.h"
50 #include "frame.h"
51 #include "blockinput.h"
52 #include "charset.h"
53 #include "syssignal.h"
54 #include <setjmp.h>
55
56 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
57 memory. Can do this only if using gmalloc.c. */
58
59 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
60 #undef GC_MALLOC_CHECK
61 #endif
62
63 #ifdef HAVE_UNISTD_H
64 #include <unistd.h>
65 #else
66 extern POINTER_TYPE *sbrk ();
67 #endif
68
69 #ifdef DOUG_LEA_MALLOC
70
71 #include <malloc.h>
72 /* malloc.h #defines this as size_t, at least in glibc2. */
73 #ifndef __malloc_size_t
74 #define __malloc_size_t int
75 #endif
76
77 /* Specify maximum number of areas to mmap. It would be nice to use a
78 value that explicitly means "no limit". */
79
80 #define MMAP_MAX_AREAS 100000000
81
82 #else /* not DOUG_LEA_MALLOC */
83
84 /* The following come from gmalloc.c. */
85
86 #define __malloc_size_t size_t
87 extern __malloc_size_t _bytes_used;
88 extern __malloc_size_t __malloc_extra_blocks;
89
90 #endif /* not DOUG_LEA_MALLOC */
91
92 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
93
94 /* When GTK uses the file chooser dialog, different backends can be loaded
95 dynamically. One such a backend is the Gnome VFS backend that gets loaded
96 if you run Gnome. That backend creates several threads and also allocates
97 memory with malloc.
98
99 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
100 functions below are called from malloc, there is a chance that one
101 of these threads preempts the Emacs main thread and the hook variables
102 end up in an inconsistent state. So we have a mutex to prevent that (note
103 that the backend handles concurrent access to malloc within its own threads
104 but Emacs code running in the main thread is not included in that control).
105
106 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
107 happens in one of the backend threads we will have two threads that tries
108 to run Emacs code at once, and the code is not prepared for that.
109 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
110
111 static pthread_mutex_t alloc_mutex;
112
113 #define BLOCK_INPUT_ALLOC \
114 do \
115 { \
116 pthread_mutex_lock (&alloc_mutex); \
117 if (pthread_self () == main_thread) \
118 BLOCK_INPUT; \
119 } \
120 while (0)
121 #define UNBLOCK_INPUT_ALLOC \
122 do \
123 { \
124 if (pthread_self () == main_thread) \
125 UNBLOCK_INPUT; \
126 pthread_mutex_unlock (&alloc_mutex); \
127 } \
128 while (0)
129
130 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
131
132 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
133 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
134
135 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
136
137 /* Value of _bytes_used, when spare_memory was freed. */
138
139 static __malloc_size_t bytes_used_when_full;
140
141 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
142 to a struct Lisp_String. */
143
144 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
145 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
146 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
147
148 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
149 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
150 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
151
152 /* Value is the number of bytes/chars of S, a pointer to a struct
153 Lisp_String. This must be used instead of STRING_BYTES (S) or
154 S->size during GC, because S->size contains the mark bit for
155 strings. */
156
157 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
158 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
159
160 /* Number of bytes of consing done since the last gc. */
161
162 int consing_since_gc;
163
164 /* Count the amount of consing of various sorts of space. */
165
166 EMACS_INT cons_cells_consed;
167 EMACS_INT floats_consed;
168 EMACS_INT vector_cells_consed;
169 EMACS_INT symbols_consed;
170 EMACS_INT string_chars_consed;
171 EMACS_INT misc_objects_consed;
172 EMACS_INT intervals_consed;
173 EMACS_INT strings_consed;
174
175 /* Minimum number of bytes of consing since GC before next GC. */
176
177 EMACS_INT gc_cons_threshold;
178
179 /* Similar minimum, computed from Vgc_cons_percentage. */
180
181 EMACS_INT gc_relative_threshold;
182
183 static Lisp_Object Vgc_cons_percentage;
184
185 /* Nonzero during GC. */
186
187 int gc_in_progress;
188
189 /* Nonzero means abort if try to GC.
190 This is for code which is written on the assumption that
191 no GC will happen, so as to verify that assumption. */
192
193 int abort_on_gc;
194
195 /* Nonzero means display messages at beginning and end of GC. */
196
197 int garbage_collection_messages;
198
199 #ifndef VIRT_ADDR_VARIES
200 extern
201 #endif /* VIRT_ADDR_VARIES */
202 int malloc_sbrk_used;
203
204 #ifndef VIRT_ADDR_VARIES
205 extern
206 #endif /* VIRT_ADDR_VARIES */
207 int malloc_sbrk_unused;
208
209 /* Number of live and free conses etc. */
210
211 static int total_conses, total_markers, total_symbols, total_vector_size;
212 static int total_free_conses, total_free_markers, total_free_symbols;
213 static int total_free_floats, total_floats;
214
215 /* Points to memory space allocated as "spare", to be freed if we run
216 out of memory. */
217
218 static char *spare_memory;
219
220 /* Amount of spare memory to keep in reserve. */
221
222 #define SPARE_MEMORY (1 << 14)
223
224 /* Number of extra blocks malloc should get when it needs more core. */
225
226 static int malloc_hysteresis;
227
228 /* Non-nil means defun should do purecopy on the function definition. */
229
230 Lisp_Object Vpurify_flag;
231
232 /* Non-nil means we are handling a memory-full error. */
233
234 Lisp_Object Vmemory_full;
235
236 #ifndef HAVE_SHM
237
238 /* Initialize it to a nonzero value to force it into data space
239 (rather than bss space). That way unexec will remap it into text
240 space (pure), on some systems. We have not implemented the
241 remapping on more recent systems because this is less important
242 nowadays than in the days of small memories and timesharing. */
243
244 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
245 #define PUREBEG (char *) pure
246
247 #else /* HAVE_SHM */
248
249 #define pure PURE_SEG_BITS /* Use shared memory segment */
250 #define PUREBEG (char *)PURE_SEG_BITS
251
252 #endif /* HAVE_SHM */
253
254 /* Pointer to the pure area, and its size. */
255
256 static char *purebeg;
257 static size_t pure_size;
258
259 /* Number of bytes of pure storage used before pure storage overflowed.
260 If this is non-zero, this implies that an overflow occurred. */
261
262 static size_t pure_bytes_used_before_overflow;
263
264 /* Value is non-zero if P points into pure space. */
265
266 #define PURE_POINTER_P(P) \
267 (((PNTR_COMPARISON_TYPE) (P) \
268 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
269 && ((PNTR_COMPARISON_TYPE) (P) \
270 >= (PNTR_COMPARISON_TYPE) purebeg))
271
272 /* Index in pure at which next pure object will be allocated.. */
273
274 EMACS_INT pure_bytes_used;
275
276 /* If nonzero, this is a warning delivered by malloc and not yet
277 displayed. */
278
279 char *pending_malloc_warning;
280
281 /* Pre-computed signal argument for use when memory is exhausted. */
282
283 Lisp_Object Vmemory_signal_data;
284
285 /* Maximum amount of C stack to save when a GC happens. */
286
287 #ifndef MAX_SAVE_STACK
288 #define MAX_SAVE_STACK 16000
289 #endif
290
291 /* Buffer in which we save a copy of the C stack at each GC. */
292
293 char *stack_copy;
294 int stack_copy_size;
295
296 /* Non-zero means ignore malloc warnings. Set during initialization.
297 Currently not used. */
298
299 int ignore_warnings;
300
301 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
302
303 /* Hook run after GC has finished. */
304
305 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
306
307 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
308 EMACS_INT gcs_done; /* accumulated GCs */
309
310 static void mark_buffer P_ ((Lisp_Object));
311 extern void mark_kboards P_ ((void));
312 extern void mark_backtrace P_ ((void));
313 static void gc_sweep P_ ((void));
314 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
315 static void mark_face_cache P_ ((struct face_cache *));
316
317 #ifdef HAVE_WINDOW_SYSTEM
318 extern void mark_fringe_data P_ ((void));
319 static void mark_image P_ ((struct image *));
320 static void mark_image_cache P_ ((struct frame *));
321 #endif /* HAVE_WINDOW_SYSTEM */
322
323 static struct Lisp_String *allocate_string P_ ((void));
324 static void compact_small_strings P_ ((void));
325 static void free_large_strings P_ ((void));
326 static void sweep_strings P_ ((void));
327
328 extern int message_enable_multibyte;
329
330 /* When scanning the C stack for live Lisp objects, Emacs keeps track
331 of what memory allocated via lisp_malloc is intended for what
332 purpose. This enumeration specifies the type of memory. */
333
334 enum mem_type
335 {
336 MEM_TYPE_NON_LISP,
337 MEM_TYPE_BUFFER,
338 MEM_TYPE_CONS,
339 MEM_TYPE_STRING,
340 MEM_TYPE_MISC,
341 MEM_TYPE_SYMBOL,
342 MEM_TYPE_FLOAT,
343 /* Keep the following vector-like types together, with
344 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
345 first. Or change the code of live_vector_p, for instance. */
346 MEM_TYPE_VECTOR,
347 MEM_TYPE_PROCESS,
348 MEM_TYPE_HASH_TABLE,
349 MEM_TYPE_FRAME,
350 MEM_TYPE_WINDOW
351 };
352
353 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
354
355 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
356 #include <stdio.h> /* For fprintf. */
357 #endif
358
359 /* A unique object in pure space used to make some Lisp objects
360 on free lists recognizable in O(1). */
361
362 Lisp_Object Vdead;
363
364 #ifdef GC_MALLOC_CHECK
365
366 enum mem_type allocated_mem_type;
367 int dont_register_blocks;
368
369 #endif /* GC_MALLOC_CHECK */
370
371 /* A node in the red-black tree describing allocated memory containing
372 Lisp data. Each such block is recorded with its start and end
373 address when it is allocated, and removed from the tree when it
374 is freed.
375
376 A red-black tree is a balanced binary tree with the following
377 properties:
378
379 1. Every node is either red or black.
380 2. Every leaf is black.
381 3. If a node is red, then both of its children are black.
382 4. Every simple path from a node to a descendant leaf contains
383 the same number of black nodes.
384 5. The root is always black.
385
386 When nodes are inserted into the tree, or deleted from the tree,
387 the tree is "fixed" so that these properties are always true.
388
389 A red-black tree with N internal nodes has height at most 2
390 log(N+1). Searches, insertions and deletions are done in O(log N).
391 Please see a text book about data structures for a detailed
392 description of red-black trees. Any book worth its salt should
393 describe them. */
394
395 struct mem_node
396 {
397 /* Children of this node. These pointers are never NULL. When there
398 is no child, the value is MEM_NIL, which points to a dummy node. */
399 struct mem_node *left, *right;
400
401 /* The parent of this node. In the root node, this is NULL. */
402 struct mem_node *parent;
403
404 /* Start and end of allocated region. */
405 void *start, *end;
406
407 /* Node color. */
408 enum {MEM_BLACK, MEM_RED} color;
409
410 /* Memory type. */
411 enum mem_type type;
412 };
413
414 /* Base address of stack. Set in main. */
415
416 Lisp_Object *stack_base;
417
418 /* Root of the tree describing allocated Lisp memory. */
419
420 static struct mem_node *mem_root;
421
422 /* Lowest and highest known address in the heap. */
423
424 static void *min_heap_address, *max_heap_address;
425
426 /* Sentinel node of the tree. */
427
428 static struct mem_node mem_z;
429 #define MEM_NIL &mem_z
430
431 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
432 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
433 static void lisp_free P_ ((POINTER_TYPE *));
434 static void mark_stack P_ ((void));
435 static int live_vector_p P_ ((struct mem_node *, void *));
436 static int live_buffer_p P_ ((struct mem_node *, void *));
437 static int live_string_p P_ ((struct mem_node *, void *));
438 static int live_cons_p P_ ((struct mem_node *, void *));
439 static int live_symbol_p P_ ((struct mem_node *, void *));
440 static int live_float_p P_ ((struct mem_node *, void *));
441 static int live_misc_p P_ ((struct mem_node *, void *));
442 static void mark_maybe_object P_ ((Lisp_Object));
443 static void mark_memory P_ ((void *, void *));
444 static void mem_init P_ ((void));
445 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
446 static void mem_insert_fixup P_ ((struct mem_node *));
447 static void mem_rotate_left P_ ((struct mem_node *));
448 static void mem_rotate_right P_ ((struct mem_node *));
449 static void mem_delete P_ ((struct mem_node *));
450 static void mem_delete_fixup P_ ((struct mem_node *));
451 static INLINE struct mem_node *mem_find P_ ((void *));
452
453 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
454 static void check_gcpros P_ ((void));
455 #endif
456
457 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
458
459 /* Recording what needs to be marked for gc. */
460
461 struct gcpro *gcprolist;
462
463 /* Addresses of staticpro'd variables. Initialize it to a nonzero
464 value; otherwise some compilers put it into BSS. */
465
466 #define NSTATICS 1280
467 Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
468
469 /* Index of next unused slot in staticvec. */
470
471 int staticidx = 0;
472
473 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
474
475
476 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
477 ALIGNMENT must be a power of 2. */
478
479 #define ALIGN(ptr, ALIGNMENT) \
480 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
481 & ~((ALIGNMENT) - 1)))
482
483
484 \f
485 /************************************************************************
486 Malloc
487 ************************************************************************/
488
489 /* Function malloc calls this if it finds we are near exhausting storage. */
490
491 void
492 malloc_warning (str)
493 char *str;
494 {
495 pending_malloc_warning = str;
496 }
497
498
499 /* Display an already-pending malloc warning. */
500
501 void
502 display_malloc_warning ()
503 {
504 call3 (intern ("display-warning"),
505 intern ("alloc"),
506 build_string (pending_malloc_warning),
507 intern ("emergency"));
508 pending_malloc_warning = 0;
509 }
510
511
512 #ifdef DOUG_LEA_MALLOC
513 # define BYTES_USED (mallinfo ().arena)
514 #else
515 # define BYTES_USED _bytes_used
516 #endif
517
518
519 /* Called if malloc returns zero. */
520
521 void
522 memory_full ()
523 {
524 Vmemory_full = Qt;
525
526 #ifndef SYSTEM_MALLOC
527 bytes_used_when_full = BYTES_USED;
528 #endif
529
530 /* The first time we get here, free the spare memory. */
531 if (spare_memory)
532 {
533 free (spare_memory);
534 spare_memory = 0;
535 }
536
537 /* This used to call error, but if we've run out of memory, we could
538 get infinite recursion trying to build the string. */
539 while (1)
540 Fsignal (Qnil, Vmemory_signal_data);
541 }
542
543 DEFUN ("memory-full-p", Fmemory_full_p, Smemory_full_p, 0, 0, 0,
544 doc: /* t if memory is nearly full, nil otherwise. */)
545 ()
546 {
547 return (spare_memory ? Qnil : Qt);
548 }
549
550 /* Called if we can't allocate relocatable space for a buffer. */
551
552 void
553 buffer_memory_full ()
554 {
555 /* If buffers use the relocating allocator, no need to free
556 spare_memory, because we may have plenty of malloc space left
557 that we could get, and if we don't, the malloc that fails will
558 itself cause spare_memory to be freed. If buffers don't use the
559 relocating allocator, treat this like any other failing
560 malloc. */
561
562 #ifndef REL_ALLOC
563 memory_full ();
564 #endif
565
566 Vmemory_full = Qt;
567
568 /* This used to call error, but if we've run out of memory, we could
569 get infinite recursion trying to build the string. */
570 while (1)
571 Fsignal (Qnil, Vmemory_signal_data);
572 }
573
574
575 #ifdef XMALLOC_OVERRUN_CHECK
576
577 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
578 and a 16 byte trailer around each block.
579
580 The header consists of 12 fixed bytes + a 4 byte integer contaning the
581 original block size, while the trailer consists of 16 fixed bytes.
582
583 The header is used to detect whether this block has been allocated
584 through these functions -- as it seems that some low-level libc
585 functions may bypass the malloc hooks.
586 */
587
588
589 #define XMALLOC_OVERRUN_CHECK_SIZE 16
590
591 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
592 { 0x9a, 0x9b, 0xae, 0xaf,
593 0xbf, 0xbe, 0xce, 0xcf,
594 0xea, 0xeb, 0xec, 0xed };
595
596 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
597 { 0xaa, 0xab, 0xac, 0xad,
598 0xba, 0xbb, 0xbc, 0xbd,
599 0xca, 0xcb, 0xcc, 0xcd,
600 0xda, 0xdb, 0xdc, 0xdd };
601
602 /* Macros to insert and extract the block size in the header. */
603
604 #define XMALLOC_PUT_SIZE(ptr, size) \
605 (ptr[-1] = (size & 0xff), \
606 ptr[-2] = ((size >> 8) & 0xff), \
607 ptr[-3] = ((size >> 16) & 0xff), \
608 ptr[-4] = ((size >> 24) & 0xff))
609
610 #define XMALLOC_GET_SIZE(ptr) \
611 (size_t)((unsigned)(ptr[-1]) | \
612 ((unsigned)(ptr[-2]) << 8) | \
613 ((unsigned)(ptr[-3]) << 16) | \
614 ((unsigned)(ptr[-4]) << 24))
615
616
617 /* The call depth in overrun_check functions. For example, this might happen:
618 xmalloc()
619 overrun_check_malloc()
620 -> malloc -> (via hook)_-> emacs_blocked_malloc
621 -> overrun_check_malloc
622 call malloc (hooks are NULL, so real malloc is called).
623 malloc returns 10000.
624 add overhead, return 10016.
625 <- (back in overrun_check_malloc)
626 add overhead again, return 10032
627 xmalloc returns 10032.
628
629 (time passes).
630
631 xfree(10032)
632 overrun_check_free(10032)
633 decrease overhed
634 free(10016) <- crash, because 10000 is the original pointer. */
635
636 static int check_depth;
637
638 /* Like malloc, but wraps allocated block with header and trailer. */
639
640 POINTER_TYPE *
641 overrun_check_malloc (size)
642 size_t size;
643 {
644 register unsigned char *val;
645 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
646
647 val = (unsigned char *) malloc (size + overhead);
648 if (val && check_depth == 1)
649 {
650 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
651 val += XMALLOC_OVERRUN_CHECK_SIZE;
652 XMALLOC_PUT_SIZE(val, size);
653 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
654 }
655 --check_depth;
656 return (POINTER_TYPE *)val;
657 }
658
659
660 /* Like realloc, but checks old block for overrun, and wraps new block
661 with header and trailer. */
662
663 POINTER_TYPE *
664 overrun_check_realloc (block, size)
665 POINTER_TYPE *block;
666 size_t size;
667 {
668 register unsigned char *val = (unsigned char *)block;
669 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
670
671 if (val
672 && check_depth == 1
673 && bcmp (xmalloc_overrun_check_header,
674 val - XMALLOC_OVERRUN_CHECK_SIZE,
675 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
676 {
677 size_t osize = XMALLOC_GET_SIZE (val);
678 if (bcmp (xmalloc_overrun_check_trailer,
679 val + osize,
680 XMALLOC_OVERRUN_CHECK_SIZE))
681 abort ();
682 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
683 val -= XMALLOC_OVERRUN_CHECK_SIZE;
684 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
685 }
686
687 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
688
689 if (val && check_depth == 1)
690 {
691 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
692 val += XMALLOC_OVERRUN_CHECK_SIZE;
693 XMALLOC_PUT_SIZE(val, size);
694 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
695 }
696 --check_depth;
697 return (POINTER_TYPE *)val;
698 }
699
700 /* Like free, but checks block for overrun. */
701
702 void
703 overrun_check_free (block)
704 POINTER_TYPE *block;
705 {
706 unsigned char *val = (unsigned char *)block;
707
708 ++check_depth;
709 if (val
710 && check_depth == 1
711 && bcmp (xmalloc_overrun_check_header,
712 val - XMALLOC_OVERRUN_CHECK_SIZE,
713 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
714 {
715 size_t osize = XMALLOC_GET_SIZE (val);
716 if (bcmp (xmalloc_overrun_check_trailer,
717 val + osize,
718 XMALLOC_OVERRUN_CHECK_SIZE))
719 abort ();
720 #ifdef XMALLOC_CLEAR_FREE_MEMORY
721 val -= XMALLOC_OVERRUN_CHECK_SIZE;
722 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
723 #else
724 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
725 val -= XMALLOC_OVERRUN_CHECK_SIZE;
726 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
727 #endif
728 }
729
730 free (val);
731 --check_depth;
732 }
733
734 #undef malloc
735 #undef realloc
736 #undef free
737 #define malloc overrun_check_malloc
738 #define realloc overrun_check_realloc
739 #define free overrun_check_free
740 #endif
741
742
743 /* Like malloc but check for no memory and block interrupt input.. */
744
745 POINTER_TYPE *
746 xmalloc (size)
747 size_t size;
748 {
749 register POINTER_TYPE *val;
750
751 BLOCK_INPUT;
752 val = (POINTER_TYPE *) malloc (size);
753 UNBLOCK_INPUT;
754
755 if (!val && size)
756 memory_full ();
757 return val;
758 }
759
760
761 /* Like realloc but check for no memory and block interrupt input.. */
762
763 POINTER_TYPE *
764 xrealloc (block, size)
765 POINTER_TYPE *block;
766 size_t size;
767 {
768 register POINTER_TYPE *val;
769
770 BLOCK_INPUT;
771 /* We must call malloc explicitly when BLOCK is 0, since some
772 reallocs don't do this. */
773 if (! block)
774 val = (POINTER_TYPE *) malloc (size);
775 else
776 val = (POINTER_TYPE *) realloc (block, size);
777 UNBLOCK_INPUT;
778
779 if (!val && size) memory_full ();
780 return val;
781 }
782
783
784 /* Like free but block interrupt input. */
785
786 void
787 xfree (block)
788 POINTER_TYPE *block;
789 {
790 BLOCK_INPUT;
791 free (block);
792 UNBLOCK_INPUT;
793 }
794
795
796 /* Like strdup, but uses xmalloc. */
797
798 char *
799 xstrdup (s)
800 const char *s;
801 {
802 size_t len = strlen (s) + 1;
803 char *p = (char *) xmalloc (len);
804 bcopy (s, p, len);
805 return p;
806 }
807
808
809 /* Unwind for SAFE_ALLOCA */
810
811 Lisp_Object
812 safe_alloca_unwind (arg)
813 Lisp_Object arg;
814 {
815 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
816
817 p->dogc = 0;
818 xfree (p->pointer);
819 p->pointer = 0;
820 free_misc (arg);
821 return Qnil;
822 }
823
824
825 /* Like malloc but used for allocating Lisp data. NBYTES is the
826 number of bytes to allocate, TYPE describes the intended use of the
827 allcated memory block (for strings, for conses, ...). */
828
829 #ifndef USE_LSB_TAG
830 static void *lisp_malloc_loser;
831 #endif
832
833 static POINTER_TYPE *
834 lisp_malloc (nbytes, type)
835 size_t nbytes;
836 enum mem_type type;
837 {
838 register void *val;
839
840 BLOCK_INPUT;
841
842 #ifdef GC_MALLOC_CHECK
843 allocated_mem_type = type;
844 #endif
845
846 val = (void *) malloc (nbytes);
847
848 #ifndef USE_LSB_TAG
849 /* If the memory just allocated cannot be addressed thru a Lisp
850 object's pointer, and it needs to be,
851 that's equivalent to running out of memory. */
852 if (val && type != MEM_TYPE_NON_LISP)
853 {
854 Lisp_Object tem;
855 XSETCONS (tem, (char *) val + nbytes - 1);
856 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
857 {
858 lisp_malloc_loser = val;
859 free (val);
860 val = 0;
861 }
862 }
863 #endif
864
865 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
866 if (val && type != MEM_TYPE_NON_LISP)
867 mem_insert (val, (char *) val + nbytes, type);
868 #endif
869
870 UNBLOCK_INPUT;
871 if (!val && nbytes)
872 memory_full ();
873 return val;
874 }
875
876 /* Free BLOCK. This must be called to free memory allocated with a
877 call to lisp_malloc. */
878
879 static void
880 lisp_free (block)
881 POINTER_TYPE *block;
882 {
883 BLOCK_INPUT;
884 free (block);
885 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
886 mem_delete (mem_find (block));
887 #endif
888 UNBLOCK_INPUT;
889 }
890
891 /* Allocation of aligned blocks of memory to store Lisp data. */
892 /* The entry point is lisp_align_malloc which returns blocks of at most */
893 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
894
895
896 /* BLOCK_ALIGN has to be a power of 2. */
897 #define BLOCK_ALIGN (1 << 10)
898
899 /* Padding to leave at the end of a malloc'd block. This is to give
900 malloc a chance to minimize the amount of memory wasted to alignment.
