]> code.delx.au - gnu-emacs/blob - src/alloc.c
49f5b7f18bc6d188f57786a7d7d4dfc5ce947f99
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2015 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
28 #endif
29
30 #ifdef HAVE_PTHREAD
31 #include <pthread.h>
32 #endif
33
34 #include "lisp.h"
35 #include "dispextern.h"
36 #include "intervals.h"
37 #include "puresize.h"
38 #include "systime.h"
39 #include "character.h"
40 #include "buffer.h"
41 #include "window.h"
42 #include "keyboard.h"
43 #include "frame.h"
44 #include "blockinput.h"
45 #include "termhooks.h" /* For struct terminal. */
46 #ifdef HAVE_WINDOW_SYSTEM
47 #include TERM_HEADER
48 #endif /* HAVE_WINDOW_SYSTEM */
49
50 #include <verify.h>
51 #include <execinfo.h> /* For backtrace. */
52
53 #ifdef HAVE_LINUX_SYSINFO
54 #include <sys/sysinfo.h>
55 #endif
56
57 #ifdef MSDOS
58 #include "dosfns.h" /* For dos_memory_info. */
59 #endif
60
61 #if (defined ENABLE_CHECKING \
62 && defined HAVE_VALGRIND_VALGRIND_H \
63 && !defined USE_VALGRIND)
64 # define USE_VALGRIND 1
65 #endif
66
67 #if USE_VALGRIND
68 #include <valgrind/valgrind.h>
69 #include <valgrind/memcheck.h>
70 static bool valgrind_p;
71 #endif
72
73 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects. */
74
75 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
76 memory. Can do this only if using gmalloc.c and if not checking
77 marked objects. */
78
79 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
80 || defined HYBRID_MALLOC || defined GC_CHECK_MARKED_OBJECTS)
81 #undef GC_MALLOC_CHECK
82 #endif
83
84 #include <unistd.h>
85 #include <fcntl.h>
86
87 #ifdef USE_GTK
88 # include "gtkutil.h"
89 #endif
90 #ifdef WINDOWSNT
91 #include "w32.h"
92 #include "w32heap.h" /* for sbrk */
93 #endif
94
95 #ifdef DOUG_LEA_MALLOC
96
97 #include <malloc.h>
98
99 /* Specify maximum number of areas to mmap. It would be nice to use a
100 value that explicitly means "no limit". */
101
102 #define MMAP_MAX_AREAS 100000000
103
104 #endif /* not DOUG_LEA_MALLOC */
105
106 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
107 to a struct Lisp_String. */
108
109 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
110 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
111 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
112
113 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
114 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
115 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
116
117 /* Default value of gc_cons_threshold (see below). */
118
119 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
120
121 /* Global variables. */
122 struct emacs_globals globals;
123
124 /* Number of bytes of consing done since the last gc. */
125
126 EMACS_INT consing_since_gc;
127
128 /* Similar minimum, computed from Vgc_cons_percentage. */
129
130 EMACS_INT gc_relative_threshold;
131
132 /* Minimum number of bytes of consing since GC before next GC,
133 when memory is full. */
134
135 EMACS_INT memory_full_cons_threshold;
136
137 /* True during GC. */
138
139 bool gc_in_progress;
140
141 /* True means abort if try to GC.
142 This is for code which is written on the assumption that
143 no GC will happen, so as to verify that assumption. */
144
145 bool abort_on_gc;
146
147 /* Number of live and free conses etc. */
148
149 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
150 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
151 static EMACS_INT total_free_floats, total_floats;
152
153 /* Points to memory space allocated as "spare", to be freed if we run
154 out of memory. We keep one large block, four cons-blocks, and
155 two string blocks. */
156
157 static char *spare_memory[7];
158
159 /* Amount of spare memory to keep in large reserve block, or to see
160 whether this much is available when malloc fails on a larger request. */
161
162 #define SPARE_MEMORY (1 << 14)
163
164 /* Initialize it to a nonzero value to force it into data space
165 (rather than bss space). That way unexec will remap it into text
166 space (pure), on some systems. We have not implemented the
167 remapping on more recent systems because this is less important
168 nowadays than in the days of small memories and timesharing. */
169
170 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
171 #define PUREBEG (char *) pure
172
173 /* Pointer to the pure area, and its size. */
174
175 static char *purebeg;
176 static ptrdiff_t pure_size;
177
178 /* Number of bytes of pure storage used before pure storage overflowed.
179 If this is non-zero, this implies that an overflow occurred. */
180
181 static ptrdiff_t pure_bytes_used_before_overflow;
182
183 /* Index in pure at which next pure Lisp object will be allocated.. */
184
185 static ptrdiff_t pure_bytes_used_lisp;
186
187 /* Number of bytes allocated for non-Lisp objects in pure storage. */
188
189 static ptrdiff_t pure_bytes_used_non_lisp;
190
191 /* If nonzero, this is a warning delivered by malloc and not yet
192 displayed. */
193
194 const char *pending_malloc_warning;
195
196 #if 0 /* Normally, pointer sanity only on request... */
197 #ifdef ENABLE_CHECKING
198 #define SUSPICIOUS_OBJECT_CHECKING 1
199 #endif
200 #endif
201
202 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
203 bug is unresolved. */
204 #define SUSPICIOUS_OBJECT_CHECKING 1
205
206 #ifdef SUSPICIOUS_OBJECT_CHECKING
207 struct suspicious_free_record
208 {
209 void *suspicious_object;
210 void *backtrace[128];
211 };
212 static void *suspicious_objects[32];
213 static int suspicious_object_index;
214 struct suspicious_free_record suspicious_free_history[64] EXTERNALLY_VISIBLE;
215 static int suspicious_free_history_index;
216 /* Find the first currently-monitored suspicious pointer in range
217 [begin,end) or NULL if no such pointer exists. */
218 static void *find_suspicious_object_in_range (void *begin, void *end);
219 static void detect_suspicious_free (void *ptr);
220 #else
221 # define find_suspicious_object_in_range(begin, end) NULL
222 # define detect_suspicious_free(ptr) (void)
223 #endif
224
225 /* Maximum amount of C stack to save when a GC happens. */
226
227 #ifndef MAX_SAVE_STACK
228 #define MAX_SAVE_STACK 16000
229 #endif
230
231 /* Buffer in which we save a copy of the C stack at each GC. */
232
233 #if MAX_SAVE_STACK > 0
234 static char *stack_copy;
235 static ptrdiff_t stack_copy_size;
236
237 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
238 avoiding any address sanitization. */
239
240 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
241 no_sanitize_memcpy (void *dest, void const *src, size_t size)
242 {
243 if (! ADDRESS_SANITIZER)
244 return memcpy (dest, src, size);
245 else
246 {
247 size_t i;
248 char *d = dest;
249 char const *s = src;
250 for (i = 0; i < size; i++)
251 d[i] = s[i];
252 return dest;
253 }
254 }
255
256 #endif /* MAX_SAVE_STACK > 0 */
257
258 static void mark_terminals (void);
259 static void gc_sweep (void);
260 static Lisp_Object make_pure_vector (ptrdiff_t);
261 static void mark_buffer (struct buffer *);
262
263 #if !defined REL_ALLOC || defined SYSTEM_MALLOC || defined HYBRID_MALLOC
264 static void refill_memory_reserve (void);
265 #endif
266 static void compact_small_strings (void);
267 static void free_large_strings (void);
268 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
269
270 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
271 what memory allocated via lisp_malloc and lisp_align_malloc is intended
272 for what purpose. This enumeration specifies the type of memory. */
273
274 enum mem_type
275 {
276 MEM_TYPE_NON_LISP,
277 MEM_TYPE_BUFFER,
278 MEM_TYPE_CONS,
279 MEM_TYPE_STRING,
280 MEM_TYPE_MISC,
281 MEM_TYPE_SYMBOL,
282 MEM_TYPE_FLOAT,
283 /* Since all non-bool pseudovectors are small enough to be
284 allocated from vector blocks, this memory type denotes
285 large regular vectors and large bool pseudovectors. */
286 MEM_TYPE_VECTORLIKE,
287 /* Special type to denote vector blocks. */
288 MEM_TYPE_VECTOR_BLOCK,
289 /* Special type to denote reserved memory. */
290 MEM_TYPE_SPARE
291 };
292
293 /* A unique object in pure space used to make some Lisp objects
294 on free lists recognizable in O(1). */
295
296 static Lisp_Object Vdead;
297 #define DEADP(x) EQ (x, Vdead)
298
299 #ifdef GC_MALLOC_CHECK
300
301 enum mem_type allocated_mem_type;
302
303 #endif /* GC_MALLOC_CHECK */
304
305 /* A node in the red-black tree describing allocated memory containing
306 Lisp data. Each such block is recorded with its start and end
307 address when it is allocated, and removed from the tree when it
308 is freed.
309
310 A red-black tree is a balanced binary tree with the following
311 properties:
312
313 1. Every node is either red or black.
314 2. Every leaf is black.
315 3. If a node is red, then both of its children are black.
316 4. Every simple path from a node to a descendant leaf contains
317 the same number of black nodes.
318 5. The root is always black.
319
320 When nodes are inserted into the tree, or deleted from the tree,
321 the tree is "fixed" so that these properties are always true.
322
323 A red-black tree with N internal nodes has height at most 2
324 log(N+1). Searches, insertions and deletions are done in O(log N).
325 Please see a text book about data structures for a detailed
326 description of red-black trees. Any book worth its salt should
327 describe them. */
328
329 struct mem_node
330 {
331 /* Children of this node. These pointers are never NULL. When there
332 is no child, the value is MEM_NIL, which points to a dummy node. */
333 struct mem_node *left, *right;
334
335 /* The parent of this node. In the root node, this is NULL. */
336 struct mem_node *parent;
337
338 /* Start and end of allocated region. */
339 void *start, *end;
340
341 /* Node color. */
342 enum {MEM_BLACK, MEM_RED} color;
343
344 /* Memory type. */
345 enum mem_type type;
346 };
347
348 /* Base address of stack. Set in main. */
349
350 Lisp_Object *stack_base;
351
352 /* Root of the tree describing allocated Lisp memory. */
353
354 static struct mem_node *mem_root;
355
356 /* Lowest and highest known address in the heap. */
357
358 static void *min_heap_address, *max_heap_address;
359
360 /* Sentinel node of the tree. */
361
362 static struct mem_node mem_z;
363 #define MEM_NIL &mem_z
364
365 static struct mem_node *mem_insert (void *, void *, enum mem_type);
366 static void mem_insert_fixup (struct mem_node *);
367 static void mem_rotate_left (struct mem_node *);
368 static void mem_rotate_right (struct mem_node *);
369 static void mem_delete (struct mem_node *);
370 static void mem_delete_fixup (struct mem_node *);
371 static struct mem_node *mem_find (void *);
372
373 #ifndef DEADP
374 # define DEADP(x) 0
375 #endif
376
377 /* Addresses of staticpro'd variables. Initialize it to a nonzero
378 value; otherwise some compilers put it into BSS. */
379
380 enum { NSTATICS = 2048 };
381 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
382
383 /* Index of next unused slot in staticvec. */
384
385 static int staticidx;
386
387 static void *pure_alloc (size_t, int);
388
389 /* Return X rounded to the next multiple of Y. Arguments should not
390 have side effects, as they are evaluated more than once. Assume X
391 + Y - 1 does not overflow. Tune for Y being a power of 2. */
392
393 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
394 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
395 : ((x) + (y) - 1) & ~ ((y) - 1))
396
397 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
398
399 static void *
400 ALIGN (void *ptr, int alignment)
401 {
402 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
403 }
404
405 /* Extract the pointer hidden within A, if A is not a symbol.
406 If A is a symbol, extract the hidden pointer's offset from lispsym,
407 converted to void *. */
408
409 #define macro_XPNTR_OR_SYMBOL_OFFSET(a) \
410 ((void *) (intptr_t) (USE_LSB_TAG ? XLI (a) - XTYPE (a) : XLI (a) & VALMASK))
411
412 /* Extract the pointer hidden within A. */
413
414 #define macro_XPNTR(a) \
415 ((void *) ((intptr_t) XPNTR_OR_SYMBOL_OFFSET (a) \
416 + (SYMBOLP (a) ? (char *) lispsym : NULL)))
417
418 /* For pointer access, define XPNTR and XPNTR_OR_SYMBOL_OFFSET as
419 functions, as functions are cleaner and can be used in debuggers.
420 Also, define them as macros if being compiled with GCC without
421 optimization, for performance in that case. The macro_* names are
422 private to this section of code. */
423
424 static ATTRIBUTE_UNUSED void *
425 XPNTR_OR_SYMBOL_OFFSET (Lisp_Object a)
426 {
427 return macro_XPNTR_OR_SYMBOL_OFFSET (a);
428 }
429 static ATTRIBUTE_UNUSED void *
430 XPNTR (Lisp_Object a)
431 {
432 return macro_XPNTR (a);
433 }
434
435 #if DEFINE_KEY_OPS_AS_MACROS
436 # define XPNTR_OR_SYMBOL_OFFSET(a) macro_XPNTR_OR_SYMBOL_OFFSET (a)
437 # define XPNTR(a) macro_XPNTR (a)
438 #endif
439
440 static void
441 XFLOAT_INIT (Lisp_Object f, double n)
442 {
443 XFLOAT (f)->u.data = n;
444 }
445
446 #ifdef DOUG_LEA_MALLOC
447 static bool
448 pointers_fit_in_lispobj_p (void)
449 {
450 return (UINTPTR_MAX <= VAL_MAX) || USE_LSB_TAG;
451 }
452
453 static bool
454 mmap_lisp_allowed_p (void)
455 {
456 /* If we can't store all memory addresses in our lisp objects, it's
457 risky to let the heap use mmap and give us addresses from all
458 over our address space. We also can't use mmap for lisp objects
459 if we might dump: unexec doesn't preserve the contents of mmapped
460 regions. */
461 return pointers_fit_in_lispobj_p () && !might_dump;
462 }
463 #endif
464
465 /* Head of a circularly-linked list of extant finalizers. */
466 static struct Lisp_Finalizer finalizers;
467
468 /* Head of a circularly-linked list of finalizers that must be invoked
469 because we deemed them unreachable. This list must be global, and
470 not a local inside garbage_collect_1, in case we GC again while
471 running finalizers. */
472 static struct Lisp_Finalizer doomed_finalizers;
473
474 \f
475 /************************************************************************
476 Malloc
477 ************************************************************************/
478
479 /* Function malloc calls this if it finds we are near exhausting storage. */
480
481 void
482 malloc_warning (const char *str)
483 {
484 pending_malloc_warning = str;
485 }
486
487
488 /* Display an already-pending malloc warning. */
489
490 void
491 display_malloc_warning (void)
492 {
493 call3 (intern ("display-warning"),
494 intern ("alloc"),
495 build_string (pending_malloc_warning),
496 intern ("emergency"));
497 pending_malloc_warning = 0;
498 }
499 \f
500 /* Called if we can't allocate relocatable space for a buffer. */
501
502 void
503 buffer_memory_full (ptrdiff_t nbytes)
504 {
505 /* If buffers use the relocating allocator, no need to free
506 spare_memory, because we may have plenty of malloc space left
507 that we could get, and if we don't, the malloc that fails will
508 itself cause spare_memory to be freed. If buffers don't use the
509 relocating allocator, treat this like any other failing
510 malloc. */
511
512 #ifndef REL_ALLOC
513 memory_full (nbytes);
514 #else
515 /* This used to call error, but if we've run out of memory, we could
516 get infinite recursion trying to build the string. */
517 xsignal (Qnil, Vmemory_signal_data);
518 #endif
519 }
520
521 /* A common multiple of the positive integers A and B. Ideally this
522 would be the least common multiple, but there's no way to do that
523 as a constant expression in C, so do the best that we can easily do. */
524 #define COMMON_MULTIPLE(a, b) \
525 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
526
527 #ifndef XMALLOC_OVERRUN_CHECK
528 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
529 #else
530
531 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
532 around each block.
