]> code.delx.au - gnu-emacs/blob - src/lisp.h
477521bbf4e91710922377c5f0c8ddc29d057850
[gnu-emacs] / src / lisp.h
1 /* Fundamental definitions for GNU Emacs Lisp interpreter. -*- coding: utf-8 -*-
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2015 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #ifndef EMACS_LISP_H
22 #define EMACS_LISP_H
23
24 #include <setjmp.h>
25 #include <stdalign.h>
26 #include <stdarg.h>
27 #include <stddef.h>
28 #include <float.h>
29 #include <inttypes.h>
30 #include <limits.h>
31
32 #include <intprops.h>
33 #include <verify.h>
34
35 INLINE_HEADER_BEGIN
36
37 /* Define a TYPE constant ID as an externally visible name. Use like this:
38
39 DEFINE_GDB_SYMBOL_BEGIN (TYPE, ID)
40 # define ID (some integer preprocessor expression of type TYPE)
41 DEFINE_GDB_SYMBOL_END (ID)
42
43 This hack is for the benefit of compilers that do not make macro
44 definitions or enums visible to the debugger. It's used for symbols
45 that .gdbinit needs. */
46
47 #define DECLARE_GDB_SYM(type, id) type const id EXTERNALLY_VISIBLE
48 #ifdef MAIN_PROGRAM
49 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) DECLARE_GDB_SYM (type, id)
50 # define DEFINE_GDB_SYMBOL_END(id) = id;
51 #else
52 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) extern DECLARE_GDB_SYM (type, id)
53 # define DEFINE_GDB_SYMBOL_END(val) ;
54 #endif
55
56 /* The ubiquitous max and min macros. */
57 #undef min
58 #undef max
59 #define max(a, b) ((a) > (b) ? (a) : (b))
60 #define min(a, b) ((a) < (b) ? (a) : (b))
61
62 /* Number of elements in an array. */
63 #define ARRAYELTS(arr) (sizeof (arr) / sizeof (arr)[0])
64
65 /* Number of bits in a Lisp_Object tag. */
66 DEFINE_GDB_SYMBOL_BEGIN (int, GCTYPEBITS)
67 #define GCTYPEBITS 3
68 DEFINE_GDB_SYMBOL_END (GCTYPEBITS)
69
70 /* The number of bits needed in an EMACS_INT over and above the number
71 of bits in a pointer. This is 0 on systems where:
72 1. We can specify multiple-of-8 alignment on static variables.
73 2. We know malloc returns a multiple of 8. */
74 #if (defined alignas \
75 && (defined GNU_MALLOC || defined DOUG_LEA_MALLOC || defined __GLIBC__ \
76 || defined DARWIN_OS || defined __sun || defined __MINGW32__ \
77 || defined CYGWIN))
78 # define NONPOINTER_BITS 0
79 #else
80 # define NONPOINTER_BITS GCTYPEBITS
81 #endif
82
83 /* EMACS_INT - signed integer wide enough to hold an Emacs value
84 EMACS_INT_MAX - maximum value of EMACS_INT; can be used in #if
85 pI - printf length modifier for EMACS_INT
86 EMACS_UINT - unsigned variant of EMACS_INT */
87 #ifndef EMACS_INT_MAX
88 # if INTPTR_MAX <= 0
89 # error "INTPTR_MAX misconfigured"
90 # elif INTPTR_MAX <= INT_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
91 typedef int EMACS_INT;
92 typedef unsigned int EMACS_UINT;
93 # define EMACS_INT_MAX INT_MAX
94 # define pI ""
95 # elif INTPTR_MAX <= LONG_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
96 typedef long int EMACS_INT;
97 typedef unsigned long EMACS_UINT;
98 # define EMACS_INT_MAX LONG_MAX
99 # define pI "l"
100 /* Check versus LLONG_MAX, not LLONG_MAX >> NONPOINTER_BITS.
101 In theory this is not safe, but in practice it seems to be OK. */
102 # elif INTPTR_MAX <= LLONG_MAX
103 typedef long long int EMACS_INT;
104 typedef unsigned long long int EMACS_UINT;
105 # define EMACS_INT_MAX LLONG_MAX
106 # define pI "ll"
107 # else
108 # error "INTPTR_MAX too large"
109 # endif
110 #endif
111
112 /* Number of bits to put in each character in the internal representation
113 of bool vectors. This should not vary across implementations. */
114 enum { BOOL_VECTOR_BITS_PER_CHAR =
115 #define BOOL_VECTOR_BITS_PER_CHAR 8
116 BOOL_VECTOR_BITS_PER_CHAR
117 };
118
119 /* An unsigned integer type representing a fixed-length bit sequence,
120 suitable for bool vector words, GC mark bits, etc. Normally it is size_t
121 for speed, but it is unsigned char on weird platforms. */
122 #if BOOL_VECTOR_BITS_PER_CHAR == CHAR_BIT
123 typedef size_t bits_word;
124 # define BITS_WORD_MAX SIZE_MAX
125 enum { BITS_PER_BITS_WORD = CHAR_BIT * sizeof (bits_word) };
126 #else
127 typedef unsigned char bits_word;
128 # define BITS_WORD_MAX ((1u << BOOL_VECTOR_BITS_PER_CHAR) - 1)
129 enum { BITS_PER_BITS_WORD = BOOL_VECTOR_BITS_PER_CHAR };
130 #endif
131 verify (BITS_WORD_MAX >> (BITS_PER_BITS_WORD - 1) == 1);
132
133 /* Number of bits in some machine integer types. */
134 enum
135 {
136 BITS_PER_CHAR = CHAR_BIT,
137 BITS_PER_SHORT = CHAR_BIT * sizeof (short),
138 BITS_PER_LONG = CHAR_BIT * sizeof (long int),
139 BITS_PER_EMACS_INT = CHAR_BIT * sizeof (EMACS_INT)
140 };
141
142 /* printmax_t and uprintmax_t are types for printing large integers.
143 These are the widest integers that are supported for printing.
144 pMd etc. are conversions for printing them.
145 On C99 hosts, there's no problem, as even the widest integers work.
146 Fall back on EMACS_INT on pre-C99 hosts. */
147 #ifdef PRIdMAX
148 typedef intmax_t printmax_t;
149 typedef uintmax_t uprintmax_t;
150 # define pMd PRIdMAX
151 # define pMu PRIuMAX
152 #else
153 typedef EMACS_INT printmax_t;
154 typedef EMACS_UINT uprintmax_t;
155 # define pMd pI"d"
156 # define pMu pI"u"
157 #endif
158
159 /* Use pD to format ptrdiff_t values, which suffice for indexes into
160 buffers and strings. Emacs never allocates objects larger than
161 PTRDIFF_MAX bytes, as they cause problems with pointer subtraction.
162 In C99, pD can always be "t"; configure it here for the sake of
163 pre-C99 libraries such as glibc 2.0 and Solaris 8. */
164 #if PTRDIFF_MAX == INT_MAX
165 # define pD ""
166 #elif PTRDIFF_MAX == LONG_MAX
167 # define pD "l"
168 #elif PTRDIFF_MAX == LLONG_MAX
169 # define pD "ll"
170 #else
171 # define pD "t"
172 #endif
173
174 /* Extra internal type checking? */
175
176 /* Define Emacs versions of <assert.h>'s 'assert (COND)' and <verify.h>'s
177 'assume (COND)'. COND should be free of side effects, as it may or
178 may not be evaluated.
179
180 'eassert (COND)' checks COND at runtime if ENABLE_CHECKING is
181 defined and suppress_checking is false, and does nothing otherwise.
182 Emacs dies if COND is checked and is false. The suppress_checking
183 variable is initialized to 0 in alloc.c. Set it to 1 using a
184 debugger to temporarily disable aborting on detected internal
185 inconsistencies or error conditions.
186
187 In some cases, a good compiler may be able to optimize away the
188 eassert macro even if ENABLE_CHECKING is true, e.g., if XSTRING (x)
189 uses eassert to test STRINGP (x), but a particular use of XSTRING
190 is invoked only after testing that STRINGP (x) is true, making the
191 test redundant.
192
193 eassume is like eassert except that it also causes the compiler to
194 assume that COND is true afterwards, regardless of whether runtime
195 checking is enabled. This can improve performance in some cases,
196 though it can degrade performance in others. It's often suboptimal
197 for COND to call external functions or access volatile storage. */
198
199 #ifndef ENABLE_CHECKING
200 # define eassert(cond) ((void) (false && (cond))) /* Check COND compiles. */
201 # define eassume(cond) assume (cond)
202 #else /* ENABLE_CHECKING */
203
204 extern _Noreturn void die (const char *, const char *, int);
205
206 extern bool suppress_checking EXTERNALLY_VISIBLE;
207
208 # define eassert(cond) \
209 (suppress_checking || (cond) \
210 ? (void) 0 \
211 : die (# cond, __FILE__, __LINE__))
212 # define eassume(cond) \
213 (suppress_checking \
214 ? assume (cond) \
215 : (cond) \
216 ? (void) 0 \
217 : die (# cond, __FILE__, __LINE__))
218 #endif /* ENABLE_CHECKING */
219
220 \f
221 /* Use the configure flag --enable-check-lisp-object-type to make
222 Lisp_Object use a struct type instead of the default int. The flag
223 causes CHECK_LISP_OBJECT_TYPE to be defined. */
224
225 /***** Select the tagging scheme. *****/
226 /* The following option controls the tagging scheme:
227 - USE_LSB_TAG means that we can assume the least 3 bits of pointers are
228 always 0, and we can thus use them to hold tag bits, without
229 restricting our addressing space.
230
231 If ! USE_LSB_TAG, then use the top 3 bits for tagging, thus
232 restricting our possible address range.
233
234 USE_LSB_TAG not only requires the least 3 bits of pointers returned by
235 malloc to be 0 but also needs to be able to impose a mult-of-8 alignment
236 on the few static Lisp_Objects used: lispsym, all the defsubr, and
237 the two special buffers buffer_defaults and buffer_local_symbols. */
238
239 enum Lisp_Bits
240 {
241 /* 2**GCTYPEBITS. This must be a macro that expands to a literal
242 integer constant, for MSVC. */
243 #define GCALIGNMENT 8
244
245 /* Number of bits in a Lisp_Object value, not counting the tag. */
246 VALBITS = BITS_PER_EMACS_INT - GCTYPEBITS,
247
248 /* Number of bits in a Lisp fixnum tag. */
249 INTTYPEBITS = GCTYPEBITS - 1,
250
251 /* Number of bits in a Lisp fixnum value, not counting the tag. */
252 FIXNUM_BITS = VALBITS + 1
253 };
254
255 #if GCALIGNMENT != 1 << GCTYPEBITS
256 # error "GCALIGNMENT and GCTYPEBITS are inconsistent"
257 #endif
258
259 /* The maximum value that can be stored in a EMACS_INT, assuming all
260 bits other than the type bits contribute to a nonnegative signed value.
261 This can be used in #if, e.g., '#if USE_LSB_TAG' below expands to an
262 expression involving VAL_MAX. */
263 #define VAL_MAX (EMACS_INT_MAX >> (GCTYPEBITS - 1))
264
265 /* Whether the least-significant bits of an EMACS_INT contain the tag.
266 On hosts where pointers-as-ints do not exceed VAL_MAX / 2, USE_LSB_TAG is:
267 a. unnecessary, because the top bits of an EMACS_INT are unused, and
268 b. slower, because it typically requires extra masking.
269 So, USE_LSB_TAG is true only on hosts where it might be useful. */
270 DEFINE_GDB_SYMBOL_BEGIN (bool, USE_LSB_TAG)
271 #define USE_LSB_TAG (VAL_MAX / 2 < INTPTR_MAX)
272 DEFINE_GDB_SYMBOL_END (USE_LSB_TAG)
273
274 #if !USE_LSB_TAG && !defined WIDE_EMACS_INT
275 # error "USE_LSB_TAG not supported on this platform; please report this." \
276 "Try 'configure --with-wide-int' to work around the problem."
277 error !;
278 #endif
279
280 #ifndef alignas
281 # error "alignas not defined"
282 #endif
283
284 #ifdef HAVE_STRUCT_ATTRIBUTE_ALIGNED
285 # define GCALIGNED __attribute__ ((aligned (GCALIGNMENT)))
286 #else
287 # define GCALIGNED /* empty */
288 #endif
289
290 /* Some operations are so commonly executed that they are implemented
291 as macros, not functions, because otherwise runtime performance would
292 suffer too much when compiling with GCC without optimization.
293 There's no need to inline everything, just the operations that
294 would otherwise cause a serious performance problem.
295
296 For each such operation OP, define a macro lisp_h_OP that contains
297 the operation's implementation. That way, OP can be implemented
298 via a macro definition like this:
299
300 #define OP(x) lisp_h_OP (x)
301
302 and/or via a function definition like this:
303
304 Lisp_Object (OP) (Lisp_Object x) { return lisp_h_OP (x); }
305
306 without worrying about the implementations diverging, since
307 lisp_h_OP defines the actual implementation. The lisp_h_OP macros
308 are intended to be private to this include file, and should not be
309 used elsewhere.
310
311 FIXME: Remove the lisp_h_OP macros, and define just the inline OP
312 functions, once most developers have access to GCC 4.8 or later and
313 can use "gcc -Og" to debug. Maybe in the year 2016. See
314 Bug#11935.
315
316 Commentary for these macros can be found near their corresponding
317 functions, below. */
318
319 #if CHECK_LISP_OBJECT_TYPE
320 # define lisp_h_XLI(o) ((o).i)
321 # define lisp_h_XIL(i) ((Lisp_Object) { i })
322 #else
323 # define lisp_h_XLI(o) (o)
324 # define lisp_h_XIL(i) (i)
325 #endif
326 #define lisp_h_CHECK_LIST_CONS(x, y) CHECK_TYPE (CONSP (x), Qlistp, y)
327 #define lisp_h_CHECK_NUMBER(x) CHECK_TYPE (INTEGERP (x), Qintegerp, x)
328 #define lisp_h_CHECK_SYMBOL(x) CHECK_TYPE (SYMBOLP (x), Qsymbolp, x)
329 #define lisp_h_CHECK_TYPE(ok, predicate, x) \
330 ((ok) ? (void) 0 : (void) wrong_type_argument (predicate, x))
331 #define lisp_h_CONSP(x) (XTYPE (x) == Lisp_Cons)
332 #define lisp_h_EQ(x, y) (XLI (x) == XLI (y))
333 #define lisp_h_FLOATP(x) (XTYPE (x) == Lisp_Float)
334 #define lisp_h_INTEGERP(x) ((XTYPE (x) & (Lisp_Int0 | ~Lisp_Int1)) == Lisp_Int0)
335 #define lisp_h_MARKERP(x) (MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Marker)
336 #define lisp_h_MISCP(x) (XTYPE (x) == Lisp_Misc)
337 #define lisp_h_NILP(x) EQ (x, Qnil)
338 #define lisp_h_SET_SYMBOL_VAL(sym, v) \
339 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value = (v))
340 #define lisp_h_SYMBOL_CONSTANT_P(sym) (XSYMBOL (sym)->constant)
341 #define lisp_h_SYMBOL_VAL(sym) \
342 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value)
343 #define lisp_h_SYMBOLP(x) (XTYPE (x) == Lisp_Symbol)
344 #define lisp_h_VECTORLIKEP(x) (XTYPE (x) == Lisp_Vectorlike)
345 #define lisp_h_XCAR(c) XCONS (c)->car
346 #define lisp_h_XCDR(c) XCONS (c)->u.cdr
347 #define lisp_h_XCONS(a) \
348 (eassert (CONSP (a)), (struct Lisp_Cons *) XUNTAG (a, Lisp_Cons))
349 #define lisp_h_XHASH(a) XUINT (a)
350 #ifndef GC_CHECK_CONS_LIST
351 # define lisp_h_check_cons_list() ((void) 0)
352 #endif
353 #if USE_LSB_TAG
354 # define lisp_h_make_number(n) \
355 XIL ((EMACS_INT) (((EMACS_UINT) (n) << INTTYPEBITS) + Lisp_Int0))
356 # define lisp_h_XFASTINT(a) XINT (a)
357 # define lisp_h_XINT(a) (XLI (a) >> INTTYPEBITS)
358 # define lisp_h_XSYMBOL(a) \
359 (eassert (SYMBOLP (a)), \
360 (struct Lisp_Symbol *) ((intptr_t) XLI (a) - Lisp_Symbol \
361 + (char *) lispsym))
362 # define lisp_h_XTYPE(a) ((enum Lisp_Type) (XLI (a) & ~VALMASK))
363 # define lisp_h_XUNTAG(a, type) ((void *) (intptr_t) (XLI (a) - (type)))
364 #endif
365
366 /* When compiling via gcc -O0, define the key operations as macros, as
367 Emacs is too slow otherwise. To disable this optimization, compile
368 with -DINLINING=false. */
369 #if (defined __NO_INLINE__ \
370 && ! defined __OPTIMIZE__ && ! defined __OPTIMIZE_SIZE__ \
371 && ! (defined INLINING && ! INLINING))
372 # define DEFINE_KEY_OPS_AS_MACROS true
373 #else
374 # define DEFINE_KEY_OPS_AS_MACROS false
375 #endif
376
377 #if DEFINE_KEY_OPS_AS_MACROS
378 # define XLI(o) lisp_h_XLI (o)
379 # define XIL(i) lisp_h_XIL (i)
380 # define CHECK_LIST_CONS(x, y) lisp_h_CHECK_LIST_CONS (x, y)
381 # define CHECK_NUMBER(x) lisp_h_CHECK_NUMBER (x)
382 # define CHECK_SYMBOL(x) lisp_h_CHECK_SYMBOL (x)
383 # define CHECK_TYPE(ok, predicate, x) lisp_h_CHECK_TYPE (ok, predicate, x)
384 # define CONSP(x) lisp_h_CONSP (x)
385 # define EQ(x, y) lisp_h_EQ (x, y)
386 # define FLOATP(x) lisp_h_FLOATP (x)
387 # define INTEGERP(x) lisp_h_INTEGERP (x)
388 # define MARKERP(x) lisp_h_MARKERP (x)
389 # define MISCP(x) lisp_h_MISCP (x)
390 # define NILP(x) lisp_h_NILP (x)
391 # define SET_SYMBOL_VAL(sym, v) lisp_h_SET_SYMBOL_VAL (sym, v)
392 # define SYMBOL_CONSTANT_P(sym) lisp_h_SYMBOL_CONSTANT_P (sym)
393 # define SYMBOL_VAL(sym) lisp_h_SYMBOL_VAL (sym)
394 # define SYMBOLP(x) lisp_h_SYMBOLP (x)
395 # define VECTORLIKEP(x) lisp_h_VECTORLIKEP (x)
396 # define XCAR(c) lisp_h_XCAR (c)
397 # define XCDR(c) lisp_h_XCDR (c)
398 # define XCONS(a) lisp_h_XCONS (a)
399 # define XHASH(a) lisp_h_XHASH (a)
400 # ifndef GC_CHECK_CONS_LIST
401 # define check_cons_list() lisp_h_check_cons_list ()
402 # endif
403 # if USE_LSB_TAG
404 # define make_number(n) lisp_h_make_number (n)
405 # define XFASTINT(a) lisp_h_XFASTINT (a)
406 # define XINT(a) lisp_h_XINT (a)
407 # define XSYMBOL(a) lisp_h_XSYMBOL (a)
408 # define XTYPE(a) lisp_h_XTYPE (a)
409 # define XUNTAG(a, type) lisp_h_XUNTAG (a, type)
410 # endif
411 #endif
412
413
414 /* Define the fundamental Lisp data structures. */
415
416 /* This is the set of Lisp data types. If you want to define a new
417 data type, read the comments after Lisp_Fwd_Type definition
418 below. */
419
420 /* Lisp integers use 2 tags, to give them one extra bit, thus
421 extending their range from, e.g., -2^28..2^28-1 to -2^29..2^29-1. */
422 #define INTMASK (EMACS_INT_MAX >> (INTTYPEBITS - 1))
423 #define case_Lisp_Int case Lisp_Int0: case Lisp_Int1
424
425 /* Idea stolen from GDB. Pedantic GCC complains about enum bitfields,
426 MSVC doesn't support them, and xlc and Oracle Studio c99 complain
427 vociferously about them. */
428 #if (defined __STRICT_ANSI__ || defined _MSC_VER || defined __IBMC__ \
429 || (defined __SUNPRO_C && __STDC__))
430 #define ENUM_BF(TYPE) unsigned int
431 #else
432 #define ENUM_BF(TYPE) enum TYPE
433 #endif
434
435
436 enum Lisp_Type
437 {
438 /* Symbol. XSYMBOL (object) points to a struct Lisp_Symbol. */
439 Lisp_Symbol = 0,
440
441 /* Miscellaneous. XMISC (object) points to a union Lisp_Misc,
442 whose first member indicates the subtype. */
443 Lisp_Misc = 1,
444
445 /* Integer. XINT (obj) is the integer value. */
446 Lisp_Int0 = 2,
447 Lisp_Int1 = USE_LSB_TAG ? 6 : 3,
448
449 /* String. XSTRING (object) points to a struct Lisp_String.
450 The length of the string, and its contents, are stored therein. */
451 Lisp_String = 4,
452
453 /* Vector of Lisp objects, or something resembling it.
454 XVECTOR (object) points to a struct Lisp_Vector, which contains
455 the size and contents. The size field also contains the type
456 information, if it's not a real vector object. */
457 Lisp_Vectorlike = 5,
458
459 /* Cons. XCONS (object) points to a struct Lisp_Cons. */
460 Lisp_Cons = USE_LSB_TAG ? 3 : 6,
461
462 Lisp_Float = 7
463 };
464
465 /* This is the set of data types that share a common structure.
466 The first member of the structure is a type code from this set.
467 The enum values are arbitrary, but we'll use large numbers to make it
468 more likely that we'll spot the error if a random word in memory is
469 mistakenly interpreted as a Lisp_Misc. */
470 enum Lisp_Misc_Type
471 {
472 Lisp_Misc_Free = 0x5eab,
473 Lisp_Misc_Marker,
474 Lisp_Misc_Overlay,
475 Lisp_Misc_Save_Value,
476 Lisp_Misc_Finalizer,
477 #ifdef HAVE_MODULES
478 Lisp_Misc_User_Ptr,
479 #endif
480 /* Currently floats are not a misc type,
481 but let's define this in case we want to change that. */
482 Lisp_Misc_Float,
483 /* This is not a type code. It is for range checking. */
484 Lisp_Misc_Limit
485 };
486
487 /* These are the types of forwarding objects used in the value slot
488 of symbols for special built-in variables whose value is stored in
489 C variables. */
490 enum Lisp_Fwd_Type
491 {
492 Lisp_Fwd_Int, /* Fwd to a C `int' variable. */
493 Lisp_Fwd_Bool, /* Fwd to a C boolean var. */
494 Lisp_Fwd_Obj, /* Fwd to a C Lisp_Object variable. */
495 Lisp_Fwd_Buffer_Obj, /* Fwd to a Lisp_Object field of buffers. */
496 Lisp_Fwd_Kboard_Obj /* Fwd to a Lisp_Object field of kboards. */
497 };
498
499 /* If you want to define a new Lisp data type, here are some
500 instructions. See the thread at
501 http://lists.gnu.org/archive/html/emacs-devel/2012-10/msg00561.html
502 for more info.
503
504 First, there are already a couple of Lisp types that can be used if
505 your new type does not need to be exposed to Lisp programs nor
506 displayed to users. These are Lisp_Save_Value, a Lisp_Misc
507 subtype; and PVEC_OTHER, a kind of vectorlike object. The former
508 is suitable for temporarily stashing away pointers and integers in
509 a Lisp object. The latter is useful for vector-like Lisp objects
510 that need to be used as part of other objects, but which are never
511 shown to users or Lisp code (search for PVEC_OTHER in xterm.c for
512 an example).
513
514 These two types don't look pretty when printed, so they are
515 unsuitable for Lisp objects that can be exposed to users.
516
517 To define a new data type, add one more Lisp_Misc subtype or one
518 more pseudovector subtype. Pseudovectors are more suitable for
519 objects with several slots that need to support fast random access,
520 while Lisp_Misc types are for everything else. A pseudovector object
521 provides one or more slots for Lisp objects, followed by struct
522 members that are accessible only from C. A Lisp_Misc object is a
523 wrapper for a C struct that can contain anything you like.
524
525 Explicit freeing is discouraged for Lisp objects in general. But if
526 you really need to exploit this, use Lisp_Misc (check free_misc in
527 alloc.c to see why). There is no way to free a vectorlike object.
528
529 To add a new pseudovector type, extend the pvec_type enumeration;
530 to add a new Lisp_Misc, extend the Lisp_Misc_Type enumeration.