901 It should be tuned to the particular malloc library used.
902 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
903 posix_memalign on the other hand would ideally prefer a value of 4
904 because otherwise, there's 1020 bytes wasted between each ablocks.
905 In Emacs, testing shows that those 1020 can most of the time be
906 efficiently used by malloc to place other objects, so a value of 0 can
907 still preferable unless you have a lot of aligned blocks and virtually
908 nothing else. */
909 #define BLOCK_PADDING 0
910 #define BLOCK_BYTES \
911 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
912
913 /* Internal data structures and constants. */
914
915 #define ABLOCKS_SIZE 16
916
917 /* An aligned block of memory. */
918 struct ablock
919 {
920 union
921 {
922 char payload[BLOCK_BYTES];
923 struct ablock *next_free;
924 } x;
925 /* `abase' is the aligned base of the ablocks. */
926 /* It is overloaded to hold the virtual `busy' field that counts
927 the number of used ablock in the parent ablocks.
928 The first ablock has the `busy' field, the others have the `abase'
929 field. To tell the difference, we assume that pointers will have
930 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
931 is used to tell whether the real base of the parent ablocks is `abase'
932 (if not, the word before the first ablock holds a pointer to the
933 real base). */
934 struct ablocks *abase;
935 /* The padding of all but the last ablock is unused. The padding of
936 the last ablock in an ablocks is not allocated. */
937 #if BLOCK_PADDING
938 char padding[BLOCK_PADDING];
939 #endif
940 };
941
942 /* A bunch of consecutive aligned blocks. */
943 struct ablocks
944 {
945 struct ablock blocks[ABLOCKS_SIZE];
946 };
947
948 /* Size of the block requested from malloc or memalign. */
949 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
950
951 #define ABLOCK_ABASE(block) \
952 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
953 ? (struct ablocks *)(block) \
954 : (block)->abase)
955
956 /* Virtual `busy' field. */
957 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
958
959 /* Pointer to the (not necessarily aligned) malloc block. */
960 #ifdef HAVE_POSIX_MEMALIGN
961 #define ABLOCKS_BASE(abase) (abase)
962 #else
963 #define ABLOCKS_BASE(abase) \
964 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
965 #endif
966
967 /* The list of free ablock. */
968 static struct ablock *free_ablock;
969
970 /* Allocate an aligned block of nbytes.
971 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
972 smaller or equal to BLOCK_BYTES. */
973 static POINTER_TYPE *
974 lisp_align_malloc (nbytes, type)
975 size_t nbytes;
976 enum mem_type type;
977 {
978 void *base, *val;
979 struct ablocks *abase;
980
981 eassert (nbytes <= BLOCK_BYTES);
982
983 BLOCK_INPUT;
984
985 #ifdef GC_MALLOC_CHECK
986 allocated_mem_type = type;
987 #endif
988
989 if (!free_ablock)
990 {
991 int i;
992 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
993
994 #ifdef DOUG_LEA_MALLOC
995 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
996 because mapped region contents are not preserved in
997 a dumped Emacs. */
998 mallopt (M_MMAP_MAX, 0);
999 #endif
1000
1001 #ifdef HAVE_POSIX_MEMALIGN
1002 {
1003 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1004 if (err)
1005 base = NULL;
1006 abase = base;
1007 }
1008 #else
1009 base = malloc (ABLOCKS_BYTES);
1010 abase = ALIGN (base, BLOCK_ALIGN);
1011 #endif
1012
1013 if (base == 0)
1014 {
1015 UNBLOCK_INPUT;
1016 memory_full ();
1017 }
1018
1019 aligned = (base == abase);
1020 if (!aligned)
1021 ((void**)abase)[-1] = base;
1022
1023 #ifdef DOUG_LEA_MALLOC
1024 /* Back to a reasonable maximum of mmap'ed areas. */
1025 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1026 #endif
1027
1028 #ifndef USE_LSB_TAG
1029 /* If the memory just allocated cannot be addressed thru a Lisp
1030 object's pointer, and it needs to be, that's equivalent to
1031 running out of memory. */
1032 if (type != MEM_TYPE_NON_LISP)
1033 {
1034 Lisp_Object tem;
1035 char *end = (char *) base + ABLOCKS_BYTES - 1;
1036 XSETCONS (tem, end);
1037 if ((char *) XCONS (tem) != end)
1038 {
1039 lisp_malloc_loser = base;
1040 free (base);
1041 UNBLOCK_INPUT;
1042 memory_full ();
1043 }
1044 }
1045 #endif
1046
1047 /* Initialize the blocks and put them on the free list.
1048 Is `base' was not properly aligned, we can't use the last block. */
1049 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1050 {
1051 abase->blocks[i].abase = abase;
1052 abase->blocks[i].x.next_free = free_ablock;
1053 free_ablock = &abase->blocks[i];
1054 }
1055 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1056
1057 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1058 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1059 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1060 eassert (ABLOCKS_BASE (abase) == base);
1061 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1062 }
1063
1064 abase = ABLOCK_ABASE (free_ablock);
1065 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1066 val = free_ablock;
1067 free_ablock = free_ablock->x.next_free;
1068
1069 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1070 if (val && type != MEM_TYPE_NON_LISP)
1071 mem_insert (val, (char *) val + nbytes, type);
1072 #endif
1073
1074 UNBLOCK_INPUT;
1075 if (!val && nbytes)
1076 memory_full ();
1077
1078 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1079 return val;
1080 }
1081
1082 static void
1083 lisp_align_free (block)
1084 POINTER_TYPE *block;
1085 {
1086 struct ablock *ablock = block;
1087 struct ablocks *abase = ABLOCK_ABASE (ablock);
1088
1089 BLOCK_INPUT;
1090 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1091 mem_delete (mem_find (block));
1092 #endif
1093 /* Put on free list. */
1094 ablock->x.next_free = free_ablock;
1095 free_ablock = ablock;
1096 /* Update busy count. */
1097 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1098
1099 if (2 > (long) ABLOCKS_BUSY (abase))
1100 { /* All the blocks are free. */
1101 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1102 struct ablock **tem = &free_ablock;
1103 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1104
1105 while (*tem)
1106 {
1107 if (*tem >= (struct ablock *) abase && *tem < atop)
1108 {
1109 i++;
1110 *tem = (*tem)->x.next_free;
1111 }
1112 else
1113 tem = &(*tem)->x.next_free;
1114 }
1115 eassert ((aligned & 1) == aligned);
1116 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1117 free (ABLOCKS_BASE (abase));
1118 }
1119 UNBLOCK_INPUT;
1120 }
1121
1122 /* Return a new buffer structure allocated from the heap with
1123 a call to lisp_malloc. */
1124
1125 struct buffer *
1126 allocate_buffer ()
1127 {
1128 struct buffer *b
1129 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1130 MEM_TYPE_BUFFER);
1131 return b;
1132 }
1133
1134 \f
1135 #ifndef SYSTEM_MALLOC
1136
1137 /* If we released our reserve (due to running out of memory),
1138 and we have a fair amount free once again,
1139 try to set aside another reserve in case we run out once more.
1140
1141 This is called when a relocatable block is freed in ralloc.c. */
1142
1143 void
1144 refill_memory_reserve ()
1145 {
1146 if (spare_memory == 0)
1147 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
1148 }
1149
1150 \f
1151 /* Arranging to disable input signals while we're in malloc.
1152
1153 This only works with GNU malloc. To help out systems which can't
1154 use GNU malloc, all the calls to malloc, realloc, and free
1155 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1156 pair; unfortunately, we have no idea what C library functions
1157 might call malloc, so we can't really protect them unless you're
1158 using GNU malloc. Fortunately, most of the major operating systems
1159 can use GNU malloc. */
1160
1161 #ifndef SYNC_INPUT
1162
1163 #ifndef DOUG_LEA_MALLOC
1164 extern void * (*__malloc_hook) P_ ((size_t));
1165 extern void * (*__realloc_hook) P_ ((void *, size_t));
1166 extern void (*__free_hook) P_ ((void *));
1167 /* Else declared in malloc.h, perhaps with an extra arg. */
1168 #endif /* DOUG_LEA_MALLOC */
1169 static void * (*old_malloc_hook) ();
1170 static void * (*old_realloc_hook) ();
1171 static void (*old_free_hook) ();
1172
1173 /* This function is used as the hook for free to call. */
1174
1175 static void
1176 emacs_blocked_free (ptr)
1177 void *ptr;
1178 {
1179 BLOCK_INPUT_ALLOC;
1180
1181 #ifdef GC_MALLOC_CHECK
1182 if (ptr)
1183 {
1184 struct mem_node *m;
1185
1186 m = mem_find (ptr);
1187 if (m == MEM_NIL || m->start != ptr)
1188 {
1189 fprintf (stderr,
1190 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1191 abort ();
1192 }
1193 else
1194 {
1195 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1196 mem_delete (m);
1197 }
1198 }
1199 #endif /* GC_MALLOC_CHECK */
1200
1201 __free_hook = old_free_hook;
1202 free (ptr);
1203
1204 /* If we released our reserve (due to running out of memory),
1205 and we have a fair amount free once again,
1206 try to set aside another reserve in case we run out once more. */
1207 if (spare_memory == 0
1208 /* Verify there is enough space that even with the malloc
1209 hysteresis this call won't run out again.
1210 The code here is correct as long as SPARE_MEMORY
1211 is substantially larger than the block size malloc uses. */
1212 && (bytes_used_when_full
1213 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
1214 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
1215
1216 __free_hook = emacs_blocked_free;
1217 UNBLOCK_INPUT_ALLOC;
1218 }
1219
1220
1221 /* This function is the malloc hook that Emacs uses. */
1222
1223 static void *
1224 emacs_blocked_malloc (size)
1225 size_t size;
1226 {
1227 void *value;
1228
1229 BLOCK_INPUT_ALLOC;
1230 __malloc_hook = old_malloc_hook;
1231 #ifdef DOUG_LEA_MALLOC
1232 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
1233 #else
1234 __malloc_extra_blocks = malloc_hysteresis;
1235 #endif
1236
1237 value = (void *) malloc (size);
1238
1239 #ifdef GC_MALLOC_CHECK
1240 {
1241 struct mem_node *m = mem_find (value);
1242 if (m != MEM_NIL)
1243 {
1244 fprintf (stderr, "Malloc returned %p which is already in use\n",
1245 value);
1246 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1247 m->start, m->end, (char *) m->end - (char *) m->start,
1248 m->type);
1249 abort ();
1250 }
1251
1252 if (!dont_register_blocks)
1253 {
1254 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1255 allocated_mem_type = MEM_TYPE_NON_LISP;
1256 }
1257 }
1258 #endif /* GC_MALLOC_CHECK */
1259
1260 __malloc_hook = emacs_blocked_malloc;
1261 UNBLOCK_INPUT_ALLOC;
1262
1263 /* fprintf (stderr, "%p malloc\n", value); */
1264 return value;
1265 }
1266
1267
1268 /* This function is the realloc hook that Emacs uses. */
1269
1270 static void *
1271 emacs_blocked_realloc (ptr, size)
1272 void *ptr;
1273 size_t size;
1274 {
1275 void *value;
1276
1277 BLOCK_INPUT_ALLOC;
1278 __realloc_hook = old_realloc_hook;
1279
1280 #ifdef GC_MALLOC_CHECK
1281 if (ptr)
1282 {
1283 struct mem_node *m = mem_find (ptr);
1284 if (m == MEM_NIL || m->start != ptr)
1285 {
1286 fprintf (stderr,
1287 "Realloc of %p which wasn't allocated with malloc\n",
1288 ptr);
1289 abort ();
1290 }
1291
1292 mem_delete (m);
1293 }
1294
1295 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1296
1297 /* Prevent malloc from registering blocks. */
1298 dont_register_blocks = 1;
1299 #endif /* GC_MALLOC_CHECK */
1300
1301 value = (void *) realloc (ptr, size);
1302
1303 #ifdef GC_MALLOC_CHECK
1304 dont_register_blocks = 0;
1305
1306 {
1307 struct mem_node *m = mem_find (value);
1308 if (m != MEM_NIL)
1309 {
1310 fprintf (stderr, "Realloc returns memory that is already in use\n");
1311 abort ();
1312 }
1313
1314 /* Can't handle zero size regions in the red-black tree. */
1315 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1316 }
1317
1318 /* fprintf (stderr, "%p <- realloc\n", value); */
1319 #endif /* GC_MALLOC_CHECK */
1320
1321 __realloc_hook = emacs_blocked_realloc;
1322 UNBLOCK_INPUT_ALLOC;
1323
1324 return value;
1325 }
1326
1327
1328 #ifdef HAVE_GTK_AND_PTHREAD
1329 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1330 normal malloc. Some thread implementations need this as they call
1331 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1332 calls malloc because it is the first call, and we have an endless loop. */
1333
1334 void
1335 reset_malloc_hooks ()
1336 {
1337 __free_hook = 0;
1338 __malloc_hook = 0;
1339 __realloc_hook = 0;
1340 }
1341 #endif /* HAVE_GTK_AND_PTHREAD */
1342
1343
1344 /* Called from main to set up malloc to use our hooks. */
1345
1346 void
1347 uninterrupt_malloc ()
1348 {
1349 #ifdef HAVE_GTK_AND_PTHREAD
1350 pthread_mutexattr_t attr;
1351
1352 /* GLIBC has a faster way to do this, but lets keep it portable.
1353 This is according to the Single UNIX Specification. */
1354 pthread_mutexattr_init (&attr);
1355 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1356 pthread_mutex_init (&alloc_mutex, &attr);
1357 #endif /* HAVE_GTK_AND_PTHREAD */
1358
1359 if (__free_hook != emacs_blocked_free)
1360 old_free_hook = __free_hook;
1361 __free_hook = emacs_blocked_free;
1362
1363 if (__malloc_hook != emacs_blocked_malloc)
1364 old_malloc_hook = __malloc_hook;
1365 __malloc_hook = emacs_blocked_malloc;
1366
1367 if (__realloc_hook != emacs_blocked_realloc)
1368 old_realloc_hook = __realloc_hook;
1369 __realloc_hook = emacs_blocked_realloc;
1370 }
1371
1372 #endif /* not SYNC_INPUT */
1373 #endif /* not SYSTEM_MALLOC */
1374
1375
1376 \f
1377 /***********************************************************************
1378 Interval Allocation
1379 ***********************************************************************/
1380
1381 /* Number of intervals allocated in an interval_block structure.
1382 The 1020 is 1024 minus malloc overhead. */
1383
1384 #define INTERVAL_BLOCK_SIZE \
1385 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1386
1387 /* Intervals are allocated in chunks in form of an interval_block
1388 structure. */
1389
1390 struct interval_block
1391 {
1392 /* Place `intervals' first, to preserve alignment. */
1393 struct interval intervals[INTERVAL_BLOCK_SIZE];
1394 struct interval_block *next;
1395 };
1396
1397 /* Current interval block. Its `next' pointer points to older
1398 blocks. */
1399
1400 struct interval_block *interval_block;
1401
1402 /* Index in interval_block above of the next unused interval
1403 structure. */
1404
1405 static int interval_block_index;
1406
1407 /* Number of free and live intervals. */
1408
1409 static int total_free_intervals, total_intervals;
1410
1411 /* List of free intervals. */
1412
1413 INTERVAL interval_free_list;
1414
1415 /* Total number of interval blocks now in use. */
1416
1417 int n_interval_blocks;
1418
1419
1420 /* Initialize interval allocation. */
1421
1422 static void
1423 init_intervals ()
1424 {
1425 interval_block = NULL;
1426 interval_block_index = INTERVAL_BLOCK_SIZE;
1427 interval_free_list = 0;
1428 n_interval_blocks = 0;
1429 }
1430
1431
1432 /* Return a new interval. */
1433
1434 INTERVAL
1435 make_interval ()
1436 {
1437 INTERVAL val;
1438
1439 if (interval_free_list)
1440 {
1441 val = interval_free_list;
1442 interval_free_list = INTERVAL_PARENT (interval_free_list);
1443 }
1444 else
1445 {
1446 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1447 {
1448 register struct interval_block *newi;
1449
1450 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1451 MEM_TYPE_NON_LISP);
1452
1453 newi->next = interval_block;
1454 interval_block = newi;
1455 interval_block_index = 0;
1456 n_interval_blocks++;
1457 }
1458 val = &interval_block->intervals[interval_block_index++];
1459 }
1460 consing_since_gc += sizeof (struct interval);
1461 intervals_consed++;
1462 RESET_INTERVAL (val);
1463 val->gcmarkbit = 0;
1464 return val;
1465 }
1466
1467
1468 /* Mark Lisp objects in interval I. */
1469
1470 static void
1471 mark_interval (i, dummy)
1472 register INTERVAL i;
1473 Lisp_Object dummy;
1474 {
1475 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1476 i->gcmarkbit = 1;
1477 mark_object (i->plist);
1478 }
1479
1480
1481 /* Mark the interval tree rooted in TREE. Don't call this directly;
1482 use the macro MARK_INTERVAL_TREE instead. */
1483
1484 static void
1485 mark_interval_tree (tree)
1486 register INTERVAL tree;
1487 {
1488 /* No need to test if this tree has been marked already; this
1489 function is always called through the MARK_INTERVAL_TREE macro,
1490 which takes care of that. */
1491
1492 traverse_intervals_noorder (tree, mark_interval, Qnil);
1493 }
1494
1495
1496 /* Mark the interval tree rooted in I. */
1497
1498 #define MARK_INTERVAL_TREE(i) \
1499 do { \
1500 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1501 mark_interval_tree (i); \
1502 } while (0)
1503
1504
1505 #define UNMARK_BALANCE_INTERVALS(i) \
1506 do { \
1507 if (! NULL_INTERVAL_P (i)) \
1508 (i) = balance_intervals (i); \
1509 } while (0)
1510
1511 \f
1512 /* Number support. If NO_UNION_TYPE isn't in effect, we
1513 can't create number objects in macros. */
1514 #ifndef make_number
1515 Lisp_Object
1516 make_number (n)
1517 EMACS_INT n;
1518 {
1519 Lisp_Object obj;
1520 obj.s.val = n;
1521 obj.s.type = Lisp_Int;
1522 return obj;
1523 }
1524 #endif
1525 \f
1526 /***********************************************************************
1527 String Allocation
1528 ***********************************************************************/
1529
1530 /* Lisp_Strings are allocated in string_block structures. When a new
1531 string_block is allocated, all the Lisp_Strings it contains are
1532 added to a free-list string_free_list. When a new Lisp_String is
1533 needed, it is taken from that list. During the sweep phase of GC,
1534 string_blocks that are entirely free are freed, except two which
1535 we keep.
1536
1537 String data is allocated from sblock structures. Strings larger
1538 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1539 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1540
1541 Sblocks consist internally of sdata structures, one for each
1542 Lisp_String. The sdata structure points to the Lisp_String it
1543 belongs to. The Lisp_String points back to the `u.data' member of
1544 its sdata structure.
1545
1546 When a Lisp_String is freed during GC, it is put back on
1547 string_free_list, and its `data' member and its sdata's `string'
1548 pointer is set to null. The size of the string is recorded in the
1549 `u.nbytes' member of the sdata. So, sdata structures that are no
1550 longer used, can be easily recognized, and it's easy to compact the
1551 sblocks of small strings which we do in compact_small_strings. */
1552
1553 /* Size in bytes of an sblock structure used for small strings. This
1554 is 8192 minus malloc overhead. */
1555
1556 #define SBLOCK_SIZE 8188
1557
1558 /* Strings larger than this are considered large strings. String data
1559 for large strings is allocated from individual sblocks. */
1560
1561 #define LARGE_STRING_BYTES 1024
1562
1563 /* Structure describing string memory sub-allocated from an sblock.