533
534 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
535 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
536 block size in little-endian order. The trailer consists of
537 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
538
539 The header is used to detect whether this block has been allocated
540 through these functions, as some low-level libc functions may
541 bypass the malloc hooks. */
542
543 #define XMALLOC_OVERRUN_CHECK_SIZE 16
544 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
545 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
546
547 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
548 hold a size_t value and (2) the header size is a multiple of the
549 alignment that Emacs needs for C types and for USE_LSB_TAG. */
550 #define XMALLOC_BASE_ALIGNMENT alignof (max_align_t)
551
552 #define XMALLOC_HEADER_ALIGNMENT \
553 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
554 #define XMALLOC_OVERRUN_SIZE_SIZE \
555 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
556 + XMALLOC_HEADER_ALIGNMENT - 1) \
557 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
558 - XMALLOC_OVERRUN_CHECK_SIZE)
559
560 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
561 { '\x9a', '\x9b', '\xae', '\xaf',
562 '\xbf', '\xbe', '\xce', '\xcf',
563 '\xea', '\xeb', '\xec', '\xed',
564 '\xdf', '\xde', '\x9c', '\x9d' };
565
566 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
567 { '\xaa', '\xab', '\xac', '\xad',
568 '\xba', '\xbb', '\xbc', '\xbd',
569 '\xca', '\xcb', '\xcc', '\xcd',
570 '\xda', '\xdb', '\xdc', '\xdd' };
571
572 /* Insert and extract the block size in the header. */
573
574 static void
575 xmalloc_put_size (unsigned char *ptr, size_t size)
576 {
577 int i;
578 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
579 {
580 *--ptr = size & ((1 << CHAR_BIT) - 1);
581 size >>= CHAR_BIT;
582 }
583 }
584
585 static size_t
586 xmalloc_get_size (unsigned char *ptr)
587 {
588 size_t size = 0;
589 int i;
590 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
591 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
592 {
593 size <<= CHAR_BIT;
594 size += *ptr++;
595 }
596 return size;
597 }
598
599
600 /* Like malloc, but wraps allocated block with header and trailer. */
601
602 static void *
603 overrun_check_malloc (size_t size)
604 {
605 register unsigned char *val;
606 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
607 emacs_abort ();
608
609 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
610 if (val)
611 {
612 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
613 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
614 xmalloc_put_size (val, size);
615 memcpy (val + size, xmalloc_overrun_check_trailer,
616 XMALLOC_OVERRUN_CHECK_SIZE);
617 }
618 return val;
619 }
620
621
622 /* Like realloc, but checks old block for overrun, and wraps new block
623 with header and trailer. */
624
625 static void *
626 overrun_check_realloc (void *block, size_t size)
627 {
628 register unsigned char *val = (unsigned char *) block;
629 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
630 emacs_abort ();
631
632 if (val
633 && memcmp (xmalloc_overrun_check_header,
634 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
635 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
636 {
637 size_t osize = xmalloc_get_size (val);
638 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
639 XMALLOC_OVERRUN_CHECK_SIZE))
640 emacs_abort ();
641 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
642 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
643 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
644 }
645
646 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
647
648 if (val)
649 {
650 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
651 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
652 xmalloc_put_size (val, size);
653 memcpy (val + size, xmalloc_overrun_check_trailer,
654 XMALLOC_OVERRUN_CHECK_SIZE);
655 }
656 return val;
657 }
658
659 /* Like free, but checks block for overrun. */
660
661 static void
662 overrun_check_free (void *block)
663 {
664 unsigned char *val = (unsigned char *) block;
665
666 if (val
667 && memcmp (xmalloc_overrun_check_header,
668 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
669 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
670 {
671 size_t osize = xmalloc_get_size (val);
672 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
673 XMALLOC_OVERRUN_CHECK_SIZE))
674 emacs_abort ();
675 #ifdef XMALLOC_CLEAR_FREE_MEMORY
676 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
677 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
678 #else
679 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
680 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
681 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
682 #endif
683 }
684
685 free (val);
686 }
687
688 #undef malloc
689 #undef realloc
690 #undef free
691 #define malloc overrun_check_malloc
692 #define realloc overrun_check_realloc
693 #define free overrun_check_free
694 #endif
695
696 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
697 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
698 If that variable is set, block input while in one of Emacs's memory
699 allocation functions. There should be no need for this debugging
700 option, since signal handlers do not allocate memory, but Emacs
701 formerly allocated memory in signal handlers and this compile-time
702 option remains as a way to help debug the issue should it rear its
703 ugly head again. */
704 #ifdef XMALLOC_BLOCK_INPUT_CHECK
705 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
706 static void
707 malloc_block_input (void)
708 {
709 if (block_input_in_memory_allocators)
710 block_input ();
711 }
712 static void
713 malloc_unblock_input (void)
714 {
715 if (block_input_in_memory_allocators)
716 unblock_input ();
717 }
718 # define MALLOC_BLOCK_INPUT malloc_block_input ()
719 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
720 #else
721 # define MALLOC_BLOCK_INPUT ((void) 0)
722 # define MALLOC_UNBLOCK_INPUT ((void) 0)
723 #endif
724
725 #define MALLOC_PROBE(size) \
726 do { \
727 if (profiler_memory_running) \
728 malloc_probe (size); \
729 } while (0)
730
731
732 /* Like malloc but check for no memory and block interrupt input.. */
733
734 void *
735 xmalloc (size_t size)
736 {
737 void *val;
738
739 MALLOC_BLOCK_INPUT;
740 val = malloc (size);
741 MALLOC_UNBLOCK_INPUT;
742
743 if (!val && size)
744 memory_full (size);
745 MALLOC_PROBE (size);
746 return val;
747 }
748
749 /* Like the above, but zeroes out the memory just allocated. */
750
751 void *
752 xzalloc (size_t size)
753 {
754 void *val;
755
756 MALLOC_BLOCK_INPUT;
757 val = malloc (size);
758 MALLOC_UNBLOCK_INPUT;
759
760 if (!val && size)
761 memory_full (size);
762 memset (val, 0, size);
763 MALLOC_PROBE (size);
764 return val;
765 }
766
767 /* Like realloc but check for no memory and block interrupt input.. */
768
769 void *
770 xrealloc (void *block, size_t size)
771 {
772 void *val;
773
774 MALLOC_BLOCK_INPUT;
775 /* We must call malloc explicitly when BLOCK is 0, since some
776 reallocs don't do this. */
777 if (! block)
778 val = malloc (size);
779 else
780 val = realloc (block, size);
781 MALLOC_UNBLOCK_INPUT;
782
783 if (!val && size)
784 memory_full (size);
785 MALLOC_PROBE (size);
786 return val;
787 }
788
789
790 /* Like free but block interrupt input. */
791
792 void
793 xfree (void *block)
794 {
795 if (!block)
796 return;
797 MALLOC_BLOCK_INPUT;
798 free (block);
799 MALLOC_UNBLOCK_INPUT;
800 /* We don't call refill_memory_reserve here
801 because in practice the call in r_alloc_free seems to suffice. */
802 }
803
804
805 /* Other parts of Emacs pass large int values to allocator functions
806 expecting ptrdiff_t. This is portable in practice, but check it to
807 be safe. */
808 verify (INT_MAX <= PTRDIFF_MAX);
809
810
811 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
812 Signal an error on memory exhaustion, and block interrupt input. */
813
814 void *
815 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
816 {
817 eassert (0 <= nitems && 0 < item_size);
818 ptrdiff_t nbytes;
819 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
820 memory_full (SIZE_MAX);
821 return xmalloc (nbytes);
822 }
823
824
825 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
826 Signal an error on memory exhaustion, and block interrupt input. */
827
828 void *
829 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
830 {
831 eassert (0 <= nitems && 0 < item_size);
832 ptrdiff_t nbytes;
833 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
834 memory_full (SIZE_MAX);
835 return xrealloc (pa, nbytes);
836 }
837
838
839 /* Grow PA, which points to an array of *NITEMS items, and return the
840 location of the reallocated array, updating *NITEMS to reflect its
841 new size. The new array will contain at least NITEMS_INCR_MIN more
842 items, but will not contain more than NITEMS_MAX items total.
843 ITEM_SIZE is the size of each item, in bytes.
844
845 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
846 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
847 infinity.
848
849 If PA is null, then allocate a new array instead of reallocating
850 the old one.
851
852 Block interrupt input as needed. If memory exhaustion occurs, set
853 *NITEMS to zero if PA is null, and signal an error (i.e., do not
854 return).
855
856 Thus, to grow an array A without saving its old contents, do
857 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
858 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
859 and signals an error, and later this code is reexecuted and
860 attempts to free A. */
861
862 void *
863 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
864 ptrdiff_t nitems_max, ptrdiff_t item_size)
865 {
866 ptrdiff_t n0 = *nitems;
867 eassume (0 < item_size && 0 < nitems_incr_min && 0 <= n0 && -1 <= nitems_max);
868
869 /* The approximate size to use for initial small allocation
870 requests. This is the largest "small" request for the GNU C
871 library malloc. */
872 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
873
874 /* If the array is tiny, grow it to about (but no greater than)
875 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%.
876 Adjust the growth according to three constraints: NITEMS_INCR_MIN,
877 NITEMS_MAX, and what the C language can represent safely. */
878
879 ptrdiff_t n, nbytes;
880 if (INT_ADD_WRAPV (n0, n0 >> 1, &n))
881 n = PTRDIFF_MAX;
882 if (0 <= nitems_max && nitems_max < n)
883 n = nitems_max;
884
885 ptrdiff_t adjusted_nbytes
886 = ((INT_MULTIPLY_WRAPV (n, item_size, &nbytes) || SIZE_MAX < nbytes)
887 ? min (PTRDIFF_MAX, SIZE_MAX)
888 : nbytes < DEFAULT_MXFAST ? DEFAULT_MXFAST : 0);
889 if (adjusted_nbytes)
890 {
891 n = adjusted_nbytes / item_size;
892 nbytes = adjusted_nbytes - adjusted_nbytes % item_size;
893 }
894
895 if (! pa)
896 *nitems = 0;
897 if (n - n0 < nitems_incr_min
898 && (INT_ADD_WRAPV (n0, nitems_incr_min, &n)
899 || (0 <= nitems_max && nitems_max < n)
900 || INT_MULTIPLY_WRAPV (n, item_size, &nbytes)))
901 memory_full (SIZE_MAX);
902 pa = xrealloc (pa, nbytes);
903 *nitems = n;
904 return pa;
905 }
906
907
908 /* Like strdup, but uses xmalloc. */
909
910 char *
911 xstrdup (const char *s)
912 {
913 ptrdiff_t size;
914 eassert (s);
915 size = strlen (s) + 1;
916 return memcpy (xmalloc (size), s, size);
917 }
918
919 /* Like above, but duplicates Lisp string to C string. */
920
921 char *
922 xlispstrdup (Lisp_Object string)
923 {
924 ptrdiff_t size = SBYTES (string) + 1;
925 return memcpy (xmalloc (size), SSDATA (string), size);
926 }
927
928 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
929 pointed to. If STRING is null, assign it without copying anything.
930 Allocate before freeing, to avoid a dangling pointer if allocation
931 fails. */
932
933 void
934 dupstring (char **ptr, char const *string)
935 {
936 char *old = *ptr;
937 *ptr = string ? xstrdup (string) : 0;
938 xfree (old);
939 }
940
941
942 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
943 argument is a const pointer. */
944
945 void
946 xputenv (char const *string)
947 {
948 if (putenv ((char *) string) != 0)
949 memory_full (0);
950 }
951
952 /* Return a newly allocated memory block of SIZE bytes, remembering
953 to free it when unwinding. */
954 void *
955 record_xmalloc (size_t size)
956 {
957 void *p = xmalloc (size);
958 record_unwind_protect_ptr (xfree, p);
959 return p;
960 }
961
962
963 /* Like malloc but used for allocating Lisp data. NBYTES is the
964 number of bytes to allocate, TYPE describes the intended use of the
965 allocated memory block (for strings, for conses, ...). */
966
967 #if ! USE_LSB_TAG
968 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
969 #endif
970
971 static void *
972 lisp_malloc (size_t nbytes, enum mem_type type)
973 {
974 register void *val;
975
976 MALLOC_BLOCK_INPUT;
977
978 #ifdef GC_MALLOC_CHECK
979 allocated_mem_type = type;
980 #endif
981
982 val = malloc (nbytes);
983
984 #if ! USE_LSB_TAG
985 /* If the memory just allocated cannot be addressed thru a Lisp
986 object's pointer, and it needs to be,
987 that's equivalent to running out of memory. */
988 if (val && type != MEM_TYPE_NON_LISP)
989 {
990 Lisp_Object tem;
991 XSETCONS (tem, (char *) val + nbytes - 1);
992 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
993 {
994 lisp_malloc_loser = val;
995 free (val);
996 val = 0;
997 }
998 }
999 #endif
1000
1001 #ifndef GC_MALLOC_CHECK
1002 if (val && type != MEM_TYPE_NON_LISP)
1003 mem_insert (val, (char *) val + nbytes, type);
1004 #endif
1005
1006 MALLOC_UNBLOCK_INPUT;
1007 if (!val && nbytes)
1008 memory_full (nbytes);
1009 MALLOC_PROBE (nbytes);
1010 return val;
1011 }
1012
1013 /* Free BLOCK. This must be called to free memory allocated with a
1014 call to lisp_malloc. */
1015
1016 static void
1017 lisp_free (void *block)
1018 {
1019 MALLOC_BLOCK_INPUT;
1020 free (block);
1021 #ifndef GC_MALLOC_CHECK
1022 mem_delete (mem_find (block));
1023 #endif
1024 MALLOC_UNBLOCK_INPUT;
1025 }
1026
1027 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
1028
1029 /* The entry point is lisp_align_malloc which returns blocks of at most
1030 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
1031
1032 /* Use aligned_alloc if it or a simple substitute is available.
1033 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
1034 clang 3.3 anyway. */
1035
1036 #if ! ADDRESS_SANITIZER
1037 # if !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC && !defined HYBRID_MALLOC
1038 # define USE_ALIGNED_ALLOC 1
1039 /* Defined in gmalloc.c. */
1040 void *aligned_alloc (size_t, size_t);
1041 # elif defined HYBRID_MALLOC
1042 # if defined ALIGNED_ALLOC || defined HAVE_POSIX_MEMALIGN
1043 # define USE_ALIGNED_ALLOC 1
1044 # define aligned_alloc hybrid_aligned_alloc
1045 /* Defined in gmalloc.c. */
1046 void *aligned_alloc (size_t, size_t);
1047 # endif
1048 # elif defined HAVE_ALIGNED_ALLOC
1049 # define USE_ALIGNED_ALLOC 1
1050 # elif defined HAVE_POSIX_MEMALIGN
1051 # define USE_ALIGNED_ALLOC 1
1052 static void *
1053 aligned_alloc (size_t alignment, size_t size)
1054 {
1055 void *p;
1056 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
1057 }
1058 # endif
1059 #endif
1060
1061 /* BLOCK_ALIGN has to be a power of 2. */
1062 #define BLOCK_ALIGN (1 << 10)
1063
1064 /* Padding to leave at the end of a malloc'd block. This is to give
1065 malloc a chance to minimize the amount of memory wasted to alignment.
1066 It should be tuned to the particular malloc library used.
1067 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1068 aligned_alloc on the other hand would ideally prefer a value of 4
1069 because otherwise, there's 1020 bytes wasted between each ablocks.
1070 In Emacs, testing shows that those 1020 can most of the time be
1071 efficiently used by malloc to place other objects, so a value of 0 can
1072 still preferable unless you have a lot of aligned blocks and virtually
1073 nothing else. */
1074 #define BLOCK_PADDING 0
1075 #define BLOCK_BYTES \
1076 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1077
1078 /* Internal data structures and constants. */
1079
1080 #define ABLOCKS_SIZE 16
1081
1082 /* An aligned block of memory. */
1083 struct ablock
1084 {
1085 union
1086 {
1087 char payload[BLOCK_BYTES];
1088 struct ablock *next_free;
1089 } x;
1090 /* `abase' is the aligned base of the ablocks. */
1091 /* It is overloaded to hold the virtual `busy' field that counts
1092 the number of used ablock in the parent ablocks.