531
532 For a Lisp_Misc, you will also need to add your entry to union
533 Lisp_Misc (but make sure the first word has the same structure as
534 the others, starting with a 16-bit member of the Lisp_Misc_Type
535 enumeration and a 1-bit GC markbit) and make sure the overall size
536 of the union is not increased by your addition.
537
538 For a new pseudovector, it's highly desirable to limit the size
539 of your data type by VBLOCK_BYTES_MAX bytes (defined in alloc.c).
540 Otherwise you will need to change sweep_vectors (also in alloc.c).
541
542 Then you will need to add switch branches in print.c (in
543 print_object, to print your object, and possibly also in
544 print_preprocess) and to alloc.c, to mark your object (in
545 mark_object) and to free it (in gc_sweep). The latter is also the
546 right place to call any code specific to your data type that needs
547 to run when the object is recycled -- e.g., free any additional
548 resources allocated for it that are not Lisp objects. You can even
549 make a pointer to the function that frees the resources a slot in
550 your object -- this way, the same object could be used to represent
551 several disparate C structures. */
552
553 #ifdef CHECK_LISP_OBJECT_TYPE
554
555 typedef struct { EMACS_INT i; } Lisp_Object;
556
557 #define LISP_INITIALLY(i) {i}
558
559 #undef CHECK_LISP_OBJECT_TYPE
560 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = true };
561 #else /* CHECK_LISP_OBJECT_TYPE */
562
563 /* If a struct type is not wanted, define Lisp_Object as just a number. */
564
565 typedef EMACS_INT Lisp_Object;
566 #define LISP_INITIALLY(i) (i)
567 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = false };
568 #endif /* CHECK_LISP_OBJECT_TYPE */
569
570 #define LISP_INITIALLY_ZERO LISP_INITIALLY (0)
571 \f
572 /* Forward declarations. */
573
574 /* Defined in this file. */
575 union Lisp_Fwd;
576 INLINE bool BOOL_VECTOR_P (Lisp_Object);
577 INLINE bool BUFFER_OBJFWDP (union Lisp_Fwd *);
578 INLINE bool BUFFERP (Lisp_Object);
579 INLINE bool CHAR_TABLE_P (Lisp_Object);
580 INLINE Lisp_Object CHAR_TABLE_REF_ASCII (Lisp_Object, ptrdiff_t);
581 INLINE bool (CONSP) (Lisp_Object);
582 INLINE bool (FLOATP) (Lisp_Object);
583 INLINE bool functionp (Lisp_Object);
584 INLINE bool (INTEGERP) (Lisp_Object);
585 INLINE bool (MARKERP) (Lisp_Object);
586 INLINE bool (MISCP) (Lisp_Object);
587 INLINE bool (NILP) (Lisp_Object);
588 INLINE bool OVERLAYP (Lisp_Object);
589 INLINE bool PROCESSP (Lisp_Object);
590 INLINE bool PSEUDOVECTORP (Lisp_Object, int);
591 INLINE bool SAVE_VALUEP (Lisp_Object);
592 INLINE bool FINALIZERP (Lisp_Object);
593
594 #ifdef HAVE_MODULES
595 INLINE bool USER_PTRP (Lisp_Object);
596 INLINE struct Lisp_User_Ptr *(XUSER_PTR) (Lisp_Object);
597 #endif
598
599 INLINE void set_sub_char_table_contents (Lisp_Object, ptrdiff_t,
600 Lisp_Object);
601 INLINE bool STRINGP (Lisp_Object);
602 INLINE bool SUB_CHAR_TABLE_P (Lisp_Object);
603 INLINE bool SUBRP (Lisp_Object);
604 INLINE bool (SYMBOLP) (Lisp_Object);
605 INLINE bool (VECTORLIKEP) (Lisp_Object);
606 INLINE bool WINDOWP (Lisp_Object);
607 INLINE bool TERMINALP (Lisp_Object);
608 INLINE struct Lisp_Save_Value *XSAVE_VALUE (Lisp_Object);
609 INLINE struct Lisp_Finalizer *XFINALIZER (Lisp_Object);
610 INLINE struct Lisp_Symbol *(XSYMBOL) (Lisp_Object);
611 INLINE void *(XUNTAG) (Lisp_Object, int);
612
613 /* Defined in chartab.c. */
614 extern Lisp_Object char_table_ref (Lisp_Object, int);
615 extern void char_table_set (Lisp_Object, int, Lisp_Object);
616
617 /* Defined in data.c. */
618 extern _Noreturn Lisp_Object wrong_type_argument (Lisp_Object, Lisp_Object);
619 extern _Noreturn void wrong_choice (Lisp_Object, Lisp_Object);
620
621 /* Defined in emacs.c. */
622 extern bool might_dump;
623 /* True means Emacs has already been initialized.
624 Used during startup to detect startup of dumped Emacs. */
625 extern bool initialized;
626
627 /* Defined in floatfns.c. */
628 extern double extract_float (Lisp_Object);
629
630 \f
631 /* Interned state of a symbol. */
632
633 enum symbol_interned
634 {
635 SYMBOL_UNINTERNED = 0,
636 SYMBOL_INTERNED = 1,
637 SYMBOL_INTERNED_IN_INITIAL_OBARRAY = 2
638 };
639
640 enum symbol_redirect
641 {
642 SYMBOL_PLAINVAL = 4,
643 SYMBOL_VARALIAS = 1,
644 SYMBOL_LOCALIZED = 2,
645 SYMBOL_FORWARDED = 3
646 };
647
648 struct Lisp_Symbol
649 {
650 bool_bf gcmarkbit : 1;
651
652 /* Indicates where the value can be found:
653 0 : it's a plain var, the value is in the `value' field.
654 1 : it's a varalias, the value is really in the `alias' symbol.
655 2 : it's a localized var, the value is in the `blv' object.
656 3 : it's a forwarding variable, the value is in `forward'. */
657 ENUM_BF (symbol_redirect) redirect : 3;
658
659 /* Non-zero means symbol is constant, i.e. changing its value
660 should signal an error. If the value is 3, then the var
661 can be changed, but only by `defconst'. */
662 unsigned constant : 2;
663
664 /* Interned state of the symbol. This is an enumerator from
665 enum symbol_interned. */
666 unsigned interned : 2;
667
668 /* True means that this variable has been explicitly declared
669 special (with `defvar' etc), and shouldn't be lexically bound. */
670 bool_bf declared_special : 1;
671
672 /* True if pointed to from purespace and hence can't be GC'd. */
673 bool_bf pinned : 1;
674
675 /* The symbol's name, as a Lisp string. */
676 Lisp_Object name;
677
678 /* Value of the symbol or Qunbound if unbound. Which alternative of the
679 union is used depends on the `redirect' field above. */
680 union {
681 Lisp_Object value;
682 struct Lisp_Symbol *alias;
683 struct Lisp_Buffer_Local_Value *blv;
684 union Lisp_Fwd *fwd;
685 } val;
686
687 /* Function value of the symbol or Qnil if not fboundp. */
688 Lisp_Object function;
689
690 /* The symbol's property list. */
691 Lisp_Object plist;
692
693 /* Next symbol in obarray bucket, if the symbol is interned. */
694 struct Lisp_Symbol *next;
695 };
696
697 /* Declare a Lisp-callable function. The MAXARGS parameter has the same
698 meaning as in the DEFUN macro, and is used to construct a prototype. */
699 /* We can use the same trick as in the DEFUN macro to generate the
700 appropriate prototype. */
701 #define EXFUN(fnname, maxargs) \
702 extern Lisp_Object fnname DEFUN_ARGS_ ## maxargs
703
704 /* Note that the weird token-substitution semantics of ANSI C makes
705 this work for MANY and UNEVALLED. */
706 #define DEFUN_ARGS_MANY (ptrdiff_t, Lisp_Object *)
707 #define DEFUN_ARGS_UNEVALLED (Lisp_Object)
708 #define DEFUN_ARGS_0 (void)
709 #define DEFUN_ARGS_1 (Lisp_Object)
710 #define DEFUN_ARGS_2 (Lisp_Object, Lisp_Object)
711 #define DEFUN_ARGS_3 (Lisp_Object, Lisp_Object, Lisp_Object)
712 #define DEFUN_ARGS_4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
713 #define DEFUN_ARGS_5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
714 Lisp_Object)
715 #define DEFUN_ARGS_6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
716 Lisp_Object, Lisp_Object)
717 #define DEFUN_ARGS_7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
718 Lisp_Object, Lisp_Object, Lisp_Object)
719 #define DEFUN_ARGS_8 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
720 Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
721
722 /* Yield a signed integer that contains TAG along with PTR.
723
724 Sign-extend pointers when USE_LSB_TAG (this simplifies emacs-module.c),
725 and zero-extend otherwise (that’s a bit faster here).
726 Sign extension matters only when EMACS_INT is wider than a pointer. */
727 #define TAG_PTR(tag, ptr) \
728 (USE_LSB_TAG \
729 ? (intptr_t) (ptr) + (tag) \
730 : (EMACS_INT) (((EMACS_UINT) (tag) << VALBITS) + (uintptr_t) (ptr)))
731
732 /* Yield an integer that contains a symbol tag along with OFFSET.
733 OFFSET should be the offset in bytes from 'lispsym' to the symbol. */
734 #define TAG_SYMOFFSET(offset) TAG_PTR (Lisp_Symbol, offset)
735
736 /* XLI_BUILTIN_LISPSYM (iQwhatever) is equivalent to
737 XLI (builtin_lisp_symbol (Qwhatever)),
738 except the former expands to an integer constant expression. */
739 #define XLI_BUILTIN_LISPSYM(iname) TAG_SYMOFFSET ((iname) * sizeof *lispsym)
740
741 /* Declare extern constants for Lisp symbols. These can be helpful
742 when using a debugger like GDB, on older platforms where the debug
743 format does not represent C macros. */
744 #define DEFINE_LISP_SYMBOL(name) \
745 DEFINE_GDB_SYMBOL_BEGIN (Lisp_Object, name) \
746 DEFINE_GDB_SYMBOL_END (LISP_INITIALLY (XLI_BUILTIN_LISPSYM (i##name)))
747
748 /* By default, define macros for Qt, etc., as this leads to a bit
749 better performance in the core Emacs interpreter. A plugin can
750 define DEFINE_NON_NIL_Q_SYMBOL_MACROS to be false, to be portable to
751 other Emacs instances that assign different values to Qt, etc. */
752 #ifndef DEFINE_NON_NIL_Q_SYMBOL_MACROS
753 # define DEFINE_NON_NIL_Q_SYMBOL_MACROS true
754 #endif
755
756 #include "globals.h"
757
758 /* Convert a Lisp_Object to the corresponding EMACS_INT and vice versa.
759 At the machine level, these operations are no-ops. */
760
761 INLINE EMACS_INT
762 (XLI) (Lisp_Object o)
763 {
764 return lisp_h_XLI (o);
765 }
766
767 INLINE Lisp_Object
768 (XIL) (EMACS_INT i)
769 {
770 return lisp_h_XIL (i);
771 }
772
773 /* In the size word of a vector, this bit means the vector has been marked. */
774
775 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, ARRAY_MARK_FLAG)
776 # define ARRAY_MARK_FLAG PTRDIFF_MIN
777 DEFINE_GDB_SYMBOL_END (ARRAY_MARK_FLAG)
778
779 /* In the size word of a struct Lisp_Vector, this bit means it's really
780 some other vector-like object. */
781 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, PSEUDOVECTOR_FLAG)
782 # define PSEUDOVECTOR_FLAG (PTRDIFF_MAX - PTRDIFF_MAX / 2)
783 DEFINE_GDB_SYMBOL_END (PSEUDOVECTOR_FLAG)
784
785 /* In a pseudovector, the size field actually contains a word with one
786 PSEUDOVECTOR_FLAG bit set, and one of the following values extracted
787 with PVEC_TYPE_MASK to indicate the actual type. */
788 enum pvec_type
789 {
790 PVEC_NORMAL_VECTOR,
791 PVEC_FREE,
792 PVEC_PROCESS,
793 PVEC_FRAME,
794 PVEC_WINDOW,
795 PVEC_BOOL_VECTOR,
796 PVEC_BUFFER,
797 PVEC_HASH_TABLE,
798 PVEC_TERMINAL,
799 PVEC_WINDOW_CONFIGURATION,
800 PVEC_SUBR,
801 PVEC_OTHER,
802 /* These should be last, check internal_equal to see why. */
803 PVEC_COMPILED,
804 PVEC_CHAR_TABLE,
805 PVEC_SUB_CHAR_TABLE,
806 PVEC_FONT /* Should be last because it's used for range checking. */
807 };
808
809 enum More_Lisp_Bits
810 {
811 /* For convenience, we also store the number of elements in these bits.
812 Note that this size is not necessarily the memory-footprint size, but
813 only the number of Lisp_Object fields (that need to be traced by GC).
814 The distinction is used, e.g., by Lisp_Process, which places extra
815 non-Lisp_Object fields at the end of the structure. */
816 PSEUDOVECTOR_SIZE_BITS = 12,
817 PSEUDOVECTOR_SIZE_MASK = (1 << PSEUDOVECTOR_SIZE_BITS) - 1,
818
819 /* To calculate the memory footprint of the pseudovector, it's useful
820 to store the size of non-Lisp area in word_size units here. */
821 PSEUDOVECTOR_REST_BITS = 12,
822 PSEUDOVECTOR_REST_MASK = (((1 << PSEUDOVECTOR_REST_BITS) - 1)
823 << PSEUDOVECTOR_SIZE_BITS),
824
825 /* Used to extract pseudovector subtype information. */
826 PSEUDOVECTOR_AREA_BITS = PSEUDOVECTOR_SIZE_BITS + PSEUDOVECTOR_REST_BITS,
827 PVEC_TYPE_MASK = 0x3f << PSEUDOVECTOR_AREA_BITS
828 };
829 \f
830 /* These functions extract various sorts of values from a Lisp_Object.
831 For example, if tem is a Lisp_Object whose type is Lisp_Cons,
832 XCONS (tem) is the struct Lisp_Cons * pointing to the memory for
833 that cons. */
834
835 /* Mask for the value (as opposed to the type bits) of a Lisp object. */
836 DEFINE_GDB_SYMBOL_BEGIN (EMACS_INT, VALMASK)
837 # define VALMASK (USE_LSB_TAG ? - (1 << GCTYPEBITS) : VAL_MAX)
838 DEFINE_GDB_SYMBOL_END (VALMASK)
839
840 /* Largest and smallest representable fixnum values. These are the C
841 values. They are macros for use in static initializers. */
842 #define MOST_POSITIVE_FIXNUM (EMACS_INT_MAX >> INTTYPEBITS)
843 #define MOST_NEGATIVE_FIXNUM (-1 - MOST_POSITIVE_FIXNUM)
844
845 #if USE_LSB_TAG
846
847 INLINE Lisp_Object
848 (make_number) (EMACS_INT n)
849 {
850 return lisp_h_make_number (n);
851 }
852
853 INLINE EMACS_INT
854 (XINT) (Lisp_Object a)
855 {
856 return lisp_h_XINT (a);
857 }
858
859 INLINE EMACS_INT
860 (XFASTINT) (Lisp_Object a)
861 {
862 EMACS_INT n = lisp_h_XFASTINT (a);
863 eassume (0 <= n);
864 return n;
865 }
866
867 INLINE struct Lisp_Symbol *
868 (XSYMBOL) (Lisp_Object a)
869 {
870 return lisp_h_XSYMBOL (a);
871 }
872
873 INLINE enum Lisp_Type
874 (XTYPE) (Lisp_Object a)
875 {
876 return lisp_h_XTYPE (a);
877 }
878
879 INLINE void *
880 (XUNTAG) (Lisp_Object a, int type)
881 {
882 return lisp_h_XUNTAG (a, type);
883 }
884
885 #else /* ! USE_LSB_TAG */
886
887 /* Although compiled only if ! USE_LSB_TAG, the following functions
888 also work when USE_LSB_TAG; this is to aid future maintenance when
889 the lisp_h_* macros are eventually removed. */
890
891 /* Make a Lisp integer representing the value of the low order
892 bits of N. */
893 INLINE Lisp_Object
894 make_number (EMACS_INT n)
895 {
896 EMACS_INT int0 = Lisp_Int0;
897 if (USE_LSB_TAG)
898 {
899 EMACS_UINT u = n;
900 n = u << INTTYPEBITS;
901 n += int0;
902 }
903 else
904 {
905 n &= INTMASK;
906 n += (int0 << VALBITS);
907 }
908 return XIL (n);
909 }
910
911 /* Extract A's value as a signed integer. */
912 INLINE EMACS_INT
913 XINT (Lisp_Object a)
914 {
915 EMACS_INT i = XLI (a);
916 if (! USE_LSB_TAG)
917 {
918 EMACS_UINT u = i;
919 i = u << INTTYPEBITS;
920 }
921 return i >> INTTYPEBITS;
922 }
923
924 /* Like XINT (A), but may be faster. A must be nonnegative.
925 If ! USE_LSB_TAG, this takes advantage of the fact that Lisp
926 integers have zero-bits in their tags. */
927 INLINE EMACS_INT
928 XFASTINT (Lisp_Object a)
929 {
930 EMACS_INT int0 = Lisp_Int0;
931 EMACS_INT n = USE_LSB_TAG ? XINT (a) : XLI (a) - (int0 << VALBITS);
932 eassume (0 <= n);
933 return n;
934 }
935
936 /* Extract A's type. */
937 INLINE enum Lisp_Type
938 XTYPE (Lisp_Object a)
939 {
940 EMACS_UINT i = XLI (a);
941 return USE_LSB_TAG ? i & ~VALMASK : i >> VALBITS;
942 }
943
944 /* Extract A's value as a symbol. */
945 INLINE struct Lisp_Symbol *
946 XSYMBOL (Lisp_Object a)
947 {
948 eassert (SYMBOLP (a));
949 intptr_t i = (intptr_t) XUNTAG (a, Lisp_Symbol);
950 void *p = (char *) lispsym + i;
951 return p;
952 }
953
954 /* Extract A's pointer value, assuming A's type is TYPE. */
955 INLINE void *
956 XUNTAG (Lisp_Object a, int type)
957 {
958 intptr_t i = USE_LSB_TAG ? XLI (a) - type : XLI (a) & VALMASK;
959 return (void *) i;
960 }
961
962 #endif /* ! USE_LSB_TAG */
963
964 /* Extract A's value as an unsigned integer. */
965 INLINE EMACS_UINT
966 XUINT (Lisp_Object a)
967 {
968 EMACS_UINT i = XLI (a);
969 return USE_LSB_TAG ? i >> INTTYPEBITS : i & INTMASK;
970 }
971
972 /* Return A's (Lisp-integer sized) hash. Happens to be like XUINT
973 right now, but XUINT should only be applied to objects we know are
974 integers. */
975
976 INLINE EMACS_INT
977 (XHASH) (Lisp_Object a)
978 {
979 return lisp_h_XHASH (a);
980 }
981
982 /* Like make_number (N), but may be faster. N must be in nonnegative range. */
983 INLINE Lisp_Object
984 make_natnum (EMACS_INT n)
985 {
986 eassert (0 <= n && n <= MOST_POSITIVE_FIXNUM);
987 EMACS_INT int0 = Lisp_Int0;
988 return USE_LSB_TAG ? make_number (n) : XIL (n + (int0 << VALBITS));
989 }
990
991 /* Return true if X and Y are the same object. */
992
993 INLINE bool
994 (EQ) (Lisp_Object x, Lisp_Object y)
995 {
996 return lisp_h_EQ (x, y);
997 }
998
999 /* Value is true if I doesn't fit into a Lisp fixnum. It is
1000 written this way so that it also works if I is of unsigned
1001 type or if I is a NaN. */
1002
1003 #define FIXNUM_OVERFLOW_P(i) \
1004 (! ((0 <= (i) || MOST_NEGATIVE_FIXNUM <= (i)) && (i) <= MOST_POSITIVE_FIXNUM))
1005
1006 INLINE ptrdiff_t
1007 clip_to_bounds (ptrdiff_t lower, EMACS_INT num, ptrdiff_t upper)
1008 {
1009 return num < lower ? lower : num <= upper ? num : upper;
1010 }
1011 \f
1012
1013 /* Extract a value or address from a Lisp_Object. */
1014
1015 INLINE struct Lisp_Cons *
1016 (XCONS) (Lisp_Object a)
1017 {
1018 return lisp_h_XCONS (a);
1019 }
1020
1021 INLINE struct Lisp_Vector *
1022 XVECTOR (Lisp_Object a)
1023 {
1024 eassert (VECTORLIKEP (a));
1025 return XUNTAG (a, Lisp_Vectorlike);
1026 }
1027
1028 INLINE struct Lisp_String *
1029 XSTRING (Lisp_Object a)
1030 {
1031 eassert (STRINGP (a));
1032 return XUNTAG (a, Lisp_String);
1033 }
1034
1035 /* The index of the C-defined Lisp symbol SYM.