1564 This is where the contents of Lisp strings are stored. */
1565
1566 struct sdata
1567 {
1568 /* Back-pointer to the string this sdata belongs to. If null, this
1569 structure is free, and the NBYTES member of the union below
1570 contains the string's byte size (the same value that STRING_BYTES
1571 would return if STRING were non-null). If non-null, STRING_BYTES
1572 (STRING) is the size of the data, and DATA contains the string's
1573 contents. */
1574 struct Lisp_String *string;
1575
1576 #ifdef GC_CHECK_STRING_BYTES
1577
1578 EMACS_INT nbytes;
1579 unsigned char data[1];
1580
1581 #define SDATA_NBYTES(S) (S)->nbytes
1582 #define SDATA_DATA(S) (S)->data
1583
1584 #else /* not GC_CHECK_STRING_BYTES */
1585
1586 union
1587 {
1588 /* When STRING in non-null. */
1589 unsigned char data[1];
1590
1591 /* When STRING is null. */
1592 EMACS_INT nbytes;
1593 } u;
1594
1595
1596 #define SDATA_NBYTES(S) (S)->u.nbytes
1597 #define SDATA_DATA(S) (S)->u.data
1598
1599 #endif /* not GC_CHECK_STRING_BYTES */
1600 };
1601
1602
1603 /* Structure describing a block of memory which is sub-allocated to
1604 obtain string data memory for strings. Blocks for small strings
1605 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1606 as large as needed. */
1607
1608 struct sblock
1609 {
1610 /* Next in list. */
1611 struct sblock *next;
1612
1613 /* Pointer to the next free sdata block. This points past the end
1614 of the sblock if there isn't any space left in this block. */
1615 struct sdata *next_free;
1616
1617 /* Start of data. */
1618 struct sdata first_data;
1619 };
1620
1621 /* Number of Lisp strings in a string_block structure. The 1020 is
1622 1024 minus malloc overhead. */
1623
1624 #define STRING_BLOCK_SIZE \
1625 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1626
1627 /* Structure describing a block from which Lisp_String structures
1628 are allocated. */
1629
1630 struct string_block
1631 {
1632 /* Place `strings' first, to preserve alignment. */
1633 struct Lisp_String strings[STRING_BLOCK_SIZE];
1634 struct string_block *next;
1635 };
1636
1637 /* Head and tail of the list of sblock structures holding Lisp string
1638 data. We always allocate from current_sblock. The NEXT pointers
1639 in the sblock structures go from oldest_sblock to current_sblock. */
1640
1641 static struct sblock *oldest_sblock, *current_sblock;
1642
1643 /* List of sblocks for large strings. */
1644
1645 static struct sblock *large_sblocks;
1646
1647 /* List of string_block structures, and how many there are. */
1648
1649 static struct string_block *string_blocks;
1650 static int n_string_blocks;
1651
1652 /* Free-list of Lisp_Strings. */
1653
1654 static struct Lisp_String *string_free_list;
1655
1656 /* Number of live and free Lisp_Strings. */
1657
1658 static int total_strings, total_free_strings;
1659
1660 /* Number of bytes used by live strings. */
1661
1662 static int total_string_size;
1663
1664 /* Given a pointer to a Lisp_String S which is on the free-list
1665 string_free_list, return a pointer to its successor in the
1666 free-list. */
1667
1668 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1669
1670 /* Return a pointer to the sdata structure belonging to Lisp string S.
1671 S must be live, i.e. S->data must not be null. S->data is actually
1672 a pointer to the `u.data' member of its sdata structure; the
1673 structure starts at a constant offset in front of that. */
1674
1675 #ifdef GC_CHECK_STRING_BYTES
1676
1677 #define SDATA_OF_STRING(S) \
1678 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1679 - sizeof (EMACS_INT)))
1680
1681 #else /* not GC_CHECK_STRING_BYTES */
1682
1683 #define SDATA_OF_STRING(S) \
1684 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1685
1686 #endif /* not GC_CHECK_STRING_BYTES */
1687
1688
1689 #ifdef GC_CHECK_STRING_OVERRUN
1690
1691 /* We check for overrun in string data blocks by appending a small
1692 "cookie" after each allocated string data block, and check for the
1693 presence of this cookie during GC. */
1694
1695 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1696 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1697 { 0xde, 0xad, 0xbe, 0xef };
1698
1699 #else
1700 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1701 #endif
1702
1703 /* Value is the size of an sdata structure large enough to hold NBYTES
1704 bytes of string data. The value returned includes a terminating
1705 NUL byte, the size of the sdata structure, and padding. */
1706
1707 #ifdef GC_CHECK_STRING_BYTES
1708
1709 #define SDATA_SIZE(NBYTES) \
1710 ((sizeof (struct Lisp_String *) \
1711 + (NBYTES) + 1 \
1712 + sizeof (EMACS_INT) \
1713 + sizeof (EMACS_INT) - 1) \
1714 & ~(sizeof (EMACS_INT) - 1))
1715
1716 #else /* not GC_CHECK_STRING_BYTES */
1717
1718 #define SDATA_SIZE(NBYTES) \
1719 ((sizeof (struct Lisp_String *) \
1720 + (NBYTES) + 1 \
1721 + sizeof (EMACS_INT) - 1) \
1722 & ~(sizeof (EMACS_INT) - 1))
1723
1724 #endif /* not GC_CHECK_STRING_BYTES */
1725
1726 /* Extra bytes to allocate for each string. */
1727
1728 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1729
1730 /* Initialize string allocation. Called from init_alloc_once. */
1731
1732 void
1733 init_strings ()
1734 {
1735 total_strings = total_free_strings = total_string_size = 0;
1736 oldest_sblock = current_sblock = large_sblocks = NULL;
1737 string_blocks = NULL;
1738 n_string_blocks = 0;
1739 string_free_list = NULL;
1740 }
1741
1742
1743 #ifdef GC_CHECK_STRING_BYTES
1744
1745 static int check_string_bytes_count;
1746
1747 void check_string_bytes P_ ((int));
1748 void check_sblock P_ ((struct sblock *));
1749
1750 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1751
1752
1753 /* Like GC_STRING_BYTES, but with debugging check. */
1754
1755 int
1756 string_bytes (s)
1757 struct Lisp_String *s;
1758 {
1759 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1760 if (!PURE_POINTER_P (s)
1761 && s->data
1762 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1763 abort ();
1764 return nbytes;
1765 }
1766
1767 /* Check validity of Lisp strings' string_bytes member in B. */
1768
1769 void
1770 check_sblock (b)
1771 struct sblock *b;
1772 {
1773 struct sdata *from, *end, *from_end;
1774
1775 end = b->next_free;
1776
1777 for (from = &b->first_data; from < end; from = from_end)
1778 {
1779 /* Compute the next FROM here because copying below may
1780 overwrite data we need to compute it. */
1781 int nbytes;
1782
1783 /* Check that the string size recorded in the string is the
1784 same as the one recorded in the sdata structure. */
1785 if (from->string)
1786 CHECK_STRING_BYTES (from->string);
1787
1788 if (from->string)
1789 nbytes = GC_STRING_BYTES (from->string);
1790 else
1791 nbytes = SDATA_NBYTES (from);
1792
1793 nbytes = SDATA_SIZE (nbytes);
1794 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1795 }
1796 }
1797
1798
1799 /* Check validity of Lisp strings' string_bytes member. ALL_P
1800 non-zero means check all strings, otherwise check only most
1801 recently allocated strings. Used for hunting a bug. */
1802
1803 void
1804 check_string_bytes (all_p)
1805 int all_p;
1806 {
1807 if (all_p)
1808 {
1809 struct sblock *b;
1810
1811 for (b = large_sblocks; b; b = b->next)
1812 {
1813 struct Lisp_String *s = b->first_data.string;
1814 if (s)
1815 CHECK_STRING_BYTES (s);
1816 }
1817
1818 for (b = oldest_sblock; b; b = b->next)
1819 check_sblock (b);
1820 }
1821 else
1822 check_sblock (current_sblock);
1823 }
1824
1825 #endif /* GC_CHECK_STRING_BYTES */
1826
1827 #ifdef GC_CHECK_STRING_FREE_LIST
1828
1829 /* Walk through the string free list looking for bogus next pointers.
1830 This may catch buffer overrun from a previous string. */
1831
1832 static void
1833 check_string_free_list ()
1834 {
1835 struct Lisp_String *s;
1836
1837 /* Pop a Lisp_String off the free-list. */
1838 s = string_free_list;
1839 while (s != NULL)
1840 {
1841 if ((unsigned)s < 1024)
1842 abort();
1843 s = NEXT_FREE_LISP_STRING (s);
1844 }
1845 }
1846 #else
1847 #define check_string_free_list()
1848 #endif
1849
1850 /* Return a new Lisp_String. */
1851
1852 static struct Lisp_String *
1853 allocate_string ()
1854 {
1855 struct Lisp_String *s;
1856
1857 /* If the free-list is empty, allocate a new string_block, and
1858 add all the Lisp_Strings in it to the free-list. */
1859 if (string_free_list == NULL)
1860 {
1861 struct string_block *b;
1862 int i;
1863
1864 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1865 bzero (b, sizeof *b);
1866 b->next = string_blocks;
1867 string_blocks = b;
1868 ++n_string_blocks;
1869
1870 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1871 {
1872 s = b->strings + i;
1873 NEXT_FREE_LISP_STRING (s) = string_free_list;
1874 string_free_list = s;
1875 }
1876
1877 total_free_strings += STRING_BLOCK_SIZE;
1878 }
1879
1880 check_string_free_list ();
1881
1882 /* Pop a Lisp_String off the free-list. */
1883 s = string_free_list;
1884 string_free_list = NEXT_FREE_LISP_STRING (s);
1885
1886 /* Probably not strictly necessary, but play it safe. */
1887 bzero (s, sizeof *s);
1888
1889 --total_free_strings;
1890 ++total_strings;
1891 ++strings_consed;
1892 consing_since_gc += sizeof *s;
1893
1894 #ifdef GC_CHECK_STRING_BYTES
1895 if (!noninteractive
1896 #ifdef MAC_OS8
1897 && current_sblock
1898 #endif
1899 )
1900 {
1901 if (++check_string_bytes_count == 200)
1902 {
1903 check_string_bytes_count = 0;
1904 check_string_bytes (1);
1905 }
1906 else
1907 check_string_bytes (0);
1908 }
1909 #endif /* GC_CHECK_STRING_BYTES */
1910
1911 return s;
1912 }
1913
1914
1915 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1916 plus a NUL byte at the end. Allocate an sdata structure for S, and
1917 set S->data to its `u.data' member. Store a NUL byte at the end of
1918 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1919 S->data if it was initially non-null. */
1920
1921 void
1922 allocate_string_data (s, nchars, nbytes)
1923 struct Lisp_String *s;
1924 int nchars, nbytes;
1925 {
1926 struct sdata *data, *old_data;
1927 struct sblock *b;
1928 int needed, old_nbytes;
1929
1930 /* Determine the number of bytes needed to store NBYTES bytes
1931 of string data. */
1932 needed = SDATA_SIZE (nbytes);
1933
1934 if (nbytes > LARGE_STRING_BYTES)
1935 {
1936 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1937
1938 #ifdef DOUG_LEA_MALLOC
1939 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1940 because mapped region contents are not preserved in
1941 a dumped Emacs.
1942
1943 In case you think of allowing it in a dumped Emacs at the
1944 cost of not being able to re-dump, there's another reason:
1945 mmap'ed data typically have an address towards the top of the
1946 address space, which won't fit into an EMACS_INT (at least on
1947 32-bit systems with the current tagging scheme). --fx */
1948 BLOCK_INPUT;
1949 mallopt (M_MMAP_MAX, 0);
1950 UNBLOCK_INPUT;
1951 #endif
1952
1953 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1954
1955 #ifdef DOUG_LEA_MALLOC
1956 /* Back to a reasonable maximum of mmap'ed areas. */
1957 BLOCK_INPUT;
1958 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1959 UNBLOCK_INPUT;
1960 #endif
1961
1962 b->next_free = &b->first_data;
1963 b->first_data.string = NULL;
1964 b->next = large_sblocks;
1965 large_sblocks = b;
1966 }
1967 else if (current_sblock == NULL
1968 || (((char *) current_sblock + SBLOCK_SIZE
1969 - (char *) current_sblock->next_free)
1970 < (needed + GC_STRING_EXTRA)))
1971 {
1972 /* Not enough room in the current sblock. */
1973 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1974 b->next_free = &b->first_data;
1975 b->first_data.string = NULL;
1976 b->next = NULL;
1977
1978 if (current_sblock)
1979 current_sblock->next = b;
1980 else
1981 oldest_sblock = b;
1982 current_sblock = b;
1983 }
1984 else
1985 b = current_sblock;
1986
1987 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1988 old_nbytes = GC_STRING_BYTES (s);
1989
1990 data = b->next_free;
1991 data->string = s;
1992 s->data = SDATA_DATA (data);
1993 #ifdef GC_CHECK_STRING_BYTES
1994 SDATA_NBYTES (data) = nbytes;
1995 #endif
1996 s->size = nchars;
1997 s->size_byte = nbytes;
1998 s->data[nbytes] = '\0';
1999 #ifdef GC_CHECK_STRING_OVERRUN
2000 bcopy (string_overrun_cookie, (char *) data + needed,
2001 GC_STRING_OVERRUN_COOKIE_SIZE);
2002 #endif
2003 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2004
2005 /* If S had already data assigned, mark that as free by setting its
2006 string back-pointer to null, and recording the size of the data
2007 in it. */
2008 if (old_data)
2009 {
2010 SDATA_NBYTES (old_data) = old_nbytes;
2011 old_data->string = NULL;
2012 }
2013
2014 consing_since_gc += needed;
2015 }
2016
2017
2018 /* Sweep and compact strings. */
2019
2020 static void
2021 sweep_strings ()
2022 {
2023 struct string_block *b, *next;
2024 struct string_block *live_blocks = NULL;
2025
2026 string_free_list = NULL;
2027 total_strings = total_free_strings = 0;
2028 total_string_size = 0;
2029
2030 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2031 for (b = string_blocks; b; b = next)
2032 {
2033 int i, nfree = 0;
2034 struct Lisp_String *free_list_before = string_free_list;
2035
2036 next = b->next;
2037
2038 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2039 {
2040 struct Lisp_String *s = b->strings + i;
2041
2042 if (s->data)
2043 {
2044 /* String was not on free-list before. */
2045 if (STRING_MARKED_P (s))
2046 {
2047 /* String is live; unmark it and its intervals. */
2048 UNMARK_STRING (s);
2049
2050 if (!NULL_INTERVAL_P (s->intervals))
2051 UNMARK_BALANCE_INTERVALS (s->intervals);
2052
2053 ++total_strings;
2054 total_string_size += STRING_BYTES (s);
2055 }
2056 else
2057 {
2058 /* String is dead. Put it on the free-list. */
2059 struct sdata *data = SDATA_OF_STRING (s);
2060
2061 /* Save the size of S in its sdata so that we know
2062 how large that is. Reset the sdata's string
2063 back-pointer so that we know it's free. */
2064 #ifdef GC_CHECK_STRING_BYTES
2065 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2066 abort ();
2067 #else
2068 data->u.nbytes = GC_STRING_BYTES (s);
2069 #endif
2070 data->string = NULL;
2071
2072 /* Reset the strings's `data' member so that we
2073 know it's free. */
2074 s->data = NULL;
2075
2076 /* Put the string on the free-list. */
2077 NEXT_FREE_LISP_STRING (s) = string_free_list;
2078 string_free_list = s;
2079 ++nfree;
2080 }
2081 }
2082 else
2083 {
2084 /* S was on the free-list before. Put it there again. */
2085 NEXT_FREE_LISP_STRING (s) = string_free_list;
2086 string_free_list = s;
2087 ++nfree;
2088 }
2089 }
2090
2091 /* Free blocks that contain free Lisp_Strings only, except
2092 the first two of them. */
2093 if (nfree == STRING_BLOCK_SIZE
2094 && total_free_strings > STRING_BLOCK_SIZE)
2095 {
2096 lisp_free (b);
2097 --n_string_blocks;
2098 string_free_list = free_list_before;
2099 }
2100 else
2101 {
2102 total_free_strings += nfree;
2103 b->next = live_blocks;
2104 live_blocks = b;
2105 }
2106 }
2107
2108 check_string_free_list ();
2109
2110 string_blocks = live_blocks;
2111 free_large_strings ();
2112 compact_small_strings ();
2113
2114 check_string_free_list ();
2115 }
2116
2117
2118 /* Free dead large strings. */
2119
2120 static void
2121 free_large_strings ()
2122 {
2123 struct sblock *b, *next;
2124 struct sblock *live_blocks = NULL;
2125
2126 for (b = large_sblocks; b; b = next)
2127 {
2128 next = b->next;
2129
2130 if (b->first_data.string == NULL)
2131 lisp_free (b);
2132 else
2133 {
2134 b->next = live_blocks;
2135 live_blocks = b;
2136 }
2137 }
2138
2139 large_sblocks = live_blocks;
2140 }
2141
2142
2143 /* Compact data of small strings. Free sblocks that don't contain
2144 data of live strings after compaction. */
2145
2146 static void
2147 compact_small_strings ()
2148 {
2149 struct sblock *b, *tb, *next;
2150 struct sdata *from, *to, *end, *tb_end;
2151 struct sdata *to_end, *from_end;
2152
2153 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2154 to, and TB_END is the end of TB. */
2155 tb = oldest_sblock;
2156 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2157 to = &tb->first_data;
2158
2159 /* Step through the blocks from the oldest to the youngest. We
2160 expect that old blocks will stabilize over time, so that less
2161 copying will happen this way. */
2162 for (b = oldest_sblock; b; b = b->next)
2163 {
2164 end = b->next_free;
2165 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2166
2167 for (from = &b->first_data; from < end; from = from_end)
2168 {
2169 /* Compute the next FROM here because copying below may
2170 overwrite data we need to compute it. */
2171 int nbytes;
2172
2173 #ifdef GC_CHECK_STRING_BYTES
2174 /* Check that the string size recorded in the string is the
2175 same as the one recorded in the sdata structure. */
2176 if (from->string
2177 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2178 abort ();
2179 #endif /* GC_CHECK_STRING_BYTES */
2180
2181 if (from->string)
2182 nbytes = GC_STRING_BYTES (from->string);
2183 else
2184 nbytes = SDATA_NBYTES (from);
2185
2186 if (nbytes > LARGE_STRING_BYTES)
2187 abort ();
2188
2189 nbytes = SDATA_SIZE (nbytes);
2190 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2191
2192 #ifdef GC_CHECK_STRING_OVERRUN
2193 if (bcmp (string_overrun_cookie,
2194 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2195 GC_STRING_OVERRUN_COOKIE_SIZE))
2196 abort ();
2197 #endif
2198
2199 /* FROM->string non-null means it's alive. Copy its data. */
2200 if (from->string)
2201 {
2202 /* If TB is full, proceed with the next sblock. */
2203 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2204 if (to_end > tb_end)
2205 {
2206 tb->next_free = to;
2207 tb = tb->next;
2208 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2209 to = &tb->first_data;
2210 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2211 }
2212
2213 /* Copy, and update the string's `data' pointer. */
2214 if (from != to)
2215 {
2216 xassert (tb != b || to <= from);
2217 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
2218 to->string->data = SDATA_DATA (to);
2219 }
2220
2221 /* Advance past the sdata we copied to. */
2222 to = to_end;
2223 }
2224 }
2225 }
2226
2227 /* The rest of the sblocks following TB don't contain live data, so
2228 we can free them. */
2229 for (b = tb->next; b; b = next)
2230 {
2231 next = b->next;
2232 lisp_free (b);
2233 }
2234
2235 tb->next_free = to;
2236 tb->next = NULL;
2237 current_sblock = tb;
2238 }
2239
2240
2241 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2242 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2243 LENGTH must be an integer.