1093 The first ablock has the `busy' field, the others have the `abase'
1094 field. To tell the difference, we assume that pointers will have
1095 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1096 is used to tell whether the real base of the parent ablocks is `abase'
1097 (if not, the word before the first ablock holds a pointer to the
1098 real base). */
1099 struct ablocks *abase;
1100 /* The padding of all but the last ablock is unused. The padding of
1101 the last ablock in an ablocks is not allocated. */
1102 #if BLOCK_PADDING
1103 char padding[BLOCK_PADDING];
1104 #endif
1105 };
1106
1107 /* A bunch of consecutive aligned blocks. */
1108 struct ablocks
1109 {
1110 struct ablock blocks[ABLOCKS_SIZE];
1111 };
1112
1113 /* Size of the block requested from malloc or aligned_alloc. */
1114 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1115
1116 #define ABLOCK_ABASE(block) \
1117 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1118 ? (struct ablocks *)(block) \
1119 : (block)->abase)
1120
1121 /* Virtual `busy' field. */
1122 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1123
1124 /* Pointer to the (not necessarily aligned) malloc block. */
1125 #ifdef USE_ALIGNED_ALLOC
1126 #define ABLOCKS_BASE(abase) (abase)
1127 #else
1128 #define ABLOCKS_BASE(abase) \
1129 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1130 #endif
1131
1132 /* The list of free ablock. */
1133 static struct ablock *free_ablock;
1134
1135 /* Allocate an aligned block of nbytes.
1136 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1137 smaller or equal to BLOCK_BYTES. */
1138 static void *
1139 lisp_align_malloc (size_t nbytes, enum mem_type type)
1140 {
1141 void *base, *val;
1142 struct ablocks *abase;
1143
1144 eassert (nbytes <= BLOCK_BYTES);
1145
1146 MALLOC_BLOCK_INPUT;
1147
1148 #ifdef GC_MALLOC_CHECK
1149 allocated_mem_type = type;
1150 #endif
1151
1152 if (!free_ablock)
1153 {
1154 int i;
1155 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1156
1157 #ifdef DOUG_LEA_MALLOC
1158 if (!mmap_lisp_allowed_p ())
1159 mallopt (M_MMAP_MAX, 0);
1160 #endif
1161
1162 #ifdef USE_ALIGNED_ALLOC
1163 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1164 #else
1165 base = malloc (ABLOCKS_BYTES);
1166 abase = ALIGN (base, BLOCK_ALIGN);
1167 #endif
1168
1169 if (base == 0)
1170 {
1171 MALLOC_UNBLOCK_INPUT;
1172 memory_full (ABLOCKS_BYTES);
1173 }
1174
1175 aligned = (base == abase);
1176 if (!aligned)
1177 ((void **) abase)[-1] = base;
1178
1179 #ifdef DOUG_LEA_MALLOC
1180 if (!mmap_lisp_allowed_p ())
1181 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1182 #endif
1183
1184 #if ! USE_LSB_TAG
1185 /* If the memory just allocated cannot be addressed thru a Lisp
1186 object's pointer, and it needs to be, that's equivalent to
1187 running out of memory. */
1188 if (type != MEM_TYPE_NON_LISP)
1189 {
1190 Lisp_Object tem;
1191 char *end = (char *) base + ABLOCKS_BYTES - 1;
1192 XSETCONS (tem, end);
1193 if ((char *) XCONS (tem) != end)
1194 {
1195 lisp_malloc_loser = base;
1196 free (base);
1197 MALLOC_UNBLOCK_INPUT;
1198 memory_full (SIZE_MAX);
1199 }
1200 }
1201 #endif
1202
1203 /* Initialize the blocks and put them on the free list.
1204 If `base' was not properly aligned, we can't use the last block. */
1205 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1206 {
1207 abase->blocks[i].abase = abase;
1208 abase->blocks[i].x.next_free = free_ablock;
1209 free_ablock = &abase->blocks[i];
1210 }
1211 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1212
1213 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1214 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1215 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1216 eassert (ABLOCKS_BASE (abase) == base);
1217 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1218 }
1219
1220 abase = ABLOCK_ABASE (free_ablock);
1221 ABLOCKS_BUSY (abase)
1222 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1223 val = free_ablock;
1224 free_ablock = free_ablock->x.next_free;
1225
1226 #ifndef GC_MALLOC_CHECK
1227 if (type != MEM_TYPE_NON_LISP)
1228 mem_insert (val, (char *) val + nbytes, type);
1229 #endif
1230
1231 MALLOC_UNBLOCK_INPUT;
1232
1233 MALLOC_PROBE (nbytes);
1234
1235 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1236 return val;
1237 }
1238
1239 static void
1240 lisp_align_free (void *block)
1241 {
1242 struct ablock *ablock = block;
1243 struct ablocks *abase = ABLOCK_ABASE (ablock);
1244
1245 MALLOC_BLOCK_INPUT;
1246 #ifndef GC_MALLOC_CHECK
1247 mem_delete (mem_find (block));
1248 #endif
1249 /* Put on free list. */
1250 ablock->x.next_free = free_ablock;
1251 free_ablock = ablock;
1252 /* Update busy count. */
1253 ABLOCKS_BUSY (abase)
1254 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1255
1256 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1257 { /* All the blocks are free. */
1258 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1259 struct ablock **tem = &free_ablock;
1260 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1261
1262 while (*tem)
1263 {
1264 if (*tem >= (struct ablock *) abase && *tem < atop)
1265 {
1266 i++;
1267 *tem = (*tem)->x.next_free;
1268 }
1269 else
1270 tem = &(*tem)->x.next_free;
1271 }
1272 eassert ((aligned & 1) == aligned);
1273 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1274 #ifdef USE_POSIX_MEMALIGN
1275 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1276 #endif
1277 free (ABLOCKS_BASE (abase));
1278 }
1279 MALLOC_UNBLOCK_INPUT;
1280 }
1281
1282 \f
1283 /***********************************************************************
1284 Interval Allocation
1285 ***********************************************************************/
1286
1287 /* Number of intervals allocated in an interval_block structure.
1288 The 1020 is 1024 minus malloc overhead. */
1289
1290 #define INTERVAL_BLOCK_SIZE \
1291 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1292
1293 /* Intervals are allocated in chunks in the form of an interval_block
1294 structure. */
1295
1296 struct interval_block
1297 {
1298 /* Place `intervals' first, to preserve alignment. */
1299 struct interval intervals[INTERVAL_BLOCK_SIZE];
1300 struct interval_block *next;
1301 };
1302
1303 /* Current interval block. Its `next' pointer points to older
1304 blocks. */
1305
1306 static struct interval_block *interval_block;
1307
1308 /* Index in interval_block above of the next unused interval
1309 structure. */
1310
1311 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1312
1313 /* Number of free and live intervals. */
1314
1315 static EMACS_INT total_free_intervals, total_intervals;
1316
1317 /* List of free intervals. */
1318
1319 static INTERVAL interval_free_list;
1320
1321 /* Return a new interval. */
1322
1323 INTERVAL
1324 make_interval (void)
1325 {
1326 INTERVAL val;
1327
1328 MALLOC_BLOCK_INPUT;
1329
1330 if (interval_free_list)
1331 {
1332 val = interval_free_list;
1333 interval_free_list = INTERVAL_PARENT (interval_free_list);
1334 }
1335 else
1336 {
1337 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1338 {
1339 struct interval_block *newi
1340 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1341
1342 newi->next = interval_block;
1343 interval_block = newi;
1344 interval_block_index = 0;
1345 total_free_intervals += INTERVAL_BLOCK_SIZE;
1346 }
1347 val = &interval_block->intervals[interval_block_index++];
1348 }
1349
1350 MALLOC_UNBLOCK_INPUT;
1351
1352 consing_since_gc += sizeof (struct interval);
1353 intervals_consed++;
1354 total_free_intervals--;
1355 RESET_INTERVAL (val);
1356 val->gcmarkbit = 0;
1357 return val;
1358 }
1359
1360
1361 /* Mark Lisp objects in interval I. */
1362
1363 static void
1364 mark_interval (register INTERVAL i, Lisp_Object dummy)
1365 {
1366 /* Intervals should never be shared. So, if extra internal checking is
1367 enabled, GC aborts if it seems to have visited an interval twice. */
1368 eassert (!i->gcmarkbit);
1369 i->gcmarkbit = 1;
1370 mark_object (i->plist);
1371 }
1372
1373 /* Mark the interval tree rooted in I. */
1374
1375 #define MARK_INTERVAL_TREE(i) \
1376 do { \
1377 if (i && !i->gcmarkbit) \
1378 traverse_intervals_noorder (i, mark_interval, Qnil); \
1379 } while (0)
1380
1381 /***********************************************************************
1382 String Allocation
1383 ***********************************************************************/
1384
1385 /* Lisp_Strings are allocated in string_block structures. When a new
1386 string_block is allocated, all the Lisp_Strings it contains are
1387 added to a free-list string_free_list. When a new Lisp_String is
1388 needed, it is taken from that list. During the sweep phase of GC,
1389 string_blocks that are entirely free are freed, except two which
1390 we keep.
1391
1392 String data is allocated from sblock structures. Strings larger
1393 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1394 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1395
1396 Sblocks consist internally of sdata structures, one for each
1397 Lisp_String. The sdata structure points to the Lisp_String it
1398 belongs to. The Lisp_String points back to the `u.data' member of
1399 its sdata structure.
1400
1401 When a Lisp_String is freed during GC, it is put back on
1402 string_free_list, and its `data' member and its sdata's `string'
1403 pointer is set to null. The size of the string is recorded in the
1404 `n.nbytes' member of the sdata. So, sdata structures that are no
1405 longer used, can be easily recognized, and it's easy to compact the
1406 sblocks of small strings which we do in compact_small_strings. */
1407
1408 /* Size in bytes of an sblock structure used for small strings. This
1409 is 8192 minus malloc overhead. */
1410
1411 #define SBLOCK_SIZE 8188
1412
1413 /* Strings larger than this are considered large strings. String data
1414 for large strings is allocated from individual sblocks. */
1415
1416 #define LARGE_STRING_BYTES 1024
1417
1418 /* The SDATA typedef is a struct or union describing string memory
1419 sub-allocated from an sblock. This is where the contents of Lisp
1420 strings are stored. */
1421
1422 struct sdata
1423 {
1424 /* Back-pointer to the string this sdata belongs to. If null, this
1425 structure is free, and NBYTES (in this structure or in the union below)
1426 contains the string's byte size (the same value that STRING_BYTES
1427 would return if STRING were non-null). If non-null, STRING_BYTES
1428 (STRING) is the size of the data, and DATA contains the string's
1429 contents. */
1430 struct Lisp_String *string;
1431
1432 #ifdef GC_CHECK_STRING_BYTES
1433 ptrdiff_t nbytes;
1434 #endif
1435
1436 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1437 };
1438
1439 #ifdef GC_CHECK_STRING_BYTES
1440
1441 typedef struct sdata sdata;
1442 #define SDATA_NBYTES(S) (S)->nbytes
1443 #define SDATA_DATA(S) (S)->data
1444
1445 #else
1446
1447 typedef union
1448 {
1449 struct Lisp_String *string;
1450
1451 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1452 which has a flexible array member. However, if implemented by
1453 giving this union a member of type 'struct sdata', the union
1454 could not be the last (flexible) member of 'struct sblock',
1455 because C99 prohibits a flexible array member from having a type
1456 that is itself a flexible array. So, comment this member out here,
1457 but remember that the option's there when using this union. */
1458 #if 0
1459 struct sdata u;
1460 #endif
1461
1462 /* When STRING is null. */
1463 struct
1464 {
1465 struct Lisp_String *string;
1466 ptrdiff_t nbytes;
1467 } n;
1468 } sdata;
1469
1470 #define SDATA_NBYTES(S) (S)->n.nbytes
1471 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1472
1473 #endif /* not GC_CHECK_STRING_BYTES */
1474
1475 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1476
1477 /* Structure describing a block of memory which is sub-allocated to
1478 obtain string data memory for strings. Blocks for small strings
1479 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1480 as large as needed. */
1481
1482 struct sblock
1483 {
1484 /* Next in list. */
1485 struct sblock *next;
1486
1487 /* Pointer to the next free sdata block. This points past the end
1488 of the sblock if there isn't any space left in this block. */
1489 sdata *next_free;
1490
1491 /* String data. */
1492 sdata data[FLEXIBLE_ARRAY_MEMBER];
1493 };
1494
1495 /* Number of Lisp strings in a string_block structure. The 1020 is
1496 1024 minus malloc overhead. */
1497
1498 #define STRING_BLOCK_SIZE \
1499 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1500
1501 /* Structure describing a block from which Lisp_String structures
1502 are allocated. */
1503
1504 struct string_block
1505 {
1506 /* Place `strings' first, to preserve alignment. */
1507 struct Lisp_String strings[STRING_BLOCK_SIZE];
1508 struct string_block *next;
1509 };
1510
1511 /* Head and tail of the list of sblock structures holding Lisp string
1512 data. We always allocate from current_sblock. The NEXT pointers
1513 in the sblock structures go from oldest_sblock to current_sblock. */
1514
1515 static struct sblock *oldest_sblock, *current_sblock;
1516
1517 /* List of sblocks for large strings. */
1518
1519 static struct sblock *large_sblocks;
1520
1521 /* List of string_block structures. */
1522
1523 static struct string_block *string_blocks;
1524
1525 /* Free-list of Lisp_Strings. */
1526
1527 static struct Lisp_String *string_free_list;
1528
1529 /* Number of live and free Lisp_Strings. */
1530
1531 static EMACS_INT total_strings, total_free_strings;
1532
1533 /* Number of bytes used by live strings. */
1534
1535 static EMACS_INT total_string_bytes;
1536
1537 /* Given a pointer to a Lisp_String S which is on the free-list
1538 string_free_list, return a pointer to its successor in the
1539 free-list. */
1540
1541 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1542
1543 /* Return a pointer to the sdata structure belonging to Lisp string S.
1544 S must be live, i.e. S->data must not be null. S->data is actually
1545 a pointer to the `u.data' member of its sdata structure; the
1546 structure starts at a constant offset in front of that. */
1547
1548 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1549
1550
1551 #ifdef GC_CHECK_STRING_OVERRUN
1552
1553 /* We check for overrun in string data blocks by appending a small
1554 "cookie" after each allocated string data block, and check for the
1555 presence of this cookie during GC. */
1556
1557 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1558 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1559 { '\xde', '\xad', '\xbe', '\xef' };
1560
1561 #else
1562 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1563 #endif
1564
1565 /* Value is the size of an sdata structure large enough to hold NBYTES
1566 bytes of string data. The value returned includes a terminating
1567 NUL byte, the size of the sdata structure, and padding. */
1568
1569 #ifdef GC_CHECK_STRING_BYTES
1570
1571 #define SDATA_SIZE(NBYTES) \
1572 ((SDATA_DATA_OFFSET \
1573 + (NBYTES) + 1 \
1574 + sizeof (ptrdiff_t) - 1) \
1575 & ~(sizeof (ptrdiff_t) - 1))
1576
1577 #else /* not GC_CHECK_STRING_BYTES */
1578
1579 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1580 less than the size of that member. The 'max' is not needed when
1581 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1582 alignment code reserves enough space. */
1583
1584 #define SDATA_SIZE(NBYTES) \
1585 ((SDATA_DATA_OFFSET \
1586 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1587 ? NBYTES \
1588 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1589 + 1 \
1590 + sizeof (ptrdiff_t) - 1) \
1591 & ~(sizeof (ptrdiff_t) - 1))
1592
1593 #endif /* not GC_CHECK_STRING_BYTES */
1594
1595 /* Extra bytes to allocate for each string. */
1596
1597 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1598
1599 /* Exact bound on the number of bytes in a string, not counting the
1600 terminating null. A string cannot contain more bytes than
1601 STRING_BYTES_BOUND, nor can it be so long that the size_t
1602 arithmetic in allocate_string_data would overflow while it is
1603 calculating a value to be passed to malloc. */
1604 static ptrdiff_t const STRING_BYTES_MAX =
1605 min (STRING_BYTES_BOUND,
1606 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1607 - GC_STRING_EXTRA
1608 - offsetof (struct sblock, data)
1609 - SDATA_DATA_OFFSET)
1610 & ~(sizeof (EMACS_INT) - 1)));
1611
1612 /* Initialize string allocation. Called from init_alloc_once. */
1613
1614 static void
1615 init_strings (void)
1616 {
1617 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1618 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1619 }
1620
1621
1622 #ifdef GC_CHECK_STRING_BYTES
1623
1624 static int check_string_bytes_count;
1625
1626 /* Like STRING_BYTES, but with debugging check. Can be
1627 called during GC, so pay attention to the mark bit. */
1628
1629 ptrdiff_t
1630 string_bytes (struct Lisp_String *s)
1631 {
1632 ptrdiff_t nbytes =
1633 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1634
1635 if (!PURE_P (s) && s->data && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1636 emacs_abort ();
1637 return nbytes;
1638 }
1639
1640 /* Check validity of Lisp strings' string_bytes member in B. */
1641
1642 static void
1643 check_sblock (struct sblock *b)
1644 {
1645 sdata *from, *end, *from_end;
1646
1647 end = b->next_free;
1648
1649 for (from = b->data; from < end; from = from_end)
1650 {
1651 /* Compute the next FROM here because copying below may
1652 overwrite data we need to compute it. */
1653 ptrdiff_t nbytes;
1654
1655 /* Check that the string size recorded in the string is the
1656 same as the one recorded in the sdata structure. */
1657 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1658 : SDATA_NBYTES (from));
1659 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1660 }
1661 }
1662
1663
1664 /* Check validity of Lisp strings' string_bytes member. ALL_P
1665 means check all strings, otherwise check only most
1666 recently allocated strings. Used for hunting a bug. */
1667
1668 static void
1669 check_string_bytes (bool all_p)
1670 {
1671 if (all_p)
1672 {
1673 struct sblock *b;
1674
1675 for (b = large_sblocks; b; b = b->next)
1676 {
1677 struct Lisp_String *s = b->data[0].string;
1678 if (s)
1679 string_bytes (s);
1680 }
1681
1682 for (b = oldest_sblock; b; b = b->next)
1683 check_sblock (b);
1684 }
1685 else if (current_sblock)
1686 check_sblock (current_sblock);
1687 }
1688
1689 #else /* not GC_CHECK_STRING_BYTES */
1690
1691 #define check_string_bytes(all) ((void) 0)
1692
1693 #endif /* GC_CHECK_STRING_BYTES */
1694
1695 #ifdef GC_CHECK_STRING_FREE_LIST
1696
1697 /* Walk through the string free list looking for bogus next pointers.