1036 This can be used in a static initializer. */
1037 #define SYMBOL_INDEX(sym) i##sym
1038
1039 INLINE struct Lisp_Float *
1040 XFLOAT (Lisp_Object a)
1041 {
1042 eassert (FLOATP (a));
1043 return XUNTAG (a, Lisp_Float);
1044 }
1045
1046 /* Pseudovector types. */
1047
1048 INLINE struct Lisp_Process *
1049 XPROCESS (Lisp_Object a)
1050 {
1051 eassert (PROCESSP (a));
1052 return XUNTAG (a, Lisp_Vectorlike);
1053 }
1054
1055 INLINE struct window *
1056 XWINDOW (Lisp_Object a)
1057 {
1058 eassert (WINDOWP (a));
1059 return XUNTAG (a, Lisp_Vectorlike);
1060 }
1061
1062 INLINE struct terminal *
1063 XTERMINAL (Lisp_Object a)
1064 {
1065 eassert (TERMINALP (a));
1066 return XUNTAG (a, Lisp_Vectorlike);
1067 }
1068
1069 INLINE struct Lisp_Subr *
1070 XSUBR (Lisp_Object a)
1071 {
1072 eassert (SUBRP (a));
1073 return XUNTAG (a, Lisp_Vectorlike);
1074 }
1075
1076 INLINE struct buffer *
1077 XBUFFER (Lisp_Object a)
1078 {
1079 eassert (BUFFERP (a));
1080 return XUNTAG (a, Lisp_Vectorlike);
1081 }
1082
1083 INLINE struct Lisp_Char_Table *
1084 XCHAR_TABLE (Lisp_Object a)
1085 {
1086 eassert (CHAR_TABLE_P (a));
1087 return XUNTAG (a, Lisp_Vectorlike);
1088 }
1089
1090 INLINE struct Lisp_Sub_Char_Table *
1091 XSUB_CHAR_TABLE (Lisp_Object a)
1092 {
1093 eassert (SUB_CHAR_TABLE_P (a));
1094 return XUNTAG (a, Lisp_Vectorlike);
1095 }
1096
1097 INLINE struct Lisp_Bool_Vector *
1098 XBOOL_VECTOR (Lisp_Object a)
1099 {
1100 eassert (BOOL_VECTOR_P (a));
1101 return XUNTAG (a, Lisp_Vectorlike);
1102 }
1103
1104 /* Construct a Lisp_Object from a value or address. */
1105
1106 INLINE Lisp_Object
1107 make_lisp_ptr (void *ptr, enum Lisp_Type type)
1108 {
1109 Lisp_Object a = XIL (TAG_PTR (type, ptr));
1110 eassert (XTYPE (a) == type && XUNTAG (a, type) == ptr);
1111 return a;
1112 }
1113
1114 INLINE Lisp_Object
1115 make_lisp_symbol (struct Lisp_Symbol *sym)
1116 {
1117 Lisp_Object a = XIL (TAG_SYMOFFSET ((char *) sym - (char *) lispsym));
1118 eassert (XSYMBOL (a) == sym);
1119 return a;
1120 }
1121
1122 INLINE Lisp_Object
1123 builtin_lisp_symbol (int index)
1124 {
1125 return make_lisp_symbol (lispsym + index);
1126 }
1127
1128 #define XSETINT(a, b) ((a) = make_number (b))
1129 #define XSETFASTINT(a, b) ((a) = make_natnum (b))
1130 #define XSETCONS(a, b) ((a) = make_lisp_ptr (b, Lisp_Cons))
1131 #define XSETVECTOR(a, b) ((a) = make_lisp_ptr (b, Lisp_Vectorlike))
1132 #define XSETSTRING(a, b) ((a) = make_lisp_ptr (b, Lisp_String))
1133 #define XSETSYMBOL(a, b) ((a) = make_lisp_symbol (b))
1134 #define XSETFLOAT(a, b) ((a) = make_lisp_ptr (b, Lisp_Float))
1135 #define XSETMISC(a, b) ((a) = make_lisp_ptr (b, Lisp_Misc))
1136
1137 /* Pseudovector types. */
1138
1139 #define XSETPVECTYPE(v, code) \
1140 ((v)->header.size |= PSEUDOVECTOR_FLAG | ((code) << PSEUDOVECTOR_AREA_BITS))
1141 #define XSETPVECTYPESIZE(v, code, lispsize, restsize) \
1142 ((v)->header.size = (PSEUDOVECTOR_FLAG \
1143 | ((code) << PSEUDOVECTOR_AREA_BITS) \
1144 | ((restsize) << PSEUDOVECTOR_SIZE_BITS) \
1145 | (lispsize)))
1146
1147 /* The cast to struct vectorlike_header * avoids aliasing issues. */
1148 #define XSETPSEUDOVECTOR(a, b, code) \
1149 XSETTYPED_PSEUDOVECTOR (a, b, \
1150 (((struct vectorlike_header *) \
1151 XUNTAG (a, Lisp_Vectorlike)) \
1152 ->size), \
1153 code)
1154 #define XSETTYPED_PSEUDOVECTOR(a, b, size, code) \
1155 (XSETVECTOR (a, b), \
1156 eassert ((size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK)) \
1157 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS))))
1158
1159 #define XSETWINDOW_CONFIGURATION(a, b) \
1160 (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW_CONFIGURATION))
1161 #define XSETPROCESS(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_PROCESS))
1162 #define XSETWINDOW(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW))
1163 #define XSETTERMINAL(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_TERMINAL))
1164 #define XSETSUBR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUBR))
1165 #define XSETCOMPILED(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_COMPILED))
1166 #define XSETBUFFER(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BUFFER))
1167 #define XSETCHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_CHAR_TABLE))
1168 #define XSETBOOL_VECTOR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BOOL_VECTOR))
1169 #define XSETSUB_CHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUB_CHAR_TABLE))
1170
1171 /* Efficiently convert a pointer to a Lisp object and back. The
1172 pointer is represented as a Lisp integer, so the garbage collector
1173 does not know about it. The pointer should not have both Lisp_Int1
1174 bits set, which makes this conversion inherently unportable. */
1175
1176 INLINE void *
1177 XINTPTR (Lisp_Object a)
1178 {
1179 return XUNTAG (a, Lisp_Int0);
1180 }
1181
1182 INLINE Lisp_Object
1183 make_pointer_integer (void *p)
1184 {
1185 Lisp_Object a = XIL (TAG_PTR (Lisp_Int0, p));
1186 eassert (INTEGERP (a) && XINTPTR (a) == p);
1187 return a;
1188 }
1189
1190 /* Type checking. */
1191
1192 INLINE void
1193 (CHECK_TYPE) (int ok, Lisp_Object predicate, Lisp_Object x)
1194 {
1195 lisp_h_CHECK_TYPE (ok, predicate, x);
1196 }
1197
1198 /* See the macros in intervals.h. */
1199
1200 typedef struct interval *INTERVAL;
1201
1202 struct GCALIGNED Lisp_Cons
1203 {
1204 /* Car of this cons cell. */
1205 Lisp_Object car;
1206
1207 union
1208 {
1209 /* Cdr of this cons cell. */
1210 Lisp_Object cdr;
1211
1212 /* Used to chain conses on a free list. */
1213 struct Lisp_Cons *chain;
1214 } u;
1215 };
1216
1217 /* Take the car or cdr of something known to be a cons cell. */
1218 /* The _addr functions shouldn't be used outside of the minimal set
1219 of code that has to know what a cons cell looks like. Other code not
1220 part of the basic lisp implementation should assume that the car and cdr
1221 fields are not accessible. (What if we want to switch to
1222 a copying collector someday? Cached cons cell field addresses may be
1223 invalidated at arbitrary points.) */
1224 INLINE Lisp_Object *
1225 xcar_addr (Lisp_Object c)
1226 {
1227 return &XCONS (c)->car;
1228 }
1229 INLINE Lisp_Object *
1230 xcdr_addr (Lisp_Object c)
1231 {
1232 return &XCONS (c)->u.cdr;
1233 }
1234
1235 /* Use these from normal code. */
1236
1237 INLINE Lisp_Object
1238 (XCAR) (Lisp_Object c)
1239 {
1240 return lisp_h_XCAR (c);
1241 }
1242
1243 INLINE Lisp_Object
1244 (XCDR) (Lisp_Object c)
1245 {
1246 return lisp_h_XCDR (c);
1247 }
1248
1249 /* Use these to set the fields of a cons cell.
1250
1251 Note that both arguments may refer to the same object, so 'n'
1252 should not be read after 'c' is first modified. */
1253 INLINE void
1254 XSETCAR (Lisp_Object c, Lisp_Object n)
1255 {
1256 *xcar_addr (c) = n;
1257 }
1258 INLINE void
1259 XSETCDR (Lisp_Object c, Lisp_Object n)
1260 {
1261 *xcdr_addr (c) = n;
1262 }
1263
1264 /* Take the car or cdr of something whose type is not known. */
1265 INLINE Lisp_Object
1266 CAR (Lisp_Object c)
1267 {
1268 return (CONSP (c) ? XCAR (c)
1269 : NILP (c) ? Qnil
1270 : wrong_type_argument (Qlistp, c));
1271 }
1272 INLINE Lisp_Object
1273 CDR (Lisp_Object c)
1274 {
1275 return (CONSP (c) ? XCDR (c)
1276 : NILP (c) ? Qnil
1277 : wrong_type_argument (Qlistp, c));
1278 }
1279
1280 /* Take the car or cdr of something whose type is not known. */
1281 INLINE Lisp_Object
1282 CAR_SAFE (Lisp_Object c)
1283 {
1284 return CONSP (c) ? XCAR (c) : Qnil;
1285 }
1286 INLINE Lisp_Object
1287 CDR_SAFE (Lisp_Object c)
1288 {
1289 return CONSP (c) ? XCDR (c) : Qnil;
1290 }
1291
1292 /* In a string or vector, the sign bit of the `size' is the gc mark bit. */
1293
1294 struct GCALIGNED Lisp_String
1295 {
1296 ptrdiff_t size;
1297 ptrdiff_t size_byte;
1298 INTERVAL intervals; /* Text properties in this string. */
1299 unsigned char *data;
1300 };
1301
1302 /* True if STR is a multibyte string. */
1303 INLINE bool
1304 STRING_MULTIBYTE (Lisp_Object str)
1305 {
1306 return 0 <= XSTRING (str)->size_byte;
1307 }
1308
1309 /* An upper bound on the number of bytes in a Lisp string, not
1310 counting the terminating null. This a tight enough bound to
1311 prevent integer overflow errors that would otherwise occur during
1312 string size calculations. A string cannot contain more bytes than
1313 a fixnum can represent, nor can it be so long that C pointer
1314 arithmetic stops working on the string plus its terminating null.
1315 Although the actual size limit (see STRING_BYTES_MAX in alloc.c)
1316 may be a bit smaller than STRING_BYTES_BOUND, calculating it here
1317 would expose alloc.c internal details that we'd rather keep
1318 private.
1319
1320 This is a macro for use in static initializers. The cast to
1321 ptrdiff_t ensures that the macro is signed. */
1322 #define STRING_BYTES_BOUND \
1323 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, min (SIZE_MAX, PTRDIFF_MAX) - 1))
1324
1325 /* Mark STR as a unibyte string. */
1326 #define STRING_SET_UNIBYTE(STR) \
1327 do { \
1328 if (XSTRING (STR)->size == 0) \
1329 (STR) = empty_unibyte_string; \
1330 else \
1331 XSTRING (STR)->size_byte = -1; \
1332 } while (false)
1333
1334 /* Mark STR as a multibyte string. Assure that STR contains only
1335 ASCII characters in advance. */
1336 #define STRING_SET_MULTIBYTE(STR) \
1337 do { \
1338 if (XSTRING (STR)->size == 0) \
1339 (STR) = empty_multibyte_string; \
1340 else \
1341 XSTRING (STR)->size_byte = XSTRING (STR)->size; \
1342 } while (false)
1343
1344 /* Convenience functions for dealing with Lisp strings. */
1345
1346 INLINE unsigned char *
1347 SDATA (Lisp_Object string)
1348 {
1349 return XSTRING (string)->data;
1350 }
1351 INLINE char *
1352 SSDATA (Lisp_Object string)
1353 {
1354 /* Avoid "differ in sign" warnings. */
1355 return (char *) SDATA (string);
1356 }
1357 INLINE unsigned char
1358 SREF (Lisp_Object string, ptrdiff_t index)
1359 {
1360 return SDATA (string)[index];
1361 }
1362 INLINE void
1363 SSET (Lisp_Object string, ptrdiff_t index, unsigned char new)
1364 {
1365 SDATA (string)[index] = new;
1366 }
1367 INLINE ptrdiff_t
1368 SCHARS (Lisp_Object string)
1369 {
1370 return XSTRING (string)->size;
1371 }
1372
1373 #ifdef GC_CHECK_STRING_BYTES
1374 extern ptrdiff_t string_bytes (struct Lisp_String *);
1375 #endif
1376 INLINE ptrdiff_t
1377 STRING_BYTES (struct Lisp_String *s)
1378 {
1379 #ifdef GC_CHECK_STRING_BYTES
1380 return string_bytes (s);
1381 #else
1382 return s->size_byte < 0 ? s->size : s->size_byte;
1383 #endif
1384 }
1385
1386 INLINE ptrdiff_t
1387 SBYTES (Lisp_Object string)
1388 {
1389 return STRING_BYTES (XSTRING (string));
1390 }
1391 INLINE void
1392 STRING_SET_CHARS (Lisp_Object string, ptrdiff_t newsize)
1393 {
1394 XSTRING (string)->size = newsize;
1395 }
1396
1397 /* Header of vector-like objects. This documents the layout constraints on
1398 vectors and pseudovectors (objects of PVEC_xxx subtype). It also prevents
1399 compilers from being fooled by Emacs's type punning: XSETPSEUDOVECTOR
1400 and PSEUDOVECTORP cast their pointers to struct vectorlike_header *,
1401 because when two such pointers potentially alias, a compiler won't
1402 incorrectly reorder loads and stores to their size fields. See
1403 Bug#8546. */
1404 struct vectorlike_header
1405 {
1406 /* The only field contains various pieces of information:
1407 - The MSB (ARRAY_MARK_FLAG) holds the gcmarkbit.
1408 - The next bit (PSEUDOVECTOR_FLAG) indicates whether this is a plain
1409 vector (0) or a pseudovector (1).
1410 - If PSEUDOVECTOR_FLAG is 0, the rest holds the size (number
1411 of slots) of the vector.
1412 - If PSEUDOVECTOR_FLAG is 1, the rest is subdivided into three fields:
1413 - a) pseudovector subtype held in PVEC_TYPE_MASK field;
1414 - b) number of Lisp_Objects slots at the beginning of the object
1415 held in PSEUDOVECTOR_SIZE_MASK field. These objects are always
1416 traced by the GC;
1417 - c) size of the rest fields held in PSEUDOVECTOR_REST_MASK and
1418 measured in word_size units. Rest fields may also include
1419 Lisp_Objects, but these objects usually needs some special treatment
1420 during GC.
1421 There are some exceptions. For PVEC_FREE, b) is always zero. For
1422 PVEC_BOOL_VECTOR and PVEC_SUBR, both b) and c) are always zero.
1423 Current layout limits the pseudovectors to 63 PVEC_xxx subtypes,
1424 4095 Lisp_Objects in GC-ed area and 4095 word-sized other slots. */
1425 ptrdiff_t size;
1426 };
1427
1428 /* A regular vector is just a header plus an array of Lisp_Objects. */
1429
1430 struct Lisp_Vector
1431 {
1432 struct vectorlike_header header;
1433 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1434 };
1435
1436 /* C11 prohibits alignof (struct Lisp_Vector), so compute it manually. */
1437 enum
1438 {
1439 ALIGNOF_STRUCT_LISP_VECTOR
1440 = alignof (union { struct vectorlike_header a; Lisp_Object b; })
1441 };
1442
1443 /* A boolvector is a kind of vectorlike, with contents like a string. */
1444
1445 struct Lisp_Bool_Vector
1446 {
1447 /* HEADER.SIZE is the vector's size field. It doesn't have the real size,
1448 just the subtype information. */
1449 struct vectorlike_header header;
1450 /* This is the size in bits. */
1451 EMACS_INT size;
1452 /* The actual bits, packed into bytes.
1453 Zeros fill out the last word if needed.
1454 The bits are in little-endian order in the bytes, and
1455 the bytes are in little-endian order in the words. */
1456 bits_word data[FLEXIBLE_ARRAY_MEMBER];
1457 };
1458
1459 INLINE EMACS_INT
1460 bool_vector_size (Lisp_Object a)
1461 {
1462 EMACS_INT size = XBOOL_VECTOR (a)->size;
1463 eassume (0 <= size);
1464 return size;
1465 }
1466
1467 INLINE bits_word *
1468 bool_vector_data (Lisp_Object a)
1469 {
1470 return XBOOL_VECTOR (a)->data;
1471 }
1472
1473 INLINE unsigned char *
1474 bool_vector_uchar_data (Lisp_Object a)
1475 {
1476 return (unsigned char *) bool_vector_data (a);
1477 }
1478
1479 /* The number of data words and bytes in a bool vector with SIZE bits. */
1480
1481 INLINE EMACS_INT
1482 bool_vector_words (EMACS_INT size)
1483 {
1484 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1485 return (size + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
1486 }
1487
1488 INLINE EMACS_INT
1489 bool_vector_bytes (EMACS_INT size)
1490 {
1491 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1492 return (size + BOOL_VECTOR_BITS_PER_CHAR - 1) / BOOL_VECTOR_BITS_PER_CHAR;
1493 }
1494
1495 /* True if A's Ith bit is set. */
1496
1497 INLINE bool
1498 bool_vector_bitref (Lisp_Object a, EMACS_INT i)
1499 {
1500 eassume (0 <= i && i < bool_vector_size (a));
1501 return !! (bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR]
1502 & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR)));
1503 }
1504
1505 INLINE Lisp_Object
1506 bool_vector_ref (Lisp_Object a, EMACS_INT i)
1507 {
1508 return bool_vector_bitref (a, i) ? Qt : Qnil;
1509 }
1510
1511 /* Set A's Ith bit to B. */
1512
1513 INLINE void
1514 bool_vector_set (Lisp_Object a, EMACS_INT i, bool b)
1515 {
1516 unsigned char *addr;
1517
1518 eassume (0 <= i && i < bool_vector_size (a));
1519 addr = &bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR];
1520
1521 if (b)
1522 *addr |= 1 << (i % BOOL_VECTOR_BITS_PER_CHAR);
1523 else
1524 *addr &= ~ (1 << (i % BOOL_VECTOR_BITS_PER_CHAR));
1525 }
1526
1527 /* Some handy constants for calculating sizes
1528 and offsets, mostly of vectorlike objects. */
1529
1530 enum
1531 {
1532 header_size = offsetof (struct Lisp_Vector, contents),
1533 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
1534 word_size = sizeof (Lisp_Object)
1535 };
1536
1537 /* Conveniences for dealing with Lisp arrays. */
1538
1539 INLINE Lisp_Object
1540 AREF (Lisp_Object array, ptrdiff_t idx)
1541 {
1542 return XVECTOR (array)->contents[idx];
1543 }
1544
1545 INLINE Lisp_Object *
1546 aref_addr (Lisp_Object array, ptrdiff_t idx)
1547 {
1548 return & XVECTOR (array)->contents[idx];
1549 }
1550
1551 INLINE ptrdiff_t
1552 ASIZE (Lisp_Object array)
1553 {
1554 ptrdiff_t size = XVECTOR (array)->header.size;
1555 eassume (0 <= size);
1556 return size;
1557 }
1558
1559 INLINE ptrdiff_t
1560 gc_asize (Lisp_Object array)
1561 {
1562 /* Like ASIZE, but also can be used in the garbage collector. */
1563 return XVECTOR (array)->header.size & ~ARRAY_MARK_FLAG;
1564 }
1565
1566 INLINE void
1567 ASET (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1568 {
1569 eassert (0 <= idx && idx < ASIZE (array));
1570 XVECTOR (array)->contents[idx] = val;
1571 }
1572
1573 INLINE void
1574 gc_aset (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1575 {
1576 /* Like ASET, but also can be used in the garbage collector:
1577 sweep_weak_table calls set_hash_key etc. while the table is marked. */
1578 eassert (0 <= idx && idx < gc_asize (array));
1579 XVECTOR (array)->contents[idx] = val;
1580 }
1581
1582 /* True, since Qnil's representation is zero. Every place in the code
1583 that assumes Qnil is zero should verify (NIL_IS_ZERO), to make it easy
1584 to find such assumptions later if we change Qnil to be nonzero. */
1585 enum { NIL_IS_ZERO = XLI_BUILTIN_LISPSYM (iQnil) == 0 };
1586
1587 /* Clear the object addressed by P, with size NBYTES, so that all its
1588 bytes are zero and all its Lisp values are nil. */
1589 INLINE void
1590 memclear (void *p, ptrdiff_t nbytes)
1591 {
1592 eassert (0 <= nbytes);
1593 verify (NIL_IS_ZERO);
1594 /* Since Qnil is zero, memset suffices. */
1595 memset (p, 0, nbytes);
1596 }
1597
1598 /* If a struct is made to look like a vector, this macro returns the length
1599 of the shortest vector that would hold that struct. */
1600
1601 #define VECSIZE(type) \
1602 ((sizeof (type) - header_size + word_size - 1) / word_size)
1603
1604 /* Like VECSIZE, but used when the pseudo-vector has non-Lisp_Object fields
1605 at the end and we need to compute the number of Lisp_Object fields (the
1606 ones that the GC needs to trace). */
1607
1608 #define PSEUDOVECSIZE(type, nonlispfield) \
1609 ((offsetof (type, nonlispfield) - header_size) / word_size)
1610
1611 /* Compute A OP B, using the unsigned comparison operator OP. A and B
1612 should be integer expressions. This is not the same as
1613 mathematical comparison; for example, UNSIGNED_CMP (0, <, -1)
1614 returns true. For efficiency, prefer plain unsigned comparison if A
1615 and B's sizes both fit (after integer promotion). */
1616 #define UNSIGNED_CMP(a, op, b) \
1617 (max (sizeof ((a) + 0), sizeof ((b) + 0)) <= sizeof (unsigned) \
1618 ? ((a) + (unsigned) 0) op ((b) + (unsigned) 0) \
1619 : ((a) + (uintmax_t) 0) op ((b) + (uintmax_t) 0))
1620
1621 /* True iff C is an ASCII character. */
1622 #define ASCII_CHAR_P(c) UNSIGNED_CMP (c, <, 0x80)
1623
1624 /* A char-table is a kind of vectorlike, with contents are like a
1625 vector but with a few other slots. For some purposes, it makes
1626 sense to handle a char-table with type struct Lisp_Vector. An
1627 element of a char table can be any Lisp objects, but if it is a sub
1628 char-table, we treat it a table that contains information of a
1629 specific range of characters. A sub char-table is like a vector but
1630 with two integer fields between the header and Lisp data, which means
1631 that it has to be marked with some precautions (see mark_char_table
1632 in alloc.c). A sub char-table appears only in an element of a char-table,
1633 and there's no way to access it directly from Emacs Lisp program. */
1634
1635 enum CHARTAB_SIZE_BITS
1636 {
1637 CHARTAB_SIZE_BITS_0 = 6,
1638 CHARTAB_SIZE_BITS_1 = 4,
1639 CHARTAB_SIZE_BITS_2 = 5,
1640 CHARTAB_SIZE_BITS_3 = 7
1641 };
1642
1643 extern const int chartab_size[4];
1644
1645 struct Lisp_Char_Table
1646 {
1647 /* HEADER.SIZE is the vector's size field, which also holds the
1648 pseudovector type information. It holds the size, too.
1649 The size counts the defalt, parent, purpose, ascii,
1650 contents, and extras slots. */
1651 struct vectorlike_header header;
1652
1653 /* This holds a default value,
1654 which is used whenever the value for a specific character is nil. */
1655 Lisp_Object defalt;
1656
1657 /* This points to another char table, which we inherit from when the
1658 value for a specific character is nil. The `defalt' slot takes
1659 precedence over this. */
1660 Lisp_Object parent;
1661
1662 /* This is a symbol which says what kind of use this char-table is
1663 meant for. */
1664 Lisp_Object purpose;
1665
1666 /* The bottom sub char-table for characters of the range 0..127. It
1667 is nil if none of ASCII character has a specific value. */
1668 Lisp_Object ascii;
1669
1670 Lisp_Object contents[(1 << CHARTAB_SIZE_BITS_0)];
1671
1672 /* These hold additional data. It is a vector. */
1673 Lisp_Object extras[FLEXIBLE_ARRAY_MEMBER];
1674 };
1675
1676 struct Lisp_Sub_Char_Table
1677 {
1678 /* HEADER.SIZE is the vector's size field, which also holds the
1679 pseudovector type information. It holds the size, too. */
1680 struct vectorlike_header header;
1681
1682 /* Depth of this sub char-table. It should be 1, 2, or 3. A sub
1683 char-table of depth 1 contains 16 elements, and each element
1684 covers 4096 (128*32) characters. A sub char-table of depth 2
1685 contains 32 elements, and each element covers 128 characters. A
1686 sub char-table of depth 3 contains 128 elements, and each element
1687 is for one character. */
1688 int depth;
1689
1690 /* Minimum character covered by the sub char-table. */
1691 int min_char;
1692
1693 /* Use set_sub_char_table_contents to set this. */
1694 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1695 };
1696
1697 INLINE Lisp_Object
1698 CHAR_TABLE_REF_ASCII (Lisp_Object ct, ptrdiff_t idx)
1699 {
1700 struct Lisp_Char_Table *tbl = NULL;
1701 Lisp_Object val;
1702 do
1703 {
1704 tbl = tbl ? XCHAR_TABLE (tbl->parent) : XCHAR_TABLE (ct);
1705 val = (! SUB_CHAR_TABLE_P (tbl->ascii) ? tbl->ascii
1706 : XSUB_CHAR_TABLE (tbl->ascii)->contents[idx]);
1707 if (NILP (val))
1708 val = tbl->defalt;
1709 }
1710 while (NILP (val) && ! NILP (tbl->parent));
1711
1712 return val;
1713 }
1714
1715 /* Almost equivalent to Faref (CT, IDX) with optimization for ASCII
1716 characters. Do not check validity of CT. */
1717 INLINE Lisp_Object
1718 CHAR_TABLE_REF (Lisp_Object ct, int idx)
1719 {
1720 return (ASCII_CHAR_P (idx)
1721 ? CHAR_TABLE_REF_ASCII (ct, idx)
1722 : char_table_ref (ct, idx));
1723 }
1724
1725 /* Equivalent to Faset (CT, IDX, VAL) with optimization for ASCII and
1726 8-bit European characters. Do not check validity of CT. */
1727 INLINE void
1728 CHAR_TABLE_SET (Lisp_Object ct, int idx, Lisp_Object val)
1729 {
1730 if (ASCII_CHAR_P (idx) && SUB_CHAR_TABLE_P (XCHAR_TABLE (ct)->ascii))
1731 set_sub_char_table_contents (XCHAR_TABLE (ct)->ascii, idx, val);
1732 else
1733 char_table_set (ct, idx, val);
1734 }
1735
1736 /* This structure describes a built-in function.