2244 INIT must be an integer that represents a character. */)
2245 (length, init)
2246 Lisp_Object length, init;
2247 {
2248 register Lisp_Object val;
2249 register unsigned char *p, *end;
2250 int c, nbytes;
2251
2252 CHECK_NATNUM (length);
2253 CHECK_NUMBER (init);
2254
2255 c = XINT (init);
2256 if (SINGLE_BYTE_CHAR_P (c))
2257 {
2258 nbytes = XINT (length);
2259 val = make_uninit_string (nbytes);
2260 p = SDATA (val);
2261 end = p + SCHARS (val);
2262 while (p != end)
2263 *p++ = c;
2264 }
2265 else
2266 {
2267 unsigned char str[MAX_MULTIBYTE_LENGTH];
2268 int len = CHAR_STRING (c, str);
2269
2270 nbytes = len * XINT (length);
2271 val = make_uninit_multibyte_string (XINT (length), nbytes);
2272 p = SDATA (val);
2273 end = p + nbytes;
2274 while (p != end)
2275 {
2276 bcopy (str, p, len);
2277 p += len;
2278 }
2279 }
2280
2281 *p = 0;
2282 return val;
2283 }
2284
2285
2286 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2287 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
2288 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2289 (length, init)
2290 Lisp_Object length, init;
2291 {
2292 register Lisp_Object val;
2293 struct Lisp_Bool_Vector *p;
2294 int real_init, i;
2295 int length_in_chars, length_in_elts, bits_per_value;
2296
2297 CHECK_NATNUM (length);
2298
2299 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2300
2301 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2302 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2303 / BOOL_VECTOR_BITS_PER_CHAR);
2304
2305 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2306 slot `size' of the struct Lisp_Bool_Vector. */
2307 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2308 p = XBOOL_VECTOR (val);
2309
2310 /* Get rid of any bits that would cause confusion. */
2311 p->vector_size = 0;
2312 XSETBOOL_VECTOR (val, p);
2313 p->size = XFASTINT (length);
2314
2315 real_init = (NILP (init) ? 0 : -1);
2316 for (i = 0; i < length_in_chars ; i++)
2317 p->data[i] = real_init;
2318
2319 /* Clear the extraneous bits in the last byte. */
2320 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2321 XBOOL_VECTOR (val)->data[length_in_chars - 1]
2322 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2323
2324 return val;
2325 }
2326
2327
2328 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2329 of characters from the contents. This string may be unibyte or
2330 multibyte, depending on the contents. */
2331
2332 Lisp_Object
2333 make_string (contents, nbytes)
2334 const char *contents;
2335 int nbytes;
2336 {
2337 register Lisp_Object val;
2338 int nchars, multibyte_nbytes;
2339
2340 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2341 if (nbytes == nchars || nbytes != multibyte_nbytes)
2342 /* CONTENTS contains no multibyte sequences or contains an invalid
2343 multibyte sequence. We must make unibyte string. */
2344 val = make_unibyte_string (contents, nbytes);
2345 else
2346 val = make_multibyte_string (contents, nchars, nbytes);
2347 return val;
2348 }
2349
2350
2351 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2352
2353 Lisp_Object
2354 make_unibyte_string (contents, length)
2355 const char *contents;
2356 int length;
2357 {
2358 register Lisp_Object val;
2359 val = make_uninit_string (length);
2360 bcopy (contents, SDATA (val), length);
2361 STRING_SET_UNIBYTE (val);
2362 return val;
2363 }
2364
2365
2366 /* Make a multibyte string from NCHARS characters occupying NBYTES
2367 bytes at CONTENTS. */
2368
2369 Lisp_Object
2370 make_multibyte_string (contents, nchars, nbytes)
2371 const char *contents;
2372 int nchars, nbytes;
2373 {
2374 register Lisp_Object val;
2375 val = make_uninit_multibyte_string (nchars, nbytes);
2376 bcopy (contents, SDATA (val), nbytes);
2377 return val;
2378 }
2379
2380
2381 /* Make a string from NCHARS characters occupying NBYTES bytes at
2382 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2383
2384 Lisp_Object
2385 make_string_from_bytes (contents, nchars, nbytes)
2386 const char *contents;
2387 int nchars, nbytes;
2388 {
2389 register Lisp_Object val;
2390 val = make_uninit_multibyte_string (nchars, nbytes);
2391 bcopy (contents, SDATA (val), nbytes);
2392 if (SBYTES (val) == SCHARS (val))
2393 STRING_SET_UNIBYTE (val);
2394 return val;
2395 }
2396
2397
2398 /* Make a string from NCHARS characters occupying NBYTES bytes at
2399 CONTENTS. The argument MULTIBYTE controls whether to label the
2400 string as multibyte. If NCHARS is negative, it counts the number of
2401 characters by itself. */
2402
2403 Lisp_Object
2404 make_specified_string (contents, nchars, nbytes, multibyte)
2405 const char *contents;
2406 int nchars, nbytes;
2407 int multibyte;
2408 {
2409 register Lisp_Object val;
2410
2411 if (nchars < 0)
2412 {
2413 if (multibyte)
2414 nchars = multibyte_chars_in_text (contents, nbytes);
2415 else
2416 nchars = nbytes;
2417 }
2418 val = make_uninit_multibyte_string (nchars, nbytes);
2419 bcopy (contents, SDATA (val), nbytes);
2420 if (!multibyte)
2421 STRING_SET_UNIBYTE (val);
2422 return val;
2423 }
2424
2425
2426 /* Make a string from the data at STR, treating it as multibyte if the
2427 data warrants. */
2428
2429 Lisp_Object
2430 build_string (str)
2431 const char *str;
2432 {
2433 return make_string (str, strlen (str));
2434 }
2435
2436
2437 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2438 occupying LENGTH bytes. */
2439
2440 Lisp_Object
2441 make_uninit_string (length)
2442 int length;
2443 {
2444 Lisp_Object val;
2445 val = make_uninit_multibyte_string (length, length);
2446 STRING_SET_UNIBYTE (val);
2447 return val;
2448 }
2449
2450
2451 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2452 which occupy NBYTES bytes. */
2453
2454 Lisp_Object
2455 make_uninit_multibyte_string (nchars, nbytes)
2456 int nchars, nbytes;
2457 {
2458 Lisp_Object string;
2459 struct Lisp_String *s;
2460
2461 if (nchars < 0)
2462 abort ();
2463
2464 s = allocate_string ();
2465 allocate_string_data (s, nchars, nbytes);
2466 XSETSTRING (string, s);
2467 string_chars_consed += nbytes;
2468 return string;
2469 }
2470
2471
2472 \f
2473 /***********************************************************************
2474 Float Allocation
2475 ***********************************************************************/
2476
2477 /* We store float cells inside of float_blocks, allocating a new
2478 float_block with malloc whenever necessary. Float cells reclaimed
2479 by GC are put on a free list to be reallocated before allocating
2480 any new float cells from the latest float_block. */
2481
2482 #define FLOAT_BLOCK_SIZE \
2483 (((BLOCK_BYTES - sizeof (struct float_block *) \
2484 /* The compiler might add padding at the end. */ \
2485 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2486 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2487
2488 #define GETMARKBIT(block,n) \
2489 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2490 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2491 & 1)
2492
2493 #define SETMARKBIT(block,n) \
2494 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2495 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2496
2497 #define UNSETMARKBIT(block,n) \
2498 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2499 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2500
2501 #define FLOAT_BLOCK(fptr) \
2502 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2503
2504 #define FLOAT_INDEX(fptr) \
2505 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2506
2507 struct float_block
2508 {
2509 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2510 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2511 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2512 struct float_block *next;
2513 };
2514
2515 #define FLOAT_MARKED_P(fptr) \
2516 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2517
2518 #define FLOAT_MARK(fptr) \
2519 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2520
2521 #define FLOAT_UNMARK(fptr) \
2522 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2523
2524 /* Current float_block. */
2525
2526 struct float_block *float_block;
2527
2528 /* Index of first unused Lisp_Float in the current float_block. */
2529
2530 int float_block_index;
2531
2532 /* Total number of float blocks now in use. */
2533
2534 int n_float_blocks;
2535
2536 /* Free-list of Lisp_Floats. */
2537
2538 struct Lisp_Float *float_free_list;
2539
2540
2541 /* Initialize float allocation. */
2542
2543 void
2544 init_float ()
2545 {
2546 float_block = NULL;
2547 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2548 float_free_list = 0;
2549 n_float_blocks = 0;
2550 }
2551
2552
2553 /* Explicitly free a float cell by putting it on the free-list. */
2554
2555 void
2556 free_float (ptr)
2557 struct Lisp_Float *ptr;
2558 {
2559 *(struct Lisp_Float **)&ptr->data = float_free_list;
2560 float_free_list = ptr;
2561 }
2562
2563
2564 /* Return a new float object with value FLOAT_VALUE. */
2565
2566 Lisp_Object
2567 make_float (float_value)
2568 double float_value;
2569 {
2570 register Lisp_Object val;
2571
2572 if (float_free_list)
2573 {
2574 /* We use the data field for chaining the free list
2575 so that we won't use the same field that has the mark bit. */
2576 XSETFLOAT (val, float_free_list);
2577 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
2578 }
2579 else
2580 {
2581 if (float_block_index == FLOAT_BLOCK_SIZE)
2582 {
2583 register struct float_block *new;
2584
2585 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2586 MEM_TYPE_FLOAT);
2587 new->next = float_block;
2588 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2589 float_block = new;
2590 float_block_index = 0;
2591 n_float_blocks++;
2592 }
2593 XSETFLOAT (val, &float_block->floats[float_block_index]);
2594 float_block_index++;
2595 }
2596
2597 XFLOAT_DATA (val) = float_value;
2598 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2599 consing_since_gc += sizeof (struct Lisp_Float);
2600 floats_consed++;
2601 return val;
2602 }
2603
2604
2605 \f
2606 /***********************************************************************
2607 Cons Allocation
2608 ***********************************************************************/
2609
2610 /* We store cons cells inside of cons_blocks, allocating a new
2611 cons_block with malloc whenever necessary. Cons cells reclaimed by
2612 GC are put on a free list to be reallocated before allocating
2613 any new cons cells from the latest cons_block. */
2614
2615 #define CONS_BLOCK_SIZE \
2616 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2617 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2618
2619 #define CONS_BLOCK(fptr) \
2620 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2621
2622 #define CONS_INDEX(fptr) \
2623 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2624
2625 struct cons_block
2626 {
2627 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2628 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2629 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2630 struct cons_block *next;
2631 };
2632
2633 #define CONS_MARKED_P(fptr) \
2634 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2635
2636 #define CONS_MARK(fptr) \
2637 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2638
2639 #define CONS_UNMARK(fptr) \
2640 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2641
2642 /* Current cons_block. */
2643
2644 struct cons_block *cons_block;
2645
2646 /* Index of first unused Lisp_Cons in the current block. */
2647
2648 int cons_block_index;
2649
2650 /* Free-list of Lisp_Cons structures. */
2651
2652 struct Lisp_Cons *cons_free_list;
2653
2654 /* Total number of cons blocks now in use. */
2655
2656 int n_cons_blocks;
2657
2658
2659 /* Initialize cons allocation. */
2660
2661 void
2662 init_cons ()
2663 {
2664 cons_block = NULL;
2665 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2666 cons_free_list = 0;
2667 n_cons_blocks = 0;
2668 }
2669
2670
2671 /* Explicitly free a cons cell by putting it on the free-list. */
2672
2673 void
2674 free_cons (ptr)
2675 struct Lisp_Cons *ptr;
2676 {
2677 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
2678 #if GC_MARK_STACK
2679 ptr->car = Vdead;
2680 #endif
2681 cons_free_list = ptr;
2682 }
2683
2684 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2685 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2686 (car, cdr)
2687 Lisp_Object car, cdr;
2688 {
2689 register Lisp_Object val;
2690
2691 if (cons_free_list)
2692 {
2693 /* We use the cdr for chaining the free list
2694 so that we won't use the same field that has the mark bit. */
2695 XSETCONS (val, cons_free_list);
2696 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2697 }
2698 else
2699 {
2700 if (cons_block_index == CONS_BLOCK_SIZE)
2701 {
2702 register struct cons_block *new;
2703 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2704 MEM_TYPE_CONS);
2705 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2706 new->next = cons_block;
2707 cons_block = new;
2708 cons_block_index = 0;
2709 n_cons_blocks++;
2710 }
2711 XSETCONS (val, &cons_block->conses[cons_block_index]);
2712 cons_block_index++;
2713 }
2714
2715 XSETCAR (val, car);
2716 XSETCDR (val, cdr);
2717 eassert (!CONS_MARKED_P (XCONS (val)));
2718 consing_since_gc += sizeof (struct Lisp_Cons);
2719 cons_cells_consed++;
2720 return val;
2721 }
2722
2723 /* Get an error now if there's any junk in the cons free list. */
2724 void
2725 check_cons_list ()
2726 {
2727 #ifdef GC_CHECK_CONS_LIST
2728 struct Lisp_Cons *tail = cons_free_list;
2729
2730 while (tail)
2731 tail = *(struct Lisp_Cons **)&tail->cdr;
2732 #endif
2733 }
2734
2735 /* Make a list of 2, 3, 4 or 5 specified objects. */
2736
2737 Lisp_Object
2738 list2 (arg1, arg2)
2739 Lisp_Object arg1, arg2;
2740 {
2741 return Fcons (arg1, Fcons (arg2, Qnil));
2742 }
2743
2744
2745 Lisp_Object
2746 list3 (arg1, arg2, arg3)
2747 Lisp_Object arg1, arg2, arg3;
2748 {
2749 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2750 }
2751
2752
2753 Lisp_Object
2754 list4 (arg1, arg2, arg3, arg4)
2755 Lisp_Object arg1, arg2, arg3, arg4;
2756 {
2757 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2758 }
2759
2760
2761 Lisp_Object
2762 list5 (arg1, arg2, arg3, arg4, arg5)
2763 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2764 {
2765 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2766 Fcons (arg5, Qnil)))));
2767 }
2768
2769
2770 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2771 doc: /* Return a newly created list with specified arguments as elements.
2772 Any number of arguments, even zero arguments, are allowed.
2773 usage: (list &rest OBJECTS) */)
2774 (nargs, args)
2775 int nargs;
2776 register Lisp_Object *args;
2777 {
2778 register Lisp_Object val;
2779 val = Qnil;
2780
2781 while (nargs > 0)
2782 {
2783 nargs--;
2784 val = Fcons (args[nargs], val);
2785 }
2786 return val;
2787 }
2788
2789
2790 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2791 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2792 (length, init)
2793 register Lisp_Object length, init;
2794 {
2795 register Lisp_Object val;
2796 register int size;
2797
2798 CHECK_NATNUM (length);
2799 size = XFASTINT (length);
2800
2801 val = Qnil;
2802 while (size > 0)
2803 {
2804 val = Fcons (init, val);
2805 --size;
2806
2807 if (size > 0)
2808 {
2809 val = Fcons (init, val);
2810 --size;
2811
2812 if (size > 0)
2813 {
2814 val = Fcons (init, val);
2815 --size;
2816
2817 if (size > 0)
2818 {
2819 val = Fcons (init, val);
2820 --size;
2821
2822 if (size > 0)
2823 {
2824 val = Fcons (init, val);
2825 --size;
2826 }
2827 }
2828 }
2829 }
2830
2831 QUIT;
2832 }
2833
2834 return val;
2835 }
2836
2837
2838 \f
2839 /***********************************************************************
2840 Vector Allocation
2841 ***********************************************************************/
2842
2843 /* Singly-linked list of all vectors. */
2844
2845 struct Lisp_Vector *all_vectors;
2846
2847 /* Total number of vector-like objects now in use. */
2848
2849 int n_vectors;
2850
2851
2852 /* Value is a pointer to a newly allocated Lisp_Vector structure
2853 with room for LEN Lisp_Objects. */
2854
2855 static struct Lisp_Vector *
2856 allocate_vectorlike (len, type)
2857 EMACS_INT len;
2858 enum mem_type type;
2859 {
2860 struct Lisp_Vector *p;
2861 size_t nbytes;
2862
2863 #ifdef DOUG_LEA_MALLOC
2864 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2865 because mapped region contents are not preserved in
2866 a dumped Emacs. */
2867 BLOCK_INPUT;
2868 mallopt (M_MMAP_MAX, 0);
2869 UNBLOCK_INPUT;
2870 #endif
2871
2872 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2873 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2874
2875 #ifdef DOUG_LEA_MALLOC
2876 /* Back to a reasonable maximum of mmap'ed areas. */
2877 BLOCK_INPUT;
2878 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2879 UNBLOCK_INPUT;
2880 #endif
2881
2882 consing_since_gc += nbytes;
2883 vector_cells_consed += len;
2884
2885 p->next = all_vectors;
2886 all_vectors = p;
2887 ++n_vectors;
2888 return p;
2889 }
2890
2891
2892 /* Allocate a vector with NSLOTS slots. */
2893
2894 struct Lisp_Vector *
2895 allocate_vector (nslots)
2896 EMACS_INT nslots;
2897 {
2898 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2899 v->size = nslots;
2900 return v;
2901 }
2902
2903
2904 /* Allocate other vector-like structures. */
2905
2906 struct Lisp_Hash_Table *
2907 allocate_hash_table ()
2908 {
2909 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2910 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2911 EMACS_INT i;
2912
2913 v->size = len;
2914 for (i = 0; i < len; ++i)
2915 v->contents[i] = Qnil;
2916
2917 return (struct Lisp_Hash_Table *) v;
2918 }
2919
2920
2921 struct window *
2922 allocate_window ()
2923 {
2924 EMACS_INT len = VECSIZE (struct window);
2925 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2926 EMACS_INT i;
2927
2928 for (i = 0; i < len; ++i)
2929 v->contents[i] = Qnil;
2930 v->size = len;
2931
2932 return (struct window *) v;
2933 }
2934
2935
2936 struct frame *
2937 allocate_frame ()
2938 {
2939 EMACS_INT len = VECSIZE (struct frame);
2940 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2941 EMACS_INT i;
2942
2943 for (i = 0; i < len; ++i)
2944 v->contents[i] = make_number (0);
2945 v->size = len;
2946 return (struct frame *) v;
2947 }
2948
2949
2950 struct Lisp_Process *
2951 allocate_process ()
2952 {
2953 EMACS_INT len = VECSIZE (struct Lisp_Process);
2954 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2955 EMACS_INT i;
2956
2957 for (i = 0; i < len; ++i)
2958 v->contents[i] = Qnil;
2959 v->size = len;
2960
2961 return (struct Lisp_Process *) v;
2962 }
2963
2964
2965 struct Lisp_Vector *
2966 allocate_other_vector (len)
2967 EMACS_INT len;
2968 {
2969 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2970 EMACS_INT i;
2971
2972 for (i = 0; i < len; ++i)
2973 v->contents[i] = Qnil;
2974 v->size = len;
2975
2976 return v;
2977 }
2978
2979
2980 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2981 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2982 See also the function `vector'. */)
2983 (length, init)
2984 register Lisp_Object length, init;
2985 {
2986 Lisp_Object vector;
2987 register EMACS_INT sizei;
2988 register int index;
2989 register struct Lisp_Vector *p;
2990
2991 CHECK_NATNUM (length);
2992 sizei = XFASTINT (length);
2993
2994 p = allocate_vector (sizei);
2995 for (index = 0; index < sizei; index++)
2996 p->contents[index] = init;
2997
2998 XSETVECTOR (vector, p);
2999 return vector;
3000 }
3001
3002
3003 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
3004 doc: /* Return a newly created char-table, with purpose PURPOSE.
3005 Each element is initialized to INIT, which defaults to nil.
3006 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
3007 The property's value should be an integer between 0 and 10. */)
3008 (purpose, init)
3009 register Lisp_Object purpose, init;
3010 {
3011 Lisp_Object vector;
3012 Lisp_Object n;
3013 CHECK_SYMBOL (purpose);
3014 n = Fget (purpose, Qchar_table_extra_slots);
3015 CHECK_NUMBER (n);
3016 if (XINT (n) < 0 || XINT (n) > 10)
3017 args_out_of_range (n, Qnil);
3018 /* Add 2 to the size for the defalt and parent slots. */
3019 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
3020 init);
3021 XCHAR_TABLE (vector)->top = Qt;
3022 XCHAR_TABLE (vector)->parent = Qnil;
3023 XCHAR_TABLE (vector)->purpose = purpose;
3024 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3025 return vector;
3026 }
3027
3028
3029 /* Return a newly created sub char table with slots initialized by INIT.
3030 Since a sub char table does not appear as a top level Emacs Lisp
3031 object, we don't need a Lisp interface to make it. */
3032
3033 Lisp_Object
3034 make_sub_char_table (init)
3035 Lisp_Object init;
3036 {
3037 Lisp_Object vector
3038 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), init);
3039 XCHAR_TABLE (vector)->top = Qnil;
3040 XCHAR_TABLE (vector)->defalt = Qnil;
3041 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3042 return vector;
3043 }
3044
3045
3046 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3047 doc: /* Return a newly created vector with specified arguments as elements.
3048 Any number of arguments, even zero arguments, are allowed.
3049 usage: (vector &rest OBJECTS) */)
3050 (nargs, args)
3051 register int nargs;
3052 Lisp_Object *args;
3053 {
3054 register Lisp_Object len, val;
3055 register int index;
3056 register struct Lisp_Vector *p;
3057
3058 XSETFASTINT (len, nargs);
3059 val = Fmake_vector (len, Qnil);
3060 p = XVECTOR (val);
3061 for (index = 0; index < nargs; index++)
3062 p->contents[index] = args[index];
3063 return val;
3064 }
3065
3066
3067 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3068 doc: /* Create a byte-code object with specified arguments as elements.
3069 The arguments should be the arglist, bytecode-string, constant vector,
3070 stack size, (optional) doc string, and (optional) interactive spec.
3071 The first four arguments are required; at most six have any
3072 significance.