1698 This may catch buffer overrun from a previous string. */
1699
1700 static void
1701 check_string_free_list (void)
1702 {
1703 struct Lisp_String *s;
1704
1705 /* Pop a Lisp_String off the free-list. */
1706 s = string_free_list;
1707 while (s != NULL)
1708 {
1709 if ((uintptr_t) s < 1024)
1710 emacs_abort ();
1711 s = NEXT_FREE_LISP_STRING (s);
1712 }
1713 }
1714 #else
1715 #define check_string_free_list()
1716 #endif
1717
1718 /* Return a new Lisp_String. */
1719
1720 static struct Lisp_String *
1721 allocate_string (void)
1722 {
1723 struct Lisp_String *s;
1724
1725 MALLOC_BLOCK_INPUT;
1726
1727 /* If the free-list is empty, allocate a new string_block, and
1728 add all the Lisp_Strings in it to the free-list. */
1729 if (string_free_list == NULL)
1730 {
1731 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1732 int i;
1733
1734 b->next = string_blocks;
1735 string_blocks = b;
1736
1737 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1738 {
1739 s = b->strings + i;
1740 /* Every string on a free list should have NULL data pointer. */
1741 s->data = NULL;
1742 NEXT_FREE_LISP_STRING (s) = string_free_list;
1743 string_free_list = s;
1744 }
1745
1746 total_free_strings += STRING_BLOCK_SIZE;
1747 }
1748
1749 check_string_free_list ();
1750
1751 /* Pop a Lisp_String off the free-list. */
1752 s = string_free_list;
1753 string_free_list = NEXT_FREE_LISP_STRING (s);
1754
1755 MALLOC_UNBLOCK_INPUT;
1756
1757 --total_free_strings;
1758 ++total_strings;
1759 ++strings_consed;
1760 consing_since_gc += sizeof *s;
1761
1762 #ifdef GC_CHECK_STRING_BYTES
1763 if (!noninteractive)
1764 {
1765 if (++check_string_bytes_count == 200)
1766 {
1767 check_string_bytes_count = 0;
1768 check_string_bytes (1);
1769 }
1770 else
1771 check_string_bytes (0);
1772 }
1773 #endif /* GC_CHECK_STRING_BYTES */
1774
1775 return s;
1776 }
1777
1778
1779 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1780 plus a NUL byte at the end. Allocate an sdata structure for S, and
1781 set S->data to its `u.data' member. Store a NUL byte at the end of
1782 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1783 S->data if it was initially non-null. */
1784
1785 void
1786 allocate_string_data (struct Lisp_String *s,
1787 EMACS_INT nchars, EMACS_INT nbytes)
1788 {
1789 sdata *data, *old_data;
1790 struct sblock *b;
1791 ptrdiff_t needed, old_nbytes;
1792
1793 if (STRING_BYTES_MAX < nbytes)
1794 string_overflow ();
1795
1796 /* Determine the number of bytes needed to store NBYTES bytes
1797 of string data. */
1798 needed = SDATA_SIZE (nbytes);
1799 if (s->data)
1800 {
1801 old_data = SDATA_OF_STRING (s);
1802 old_nbytes = STRING_BYTES (s);
1803 }
1804 else
1805 old_data = NULL;
1806
1807 MALLOC_BLOCK_INPUT;
1808
1809 if (nbytes > LARGE_STRING_BYTES)
1810 {
1811 size_t size = offsetof (struct sblock, data) + needed;
1812
1813 #ifdef DOUG_LEA_MALLOC
1814 if (!mmap_lisp_allowed_p ())
1815 mallopt (M_MMAP_MAX, 0);
1816 #endif
1817
1818 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1819
1820 #ifdef DOUG_LEA_MALLOC
1821 if (!mmap_lisp_allowed_p ())
1822 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1823 #endif
1824
1825 b->next_free = b->data;
1826 b->data[0].string = NULL;
1827 b->next = large_sblocks;
1828 large_sblocks = b;
1829 }
1830 else if (current_sblock == NULL
1831 || (((char *) current_sblock + SBLOCK_SIZE
1832 - (char *) current_sblock->next_free)
1833 < (needed + GC_STRING_EXTRA)))
1834 {
1835 /* Not enough room in the current sblock. */
1836 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1837 b->next_free = b->data;
1838 b->data[0].string = NULL;
1839 b->next = NULL;
1840
1841 if (current_sblock)
1842 current_sblock->next = b;
1843 else
1844 oldest_sblock = b;
1845 current_sblock = b;
1846 }
1847 else
1848 b = current_sblock;
1849
1850 data = b->next_free;
1851 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1852
1853 MALLOC_UNBLOCK_INPUT;
1854
1855 data->string = s;
1856 s->data = SDATA_DATA (data);
1857 #ifdef GC_CHECK_STRING_BYTES
1858 SDATA_NBYTES (data) = nbytes;
1859 #endif
1860 s->size = nchars;
1861 s->size_byte = nbytes;
1862 s->data[nbytes] = '\0';
1863 #ifdef GC_CHECK_STRING_OVERRUN
1864 memcpy ((char *) data + needed, string_overrun_cookie,
1865 GC_STRING_OVERRUN_COOKIE_SIZE);
1866 #endif
1867
1868 /* Note that Faset may call to this function when S has already data
1869 assigned. In this case, mark data as free by setting it's string
1870 back-pointer to null, and record the size of the data in it. */
1871 if (old_data)
1872 {
1873 SDATA_NBYTES (old_data) = old_nbytes;
1874 old_data->string = NULL;
1875 }
1876
1877 consing_since_gc += needed;
1878 }
1879
1880
1881 /* Sweep and compact strings. */
1882
1883 NO_INLINE /* For better stack traces */
1884 static void
1885 sweep_strings (void)
1886 {
1887 struct string_block *b, *next;
1888 struct string_block *live_blocks = NULL;
1889
1890 string_free_list = NULL;
1891 total_strings = total_free_strings = 0;
1892 total_string_bytes = 0;
1893
1894 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1895 for (b = string_blocks; b; b = next)
1896 {
1897 int i, nfree = 0;
1898 struct Lisp_String *free_list_before = string_free_list;
1899
1900 next = b->next;
1901
1902 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1903 {
1904 struct Lisp_String *s = b->strings + i;
1905
1906 if (s->data)
1907 {
1908 /* String was not on free-list before. */
1909 if (STRING_MARKED_P (s))
1910 {
1911 /* String is live; unmark it and its intervals. */
1912 UNMARK_STRING (s);
1913
1914 /* Do not use string_(set|get)_intervals here. */
1915 s->intervals = balance_intervals (s->intervals);
1916
1917 ++total_strings;
1918 total_string_bytes += STRING_BYTES (s);
1919 }
1920 else
1921 {
1922 /* String is dead. Put it on the free-list. */
1923 sdata *data = SDATA_OF_STRING (s);
1924
1925 /* Save the size of S in its sdata so that we know
1926 how large that is. Reset the sdata's string
1927 back-pointer so that we know it's free. */
1928 #ifdef GC_CHECK_STRING_BYTES
1929 if (string_bytes (s) != SDATA_NBYTES (data))
1930 emacs_abort ();
1931 #else
1932 data->n.nbytes = STRING_BYTES (s);
1933 #endif
1934 data->string = NULL;
1935
1936 /* Reset the strings's `data' member so that we
1937 know it's free. */
1938 s->data = NULL;
1939
1940 /* Put the string on the free-list. */
1941 NEXT_FREE_LISP_STRING (s) = string_free_list;
1942 string_free_list = s;
1943 ++nfree;
1944 }
1945 }
1946 else
1947 {
1948 /* S was on the free-list before. Put it there again. */
1949 NEXT_FREE_LISP_STRING (s) = string_free_list;
1950 string_free_list = s;
1951 ++nfree;
1952 }
1953 }
1954
1955 /* Free blocks that contain free Lisp_Strings only, except
1956 the first two of them. */
1957 if (nfree == STRING_BLOCK_SIZE
1958 && total_free_strings > STRING_BLOCK_SIZE)
1959 {
1960 lisp_free (b);
1961 string_free_list = free_list_before;
1962 }
1963 else
1964 {
1965 total_free_strings += nfree;
1966 b->next = live_blocks;
1967 live_blocks = b;
1968 }
1969 }
1970
1971 check_string_free_list ();
1972
1973 string_blocks = live_blocks;
1974 free_large_strings ();
1975 compact_small_strings ();
1976
1977 check_string_free_list ();
1978 }
1979
1980
1981 /* Free dead large strings. */
1982
1983 static void
1984 free_large_strings (void)
1985 {
1986 struct sblock *b, *next;
1987 struct sblock *live_blocks = NULL;
1988
1989 for (b = large_sblocks; b; b = next)
1990 {
1991 next = b->next;
1992
1993 if (b->data[0].string == NULL)
1994 lisp_free (b);
1995 else
1996 {
1997 b->next = live_blocks;
1998 live_blocks = b;
1999 }
2000 }
2001
2002 large_sblocks = live_blocks;
2003 }
2004
2005
2006 /* Compact data of small strings. Free sblocks that don't contain
2007 data of live strings after compaction. */
2008
2009 static void
2010 compact_small_strings (void)
2011 {
2012 struct sblock *b, *tb, *next;
2013 sdata *from, *to, *end, *tb_end;
2014 sdata *to_end, *from_end;
2015
2016 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2017 to, and TB_END is the end of TB. */
2018 tb = oldest_sblock;
2019 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2020 to = tb->data;
2021
2022 /* Step through the blocks from the oldest to the youngest. We
2023 expect that old blocks will stabilize over time, so that less
2024 copying will happen this way. */
2025 for (b = oldest_sblock; b; b = b->next)
2026 {
2027 end = b->next_free;
2028 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2029
2030 for (from = b->data; from < end; from = from_end)
2031 {
2032 /* Compute the next FROM here because copying below may
2033 overwrite data we need to compute it. */
2034 ptrdiff_t nbytes;
2035 struct Lisp_String *s = from->string;
2036
2037 #ifdef GC_CHECK_STRING_BYTES
2038 /* Check that the string size recorded in the string is the
2039 same as the one recorded in the sdata structure. */
2040 if (s && string_bytes (s) != SDATA_NBYTES (from))
2041 emacs_abort ();
2042 #endif /* GC_CHECK_STRING_BYTES */
2043
2044 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2045 eassert (nbytes <= LARGE_STRING_BYTES);
2046
2047 nbytes = SDATA_SIZE (nbytes);
2048 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2049
2050 #ifdef GC_CHECK_STRING_OVERRUN
2051 if (memcmp (string_overrun_cookie,
2052 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2053 GC_STRING_OVERRUN_COOKIE_SIZE))
2054 emacs_abort ();
2055 #endif
2056
2057 /* Non-NULL S means it's alive. Copy its data. */
2058 if (s)
2059 {
2060 /* If TB is full, proceed with the next sblock. */
2061 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2062 if (to_end > tb_end)
2063 {
2064 tb->next_free = to;
2065 tb = tb->next;
2066 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2067 to = tb->data;
2068 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2069 }
2070
2071 /* Copy, and update the string's `data' pointer. */
2072 if (from != to)
2073 {
2074 eassert (tb != b || to < from);
2075 memmove (to, from, nbytes + GC_STRING_EXTRA);
2076 to->string->data = SDATA_DATA (to);
2077 }
2078
2079 /* Advance past the sdata we copied to. */
2080 to = to_end;
2081 }
2082 }
2083 }
2084
2085 /* The rest of the sblocks following TB don't contain live data, so
2086 we can free them. */
2087 for (b = tb->next; b; b = next)
2088 {
2089 next = b->next;
2090 lisp_free (b);
2091 }
2092
2093 tb->next_free = to;
2094 tb->next = NULL;
2095 current_sblock = tb;
2096 }
2097
2098 void
2099 string_overflow (void)
2100 {
2101 error ("Maximum string size exceeded");
2102 }
2103
2104 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2105 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2106 LENGTH must be an integer.
2107 INIT must be an integer that represents a character. */)
2108 (Lisp_Object length, Lisp_Object init)
2109 {
2110 register Lisp_Object val;
2111 int c;
2112 EMACS_INT nbytes;
2113
2114 CHECK_NATNUM (length);
2115 CHECK_CHARACTER (init);
2116
2117 c = XFASTINT (init);
2118 if (ASCII_CHAR_P (c))
2119 {
2120 nbytes = XINT (length);
2121 val = make_uninit_string (nbytes);
2122 if (nbytes)
2123 {
2124 memset (SDATA (val), c, nbytes);
2125 SDATA (val)[nbytes] = 0;
2126 }
2127 }
2128 else
2129 {
2130 unsigned char str[MAX_MULTIBYTE_LENGTH];
2131 ptrdiff_t len = CHAR_STRING (c, str);
2132 EMACS_INT string_len = XINT (length);
2133 unsigned char *p, *beg, *end;
2134
2135 if (INT_MULTIPLY_WRAPV (len, string_len, &nbytes))
2136 string_overflow ();
2137 val = make_uninit_multibyte_string (string_len, nbytes);
2138 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2139 {
2140 /* First time we just copy `str' to the data of `val'. */
2141 if (p == beg)
2142 memcpy (p, str, len);
2143 else
2144 {
2145 /* Next time we copy largest possible chunk from
2146 initialized to uninitialized part of `val'. */
2147 len = min (p - beg, end - p);
2148 memcpy (p, beg, len);
2149 }
2150 }
2151 if (nbytes)
2152 *p = 0;
2153 }
2154
2155 return val;
2156 }
2157
2158 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2159 Return A. */
2160
2161 Lisp_Object
2162 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2163 {
2164 EMACS_INT nbits = bool_vector_size (a);
2165 if (0 < nbits)
2166 {
2167 unsigned char *data = bool_vector_uchar_data (a);
2168 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2169 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2170 int last_mask = ~ (~0u << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2171 memset (data, pattern, nbytes - 1);
2172 data[nbytes - 1] = pattern & last_mask;
2173 }
2174 return a;
2175 }
2176
2177 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2178
2179 Lisp_Object
2180 make_uninit_bool_vector (EMACS_INT nbits)
2181 {
2182 Lisp_Object val;
2183 EMACS_INT words = bool_vector_words (nbits);
2184 EMACS_INT word_bytes = words * sizeof (bits_word);
2185 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2186 + word_size - 1)
2187 / word_size);
2188 struct Lisp_Bool_Vector *p
2189 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2190 XSETVECTOR (val, p);
2191 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2192 p->size = nbits;
2193
2194 /* Clear padding at the end. */
2195 if (words)
2196 p->data[words - 1] = 0;
2197
2198 return val;
2199 }
2200
2201 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2202 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2203 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2204 (Lisp_Object length, Lisp_Object init)
2205 {
2206 Lisp_Object val;
2207
2208 CHECK_NATNUM (length);
2209 val = make_uninit_bool_vector (XFASTINT (length));
2210 return bool_vector_fill (val, init);
2211 }
2212
2213 DEFUN ("bool-vector", Fbool_vector, Sbool_vector, 0, MANY, 0,
2214 doc: /* Return a new bool-vector with specified arguments as elements.