1737 It is generated by the DEFUN macro only.
1738 defsubr makes it into a Lisp object. */
1739
1740 struct Lisp_Subr
1741 {
1742 struct vectorlike_header header;
1743 union {
1744 Lisp_Object (*a0) (void);
1745 Lisp_Object (*a1) (Lisp_Object);
1746 Lisp_Object (*a2) (Lisp_Object, Lisp_Object);
1747 Lisp_Object (*a3) (Lisp_Object, Lisp_Object, Lisp_Object);
1748 Lisp_Object (*a4) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1749 Lisp_Object (*a5) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1750 Lisp_Object (*a6) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1751 Lisp_Object (*a7) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1752 Lisp_Object (*a8) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1753 Lisp_Object (*aUNEVALLED) (Lisp_Object args);
1754 Lisp_Object (*aMANY) (ptrdiff_t, Lisp_Object *);
1755 } function;
1756 short min_args, max_args;
1757 const char *symbol_name;
1758 const char *intspec;
1759 const char *doc;
1760 };
1761
1762 enum char_table_specials
1763 {
1764 /* This is the number of slots that every char table must have. This
1765 counts the ordinary slots and the top, defalt, parent, and purpose
1766 slots. */
1767 CHAR_TABLE_STANDARD_SLOTS = PSEUDOVECSIZE (struct Lisp_Char_Table, extras),
1768
1769 /* This is an index of first Lisp_Object field in Lisp_Sub_Char_Table
1770 when the latter is treated as an ordinary Lisp_Vector. */
1771 SUB_CHAR_TABLE_OFFSET = PSEUDOVECSIZE (struct Lisp_Sub_Char_Table, contents)
1772 };
1773
1774 /* Return the number of "extra" slots in the char table CT. */
1775
1776 INLINE int
1777 CHAR_TABLE_EXTRA_SLOTS (struct Lisp_Char_Table *ct)
1778 {
1779 return ((ct->header.size & PSEUDOVECTOR_SIZE_MASK)
1780 - CHAR_TABLE_STANDARD_SLOTS);
1781 }
1782
1783 /* Make sure that sub char-table contents slot is where we think it is. */
1784 verify (offsetof (struct Lisp_Sub_Char_Table, contents)
1785 == offsetof (struct Lisp_Vector, contents[SUB_CHAR_TABLE_OFFSET]));
1786
1787 /***********************************************************************
1788 Symbols
1789 ***********************************************************************/
1790
1791 /* Value is name of symbol. */
1792
1793 INLINE Lisp_Object
1794 (SYMBOL_VAL) (struct Lisp_Symbol *sym)
1795 {
1796 return lisp_h_SYMBOL_VAL (sym);
1797 }
1798
1799 INLINE struct Lisp_Symbol *
1800 SYMBOL_ALIAS (struct Lisp_Symbol *sym)
1801 {
1802 eassert (sym->redirect == SYMBOL_VARALIAS);
1803 return sym->val.alias;
1804 }
1805 INLINE struct Lisp_Buffer_Local_Value *
1806 SYMBOL_BLV (struct Lisp_Symbol *sym)
1807 {
1808 eassert (sym->redirect == SYMBOL_LOCALIZED);
1809 return sym->val.blv;
1810 }
1811 INLINE union Lisp_Fwd *
1812 SYMBOL_FWD (struct Lisp_Symbol *sym)
1813 {
1814 eassert (sym->redirect == SYMBOL_FORWARDED);
1815 return sym->val.fwd;
1816 }
1817
1818 INLINE void
1819 (SET_SYMBOL_VAL) (struct Lisp_Symbol *sym, Lisp_Object v)
1820 {
1821 lisp_h_SET_SYMBOL_VAL (sym, v);
1822 }
1823
1824 INLINE void
1825 SET_SYMBOL_ALIAS (struct Lisp_Symbol *sym, struct Lisp_Symbol *v)
1826 {
1827 eassert (sym->redirect == SYMBOL_VARALIAS);
1828 sym->val.alias = v;
1829 }
1830 INLINE void
1831 SET_SYMBOL_BLV (struct Lisp_Symbol *sym, struct Lisp_Buffer_Local_Value *v)
1832 {
1833 eassert (sym->redirect == SYMBOL_LOCALIZED);
1834 sym->val.blv = v;
1835 }
1836 INLINE void
1837 SET_SYMBOL_FWD (struct Lisp_Symbol *sym, union Lisp_Fwd *v)
1838 {
1839 eassert (sym->redirect == SYMBOL_FORWARDED);
1840 sym->val.fwd = v;
1841 }
1842
1843 INLINE Lisp_Object
1844 SYMBOL_NAME (Lisp_Object sym)
1845 {
1846 return XSYMBOL (sym)->name;
1847 }
1848
1849 /* Value is true if SYM is an interned symbol. */
1850
1851 INLINE bool
1852 SYMBOL_INTERNED_P (Lisp_Object sym)
1853 {
1854 return XSYMBOL (sym)->interned != SYMBOL_UNINTERNED;
1855 }
1856
1857 /* Value is true if SYM is interned in initial_obarray. */
1858
1859 INLINE bool
1860 SYMBOL_INTERNED_IN_INITIAL_OBARRAY_P (Lisp_Object sym)
1861 {
1862 return XSYMBOL (sym)->interned == SYMBOL_INTERNED_IN_INITIAL_OBARRAY;
1863 }
1864
1865 /* Value is non-zero if symbol is considered a constant, i.e. its
1866 value cannot be changed (there is an exception for keyword symbols,
1867 whose value can be set to the keyword symbol itself). */
1868
1869 INLINE int
1870 (SYMBOL_CONSTANT_P) (Lisp_Object sym)
1871 {
1872 return lisp_h_SYMBOL_CONSTANT_P (sym);
1873 }
1874
1875 /* Placeholder for make-docfile to process. The actual symbol
1876 definition is done by lread.c's defsym. */
1877 #define DEFSYM(sym, name) /* empty */
1878
1879 \f
1880 /***********************************************************************
1881 Hash Tables
1882 ***********************************************************************/
1883
1884 /* The structure of a Lisp hash table. */
1885
1886 struct hash_table_test
1887 {
1888 /* Name of the function used to compare keys. */
1889 Lisp_Object name;
1890
1891 /* User-supplied hash function, or nil. */
1892 Lisp_Object user_hash_function;
1893
1894 /* User-supplied key comparison function, or nil. */
1895 Lisp_Object user_cmp_function;
1896
1897 /* C function to compare two keys. */
1898 bool (*cmpfn) (struct hash_table_test *t, Lisp_Object, Lisp_Object);
1899
1900 /* C function to compute hash code. */
1901 EMACS_UINT (*hashfn) (struct hash_table_test *t, Lisp_Object);
1902 };
1903
1904 struct Lisp_Hash_Table
1905 {
1906 /* This is for Lisp; the hash table code does not refer to it. */
1907 struct vectorlike_header header;
1908
1909 /* Nil if table is non-weak. Otherwise a symbol describing the
1910 weakness of the table. */
1911 Lisp_Object weak;
1912
1913 /* When the table is resized, and this is an integer, compute the
1914 new size by adding this to the old size. If a float, compute the
1915 new size by multiplying the old size with this factor. */
1916 Lisp_Object rehash_size;
1917
1918 /* Resize hash table when number of entries/ table size is >= this
1919 ratio, a float. */
1920 Lisp_Object rehash_threshold;
1921
1922 /* Vector of hash codes. If hash[I] is nil, this means that the
1923 I-th entry is unused. */
1924 Lisp_Object hash;
1925
1926 /* Vector used to chain entries. If entry I is free, next[I] is the
1927 entry number of the next free item. If entry I is non-free,
1928 next[I] is the index of the next entry in the collision chain. */
1929 Lisp_Object next;
1930
1931 /* Index of first free entry in free list. */
1932 Lisp_Object next_free;
1933
1934 /* Bucket vector. A non-nil entry is the index of the first item in
1935 a collision chain. This vector's size can be larger than the
1936 hash table size to reduce collisions. */
1937 Lisp_Object index;
1938
1939 /* Only the fields above are traced normally by the GC. The ones below
1940 `count' are special and are either ignored by the GC or traced in
1941 a special way (e.g. because of weakness). */
1942
1943 /* Number of key/value entries in the table. */
1944 ptrdiff_t count;
1945
1946 /* Vector of keys and values. The key of item I is found at index
1947 2 * I, the value is found at index 2 * I + 1.
1948 This is gc_marked specially if the table is weak. */
1949 Lisp_Object key_and_value;
1950
1951 /* The comparison and hash functions. */
1952 struct hash_table_test test;
1953
1954 /* Next weak hash table if this is a weak hash table. The head
1955 of the list is in weak_hash_tables. */
1956 struct Lisp_Hash_Table *next_weak;
1957 };
1958
1959
1960 INLINE bool
1961 HASH_TABLE_P (Lisp_Object a)
1962 {
1963 return PSEUDOVECTORP (a, PVEC_HASH_TABLE);
1964 }
1965
1966 INLINE struct Lisp_Hash_Table *
1967 XHASH_TABLE (Lisp_Object a)
1968 {
1969 eassert (HASH_TABLE_P (a));
1970 return XUNTAG (a, Lisp_Vectorlike);
1971 }
1972
1973 #define XSET_HASH_TABLE(VAR, PTR) \
1974 (XSETPSEUDOVECTOR (VAR, PTR, PVEC_HASH_TABLE))
1975
1976 /* Value is the key part of entry IDX in hash table H. */
1977 INLINE Lisp_Object
1978 HASH_KEY (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1979 {
1980 return AREF (h->key_and_value, 2 * idx);
1981 }
1982
1983 /* Value is the value part of entry IDX in hash table H. */
1984 INLINE Lisp_Object
1985 HASH_VALUE (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1986 {
1987 return AREF (h->key_and_value, 2 * idx + 1);
1988 }
1989
1990 /* Value is the index of the next entry following the one at IDX
1991 in hash table H. */
1992 INLINE Lisp_Object
1993 HASH_NEXT (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1994 {
1995 return AREF (h->next, idx);
1996 }
1997
1998 /* Value is the hash code computed for entry IDX in hash table H. */
1999 INLINE Lisp_Object
2000 HASH_HASH (struct Lisp_Hash_Table *h, ptrdiff_t idx)
2001 {
2002 return AREF (h->hash, idx);
2003 }
2004
2005 /* Value is the index of the element in hash table H that is the
2006 start of the collision list at index IDX in the index vector of H. */
2007 INLINE Lisp_Object
2008 HASH_INDEX (struct Lisp_Hash_Table *h, ptrdiff_t idx)
2009 {
2010 return AREF (h->index, idx);
2011 }
2012
2013 /* Value is the size of hash table H. */
2014 INLINE ptrdiff_t
2015 HASH_TABLE_SIZE (struct Lisp_Hash_Table *h)
2016 {
2017 return ASIZE (h->next);
2018 }
2019
2020 /* Default size for hash tables if not specified. */
2021
2022 enum DEFAULT_HASH_SIZE { DEFAULT_HASH_SIZE = 65 };
2023
2024 /* Default threshold specifying when to resize a hash table. The
2025 value gives the ratio of current entries in the hash table and the
2026 size of the hash table. */
2027
2028 static double const DEFAULT_REHASH_THRESHOLD = 0.8;
2029
2030 /* Default factor by which to increase the size of a hash table. */
2031
2032 static double const DEFAULT_REHASH_SIZE = 1.5;
2033
2034 /* Combine two integers X and Y for hashing. The result might not fit
2035 into a Lisp integer. */
2036
2037 INLINE EMACS_UINT
2038 sxhash_combine (EMACS_UINT x, EMACS_UINT y)
2039 {
2040 return (x << 4) + (x >> (BITS_PER_EMACS_INT - 4)) + y;
2041 }
2042
2043 /* Hash X, returning a value that fits into a fixnum. */
2044
2045 INLINE EMACS_UINT
2046 SXHASH_REDUCE (EMACS_UINT x)
2047 {
2048 return (x ^ x >> (BITS_PER_EMACS_INT - FIXNUM_BITS)) & INTMASK;
2049 }
2050
2051 /* These structures are used for various misc types. */
2052
2053 struct Lisp_Misc_Any /* Supertype of all Misc types. */
2054 {
2055 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_??? */
2056 bool_bf gcmarkbit : 1;
2057 unsigned spacer : 15;
2058 };
2059
2060 struct Lisp_Marker
2061 {
2062 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Marker */
2063 bool_bf gcmarkbit : 1;
2064 unsigned spacer : 13;
2065 /* This flag is temporarily used in the functions
2066 decode/encode_coding_object to record that the marker position
2067 must be adjusted after the conversion. */
2068 bool_bf need_adjustment : 1;
2069 /* True means normal insertion at the marker's position
2070 leaves the marker after the inserted text. */
2071 bool_bf insertion_type : 1;
2072 /* This is the buffer that the marker points into, or 0 if it points nowhere.
2073 Note: a chain of markers can contain markers pointing into different
2074 buffers (the chain is per buffer_text rather than per buffer, so it's
2075 shared between indirect buffers). */
2076 /* This is used for (other than NULL-checking):
2077 - Fmarker_buffer
2078 - Fset_marker: check eq(oldbuf, newbuf) to avoid unchain+rechain.
2079 - unchain_marker: to find the list from which to unchain.
2080 - Fkill_buffer: to only unchain the markers of current indirect buffer.
2081 */
2082 struct buffer *buffer;
2083
2084 /* The remaining fields are meaningless in a marker that
2085 does not point anywhere. */
2086
2087 /* For markers that point somewhere,
2088 this is used to chain of all the markers in a given buffer. */
2089 /* We could remove it and use an array in buffer_text instead.
2090 That would also allow to preserve it ordered. */
2091 struct Lisp_Marker *next;
2092 /* This is the char position where the marker points. */
2093 ptrdiff_t charpos;
2094 /* This is the byte position.
2095 It's mostly used as a charpos<->bytepos cache (i.e. it's not directly
2096 used to implement the functionality of markers, but rather to (ab)use
2097 markers as a cache for char<->byte mappings). */
2098 ptrdiff_t bytepos;
2099 };
2100
2101 /* START and END are markers in the overlay's buffer, and
2102 PLIST is the overlay's property list. */
2103 struct Lisp_Overlay
2104 /* An overlay's real data content is:
2105 - plist
2106 - buffer (really there are two buffer pointers, one per marker,
2107 and both points to the same buffer)
2108 - insertion type of both ends (per-marker fields)
2109 - start & start byte (of start marker)
2110 - end & end byte (of end marker)
2111 - next (singly linked list of overlays)
2112 - next fields of start and end markers (singly linked list of markers).
2113 I.e. 9words plus 2 bits, 3words of which are for external linked lists.
2114 */
2115 {
2116 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Overlay */
2117 bool_bf gcmarkbit : 1;
2118 unsigned spacer : 15;
2119 struct Lisp_Overlay *next;
2120 Lisp_Object start;
2121 Lisp_Object end;
2122 Lisp_Object plist;
2123 };
2124
2125 /* Types of data which may be saved in a Lisp_Save_Value. */
2126
2127 enum
2128 {
2129 SAVE_UNUSED,
2130 SAVE_INTEGER,
2131 SAVE_FUNCPOINTER,
2132 SAVE_POINTER,
2133 SAVE_OBJECT
2134 };
2135
2136 /* Number of bits needed to store one of the above values. */
2137 enum { SAVE_SLOT_BITS = 3 };
2138
2139 /* Number of slots in a save value where save_type is nonzero. */
2140 enum { SAVE_VALUE_SLOTS = 4 };
2141
2142 /* Bit-width and values for struct Lisp_Save_Value's save_type member. */
2143
2144 enum { SAVE_TYPE_BITS = SAVE_VALUE_SLOTS * SAVE_SLOT_BITS + 1 };
2145
2146 enum Lisp_Save_Type
2147 {
2148 SAVE_TYPE_INT_INT = SAVE_INTEGER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2149 SAVE_TYPE_INT_INT_INT
2150 = (SAVE_INTEGER + (SAVE_TYPE_INT_INT << SAVE_SLOT_BITS)),
2151 SAVE_TYPE_OBJ_OBJ = SAVE_OBJECT + (SAVE_OBJECT << SAVE_SLOT_BITS),
2152 SAVE_TYPE_OBJ_OBJ_OBJ = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ << SAVE_SLOT_BITS),
2153 SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
2154 = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ_OBJ << SAVE_SLOT_BITS),
2155 SAVE_TYPE_PTR_INT = SAVE_POINTER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2156 SAVE_TYPE_PTR_OBJ = SAVE_POINTER + (SAVE_OBJECT << SAVE_SLOT_BITS),
2157 SAVE_TYPE_PTR_PTR = SAVE_POINTER + (SAVE_POINTER << SAVE_SLOT_BITS),
2158 SAVE_TYPE_FUNCPTR_PTR_OBJ
2159 = SAVE_FUNCPOINTER + (SAVE_TYPE_PTR_OBJ << SAVE_SLOT_BITS),
2160
2161 /* This has an extra bit indicating it's raw memory. */
2162 SAVE_TYPE_MEMORY = SAVE_TYPE_PTR_INT + (1 << (SAVE_TYPE_BITS - 1))
2163 };
2164
2165 /* Special object used to hold a different values for later use.
2166
2167 This is mostly used to package C integers and pointers to call
2168 record_unwind_protect when two or more values need to be saved.
2169 For example:
2170
2171 ...
2172 struct my_data *md = get_my_data ();
2173 ptrdiff_t mi = get_my_integer ();
2174 record_unwind_protect (my_unwind, make_save_ptr_int (md, mi));
2175 ...
2176
2177 Lisp_Object my_unwind (Lisp_Object arg)
2178 {
2179 struct my_data *md = XSAVE_POINTER (arg, 0);
2180 ptrdiff_t mi = XSAVE_INTEGER (arg, 1);
2181 ...
2182 }
2183
2184 If ENABLE_CHECKING is in effect, XSAVE_xxx macros do type checking of the
2185 saved objects and raise eassert if type of the saved object doesn't match
2186 the type which is extracted. In the example above, XSAVE_INTEGER (arg, 2)
2187 and XSAVE_OBJECT (arg, 0) are wrong because nothing was saved in slot 2 and
2188 slot 0 is a pointer. */
2189
2190 typedef void (*voidfuncptr) (void);
2191
2192 struct Lisp_Save_Value
2193 {
2194 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Save_Value */
2195 bool_bf gcmarkbit : 1;
2196 unsigned spacer : 32 - (16 + 1 + SAVE_TYPE_BITS);
2197
2198 /* V->data may hold up to SAVE_VALUE_SLOTS entries. The type of
2199 V's data entries are determined by V->save_type. E.g., if
2200 V->save_type == SAVE_TYPE_PTR_OBJ, V->data[0] is a pointer,
2201 V->data[1] is an integer, and V's other data entries are unused.
2202
2203 If V->save_type == SAVE_TYPE_MEMORY, V->data[0].pointer is the address of
2204 a memory area containing V->data[1].integer potential Lisp_Objects. */
2205 ENUM_BF (Lisp_Save_Type) save_type : SAVE_TYPE_BITS;
2206 union {
2207 void *pointer;
2208 voidfuncptr funcpointer;
2209 ptrdiff_t integer;
2210 Lisp_Object object;
2211 } data[SAVE_VALUE_SLOTS];
2212 };
2213
2214 /* Return the type of V's Nth saved value. */
2215 INLINE int
2216 save_type (struct Lisp_Save_Value *v, int n)
2217 {
2218 eassert (0 <= n && n < SAVE_VALUE_SLOTS);
2219 return (v->save_type >> (SAVE_SLOT_BITS * n) & ((1 << SAVE_SLOT_BITS) - 1));
2220 }
2221
2222 /* Get and set the Nth saved pointer. */
2223
2224 INLINE void *
2225 XSAVE_POINTER (Lisp_Object obj, int n)
2226 {
2227 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2228 return XSAVE_VALUE (obj)->data[n].pointer;
2229 }
2230 INLINE void
2231 set_save_pointer (Lisp_Object obj, int n, void *val)
2232 {
2233 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2234 XSAVE_VALUE (obj)->data[n].pointer = val;
2235 }
2236 INLINE voidfuncptr
2237 XSAVE_FUNCPOINTER (Lisp_Object obj, int n)
2238 {
2239 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_FUNCPOINTER);
2240 return XSAVE_VALUE (obj)->data[n].funcpointer;
2241 }
2242
2243 /* Likewise for the saved integer. */
2244
2245 INLINE ptrdiff_t
2246 XSAVE_INTEGER (Lisp_Object obj, int n)
2247 {
2248 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2249 return XSAVE_VALUE (obj)->data[n].integer;
2250 }
2251 INLINE void
2252 set_save_integer (Lisp_Object obj, int n, ptrdiff_t val)
2253 {
2254 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2255 XSAVE_VALUE (obj)->data[n].integer = val;
2256 }
2257
2258 /* Extract Nth saved object. */
2259
2260 INLINE Lisp_Object
2261 XSAVE_OBJECT (Lisp_Object obj, int n)
2262 {
2263 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_OBJECT);
2264 return XSAVE_VALUE (obj)->data[n].object;
2265 }
2266
2267 #ifdef HAVE_MODULES
2268 struct Lisp_User_Ptr
2269 {
2270 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_User_Ptr */
2271 bool_bf gcmarkbit : 1;
2272 unsigned spacer : 15;
2273
2274 void (*finalizer) (void *);
2275 void *p;
2276 };
2277 #endif
2278
2279 /* A finalizer sentinel. */
2280 struct Lisp_Finalizer
2281 {
2282 struct Lisp_Misc_Any base;
2283
2284 /* Circular list of all active weak references. */
2285 struct Lisp_Finalizer *prev;
2286 struct Lisp_Finalizer *next;
2287
2288 /* Call FUNCTION when the finalizer becomes unreachable, even if
2289 FUNCTION contains a reference to the finalizer; i.e., call
2290 FUNCTION when it is reachable _only_ through finalizers. */
2291 Lisp_Object function;
2292 };
2293
2294 /* A miscellaneous object, when it's on the free list. */
2295 struct Lisp_Free
2296 {
2297 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Free */
2298 bool_bf gcmarkbit : 1;
2299 unsigned spacer : 15;
2300 union Lisp_Misc *chain;
2301 };
2302
2303 /* To get the type field of a union Lisp_Misc, use XMISCTYPE.
2304 It uses one of these struct subtypes to get the type field. */
2305
2306 union Lisp_Misc
2307 {
2308 struct Lisp_Misc_Any u_any; /* Supertype of all Misc types. */
2309 struct Lisp_Free u_free;
2310 struct Lisp_Marker u_marker;
2311 struct Lisp_Overlay u_overlay;
2312 struct Lisp_Save_Value u_save_value;
2313 struct Lisp_Finalizer u_finalizer;
2314 #ifdef HAVE_MODULES
2315 struct Lisp_User_Ptr u_user_ptr;
2316 #endif
2317 };
2318
2319 INLINE union Lisp_Misc *
2320 XMISC (Lisp_Object a)
2321 {
2322 return XUNTAG (a, Lisp_Misc);
2323 }
2324
2325 INLINE struct Lisp_Misc_Any *
2326 XMISCANY (Lisp_Object a)
2327 {
2328 eassert (MISCP (a));
2329 return & XMISC (a)->u_any;
2330 }
2331
2332 INLINE enum Lisp_Misc_Type
2333 XMISCTYPE (Lisp_Object a)
2334 {
2335 return XMISCANY (a)->type;
2336 }
2337
2338 INLINE struct Lisp_Marker *
2339 XMARKER (Lisp_Object a)
2340 {
2341 eassert (MARKERP (a));
2342 return & XMISC (a)->u_marker;
2343 }
2344
2345 INLINE struct Lisp_Overlay *
2346 XOVERLAY (Lisp_Object a)
2347 {
2348 eassert (OVERLAYP (a));
2349 return & XMISC (a)->u_overlay;
2350 }
2351
2352 INLINE struct Lisp_Save_Value *
2353 XSAVE_VALUE (Lisp_Object a)
2354 {
2355 eassert (SAVE_VALUEP (a));
2356 return & XMISC (a)->u_save_value;
2357 }
2358
2359 INLINE struct Lisp_Finalizer *
2360 XFINALIZER (Lisp_Object a)
2361 {
2362 eassert (FINALIZERP (a));
2363 return & XMISC (a)->u_finalizer;
2364 }
2365
2366 #ifdef HAVE_MODULES
2367 INLINE struct Lisp_User_Ptr *
2368 XUSER_PTR (Lisp_Object a)
2369 {
2370 eassert (USER_PTRP (a));
2371 return & XMISC (a)->u_user_ptr;
2372 }
2373 #endif
2374
2375 \f
2376 /* Forwarding pointer to an int variable.
2377 This is allowed only in the value cell of a symbol,
2378 and it means that the symbol's value really lives in the
2379 specified int variable. */
2380 struct Lisp_Intfwd
2381 {
2382 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Int */
2383 EMACS_INT *intvar;
2384 };
2385
2386 /* Boolean forwarding pointer to an int variable.
2387 This is like Lisp_Intfwd except that the ostensible
2388 "value" of the symbol is t if the bool variable is true,
2389 nil if it is false. */
2390 struct Lisp_Boolfwd
2391 {
2392 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Bool */
2393 bool *boolvar;
2394 };
2395
2396 /* Forwarding pointer to a Lisp_Object variable.
2397 This is allowed only in the value cell of a symbol,
2398 and it means that the symbol's value really lives in the
2399 specified variable. */
2400 struct Lisp_Objfwd
2401 {
2402 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Obj */
2403 Lisp_Object *objvar;
2404 };
2405
2406 /* Like Lisp_Objfwd except that value lives in a slot in the
2407 current buffer. Value is byte index of slot within buffer. */
2408 struct Lisp_Buffer_Objfwd
2409 {
2410 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Buffer_Obj */
2411 int offset;
2412 /* One of Qnil, Qintegerp, Qsymbolp, Qstringp, Qfloatp or Qnumberp. */
2413 Lisp_Object predicate;
2414 };
2415
2416 /* struct Lisp_Buffer_Local_Value is used in a symbol value cell when
2417 the symbol has buffer-local or frame-local bindings. (Exception:
2418 some buffer-local variables are built-in, with their values stored
2419 in the buffer structure itself. They are handled differently,
2420 using struct Lisp_Buffer_Objfwd.)