3073 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3074 (nargs, args)
3075 register int nargs;
3076 Lisp_Object *args;
3077 {
3078 register Lisp_Object len, val;
3079 register int index;
3080 register struct Lisp_Vector *p;
3081
3082 XSETFASTINT (len, nargs);
3083 if (!NILP (Vpurify_flag))
3084 val = make_pure_vector ((EMACS_INT) nargs);
3085 else
3086 val = Fmake_vector (len, Qnil);
3087
3088 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3089 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3090 earlier because they produced a raw 8-bit string for byte-code
3091 and now such a byte-code string is loaded as multibyte while
3092 raw 8-bit characters converted to multibyte form. Thus, now we
3093 must convert them back to the original unibyte form. */
3094 args[1] = Fstring_as_unibyte (args[1]);
3095
3096 p = XVECTOR (val);
3097 for (index = 0; index < nargs; index++)
3098 {
3099 if (!NILP (Vpurify_flag))
3100 args[index] = Fpurecopy (args[index]);
3101 p->contents[index] = args[index];
3102 }
3103 XSETCOMPILED (val, p);
3104 return val;
3105 }
3106
3107
3108 \f
3109 /***********************************************************************
3110 Symbol Allocation
3111 ***********************************************************************/
3112
3113 /* Each symbol_block is just under 1020 bytes long, since malloc
3114 really allocates in units of powers of two and uses 4 bytes for its
3115 own overhead. */
3116
3117 #define SYMBOL_BLOCK_SIZE \
3118 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3119
3120 struct symbol_block
3121 {
3122 /* Place `symbols' first, to preserve alignment. */
3123 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3124 struct symbol_block *next;
3125 };
3126
3127 /* Current symbol block and index of first unused Lisp_Symbol
3128 structure in it. */
3129
3130 struct symbol_block *symbol_block;
3131 int symbol_block_index;
3132
3133 /* List of free symbols. */
3134
3135 struct Lisp_Symbol *symbol_free_list;
3136
3137 /* Total number of symbol blocks now in use. */
3138
3139 int n_symbol_blocks;
3140
3141
3142 /* Initialize symbol allocation. */
3143
3144 void
3145 init_symbol ()
3146 {
3147 symbol_block = NULL;
3148 symbol_block_index = SYMBOL_BLOCK_SIZE;
3149 symbol_free_list = 0;
3150 n_symbol_blocks = 0;
3151 }
3152
3153
3154 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3155 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3156 Its value and function definition are void, and its property list is nil. */)
3157 (name)
3158 Lisp_Object name;
3159 {
3160 register Lisp_Object val;
3161 register struct Lisp_Symbol *p;
3162
3163 CHECK_STRING (name);
3164
3165 if (symbol_free_list)
3166 {
3167 XSETSYMBOL (val, symbol_free_list);
3168 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
3169 }
3170 else
3171 {
3172 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3173 {
3174 struct symbol_block *new;
3175 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3176 MEM_TYPE_SYMBOL);
3177 new->next = symbol_block;
3178 symbol_block = new;
3179 symbol_block_index = 0;
3180 n_symbol_blocks++;
3181 }
3182 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3183 symbol_block_index++;
3184 }
3185
3186 p = XSYMBOL (val);
3187 p->xname = name;
3188 p->plist = Qnil;
3189 p->value = Qunbound;
3190 p->function = Qunbound;
3191 p->next = NULL;
3192 p->gcmarkbit = 0;
3193 p->interned = SYMBOL_UNINTERNED;
3194 p->constant = 0;
3195 p->indirect_variable = 0;
3196 consing_since_gc += sizeof (struct Lisp_Symbol);
3197 symbols_consed++;
3198 return val;
3199 }
3200
3201
3202 \f
3203 /***********************************************************************
3204 Marker (Misc) Allocation
3205 ***********************************************************************/
3206
3207 /* Allocation of markers and other objects that share that structure.
3208 Works like allocation of conses. */
3209
3210 #define MARKER_BLOCK_SIZE \
3211 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3212
3213 struct marker_block
3214 {
3215 /* Place `markers' first, to preserve alignment. */
3216 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3217 struct marker_block *next;
3218 };
3219
3220 struct marker_block *marker_block;
3221 int marker_block_index;
3222
3223 union Lisp_Misc *marker_free_list;
3224
3225 /* Total number of marker blocks now in use. */
3226
3227 int n_marker_blocks;
3228
3229 void
3230 init_marker ()
3231 {
3232 marker_block = NULL;
3233 marker_block_index = MARKER_BLOCK_SIZE;
3234 marker_free_list = 0;
3235 n_marker_blocks = 0;
3236 }
3237
3238 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3239
3240 Lisp_Object
3241 allocate_misc ()
3242 {
3243 Lisp_Object val;
3244
3245 if (marker_free_list)
3246 {
3247 XSETMISC (val, marker_free_list);
3248 marker_free_list = marker_free_list->u_free.chain;
3249 }
3250 else
3251 {
3252 if (marker_block_index == MARKER_BLOCK_SIZE)
3253 {
3254 struct marker_block *new;
3255 new = (struct marker_block *) lisp_malloc (sizeof *new,
3256 MEM_TYPE_MISC);
3257 new->next = marker_block;
3258 marker_block = new;
3259 marker_block_index = 0;
3260 n_marker_blocks++;
3261 total_free_markers += MARKER_BLOCK_SIZE;
3262 }
3263 XSETMISC (val, &marker_block->markers[marker_block_index]);
3264 marker_block_index++;
3265 }
3266
3267 --total_free_markers;
3268 consing_since_gc += sizeof (union Lisp_Misc);
3269 misc_objects_consed++;
3270 XMARKER (val)->gcmarkbit = 0;
3271 return val;
3272 }
3273
3274 /* Free a Lisp_Misc object */
3275
3276 void
3277 free_misc (misc)
3278 Lisp_Object misc;
3279 {
3280 XMISC (misc)->u_marker.type = Lisp_Misc_Free;
3281 XMISC (misc)->u_free.chain = marker_free_list;
3282 marker_free_list = XMISC (misc);
3283
3284 total_free_markers++;
3285 }
3286
3287 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3288 INTEGER. This is used to package C values to call record_unwind_protect.
3289 The unwind function can get the C values back using XSAVE_VALUE. */
3290
3291 Lisp_Object
3292 make_save_value (pointer, integer)
3293 void *pointer;
3294 int integer;
3295 {
3296 register Lisp_Object val;
3297 register struct Lisp_Save_Value *p;
3298
3299 val = allocate_misc ();
3300 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3301 p = XSAVE_VALUE (val);
3302 p->pointer = pointer;
3303 p->integer = integer;
3304 p->dogc = 0;
3305 return val;
3306 }
3307
3308 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3309 doc: /* Return a newly allocated marker which does not point at any place. */)
3310 ()
3311 {
3312 register Lisp_Object val;
3313 register struct Lisp_Marker *p;
3314
3315 val = allocate_misc ();
3316 XMISCTYPE (val) = Lisp_Misc_Marker;
3317 p = XMARKER (val);
3318 p->buffer = 0;
3319 p->bytepos = 0;
3320 p->charpos = 0;
3321 p->next = NULL;
3322 p->insertion_type = 0;
3323 return val;
3324 }
3325
3326 /* Put MARKER back on the free list after using it temporarily. */
3327
3328 void
3329 free_marker (marker)
3330 Lisp_Object marker;
3331 {
3332 unchain_marker (XMARKER (marker));
3333 free_misc (marker);
3334 }
3335
3336 \f
3337 /* Return a newly created vector or string with specified arguments as
3338 elements. If all the arguments are characters that can fit
3339 in a string of events, make a string; otherwise, make a vector.
3340
3341 Any number of arguments, even zero arguments, are allowed. */
3342
3343 Lisp_Object
3344 make_event_array (nargs, args)
3345 register int nargs;
3346 Lisp_Object *args;
3347 {
3348 int i;
3349
3350 for (i = 0; i < nargs; i++)
3351 /* The things that fit in a string
3352 are characters that are in 0...127,
3353 after discarding the meta bit and all the bits above it. */
3354 if (!INTEGERP (args[i])
3355 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3356 return Fvector (nargs, args);
3357
3358 /* Since the loop exited, we know that all the things in it are
3359 characters, so we can make a string. */
3360 {
3361 Lisp_Object result;
3362
3363 result = Fmake_string (make_number (nargs), make_number (0));
3364 for (i = 0; i < nargs; i++)
3365 {
3366 SSET (result, i, XINT (args[i]));
3367 /* Move the meta bit to the right place for a string char. */
3368 if (XINT (args[i]) & CHAR_META)
3369 SSET (result, i, SREF (result, i) | 0x80);
3370 }
3371
3372 return result;
3373 }
3374 }
3375
3376
3377 \f
3378 /************************************************************************
3379 C Stack Marking
3380 ************************************************************************/
3381
3382 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3383
3384 /* Conservative C stack marking requires a method to identify possibly
3385 live Lisp objects given a pointer value. We do this by keeping
3386 track of blocks of Lisp data that are allocated in a red-black tree
3387 (see also the comment of mem_node which is the type of nodes in
3388 that tree). Function lisp_malloc adds information for an allocated
3389 block to the red-black tree with calls to mem_insert, and function
3390 lisp_free removes it with mem_delete. Functions live_string_p etc
3391 call mem_find to lookup information about a given pointer in the
3392 tree, and use that to determine if the pointer points to a Lisp
3393 object or not. */
3394
3395 /* Initialize this part of alloc.c. */
3396
3397 static void
3398 mem_init ()
3399 {
3400 mem_z.left = mem_z.right = MEM_NIL;
3401 mem_z.parent = NULL;
3402 mem_z.color = MEM_BLACK;
3403 mem_z.start = mem_z.end = NULL;
3404 mem_root = MEM_NIL;
3405 }
3406
3407
3408 /* Value is a pointer to the mem_node containing START. Value is
3409 MEM_NIL if there is no node in the tree containing START. */
3410
3411 static INLINE struct mem_node *
3412 mem_find (start)
3413 void *start;
3414 {
3415 struct mem_node *p;
3416
3417 if (start < min_heap_address || start > max_heap_address)
3418 return MEM_NIL;
3419
3420 /* Make the search always successful to speed up the loop below. */
3421 mem_z.start = start;
3422 mem_z.end = (char *) start + 1;
3423
3424 p = mem_root;
3425 while (start < p->start || start >= p->end)
3426 p = start < p->start ? p->left : p->right;
3427 return p;
3428 }
3429
3430
3431 /* Insert a new node into the tree for a block of memory with start
3432 address START, end address END, and type TYPE. Value is a
3433 pointer to the node that was inserted. */
3434
3435 static struct mem_node *
3436 mem_insert (start, end, type)
3437 void *start, *end;
3438 enum mem_type type;
3439 {
3440 struct mem_node *c, *parent, *x;
3441
3442 if (start < min_heap_address)
3443 min_heap_address = start;
3444 if (end > max_heap_address)
3445 max_heap_address = end;
3446
3447 /* See where in the tree a node for START belongs. In this
3448 particular application, it shouldn't happen that a node is already
3449 present. For debugging purposes, let's check that. */
3450 c = mem_root;
3451 parent = NULL;
3452
3453 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3454
3455 while (c != MEM_NIL)
3456 {
3457 if (start >= c->start && start < c->end)
3458 abort ();
3459 parent = c;
3460 c = start < c->start ? c->left : c->right;
3461 }
3462
3463 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3464
3465 while (c != MEM_NIL)
3466 {
3467 parent = c;
3468 c = start < c->start ? c->left : c->right;
3469 }
3470
3471 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3472
3473 /* Create a new node. */
3474 #ifdef GC_MALLOC_CHECK
3475 x = (struct mem_node *) _malloc_internal (sizeof *x);
3476 if (x == NULL)
3477 abort ();
3478 #else
3479 x = (struct mem_node *) xmalloc (sizeof *x);
3480 #endif
3481 x->start = start;
3482 x->end = end;
3483 x->type = type;
3484 x->parent = parent;
3485 x->left = x->right = MEM_NIL;
3486 x->color = MEM_RED;
3487
3488 /* Insert it as child of PARENT or install it as root. */
3489 if (parent)
3490 {
3491 if (start < parent->start)
3492 parent->left = x;
3493 else
3494 parent->right = x;
3495 }
3496 else
3497 mem_root = x;
3498
3499 /* Re-establish red-black tree properties. */
3500 mem_insert_fixup (x);
3501
3502 return x;
3503 }
3504
3505
3506 /* Re-establish the red-black properties of the tree, and thereby
3507 balance the tree, after node X has been inserted; X is always red. */
3508
3509 static void
3510 mem_insert_fixup (x)
3511 struct mem_node *x;
3512 {
3513 while (x != mem_root && x->parent->color == MEM_RED)
3514 {
3515 /* X is red and its parent is red. This is a violation of
3516 red-black tree property #3. */
3517
3518 if (x->parent == x->parent->parent->left)
3519 {
3520 /* We're on the left side of our grandparent, and Y is our
3521 "uncle". */
3522 struct mem_node *y = x->parent->parent->right;
3523
3524 if (y->color == MEM_RED)
3525 {
3526 /* Uncle and parent are red but should be black because
3527 X is red. Change the colors accordingly and proceed
3528 with the grandparent. */
3529 x->parent->color = MEM_BLACK;
3530 y->color = MEM_BLACK;
3531 x->parent->parent->color = MEM_RED;
3532 x = x->parent->parent;
3533 }
3534 else
3535 {
3536 /* Parent and uncle have different colors; parent is
3537 red, uncle is black. */
3538 if (x == x->parent->right)
3539 {
3540 x = x->parent;
3541 mem_rotate_left (x);
3542 }
3543
3544 x->parent->color = MEM_BLACK;
3545 x->parent->parent->color = MEM_RED;
3546 mem_rotate_right (x->parent->parent);
3547 }
3548 }
3549 else
3550 {
3551 /* This is the symmetrical case of above. */
3552 struct mem_node *y = x->parent->parent->left;
3553
3554 if (y->color == MEM_RED)
3555 {
3556 x->parent->color = MEM_BLACK;
3557 y->color = MEM_BLACK;
3558 x->parent->parent->color = MEM_RED;
3559 x = x->parent->parent;
3560 }
3561 else
3562 {
3563 if (x == x->parent->left)
3564 {
3565 x = x->parent;
3566 mem_rotate_right (x);
3567 }
3568
3569 x->parent->color = MEM_BLACK;
3570 x->parent->parent->color = MEM_RED;
3571 mem_rotate_left (x->parent->parent);
3572 }
3573 }
3574 }
3575
3576 /* The root may have been changed to red due to the algorithm. Set
3577 it to black so that property #5 is satisfied. */
3578 mem_root->color = MEM_BLACK;
3579 }
3580
3581
3582 /* (x) (y)
3583 / \ / \
3584 a (y) ===> (x) c
3585 / \ / \
3586 b c a b */
3587
3588 static void
3589 mem_rotate_left (x)
3590 struct mem_node *x;
3591 {
3592 struct mem_node *y;
3593
3594 /* Turn y's left sub-tree into x's right sub-tree. */
3595 y = x->right;
3596 x->right = y->left;
3597 if (y->left != MEM_NIL)
3598 y->left->parent = x;
3599
3600 /* Y's parent was x's parent. */
3601 if (y != MEM_NIL)
3602 y->parent = x->parent;
3603
3604 /* Get the parent to point to y instead of x. */
3605 if (x->parent)
3606 {
3607 if (x == x->parent->left)
3608 x->parent->left = y;
3609 else
3610 x->parent->right = y;
3611 }
3612 else
3613 mem_root = y;
3614
3615 /* Put x on y's left. */
3616 y->left = x;
3617 if (x != MEM_NIL)
3618 x->parent = y;
3619 }
3620
3621
3622 /* (x) (Y)
3623 / \ / \
3624 (y) c ===> a (x)
3625 / \ / \
3626 a b b c */
3627
3628 static void
3629 mem_rotate_right (x)
3630 struct mem_node *x;
3631 {
3632 struct mem_node *y = x->left;
3633
3634 x->left = y->right;
3635 if (y->right != MEM_NIL)
3636 y->right->parent = x;
3637
3638 if (y != MEM_NIL)
3639 y->parent = x->parent;
3640 if (x->parent)
3641 {
3642 if (x == x->parent->right)
3643 x->parent->right = y;
3644 else
3645 x->parent->left = y;
3646 }
3647 else
3648 mem_root = y;
3649
3650 y->right = x;
3651 if (x != MEM_NIL)
3652 x->parent = y;
3653 }
3654
3655
3656 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3657
3658 static void
3659 mem_delete (z)
3660 struct mem_node *z;
3661 {
3662 struct mem_node *x, *y;
3663
3664 if (!z || z == MEM_NIL)
3665 return;
3666
3667 if (z->left == MEM_NIL || z->right == MEM_NIL)
3668 y = z;
3669 else
3670 {
3671 y = z->right;
3672 while (y->left != MEM_NIL)
3673 y = y->left;
3674 }
3675
3676 if (y->left != MEM_NIL)
3677 x = y->left;
3678 else
3679 x = y->right;
3680
3681 x->parent = y->parent;
3682 if (y->parent)
3683 {
3684 if (y == y->parent->left)
3685 y->parent->left = x;
3686 else
3687 y->parent->right = x;
3688 }
3689 else
3690 mem_root = x;
3691
3692 if (y != z)
3693 {
3694 z->start = y->start;
3695 z->end = y->end;
3696 z->type = y->type;
3697 }
3698
3699 if (y->color == MEM_BLACK)
3700 mem_delete_fixup (x);
3701
3702 #ifdef GC_MALLOC_CHECK
3703 _free_internal (y);
3704 #else
3705 xfree (y);
3706 #endif
3707 }
3708
3709
3710 /* Re-establish the red-black properties of the tree, after a
3711 deletion. */
3712
3713 static void
3714 mem_delete_fixup (x)
3715 struct mem_node *x;
3716 {
3717 while (x != mem_root && x->color == MEM_BLACK)
3718 {
3719 if (x == x->parent->left)
3720 {
3721 struct mem_node *w = x->parent->right;
3722
3723 if (w->color == MEM_RED)
3724 {
3725 w->color = MEM_BLACK;
3726 x->parent->color = MEM_RED;
3727 mem_rotate_left (x->parent);
3728 w = x->parent->right;
3729 }
3730
3731 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3732 {
3733 w->color = MEM_RED;
3734 x = x->parent;
3735 }
3736 else
3737 {
3738 if (w->right->color == MEM_BLACK)
3739 {
3740 w->left->color = MEM_BLACK;
3741 w->color = MEM_RED;
3742 mem_rotate_right (w);
3743 w = x->parent->right;
3744 }
3745 w->color = x->parent->color;
3746 x->parent->color = MEM_BLACK;
3747 w->right->color = MEM_BLACK;
3748 mem_rotate_left (x->parent);
3749 x = mem_root;
3750 }
3751 }
3752 else
3753 {
3754 struct mem_node *w = x->parent->left;
3755
3756 if (w->color == MEM_RED)
3757 {
3758 w->color = MEM_BLACK;
3759 x->parent->color = MEM_RED;
3760 mem_rotate_right (x->parent);
3761 w = x->parent->left;
3762 }
3763
3764 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3765 {
3766 w->color = MEM_RED;
3767 x = x->parent;
3768 }
3769 else
3770 {
3771 if (w->left->color == MEM_BLACK)
3772 {
3773 w->right->color = MEM_BLACK;
3774 w->color = MEM_RED;
3775 mem_rotate_left (w);
3776 w = x->parent->left;
3777 }
3778
3779 w->color = x->parent->color;
3780 x->parent->color = MEM_BLACK;
3781 w->left->color = MEM_BLACK;
3782 mem_rotate_right (x->parent);
3783 x = mem_root;
3784 }
3785 }
3786 }
3787
3788 x->color = MEM_BLACK;
3789 }
3790
3791
3792 /* Value is non-zero if P is a pointer to a live Lisp string on
3793 the heap. M is a pointer to the mem_block for P. */
3794
3795 static INLINE int
3796 live_string_p (m, p)
3797 struct mem_node *m;
3798 void *p;
3799 {
3800 if (m->type == MEM_TYPE_STRING)
3801 {
3802 struct string_block *b = (struct string_block *) m->start;
3803 int offset = (char *) p - (char *) &b->strings[0];
3804
3805 /* P must point to the start of a Lisp_String structure, and it
3806 must not be on the free-list. */
3807 return (offset >= 0
3808 && offset % sizeof b->strings[0] == 0
3809 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3810 && ((struct Lisp_String *) p)->data != NULL);
3811 }
3812 else
3813 return 0;
3814 }
3815
3816
3817 /* Value is non-zero if P is a pointer to a live Lisp cons on
3818 the heap. M is a pointer to the mem_block for P. */
3819
3820 static INLINE int
3821 live_cons_p (m, p)
3822 struct mem_node *m;
3823 void *p;
3824 {
3825 if (m->type == MEM_TYPE_CONS)
3826 {
3827 struct cons_block *b = (struct cons_block *) m->start;
3828 int offset = (char *) p - (char *) &b->conses[0];
3829
3830 /* P must point to the start of a Lisp_Cons, not be
3831 one of the unused cells in the current cons block,
3832 and not be on the free-list. */
3833 return (offset >= 0
3834 && offset % sizeof b->conses[0] == 0
3835 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3836 && (b != cons_block
3837 || offset / sizeof b->conses[0] < cons_block_index)
3838 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3839 }
3840 else
3841 return 0;
3842 }
3843
3844
3845 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3846 the heap. M is a pointer to the mem_block for P. */
3847
3848 static INLINE int
3849 live_symbol_p (m, p)
3850 struct mem_node *m;
3851 void *p;
3852 {
3853 if (m->type == MEM_TYPE_SYMBOL)
3854 {
3855 struct symbol_block *b = (struct symbol_block *) m->start;
3856 int offset = (char *) p - (char *) &b->symbols[0];
3857
3858 /* P must point to the start of a Lisp_Symbol, not be
3859 one of the unused cells in the current symbol block,
3860 and not be on the free-list. */
3861 return (offset >= 0
3862 && offset % sizeof b->symbols[0] == 0
3863 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3864 && (b != symbol_block
3865 || offset / sizeof b->symbols[0] < symbol_block_index)
3866 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3867 }
3868 else
3869 return 0;
3870 }
3871
3872
3873 /* Value is non-zero if P is a pointer to a live Lisp float on
3874 the heap. M is a pointer to the mem_block for P. */
3875
3876 static INLINE int
3877 live_float_p (m, p)
3878 struct mem_node *m;
3879 void *p;
3880 {
3881 if (m->type == MEM_TYPE_FLOAT)
3882 {
3883 struct float_block *b = (struct float_block *) m->start;
3884 int offset = (char *) p - (char *) &b->floats[0];
3885
3886 /* P must point to the start of a Lisp_Float and not be
3887 one of the unused cells in the current float block. */
3888 return (offset >= 0
3889 && offset % sizeof b->floats[0] == 0
3890 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3891 && (b != float_block
3892 || offset / sizeof b->floats[0] < float_block_index));
3893 }
3894 else
3895 return 0;
3896 }
3897
3898
3899 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3900 the heap. M is a pointer to the mem_block for P. */
3901
3902 static INLINE int
3903 live_misc_p (m, p)
3904 struct mem_node *m;
3905 void *p;
3906 {
3907 if (m->type == MEM_TYPE_MISC)
3908 {
3909 struct marker_block *b = (struct marker_block *) m->start;
3910 int offset = (char *) p - (char *) &b->markers[0];
3911
3912 /* P must point to the start of a Lisp_Misc, not be
3913 one of the unused cells in the current misc block,
3914 and not be on the free-list. */
3915 return (offset >= 0
3916 && offset % sizeof b->markers[0] == 0
3917 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3918 && (b != marker_block
3919 || offset / sizeof b->markers[0] < marker_block_index)
3920 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3921 }
3922 else
3923 return 0;
3924 }
3925
3926
3927 /* Value is non-zero if P is a pointer to a live vector-like object.