2215 Any number of arguments, even zero arguments, are allowed.
2216 usage: (bool-vector &rest OBJECTS) */)
2217 (ptrdiff_t nargs, Lisp_Object *args)
2218 {
2219 ptrdiff_t i;
2220 Lisp_Object vector;
2221
2222 vector = make_uninit_bool_vector (nargs);
2223 for (i = 0; i < nargs; i++)
2224 bool_vector_set (vector, i, !NILP (args[i]));
2225
2226 return vector;
2227 }
2228
2229 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2230 of characters from the contents. This string may be unibyte or
2231 multibyte, depending on the contents. */
2232
2233 Lisp_Object
2234 make_string (const char *contents, ptrdiff_t nbytes)
2235 {
2236 register Lisp_Object val;
2237 ptrdiff_t nchars, multibyte_nbytes;
2238
2239 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2240 &nchars, &multibyte_nbytes);
2241 if (nbytes == nchars || nbytes != multibyte_nbytes)
2242 /* CONTENTS contains no multibyte sequences or contains an invalid
2243 multibyte sequence. We must make unibyte string. */
2244 val = make_unibyte_string (contents, nbytes);
2245 else
2246 val = make_multibyte_string (contents, nchars, nbytes);
2247 return val;
2248 }
2249
2250 /* Make a unibyte string from LENGTH bytes at CONTENTS. */
2251
2252 Lisp_Object
2253 make_unibyte_string (const char *contents, ptrdiff_t length)
2254 {
2255 register Lisp_Object val;
2256 val = make_uninit_string (length);
2257 memcpy (SDATA (val), contents, length);
2258 return val;
2259 }
2260
2261
2262 /* Make a multibyte string from NCHARS characters occupying NBYTES
2263 bytes at CONTENTS. */
2264
2265 Lisp_Object
2266 make_multibyte_string (const char *contents,
2267 ptrdiff_t nchars, ptrdiff_t nbytes)
2268 {
2269 register Lisp_Object val;
2270 val = make_uninit_multibyte_string (nchars, nbytes);
2271 memcpy (SDATA (val), contents, nbytes);
2272 return val;
2273 }
2274
2275
2276 /* Make a string from NCHARS characters occupying NBYTES bytes at
2277 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2278
2279 Lisp_Object
2280 make_string_from_bytes (const char *contents,
2281 ptrdiff_t nchars, ptrdiff_t nbytes)
2282 {
2283 register Lisp_Object val;
2284 val = make_uninit_multibyte_string (nchars, nbytes);
2285 memcpy (SDATA (val), contents, nbytes);
2286 if (SBYTES (val) == SCHARS (val))
2287 STRING_SET_UNIBYTE (val);
2288 return val;
2289 }
2290
2291
2292 /* Make a string from NCHARS characters occupying NBYTES bytes at
2293 CONTENTS. The argument MULTIBYTE controls whether to label the
2294 string as multibyte. If NCHARS is negative, it counts the number of
2295 characters by itself. */
2296
2297 Lisp_Object
2298 make_specified_string (const char *contents,
2299 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2300 {
2301 Lisp_Object val;
2302
2303 if (nchars < 0)
2304 {
2305 if (multibyte)
2306 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2307 nbytes);
2308 else
2309 nchars = nbytes;
2310 }
2311 val = make_uninit_multibyte_string (nchars, nbytes);
2312 memcpy (SDATA (val), contents, nbytes);
2313 if (!multibyte)
2314 STRING_SET_UNIBYTE (val);
2315 return val;
2316 }
2317
2318
2319 /* Return a unibyte Lisp_String set up to hold LENGTH characters
2320 occupying LENGTH bytes. */
2321
2322 Lisp_Object
2323 make_uninit_string (EMACS_INT length)
2324 {
2325 Lisp_Object val;
2326
2327 if (!length)
2328 return empty_unibyte_string;
2329 val = make_uninit_multibyte_string (length, length);
2330 STRING_SET_UNIBYTE (val);
2331 return val;
2332 }
2333
2334
2335 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2336 which occupy NBYTES bytes. */
2337
2338 Lisp_Object
2339 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2340 {
2341 Lisp_Object string;
2342 struct Lisp_String *s;
2343
2344 if (nchars < 0)
2345 emacs_abort ();
2346 if (!nbytes)
2347 return empty_multibyte_string;
2348
2349 s = allocate_string ();
2350 s->intervals = NULL;
2351 allocate_string_data (s, nchars, nbytes);
2352 XSETSTRING (string, s);
2353 string_chars_consed += nbytes;
2354 return string;
2355 }
2356
2357 /* Print arguments to BUF according to a FORMAT, then return
2358 a Lisp_String initialized with the data from BUF. */
2359
2360 Lisp_Object
2361 make_formatted_string (char *buf, const char *format, ...)
2362 {
2363 va_list ap;
2364 int length;
2365
2366 va_start (ap, format);
2367 length = vsprintf (buf, format, ap);
2368 va_end (ap);
2369 return make_string (buf, length);
2370 }
2371
2372 \f
2373 /***********************************************************************
2374 Float Allocation
2375 ***********************************************************************/
2376
2377 /* We store float cells inside of float_blocks, allocating a new
2378 float_block with malloc whenever necessary. Float cells reclaimed
2379 by GC are put on a free list to be reallocated before allocating
2380 any new float cells from the latest float_block. */
2381
2382 #define FLOAT_BLOCK_SIZE \
2383 (((BLOCK_BYTES - sizeof (struct float_block *) \
2384 /* The compiler might add padding at the end. */ \
2385 - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
2386 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2387
2388 #define GETMARKBIT(block,n) \
2389 (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2390 >> ((n) % BITS_PER_BITS_WORD)) \
2391 & 1)
2392
2393 #define SETMARKBIT(block,n) \
2394 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2395 |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))
2396
2397 #define UNSETMARKBIT(block,n) \
2398 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2399 &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))
2400
2401 #define FLOAT_BLOCK(fptr) \
2402 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2403
2404 #define FLOAT_INDEX(fptr) \
2405 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2406
2407 struct float_block
2408 {
2409 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2410 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2411 bits_word gcmarkbits[1 + FLOAT_BLOCK_SIZE / BITS_PER_BITS_WORD];
2412 struct float_block *next;
2413 };
2414
2415 #define FLOAT_MARKED_P(fptr) \
2416 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2417
2418 #define FLOAT_MARK(fptr) \
2419 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2420
2421 #define FLOAT_UNMARK(fptr) \
2422 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2423
2424 /* Current float_block. */
2425
2426 static struct float_block *float_block;
2427
2428 /* Index of first unused Lisp_Float in the current float_block. */
2429
2430 static int float_block_index = FLOAT_BLOCK_SIZE;
2431
2432 /* Free-list of Lisp_Floats. */
2433
2434 static struct Lisp_Float *float_free_list;
2435
2436 /* Return a new float object with value FLOAT_VALUE. */
2437
2438 Lisp_Object
2439 make_float (double float_value)
2440 {
2441 register Lisp_Object val;
2442
2443 MALLOC_BLOCK_INPUT;
2444
2445 if (float_free_list)
2446 {
2447 /* We use the data field for chaining the free list
2448 so that we won't use the same field that has the mark bit. */
2449 XSETFLOAT (val, float_free_list);
2450 float_free_list = float_free_list->u.chain;
2451 }
2452 else
2453 {
2454 if (float_block_index == FLOAT_BLOCK_SIZE)
2455 {
2456 struct float_block *new
2457 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2458 new->next = float_block;
2459 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2460 float_block = new;
2461 float_block_index = 0;
2462 total_free_floats += FLOAT_BLOCK_SIZE;
2463 }
2464 XSETFLOAT (val, &float_block->floats[float_block_index]);
2465 float_block_index++;
2466 }
2467
2468 MALLOC_UNBLOCK_INPUT;
2469
2470 XFLOAT_INIT (val, float_value);
2471 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2472 consing_since_gc += sizeof (struct Lisp_Float);
2473 floats_consed++;
2474 total_free_floats--;
2475 return val;
2476 }
2477
2478
2479 \f
2480 /***********************************************************************
2481 Cons Allocation
2482 ***********************************************************************/
2483
2484 /* We store cons cells inside of cons_blocks, allocating a new
2485 cons_block with malloc whenever necessary. Cons cells reclaimed by
2486 GC are put on a free list to be reallocated before allocating
2487 any new cons cells from the latest cons_block. */
2488
2489 #define CONS_BLOCK_SIZE \
2490 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2491 /* The compiler might add padding at the end. */ \
2492 - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT) \
2493 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2494
2495 #define CONS_BLOCK(fptr) \
2496 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2497
2498 #define CONS_INDEX(fptr) \
2499 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2500
2501 struct cons_block
2502 {
2503 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2504 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2505 bits_word gcmarkbits[1 + CONS_BLOCK_SIZE / BITS_PER_BITS_WORD];
2506 struct cons_block *next;
2507 };
2508
2509 #define CONS_MARKED_P(fptr) \
2510 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2511
2512 #define CONS_MARK(fptr) \
2513 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2514
2515 #define CONS_UNMARK(fptr) \
2516 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2517
2518 /* Current cons_block. */
2519
2520 static struct cons_block *cons_block;
2521
2522 /* Index of first unused Lisp_Cons in the current block. */
2523
2524 static int cons_block_index = CONS_BLOCK_SIZE;
2525
2526 /* Free-list of Lisp_Cons structures. */
2527
2528 static struct Lisp_Cons *cons_free_list;
2529
2530 /* Explicitly free a cons cell by putting it on the free-list. */
2531
2532 void
2533 free_cons (struct Lisp_Cons *ptr)
2534 {
2535 ptr->u.chain = cons_free_list;
2536 ptr->car = Vdead;
2537 cons_free_list = ptr;
2538 consing_since_gc -= sizeof *ptr;
2539 total_free_conses++;
2540 }
2541
2542 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2543 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2544 (Lisp_Object car, Lisp_Object cdr)
2545 {
2546 register Lisp_Object val;
2547
2548 MALLOC_BLOCK_INPUT;
2549
2550 if (cons_free_list)
2551 {
2552 /* We use the cdr for chaining the free list
2553 so that we won't use the same field that has the mark bit. */
2554 XSETCONS (val, cons_free_list);
2555 cons_free_list = cons_free_list->u.chain;
2556 }
2557 else
2558 {
2559 if (cons_block_index == CONS_BLOCK_SIZE)
2560 {
2561 struct cons_block *new
2562 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2563 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2564 new->next = cons_block;
2565 cons_block = new;
2566 cons_block_index = 0;
2567 total_free_conses += CONS_BLOCK_SIZE;
2568 }
2569 XSETCONS (val, &cons_block->conses[cons_block_index]);
2570 cons_block_index++;
2571 }
2572
2573 MALLOC_UNBLOCK_INPUT;
2574
2575 XSETCAR (val, car);
2576 XSETCDR (val, cdr);
2577 eassert (!CONS_MARKED_P (XCONS (val)));
2578 consing_since_gc += sizeof (struct Lisp_Cons);
2579 total_free_conses--;
2580 cons_cells_consed++;
2581 return val;
2582 }
2583
2584 #ifdef GC_CHECK_CONS_LIST
2585 /* Get an error now if there's any junk in the cons free list. */
2586 void
2587 check_cons_list (void)
2588 {
2589 struct Lisp_Cons *tail = cons_free_list;
2590
2591 while (tail)
2592 tail = tail->u.chain;
2593 }
2594 #endif
2595
2596 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2597
2598 Lisp_Object
2599 list1 (Lisp_Object arg1)
2600 {
2601 return Fcons (arg1, Qnil);
2602 }
2603
2604 Lisp_Object
2605 list2 (Lisp_Object arg1, Lisp_Object arg2)
2606 {
2607 return Fcons (arg1, Fcons (arg2, Qnil));
2608 }
2609
2610
2611 Lisp_Object
2612 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2613 {
2614 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2615 }
2616
2617
2618 Lisp_Object
2619 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2620 {
2621 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2622 }
2623
2624
2625 Lisp_Object
2626 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2627 {
2628 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2629 Fcons (arg5, Qnil)))));
2630 }
2631
2632 /* Make a list of COUNT Lisp_Objects, where ARG is the
2633 first one. Allocate conses from pure space if TYPE
2634 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2635
2636 Lisp_Object
2637 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2638 {
2639 Lisp_Object (*cons) (Lisp_Object, Lisp_Object);
2640 switch (type)
2641 {
2642 case CONSTYPE_PURE: cons = pure_cons; break;
2643 case CONSTYPE_HEAP: cons = Fcons; break;
2644 default: emacs_abort ();
2645 }
2646
2647 eassume (0 < count);
2648 Lisp_Object val = cons (arg, Qnil);
2649 Lisp_Object tail = val;
2650
2651 va_list ap;
2652 va_start (ap, arg);
2653 for (ptrdiff_t i = 1; i < count; i++)
2654 {
2655 Lisp_Object elem = cons (va_arg (ap, Lisp_Object), Qnil);
2656 XSETCDR (tail, elem);
2657 tail = elem;
2658 }
2659 va_end (ap);
2660
2661 return val;
2662 }
2663
2664 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2665 doc: /* Return a newly created list with specified arguments as elements.
2666 Any number of arguments, even zero arguments, are allowed.
2667 usage: (list &rest OBJECTS) */)
2668 (ptrdiff_t nargs, Lisp_Object *args)
2669 {
2670 register Lisp_Object val;
2671 val = Qnil;
2672
2673 while (nargs > 0)
2674 {
2675 nargs--;
2676 val = Fcons (args[nargs], val);
2677 }
2678 return val;
2679 }
2680
2681
2682 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2683 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2684 (register Lisp_Object length, Lisp_Object init)
2685 {
2686 register Lisp_Object val;
2687 register EMACS_INT size;
2688
2689 CHECK_NATNUM (length);
2690 size = XFASTINT (length);
2691
2692 val = Qnil;
2693 while (size > 0)
2694 {
2695 val = Fcons (init, val);
2696 --size;
2697
2698 if (size > 0)
2699 {
2700 val = Fcons (init, val);
2701 --size;
2702
2703 if (size > 0)
2704 {
2705 val = Fcons (init, val);
2706 --size;
2707
2708 if (size > 0)
2709 {
2710 val = Fcons (init, val);
2711 --size;
2712
2713 if (size > 0)
2714 {
2715 val = Fcons (init, val);
2716 --size;
2717 }
2718 }
2719 }
2720 }
2721
2722 QUIT;
2723 }
2724
2725 return val;
2726 }
2727
2728
2729 \f
2730 /***********************************************************************
2731 Vector Allocation
2732 ***********************************************************************/
2733
2734 /* Sometimes a vector's contents are merely a pointer internally used
2735 in vector allocation code. On the rare platforms where a null
2736 pointer cannot be tagged, represent it with a Lisp 0.
2737 Usually you don't want to touch this. */
2738
2739 static struct Lisp_Vector *
2740 next_vector (struct Lisp_Vector *v)
2741 {
2742 return XUNTAG (v->contents[0], Lisp_Int0);
2743 }
2744
2745 static void
2746 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2747 {
2748 v->contents[0] = make_lisp_ptr (p, Lisp_Int0);
2749 }
2750
2751 /* This value is balanced well enough to avoid too much internal overhead
2752 for the most common cases; it's not required to be a power of two, but
2753 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2754
2755 #define VECTOR_BLOCK_SIZE 4096
2756
2757 enum
2758 {
2759 /* Alignment of struct Lisp_Vector objects. */
2760 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2761 GCALIGNMENT),
2762
2763 /* Vector size requests are a multiple of this. */
2764 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2765 };
2766
2767 /* Verify assumptions described above. */
2768 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2769 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2770
2771 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2772 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2773 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2774 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2775
2776 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2777
2778 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2779
2780 /* Size of the minimal vector allocated from block. */
2781
2782 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2783
2784 /* Size of the largest vector allocated from block. */
2785
2786 #define VBLOCK_BYTES_MAX \
2787 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2788
2789 /* We maintain one free list for each possible block-allocated
2790 vector size, and this is the number of free lists we have. */
2791
2792 #define VECTOR_MAX_FREE_LIST_INDEX \
2793 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2794
2795 /* Common shortcut to advance vector pointer over a block data. */
2796
2797 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2798
2799 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2800
2801 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2802
2803 /* Common shortcut to setup vector on a free list. */
2804
2805 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2806 do { \
2807 (tmp) = ((nbytes - header_size) / word_size); \
2808 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2809 eassert ((nbytes) % roundup_size == 0); \
2810 (tmp) = VINDEX (nbytes); \
2811 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2812 set_next_vector (v, vector_free_lists[tmp]); \
2813 vector_free_lists[tmp] = (v); \
2814 total_free_vector_slots += (nbytes) / word_size; \
2815 } while (0)
2816
2817 /* This internal type is used to maintain the list of large vectors
2818 which are allocated at their own, e.g. outside of vector blocks.