2421
2422 The `realvalue' slot holds the variable's current value, or a
2423 forwarding pointer to where that value is kept. This value is the
2424 one that corresponds to the loaded binding. To read or set the
2425 variable, you must first make sure the right binding is loaded;
2426 then you can access the value in (or through) `realvalue'.
2427
2428 `buffer' and `frame' are the buffer and frame for which the loaded
2429 binding was found. If those have changed, to make sure the right
2430 binding is loaded it is necessary to find which binding goes with
2431 the current buffer and selected frame, then load it. To load it,
2432 first unload the previous binding, then copy the value of the new
2433 binding into `realvalue' (or through it). Also update
2434 LOADED-BINDING to point to the newly loaded binding.
2435
2436 `local_if_set' indicates that merely setting the variable creates a
2437 local binding for the current buffer. Otherwise the latter, setting
2438 the variable does not do that; only make-local-variable does that. */
2439
2440 struct Lisp_Buffer_Local_Value
2441 {
2442 /* True means that merely setting the variable creates a local
2443 binding for the current buffer. */
2444 bool_bf local_if_set : 1;
2445 /* True means this variable can have frame-local bindings, otherwise, it is
2446 can have buffer-local bindings. The two cannot be combined. */
2447 bool_bf frame_local : 1;
2448 /* True means that the binding now loaded was found.
2449 Presumably equivalent to (defcell!=valcell). */
2450 bool_bf found : 1;
2451 /* If non-NULL, a forwarding to the C var where it should also be set. */
2452 union Lisp_Fwd *fwd; /* Should never be (Buffer|Kboard)_Objfwd. */
2453 /* The buffer or frame for which the loaded binding was found. */
2454 Lisp_Object where;
2455 /* A cons cell that holds the default value. It has the form
2456 (SYMBOL . DEFAULT-VALUE). */
2457 Lisp_Object defcell;
2458 /* The cons cell from `where's parameter alist.
2459 It always has the form (SYMBOL . VALUE)
2460 Note that if `forward' is non-nil, VALUE may be out of date.
2461 Also if the currently loaded binding is the default binding, then
2462 this is `eq'ual to defcell. */
2463 Lisp_Object valcell;
2464 };
2465
2466 /* Like Lisp_Objfwd except that value lives in a slot in the
2467 current kboard. */
2468 struct Lisp_Kboard_Objfwd
2469 {
2470 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Kboard_Obj */
2471 int offset;
2472 };
2473
2474 union Lisp_Fwd
2475 {
2476 struct Lisp_Intfwd u_intfwd;
2477 struct Lisp_Boolfwd u_boolfwd;
2478 struct Lisp_Objfwd u_objfwd;
2479 struct Lisp_Buffer_Objfwd u_buffer_objfwd;
2480 struct Lisp_Kboard_Objfwd u_kboard_objfwd;
2481 };
2482
2483 INLINE enum Lisp_Fwd_Type
2484 XFWDTYPE (union Lisp_Fwd *a)
2485 {
2486 return a->u_intfwd.type;
2487 }
2488
2489 INLINE struct Lisp_Buffer_Objfwd *
2490 XBUFFER_OBJFWD (union Lisp_Fwd *a)
2491 {
2492 eassert (BUFFER_OBJFWDP (a));
2493 return &a->u_buffer_objfwd;
2494 }
2495 \f
2496 /* Lisp floating point type. */
2497 struct Lisp_Float
2498 {
2499 union
2500 {
2501 double data;
2502 struct Lisp_Float *chain;
2503 } u;
2504 };
2505
2506 INLINE double
2507 XFLOAT_DATA (Lisp_Object f)
2508 {
2509 return XFLOAT (f)->u.data;
2510 }
2511
2512 /* Most hosts nowadays use IEEE floating point, so they use IEC 60559
2513 representations, have infinities and NaNs, and do not trap on
2514 exceptions. Define IEEE_FLOATING_POINT if this host is one of the
2515 typical ones. The C11 macro __STDC_IEC_559__ is close to what is
2516 wanted here, but is not quite right because Emacs does not require
2517 all the features of C11 Annex F (and does not require C11 at all,
2518 for that matter). */
2519 enum
2520 {
2521 IEEE_FLOATING_POINT
2522 = (FLT_RADIX == 2 && FLT_MANT_DIG == 24
2523 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
2524 };
2525
2526 /* A character, declared with the following typedef, is a member
2527 of some character set associated with the current buffer. */
2528 #ifndef _UCHAR_T /* Protect against something in ctab.h on AIX. */
2529 #define _UCHAR_T
2530 typedef unsigned char UCHAR;
2531 #endif
2532
2533 /* Meanings of slots in a Lisp_Compiled: */
2534
2535 enum Lisp_Compiled
2536 {
2537 COMPILED_ARGLIST = 0,
2538 COMPILED_BYTECODE = 1,
2539 COMPILED_CONSTANTS = 2,
2540 COMPILED_STACK_DEPTH = 3,
2541 COMPILED_DOC_STRING = 4,
2542 COMPILED_INTERACTIVE = 5
2543 };
2544
2545 /* Flag bits in a character. These also get used in termhooks.h.
2546 Richard Stallman <rms@gnu.ai.mit.edu> thinks that MULE
2547 (MUlti-Lingual Emacs) might need 22 bits for the character value
2548 itself, so we probably shouldn't use any bits lower than 0x0400000. */
2549 enum char_bits
2550 {
2551 CHAR_ALT = 0x0400000,
2552 CHAR_SUPER = 0x0800000,
2553 CHAR_HYPER = 0x1000000,
2554 CHAR_SHIFT = 0x2000000,
2555 CHAR_CTL = 0x4000000,
2556 CHAR_META = 0x8000000,
2557
2558 CHAR_MODIFIER_MASK =
2559 CHAR_ALT | CHAR_SUPER | CHAR_HYPER | CHAR_SHIFT | CHAR_CTL | CHAR_META,
2560
2561 /* Actually, the current Emacs uses 22 bits for the character value
2562 itself. */
2563 CHARACTERBITS = 22
2564 };
2565 \f
2566 /* Data type checking. */
2567
2568 INLINE bool
2569 (NILP) (Lisp_Object x)
2570 {
2571 return lisp_h_NILP (x);
2572 }
2573
2574 INLINE bool
2575 NUMBERP (Lisp_Object x)
2576 {
2577 return INTEGERP (x) || FLOATP (x);
2578 }
2579 INLINE bool
2580 NATNUMP (Lisp_Object x)
2581 {
2582 return INTEGERP (x) && 0 <= XINT (x);
2583 }
2584
2585 INLINE bool
2586 RANGED_INTEGERP (intmax_t lo, Lisp_Object x, intmax_t hi)
2587 {
2588 return INTEGERP (x) && lo <= XINT (x) && XINT (x) <= hi;
2589 }
2590
2591 #define TYPE_RANGED_INTEGERP(type, x) \
2592 (INTEGERP (x) \
2593 && (TYPE_SIGNED (type) ? TYPE_MINIMUM (type) <= XINT (x) : 0 <= XINT (x)) \
2594 && XINT (x) <= TYPE_MAXIMUM (type))
2595
2596 INLINE bool
2597 (CONSP) (Lisp_Object x)
2598 {
2599 return lisp_h_CONSP (x);
2600 }
2601 INLINE bool
2602 (FLOATP) (Lisp_Object x)
2603 {
2604 return lisp_h_FLOATP (x);
2605 }
2606 INLINE bool
2607 (MISCP) (Lisp_Object x)
2608 {
2609 return lisp_h_MISCP (x);
2610 }
2611 INLINE bool
2612 (SYMBOLP) (Lisp_Object x)
2613 {
2614 return lisp_h_SYMBOLP (x);
2615 }
2616 INLINE bool
2617 (INTEGERP) (Lisp_Object x)
2618 {
2619 return lisp_h_INTEGERP (x);
2620 }
2621 INLINE bool
2622 (VECTORLIKEP) (Lisp_Object x)
2623 {
2624 return lisp_h_VECTORLIKEP (x);
2625 }
2626 INLINE bool
2627 (MARKERP) (Lisp_Object x)
2628 {
2629 return lisp_h_MARKERP (x);
2630 }
2631
2632 INLINE bool
2633 STRINGP (Lisp_Object x)
2634 {
2635 return XTYPE (x) == Lisp_String;
2636 }
2637 INLINE bool
2638 VECTORP (Lisp_Object x)
2639 {
2640 return VECTORLIKEP (x) && ! (ASIZE (x) & PSEUDOVECTOR_FLAG);
2641 }
2642 INLINE bool
2643 OVERLAYP (Lisp_Object x)
2644 {
2645 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Overlay;
2646 }
2647 INLINE bool
2648 SAVE_VALUEP (Lisp_Object x)
2649 {
2650 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Save_Value;
2651 }
2652
2653 INLINE bool
2654 FINALIZERP (Lisp_Object x)
2655 {
2656 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Finalizer;
2657 }
2658
2659 #ifdef HAVE_MODULES
2660 INLINE bool
2661 USER_PTRP (Lisp_Object x)
2662 {
2663 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_User_Ptr;
2664 }
2665 #endif
2666
2667 INLINE bool
2668 AUTOLOADP (Lisp_Object x)
2669 {
2670 return CONSP (x) && EQ (Qautoload, XCAR (x));
2671 }
2672
2673 INLINE bool
2674 BUFFER_OBJFWDP (union Lisp_Fwd *a)
2675 {
2676 return XFWDTYPE (a) == Lisp_Fwd_Buffer_Obj;
2677 }
2678
2679 INLINE bool
2680 PSEUDOVECTOR_TYPEP (struct vectorlike_header *a, int code)
2681 {
2682 return ((a->size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK))
2683 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS)));
2684 }
2685
2686 /* True if A is a pseudovector whose code is CODE. */
2687 INLINE bool
2688 PSEUDOVECTORP (Lisp_Object a, int code)
2689 {
2690 if (! VECTORLIKEP (a))
2691 return false;
2692 else
2693 {
2694 /* Converting to struct vectorlike_header * avoids aliasing issues. */
2695 struct vectorlike_header *h = XUNTAG (a, Lisp_Vectorlike);
2696 return PSEUDOVECTOR_TYPEP (h, code);
2697 }
2698 }
2699
2700
2701 /* Test for specific pseudovector types. */
2702
2703 INLINE bool
2704 WINDOW_CONFIGURATIONP (Lisp_Object a)
2705 {
2706 return PSEUDOVECTORP (a, PVEC_WINDOW_CONFIGURATION);
2707 }
2708
2709 INLINE bool
2710 PROCESSP (Lisp_Object a)
2711 {
2712 return PSEUDOVECTORP (a, PVEC_PROCESS);
2713 }
2714
2715 INLINE bool
2716 WINDOWP (Lisp_Object a)
2717 {
2718 return PSEUDOVECTORP (a, PVEC_WINDOW);
2719 }
2720
2721 INLINE bool
2722 TERMINALP (Lisp_Object a)
2723 {
2724 return PSEUDOVECTORP (a, PVEC_TERMINAL);
2725 }
2726
2727 INLINE bool
2728 SUBRP (Lisp_Object a)
2729 {
2730 return PSEUDOVECTORP (a, PVEC_SUBR);
2731 }
2732
2733 INLINE bool
2734 COMPILEDP (Lisp_Object a)
2735 {
2736 return PSEUDOVECTORP (a, PVEC_COMPILED);
2737 }
2738
2739 INLINE bool
2740 BUFFERP (Lisp_Object a)
2741 {
2742 return PSEUDOVECTORP (a, PVEC_BUFFER);
2743 }
2744
2745 INLINE bool
2746 CHAR_TABLE_P (Lisp_Object a)
2747 {
2748 return PSEUDOVECTORP (a, PVEC_CHAR_TABLE);
2749 }
2750
2751 INLINE bool
2752 SUB_CHAR_TABLE_P (Lisp_Object a)
2753 {
2754 return PSEUDOVECTORP (a, PVEC_SUB_CHAR_TABLE);
2755 }
2756
2757 INLINE bool
2758 BOOL_VECTOR_P (Lisp_Object a)
2759 {
2760 return PSEUDOVECTORP (a, PVEC_BOOL_VECTOR);
2761 }
2762
2763 INLINE bool
2764 FRAMEP (Lisp_Object a)
2765 {
2766 return PSEUDOVECTORP (a, PVEC_FRAME);
2767 }
2768
2769 /* Test for image (image . spec) */
2770 INLINE bool
2771 IMAGEP (Lisp_Object x)
2772 {
2773 return CONSP (x) && EQ (XCAR (x), Qimage);
2774 }
2775
2776 /* Array types. */
2777 INLINE bool
2778 ARRAYP (Lisp_Object x)
2779 {
2780 return VECTORP (x) || STRINGP (x) || CHAR_TABLE_P (x) || BOOL_VECTOR_P (x);
2781 }
2782 \f
2783 INLINE void
2784 CHECK_LIST (Lisp_Object x)
2785 {
2786 CHECK_TYPE (CONSP (x) || NILP (x), Qlistp, x);
2787 }
2788
2789 INLINE void
2790 (CHECK_LIST_CONS) (Lisp_Object x, Lisp_Object y)
2791 {
2792 lisp_h_CHECK_LIST_CONS (x, y);
2793 }
2794
2795 INLINE void
2796 (CHECK_SYMBOL) (Lisp_Object x)
2797 {
2798 lisp_h_CHECK_SYMBOL (x);
2799 }
2800
2801 INLINE void
2802 (CHECK_NUMBER) (Lisp_Object x)
2803 {
2804 lisp_h_CHECK_NUMBER (x);
2805 }
2806
2807 INLINE void
2808 CHECK_STRING (Lisp_Object x)
2809 {
2810 CHECK_TYPE (STRINGP (x), Qstringp, x);
2811 }
2812 INLINE void
2813 CHECK_STRING_CAR (Lisp_Object x)
2814 {
2815 CHECK_TYPE (STRINGP (XCAR (x)), Qstringp, XCAR (x));
2816 }
2817 INLINE void
2818 CHECK_CONS (Lisp_Object x)
2819 {
2820 CHECK_TYPE (CONSP (x), Qconsp, x);
2821 }
2822 INLINE void
2823 CHECK_VECTOR (Lisp_Object x)
2824 {
2825 CHECK_TYPE (VECTORP (x), Qvectorp, x);
2826 }
2827 INLINE void
2828 CHECK_BOOL_VECTOR (Lisp_Object x)
2829 {
2830 CHECK_TYPE (BOOL_VECTOR_P (x), Qbool_vector_p, x);
2831 }
2832 /* This is a bit special because we always need size afterwards. */
2833 INLINE ptrdiff_t
2834 CHECK_VECTOR_OR_STRING (Lisp_Object x)
2835 {
2836 if (VECTORP (x))
2837 return ASIZE (x);
2838 if (STRINGP (x))
2839 return SCHARS (x);
2840 wrong_type_argument (Qarrayp, x);
2841 }
2842 INLINE void
2843 CHECK_ARRAY (Lisp_Object x, Lisp_Object predicate)
2844 {
2845 CHECK_TYPE (ARRAYP (x), predicate, x);
2846 }
2847 INLINE void
2848 CHECK_BUFFER (Lisp_Object x)
2849 {
2850 CHECK_TYPE (BUFFERP (x), Qbufferp, x);
2851 }
2852 INLINE void
2853 CHECK_WINDOW (Lisp_Object x)
2854 {
2855 CHECK_TYPE (WINDOWP (x), Qwindowp, x);
2856 }
2857 #ifdef subprocesses
2858 INLINE void
2859 CHECK_PROCESS (Lisp_Object x)
2860 {
2861 CHECK_TYPE (PROCESSP (x), Qprocessp, x);
2862 }
2863 #endif
2864 INLINE void
2865 CHECK_NATNUM (Lisp_Object x)
2866 {
2867 CHECK_TYPE (NATNUMP (x), Qwholenump, x);
2868 }
2869
2870 #define CHECK_RANGED_INTEGER(x, lo, hi) \
2871 do { \
2872 CHECK_NUMBER (x); \
2873 if (! ((lo) <= XINT (x) && XINT (x) <= (hi))) \
2874 args_out_of_range_3 \
2875 (x, \
2876 make_number ((lo) < 0 && (lo) < MOST_NEGATIVE_FIXNUM \
2877 ? MOST_NEGATIVE_FIXNUM \
2878 : (lo)), \
2879 make_number (min (hi, MOST_POSITIVE_FIXNUM))); \
2880 } while (false)
2881 #define CHECK_TYPE_RANGED_INTEGER(type, x) \
2882 do { \
2883 if (TYPE_SIGNED (type)) \
2884 CHECK_RANGED_INTEGER (x, TYPE_MINIMUM (type), TYPE_MAXIMUM (type)); \
2885 else \
2886 CHECK_RANGED_INTEGER (x, 0, TYPE_MAXIMUM (type)); \
2887 } while (false)
2888
2889 #define CHECK_NUMBER_COERCE_MARKER(x) \
2890 do { \
2891 if (MARKERP ((x))) \
2892 XSETFASTINT (x, marker_position (x)); \
2893 else \
2894 CHECK_TYPE (INTEGERP (x), Qinteger_or_marker_p, x); \
2895 } while (false)
2896
2897 INLINE double
2898 XFLOATINT (Lisp_Object n)
2899 {
2900 return extract_float (n);
2901 }
2902
2903 INLINE void
2904 CHECK_NUMBER_OR_FLOAT (Lisp_Object x)
2905 {
2906 CHECK_TYPE (NUMBERP (x), Qnumberp, x);
2907 }
2908
2909 #define CHECK_NUMBER_OR_FLOAT_COERCE_MARKER(x) \
2910 do { \
2911 if (MARKERP (x)) \
2912 XSETFASTINT (x, marker_position (x)); \
2913 else \
2914 CHECK_TYPE (NUMBERP (x), Qnumber_or_marker_p, x); \
2915 } while (false)
2916
2917 /* Since we can't assign directly to the CAR or CDR fields of a cons
2918 cell, use these when checking that those fields contain numbers. */
2919 INLINE void
2920 CHECK_NUMBER_CAR (Lisp_Object x)
2921 {
2922 Lisp_Object tmp = XCAR (x);
2923 CHECK_NUMBER (tmp);
2924 XSETCAR (x, tmp);
2925 }
2926
2927 INLINE void
2928 CHECK_NUMBER_CDR (Lisp_Object x)
2929 {
2930 Lisp_Object tmp = XCDR (x);
2931 CHECK_NUMBER (tmp);
2932 XSETCDR (x, tmp);
2933 }
2934 \f
2935 /* Define a built-in function for calling from Lisp.
2936 `lname' should be the name to give the function in Lisp,
2937 as a null-terminated C string.
2938 `fnname' should be the name of the function in C.
2939 By convention, it starts with F.
2940 `sname' should be the name for the C constant structure
2941 that records information on this function for internal use.
2942 By convention, it should be the same as `fnname' but with S instead of F.
2943 It's too bad that C macros can't compute this from `fnname'.
2944 `minargs' should be a number, the minimum number of arguments allowed.
2945 `maxargs' should be a number, the maximum number of arguments allowed,
2946 or else MANY or UNEVALLED.
2947 MANY means pass a vector of evaluated arguments,
2948 in the form of an integer number-of-arguments
2949 followed by the address of a vector of Lisp_Objects
2950 which contains the argument values.
2951 UNEVALLED means pass the list of unevaluated arguments
2952 `intspec' says how interactive arguments are to be fetched.
2953 If the string starts with a `(', `intspec' is evaluated and the resulting
2954 list is the list of arguments.
2955 If it's a string that doesn't start with `(', the value should follow
2956 the one of the doc string for `interactive'.
2957 A null string means call interactively with no arguments.
2958 `doc' is documentation for the user. */
2959
2960 /* This version of DEFUN declares a function prototype with the right
2961 arguments, so we can catch errors with maxargs at compile-time. */
2962 #ifdef _MSC_VER
2963 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2964 Lisp_Object fnname DEFUN_ARGS_ ## maxargs ; \
2965 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2966 { { (PVEC_SUBR << PSEUDOVECTOR_AREA_BITS) \
2967 | (sizeof (struct Lisp_Subr) / sizeof (EMACS_INT)) }, \
2968 { (Lisp_Object (__cdecl *)(void))fnname }, \
2969 minargs, maxargs, lname, intspec, 0}; \
2970 Lisp_Object fnname
2971 #else /* not _MSC_VER */
2972 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2973 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2974 { { PVEC_SUBR << PSEUDOVECTOR_AREA_BITS }, \
2975 { .a ## maxargs = fnname }, \
2976 minargs, maxargs, lname, intspec, 0}; \
2977 Lisp_Object fnname
2978 #endif
2979
2980 /* True if OBJ is a Lisp function. */
2981 INLINE bool
2982 FUNCTIONP (Lisp_Object obj)
2983 {
2984 return functionp (obj);
2985 }
2986
2987 /* defsubr (Sname);
2988 is how we define the symbol for function `name' at start-up time. */
2989 extern void defsubr (struct Lisp_Subr *);
2990
2991 enum maxargs
2992 {
2993 MANY = -2,
2994 UNEVALLED = -1
2995 };
2996
2997 /* Call a function F that accepts many args, passing it ARRAY's elements. */
2998 #define CALLMANY(f, array) (f) (ARRAYELTS (array), array)
2999
3000 /* Call a function F that accepts many args, passing it the remaining args,
3001 E.g., 'return CALLN (Fformat, fmt, text);' is less error-prone than
3002 '{ Lisp_Object a[2]; a[0] = fmt; a[1] = text; return Fformat (2, a); }'.
3003 CALLN is overkill for simple usages like 'Finsert (1, &text);'. */
3004 #define CALLN(f, ...) CALLMANY (f, ((Lisp_Object []) {__VA_ARGS__}))
3005
3006 extern void defvar_lisp (struct Lisp_Objfwd *, const char *, Lisp_Object *);
3007 extern void defvar_lisp_nopro (struct Lisp_Objfwd *, const char *, Lisp_Object *);
3008 extern void defvar_bool (struct Lisp_Boolfwd *, const char *, bool *);
3009 extern void defvar_int (struct Lisp_Intfwd *, const char *, EMACS_INT *);
3010 extern void defvar_kboard (struct Lisp_Kboard_Objfwd *, const char *, int);
3011
3012 /* Macros we use to define forwarded Lisp variables.
3013 These are used in the syms_of_FILENAME functions.
3014
3015 An ordinary (not in buffer_defaults, per-buffer, or per-keyboard)
3016 lisp variable is actually a field in `struct emacs_globals'. The
3017 field's name begins with "f_", which is a convention enforced by
3018 these macros. Each such global has a corresponding #define in
3019 globals.h; the plain name should be used in the code.
3020
3021 E.g., the global "cons_cells_consed" is declared as "int
3022 f_cons_cells_consed" in globals.h, but there is a define:
3023
3024 #define cons_cells_consed globals.f_cons_cells_consed
3025
3026 All C code uses the `cons_cells_consed' name. This is all done
3027 this way to support indirection for multi-threaded Emacs. */
3028
3029 #define DEFVAR_LISP(lname, vname, doc) \
3030 do { \
3031 static struct Lisp_Objfwd o_fwd; \
3032 defvar_lisp (&o_fwd, lname, &globals.f_ ## vname); \
3033 } while (false)
3034 #define DEFVAR_LISP_NOPRO(lname, vname, doc) \
3035 do { \
3036 static struct Lisp_Objfwd o_fwd; \
3037 defvar_lisp_nopro (&o_fwd, lname, &globals.f_ ## vname); \
3038 } while (false)
3039 #define DEFVAR_BOOL(lname, vname, doc) \
3040 do { \
3041 static struct Lisp_Boolfwd b_fwd; \
3042 defvar_bool (&b_fwd, lname, &globals.f_ ## vname); \
3043 } while (false)
3044 #define DEFVAR_INT(lname, vname, doc) \
3045 do { \
3046 static struct Lisp_Intfwd i_fwd; \
3047 defvar_int (&i_fwd, lname, &globals.f_ ## vname); \
3048 } while (false)
3049
3050 #define DEFVAR_BUFFER_DEFAULTS(lname, vname, doc) \
3051 do { \
3052 static struct Lisp_Objfwd o_fwd; \
3053 defvar_lisp_nopro (&o_fwd, lname, &BVAR (&buffer_defaults, vname)); \
3054 } while (false)
3055
3056 #define DEFVAR_KBOARD(lname, vname, doc) \
3057 do { \
3058 static struct Lisp_Kboard_Objfwd ko_fwd; \
3059 defvar_kboard (&ko_fwd, lname, offsetof (KBOARD, vname ## _)); \
3060 } while (false)
3061 \f
3062 /* Save and restore the instruction and environment pointers,
3063 without affecting the signal mask. */
3064
3065 #ifdef HAVE__SETJMP
3066 typedef jmp_buf sys_jmp_buf;
3067 # define sys_setjmp(j) _setjmp (j)
3068 # define sys_longjmp(j, v) _longjmp (j, v)
3069 #elif defined HAVE_SIGSETJMP
3070 typedef sigjmp_buf sys_jmp_buf;
3071 # define sys_setjmp(j) sigsetjmp (j, 0)
3072 # define sys_longjmp(j, v) siglongjmp (j, v)
3073 #else
3074 /* A platform that uses neither _longjmp nor siglongjmp; assume
3075 longjmp does not affect the sigmask. */
3076 typedef jmp_buf sys_jmp_buf;
3077 # define sys_setjmp(j) setjmp (j)
3078 # define sys_longjmp(j, v) longjmp (j, v)
3079 #endif
3080
3081 \f
3082 /* Elisp uses several stacks:
3083 - the C stack.