3928 M is a pointer to the mem_block for P. */
3929
3930 static INLINE int
3931 live_vector_p (m, p)
3932 struct mem_node *m;
3933 void *p;
3934 {
3935 return (p == m->start
3936 && m->type >= MEM_TYPE_VECTOR
3937 && m->type <= MEM_TYPE_WINDOW);
3938 }
3939
3940
3941 /* Value is non-zero if P is a pointer to a live buffer. M is a
3942 pointer to the mem_block for P. */
3943
3944 static INLINE int
3945 live_buffer_p (m, p)
3946 struct mem_node *m;
3947 void *p;
3948 {
3949 /* P must point to the start of the block, and the buffer
3950 must not have been killed. */
3951 return (m->type == MEM_TYPE_BUFFER
3952 && p == m->start
3953 && !NILP (((struct buffer *) p)->name));
3954 }
3955
3956 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3957
3958 #if GC_MARK_STACK
3959
3960 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3961
3962 /* Array of objects that are kept alive because the C stack contains
3963 a pattern that looks like a reference to them . */
3964
3965 #define MAX_ZOMBIES 10
3966 static Lisp_Object zombies[MAX_ZOMBIES];
3967
3968 /* Number of zombie objects. */
3969
3970 static int nzombies;
3971
3972 /* Number of garbage collections. */
3973
3974 static int ngcs;
3975
3976 /* Average percentage of zombies per collection. */
3977
3978 static double avg_zombies;
3979
3980 /* Max. number of live and zombie objects. */
3981
3982 static int max_live, max_zombies;
3983
3984 /* Average number of live objects per GC. */
3985
3986 static double avg_live;
3987
3988 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3989 doc: /* Show information about live and zombie objects. */)
3990 ()
3991 {
3992 Lisp_Object args[8], zombie_list = Qnil;
3993 int i;
3994 for (i = 0; i < nzombies; i++)
3995 zombie_list = Fcons (zombies[i], zombie_list);
3996 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3997 args[1] = make_number (ngcs);
3998 args[2] = make_float (avg_live);
3999 args[3] = make_float (avg_zombies);
4000 args[4] = make_float (avg_zombies / avg_live / 100);
4001 args[5] = make_number (max_live);
4002 args[6] = make_number (max_zombies);
4003 args[7] = zombie_list;
4004 return Fmessage (8, args);
4005 }
4006
4007 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4008
4009
4010 /* Mark OBJ if we can prove it's a Lisp_Object. */
4011
4012 static INLINE void
4013 mark_maybe_object (obj)
4014 Lisp_Object obj;
4015 {
4016 void *po = (void *) XPNTR (obj);
4017 struct mem_node *m = mem_find (po);
4018
4019 if (m != MEM_NIL)
4020 {
4021 int mark_p = 0;
4022
4023 switch (XGCTYPE (obj))
4024 {
4025 case Lisp_String:
4026 mark_p = (live_string_p (m, po)
4027 && !STRING_MARKED_P ((struct Lisp_String *) po));
4028 break;
4029
4030 case Lisp_Cons:
4031 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4032 break;
4033
4034 case Lisp_Symbol:
4035 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4036 break;
4037
4038 case Lisp_Float:
4039 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4040 break;
4041
4042 case Lisp_Vectorlike:
4043 /* Note: can't check GC_BUFFERP before we know it's a
4044 buffer because checking that dereferences the pointer
4045 PO which might point anywhere. */
4046 if (live_vector_p (m, po))
4047 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4048 else if (live_buffer_p (m, po))
4049 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4050 break;
4051
4052 case Lisp_Misc:
4053 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
4054 break;
4055
4056 case Lisp_Int:
4057 case Lisp_Type_Limit:
4058 break;
4059 }
4060
4061 if (mark_p)
4062 {
4063 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4064 if (nzombies < MAX_ZOMBIES)
4065 zombies[nzombies] = obj;
4066 ++nzombies;
4067 #endif
4068 mark_object (obj);
4069 }
4070 }
4071 }
4072
4073
4074 /* If P points to Lisp data, mark that as live if it isn't already
4075 marked. */
4076
4077 static INLINE void
4078 mark_maybe_pointer (p)
4079 void *p;
4080 {
4081 struct mem_node *m;
4082
4083 /* Quickly rule out some values which can't point to Lisp data. We
4084 assume that Lisp data is aligned on even addresses. */
4085 if ((EMACS_INT) p & 1)
4086 return;
4087
4088 m = mem_find (p);
4089 if (m != MEM_NIL)
4090 {
4091 Lisp_Object obj = Qnil;
4092
4093 switch (m->type)
4094 {
4095 case MEM_TYPE_NON_LISP:
4096 /* Nothing to do; not a pointer to Lisp memory. */
4097 break;
4098
4099 case MEM_TYPE_BUFFER:
4100 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4101 XSETVECTOR (obj, p);
4102 break;
4103
4104 case MEM_TYPE_CONS:
4105 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4106 XSETCONS (obj, p);
4107 break;
4108
4109 case MEM_TYPE_STRING:
4110 if (live_string_p (m, p)
4111 && !STRING_MARKED_P ((struct Lisp_String *) p))
4112 XSETSTRING (obj, p);
4113 break;
4114
4115 case MEM_TYPE_MISC:
4116 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4117 XSETMISC (obj, p);
4118 break;
4119
4120 case MEM_TYPE_SYMBOL:
4121 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4122 XSETSYMBOL (obj, p);
4123 break;
4124
4125 case MEM_TYPE_FLOAT:
4126 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4127 XSETFLOAT (obj, p);
4128 break;
4129
4130 case MEM_TYPE_VECTOR:
4131 case MEM_TYPE_PROCESS:
4132 case MEM_TYPE_HASH_TABLE:
4133 case MEM_TYPE_FRAME:
4134 case MEM_TYPE_WINDOW:
4135 if (live_vector_p (m, p))
4136 {
4137 Lisp_Object tem;
4138 XSETVECTOR (tem, p);
4139 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4140 obj = tem;
4141 }
4142 break;
4143
4144 default:
4145 abort ();
4146 }
4147
4148 if (!GC_NILP (obj))
4149 mark_object (obj);
4150 }
4151 }
4152
4153
4154 /* Mark Lisp objects referenced from the address range START..END. */
4155
4156 static void
4157 mark_memory (start, end)
4158 void *start, *end;
4159 {
4160 Lisp_Object *p;
4161 void **pp;
4162
4163 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4164 nzombies = 0;
4165 #endif
4166
4167 /* Make START the pointer to the start of the memory region,
4168 if it isn't already. */
4169 if (end < start)
4170 {
4171 void *tem = start;
4172 start = end;
4173 end = tem;
4174 }
4175
4176 /* Mark Lisp_Objects. */
4177 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
4178 mark_maybe_object (*p);
4179
4180 /* Mark Lisp data pointed to. This is necessary because, in some
4181 situations, the C compiler optimizes Lisp objects away, so that
4182 only a pointer to them remains. Example:
4183
4184 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4185 ()
4186 {
4187 Lisp_Object obj = build_string ("test");
4188 struct Lisp_String *s = XSTRING (obj);
4189 Fgarbage_collect ();
4190 fprintf (stderr, "test `%s'\n", s->data);
4191 return Qnil;
4192 }
4193
4194 Here, `obj' isn't really used, and the compiler optimizes it
4195 away. The only reference to the life string is through the
4196 pointer `s'. */
4197
4198 for (pp = (void **) start; (void *) pp < end; ++pp)
4199 mark_maybe_pointer (*pp);
4200 }
4201
4202 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4203 the GCC system configuration. In gcc 3.2, the only systems for
4204 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4205 by others?) and ns32k-pc532-min. */
4206
4207 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4208
4209 static int setjmp_tested_p, longjmps_done;
4210
4211 #define SETJMP_WILL_LIKELY_WORK "\
4212 \n\
4213 Emacs garbage collector has been changed to use conservative stack\n\
4214 marking. Emacs has determined that the method it uses to do the\n\
4215 marking will likely work on your system, but this isn't sure.\n\
4216 \n\
4217 If you are a system-programmer, or can get the help of a local wizard\n\
4218 who is, please take a look at the function mark_stack in alloc.c, and\n\
4219 verify that the methods used are appropriate for your system.\n\
4220 \n\
4221 Please mail the result to <emacs-devel@gnu.org>.\n\
4222 "
4223
4224 #define SETJMP_WILL_NOT_WORK "\
4225 \n\
4226 Emacs garbage collector has been changed to use conservative stack\n\
4227 marking. Emacs has determined that the default method it uses to do the\n\
4228 marking will not work on your system. We will need a system-dependent\n\
4229 solution for your system.\n\
4230 \n\
4231 Please take a look at the function mark_stack in alloc.c, and\n\
4232 try to find a way to make it work on your system.\n\
4233 \n\
4234 Note that you may get false negatives, depending on the compiler.\n\
4235 In particular, you need to use -O with GCC for this test.\n\
4236 \n\
4237 Please mail the result to <emacs-devel@gnu.org>.\n\
4238 "
4239
4240
4241 /* Perform a quick check if it looks like setjmp saves registers in a
4242 jmp_buf. Print a message to stderr saying so. When this test
4243 succeeds, this is _not_ a proof that setjmp is sufficient for
4244 conservative stack marking. Only the sources or a disassembly
4245 can prove that. */
4246
4247 static void
4248 test_setjmp ()
4249 {
4250 char buf[10];
4251 register int x;
4252 jmp_buf jbuf;
4253 int result = 0;
4254
4255 /* Arrange for X to be put in a register. */
4256 sprintf (buf, "1");
4257 x = strlen (buf);
4258 x = 2 * x - 1;
4259
4260 setjmp (jbuf);
4261 if (longjmps_done == 1)
4262 {
4263 /* Came here after the longjmp at the end of the function.
4264
4265 If x == 1, the longjmp has restored the register to its
4266 value before the setjmp, and we can hope that setjmp
4267 saves all such registers in the jmp_buf, although that
4268 isn't sure.
4269
4270 For other values of X, either something really strange is
4271 taking place, or the setjmp just didn't save the register. */
4272
4273 if (x == 1)
4274 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4275 else
4276 {
4277 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4278 exit (1);
4279 }
4280 }
4281
4282 ++longjmps_done;
4283 x = 2;
4284 if (longjmps_done == 1)
4285 longjmp (jbuf, 1);
4286 }
4287
4288 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4289
4290
4291 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4292
4293 /* Abort if anything GCPRO'd doesn't survive the GC. */
4294
4295 static void
4296 check_gcpros ()
4297 {
4298 struct gcpro *p;
4299 int i;
4300
4301 for (p = gcprolist; p; p = p->next)
4302 for (i = 0; i < p->nvars; ++i)
4303 if (!survives_gc_p (p->var[i]))
4304 /* FIXME: It's not necessarily a bug. It might just be that the
4305 GCPRO is unnecessary or should release the object sooner. */
4306 abort ();
4307 }
4308
4309 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4310
4311 static void
4312 dump_zombies ()
4313 {
4314 int i;
4315
4316 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4317 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4318 {
4319 fprintf (stderr, " %d = ", i);
4320 debug_print (zombies[i]);
4321 }
4322 }
4323
4324 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4325
4326
4327 /* Mark live Lisp objects on the C stack.
4328
4329 There are several system-dependent problems to consider when
4330 porting this to new architectures:
4331
4332 Processor Registers
4333
4334 We have to mark Lisp objects in CPU registers that can hold local
4335 variables or are used to pass parameters.
4336
4337 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4338 something that either saves relevant registers on the stack, or
4339 calls mark_maybe_object passing it each register's contents.
4340
4341 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4342 implementation assumes that calling setjmp saves registers we need
4343 to see in a jmp_buf which itself lies on the stack. This doesn't
4344 have to be true! It must be verified for each system, possibly
4345 by taking a look at the source code of setjmp.
4346
4347 Stack Layout
4348
4349 Architectures differ in the way their processor stack is organized.
4350 For example, the stack might look like this
4351
4352 +----------------+
4353 | Lisp_Object | size = 4
4354 +----------------+
4355 | something else | size = 2
4356 +----------------+
4357 | Lisp_Object | size = 4
4358 +----------------+
4359 | ... |
4360
4361 In such a case, not every Lisp_Object will be aligned equally. To
4362 find all Lisp_Object on the stack it won't be sufficient to walk
4363 the stack in steps of 4 bytes. Instead, two passes will be
4364 necessary, one starting at the start of the stack, and a second
4365 pass starting at the start of the stack + 2. Likewise, if the
4366 minimal alignment of Lisp_Objects on the stack is 1, four passes
4367 would be necessary, each one starting with one byte more offset
4368 from the stack start.
4369
4370 The current code assumes by default that Lisp_Objects are aligned
4371 equally on the stack. */
4372
4373 static void
4374 mark_stack ()
4375 {
4376 int i;
4377 jmp_buf j;
4378 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4379 void *end;
4380
4381 /* This trick flushes the register windows so that all the state of
4382 the process is contained in the stack. */
4383 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4384 needed on ia64 too. See mach_dep.c, where it also says inline
4385 assembler doesn't work with relevant proprietary compilers. */
4386 #ifdef sparc
4387 asm ("ta 3");
4388 #endif
4389
4390 /* Save registers that we need to see on the stack. We need to see
4391 registers used to hold register variables and registers used to
4392 pass parameters. */
4393 #ifdef GC_SAVE_REGISTERS_ON_STACK
4394 GC_SAVE_REGISTERS_ON_STACK (end);
4395 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4396
4397 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4398 setjmp will definitely work, test it
4399 and print a message with the result
4400 of the test. */
4401 if (!setjmp_tested_p)
4402 {
4403 setjmp_tested_p = 1;
4404 test_setjmp ();
4405 }
4406 #endif /* GC_SETJMP_WORKS */
4407
4408 setjmp (j);
4409 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4410 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4411
4412 /* This assumes that the stack is a contiguous region in memory. If
4413 that's not the case, something has to be done here to iterate
4414 over the stack segments. */
4415 #ifndef GC_LISP_OBJECT_ALIGNMENT
4416 #ifdef __GNUC__
4417 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4418 #else
4419 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4420 #endif
4421 #endif
4422 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4423 mark_memory ((char *) stack_base + i, end);
4424 /* Allow for marking a secondary stack, like the register stack on the
4425 ia64. */
4426 #ifdef GC_MARK_SECONDARY_STACK
4427 GC_MARK_SECONDARY_STACK ();
4428 #endif
4429
4430 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4431 check_gcpros ();
4432 #endif
4433 }
4434
4435
4436 #endif /* GC_MARK_STACK != 0 */
4437
4438
4439 \f
4440 /***********************************************************************
4441 Pure Storage Management
4442 ***********************************************************************/
4443
4444 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4445 pointer to it. TYPE is the Lisp type for which the memory is
4446 allocated. TYPE < 0 means it's not used for a Lisp object.
4447
4448 If store_pure_type_info is set and TYPE is >= 0, the type of
4449 the allocated object is recorded in pure_types. */
4450
4451 static POINTER_TYPE *
4452 pure_alloc (size, type)
4453 size_t size;
4454 int type;
4455 {
4456 POINTER_TYPE *result;
4457 #ifdef USE_LSB_TAG
4458 size_t alignment = (1 << GCTYPEBITS);
4459 #else
4460 size_t alignment = sizeof (EMACS_INT);
4461
4462 /* Give Lisp_Floats an extra alignment. */
4463 if (type == Lisp_Float)
4464 {
4465 #if defined __GNUC__ && __GNUC__ >= 2
4466 alignment = __alignof (struct Lisp_Float);
4467 #else
4468 alignment = sizeof (struct Lisp_Float);
4469 #endif
4470 }
4471 #endif
4472
4473 again:
4474 result = ALIGN (purebeg + pure_bytes_used, alignment);
4475 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4476
4477 if (pure_bytes_used <= pure_size)
4478 return result;
4479
4480 /* Don't allocate a large amount here,
4481 because it might get mmap'd and then its address
4482 might not be usable. */
4483 purebeg = (char *) xmalloc (10000);
4484 pure_size = 10000;
4485 pure_bytes_used_before_overflow += pure_bytes_used - size;
4486 pure_bytes_used = 0;
4487 goto again;
4488 }
4489
4490
4491 /* Print a warning if PURESIZE is too small. */
4492
4493 void
4494 check_pure_size ()
4495 {
4496 if (pure_bytes_used_before_overflow)
4497 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4498 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4499 }
4500
4501
4502 /* Return a string allocated in pure space. DATA is a buffer holding
4503 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4504 non-zero means make the result string multibyte.
4505
4506 Must get an error if pure storage is full, since if it cannot hold
4507 a large string it may be able to hold conses that point to that
4508 string; then the string is not protected from gc. */
4509
4510 Lisp_Object
4511 make_pure_string (data, nchars, nbytes, multibyte)
4512 char *data;
4513 int nchars, nbytes;
4514 int multibyte;
4515 {
4516 Lisp_Object string;
4517 struct Lisp_String *s;
4518
4519 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4520 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4521 s->size = nchars;
4522 s->size_byte = multibyte ? nbytes : -1;
4523 bcopy (data, s->data, nbytes);
4524 s->data[nbytes] = '\0';
4525 s->intervals = NULL_INTERVAL;
4526 XSETSTRING (string, s);
4527 return string;
4528 }
4529
4530
4531 /* Return a cons allocated from pure space. Give it pure copies
4532 of CAR as car and CDR as cdr. */
4533
4534 Lisp_Object
4535 pure_cons (car, cdr)
4536 Lisp_Object car, cdr;
4537 {
4538 register Lisp_Object new;
4539 struct Lisp_Cons *p;
4540
4541 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4542 XSETCONS (new, p);
4543 XSETCAR (new, Fpurecopy (car));
4544 XSETCDR (new, Fpurecopy (cdr));
4545 return new;
4546 }
4547
4548
4549 /* Value is a float object with value NUM allocated from pure space. */
4550
4551 Lisp_Object
4552 make_pure_float (num)
4553 double num;
4554 {
4555 register Lisp_Object new;
4556 struct Lisp_Float *p;
4557
4558 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4559 XSETFLOAT (new, p);
4560 XFLOAT_DATA (new) = num;
4561 return new;
4562 }
4563
4564
4565 /* Return a vector with room for LEN Lisp_Objects allocated from
4566 pure space. */
4567
4568 Lisp_Object
4569 make_pure_vector (len)
4570 EMACS_INT len;
4571 {
4572 Lisp_Object new;
4573 struct Lisp_Vector *p;
4574 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4575
4576 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4577 XSETVECTOR (new, p);
4578 XVECTOR (new)->size = len;
4579 return new;
4580 }
4581
4582
4583 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4584 doc: /* Make a copy of OBJECT in pure storage.
4585 Recursively copies contents of vectors and cons cells.
4586 Does not copy symbols. Copies strings without text properties. */)
4587 (obj)
4588 register Lisp_Object obj;
4589 {
4590 if (NILP (Vpurify_flag))
4591 return obj;
4592
4593 if (PURE_POINTER_P (XPNTR (obj)))
4594 return obj;
4595
4596 if (CONSP (obj))
4597 return pure_cons (XCAR (obj), XCDR (obj));
4598 else if (FLOATP (obj))
4599 return make_pure_float (XFLOAT_DATA (obj));
4600 else if (STRINGP (obj))
4601 return make_pure_string (SDATA (obj), SCHARS (obj),
4602 SBYTES (obj),
4603 STRING_MULTIBYTE (obj));
4604 else if (COMPILEDP (obj) || VECTORP (obj))
4605 {
4606 register struct Lisp_Vector *vec;
4607 register int i;
4608 EMACS_INT size;
4609
4610 size = XVECTOR (obj)->size;
4611 if (size & PSEUDOVECTOR_FLAG)
4612 size &= PSEUDOVECTOR_SIZE_MASK;
4613 vec = XVECTOR (make_pure_vector (size));
4614 for (i = 0; i < size; i++)
4615 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4616 if (COMPILEDP (obj))
4617 XSETCOMPILED (obj, vec);
4618 else
4619 XSETVECTOR (obj, vec);
4620 return obj;
4621 }
4622 else if (MARKERP (obj))
4623 error ("Attempt to copy a marker to pure storage");
4624
4625 return obj;
4626 }
4627
4628
4629 \f
4630 /***********************************************************************
4631 Protection from GC
4632 ***********************************************************************/
4633
4634 /* Put an entry in staticvec, pointing at the variable with address
4635 VARADDRESS. */
4636
4637 void
4638 staticpro (varaddress)
4639 Lisp_Object *varaddress;
4640 {
4641 staticvec[staticidx++] = varaddress;
4642 if (staticidx >= NSTATICS)
4643 abort ();
4644 }
4645
4646 struct catchtag
4647 {
4648 Lisp_Object tag;
4649 Lisp_Object val;
4650 struct catchtag *next;
4651 };
4652
4653 \f
4654 /***********************************************************************
4655 Protection from GC
4656 ***********************************************************************/
4657
4658 /* Temporarily prevent garbage collection. */
4659
4660 int
4661 inhibit_garbage_collection ()
4662 {
4663 int count = SPECPDL_INDEX ();
4664 int nbits = min (VALBITS, BITS_PER_INT);
4665
4666 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4667 return count;
4668 }
4669
4670
4671 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4672 doc: /* Reclaim storage for Lisp objects no longer needed.
4673 Garbage collection happens automatically if you cons more than
4674 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4675 `garbage-collect' normally returns a list with info on amount of space in use:
4676 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4677 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4678 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4679 (USED-STRINGS . FREE-STRINGS))
4680 However, if there was overflow in pure space, `garbage-collect'
4681 returns nil, because real GC can't be done. */)
4682 ()
4683 {
4684 register struct specbinding *bind;
4685 struct catchtag *catch;
4686 struct handler *handler;
4687 char stack_top_variable;
4688 register int i;
4689 int message_p;
4690 Lisp_Object total[8];
4691 int count = SPECPDL_INDEX ();
4692 EMACS_TIME t1, t2, t3;
4693
4694 if (abort_on_gc)
4695 abort ();
4696
4697 /* Can't GC if pure storage overflowed because we can't determine
4698 if something is a pure object or not. */
4699 if (pure_bytes_used_before_overflow)
4700 return Qnil;
4701
4702 CHECK_CONS_LIST ();
4703
4704 /* Don't keep undo information around forever.