2819
2820 struct large_vector itself cannot contain a struct Lisp_Vector, as
2821 the latter contains a flexible array member and C99 does not allow
2822 such structs to be nested. Instead, each struct large_vector
2823 object LV is followed by a struct Lisp_Vector, which is at offset
2824 large_vector_offset from LV, and whose address is therefore
2825 large_vector_vec (&LV). */
2826
2827 struct large_vector
2828 {
2829 struct large_vector *next;
2830 };
2831
2832 enum
2833 {
2834 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2835 };
2836
2837 static struct Lisp_Vector *
2838 large_vector_vec (struct large_vector *p)
2839 {
2840 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
2841 }
2842
2843 /* This internal type is used to maintain an underlying storage
2844 for small vectors. */
2845
2846 struct vector_block
2847 {
2848 char data[VECTOR_BLOCK_BYTES];
2849 struct vector_block *next;
2850 };
2851
2852 /* Chain of vector blocks. */
2853
2854 static struct vector_block *vector_blocks;
2855
2856 /* Vector free lists, where NTH item points to a chain of free
2857 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2858
2859 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2860
2861 /* Singly-linked list of large vectors. */
2862
2863 static struct large_vector *large_vectors;
2864
2865 /* The only vector with 0 slots, allocated from pure space. */
2866
2867 Lisp_Object zero_vector;
2868
2869 /* Number of live vectors. */
2870
2871 static EMACS_INT total_vectors;
2872
2873 /* Total size of live and free vectors, in Lisp_Object units. */
2874
2875 static EMACS_INT total_vector_slots, total_free_vector_slots;
2876
2877 /* Get a new vector block. */
2878
2879 static struct vector_block *
2880 allocate_vector_block (void)
2881 {
2882 struct vector_block *block = xmalloc (sizeof *block);
2883
2884 #ifndef GC_MALLOC_CHECK
2885 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2886 MEM_TYPE_VECTOR_BLOCK);
2887 #endif
2888
2889 block->next = vector_blocks;
2890 vector_blocks = block;
2891 return block;
2892 }
2893
2894 /* Called once to initialize vector allocation. */
2895
2896 static void
2897 init_vectors (void)
2898 {
2899 zero_vector = make_pure_vector (0);
2900 }
2901
2902 /* Allocate vector from a vector block. */
2903
2904 static struct Lisp_Vector *
2905 allocate_vector_from_block (size_t nbytes)
2906 {
2907 struct Lisp_Vector *vector;
2908 struct vector_block *block;
2909 size_t index, restbytes;
2910
2911 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2912 eassert (nbytes % roundup_size == 0);
2913
2914 /* First, try to allocate from a free list
2915 containing vectors of the requested size. */
2916 index = VINDEX (nbytes);
2917 if (vector_free_lists[index])
2918 {
2919 vector = vector_free_lists[index];
2920 vector_free_lists[index] = next_vector (vector);
2921 total_free_vector_slots -= nbytes / word_size;
2922 return vector;
2923 }
2924
2925 /* Next, check free lists containing larger vectors. Since
2926 we will split the result, we should have remaining space
2927 large enough to use for one-slot vector at least. */
2928 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2929 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2930 if (vector_free_lists[index])
2931 {
2932 /* This vector is larger than requested. */
2933 vector = vector_free_lists[index];
2934 vector_free_lists[index] = next_vector (vector);
2935 total_free_vector_slots -= nbytes / word_size;
2936
2937 /* Excess bytes are used for the smaller vector,
2938 which should be set on an appropriate free list. */
2939 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2940 eassert (restbytes % roundup_size == 0);
2941 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2942 return vector;
2943 }
2944
2945 /* Finally, need a new vector block. */
2946 block = allocate_vector_block ();
2947
2948 /* New vector will be at the beginning of this block. */
2949 vector = (struct Lisp_Vector *) block->data;
2950
2951 /* If the rest of space from this block is large enough
2952 for one-slot vector at least, set up it on a free list. */
2953 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2954 if (restbytes >= VBLOCK_BYTES_MIN)
2955 {
2956 eassert (restbytes % roundup_size == 0);
2957 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2958 }
2959 return vector;
2960 }
2961
2962 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2963
2964 #define VECTOR_IN_BLOCK(vector, block) \
2965 ((char *) (vector) <= (block)->data \
2966 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2967
2968 /* Return the memory footprint of V in bytes. */
2969
2970 static ptrdiff_t
2971 vector_nbytes (struct Lisp_Vector *v)
2972 {
2973 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2974 ptrdiff_t nwords;
2975
2976 if (size & PSEUDOVECTOR_FLAG)
2977 {
2978 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2979 {
2980 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
2981 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
2982 * sizeof (bits_word));
2983 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
2984 verify (header_size <= bool_header_size);
2985 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
2986 }
2987 else
2988 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
2989 + ((size & PSEUDOVECTOR_REST_MASK)
2990 >> PSEUDOVECTOR_SIZE_BITS));
2991 }
2992 else
2993 nwords = size;
2994 return vroundup (header_size + word_size * nwords);
2995 }
2996
2997 /* Release extra resources still in use by VECTOR, which may be any
2998 vector-like object. For now, this is used just to free data in
2999 font objects. */
3000
3001 static void
3002 cleanup_vector (struct Lisp_Vector *vector)
3003 {
3004 detect_suspicious_free (vector);
3005 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
3006 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
3007 == FONT_OBJECT_MAX))
3008 {
3009 struct font_driver *drv = ((struct font *) vector)->driver;
3010
3011 /* The font driver might sometimes be NULL, e.g. if Emacs was
3012 interrupted before it had time to set it up. */
3013 if (drv)
3014 {
3015 /* Attempt to catch subtle bugs like Bug#16140. */
3016 eassert (valid_font_driver (drv));
3017 drv->close ((struct font *) vector);
3018 }
3019 }
3020 }
3021
3022 /* Reclaim space used by unmarked vectors. */
3023
3024 NO_INLINE /* For better stack traces */
3025 static void
3026 sweep_vectors (void)
3027 {
3028 struct vector_block *block, **bprev = &vector_blocks;
3029 struct large_vector *lv, **lvprev = &large_vectors;
3030 struct Lisp_Vector *vector, *next;
3031
3032 total_vectors = total_vector_slots = total_free_vector_slots = 0;
3033 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3034
3035 /* Looking through vector blocks. */
3036
3037 for (block = vector_blocks; block; block = *bprev)
3038 {
3039 bool free_this_block = 0;
3040 ptrdiff_t nbytes;
3041
3042 for (vector = (struct Lisp_Vector *) block->data;
3043 VECTOR_IN_BLOCK (vector, block); vector = next)
3044 {
3045 if (VECTOR_MARKED_P (vector))
3046 {
3047 VECTOR_UNMARK (vector);
3048 total_vectors++;
3049 nbytes = vector_nbytes (vector);
3050 total_vector_slots += nbytes / word_size;
3051 next = ADVANCE (vector, nbytes);
3052 }
3053 else
3054 {
3055 ptrdiff_t total_bytes;
3056
3057 cleanup_vector (vector);
3058 nbytes = vector_nbytes (vector);
3059 total_bytes = nbytes;
3060 next = ADVANCE (vector, nbytes);
3061
3062 /* While NEXT is not marked, try to coalesce with VECTOR,
3063 thus making VECTOR of the largest possible size. */
3064
3065 while (VECTOR_IN_BLOCK (next, block))
3066 {
3067 if (VECTOR_MARKED_P (next))
3068 break;
3069 cleanup_vector (next);
3070 nbytes = vector_nbytes (next);
3071 total_bytes += nbytes;
3072 next = ADVANCE (next, nbytes);
3073 }
3074
3075 eassert (total_bytes % roundup_size == 0);
3076
3077 if (vector == (struct Lisp_Vector *) block->data
3078 && !VECTOR_IN_BLOCK (next, block))
3079 /* This block should be freed because all of its
3080 space was coalesced into the only free vector. */
3081 free_this_block = 1;
3082 else
3083 {
3084 size_t tmp;
3085 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3086 }
3087 }
3088 }
3089
3090 if (free_this_block)
3091 {
3092 *bprev = block->next;
3093 #ifndef GC_MALLOC_CHECK
3094 mem_delete (mem_find (block->data));
3095 #endif
3096 xfree (block);
3097 }
3098 else
3099 bprev = &block->next;
3100 }
3101
3102 /* Sweep large vectors. */
3103
3104 for (lv = large_vectors; lv; lv = *lvprev)
3105 {
3106 vector = large_vector_vec (lv);
3107 if (VECTOR_MARKED_P (vector))
3108 {
3109 VECTOR_UNMARK (vector);
3110 total_vectors++;
3111 if (vector->header.size & PSEUDOVECTOR_FLAG)
3112 {
3113 /* All non-bool pseudovectors are small enough to be allocated
3114 from vector blocks. This code should be redesigned if some
3115 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3116 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3117 total_vector_slots += vector_nbytes (vector) / word_size;
3118 }
3119 else
3120 total_vector_slots
3121 += header_size / word_size + vector->header.size;
3122 lvprev = &lv->next;
3123 }
3124 else
3125 {
3126 *lvprev = lv->next;
3127 lisp_free (lv);
3128 }
3129 }
3130 }
3131
3132 /* Value is a pointer to a newly allocated Lisp_Vector structure
3133 with room for LEN Lisp_Objects. */
3134
3135 static struct Lisp_Vector *
3136 allocate_vectorlike (ptrdiff_t len)
3137 {
3138 struct Lisp_Vector *p;
3139
3140 MALLOC_BLOCK_INPUT;
3141
3142 if (len == 0)
3143 p = XVECTOR (zero_vector);
3144 else
3145 {
3146 size_t nbytes = header_size + len * word_size;
3147
3148 #ifdef DOUG_LEA_MALLOC
3149 if (!mmap_lisp_allowed_p ())
3150 mallopt (M_MMAP_MAX, 0);
3151 #endif
3152
3153 if (nbytes <= VBLOCK_BYTES_MAX)
3154 p = allocate_vector_from_block (vroundup (nbytes));
3155 else
3156 {
3157 struct large_vector *lv
3158 = lisp_malloc ((large_vector_offset + header_size
3159 + len * word_size),
3160 MEM_TYPE_VECTORLIKE);
3161 lv->next = large_vectors;
3162 large_vectors = lv;
3163 p = large_vector_vec (lv);
3164 }
3165
3166 #ifdef DOUG_LEA_MALLOC
3167 if (!mmap_lisp_allowed_p ())
3168 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3169 #endif
3170
3171 if (find_suspicious_object_in_range (p, (char *) p + nbytes))
3172 emacs_abort ();
3173
3174 consing_since_gc += nbytes;
3175 vector_cells_consed += len;
3176 }
3177
3178 MALLOC_UNBLOCK_INPUT;
3179
3180 return p;
3181 }
3182
3183
3184 /* Allocate a vector with LEN slots. */
3185
3186 struct Lisp_Vector *
3187 allocate_vector (EMACS_INT len)
3188 {
3189 struct Lisp_Vector *v;
3190 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3191
3192 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3193 memory_full (SIZE_MAX);
3194 v = allocate_vectorlike (len);
3195 if (len)
3196 v->header.size = len;
3197 return v;
3198 }
3199
3200
3201 /* Allocate other vector-like structures. */
3202
3203 struct Lisp_Vector *
3204 allocate_pseudovector (int memlen, int lisplen,
3205 int zerolen, enum pvec_type tag)
3206 {
3207 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3208
3209 /* Catch bogus values. */
3210 eassert (0 <= tag && tag <= PVEC_FONT);
3211 eassert (0 <= lisplen && lisplen <= zerolen && zerolen <= memlen);
3212 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3213 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3214
3215 /* Only the first LISPLEN slots will be traced normally by the GC. */
3216 memclear (v->contents, zerolen * word_size);
3217 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3218 return v;
3219 }
3220
3221 struct buffer *
3222 allocate_buffer (void)
3223 {
3224 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3225
3226 BUFFER_PVEC_INIT (b);
3227 /* Put B on the chain of all buffers including killed ones. */
3228 b->next = all_buffers;
3229 all_buffers = b;
3230 /* Note that the rest fields of B are not initialized. */
3231 return b;
3232 }
3233
3234 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3235 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3236 See also the function `vector'. */)
3237 (register Lisp_Object length, Lisp_Object init)
3238 {
3239 Lisp_Object vector;
3240 register ptrdiff_t sizei;
3241 register ptrdiff_t i;
3242 register struct Lisp_Vector *p;
3243
3244 CHECK_NATNUM (length);
3245
3246 p = allocate_vector (XFASTINT (length));
3247 sizei = XFASTINT (length);
3248 for (i = 0; i < sizei; i++)
3249 p->contents[i] = init;
3250
3251 XSETVECTOR (vector, p);
3252 return vector;
3253 }
3254
3255 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3256 doc: /* Return a newly created vector with specified arguments as elements.
3257 Any number of arguments, even zero arguments, are allowed.
3258 usage: (vector &rest OBJECTS) */)
3259 (ptrdiff_t nargs, Lisp_Object *args)
3260 {
3261 ptrdiff_t i;
3262 register Lisp_Object val = make_uninit_vector (nargs);
3263 register struct Lisp_Vector *p = XVECTOR (val);
3264
3265 for (i = 0; i < nargs; i++)
3266 p->contents[i] = args[i];
3267 return val;
3268 }
3269
3270 void
3271 make_byte_code (struct Lisp_Vector *v)
3272 {
3273 /* Don't allow the global zero_vector to become a byte code object. */
3274 eassert (0 < v->header.size);
3275
3276 if (v->header.size > 1 && STRINGP (v->contents[1])
3277 && STRING_MULTIBYTE (v->contents[1]))
3278 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3279 earlier because they produced a raw 8-bit string for byte-code
3280 and now such a byte-code string is loaded as multibyte while
3281 raw 8-bit characters converted to multibyte form. Thus, now we
3282 must convert them back to the original unibyte form. */
3283 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3284 XSETPVECTYPE (v, PVEC_COMPILED);
3285 }
3286
3287 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3288 doc: /* Create a byte-code object with specified arguments as elements.
3289 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3290 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3291 and (optional) INTERACTIVE-SPEC.
3292 The first four arguments are required; at most six have any
3293 significance.
3294 The ARGLIST can be either like the one of `lambda', in which case the arguments
3295 will be dynamically bound before executing the byte code, or it can be an
3296 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3297 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3298 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3299 argument to catch the left-over arguments. If such an integer is used, the
3300 arguments will not be dynamically bound but will be instead pushed on the
3301 stack before executing the byte-code.
3302 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3303 (ptrdiff_t nargs, Lisp_Object *args)
3304 {
3305 ptrdiff_t i;
3306 register Lisp_Object val = make_uninit_vector (nargs);
3307 register struct Lisp_Vector *p = XVECTOR (val);
3308
3309 /* We used to purecopy everything here, if purify-flag was set. This worked
3310 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3311 dangerous, since make-byte-code is used during execution to build
3312 closures, so any closure built during the preload phase would end up
3313 copied into pure space, including its free variables, which is sometimes
3314 just wasteful and other times plainly wrong (e.g. those free vars may want
3315 to be setcar'd). */
3316
3317 for (i = 0; i < nargs; i++)
3318 p->contents[i] = args[i];
3319 make_byte_code (p);
3320 XSETCOMPILED (val, p);
3321 return val;
3322 }
3323
3324
3325 \f
3326 /***********************************************************************
3327 Symbol Allocation
3328 ***********************************************************************/
3329
3330 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3331 of the required alignment. */
3332
3333 union aligned_Lisp_Symbol
3334 {
3335 struct Lisp_Symbol s;
3336 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3337 & -GCALIGNMENT];
3338 };
3339
3340 /* Each symbol_block is just under 1020 bytes long, since malloc
3341 really allocates in units of powers of two and uses 4 bytes for its
3342 own overhead. */
3343
3344 #define SYMBOL_BLOCK_SIZE \
3345 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3346
3347 struct symbol_block
3348 {
3349 /* Place `symbols' first, to preserve alignment. */
3350 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3351 struct symbol_block *next;
3352 };
3353
3354 /* Current symbol block and index of first unused Lisp_Symbol
3355 structure in it. */
3356
3357 static struct symbol_block *symbol_block;
3358 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3359 /* Pointer to the first symbol_block that contains pinned symbols.