3084 - the bytecode stack: used internally by the bytecode interpreter.
3085 Allocated from the C stack.
3086 - The specpdl stack: keeps track of active unwind-protect and
3087 dynamic-let-bindings. Allocated from the `specpdl' array, a manually
3088 managed stack.
3089 - The handler stack: keeps track of active catch tags and condition-case
3090 handlers. Allocated in a manually managed stack implemented by a
3091 doubly-linked list allocated via xmalloc and never freed. */
3092
3093 /* Structure for recording Lisp call stack for backtrace purposes. */
3094
3095 /* The special binding stack holds the outer values of variables while
3096 they are bound by a function application or a let form, stores the
3097 code to be executed for unwind-protect forms.
3098
3099 NOTE: The specbinding union is defined here, because SPECPDL_INDEX is
3100 used all over the place, needs to be fast, and needs to know the size of
3101 union specbinding. But only eval.c should access it. */
3102
3103 enum specbind_tag {
3104 SPECPDL_UNWIND, /* An unwind_protect function on Lisp_Object. */
3105 SPECPDL_UNWIND_PTR, /* Likewise, on void *. */
3106 SPECPDL_UNWIND_INT, /* Likewise, on int. */
3107 SPECPDL_UNWIND_VOID, /* Likewise, with no arg. */
3108 SPECPDL_BACKTRACE, /* An element of the backtrace. */
3109 SPECPDL_LET, /* A plain and simple dynamic let-binding. */
3110 /* Tags greater than SPECPDL_LET must be "subkinds" of LET. */
3111 SPECPDL_LET_LOCAL, /* A buffer-local let-binding. */
3112 SPECPDL_LET_DEFAULT /* A global binding for a localized var. */
3113 };
3114
3115 union specbinding
3116 {
3117 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3118 struct {
3119 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3120 void (*func) (Lisp_Object);
3121 Lisp_Object arg;
3122 } unwind;
3123 struct {
3124 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3125 void (*func) (void *);
3126 void *arg;
3127 } unwind_ptr;
3128 struct {
3129 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3130 void (*func) (int);
3131 int arg;
3132 } unwind_int;
3133 struct {
3134 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3135 void (*func) (void);
3136 } unwind_void;
3137 struct {
3138 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3139 /* `where' is not used in the case of SPECPDL_LET. */
3140 Lisp_Object symbol, old_value, where;
3141 } let;
3142 struct {
3143 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3144 bool_bf debug_on_exit : 1;
3145 Lisp_Object function;
3146 Lisp_Object *args;
3147 ptrdiff_t nargs;
3148 } bt;
3149 };
3150
3151 extern union specbinding *specpdl;
3152 extern union specbinding *specpdl_ptr;
3153 extern ptrdiff_t specpdl_size;
3154
3155 INLINE ptrdiff_t
3156 SPECPDL_INDEX (void)
3157 {
3158 return specpdl_ptr - specpdl;
3159 }
3160
3161 /* This structure helps implement the `catch/throw' and `condition-case/signal'
3162 control structures. A struct handler contains all the information needed to
3163 restore the state of the interpreter after a non-local jump.
3164
3165 handler structures are chained together in a doubly linked list; the `next'
3166 member points to the next outer catchtag and the `nextfree' member points in
3167 the other direction to the next inner element (which is typically the next
3168 free element since we mostly use it on the deepest handler).
3169
3170 A call like (throw TAG VAL) searches for a catchtag whose `tag_or_ch'
3171 member is TAG, and then unbinds to it. The `val' member is used to
3172 hold VAL while the stack is unwound; `val' is returned as the value
3173 of the catch form. If there is a handler of type CATCHER_ALL, it will
3174 be treated as a handler for all invocations of `throw'; in this case
3175 `val' will be set to (TAG . VAL).
3176
3177 All the other members are concerned with restoring the interpreter
3178 state.
3179
3180 Members are volatile if their values need to survive _longjmp when
3181 a 'struct handler' is a local variable. */
3182
3183 enum handlertype { CATCHER, CONDITION_CASE, CATCHER_ALL };
3184
3185 struct handler
3186 {
3187 enum handlertype type;
3188 Lisp_Object tag_or_ch;
3189 Lisp_Object val;
3190 struct handler *next;
3191 struct handler *nextfree;
3192
3193 /* The bytecode interpreter can have several handlers active at the same
3194 time, so when we longjmp to one of them, it needs to know which handler
3195 this was and what was the corresponding internal state. This is stored
3196 here, and when we longjmp we make sure that handlerlist points to the
3197 proper handler. */
3198 Lisp_Object *bytecode_top;
3199 int bytecode_dest;
3200
3201 /* Most global vars are reset to their value via the specpdl mechanism,
3202 but a few others are handled by storing their value here. */
3203 sys_jmp_buf jmp;
3204 EMACS_INT lisp_eval_depth;
3205 ptrdiff_t pdlcount;
3206 int poll_suppress_count;
3207 int interrupt_input_blocked;
3208 struct byte_stack *byte_stack;
3209 };
3210
3211 extern Lisp_Object memory_signal_data;
3212
3213 /* An address near the bottom of the stack.
3214 Tells GC how to save a copy of the stack. */
3215 extern char *stack_bottom;
3216
3217 /* Check quit-flag and quit if it is non-nil.
3218 Typing C-g does not directly cause a quit; it only sets Vquit_flag.
3219 So the program needs to do QUIT at times when it is safe to quit.
3220 Every loop that might run for a long time or might not exit
3221 ought to do QUIT at least once, at a safe place.
3222 Unless that is impossible, of course.
3223 But it is very desirable to avoid creating loops where QUIT is impossible.
3224
3225 Exception: if you set immediate_quit to true,
3226 then the handler that responds to the C-g does the quit itself.
3227 This is a good thing to do around a loop that has no side effects
3228 and (in particular) cannot call arbitrary Lisp code.
3229
3230 If quit-flag is set to `kill-emacs' the SIGINT handler has received
3231 a request to exit Emacs when it is safe to do. */
3232
3233 extern void process_pending_signals (void);
3234 extern bool volatile pending_signals;
3235
3236 extern void process_quit_flag (void);
3237 #define QUIT \
3238 do { \
3239 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
3240 process_quit_flag (); \
3241 else if (pending_signals) \
3242 process_pending_signals (); \
3243 } while (false)
3244
3245
3246 /* True if ought to quit now. */
3247
3248 #define QUITP (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
3249 \f
3250 extern Lisp_Object Vascii_downcase_table;
3251 extern Lisp_Object Vascii_canon_table;
3252 \f
3253 /* Call staticpro (&var) to protect static variable `var'. */
3254
3255 void staticpro (Lisp_Object *);
3256 \f
3257 /* Forward declarations for prototypes. */
3258 struct window;
3259 struct frame;
3260
3261 /* Copy COUNT Lisp_Objects from ARGS to contents of V starting from OFFSET. */
3262
3263 INLINE void
3264 vcopy (Lisp_Object v, ptrdiff_t offset, Lisp_Object *args, ptrdiff_t count)
3265 {
3266 eassert (0 <= offset && 0 <= count && offset + count <= ASIZE (v));
3267 memcpy (XVECTOR (v)->contents + offset, args, count * sizeof *args);
3268 }
3269
3270 /* Functions to modify hash tables. */
3271
3272 INLINE void
3273 set_hash_key_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3274 {
3275 gc_aset (h->key_and_value, 2 * idx, val);
3276 }
3277
3278 INLINE void
3279 set_hash_value_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3280 {
3281 gc_aset (h->key_and_value, 2 * idx + 1, val);
3282 }
3283
3284 /* Use these functions to set Lisp_Object
3285 or pointer slots of struct Lisp_Symbol. */
3286
3287 INLINE void
3288 set_symbol_function (Lisp_Object sym, Lisp_Object function)
3289 {
3290 XSYMBOL (sym)->function = function;
3291 }
3292
3293 INLINE void
3294 set_symbol_plist (Lisp_Object sym, Lisp_Object plist)
3295 {
3296 XSYMBOL (sym)->plist = plist;
3297 }
3298
3299 INLINE void
3300 set_symbol_next (Lisp_Object sym, struct Lisp_Symbol *next)
3301 {
3302 XSYMBOL (sym)->next = next;
3303 }
3304
3305 /* Buffer-local (also frame-local) variable access functions. */
3306
3307 INLINE int
3308 blv_found (struct Lisp_Buffer_Local_Value *blv)
3309 {
3310 eassert (blv->found == !EQ (blv->defcell, blv->valcell));
3311 return blv->found;
3312 }
3313
3314 /* Set overlay's property list. */
3315
3316 INLINE void
3317 set_overlay_plist (Lisp_Object overlay, Lisp_Object plist)
3318 {
3319 XOVERLAY (overlay)->plist = plist;
3320 }
3321
3322 /* Get text properties of S. */
3323
3324 INLINE INTERVAL
3325 string_intervals (Lisp_Object s)
3326 {
3327 return XSTRING (s)->intervals;
3328 }
3329
3330 /* Set text properties of S to I. */
3331
3332 INLINE void
3333 set_string_intervals (Lisp_Object s, INTERVAL i)
3334 {
3335 XSTRING (s)->intervals = i;
3336 }
3337
3338 /* Set a Lisp slot in TABLE to VAL. Most code should use this instead
3339 of setting slots directly. */
3340
3341 INLINE void
3342 set_char_table_defalt (Lisp_Object table, Lisp_Object val)
3343 {
3344 XCHAR_TABLE (table)->defalt = val;
3345 }
3346 INLINE void
3347 set_char_table_purpose (Lisp_Object table, Lisp_Object val)
3348 {
3349 XCHAR_TABLE (table)->purpose = val;
3350 }
3351
3352 /* Set different slots in (sub)character tables. */
3353
3354 INLINE void
3355 set_char_table_extras (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3356 {
3357 eassert (0 <= idx && idx < CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (table)));
3358 XCHAR_TABLE (table)->extras[idx] = val;
3359 }
3360
3361 INLINE void
3362 set_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3363 {
3364 eassert (0 <= idx && idx < (1 << CHARTAB_SIZE_BITS_0));
3365 XCHAR_TABLE (table)->contents[idx] = val;
3366 }
3367
3368 INLINE void
3369 set_sub_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3370 {
3371 XSUB_CHAR_TABLE (table)->contents[idx] = val;
3372 }
3373
3374 /* Defined in data.c. */
3375 extern Lisp_Object indirect_function (Lisp_Object);
3376 extern Lisp_Object find_symbol_value (Lisp_Object);
3377 enum Arith_Comparison {
3378 ARITH_EQUAL,
3379 ARITH_NOTEQUAL,
3380 ARITH_LESS,
3381 ARITH_GRTR,
3382 ARITH_LESS_OR_EQUAL,
3383 ARITH_GRTR_OR_EQUAL
3384 };
3385 extern Lisp_Object arithcompare (Lisp_Object num1, Lisp_Object num2,
3386 enum Arith_Comparison comparison);
3387
3388 /* Convert the integer I to an Emacs representation, either the integer
3389 itself, or a cons of two or three integers, or if all else fails a float.
3390 I should not have side effects. */
3391 #define INTEGER_TO_CONS(i) \
3392 (! FIXNUM_OVERFLOW_P (i) \
3393 ? make_number (i) \
3394 : EXPR_SIGNED (i) ? intbig_to_lisp (i) : uintbig_to_lisp (i))
3395 extern Lisp_Object intbig_to_lisp (intmax_t);
3396 extern Lisp_Object uintbig_to_lisp (uintmax_t);
3397
3398 /* Convert the Emacs representation CONS back to an integer of type
3399 TYPE, storing the result the variable VAR. Signal an error if CONS
3400 is not a valid representation or is out of range for TYPE. */
3401 #define CONS_TO_INTEGER(cons, type, var) \
3402 (TYPE_SIGNED (type) \
3403 ? ((var) = cons_to_signed (cons, TYPE_MINIMUM (type), TYPE_MAXIMUM (type))) \
3404 : ((var) = cons_to_unsigned (cons, TYPE_MAXIMUM (type))))
3405 extern intmax_t cons_to_signed (Lisp_Object, intmax_t, intmax_t);
3406 extern uintmax_t cons_to_unsigned (Lisp_Object, uintmax_t);
3407
3408 extern struct Lisp_Symbol *indirect_variable (struct Lisp_Symbol *);
3409 extern _Noreturn void args_out_of_range (Lisp_Object, Lisp_Object);
3410 extern _Noreturn void args_out_of_range_3 (Lisp_Object, Lisp_Object,
3411 Lisp_Object);
3412 extern Lisp_Object do_symval_forwarding (union Lisp_Fwd *);
3413 extern void set_internal (Lisp_Object, Lisp_Object, Lisp_Object, bool);
3414 extern void syms_of_data (void);
3415 extern void swap_in_global_binding (struct Lisp_Symbol *);
3416
3417 /* Defined in cmds.c */
3418 extern void syms_of_cmds (void);
3419 extern void keys_of_cmds (void);
3420
3421 /* Defined in coding.c. */
3422 extern Lisp_Object detect_coding_system (const unsigned char *, ptrdiff_t,
3423 ptrdiff_t, bool, bool, Lisp_Object);
3424 extern void init_coding (void);
3425 extern void init_coding_once (void);
3426 extern void syms_of_coding (void);
3427
3428 /* Defined in character.c. */
3429 extern ptrdiff_t chars_in_text (const unsigned char *, ptrdiff_t);
3430 extern ptrdiff_t multibyte_chars_in_text (const unsigned char *, ptrdiff_t);
3431 extern void syms_of_character (void);
3432
3433 /* Defined in charset.c. */
3434 extern void init_charset (void);
3435 extern void init_charset_once (void);
3436 extern void syms_of_charset (void);
3437 /* Structure forward declarations. */
3438 struct charset;
3439
3440 /* Defined in syntax.c. */
3441 extern void init_syntax_once (void);
3442 extern void syms_of_syntax (void);
3443
3444 /* Defined in fns.c. */
3445 enum { NEXT_ALMOST_PRIME_LIMIT = 11 };
3446 extern EMACS_INT next_almost_prime (EMACS_INT) ATTRIBUTE_CONST;
3447 extern Lisp_Object larger_vector (Lisp_Object, ptrdiff_t, ptrdiff_t);
3448 extern void sweep_weak_hash_tables (void);
3449 EMACS_UINT hash_string (char const *, ptrdiff_t);
3450 EMACS_UINT sxhash (Lisp_Object, int);
3451 Lisp_Object make_hash_table (struct hash_table_test, Lisp_Object, Lisp_Object,
3452 Lisp_Object, Lisp_Object);
3453 ptrdiff_t hash_lookup (struct Lisp_Hash_Table *, Lisp_Object, EMACS_UINT *);
3454 ptrdiff_t hash_put (struct Lisp_Hash_Table *, Lisp_Object, Lisp_Object,
3455 EMACS_UINT);
3456 void hash_remove_from_table (struct Lisp_Hash_Table *, Lisp_Object);
3457 extern struct hash_table_test hashtest_eq, hashtest_eql, hashtest_equal;
3458 extern void validate_subarray (Lisp_Object, Lisp_Object, Lisp_Object,
3459 ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
3460 extern Lisp_Object substring_both (Lisp_Object, ptrdiff_t, ptrdiff_t,
3461 ptrdiff_t, ptrdiff_t);
3462 extern Lisp_Object merge (Lisp_Object, Lisp_Object, Lisp_Object);
3463 extern Lisp_Object do_yes_or_no_p (Lisp_Object);
3464 extern Lisp_Object concat2 (Lisp_Object, Lisp_Object);
3465 extern Lisp_Object concat3 (Lisp_Object, Lisp_Object, Lisp_Object);
3466 extern Lisp_Object nconc2 (Lisp_Object, Lisp_Object);
3467 extern Lisp_Object assq_no_quit (Lisp_Object, Lisp_Object);
3468 extern Lisp_Object assoc_no_quit (Lisp_Object, Lisp_Object);
3469 extern void clear_string_char_byte_cache (void);
3470 extern ptrdiff_t string_char_to_byte (Lisp_Object, ptrdiff_t);
3471 extern ptrdiff_t string_byte_to_char (Lisp_Object, ptrdiff_t);
3472 extern Lisp_Object string_to_multibyte (Lisp_Object);
3473 extern Lisp_Object string_make_unibyte (Lisp_Object);
3474 extern void syms_of_fns (void);
3475
3476 /* Defined in floatfns.c. */
3477 extern void syms_of_floatfns (void);
3478 extern Lisp_Object fmod_float (Lisp_Object x, Lisp_Object y);
3479
3480 /* Defined in fringe.c. */
3481 extern void syms_of_fringe (void);
3482 extern void init_fringe (void);
3483 #ifdef HAVE_WINDOW_SYSTEM
3484 extern void mark_fringe_data (void);
3485 extern void init_fringe_once (void);
3486 #endif /* HAVE_WINDOW_SYSTEM */
3487
3488 /* Defined in image.c. */
3489 extern int x_bitmap_mask (struct frame *, ptrdiff_t);
3490 extern void reset_image_types (void);
3491 extern void syms_of_image (void);
3492
3493 /* Defined in insdel.c. */
3494 extern void move_gap_both (ptrdiff_t, ptrdiff_t);
3495 extern _Noreturn void buffer_overflow (void);
3496 extern void make_gap (ptrdiff_t);
3497 extern void make_gap_1 (struct buffer *, ptrdiff_t);
3498 extern ptrdiff_t copy_text (const unsigned char *, unsigned char *,
3499 ptrdiff_t, bool, bool);
3500 extern int count_combining_before (const unsigned char *,
3501 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3502 extern int count_combining_after (const unsigned char *,
3503 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3504 extern void insert (const char *, ptrdiff_t);
3505 extern void insert_and_inherit (const char *, ptrdiff_t);
3506 extern void insert_1_both (const char *, ptrdiff_t, ptrdiff_t,
3507 bool, bool, bool);
3508 extern void insert_from_gap (ptrdiff_t, ptrdiff_t, bool text_at_gap_tail);
3509 extern void insert_from_string (Lisp_Object, ptrdiff_t, ptrdiff_t,
3510 ptrdiff_t, ptrdiff_t, bool);
3511 extern void insert_from_buffer (struct buffer *, ptrdiff_t, ptrdiff_t, bool);
3512 extern void insert_char (int);
3513 extern void insert_string (const char *);
3514 extern void insert_before_markers (const char *, ptrdiff_t);
3515 extern void insert_before_markers_and_inherit (const char *, ptrdiff_t);
3516 extern void insert_from_string_before_markers (Lisp_Object, ptrdiff_t,
3517 ptrdiff_t, ptrdiff_t,
3518 ptrdiff_t, bool);
3519 extern void del_range (ptrdiff_t, ptrdiff_t);
3520 extern Lisp_Object del_range_1 (ptrdiff_t, ptrdiff_t, bool, bool);
3521 extern void del_range_byte (ptrdiff_t, ptrdiff_t, bool);
3522 extern void del_range_both (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t, bool);
3523 extern Lisp_Object del_range_2 (ptrdiff_t, ptrdiff_t,
3524 ptrdiff_t, ptrdiff_t, bool);
3525 extern void modify_text (ptrdiff_t, ptrdiff_t);
3526 extern void prepare_to_modify_buffer (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3527 extern void prepare_to_modify_buffer_1 (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3528 extern void invalidate_buffer_caches (struct buffer *, ptrdiff_t, ptrdiff_t);
3529 extern void signal_after_change (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3530 extern void adjust_after_insert (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3531 ptrdiff_t, ptrdiff_t);
3532 extern void adjust_markers_for_delete (ptrdiff_t, ptrdiff_t,
3533 ptrdiff_t, ptrdiff_t);
3534 extern void replace_range (ptrdiff_t, ptrdiff_t, Lisp_Object, bool, bool, bool);
3535 extern void replace_range_2 (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3536 const char *, ptrdiff_t, ptrdiff_t, bool);
3537 extern void syms_of_insdel (void);
3538
3539 /* Defined in dispnew.c. */
3540 #if (defined PROFILING \
3541 && (defined __FreeBSD__ || defined GNU_LINUX || defined __MINGW32__))
3542 _Noreturn void __executable_start (void);
3543 #endif
3544 extern Lisp_Object Vwindow_system;
3545 extern Lisp_Object sit_for (Lisp_Object, bool, int);
3546
3547 /* Defined in xdisp.c. */
3548 extern bool noninteractive_need_newline;
3549 extern Lisp_Object echo_area_buffer[2];
3550 extern void add_to_log (char const *, ...);
3551 extern void vadd_to_log (char const *, va_list);
3552 extern void check_message_stack (void);
3553 extern void setup_echo_area_for_printing (bool);
3554 extern bool push_message (void);
3555 extern void pop_message_unwind (void);
3556 extern Lisp_Object restore_message_unwind (Lisp_Object);
3557 extern void restore_message (void);
3558 extern Lisp_Object current_message (void);
3559 extern void clear_message (bool, bool);
3560 extern void message (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3561 extern void message1 (const char *);
3562 extern void message1_nolog (const char *);
3563 extern void message3 (Lisp_Object);
3564 extern void message3_nolog (Lisp_Object);
3565 extern void message_dolog (const char *, ptrdiff_t, bool, bool);
3566 extern void message_with_string (const char *, Lisp_Object, bool);
3567 extern void message_log_maybe_newline (void);
3568 extern void update_echo_area (void);
3569 extern void truncate_echo_area (ptrdiff_t);
3570 extern void redisplay (void);
3571
3572 void set_frame_cursor_types (struct frame *, Lisp_Object);
3573 extern void syms_of_xdisp (void);
3574 extern void init_xdisp (void);
3575 extern Lisp_Object safe_eval (Lisp_Object);
3576 extern bool pos_visible_p (struct window *, ptrdiff_t, int *,
3577 int *, int *, int *, int *, int *);
3578
3579 /* Defined in xsettings.c. */
3580 extern void syms_of_xsettings (void);
3581
3582 /* Defined in vm-limit.c. */
3583 extern void memory_warnings (void *, void (*warnfun) (const char *));
3584
3585 /* Defined in character.c. */
3586 extern void parse_str_as_multibyte (const unsigned char *, ptrdiff_t,
3587 ptrdiff_t *, ptrdiff_t *);
3588
3589 /* Defined in alloc.c. */
3590 extern void check_pure_size (void);
3591 extern void free_misc (Lisp_Object);
3592 extern void allocate_string_data (struct Lisp_String *, EMACS_INT, EMACS_INT);
3593 extern void malloc_warning (const char *);
3594 extern _Noreturn void memory_full (size_t);
3595 extern _Noreturn void buffer_memory_full (ptrdiff_t);
3596 extern bool survives_gc_p (Lisp_Object);
3597 extern void mark_object (Lisp_Object);
3598 #if defined REL_ALLOC && !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3599 extern void refill_memory_reserve (void);
3600 #endif
3601 extern const char *pending_malloc_warning;
3602 extern Lisp_Object zero_vector;
3603 extern Lisp_Object *stack_base;
3604 extern EMACS_INT consing_since_gc;
3605 extern EMACS_INT gc_relative_threshold;
3606 extern EMACS_INT memory_full_cons_threshold;
3607 extern Lisp_Object list1 (Lisp_Object);
3608 extern Lisp_Object list2 (Lisp_Object, Lisp_Object);
3609 extern Lisp_Object list3 (Lisp_Object, Lisp_Object, Lisp_Object);
3610 extern Lisp_Object list4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3611 extern Lisp_Object list5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object,
3612 Lisp_Object);
3613 enum constype {CONSTYPE_HEAP, CONSTYPE_PURE};
3614 extern Lisp_Object listn (enum constype, ptrdiff_t, Lisp_Object, ...);
3615
3616 /* Build a frequently used 2/3/4-integer lists. */
3617
3618 INLINE Lisp_Object
3619 list2i (EMACS_INT x, EMACS_INT y)
3620 {
3621 return list2 (make_number (x), make_number (y));
3622 }
3623
3624 INLINE Lisp_Object
3625 list3i (EMACS_INT x, EMACS_INT y, EMACS_INT w)
3626 {
3627 return list3 (make_number (x), make_number (y), make_number (w));
3628 }
3629
3630 INLINE Lisp_Object
3631 list4i (EMACS_INT x, EMACS_INT y, EMACS_INT w, EMACS_INT h)
3632 {
3633 return list4 (make_number (x), make_number (y),
3634 make_number (w), make_number (h));
3635 }
3636
3637 extern Lisp_Object make_uninit_bool_vector (EMACS_INT);
3638 extern Lisp_Object bool_vector_fill (Lisp_Object, Lisp_Object);
3639 extern _Noreturn void string_overflow (void);
3640 extern Lisp_Object make_string (const char *, ptrdiff_t);
3641 extern Lisp_Object make_formatted_string (char *, const char *, ...)