4705 Do this early on, so it is no problem if the user quits. */
4706 {
4707 register struct buffer *nextb = all_buffers;
4708
4709 while (nextb)
4710 {
4711 /* If a buffer's undo list is Qt, that means that undo is
4712 turned off in that buffer. Calling truncate_undo_list on
4713 Qt tends to return NULL, which effectively turns undo back on.
4714 So don't call truncate_undo_list if undo_list is Qt. */
4715 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
4716 truncate_undo_list (nextb);
4717
4718 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4719 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4720 {
4721 /* If a buffer's gap size is more than 10% of the buffer
4722 size, or larger than 2000 bytes, then shrink it
4723 accordingly. Keep a minimum size of 20 bytes. */
4724 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4725
4726 if (nextb->text->gap_size > size)
4727 {
4728 struct buffer *save_current = current_buffer;
4729 current_buffer = nextb;
4730 make_gap (-(nextb->text->gap_size - size));
4731 current_buffer = save_current;
4732 }
4733 }
4734
4735 nextb = nextb->next;
4736 }
4737 }
4738
4739 EMACS_GET_TIME (t1);
4740
4741 /* In case user calls debug_print during GC,
4742 don't let that cause a recursive GC. */
4743 consing_since_gc = 0;
4744
4745 /* Save what's currently displayed in the echo area. */
4746 message_p = push_message ();
4747 record_unwind_protect (pop_message_unwind, Qnil);
4748
4749 /* Save a copy of the contents of the stack, for debugging. */
4750 #if MAX_SAVE_STACK > 0
4751 if (NILP (Vpurify_flag))
4752 {
4753 i = &stack_top_variable - stack_bottom;
4754 if (i < 0) i = -i;
4755 if (i < MAX_SAVE_STACK)
4756 {
4757 if (stack_copy == 0)
4758 stack_copy = (char *) xmalloc (stack_copy_size = i);
4759 else if (stack_copy_size < i)
4760 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4761 if (stack_copy)
4762 {
4763 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4764 bcopy (stack_bottom, stack_copy, i);
4765 else
4766 bcopy (&stack_top_variable, stack_copy, i);
4767 }
4768 }
4769 }
4770 #endif /* MAX_SAVE_STACK > 0 */
4771
4772 if (garbage_collection_messages)
4773 message1_nolog ("Garbage collecting...");
4774
4775 BLOCK_INPUT;
4776
4777 shrink_regexp_cache ();
4778
4779 gc_in_progress = 1;
4780
4781 /* clear_marks (); */
4782
4783 /* Mark all the special slots that serve as the roots of accessibility. */
4784
4785 for (i = 0; i < staticidx; i++)
4786 mark_object (*staticvec[i]);
4787
4788 for (bind = specpdl; bind != specpdl_ptr; bind++)
4789 {
4790 mark_object (bind->symbol);
4791 mark_object (bind->old_value);
4792 }
4793 mark_kboards ();
4794
4795 #ifdef USE_GTK
4796 {
4797 extern void xg_mark_data ();
4798 xg_mark_data ();
4799 }
4800 #endif
4801
4802 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4803 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4804 mark_stack ();
4805 #else
4806 {
4807 register struct gcpro *tail;
4808 for (tail = gcprolist; tail; tail = tail->next)
4809 for (i = 0; i < tail->nvars; i++)
4810 mark_object (tail->var[i]);
4811 }
4812 #endif
4813
4814 mark_byte_stack ();
4815 for (catch = catchlist; catch; catch = catch->next)
4816 {
4817 mark_object (catch->tag);
4818 mark_object (catch->val);
4819 }
4820 for (handler = handlerlist; handler; handler = handler->next)
4821 {
4822 mark_object (handler->handler);
4823 mark_object (handler->var);
4824 }
4825 mark_backtrace ();
4826
4827 #ifdef HAVE_WINDOW_SYSTEM
4828 mark_fringe_data ();
4829 #endif
4830
4831 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4832 mark_stack ();
4833 #endif
4834
4835 /* Everything is now marked, except for the things that require special
4836 finalization, i.e. the undo_list.
4837 Look thru every buffer's undo list
4838 for elements that update markers that were not marked,
4839 and delete them. */
4840 {
4841 register struct buffer *nextb = all_buffers;
4842
4843 while (nextb)
4844 {
4845 /* If a buffer's undo list is Qt, that means that undo is
4846 turned off in that buffer. Calling truncate_undo_list on
4847 Qt tends to return NULL, which effectively turns undo back on.
4848 So don't call truncate_undo_list if undo_list is Qt. */
4849 if (! EQ (nextb->undo_list, Qt))
4850 {
4851 Lisp_Object tail, prev;
4852 tail = nextb->undo_list;
4853 prev = Qnil;
4854 while (CONSP (tail))
4855 {
4856 if (GC_CONSP (XCAR (tail))
4857 && GC_MARKERP (XCAR (XCAR (tail)))
4858 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4859 {
4860 if (NILP (prev))
4861 nextb->undo_list = tail = XCDR (tail);
4862 else
4863 {
4864 tail = XCDR (tail);
4865 XSETCDR (prev, tail);
4866 }
4867 }
4868 else
4869 {
4870 prev = tail;
4871 tail = XCDR (tail);
4872 }
4873 }
4874 }
4875 /* Now that we have stripped the elements that need not be in the
4876 undo_list any more, we can finally mark the list. */
4877 mark_object (nextb->undo_list);
4878
4879 nextb = nextb->next;
4880 }
4881 }
4882
4883 gc_sweep ();
4884
4885 /* Clear the mark bits that we set in certain root slots. */
4886
4887 unmark_byte_stack ();
4888 VECTOR_UNMARK (&buffer_defaults);
4889 VECTOR_UNMARK (&buffer_local_symbols);
4890
4891 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4892 dump_zombies ();
4893 #endif
4894
4895 UNBLOCK_INPUT;
4896
4897 CHECK_CONS_LIST ();
4898
4899 /* clear_marks (); */
4900 gc_in_progress = 0;
4901
4902 consing_since_gc = 0;
4903 if (gc_cons_threshold < 10000)
4904 gc_cons_threshold = 10000;
4905
4906 if (FLOATP (Vgc_cons_percentage))
4907 { /* Set gc_cons_combined_threshold. */
4908 EMACS_INT total = 0;
4909
4910 total += total_conses * sizeof (struct Lisp_Cons);
4911 total += total_symbols * sizeof (struct Lisp_Symbol);
4912 total += total_markers * sizeof (union Lisp_Misc);
4913 total += total_string_size;
4914 total += total_vector_size * sizeof (Lisp_Object);
4915 total += total_floats * sizeof (struct Lisp_Float);
4916 total += total_intervals * sizeof (struct interval);
4917 total += total_strings * sizeof (struct Lisp_String);
4918
4919 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
4920 }
4921 else
4922 gc_relative_threshold = 0;
4923
4924 if (garbage_collection_messages)
4925 {
4926 if (message_p || minibuf_level > 0)
4927 restore_message ();
4928 else
4929 message1_nolog ("Garbage collecting...done");
4930 }
4931
4932 unbind_to (count, Qnil);
4933
4934 total[0] = Fcons (make_number (total_conses),
4935 make_number (total_free_conses));
4936 total[1] = Fcons (make_number (total_symbols),
4937 make_number (total_free_symbols));
4938 total[2] = Fcons (make_number (total_markers),
4939 make_number (total_free_markers));
4940 total[3] = make_number (total_string_size);
4941 total[4] = make_number (total_vector_size);
4942 total[5] = Fcons (make_number (total_floats),
4943 make_number (total_free_floats));
4944 total[6] = Fcons (make_number (total_intervals),
4945 make_number (total_free_intervals));
4946 total[7] = Fcons (make_number (total_strings),
4947 make_number (total_free_strings));
4948
4949 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4950 {
4951 /* Compute average percentage of zombies. */
4952 double nlive = 0;
4953
4954 for (i = 0; i < 7; ++i)
4955 if (CONSP (total[i]))
4956 nlive += XFASTINT (XCAR (total[i]));
4957
4958 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4959 max_live = max (nlive, max_live);
4960 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4961 max_zombies = max (nzombies, max_zombies);
4962 ++ngcs;
4963 }
4964 #endif
4965
4966 if (!NILP (Vpost_gc_hook))
4967 {
4968 int count = inhibit_garbage_collection ();
4969 safe_run_hooks (Qpost_gc_hook);
4970 unbind_to (count, Qnil);
4971 }
4972
4973 /* Accumulate statistics. */
4974 EMACS_GET_TIME (t2);
4975 EMACS_SUB_TIME (t3, t2, t1);
4976 if (FLOATP (Vgc_elapsed))
4977 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
4978 EMACS_SECS (t3) +
4979 EMACS_USECS (t3) * 1.0e-6);
4980 gcs_done++;
4981
4982 return Flist (sizeof total / sizeof *total, total);
4983 }
4984
4985
4986 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
4987 only interesting objects referenced from glyphs are strings. */
4988
4989 static void
4990 mark_glyph_matrix (matrix)
4991 struct glyph_matrix *matrix;
4992 {
4993 struct glyph_row *row = matrix->rows;
4994 struct glyph_row *end = row + matrix->nrows;
4995
4996 for (; row < end; ++row)
4997 if (row->enabled_p)
4998 {
4999 int area;
5000 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5001 {
5002 struct glyph *glyph = row->glyphs[area];
5003 struct glyph *end_glyph = glyph + row->used[area];
5004
5005 for (; glyph < end_glyph; ++glyph)
5006 if (GC_STRINGP (glyph->object)
5007 && !STRING_MARKED_P (XSTRING (glyph->object)))
5008 mark_object (glyph->object);
5009 }
5010 }
5011 }
5012
5013
5014 /* Mark Lisp faces in the face cache C. */
5015
5016 static void
5017 mark_face_cache (c)
5018 struct face_cache *c;
5019 {
5020 if (c)
5021 {
5022 int i, j;
5023 for (i = 0; i < c->used; ++i)
5024 {
5025 struct face *face = FACE_FROM_ID (c->f, i);
5026
5027 if (face)
5028 {
5029 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5030 mark_object (face->lface[j]);
5031 }
5032 }
5033 }
5034 }
5035
5036
5037 #ifdef HAVE_WINDOW_SYSTEM
5038
5039 /* Mark Lisp objects in image IMG. */
5040
5041 static void
5042 mark_image (img)
5043 struct image *img;
5044 {
5045 mark_object (img->spec);
5046
5047 if (!NILP (img->data.lisp_val))
5048 mark_object (img->data.lisp_val);
5049 }
5050
5051
5052 /* Mark Lisp objects in image cache of frame F. It's done this way so
5053 that we don't have to include xterm.h here. */
5054
5055 static void
5056 mark_image_cache (f)
5057 struct frame *f;
5058 {
5059 forall_images_in_image_cache (f, mark_image);
5060 }
5061
5062 #endif /* HAVE_X_WINDOWS */
5063
5064
5065 \f
5066 /* Mark reference to a Lisp_Object.
5067 If the object referred to has not been seen yet, recursively mark
5068 all the references contained in it. */
5069
5070 #define LAST_MARKED_SIZE 500
5071 Lisp_Object last_marked[LAST_MARKED_SIZE];
5072 int last_marked_index;
5073
5074 /* For debugging--call abort when we cdr down this many
5075 links of a list, in mark_object. In debugging,
5076 the call to abort will hit a breakpoint.
5077 Normally this is zero and the check never goes off. */
5078 int mark_object_loop_halt;
5079
5080 void
5081 mark_object (arg)
5082 Lisp_Object arg;
5083 {
5084 register Lisp_Object obj = arg;
5085 #ifdef GC_CHECK_MARKED_OBJECTS
5086 void *po;
5087 struct mem_node *m;
5088 #endif
5089 int cdr_count = 0;
5090
5091 loop:
5092
5093 if (PURE_POINTER_P (XPNTR (obj)))
5094 return;
5095
5096 last_marked[last_marked_index++] = obj;
5097 if (last_marked_index == LAST_MARKED_SIZE)
5098 last_marked_index = 0;
5099
5100 /* Perform some sanity checks on the objects marked here. Abort if
5101 we encounter an object we know is bogus. This increases GC time
5102 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5103 #ifdef GC_CHECK_MARKED_OBJECTS
5104
5105 po = (void *) XPNTR (obj);
5106
5107 /* Check that the object pointed to by PO is known to be a Lisp
5108 structure allocated from the heap. */
5109 #define CHECK_ALLOCATED() \
5110 do { \
5111 m = mem_find (po); \
5112 if (m == MEM_NIL) \
5113 abort (); \
5114 } while (0)
5115
5116 /* Check that the object pointed to by PO is live, using predicate
5117 function LIVEP. */
5118 #define CHECK_LIVE(LIVEP) \
5119 do { \
5120 if (!LIVEP (m, po)) \
5121 abort (); \
5122 } while (0)
5123
5124 /* Check both of the above conditions. */
5125 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5126 do { \
5127 CHECK_ALLOCATED (); \
5128 CHECK_LIVE (LIVEP); \
5129 } while (0) \
5130
5131 #else /* not GC_CHECK_MARKED_OBJECTS */
5132
5133 #define CHECK_ALLOCATED() (void) 0
5134 #define CHECK_LIVE(LIVEP) (void) 0
5135 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5136
5137 #endif /* not GC_CHECK_MARKED_OBJECTS */
5138
5139 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
5140 {
5141 case Lisp_String:
5142 {
5143 register struct Lisp_String *ptr = XSTRING (obj);
5144 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5145 MARK_INTERVAL_TREE (ptr->intervals);
5146 MARK_STRING (ptr);
5147 #ifdef GC_CHECK_STRING_BYTES
5148 /* Check that the string size recorded in the string is the
5149 same as the one recorded in the sdata structure. */
5150 CHECK_STRING_BYTES (ptr);
5151 #endif /* GC_CHECK_STRING_BYTES */
5152 }
5153 break;
5154
5155 case Lisp_Vectorlike:
5156 #ifdef GC_CHECK_MARKED_OBJECTS
5157 m = mem_find (po);
5158 if (m == MEM_NIL && !GC_SUBRP (obj)
5159 && po != &buffer_defaults
5160 && po != &buffer_local_symbols)
5161 abort ();
5162 #endif /* GC_CHECK_MARKED_OBJECTS */
5163
5164 if (GC_BUFFERP (obj))
5165 {
5166 if (!VECTOR_MARKED_P (XBUFFER (obj)))
5167 {
5168 #ifdef GC_CHECK_MARKED_OBJECTS
5169 if (po != &buffer_defaults && po != &buffer_local_symbols)
5170 {
5171 struct buffer *b;
5172 for (b = all_buffers; b && b != po; b = b->next)
5173 ;
5174 if (b == NULL)
5175 abort ();
5176 }
5177 #endif /* GC_CHECK_MARKED_OBJECTS */
5178 mark_buffer (obj);
5179 }
5180 }
5181 else if (GC_SUBRP (obj))
5182 break;
5183 else if (GC_COMPILEDP (obj))
5184 /* We could treat this just like a vector, but it is better to
5185 save the COMPILED_CONSTANTS element for last and avoid
5186 recursion there. */
5187 {
5188 register struct Lisp_Vector *ptr = XVECTOR (obj);
5189 register EMACS_INT size = ptr->size;
5190 register int i;
5191
5192 if (VECTOR_MARKED_P (ptr))
5193 break; /* Already marked */
5194
5195 CHECK_LIVE (live_vector_p);
5196 VECTOR_MARK (ptr); /* Else mark it */
5197 size &= PSEUDOVECTOR_SIZE_MASK;
5198 for (i = 0; i < size; i++) /* and then mark its elements */
5199 {
5200 if (i != COMPILED_CONSTANTS)
5201 mark_object (ptr->contents[i]);
5202 }
5203 obj = ptr->contents[COMPILED_CONSTANTS];
5204 goto loop;
5205 }
5206 else if (GC_FRAMEP (obj))
5207 {
5208 register struct frame *ptr = XFRAME (obj);
5209
5210 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5211 VECTOR_MARK (ptr); /* Else mark it */
5212
5213 CHECK_LIVE (live_vector_p);
5214 mark_object (ptr->name);
5215 mark_object (ptr->icon_name);
5216 mark_object (ptr->title);
5217 mark_object (ptr->focus_frame);
5218 mark_object (ptr->selected_window);
5219 mark_object (ptr->minibuffer_window);
5220 mark_object (ptr->param_alist);
5221 mark_object (ptr->scroll_bars);
5222 mark_object (ptr->condemned_scroll_bars);
5223 mark_object (ptr->menu_bar_items);
5224 mark_object (ptr->face_alist);
5225 mark_object (ptr->menu_bar_vector);
5226 mark_object (ptr->buffer_predicate);
5227 mark_object (ptr->buffer_list);
5228 mark_object (ptr->menu_bar_window);
5229 mark_object (ptr->tool_bar_window);
5230 mark_face_cache (ptr->face_cache);
5231 #ifdef HAVE_WINDOW_SYSTEM
5232 mark_image_cache (ptr);
5233 mark_object (ptr->tool_bar_items);
5234 mark_object (ptr->desired_tool_bar_string);
5235 mark_object (ptr->current_tool_bar_string);
5236 #endif /* HAVE_WINDOW_SYSTEM */
5237 }
5238 else if (GC_BOOL_VECTOR_P (obj))
5239 {
5240 register struct Lisp_Vector *ptr = XVECTOR (obj);
5241
5242 if (VECTOR_MARKED_P (ptr))
5243 break; /* Already marked */
5244 CHECK_LIVE (live_vector_p);
5245 VECTOR_MARK (ptr); /* Else mark it */
5246 }
5247 else if (GC_WINDOWP (obj))
5248 {
5249 register struct Lisp_Vector *ptr = XVECTOR (obj);
5250 struct window *w = XWINDOW (obj);
5251 register int i;
5252
5253 /* Stop if already marked. */
5254 if (VECTOR_MARKED_P (ptr))
5255 break;
5256
5257 /* Mark it. */
5258 CHECK_LIVE (live_vector_p);
5259 VECTOR_MARK (ptr);
5260
5261 /* There is no Lisp data above The member CURRENT_MATRIX in
5262 struct WINDOW. Stop marking when that slot is reached. */
5263 for (i = 0;
5264 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
5265 i++)
5266 mark_object (ptr->contents[i]);
5267
5268 /* Mark glyphs for leaf windows. Marking window matrices is
5269 sufficient because frame matrices use the same glyph
5270 memory. */
5271 if (NILP (w->hchild)
5272 && NILP (w->vchild)
5273 && w->current_matrix)
5274 {
5275 mark_glyph_matrix (w->current_matrix);
5276 mark_glyph_matrix (w->desired_matrix);
5277 }
5278 }
5279 else if (GC_HASH_TABLE_P (obj))
5280 {
5281 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5282
5283 /* Stop if already marked. */
5284 if (VECTOR_MARKED_P (h))
5285 break;
5286
5287 /* Mark it. */
5288 CHECK_LIVE (live_vector_p);
5289 VECTOR_MARK (h);
5290
5291 /* Mark contents. */
5292 /* Do not mark next_free or next_weak.
5293 Being in the next_weak chain
5294 should not keep the hash table alive.
5295 No need to mark `count' since it is an integer. */
5296 mark_object (h->test);
5297 mark_object (h->weak);
5298 mark_object (h->rehash_size);
5299 mark_object (h->rehash_threshold);
5300 mark_object (h->hash);
5301 mark_object (h->next);
5302 mark_object (h->index);
5303 mark_object (h->user_hash_function);
5304 mark_object (h->user_cmp_function);
5305
5306 /* If hash table is not weak, mark all keys and values.
5307 For weak tables, mark only the vector. */
5308 if (GC_NILP (h->weak))
5309 mark_object (h->key_and_value);
5310 else
5311 VECTOR_MARK (XVECTOR (h->key_and_value));
5312 }
5313 else
5314 {
5315 register struct Lisp_Vector *ptr = XVECTOR (obj);
5316 register EMACS_INT size = ptr->size;
5317 register int i;
5318
5319 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5320 CHECK_LIVE (live_vector_p);
5321 VECTOR_MARK (ptr); /* Else mark it */
5322 if (size & PSEUDOVECTOR_FLAG)
5323 size &= PSEUDOVECTOR_SIZE_MASK;
5324
5325 for (i = 0; i < size; i++) /* and then mark its elements */
5326 mark_object (ptr->contents[i]);
5327 }
5328 break;
5329
5330 case Lisp_Symbol:
5331 {
5332 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5333 struct Lisp_Symbol *ptrx;
5334
5335 if (ptr->gcmarkbit) break;
5336 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5337 ptr->gcmarkbit = 1;
5338 mark_object (ptr->value);
5339 mark_object (ptr->function);
5340 mark_object (ptr->plist);
5341
5342 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5343 MARK_STRING (XSTRING (ptr->xname));
5344 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5345
5346 /* Note that we do not mark the obarray of the symbol.
5347 It is safe not to do so because nothing accesses that
5348 slot except to check whether it is nil. */
5349 ptr = ptr->next;
5350 if (ptr)
5351 {
5352 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5353 XSETSYMBOL (obj, ptrx);
5354 goto loop;
5355 }
5356 }
5357 break;
5358
5359 case Lisp_Misc:
5360 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5361 if (XMARKER (obj)->gcmarkbit)
5362 break;
5363 XMARKER (obj)->gcmarkbit = 1;
5364
5365 switch (XMISCTYPE (obj))
5366 {
5367 case Lisp_Misc_Buffer_Local_Value:
5368 case Lisp_Misc_Some_Buffer_Local_Value:
5369 {
5370 register struct Lisp_Buffer_Local_Value *ptr
5371 = XBUFFER_LOCAL_VALUE (obj);
5372 /* If the cdr is nil, avoid recursion for the car. */
5373 if (EQ (ptr->cdr, Qnil))
5374 {
5375 obj = ptr->realvalue;
5376 goto loop;
5377 }
5378 mark_object (ptr->realvalue);
5379 mark_object (ptr->buffer);
5380 mark_object (ptr->frame);
5381 obj = ptr->cdr;
5382 goto loop;
5383 }
5384
5385 case Lisp_Misc_Marker:
5386 /* DO NOT mark thru the marker's chain.