3360 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3361 10K of which are pinned (and all but 250 of them are interned in obarray),
3362 whereas a "typical session" has in the order of 30K symbols.
3363 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3364 than 30K to find the 10K symbols we need to mark. */
3365 static struct symbol_block *symbol_block_pinned;
3366
3367 /* List of free symbols. */
3368
3369 static struct Lisp_Symbol *symbol_free_list;
3370
3371 static void
3372 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3373 {
3374 XSYMBOL (sym)->name = name;
3375 }
3376
3377 void
3378 init_symbol (Lisp_Object val, Lisp_Object name)
3379 {
3380 struct Lisp_Symbol *p = XSYMBOL (val);
3381 set_symbol_name (val, name);
3382 set_symbol_plist (val, Qnil);
3383 p->redirect = SYMBOL_PLAINVAL;
3384 SET_SYMBOL_VAL (p, Qunbound);
3385 set_symbol_function (val, Qnil);
3386 set_symbol_next (val, NULL);
3387 p->gcmarkbit = false;
3388 p->interned = SYMBOL_UNINTERNED;
3389 p->constant = 0;
3390 p->declared_special = false;
3391 p->pinned = false;
3392 }
3393
3394 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3395 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3396 Its value is void, and its function definition and property list are nil. */)
3397 (Lisp_Object name)
3398 {
3399 Lisp_Object val;
3400
3401 CHECK_STRING (name);
3402
3403 MALLOC_BLOCK_INPUT;
3404
3405 if (symbol_free_list)
3406 {
3407 XSETSYMBOL (val, symbol_free_list);
3408 symbol_free_list = symbol_free_list->next;
3409 }
3410 else
3411 {
3412 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3413 {
3414 struct symbol_block *new
3415 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3416 new->next = symbol_block;
3417 symbol_block = new;
3418 symbol_block_index = 0;
3419 total_free_symbols += SYMBOL_BLOCK_SIZE;
3420 }
3421 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3422 symbol_block_index++;
3423 }
3424
3425 MALLOC_UNBLOCK_INPUT;
3426
3427 init_symbol (val, name);
3428 consing_since_gc += sizeof (struct Lisp_Symbol);
3429 symbols_consed++;
3430 total_free_symbols--;
3431 return val;
3432 }
3433
3434
3435 \f
3436 /***********************************************************************
3437 Marker (Misc) Allocation
3438 ***********************************************************************/
3439
3440 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3441 the required alignment. */
3442
3443 union aligned_Lisp_Misc
3444 {
3445 union Lisp_Misc m;
3446 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3447 & -GCALIGNMENT];
3448 };
3449
3450 /* Allocation of markers and other objects that share that structure.
3451 Works like allocation of conses. */
3452
3453 #define MARKER_BLOCK_SIZE \
3454 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3455
3456 struct marker_block
3457 {
3458 /* Place `markers' first, to preserve alignment. */
3459 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3460 struct marker_block *next;
3461 };
3462
3463 static struct marker_block *marker_block;
3464 static int marker_block_index = MARKER_BLOCK_SIZE;
3465
3466 static union Lisp_Misc *marker_free_list;
3467
3468 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3469
3470 static Lisp_Object
3471 allocate_misc (enum Lisp_Misc_Type type)
3472 {
3473 Lisp_Object val;
3474
3475 MALLOC_BLOCK_INPUT;
3476
3477 if (marker_free_list)
3478 {
3479 XSETMISC (val, marker_free_list);
3480 marker_free_list = marker_free_list->u_free.chain;
3481 }
3482 else
3483 {
3484 if (marker_block_index == MARKER_BLOCK_SIZE)
3485 {
3486 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3487 new->next = marker_block;
3488 marker_block = new;
3489 marker_block_index = 0;
3490 total_free_markers += MARKER_BLOCK_SIZE;
3491 }
3492 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3493 marker_block_index++;
3494 }
3495
3496 MALLOC_UNBLOCK_INPUT;
3497
3498 --total_free_markers;
3499 consing_since_gc += sizeof (union Lisp_Misc);
3500 misc_objects_consed++;
3501 XMISCANY (val)->type = type;
3502 XMISCANY (val)->gcmarkbit = 0;
3503 return val;
3504 }
3505
3506 /* Free a Lisp_Misc object. */
3507
3508 void
3509 free_misc (Lisp_Object misc)
3510 {
3511 XMISCANY (misc)->type = Lisp_Misc_Free;
3512 XMISC (misc)->u_free.chain = marker_free_list;
3513 marker_free_list = XMISC (misc);
3514 consing_since_gc -= sizeof (union Lisp_Misc);
3515 total_free_markers++;
3516 }
3517
3518 /* Verify properties of Lisp_Save_Value's representation
3519 that are assumed here and elsewhere. */
3520
3521 verify (SAVE_UNUSED == 0);
3522 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3523 >> SAVE_SLOT_BITS)
3524 == 0);
3525
3526 /* Return Lisp_Save_Value objects for the various combinations
3527 that callers need. */
3528
3529 Lisp_Object
3530 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3531 {
3532 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3533 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3534 p->save_type = SAVE_TYPE_INT_INT_INT;
3535 p->data[0].integer = a;
3536 p->data[1].integer = b;
3537 p->data[2].integer = c;
3538 return val;
3539 }
3540
3541 Lisp_Object
3542 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3543 Lisp_Object d)
3544 {
3545 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3546 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3547 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3548 p->data[0].object = a;
3549 p->data[1].object = b;
3550 p->data[2].object = c;
3551 p->data[3].object = d;
3552 return val;
3553 }
3554
3555 Lisp_Object
3556 make_save_ptr (void *a)
3557 {
3558 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3559 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3560 p->save_type = SAVE_POINTER;
3561 p->data[0].pointer = a;
3562 return val;
3563 }
3564
3565 Lisp_Object
3566 make_save_ptr_int (void *a, ptrdiff_t b)
3567 {
3568 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3569 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3570 p->save_type = SAVE_TYPE_PTR_INT;
3571 p->data[0].pointer = a;
3572 p->data[1].integer = b;
3573 return val;
3574 }
3575
3576 #if ! (defined USE_X_TOOLKIT || defined USE_GTK)
3577 Lisp_Object
3578 make_save_ptr_ptr (void *a, void *b)
3579 {
3580 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3581 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3582 p->save_type = SAVE_TYPE_PTR_PTR;
3583 p->data[0].pointer = a;
3584 p->data[1].pointer = b;
3585 return val;
3586 }
3587 #endif
3588
3589 Lisp_Object
3590 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3591 {
3592 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3593 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3594 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3595 p->data[0].funcpointer = a;
3596 p->data[1].pointer = b;
3597 p->data[2].object = c;
3598 return val;
3599 }
3600
3601 /* Return a Lisp_Save_Value object that represents an array A
3602 of N Lisp objects. */
3603
3604 Lisp_Object
3605 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3606 {
3607 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3608 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3609 p->save_type = SAVE_TYPE_MEMORY;
3610 p->data[0].pointer = a;
3611 p->data[1].integer = n;
3612 return val;
3613 }
3614
3615 /* Free a Lisp_Save_Value object. Do not use this function
3616 if SAVE contains pointer other than returned by xmalloc. */
3617
3618 void
3619 free_save_value (Lisp_Object save)
3620 {
3621 xfree (XSAVE_POINTER (save, 0));
3622 free_misc (save);
3623 }
3624
3625 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3626
3627 Lisp_Object
3628 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3629 {
3630 register Lisp_Object overlay;
3631
3632 overlay = allocate_misc (Lisp_Misc_Overlay);
3633 OVERLAY_START (overlay) = start;
3634 OVERLAY_END (overlay) = end;
3635 set_overlay_plist (overlay, plist);
3636 XOVERLAY (overlay)->next = NULL;
3637 return overlay;
3638 }
3639
3640 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3641 doc: /* Return a newly allocated marker which does not point at any place. */)
3642 (void)
3643 {
3644 register Lisp_Object val;
3645 register struct Lisp_Marker *p;
3646
3647 val = allocate_misc (Lisp_Misc_Marker);
3648 p = XMARKER (val);
3649 p->buffer = 0;
3650 p->bytepos = 0;
3651 p->charpos = 0;
3652 p->next = NULL;
3653 p->insertion_type = 0;
3654 p->need_adjustment = 0;
3655 return val;
3656 }
3657
3658 /* Return a newly allocated marker which points into BUF
3659 at character position CHARPOS and byte position BYTEPOS. */
3660
3661 Lisp_Object
3662 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3663 {
3664 Lisp_Object obj;
3665 struct Lisp_Marker *m;
3666
3667 /* No dead buffers here. */
3668 eassert (BUFFER_LIVE_P (buf));
3669
3670 /* Every character is at least one byte. */
3671 eassert (charpos <= bytepos);
3672
3673 obj = allocate_misc (Lisp_Misc_Marker);
3674 m = XMARKER (obj);
3675 m->buffer = buf;
3676 m->charpos = charpos;
3677 m->bytepos = bytepos;
3678 m->insertion_type = 0;
3679 m->need_adjustment = 0;
3680 m->next = BUF_MARKERS (buf);
3681 BUF_MARKERS (buf) = m;
3682 return obj;
3683 }
3684
3685 /* Put MARKER back on the free list after using it temporarily. */
3686
3687 void
3688 free_marker (Lisp_Object marker)
3689 {
3690 unchain_marker (XMARKER (marker));
3691 free_misc (marker);
3692 }
3693
3694 \f
3695 /* Return a newly created vector or string with specified arguments as
3696 elements. If all the arguments are characters that can fit
3697 in a string of events, make a string; otherwise, make a vector.
3698
3699 Any number of arguments, even zero arguments, are allowed. */
3700
3701 Lisp_Object
3702 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3703 {
3704 ptrdiff_t i;
3705
3706 for (i = 0; i < nargs; i++)
3707 /* The things that fit in a string
3708 are characters that are in 0...127,
3709 after discarding the meta bit and all the bits above it. */
3710 if (!INTEGERP (args[i])
3711 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3712 return Fvector (nargs, args);
3713
3714 /* Since the loop exited, we know that all the things in it are
3715 characters, so we can make a string. */
3716 {
3717 Lisp_Object result;
3718
3719 result = Fmake_string (make_number (nargs), make_number (0));
3720 for (i = 0; i < nargs; i++)
3721 {
3722 SSET (result, i, XINT (args[i]));
3723 /* Move the meta bit to the right place for a string char. */
3724 if (XINT (args[i]) & CHAR_META)
3725 SSET (result, i, SREF (result, i) | 0x80);
3726 }
3727
3728 return result;
3729 }
3730 }
3731
3732 #ifdef HAVE_MODULES
3733 /* Create a new module user ptr object. */
3734 Lisp_Object
3735 make_user_ptr (void (*finalizer) (void*), void *p)
3736 {
3737 Lisp_Object obj;
3738 struct Lisp_User_Ptr *uptr;
3739
3740 obj = allocate_misc (Lisp_Misc_User_Ptr);
3741 uptr = XUSER_PTR (obj);
3742 uptr->finalizer = finalizer;
3743 uptr->p = p;
3744 return obj;
3745 }
3746
3747 #endif
3748
3749 static void
3750 init_finalizer_list (struct Lisp_Finalizer *head)
3751 {
3752 head->prev = head->next = head;
3753 }
3754
3755 /* Insert FINALIZER before ELEMENT. */
3756
3757 static void
3758 finalizer_insert (struct Lisp_Finalizer *element,
3759 struct Lisp_Finalizer *finalizer)
3760 {
3761 eassert (finalizer->prev == NULL);
3762 eassert (finalizer->next == NULL);
3763 finalizer->next = element;
3764 finalizer->prev = element->prev;
3765 finalizer->prev->next = finalizer;
3766 element->prev = finalizer;
3767 }
3768
3769 static void
3770 unchain_finalizer (struct Lisp_Finalizer *finalizer)
3771 {
3772 if (finalizer->prev != NULL)
3773 {
3774 eassert (finalizer->next != NULL);
3775 finalizer->prev->next = finalizer->next;
3776 finalizer->next->prev = finalizer->prev;
3777 finalizer->prev = finalizer->next = NULL;
3778 }
3779 }
3780
3781 static void
3782 mark_finalizer_list (struct Lisp_Finalizer *head)
3783 {
3784 for (struct Lisp_Finalizer *finalizer = head->next;
3785 finalizer != head;
3786 finalizer = finalizer->next)
3787 {
3788 finalizer->base.gcmarkbit = true;
3789 mark_object (finalizer->function);
3790 }
3791 }
3792
3793 /* Move doomed finalizers to list DEST from list SRC. A doomed
3794 finalizer is one that is not GC-reachable and whose
3795 finalizer->function is non-nil. */
3796
3797 static void
3798 queue_doomed_finalizers (struct Lisp_Finalizer *dest,
3799 struct Lisp_Finalizer *src)
3800 {
3801 struct Lisp_Finalizer *finalizer = src->next;
3802 while (finalizer != src)
3803 {
3804 struct Lisp_Finalizer *next = finalizer->next;
3805 if (!finalizer->base.gcmarkbit && !NILP (finalizer->function))
3806 {
3807 unchain_finalizer (finalizer);
3808 finalizer_insert (dest, finalizer);
3809 }
3810
3811 finalizer = next;
3812 }
3813 }
3814
3815 static Lisp_Object
3816 run_finalizer_handler (Lisp_Object args)
3817 {
3818 add_to_log ("finalizer failed: %S", args);
3819 return Qnil;
3820 }
3821
3822 static void
3823 run_finalizer_function (Lisp_Object function)
3824 {
3825 ptrdiff_t count = SPECPDL_INDEX ();
3826
3827 specbind (Qinhibit_quit, Qt);
3828 internal_condition_case_1 (call0, function, Qt, run_finalizer_handler);
3829 unbind_to (count, Qnil);
3830 }
3831
3832 static void
3833 run_finalizers (struct Lisp_Finalizer *finalizers)
3834 {
3835 struct Lisp_Finalizer *finalizer;
3836 Lisp_Object function;
3837
3838 while (finalizers->next != finalizers)
3839 {
3840 finalizer = finalizers->next;
3841 eassert (finalizer->base.type == Lisp_Misc_Finalizer);
3842 unchain_finalizer (finalizer);
3843 function = finalizer->function;
3844 if (!NILP (function))
3845 {
3846 finalizer->function = Qnil;
3847 run_finalizer_function (function);
3848 }
3849 }
3850 }
3851
3852 DEFUN ("make-finalizer", Fmake_finalizer, Smake_finalizer, 1, 1, 0,
3853 doc: /* Make a finalizer that will run FUNCTION.
3854 FUNCTION will be called after garbage collection when the returned
3855 finalizer object becomes unreachable. If the finalizer object is
3856 reachable only through references from finalizer objects, it does not
3857 count as reachable for the purpose of deciding whether to run
3858 FUNCTION. FUNCTION will be run once per finalizer object. */)
3859 (Lisp_Object function)
3860 {
3861 Lisp_Object val = allocate_misc (Lisp_Misc_Finalizer);
3862 struct Lisp_Finalizer *finalizer = XFINALIZER (val);
3863 finalizer->function = function;
3864 finalizer->prev = finalizer->next = NULL;
3865 finalizer_insert (&finalizers, finalizer);
3866 return val;
3867 }
3868
3869 \f
3870 /************************************************************************
3871 Memory Full Handling
3872 ************************************************************************/
3873
3874
3875 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3876 there may have been size_t overflow so that malloc was never
3877 called, or perhaps malloc was invoked successfully but the
3878 resulting pointer had problems fitting into a tagged EMACS_INT. In
3879 either case this counts as memory being full even though malloc did
3880 not fail. */
3881
3882 void
3883 memory_full (size_t nbytes)
3884 {
3885 /* Do not go into hysterics merely because a large request failed. */
3886 bool enough_free_memory = 0;
3887 if (SPARE_MEMORY < nbytes)
3888 {
3889 void *p;
3890
3891 MALLOC_BLOCK_INPUT;
3892 p = malloc (SPARE_MEMORY);
3893 if (p)
3894 {
3895 free (p);
3896 enough_free_memory = 1;
3897 }
3898 MALLOC_UNBLOCK_INPUT;
3899 }
3900
3901 if (! enough_free_memory)
3902 {
3903 int i;
3904
3905 Vmemory_full = Qt;
3906
3907 memory_full_cons_threshold = sizeof (struct cons_block);
3908
3909 /* The first time we get here, free the spare memory. */
3910 for (i = 0; i < ARRAYELTS (spare_memory); i++)
3911 if (spare_memory[i])
3912 {
3913 if (i == 0)
3914 free (spare_memory[i]);
3915 else if (i >= 1 && i <= 4)
3916 lisp_align_free (spare_memory[i]);
3917 else
3918 lisp_free (spare_memory[i]);
3919 spare_memory[i] = 0;
3920 }
3921 }
3922
3923 /* This used to call error, but if we've run out of memory, we could
3924 get infinite recursion trying to build the string. */
3925 xsignal (Qnil, Vmemory_signal_data);
3926 }
3927
3928 /* If we released our reserve (due to running out of memory),
3929 and we have a fair amount free once again,
3930 try to set aside another reserve in case we run out once more.