3642 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3643 extern Lisp_Object make_unibyte_string (const char *, ptrdiff_t);
3644
3645 /* Make unibyte string from C string when the length isn't known. */
3646
3647 INLINE Lisp_Object
3648 build_unibyte_string (const char *str)
3649 {
3650 return make_unibyte_string (str, strlen (str));
3651 }
3652
3653 extern Lisp_Object make_multibyte_string (const char *, ptrdiff_t, ptrdiff_t);
3654 extern Lisp_Object make_event_array (ptrdiff_t, Lisp_Object *);
3655 extern Lisp_Object make_uninit_string (EMACS_INT);
3656 extern Lisp_Object make_uninit_multibyte_string (EMACS_INT, EMACS_INT);
3657 extern Lisp_Object make_string_from_bytes (const char *, ptrdiff_t, ptrdiff_t);
3658 extern Lisp_Object make_specified_string (const char *,
3659 ptrdiff_t, ptrdiff_t, bool);
3660 extern Lisp_Object make_pure_string (const char *, ptrdiff_t, ptrdiff_t, bool);
3661 extern Lisp_Object make_pure_c_string (const char *, ptrdiff_t);
3662
3663 /* Make a string allocated in pure space, use STR as string data. */
3664
3665 INLINE Lisp_Object
3666 build_pure_c_string (const char *str)
3667 {
3668 return make_pure_c_string (str, strlen (str));
3669 }
3670
3671 /* Make a string from the data at STR, treating it as multibyte if the
3672 data warrants. */
3673
3674 INLINE Lisp_Object
3675 build_string (const char *str)
3676 {
3677 return make_string (str, strlen (str));
3678 }
3679
3680 extern Lisp_Object pure_cons (Lisp_Object, Lisp_Object);
3681 extern void make_byte_code (struct Lisp_Vector *);
3682 extern struct Lisp_Vector *allocate_vector (EMACS_INT);
3683
3684 /* Make an uninitialized vector for SIZE objects. NOTE: you must
3685 be sure that GC cannot happen until the vector is completely
3686 initialized. E.g. the following code is likely to crash:
3687
3688 v = make_uninit_vector (3);
3689 ASET (v, 0, obj0);
3690 ASET (v, 1, Ffunction_can_gc ());
3691 ASET (v, 2, obj1); */
3692
3693 INLINE Lisp_Object
3694 make_uninit_vector (ptrdiff_t size)
3695 {
3696 Lisp_Object v;
3697 struct Lisp_Vector *p;
3698
3699 p = allocate_vector (size);
3700 XSETVECTOR (v, p);
3701 return v;
3702 }
3703
3704 /* Like above, but special for sub char-tables. */
3705
3706 INLINE Lisp_Object
3707 make_uninit_sub_char_table (int depth, int min_char)
3708 {
3709 int slots = SUB_CHAR_TABLE_OFFSET + chartab_size[depth];
3710 Lisp_Object v = make_uninit_vector (slots);
3711
3712 XSETPVECTYPE (XVECTOR (v), PVEC_SUB_CHAR_TABLE);
3713 XSUB_CHAR_TABLE (v)->depth = depth;
3714 XSUB_CHAR_TABLE (v)->min_char = min_char;
3715 return v;
3716 }
3717
3718 extern struct Lisp_Vector *allocate_pseudovector (int, int, int,
3719 enum pvec_type);
3720
3721 /* Allocate partially initialized pseudovector where all Lisp_Object
3722 slots are set to Qnil but the rest (if any) is left uninitialized. */
3723
3724 #define ALLOCATE_PSEUDOVECTOR(type, field, tag) \
3725 ((type *) allocate_pseudovector (VECSIZE (type), \
3726 PSEUDOVECSIZE (type, field), \
3727 PSEUDOVECSIZE (type, field), tag))
3728
3729 /* Allocate fully initialized pseudovector where all Lisp_Object
3730 slots are set to Qnil and the rest (if any) is zeroed. */
3731
3732 #define ALLOCATE_ZEROED_PSEUDOVECTOR(type, field, tag) \
3733 ((type *) allocate_pseudovector (VECSIZE (type), \
3734 PSEUDOVECSIZE (type, field), \
3735 VECSIZE (type), tag))
3736
3737 extern bool gc_in_progress;
3738 extern bool abort_on_gc;
3739 extern Lisp_Object make_float (double);
3740 extern void display_malloc_warning (void);
3741 extern ptrdiff_t inhibit_garbage_collection (void);
3742 extern Lisp_Object make_save_int_int_int (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3743 extern Lisp_Object make_save_obj_obj_obj_obj (Lisp_Object, Lisp_Object,
3744 Lisp_Object, Lisp_Object);
3745 extern Lisp_Object make_save_ptr (void *);
3746 extern Lisp_Object make_save_ptr_int (void *, ptrdiff_t);
3747 extern Lisp_Object make_save_ptr_ptr (void *, void *);
3748 extern Lisp_Object make_save_funcptr_ptr_obj (void (*) (void), void *,
3749 Lisp_Object);
3750 extern Lisp_Object make_save_memory (Lisp_Object *, ptrdiff_t);
3751 extern void free_save_value (Lisp_Object);
3752 extern Lisp_Object build_overlay (Lisp_Object, Lisp_Object, Lisp_Object);
3753 extern void free_marker (Lisp_Object);
3754 extern void free_cons (struct Lisp_Cons *);
3755 extern void init_alloc_once (void);
3756 extern void init_alloc (void);
3757 extern void syms_of_alloc (void);
3758 extern struct buffer * allocate_buffer (void);
3759 extern int valid_lisp_object_p (Lisp_Object);
3760 #ifdef GC_CHECK_CONS_LIST
3761 extern void check_cons_list (void);
3762 #else
3763 INLINE void (check_cons_list) (void) { lisp_h_check_cons_list (); }
3764 #endif
3765
3766 #ifdef REL_ALLOC
3767 /* Defined in ralloc.c. */
3768 extern void *r_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3769 extern void r_alloc_free (void **);
3770 extern void *r_re_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3771 extern void r_alloc_reset_variable (void **, void **);
3772 extern void r_alloc_inhibit_buffer_relocation (int);
3773 #endif
3774
3775 /* Defined in chartab.c. */
3776 extern Lisp_Object copy_char_table (Lisp_Object);
3777 extern Lisp_Object char_table_ref_and_range (Lisp_Object, int,
3778 int *, int *);
3779 extern void char_table_set_range (Lisp_Object, int, int, Lisp_Object);
3780 extern void map_char_table (void (*) (Lisp_Object, Lisp_Object,
3781 Lisp_Object),
3782 Lisp_Object, Lisp_Object, Lisp_Object);
3783 extern void map_char_table_for_charset (void (*c_function) (Lisp_Object, Lisp_Object),
3784 Lisp_Object, Lisp_Object,
3785 Lisp_Object, struct charset *,
3786 unsigned, unsigned);
3787 extern Lisp_Object uniprop_table (Lisp_Object);
3788 extern void syms_of_chartab (void);
3789
3790 /* Defined in print.c. */
3791 extern Lisp_Object Vprin1_to_string_buffer;
3792 extern void debug_print (Lisp_Object) EXTERNALLY_VISIBLE;
3793 extern void temp_output_buffer_setup (const char *);
3794 extern int print_level;
3795 extern void write_string (const char *);
3796 extern void print_error_message (Lisp_Object, Lisp_Object, const char *,
3797 Lisp_Object);
3798 extern Lisp_Object internal_with_output_to_temp_buffer
3799 (const char *, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3800 #define FLOAT_TO_STRING_BUFSIZE 350
3801 extern int float_to_string (char *, double);
3802 extern void init_print_once (void);
3803 extern void syms_of_print (void);
3804
3805 /* Defined in doprnt.c. */
3806 extern ptrdiff_t doprnt (char *, ptrdiff_t, const char *, const char *,
3807 va_list);
3808 extern ptrdiff_t esprintf (char *, char const *, ...)
3809 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3810 extern ptrdiff_t exprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3811 char const *, ...)
3812 ATTRIBUTE_FORMAT_PRINTF (5, 6);
3813 extern ptrdiff_t evxprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3814 char const *, va_list)
3815 ATTRIBUTE_FORMAT_PRINTF (5, 0);
3816
3817 /* Defined in lread.c. */
3818 extern Lisp_Object check_obarray (Lisp_Object);
3819 extern Lisp_Object intern_1 (const char *, ptrdiff_t);
3820 extern Lisp_Object intern_c_string_1 (const char *, ptrdiff_t);
3821 extern Lisp_Object intern_driver (Lisp_Object, Lisp_Object, Lisp_Object);
3822 extern void init_symbol (Lisp_Object, Lisp_Object);
3823 extern Lisp_Object oblookup (Lisp_Object, const char *, ptrdiff_t, ptrdiff_t);
3824 INLINE void
3825 LOADHIST_ATTACH (Lisp_Object x)
3826 {
3827 if (initialized)
3828 Vcurrent_load_list = Fcons (x, Vcurrent_load_list);
3829 }
3830 extern int openp (Lisp_Object, Lisp_Object, Lisp_Object,
3831 Lisp_Object *, Lisp_Object, bool);
3832 extern Lisp_Object string_to_number (char const *, int, bool);
3833 extern void map_obarray (Lisp_Object, void (*) (Lisp_Object, Lisp_Object),
3834 Lisp_Object);
3835 extern void dir_warning (const char *, Lisp_Object);
3836 extern void init_obarray (void);
3837 extern void init_lread (void);
3838 extern void syms_of_lread (void);
3839
3840 INLINE Lisp_Object
3841 intern (const char *str)
3842 {
3843 return intern_1 (str, strlen (str));
3844 }
3845
3846 INLINE Lisp_Object
3847 intern_c_string (const char *str)
3848 {
3849 return intern_c_string_1 (str, strlen (str));
3850 }
3851
3852 /* Defined in eval.c. */
3853 extern Lisp_Object Vautoload_queue;
3854 extern Lisp_Object Vrun_hooks;
3855 extern Lisp_Object Vsignaling_function;
3856 extern Lisp_Object inhibit_lisp_code;
3857 extern struct handler *handlerlist;
3858
3859 /* To run a normal hook, use the appropriate function from the list below.
3860 The calling convention:
3861
3862 if (!NILP (Vrun_hooks))
3863 call1 (Vrun_hooks, Qmy_funny_hook);
3864
3865 should no longer be used. */
3866 extern void run_hook (Lisp_Object);
3867 extern void run_hook_with_args_2 (Lisp_Object, Lisp_Object, Lisp_Object);
3868 extern Lisp_Object run_hook_with_args (ptrdiff_t nargs, Lisp_Object *args,
3869 Lisp_Object (*funcall)
3870 (ptrdiff_t nargs, Lisp_Object *args));
3871 extern _Noreturn void xsignal (Lisp_Object, Lisp_Object);
3872 extern _Noreturn void xsignal0 (Lisp_Object);
3873 extern _Noreturn void xsignal1 (Lisp_Object, Lisp_Object);
3874 extern _Noreturn void xsignal2 (Lisp_Object, Lisp_Object, Lisp_Object);
3875 extern _Noreturn void xsignal3 (Lisp_Object, Lisp_Object, Lisp_Object,
3876 Lisp_Object);
3877 extern _Noreturn void signal_error (const char *, Lisp_Object);
3878 extern Lisp_Object eval_sub (Lisp_Object form);
3879 extern Lisp_Object apply1 (Lisp_Object, Lisp_Object);
3880 extern Lisp_Object call0 (Lisp_Object);
3881 extern Lisp_Object call1 (Lisp_Object, Lisp_Object);
3882 extern Lisp_Object call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3883 extern Lisp_Object call3 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3884 extern Lisp_Object call4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3885 extern Lisp_Object call5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3886 extern Lisp_Object call6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3887 extern Lisp_Object call7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3888 extern Lisp_Object internal_catch (Lisp_Object, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3889 extern Lisp_Object internal_lisp_condition_case (Lisp_Object, Lisp_Object, Lisp_Object);
3890 extern Lisp_Object internal_condition_case (Lisp_Object (*) (void), Lisp_Object, Lisp_Object (*) (Lisp_Object));
3891 extern Lisp_Object internal_condition_case_1 (Lisp_Object (*) (Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3892 extern Lisp_Object internal_condition_case_2 (Lisp_Object (*) (Lisp_Object, Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3893 extern Lisp_Object internal_condition_case_n
3894 (Lisp_Object (*) (ptrdiff_t, Lisp_Object *), ptrdiff_t, Lisp_Object *,
3895 Lisp_Object, Lisp_Object (*) (Lisp_Object, ptrdiff_t, Lisp_Object *));
3896 extern struct handler *push_handler (Lisp_Object, enum handlertype);
3897 extern struct handler *push_handler_nosignal (Lisp_Object, enum handlertype);
3898 extern void specbind (Lisp_Object, Lisp_Object);
3899 extern void record_unwind_protect (void (*) (Lisp_Object), Lisp_Object);
3900 extern void record_unwind_protect_ptr (void (*) (void *), void *);
3901 extern void record_unwind_protect_int (void (*) (int), int);
3902 extern void record_unwind_protect_void (void (*) (void));
3903 extern void record_unwind_protect_nothing (void);
3904 extern void clear_unwind_protect (ptrdiff_t);
3905 extern void set_unwind_protect (ptrdiff_t, void (*) (Lisp_Object), Lisp_Object);
3906 extern void set_unwind_protect_ptr (ptrdiff_t, void (*) (void *), void *);
3907 extern Lisp_Object unbind_to (ptrdiff_t, Lisp_Object);
3908 extern _Noreturn void error (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3909 extern _Noreturn void verror (const char *, va_list)
3910 ATTRIBUTE_FORMAT_PRINTF (1, 0);
3911 extern void un_autoload (Lisp_Object);
3912 extern Lisp_Object call_debugger (Lisp_Object arg);
3913 extern void *near_C_stack_top (void);
3914 extern void init_eval_once (void);
3915 extern Lisp_Object safe_call (ptrdiff_t, Lisp_Object, ...);
3916 extern Lisp_Object safe_call1 (Lisp_Object, Lisp_Object);
3917 extern Lisp_Object safe_call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3918 extern void init_eval (void);
3919 extern void syms_of_eval (void);
3920 extern void unwind_body (Lisp_Object);
3921 extern ptrdiff_t record_in_backtrace (Lisp_Object, Lisp_Object *, ptrdiff_t);
3922 extern void mark_specpdl (void);
3923 extern void get_backtrace (Lisp_Object array);
3924 Lisp_Object backtrace_top_function (void);
3925 extern bool let_shadows_buffer_binding_p (struct Lisp_Symbol *symbol);
3926 extern bool let_shadows_global_binding_p (Lisp_Object symbol);
3927
3928 #ifdef HAVE_MODULES
3929 /* Defined in alloc.c. */
3930 extern Lisp_Object make_user_ptr (void (*finalizer) (void*), void *p);
3931
3932 /* Defined in emacs-module.c. */
3933 extern void module_init (void);
3934 extern void syms_of_module (void);
3935 #endif
3936
3937 /* Defined in editfns.c. */
3938 extern void insert1 (Lisp_Object);
3939 extern Lisp_Object save_excursion_save (void);
3940 extern Lisp_Object save_restriction_save (void);
3941 extern void save_excursion_restore (Lisp_Object);
3942 extern void save_restriction_restore (Lisp_Object);
3943 extern _Noreturn void time_overflow (void);
3944 extern Lisp_Object make_buffer_string (ptrdiff_t, ptrdiff_t, bool);
3945 extern Lisp_Object make_buffer_string_both (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3946 ptrdiff_t, bool);
3947 extern void init_editfns (bool);
3948 extern void syms_of_editfns (void);
3949
3950 /* Defined in buffer.c. */
3951 extern bool mouse_face_overlay_overlaps (Lisp_Object);
3952 extern _Noreturn void nsberror (Lisp_Object);
3953 extern void adjust_overlays_for_insert (ptrdiff_t, ptrdiff_t);
3954 extern void adjust_overlays_for_delete (ptrdiff_t, ptrdiff_t);
3955 extern void fix_start_end_in_overlays (ptrdiff_t, ptrdiff_t);
3956 extern void report_overlay_modification (Lisp_Object, Lisp_Object, bool,
3957 Lisp_Object, Lisp_Object, Lisp_Object);
3958 extern bool overlay_touches_p (ptrdiff_t);
3959 extern Lisp_Object other_buffer_safely (Lisp_Object);
3960 extern Lisp_Object get_truename_buffer (Lisp_Object);
3961 extern void init_buffer_once (void);
3962 extern void init_buffer (int);
3963 extern void syms_of_buffer (void);
3964 extern void keys_of_buffer (void);
3965
3966 /* Defined in marker.c. */
3967
3968 extern ptrdiff_t marker_position (Lisp_Object);
3969 extern ptrdiff_t marker_byte_position (Lisp_Object);
3970 extern void clear_charpos_cache (struct buffer *);
3971 extern ptrdiff_t buf_charpos_to_bytepos (struct buffer *, ptrdiff_t);
3972 extern ptrdiff_t buf_bytepos_to_charpos (struct buffer *, ptrdiff_t);
3973 extern void unchain_marker (struct Lisp_Marker *marker);
3974 extern Lisp_Object set_marker_restricted (Lisp_Object, Lisp_Object, Lisp_Object);
3975 extern Lisp_Object set_marker_both (Lisp_Object, Lisp_Object, ptrdiff_t, ptrdiff_t);
3976 extern Lisp_Object set_marker_restricted_both (Lisp_Object, Lisp_Object,
3977 ptrdiff_t, ptrdiff_t);
3978 extern Lisp_Object build_marker (struct buffer *, ptrdiff_t, ptrdiff_t);
3979 extern void syms_of_marker (void);
3980
3981 /* Defined in fileio.c. */
3982
3983 extern Lisp_Object expand_and_dir_to_file (Lisp_Object, Lisp_Object);
3984 extern Lisp_Object write_region (Lisp_Object, Lisp_Object, Lisp_Object,
3985 Lisp_Object, Lisp_Object, Lisp_Object,
3986 Lisp_Object, int);
3987 extern void close_file_unwind (int);
3988 extern void fclose_unwind (void *);
3989 extern void restore_point_unwind (Lisp_Object);
3990 extern _Noreturn void report_file_errno (const char *, Lisp_Object, int);
3991 extern _Noreturn void report_file_error (const char *, Lisp_Object);
3992 extern _Noreturn void report_file_notify_error (const char *, Lisp_Object);
3993 extern bool internal_delete_file (Lisp_Object);
3994 extern Lisp_Object emacs_readlinkat (int, const char *);
3995 extern bool file_directory_p (const char *);
3996 extern bool file_accessible_directory_p (Lisp_Object);
3997 extern void init_fileio (void);
3998 extern void syms_of_fileio (void);
3999 extern Lisp_Object make_temp_name (Lisp_Object, bool);
4000
4001 /* Defined in search.c. */
4002 extern void shrink_regexp_cache (void);
4003 extern void restore_search_regs (void);
4004 extern void record_unwind_save_match_data (void);
4005 struct re_registers;
4006 extern struct re_pattern_buffer *compile_pattern (Lisp_Object,
4007 struct re_registers *,
4008 Lisp_Object, bool, bool);
4009 extern ptrdiff_t fast_string_match_internal (Lisp_Object, Lisp_Object,
4010 Lisp_Object);
4011
4012 INLINE ptrdiff_t
4013 fast_string_match (Lisp_Object regexp, Lisp_Object string)
4014 {
4015 return fast_string_match_internal (regexp, string, Qnil);
4016 }
4017
4018 INLINE ptrdiff_t
4019 fast_string_match_ignore_case (Lisp_Object regexp, Lisp_Object string)
4020 {
4021 return fast_string_match_internal (regexp, string, Vascii_canon_table);
4022 }
4023
4024 extern ptrdiff_t fast_c_string_match_ignore_case (Lisp_Object, const char *,
4025 ptrdiff_t);
4026 extern ptrdiff_t fast_looking_at (Lisp_Object, ptrdiff_t, ptrdiff_t,
4027 ptrdiff_t, ptrdiff_t, Lisp_Object);
4028 extern ptrdiff_t find_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4029 ptrdiff_t, ptrdiff_t *, ptrdiff_t *, bool);
4030 extern ptrdiff_t scan_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4031 ptrdiff_t, bool);
4032 extern ptrdiff_t scan_newline_from_point (ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
4033 extern ptrdiff_t find_newline_no_quit (ptrdiff_t, ptrdiff_t,
4034 ptrdiff_t, ptrdiff_t *);
4035 extern ptrdiff_t find_before_next_newline (ptrdiff_t, ptrdiff_t,
4036 ptrdiff_t, ptrdiff_t *);
4037 extern void syms_of_search (void);
4038 extern void clear_regexp_cache (void);
4039
4040 /* Defined in minibuf.c. */
4041
4042 extern Lisp_Object Vminibuffer_list;
4043 extern Lisp_Object last_minibuf_string;
4044 extern Lisp_Object get_minibuffer (EMACS_INT);
4045 extern void init_minibuf_once (void);
4046 extern void syms_of_minibuf (void);
4047
4048 /* Defined in callint.c. */
4049
4050 extern void syms_of_callint (void);
4051
4052 /* Defined in casefiddle.c. */
4053
4054 extern void syms_of_casefiddle (void);
4055 extern void keys_of_casefiddle (void);
4056
4057 /* Defined in casetab.c. */
4058
4059 extern void init_casetab_once (void);
4060 extern void syms_of_casetab (void);
4061
4062 /* Defined in keyboard.c. */
4063
4064 extern Lisp_Object echo_message_buffer;
4065 extern struct kboard *echo_kboard;
4066 extern void cancel_echoing (void);
4067 extern bool input_pending;
4068 #ifdef HAVE_STACK_OVERFLOW_HANDLING
4069 extern sigjmp_buf return_to_command_loop;
4070 #endif
4071 extern Lisp_Object menu_bar_items (Lisp_Object);
4072 extern Lisp_Object tool_bar_items (Lisp_Object, int *);
4073 extern void discard_mouse_events (void);
4074 #ifdef USABLE_SIGIO
4075 void handle_input_available_signal (int);
4076 #endif
4077 extern Lisp_Object pending_funcalls;
4078 extern bool detect_input_pending (void);
4079 extern bool detect_input_pending_ignore_squeezables (void);
4080 extern bool detect_input_pending_run_timers (bool);
4081 extern void safe_run_hooks (Lisp_Object);
4082 extern void cmd_error_internal (Lisp_Object, const char *);
4083 extern Lisp_Object command_loop_1 (void);
4084 extern Lisp_Object read_menu_command (void);
4085 extern Lisp_Object recursive_edit_1 (void);
4086 extern void record_auto_save (void);
4087 extern void force_auto_save_soon (void);
4088 extern void init_keyboard (void);
4089 extern void syms_of_keyboard (void);
4090 extern void keys_of_keyboard (void);
4091
4092 /* Defined in indent.c. */
4093 extern ptrdiff_t current_column (void);
4094 extern void invalidate_current_column (void);
4095 extern bool indented_beyond_p (ptrdiff_t, ptrdiff_t, EMACS_INT);
4096 extern void syms_of_indent (void);
4097
4098 /* Defined in frame.c. */
4099 extern void store_frame_param (struct frame *, Lisp_Object, Lisp_Object);
4100 extern void store_in_alist (Lisp_Object *, Lisp_Object, Lisp_Object);
4101 extern Lisp_Object do_switch_frame (Lisp_Object, int, int, Lisp_Object);
4102 extern Lisp_Object get_frame_param (struct frame *, Lisp_Object);
4103 extern void frames_discard_buffer (Lisp_Object);
4104 extern void syms_of_frame (void);
4105
4106 /* Defined in emacs.c. */
4107 extern char **initial_argv;
4108 extern int initial_argc;
4109 #if defined (HAVE_X_WINDOWS) || defined (HAVE_NS)
4110 extern bool display_arg;
4111 #endif
4112 extern Lisp_Object decode_env_path (const char *, const char *, bool);
4113 extern Lisp_Object empty_unibyte_string, empty_multibyte_string;
4114 extern _Noreturn void terminate_due_to_signal (int, int);
4115 #ifdef WINDOWSNT
4116 extern Lisp_Object Vlibrary_cache;
4117 #endif
4118 #if HAVE_SETLOCALE
4119 void fixup_locale (void);
4120 void synchronize_system_messages_locale (void);
4121 void synchronize_system_time_locale (void);
4122 #else
4123 INLINE void fixup_locale (void) {}
4124 INLINE void synchronize_system_messages_locale (void) {}
4125 INLINE void synchronize_system_time_locale (void) {}
4126 #endif
4127 extern void shut_down_emacs (int, Lisp_Object);
4128
4129 /* True means don't do interactive redisplay and don't change tty modes. */
4130 extern bool noninteractive;
4131
4132 /* True means remove site-lisp directories from load-path. */
4133 extern bool no_site_lisp;
4134
4135 /* Pipe used to send exit notification to the daemon parent at
4136 startup. On Windows, we use a kernel event instead. */
4137 #ifndef WINDOWSNT
4138 extern int daemon_pipe[2];
4139 #define IS_DAEMON (daemon_pipe[1] != 0)
4140 #define DAEMON_RUNNING (daemon_pipe[1] >= 0)
4141 #else /* WINDOWSNT */
4142 extern void *w32_daemon_event;
4143 #define IS_DAEMON (w32_daemon_event != NULL)
4144 #define DAEMON_RUNNING (w32_daemon_event != INVALID_HANDLE_VALUE)
4145 #endif
4146
4147 /* True if handling a fatal error already. */
4148 extern bool fatal_error_in_progress;
4149
4150 /* True means don't do use window-system-specific display code. */
4151 extern bool inhibit_window_system;
4152 /* True means that a filter or a sentinel is running. */
4153 extern bool running_asynch_code;
4154
4155 /* Defined in process.c. */
4156 extern void kill_buffer_processes (Lisp_Object);
4157 extern int wait_reading_process_output (intmax_t, int, int, bool, Lisp_Object,
4158 struct Lisp_Process *, int);
4159 /* Max value for the first argument of wait_reading_process_output. */
4160 #if __GNUC__ == 3 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 5)
4161 /* Work around a bug in GCC 3.4.2, known to be fixed in GCC 4.6.3.