5387 The buffer's markers chain does not preserve markers from gc;
5388 instead, markers are removed from the chain when freed by gc. */
5389 break;
5390
5391 case Lisp_Misc_Intfwd:
5392 case Lisp_Misc_Boolfwd:
5393 case Lisp_Misc_Objfwd:
5394 case Lisp_Misc_Buffer_Objfwd:
5395 case Lisp_Misc_Kboard_Objfwd:
5396 /* Don't bother with Lisp_Buffer_Objfwd,
5397 since all markable slots in current buffer marked anyway. */
5398 /* Don't need to do Lisp_Objfwd, since the places they point
5399 are protected with staticpro. */
5400 break;
5401
5402 case Lisp_Misc_Save_Value:
5403 #if GC_MARK_STACK
5404 {
5405 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5406 /* If DOGC is set, POINTER is the address of a memory
5407 area containing INTEGER potential Lisp_Objects. */
5408 if (ptr->dogc)
5409 {
5410 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5411 int nelt;
5412 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5413 mark_maybe_object (*p);
5414 }
5415 }
5416 #endif
5417 break;
5418
5419 case Lisp_Misc_Overlay:
5420 {
5421 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5422 mark_object (ptr->start);
5423 mark_object (ptr->end);
5424 mark_object (ptr->plist);
5425 if (ptr->next)
5426 {
5427 XSETMISC (obj, ptr->next);
5428 goto loop;
5429 }
5430 }
5431 break;
5432
5433 default:
5434 abort ();
5435 }
5436 break;
5437
5438 case Lisp_Cons:
5439 {
5440 register struct Lisp_Cons *ptr = XCONS (obj);
5441 if (CONS_MARKED_P (ptr)) break;
5442 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5443 CONS_MARK (ptr);
5444 /* If the cdr is nil, avoid recursion for the car. */
5445 if (EQ (ptr->cdr, Qnil))
5446 {
5447 obj = ptr->car;
5448 cdr_count = 0;
5449 goto loop;
5450 }
5451 mark_object (ptr->car);
5452 obj = ptr->cdr;
5453 cdr_count++;
5454 if (cdr_count == mark_object_loop_halt)
5455 abort ();
5456 goto loop;
5457 }
5458
5459 case Lisp_Float:
5460 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5461 FLOAT_MARK (XFLOAT (obj));
5462 break;
5463
5464 case Lisp_Int:
5465 break;
5466
5467 default:
5468 abort ();
5469 }
5470
5471 #undef CHECK_LIVE
5472 #undef CHECK_ALLOCATED
5473 #undef CHECK_ALLOCATED_AND_LIVE
5474 }
5475
5476 /* Mark the pointers in a buffer structure. */
5477
5478 static void
5479 mark_buffer (buf)
5480 Lisp_Object buf;
5481 {
5482 register struct buffer *buffer = XBUFFER (buf);
5483 register Lisp_Object *ptr, tmp;
5484 Lisp_Object base_buffer;
5485
5486 VECTOR_MARK (buffer);
5487
5488 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5489
5490 /* For now, we just don't mark the undo_list. It's done later in
5491 a special way just before the sweep phase, and after stripping
5492 some of its elements that are not needed any more. */
5493
5494 if (buffer->overlays_before)
5495 {
5496 XSETMISC (tmp, buffer->overlays_before);
5497 mark_object (tmp);
5498 }
5499 if (buffer->overlays_after)
5500 {
5501 XSETMISC (tmp, buffer->overlays_after);
5502 mark_object (tmp);
5503 }
5504
5505 for (ptr = &buffer->name;
5506 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5507 ptr++)
5508 mark_object (*ptr);
5509
5510 /* If this is an indirect buffer, mark its base buffer. */
5511 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5512 {
5513 XSETBUFFER (base_buffer, buffer->base_buffer);
5514 mark_buffer (base_buffer);
5515 }
5516 }
5517
5518
5519 /* Value is non-zero if OBJ will survive the current GC because it's
5520 either marked or does not need to be marked to survive. */
5521
5522 int
5523 survives_gc_p (obj)
5524 Lisp_Object obj;
5525 {
5526 int survives_p;
5527
5528 switch (XGCTYPE (obj))
5529 {
5530 case Lisp_Int:
5531 survives_p = 1;
5532 break;
5533
5534 case Lisp_Symbol:
5535 survives_p = XSYMBOL (obj)->gcmarkbit;
5536 break;
5537
5538 case Lisp_Misc:
5539 survives_p = XMARKER (obj)->gcmarkbit;
5540 break;
5541
5542 case Lisp_String:
5543 survives_p = STRING_MARKED_P (XSTRING (obj));
5544 break;
5545
5546 case Lisp_Vectorlike:
5547 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5548 break;
5549
5550 case Lisp_Cons:
5551 survives_p = CONS_MARKED_P (XCONS (obj));
5552 break;
5553
5554 case Lisp_Float:
5555 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5556 break;
5557
5558 default:
5559 abort ();
5560 }
5561
5562 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5563 }
5564
5565
5566 \f
5567 /* Sweep: find all structures not marked, and free them. */
5568
5569 static void
5570 gc_sweep ()
5571 {
5572 /* Remove or mark entries in weak hash tables.
5573 This must be done before any object is unmarked. */
5574 sweep_weak_hash_tables ();
5575
5576 sweep_strings ();
5577 #ifdef GC_CHECK_STRING_BYTES
5578 if (!noninteractive)
5579 check_string_bytes (1);
5580 #endif
5581
5582 /* Put all unmarked conses on free list */
5583 {
5584 register struct cons_block *cblk;
5585 struct cons_block **cprev = &cons_block;
5586 register int lim = cons_block_index;
5587 register int num_free = 0, num_used = 0;
5588
5589 cons_free_list = 0;
5590
5591 for (cblk = cons_block; cblk; cblk = *cprev)
5592 {
5593 register int i;
5594 int this_free = 0;
5595 for (i = 0; i < lim; i++)
5596 if (!CONS_MARKED_P (&cblk->conses[i]))
5597 {
5598 this_free++;
5599 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
5600 cons_free_list = &cblk->conses[i];
5601 #if GC_MARK_STACK
5602 cons_free_list->car = Vdead;
5603 #endif
5604 }
5605 else
5606 {
5607 num_used++;
5608 CONS_UNMARK (&cblk->conses[i]);
5609 }
5610 lim = CONS_BLOCK_SIZE;
5611 /* If this block contains only free conses and we have already
5612 seen more than two blocks worth of free conses then deallocate
5613 this block. */
5614 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5615 {
5616 *cprev = cblk->next;
5617 /* Unhook from the free list. */
5618 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
5619 lisp_align_free (cblk);
5620 n_cons_blocks--;
5621 }
5622 else
5623 {
5624 num_free += this_free;
5625 cprev = &cblk->next;
5626 }
5627 }
5628 total_conses = num_used;
5629 total_free_conses = num_free;
5630 }
5631
5632 /* Put all unmarked floats on free list */
5633 {
5634 register struct float_block *fblk;
5635 struct float_block **fprev = &float_block;
5636 register int lim = float_block_index;
5637 register int num_free = 0, num_used = 0;
5638
5639 float_free_list = 0;
5640
5641 for (fblk = float_block; fblk; fblk = *fprev)
5642 {
5643 register int i;
5644 int this_free = 0;
5645 for (i = 0; i < lim; i++)
5646 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5647 {
5648 this_free++;
5649 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
5650 float_free_list = &fblk->floats[i];
5651 }
5652 else
5653 {
5654 num_used++;
5655 FLOAT_UNMARK (&fblk->floats[i]);
5656 }
5657 lim = FLOAT_BLOCK_SIZE;
5658 /* If this block contains only free floats and we have already
5659 seen more than two blocks worth of free floats then deallocate
5660 this block. */
5661 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5662 {
5663 *fprev = fblk->next;
5664 /* Unhook from the free list. */
5665 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
5666 lisp_align_free (fblk);
5667 n_float_blocks--;
5668 }
5669 else
5670 {
5671 num_free += this_free;
5672 fprev = &fblk->next;
5673 }
5674 }
5675 total_floats = num_used;
5676 total_free_floats = num_free;
5677 }
5678
5679 /* Put all unmarked intervals on free list */
5680 {
5681 register struct interval_block *iblk;
5682 struct interval_block **iprev = &interval_block;
5683 register int lim = interval_block_index;
5684 register int num_free = 0, num_used = 0;
5685
5686 interval_free_list = 0;
5687
5688 for (iblk = interval_block; iblk; iblk = *iprev)
5689 {
5690 register int i;
5691 int this_free = 0;
5692
5693 for (i = 0; i < lim; i++)
5694 {
5695 if (!iblk->intervals[i].gcmarkbit)
5696 {
5697 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5698 interval_free_list = &iblk->intervals[i];
5699 this_free++;
5700 }
5701 else
5702 {
5703 num_used++;
5704 iblk->intervals[i].gcmarkbit = 0;
5705 }
5706 }
5707 lim = INTERVAL_BLOCK_SIZE;
5708 /* If this block contains only free intervals and we have already
5709 seen more than two blocks worth of free intervals then
5710 deallocate this block. */
5711 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5712 {
5713 *iprev = iblk->next;
5714 /* Unhook from the free list. */
5715 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5716 lisp_free (iblk);
5717 n_interval_blocks--;
5718 }
5719 else
5720 {
5721 num_free += this_free;
5722 iprev = &iblk->next;
5723 }
5724 }
5725 total_intervals = num_used;
5726 total_free_intervals = num_free;
5727 }
5728
5729 /* Put all unmarked symbols on free list */
5730 {
5731 register struct symbol_block *sblk;
5732 struct symbol_block **sprev = &symbol_block;
5733 register int lim = symbol_block_index;
5734 register int num_free = 0, num_used = 0;
5735
5736 symbol_free_list = NULL;
5737
5738 for (sblk = symbol_block; sblk; sblk = *sprev)
5739 {
5740 int this_free = 0;
5741 struct Lisp_Symbol *sym = sblk->symbols;
5742 struct Lisp_Symbol *end = sym + lim;
5743
5744 for (; sym < end; ++sym)
5745 {
5746 /* Check if the symbol was created during loadup. In such a case
5747 it might be pointed to by pure bytecode which we don't trace,
5748 so we conservatively assume that it is live. */
5749 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5750
5751 if (!sym->gcmarkbit && !pure_p)
5752 {
5753 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5754 symbol_free_list = sym;
5755 #if GC_MARK_STACK
5756 symbol_free_list->function = Vdead;
5757 #endif
5758 ++this_free;
5759 }
5760 else
5761 {
5762 ++num_used;
5763 if (!pure_p)
5764 UNMARK_STRING (XSTRING (sym->xname));
5765 sym->gcmarkbit = 0;
5766 }
5767 }
5768
5769 lim = SYMBOL_BLOCK_SIZE;
5770 /* If this block contains only free symbols and we have already
5771 seen more than two blocks worth of free symbols then deallocate
5772 this block. */
5773 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5774 {
5775 *sprev = sblk->next;
5776 /* Unhook from the free list. */
5777 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
5778 lisp_free (sblk);
5779 n_symbol_blocks--;
5780 }
5781 else
5782 {
5783 num_free += this_free;
5784 sprev = &sblk->next;
5785 }
5786 }
5787 total_symbols = num_used;
5788 total_free_symbols = num_free;
5789 }
5790
5791 /* Put all unmarked misc's on free list.
5792 For a marker, first unchain it from the buffer it points into. */
5793 {
5794 register struct marker_block *mblk;
5795 struct marker_block **mprev = &marker_block;
5796 register int lim = marker_block_index;
5797 register int num_free = 0, num_used = 0;
5798
5799 marker_free_list = 0;
5800
5801 for (mblk = marker_block; mblk; mblk = *mprev)
5802 {
5803 register int i;
5804 int this_free = 0;
5805
5806 for (i = 0; i < lim; i++)
5807 {
5808 if (!mblk->markers[i].u_marker.gcmarkbit)
5809 {
5810 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
5811 unchain_marker (&mblk->markers[i].u_marker);
5812 /* Set the type of the freed object to Lisp_Misc_Free.
5813 We could leave the type alone, since nobody checks it,
5814 but this might catch bugs faster. */
5815 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5816 mblk->markers[i].u_free.chain = marker_free_list;
5817 marker_free_list = &mblk->markers[i];
5818 this_free++;
5819 }
5820 else
5821 {
5822 num_used++;
5823 mblk->markers[i].u_marker.gcmarkbit = 0;
5824 }
5825 }
5826 lim = MARKER_BLOCK_SIZE;
5827 /* If this block contains only free markers and we have already
5828 seen more than two blocks worth of free markers then deallocate
5829 this block. */
5830 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5831 {
5832 *mprev = mblk->next;
5833 /* Unhook from the free list. */
5834 marker_free_list = mblk->markers[0].u_free.chain;
5835 lisp_free (mblk);
5836 n_marker_blocks--;
5837 }
5838 else
5839 {
5840 num_free += this_free;
5841 mprev = &mblk->next;
5842 }
5843 }
5844
5845 total_markers = num_used;
5846 total_free_markers = num_free;
5847 }
5848
5849 /* Free all unmarked buffers */
5850 {
5851 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5852
5853 while (buffer)
5854 if (!VECTOR_MARKED_P (buffer))
5855 {
5856 if (prev)
5857 prev->next = buffer->next;
5858 else
5859 all_buffers = buffer->next;
5860 next = buffer->next;
5861 lisp_free (buffer);
5862 buffer = next;
5863 }
5864 else
5865 {
5866 VECTOR_UNMARK (buffer);
5867 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
5868 prev = buffer, buffer = buffer->next;
5869 }
5870 }
5871
5872 /* Free all unmarked vectors */
5873 {
5874 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5875 total_vector_size = 0;
5876
5877 while (vector)
5878 if (!VECTOR_MARKED_P (vector))
5879 {
5880 if (prev)
5881 prev->next = vector->next;
5882 else
5883 all_vectors = vector->next;
5884 next = vector->next;
5885 lisp_free (vector);
5886 n_vectors--;
5887 vector = next;
5888
5889 }
5890 else
5891 {
5892 VECTOR_UNMARK (vector);
5893 if (vector->size & PSEUDOVECTOR_FLAG)
5894 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5895 else
5896 total_vector_size += vector->size;
5897 prev = vector, vector = vector->next;
5898 }
5899 }
5900
5901 #ifdef GC_CHECK_STRING_BYTES
5902 if (!noninteractive)
5903 check_string_bytes (1);
5904 #endif
5905 }
5906
5907
5908
5909 \f
5910 /* Debugging aids. */
5911
5912 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
5913 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
5914 This may be helpful in debugging Emacs's memory usage.
5915 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5916 ()
5917 {
5918 Lisp_Object end;
5919
5920 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
5921
5922 return end;
5923 }
5924
5925 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
5926 doc: /* Return a list of counters that measure how much consing there has been.
5927 Each of these counters increments for a certain kind of object.
5928 The counters wrap around from the largest positive integer to zero.
5929 Garbage collection does not decrease them.
5930 The elements of the value are as follows:
5931 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5932 All are in units of 1 = one object consed
5933 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5934 objects consed.
5935 MISCS include overlays, markers, and some internal types.
5936 Frames, windows, buffers, and subprocesses count as vectors
5937 (but the contents of a buffer's text do not count here). */)
5938 ()
5939 {
5940 Lisp_Object consed[8];
5941
5942 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5943 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5944 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5945 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5946 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5947 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5948 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5949 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
5950
5951 return Flist (8, consed);
5952 }
5953
5954 int suppress_checking;
5955 void
5956 die (msg, file, line)
5957 const char *msg;
5958 const char *file;
5959 int line;
5960 {
5961 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5962 file, line, msg);
5963 abort ();
5964 }
5965 \f
5966 /* Initialization */
5967
5968 void
5969 init_alloc_once ()
5970 {
5971 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
5972 purebeg = PUREBEG;
5973 pure_size = PURESIZE;
5974 pure_bytes_used = 0;
5975 pure_bytes_used_before_overflow = 0;
5976
5977 /* Initialize the list of free aligned blocks. */
5978 free_ablock = NULL;
5979
5980 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
5981 mem_init ();
5982 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5983 #endif
5984
5985 all_vectors = 0;
5986 ignore_warnings = 1;
5987 #ifdef DOUG_LEA_MALLOC
5988 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5989 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
5990 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
5991 #endif
5992 init_strings ();
5993 init_cons ();
5994 init_symbol ();
5995 init_marker ();
5996 init_float ();
5997 init_intervals ();
5998
5999 #ifdef REL_ALLOC
6000 malloc_hysteresis = 32;
6001 #else
6002 malloc_hysteresis = 0;
6003 #endif
6004
6005 spare_memory = (char *) malloc (SPARE_MEMORY);
6006
6007 ignore_warnings = 0;
6008 gcprolist = 0;
6009 byte_stack_list = 0;
6010 staticidx = 0;
6011 consing_since_gc = 0;
6012 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6013 gc_relative_threshold = 0;
6014
6015 #ifdef VIRT_ADDR_VARIES
6016 malloc_sbrk_unused = 1<<22; /* A large number */
6017 malloc_sbrk_used = 100000; /* as reasonable as any number */
6018 #endif /* VIRT_ADDR_VARIES */
6019 }
6020
6021 void
6022 init_alloc ()
6023 {
6024 gcprolist = 0;
6025 byte_stack_list = 0;
6026 #if GC_MARK_STACK
6027 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6028 setjmp_tested_p = longjmps_done = 0;
6029 #endif
6030 #endif
6031 Vgc_elapsed = make_float (0.0);
6032 gcs_done = 0;
6033 }
6034
6035 void
6036 syms_of_alloc ()
6037 {
6038 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6039 doc: /* *Number of bytes of consing between garbage collections.
6040 Garbage collection can happen automatically once this many bytes have been
6041 allocated since the last garbage collection. All data types count.
6042
6043 Garbage collection happens automatically only when `eval' is called.
6044
6045 By binding this temporarily to a large number, you can effectively
6046 prevent garbage collection during a part of the program.
6047 See also `gc-cons-percentage'. */);
6048
6049 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6050 doc: /* *Portion of the heap used for allocation.
6051 Garbage collection can happen automatically once this portion of the heap
6052 has been allocated since the last garbage collection.
6053 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6054 Vgc_cons_percentage = make_float (0.1);
6055
6056 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6057 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6058
6059 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6060 doc: /* Number of cons cells that have been consed so far. */);
6061
6062 DEFVAR_INT ("floats-consed", &floats_consed,
6063 doc: /* Number of floats that have been consed so far. */);
6064
6065 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6066 doc: /* Number of vector cells that have been consed so far. */);
6067
6068 DEFVAR_INT ("symbols-consed", &symbols_consed,
6069 doc: /* Number of symbols that have been consed so far. */);
6070
6071 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6072 doc: /* Number of string characters that have been consed so far. */);
6073
6074 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6075 doc: /* Number of miscellaneous objects that have been consed so far. */);
6076
6077 DEFVAR_INT ("intervals-consed", &intervals_consed,
6078 doc: /* Number of intervals that have been consed so far. */);
6079
6080 DEFVAR_INT ("strings-consed", &strings_consed,
6081 doc: /* Number of strings that have been consed so far. */);
6082
6083 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6084 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6085 This means that certain objects should be allocated in shared (pure) space. */);
6086
6087 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6088 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6089 garbage_collection_messages = 0;
6090
6091 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6092 doc: /* Hook run after garbage collection has finished. */);
6093 Vpost_gc_hook = Qnil;
6094 Qpost_gc_hook = intern ("post-gc-hook");
6095 staticpro (&Qpost_gc_hook);
6096
6097 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6098 doc: /* Precomputed `signal' argument for memory-full error. */);
6099 /* We build this in advance because if we wait until we need it, we might
6100 not be able to allocate the memory to hold it. */
6101 Vmemory_signal_data
6102 = list2 (Qerror,
6103 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6104
6105 DEFVAR_LISP ("memory-full", &Vmemory_full,
6106 doc: /* Non-nil means we are handling a memory-full error. */);
6107 Vmemory_full = Qnil;
6108
6109 staticpro (&Qgc_cons_threshold);
6110 Qgc_cons_threshold = intern ("gc-cons-threshold");
6111
6112 staticpro (&Qchar_table_extra_slots);
6113 Qchar_table_extra_slots = intern ("char-table-extra-slots");
6114
6115 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6116 doc: /* Accumulated time elapsed in garbage collections.
6117 The time is in seconds as a floating point value. */);
6118 DEFVAR_INT ("gcs-done", &gcs_done,
6119 doc: /* Accumulated number of garbage collections done. */);
6120
6121 defsubr (&Smemory_full_p);
6122 defsubr (&Scons);
6123 defsubr (&Slist);
6124 defsubr (&Svector);
6125 defsubr (&Smake_byte_code);
6126 defsubr (&Smake_list);
6127 defsubr (&Smake_vector);
6128 defsubr (&Smake_char_table);
6129 defsubr (&Smake_string);
6130 defsubr (&Smake_bool_vector);
6131 defsubr (&Smake_symbol);
6132 defsubr (&Smake_marker);
6133 defsubr (&Spurecopy);
6134 defsubr (&Sgarbage_collect);
6135 defsubr (&Smemory_limit);
6136 defsubr (&Smemory_use_counts);
6137
6138 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6139 defsubr (&Sgc_status);
6140 #endif
6141 }
6142
6143 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6144 (do not change this comment) */