4162 The bug merely causes a bogus warning, but the warning is annoying. */
4163 # define WAIT_READING_MAX min (TYPE_MAXIMUM (time_t), INTMAX_MAX)
4164 #else
4165 # define WAIT_READING_MAX INTMAX_MAX
4166 #endif
4167 #ifdef HAVE_TIMERFD
4168 extern void add_timer_wait_descriptor (int);
4169 #endif
4170 extern void add_keyboard_wait_descriptor (int);
4171 extern void delete_keyboard_wait_descriptor (int);
4172 #ifdef HAVE_GPM
4173 extern void add_gpm_wait_descriptor (int);
4174 extern void delete_gpm_wait_descriptor (int);
4175 #endif
4176 extern void init_process_emacs (void);
4177 extern void syms_of_process (void);
4178 extern void setup_process_coding_systems (Lisp_Object);
4179
4180 /* Defined in callproc.c. */
4181 #ifndef DOS_NT
4182 _Noreturn
4183 #endif
4184 extern int child_setup (int, int, int, char **, bool, Lisp_Object);
4185 extern void init_callproc_1 (void);
4186 extern void init_callproc (void);
4187 extern void set_initial_environment (void);
4188 extern void syms_of_callproc (void);
4189
4190 /* Defined in doc.c. */
4191 enum text_quoting_style
4192 {
4193 /* Use curved single quotes ‘like this’. */
4194 CURVE_QUOTING_STYLE,
4195
4196 /* Use grave accent and apostrophe `like this'. */
4197 GRAVE_QUOTING_STYLE,
4198
4199 /* Use apostrophes 'like this'. */
4200 STRAIGHT_QUOTING_STYLE
4201 };
4202 extern enum text_quoting_style text_quoting_style (void);
4203 extern Lisp_Object read_doc_string (Lisp_Object);
4204 extern Lisp_Object get_doc_string (Lisp_Object, bool, bool);
4205 extern void syms_of_doc (void);
4206 extern int read_bytecode_char (bool);
4207
4208 /* Defined in bytecode.c. */
4209 extern void syms_of_bytecode (void);
4210 extern struct byte_stack *byte_stack_list;
4211 extern void relocate_byte_stack (void);
4212 extern Lisp_Object exec_byte_code (Lisp_Object, Lisp_Object, Lisp_Object,
4213 Lisp_Object, ptrdiff_t, Lisp_Object *);
4214
4215 /* Defined in macros.c. */
4216 extern void init_macros (void);
4217 extern void syms_of_macros (void);
4218
4219 /* Defined in undo.c. */
4220 extern void truncate_undo_list (struct buffer *);
4221 extern void record_insert (ptrdiff_t, ptrdiff_t);
4222 extern void record_delete (ptrdiff_t, Lisp_Object, bool);
4223 extern void record_first_change (void);
4224 extern void record_change (ptrdiff_t, ptrdiff_t);
4225 extern void record_property_change (ptrdiff_t, ptrdiff_t,
4226 Lisp_Object, Lisp_Object,
4227 Lisp_Object);
4228 extern void syms_of_undo (void);
4229
4230 /* Defined in textprop.c. */
4231 extern void report_interval_modification (Lisp_Object, Lisp_Object);
4232
4233 /* Defined in menu.c. */
4234 extern void syms_of_menu (void);
4235
4236 /* Defined in xmenu.c. */
4237 extern void syms_of_xmenu (void);
4238
4239 /* Defined in termchar.h. */
4240 struct tty_display_info;
4241
4242 /* Defined in termhooks.h. */
4243 struct terminal;
4244
4245 /* Defined in sysdep.c. */
4246 #ifndef HAVE_GET_CURRENT_DIR_NAME
4247 extern char *get_current_dir_name (void);
4248 #endif
4249 extern void stuff_char (char c);
4250 extern void init_foreground_group (void);
4251 extern void sys_subshell (void);
4252 extern void sys_suspend (void);
4253 extern void discard_tty_input (void);
4254 extern void init_sys_modes (struct tty_display_info *);
4255 extern void reset_sys_modes (struct tty_display_info *);
4256 extern void init_all_sys_modes (void);
4257 extern void reset_all_sys_modes (void);
4258 extern void child_setup_tty (int);
4259 extern void setup_pty (int);
4260 extern int set_window_size (int, int, int);
4261 extern EMACS_INT get_random (void);
4262 extern void seed_random (void *, ptrdiff_t);
4263 extern void init_random (void);
4264 extern void emacs_backtrace (int);
4265 extern _Noreturn void emacs_abort (void) NO_INLINE;
4266 extern int emacs_open (const char *, int, int);
4267 extern int emacs_pipe (int[2]);
4268 extern int emacs_close (int);
4269 extern ptrdiff_t emacs_read (int, void *, ptrdiff_t);
4270 extern ptrdiff_t emacs_write (int, void const *, ptrdiff_t);
4271 extern ptrdiff_t emacs_write_sig (int, void const *, ptrdiff_t);
4272 extern void emacs_perror (char const *);
4273
4274 extern void unlock_all_files (void);
4275 extern void lock_file (Lisp_Object);
4276 extern void unlock_file (Lisp_Object);
4277 extern void unlock_buffer (struct buffer *);
4278 extern void syms_of_filelock (void);
4279 extern int str_collate (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4280
4281 /* Defined in sound.c. */
4282 extern void syms_of_sound (void);
4283
4284 /* Defined in category.c. */
4285 extern void init_category_once (void);
4286 extern Lisp_Object char_category_set (int);
4287 extern void syms_of_category (void);
4288
4289 /* Defined in ccl.c. */
4290 extern void syms_of_ccl (void);
4291
4292 /* Defined in dired.c. */
4293 extern void syms_of_dired (void);
4294 extern Lisp_Object directory_files_internal (Lisp_Object, Lisp_Object,
4295 Lisp_Object, Lisp_Object,
4296 bool, Lisp_Object);
4297
4298 /* Defined in term.c. */
4299 extern int *char_ins_del_vector;
4300 extern void syms_of_term (void);
4301 extern _Noreturn void fatal (const char *msgid, ...)
4302 ATTRIBUTE_FORMAT_PRINTF (1, 2);
4303
4304 /* Defined in terminal.c. */
4305 extern void syms_of_terminal (void);
4306
4307 /* Defined in font.c. */
4308 extern void syms_of_font (void);
4309 extern void init_font (void);
4310
4311 #ifdef HAVE_WINDOW_SYSTEM
4312 /* Defined in fontset.c. */
4313 extern void syms_of_fontset (void);
4314 #endif
4315
4316 /* Defined in gfilenotify.c */
4317 #ifdef HAVE_GFILENOTIFY
4318 extern void globals_of_gfilenotify (void);
4319 extern void syms_of_gfilenotify (void);
4320 #endif
4321
4322 /* Defined in inotify.c */
4323 #ifdef HAVE_INOTIFY
4324 extern void syms_of_inotify (void);
4325 #endif
4326
4327 #ifdef HAVE_W32NOTIFY
4328 /* Defined on w32notify.c. */
4329 extern void syms_of_w32notify (void);
4330 #endif
4331
4332 /* Defined in xfaces.c. */
4333 extern Lisp_Object Vface_alternative_font_family_alist;
4334 extern Lisp_Object Vface_alternative_font_registry_alist;
4335 extern void syms_of_xfaces (void);
4336
4337 #ifdef HAVE_X_WINDOWS
4338 /* Defined in xfns.c. */
4339 extern void syms_of_xfns (void);
4340
4341 /* Defined in xsmfns.c. */
4342 extern void syms_of_xsmfns (void);
4343
4344 /* Defined in xselect.c. */
4345 extern void syms_of_xselect (void);
4346
4347 /* Defined in xterm.c. */
4348 extern void init_xterm (void);
4349 extern void syms_of_xterm (void);
4350 #endif /* HAVE_X_WINDOWS */
4351
4352 #ifdef HAVE_WINDOW_SYSTEM
4353 /* Defined in xterm.c, nsterm.m, w32term.c. */
4354 extern char *x_get_keysym_name (int);
4355 #endif /* HAVE_WINDOW_SYSTEM */
4356
4357 #ifdef HAVE_LIBXML2
4358 /* Defined in xml.c. */
4359 extern void syms_of_xml (void);
4360 extern void xml_cleanup_parser (void);
4361 #endif
4362
4363 #ifdef HAVE_ZLIB
4364 /* Defined in decompress.c. */
4365 extern void syms_of_decompress (void);
4366 #endif
4367
4368 #ifdef HAVE_DBUS
4369 /* Defined in dbusbind.c. */
4370 void init_dbusbind (void);
4371 void syms_of_dbusbind (void);
4372 #endif
4373
4374
4375 /* Defined in profiler.c. */
4376 extern bool profiler_memory_running;
4377 extern void malloc_probe (size_t);
4378 extern void syms_of_profiler (void);
4379
4380
4381 #ifdef DOS_NT
4382 /* Defined in msdos.c, w32.c. */
4383 extern char *emacs_root_dir (void);
4384 #endif /* DOS_NT */
4385
4386 /* Defined in lastfile.c. */
4387 extern char my_edata[];
4388 extern char my_endbss[];
4389 extern char *my_endbss_static;
4390
4391 /* True means ^G can quit instantly. */
4392 extern bool immediate_quit;
4393
4394 extern void *xmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4395 extern void *xzalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4396 extern void *xrealloc (void *, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
4397 extern void xfree (void *);
4398 extern void *xnmalloc (ptrdiff_t, ptrdiff_t) ATTRIBUTE_MALLOC_SIZE ((1,2));
4399 extern void *xnrealloc (void *, ptrdiff_t, ptrdiff_t)
4400 ATTRIBUTE_ALLOC_SIZE ((2,3));
4401 extern void *xpalloc (void *, ptrdiff_t *, ptrdiff_t, ptrdiff_t, ptrdiff_t);
4402
4403 extern char *xstrdup (const char *) ATTRIBUTE_MALLOC;
4404 extern char *xlispstrdup (Lisp_Object) ATTRIBUTE_MALLOC;
4405 extern void dupstring (char **, char const *);
4406
4407 /* Make DEST a copy of STRING's data. Return a pointer to DEST's terminating
4408 null byte. This is like stpcpy, except the source is a Lisp string. */
4409
4410 INLINE char *
4411 lispstpcpy (char *dest, Lisp_Object string)
4412 {
4413 ptrdiff_t len = SBYTES (string);
4414 memcpy (dest, SDATA (string), len + 1);
4415 return dest + len;
4416 }
4417
4418 extern void xputenv (const char *);
4419
4420 extern char *egetenv_internal (const char *, ptrdiff_t);
4421
4422 INLINE char *
4423 egetenv (const char *var)
4424 {
4425 /* When VAR is a string literal, strlen can be optimized away. */
4426 return egetenv_internal (var, strlen (var));
4427 }
4428
4429 /* Set up the name of the machine we're running on. */
4430 extern void init_system_name (void);
4431
4432 /* Return the absolute value of X. X should be a signed integer
4433 expression without side effects, and X's absolute value should not
4434 exceed the maximum for its promoted type. This is called 'eabs'
4435 because 'abs' is reserved by the C standard. */
4436 #define eabs(x) ((x) < 0 ? -(x) : (x))
4437
4438 /* Return a fixnum or float, depending on whether VAL fits in a Lisp
4439 fixnum. */
4440
4441 #define make_fixnum_or_float(val) \
4442 (FIXNUM_OVERFLOW_P (val) ? make_float (val) : make_number (val))
4443
4444 /* SAFE_ALLOCA normally allocates memory on the stack, but if size is
4445 larger than MAX_ALLOCA, use xmalloc to avoid overflowing the stack. */
4446
4447 enum MAX_ALLOCA { MAX_ALLOCA = 16 * 1024 };
4448
4449 extern void *record_xmalloc (size_t) ATTRIBUTE_ALLOC_SIZE ((1));
4450
4451 #define USE_SAFE_ALLOCA \
4452 ptrdiff_t sa_avail = MAX_ALLOCA; \
4453 ptrdiff_t sa_count = SPECPDL_INDEX (); bool sa_must_free = false
4454
4455 #define AVAIL_ALLOCA(size) (sa_avail -= (size), alloca (size))
4456
4457 /* SAFE_ALLOCA allocates a simple buffer. */
4458
4459 #define SAFE_ALLOCA(size) ((size) <= sa_avail \
4460 ? AVAIL_ALLOCA (size) \
4461 : (sa_must_free = true, record_xmalloc (size)))
4462
4463 /* SAFE_NALLOCA sets BUF to a newly allocated array of MULTIPLIER *
4464 NITEMS items, each of the same type as *BUF. MULTIPLIER must
4465 positive. The code is tuned for MULTIPLIER being a constant. */
4466
4467 #define SAFE_NALLOCA(buf, multiplier, nitems) \
4468 do { \
4469 if ((nitems) <= sa_avail / sizeof *(buf) / (multiplier)) \
4470 (buf) = AVAIL_ALLOCA (sizeof *(buf) * (multiplier) * (nitems)); \
4471 else \
4472 { \
4473 (buf) = xnmalloc (nitems, sizeof *(buf) * (multiplier)); \
4474 sa_must_free = true; \
4475 record_unwind_protect_ptr (xfree, buf); \
4476 } \
4477 } while (false)
4478
4479 /* SAFE_ALLOCA_STRING allocates a C copy of a Lisp string. */
4480
4481 #define SAFE_ALLOCA_STRING(ptr, string) \
4482 do { \
4483 (ptr) = SAFE_ALLOCA (SBYTES (string) + 1); \
4484 memcpy (ptr, SDATA (string), SBYTES (string) + 1); \
4485 } while (false)
4486
4487 /* SAFE_FREE frees xmalloced memory and enables GC as needed. */
4488
4489 #define SAFE_FREE() \
4490 do { \
4491 if (sa_must_free) { \
4492 sa_must_free = false; \
4493 unbind_to (sa_count, Qnil); \
4494 } \
4495 } while (false)
4496
4497 /* SAFE_ALLOCA_LISP allocates an array of Lisp_Objects. */
4498
4499 #define SAFE_ALLOCA_LISP(buf, nelt) \
4500 do { \
4501 ptrdiff_t alloca_nbytes; \
4502 if (INT_MULTIPLY_WRAPV (nelt, word_size, &alloca_nbytes) \
4503 || SIZE_MAX < alloca_nbytes) \
4504 memory_full (SIZE_MAX); \
4505 else if (alloca_nbytes <= sa_avail) \
4506 (buf) = AVAIL_ALLOCA (alloca_nbytes); \
4507 else \
4508 { \
4509 Lisp_Object arg_; \
4510 (buf) = xmalloc (alloca_nbytes); \
4511 arg_ = make_save_memory (buf, nelt); \
4512 sa_must_free = true; \
4513 record_unwind_protect (free_save_value, arg_); \
4514 } \
4515 } while (false)
4516
4517
4518 /* If USE_STACK_LISP_OBJECTS, define macros that and functions that allocate
4519 block-scoped conses and strings. These objects are not
4520 managed by the garbage collector, so they are dangerous: passing them
4521 out of their scope (e.g., to user code) results in undefined behavior.
4522 Conversely, they have better performance because GC is not involved.
4523
4524 This feature is experimental and requires careful debugging.
4525 Build with CPPFLAGS='-DUSE_STACK_LISP_OBJECTS=0' to disable it. */
4526
4527 #ifndef USE_STACK_LISP_OBJECTS
4528 # define USE_STACK_LISP_OBJECTS true
4529 #endif
4530
4531 #ifdef GC_CHECK_STRING_BYTES
4532 enum { defined_GC_CHECK_STRING_BYTES = true };
4533 #else
4534 enum { defined_GC_CHECK_STRING_BYTES = false };
4535 #endif
4536
4537 /* Struct inside unions that are typically no larger and aligned enough. */
4538
4539 union Aligned_Cons
4540 {
4541 struct Lisp_Cons s;
4542 double d; intmax_t i; void *p;
4543 };
4544
4545 union Aligned_String
4546 {
4547 struct Lisp_String s;
4548 double d; intmax_t i; void *p;
4549 };
4550
4551 /* True for stack-based cons and string implementations, respectively.
4552 Use stack-based strings only if stack-based cons also works.
4553 Otherwise, STACK_CONS would create heap-based cons cells that
4554 could point to stack-based strings, which is a no-no. */
4555
4556 enum
4557 {
4558 USE_STACK_CONS = (USE_STACK_LISP_OBJECTS
4559 && alignof (union Aligned_Cons) % GCALIGNMENT == 0),
4560 USE_STACK_STRING = (USE_STACK_CONS
4561 && !defined_GC_CHECK_STRING_BYTES
4562 && alignof (union Aligned_String) % GCALIGNMENT == 0)
4563 };
4564
4565 /* Auxiliary macros used for auto allocation of Lisp objects. Please
4566 use these only in macros like AUTO_CONS that declare a local
4567 variable whose lifetime will be clear to the programmer. */
4568 #define STACK_CONS(a, b) \
4569 make_lisp_ptr (&(union Aligned_Cons) { { a, { b } } }.s, Lisp_Cons)
4570 #define AUTO_CONS_EXPR(a, b) \
4571 (USE_STACK_CONS ? STACK_CONS (a, b) : Fcons (a, b))
4572
4573 /* Declare NAME as an auto Lisp cons or short list if possible, a
4574 GC-based one otherwise. This is in the sense of the C keyword
4575 'auto'; i.e., the object has the lifetime of the containing block.
4576 The resulting object should not be made visible to user Lisp code. */
4577
4578 #define AUTO_CONS(name, a, b) Lisp_Object name = AUTO_CONS_EXPR (a, b)
4579 #define AUTO_LIST1(name, a) \
4580 Lisp_Object name = (USE_STACK_CONS ? STACK_CONS (a, Qnil) : list1 (a))
4581 #define AUTO_LIST2(name, a, b) \
4582 Lisp_Object name = (USE_STACK_CONS \
4583 ? STACK_CONS (a, STACK_CONS (b, Qnil)) \
4584 : list2 (a, b))
4585 #define AUTO_LIST3(name, a, b, c) \
4586 Lisp_Object name = (USE_STACK_CONS \
4587 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, Qnil))) \
4588 : list3 (a, b, c))
4589 #define AUTO_LIST4(name, a, b, c, d) \
4590 Lisp_Object name \
4591 = (USE_STACK_CONS \
4592 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, \
4593 STACK_CONS (d, Qnil)))) \
4594 : list4 (a, b, c, d))
4595
4596 /* Check whether stack-allocated strings are ASCII-only. */
4597
4598 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
4599 extern const char *verify_ascii (const char *);
4600 #else
4601 # define verify_ascii(str) (str)
4602 #endif
4603
4604 /* Declare NAME as an auto Lisp string if possible, a GC-based one if not.
4605 Take its value from STR. STR is not necessarily copied and should
4606 contain only ASCII characters. The resulting Lisp string should
4607 not be modified or made visible to user code. */
4608
4609 #define AUTO_STRING(name, str) \
4610 Lisp_Object name = \
4611 (USE_STACK_STRING \
4612 ? (make_lisp_ptr \
4613 ((&(union Aligned_String) \
4614 {{strlen (str), -1, 0, (unsigned char *) verify_ascii (str)}}.s), \
4615 Lisp_String)) \
4616 : build_string (verify_ascii (str)))
4617
4618 /* Loop over all tails of a list, checking for cycles.
4619 FIXME: Make tortoise and n internal declarations.
4620 FIXME: Unroll the loop body so we don't need `n'. */
4621 #define FOR_EACH_TAIL(hare, list, tortoise, n) \
4622 for ((tortoise) = (hare) = (list), (n) = true; \
4623 CONSP (hare); \
4624 (hare = XCDR (hare), (n) = !(n), \
4625 ((n) \
4626 ? (EQ (hare, tortoise) \
4627 ? xsignal1 (Qcircular_list, list) \
4628 : (void) 0) \
4629 /* Move tortoise before the next iteration, in case */ \
4630 /* the next iteration does an Fsetcdr. */ \
4631 : (void) ((tortoise) = XCDR (tortoise)))))
4632
4633 /* Do a `for' loop over alist values. */
4634
4635 #define FOR_EACH_ALIST_VALUE(head_var, list_var, value_var) \
4636 for ((list_var) = (head_var); \
4637 (CONSP (list_var) && ((value_var) = XCDR (XCAR (list_var)), true)); \
4638 (list_var) = XCDR (list_var))
4639
4640 /* Check whether it's time for GC, and run it if so. */
4641
4642 INLINE void
4643 maybe_gc (void)
4644 {
4645 if ((consing_since_gc > gc_cons_threshold
4646 && consing_since_gc > gc_relative_threshold)
4647 || (!NILP (Vmemory_full)
4648 && consing_since_gc > memory_full_cons_threshold))
4649 Fgarbage_collect ();
4650 }
4651
4652 INLINE bool
4653 functionp (Lisp_Object object)
4654 {
4655 if (SYMBOLP (object) && !NILP (Ffboundp (object)))
4656 {
4657 object = Findirect_function (object, Qt);
4658
4659 if (CONSP (object) && EQ (XCAR (object), Qautoload))
4660 {
4661 /* Autoloaded symbols are functions, except if they load
4662 macros or keymaps. */
4663 int i;
4664 for (i = 0; i < 4 && CONSP (object); i++)
4665 object = XCDR (object);
4666
4667 return ! (CONSP (object) && !NILP (XCAR (object)));
4668 }
4669 }
4670
4671 if (SUBRP (object))
4672 return XSUBR (object)->max_args != UNEVALLED;
4673 else if (COMPILEDP (object))
4674 return true;
4675 else if (CONSP (object))
4676 {
4677 Lisp_Object car = XCAR (object);
4678 return EQ (car, Qlambda) || EQ (car, Qclosure);
4679 }
4680 else
4681 return false;
4682 }
4683
4684 INLINE_HEADER_END
4685
4686 #endif /* EMACS_LISP_H */