3931
3932 This is called when a relocatable block is freed in ralloc.c,
3933 and also directly from this file, in case we're not using ralloc.c. */
3934
3935 void
3936 refill_memory_reserve (void)
3937 {
3938 #if !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3939 if (spare_memory[0] == 0)
3940 spare_memory[0] = malloc (SPARE_MEMORY);
3941 if (spare_memory[1] == 0)
3942 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3943 MEM_TYPE_SPARE);
3944 if (spare_memory[2] == 0)
3945 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3946 MEM_TYPE_SPARE);
3947 if (spare_memory[3] == 0)
3948 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3949 MEM_TYPE_SPARE);
3950 if (spare_memory[4] == 0)
3951 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3952 MEM_TYPE_SPARE);
3953 if (spare_memory[5] == 0)
3954 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3955 MEM_TYPE_SPARE);
3956 if (spare_memory[6] == 0)
3957 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3958 MEM_TYPE_SPARE);
3959 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3960 Vmemory_full = Qnil;
3961 #endif
3962 }
3963 \f
3964 /************************************************************************
3965 C Stack Marking
3966 ************************************************************************/
3967
3968 /* Conservative C stack marking requires a method to identify possibly
3969 live Lisp objects given a pointer value. We do this by keeping
3970 track of blocks of Lisp data that are allocated in a red-black tree
3971 (see also the comment of mem_node which is the type of nodes in
3972 that tree). Function lisp_malloc adds information for an allocated
3973 block to the red-black tree with calls to mem_insert, and function
3974 lisp_free removes it with mem_delete. Functions live_string_p etc
3975 call mem_find to lookup information about a given pointer in the
3976 tree, and use that to determine if the pointer points to a Lisp
3977 object or not. */
3978
3979 /* Initialize this part of alloc.c. */
3980
3981 static void
3982 mem_init (void)
3983 {
3984 mem_z.left = mem_z.right = MEM_NIL;
3985 mem_z.parent = NULL;
3986 mem_z.color = MEM_BLACK;
3987 mem_z.start = mem_z.end = NULL;
3988 mem_root = MEM_NIL;
3989 }
3990
3991
3992 /* Value is a pointer to the mem_node containing START. Value is
3993 MEM_NIL if there is no node in the tree containing START. */
3994
3995 static struct mem_node *
3996 mem_find (void *start)
3997 {
3998 struct mem_node *p;
3999
4000 if (start < min_heap_address || start > max_heap_address)
4001 return MEM_NIL;
4002
4003 /* Make the search always successful to speed up the loop below. */
4004 mem_z.start = start;
4005 mem_z.end = (char *) start + 1;
4006
4007 p = mem_root;
4008 while (start < p->start || start >= p->end)
4009 p = start < p->start ? p->left : p->right;
4010 return p;
4011 }
4012
4013
4014 /* Insert a new node into the tree for a block of memory with start
4015 address START, end address END, and type TYPE. Value is a
4016 pointer to the node that was inserted. */
4017
4018 static struct mem_node *
4019 mem_insert (void *start, void *end, enum mem_type type)
4020 {
4021 struct mem_node *c, *parent, *x;
4022
4023 if (min_heap_address == NULL || start < min_heap_address)
4024 min_heap_address = start;
4025 if (max_heap_address == NULL || end > max_heap_address)
4026 max_heap_address = end;
4027
4028 /* See where in the tree a node for START belongs. In this
4029 particular application, it shouldn't happen that a node is already
4030 present. For debugging purposes, let's check that. */
4031 c = mem_root;
4032 parent = NULL;
4033
4034 while (c != MEM_NIL)
4035 {
4036 parent = c;
4037 c = start < c->start ? c->left : c->right;
4038 }
4039
4040 /* Create a new node. */
4041 #ifdef GC_MALLOC_CHECK
4042 x = malloc (sizeof *x);
4043 if (x == NULL)
4044 emacs_abort ();
4045 #else
4046 x = xmalloc (sizeof *x);
4047 #endif
4048 x->start = start;
4049 x->end = end;
4050 x->type = type;
4051 x->parent = parent;
4052 x->left = x->right = MEM_NIL;
4053 x->color = MEM_RED;
4054
4055 /* Insert it as child of PARENT or install it as root. */
4056 if (parent)
4057 {
4058 if (start < parent->start)
4059 parent->left = x;
4060 else
4061 parent->right = x;
4062 }
4063 else
4064 mem_root = x;
4065
4066 /* Re-establish red-black tree properties. */
4067 mem_insert_fixup (x);
4068
4069 return x;
4070 }
4071
4072
4073 /* Re-establish the red-black properties of the tree, and thereby
4074 balance the tree, after node X has been inserted; X is always red. */
4075
4076 static void
4077 mem_insert_fixup (struct mem_node *x)
4078 {
4079 while (x != mem_root && x->parent->color == MEM_RED)
4080 {
4081 /* X is red and its parent is red. This is a violation of
4082 red-black tree property #3. */
4083
4084 if (x->parent == x->parent->parent->left)
4085 {
4086 /* We're on the left side of our grandparent, and Y is our
4087 "uncle". */
4088 struct mem_node *y = x->parent->parent->right;
4089
4090 if (y->color == MEM_RED)
4091 {
4092 /* Uncle and parent are red but should be black because
4093 X is red. Change the colors accordingly and proceed
4094 with the grandparent. */
4095 x->parent->color = MEM_BLACK;
4096 y->color = MEM_BLACK;
4097 x->parent->parent->color = MEM_RED;
4098 x = x->parent->parent;
4099 }
4100 else
4101 {
4102 /* Parent and uncle have different colors; parent is
4103 red, uncle is black. */
4104 if (x == x->parent->right)
4105 {
4106 x = x->parent;
4107 mem_rotate_left (x);
4108 }
4109
4110 x->parent->color = MEM_BLACK;
4111 x->parent->parent->color = MEM_RED;
4112 mem_rotate_right (x->parent->parent);
4113 }
4114 }
4115 else
4116 {
4117 /* This is the symmetrical case of above. */
4118 struct mem_node *y = x->parent->parent->left;
4119
4120 if (y->color == MEM_RED)
4121 {
4122 x->parent->color = MEM_BLACK;
4123 y->color = MEM_BLACK;
4124 x->parent->parent->color = MEM_RED;
4125 x = x->parent->parent;
4126 }
4127 else
4128 {
4129 if (x == x->parent->left)
4130 {
4131 x = x->parent;
4132 mem_rotate_right (x);
4133 }
4134
4135 x->parent->color = MEM_BLACK;
4136 x->parent->parent->color = MEM_RED;
4137 mem_rotate_left (x->parent->parent);
4138 }
4139 }
4140 }
4141
4142 /* The root may have been changed to red due to the algorithm. Set
4143 it to black so that property #5 is satisfied. */
4144 mem_root->color = MEM_BLACK;
4145 }
4146
4147
4148 /* (x) (y)
4149 / \ / \
4150 a (y) ===> (x) c
4151 / \ / \
4152 b c a b */
4153
4154 static void
4155 mem_rotate_left (struct mem_node *x)
4156 {
4157 struct mem_node *y;
4158
4159 /* Turn y's left sub-tree into x's right sub-tree. */
4160 y = x->right;
4161 x->right = y->left;
4162 if (y->left != MEM_NIL)
4163 y->left->parent = x;
4164
4165 /* Y's parent was x's parent. */
4166 if (y != MEM_NIL)
4167 y->parent = x->parent;
4168
4169 /* Get the parent to point to y instead of x. */
4170 if (x->parent)
4171 {
4172 if (x == x->parent->left)
4173 x->parent->left = y;
4174 else
4175 x->parent->right = y;
4176 }
4177 else
4178 mem_root = y;
4179
4180 /* Put x on y's left. */
4181 y->left = x;
4182 if (x != MEM_NIL)
4183 x->parent = y;
4184 }
4185
4186
4187 /* (x) (Y)
4188 / \ / \
4189 (y) c ===> a (x)
4190 / \ / \
4191 a b b c */
4192
4193 static void
4194 mem_rotate_right (struct mem_node *x)
4195 {
4196 struct mem_node *y = x->left;
4197
4198 x->left = y->right;
4199 if (y->right != MEM_NIL)
4200 y->right->parent = x;
4201
4202 if (y != MEM_NIL)
4203 y->parent = x->parent;
4204 if (x->parent)
4205 {
4206 if (x == x->parent->right)
4207 x->parent->right = y;
4208 else
4209 x->parent->left = y;
4210 }
4211 else
4212 mem_root = y;
4213
4214 y->right = x;
4215 if (x != MEM_NIL)
4216 x->parent = y;
4217 }
4218
4219
4220 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4221
4222 static void
4223 mem_delete (struct mem_node *z)
4224 {
4225 struct mem_node *x, *y;
4226
4227 if (!z || z == MEM_NIL)
4228 return;
4229
4230 if (z->left == MEM_NIL || z->right == MEM_NIL)
4231 y = z;
4232 else
4233 {
4234 y = z->right;
4235 while (y->left != MEM_NIL)
4236 y = y->left;
4237 }
4238
4239 if (y->left != MEM_NIL)
4240 x = y->left;
4241 else
4242 x = y->right;
4243
4244 x->parent = y->parent;
4245 if (y->parent)
4246 {
4247 if (y == y->parent->left)
4248 y->parent->left = x;
4249 else
4250 y->parent->right = x;
4251 }
4252 else
4253 mem_root = x;
4254
4255 if (y != z)
4256 {
4257 z->start = y->start;
4258 z->end = y->end;
4259 z->type = y->type;
4260 }
4261
4262 if (y->color == MEM_BLACK)
4263 mem_delete_fixup (x);
4264
4265 #ifdef GC_MALLOC_CHECK
4266 free (y);
4267 #else
4268 xfree (y);
4269 #endif
4270 }
4271
4272
4273 /* Re-establish the red-black properties of the tree, after a
4274 deletion. */
4275
4276 static void
4277 mem_delete_fixup (struct mem_node *x)
4278 {
4279 while (x != mem_root && x->color == MEM_BLACK)
4280 {
4281 if (x == x->parent->left)
4282 {
4283 struct mem_node *w = x->parent->right;
4284
4285 if (w->color == MEM_RED)
4286 {
4287 w->color = MEM_BLACK;
4288 x->parent->color = MEM_RED;
4289 mem_rotate_left (x->parent);
4290 w = x->parent->right;
4291 }
4292
4293 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4294 {
4295 w->color = MEM_RED;
4296 x = x->parent;
4297 }
4298 else
4299 {
4300 if (w->right->color == MEM_BLACK)
4301 {
4302 w->left->color = MEM_BLACK;
4303 w->color = MEM_RED;
4304 mem_rotate_right (w);
4305 w = x->parent->right;
4306 }
4307 w->color = x->parent->color;
4308 x->parent->color = MEM_BLACK;
4309 w->right->color = MEM_BLACK;
4310 mem_rotate_left (x->parent);
4311 x = mem_root;
4312 }
4313 }
4314 else
4315 {
4316 struct mem_node *w = x->parent->left;
4317
4318 if (w->color == MEM_RED)
4319 {
4320 w->color = MEM_BLACK;
4321 x->parent->color = MEM_RED;
4322 mem_rotate_right (x->parent);
4323 w = x->parent->left;
4324 }
4325
4326 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4327 {
4328 w->color = MEM_RED;
4329 x = x->parent;
4330 }
4331 else
4332 {
4333 if (w->left->color == MEM_BLACK)
4334 {
4335 w->right->color = MEM_BLACK;
4336 w->color = MEM_RED;
4337 mem_rotate_left (w);
4338 w = x->parent->left;
4339 }
4340
4341 w->color = x->parent->color;
4342 x->parent->color = MEM_BLACK;
4343 w->left->color = MEM_BLACK;
4344 mem_rotate_right (x->parent);
4345 x = mem_root;
4346 }
4347 }
4348 }
4349
4350 x->color = MEM_BLACK;
4351 }
4352
4353
4354 /* Value is non-zero if P is a pointer to a live Lisp string on
4355 the heap. M is a pointer to the mem_block for P. */
4356
4357 static bool
4358 live_string_p (struct mem_node *m, void *p)
4359 {
4360 if (m->type == MEM_TYPE_STRING)
4361 {
4362 struct string_block *b = m->start;
4363 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4364
4365 /* P must point to the start of a Lisp_String structure, and it
4366 must not be on the free-list. */
4367 return (offset >= 0
4368 && offset % sizeof b->strings[0] == 0
4369 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4370 && ((struct Lisp_String *) p)->data != NULL);
4371 }
4372 else
4373 return 0;
4374 }
4375
4376
4377 /* Value is non-zero if P is a pointer to a live Lisp cons on
4378 the heap. M is a pointer to the mem_block for P. */
4379
4380 static bool
4381 live_cons_p (struct mem_node *m, void *p)
4382 {
4383 if (m->type == MEM_TYPE_CONS)
4384 {
4385 struct cons_block *b = m->start;
4386 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4387
4388 /* P must point to the start of a Lisp_Cons, not be
4389 one of the unused cells in the current cons block,
4390 and not be on the free-list. */
4391 return (offset >= 0
4392 && offset % sizeof b->conses[0] == 0
4393 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4394 && (b != cons_block
4395 || offset / sizeof b->conses[0] < cons_block_index)
4396 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4397 }
4398 else
4399 return 0;
4400 }
4401
4402
4403 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4404 the heap. M is a pointer to the mem_block for P. */
4405
4406 static bool
4407 live_symbol_p (struct mem_node *m, void *p)
4408 {
4409 if (m->type == MEM_TYPE_SYMBOL)
4410 {
4411 struct symbol_block *b = m->start;
4412 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4413
4414 /* P must point to the start of a Lisp_Symbol, not be
4415 one of the unused cells in the current symbol block,
4416 and not be on the free-list. */
4417 return (offset >= 0
4418 && offset % sizeof b->symbols[0] == 0
4419 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4420 && (b != symbol_block
4421 || offset / sizeof b->symbols[0] < symbol_block_index)
4422 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4423 }
4424 else
4425 return 0;
4426 }
4427
4428
4429 /* Value is non-zero if P is a pointer to a live Lisp float on
4430 the heap. M is a pointer to the mem_block for P. */
4431
4432 static bool
4433 live_float_p (struct mem_node *m, void *p)
4434 {
4435 if (m->type == MEM_TYPE_FLOAT)
4436 {
4437 struct float_block *b = m->start;
4438 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4439
4440 /* P must point to the start of a Lisp_Float and not be
4441 one of the unused cells in the current float block. */
4442 return (offset >= 0
4443 && offset % sizeof b->floats[0] == 0
4444 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4445 && (b != float_block
4446 || offset / sizeof b->floats[0] < float_block_index));
4447 }
4448 else
4449 return 0;
4450 }
4451
4452
4453 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4454 the heap. M is a pointer to the mem_block for P. */
4455
4456 static bool
4457 live_misc_p (struct mem_node *m, void *p)
4458 {
4459 if (m->type == MEM_TYPE_MISC)
4460 {
4461 struct marker_block *b = m->start;
4462 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4463
4464 /* P must point to the start of a Lisp_Misc, not be
4465 one of the unused cells in the current misc block,
4466 and not be on the free-list. */
4467 return (offset >= 0
4468 && offset % sizeof b->markers[0] == 0
4469 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4470 && (b != marker_block
4471 || offset / sizeof b->markers[0] < marker_block_index)
4472 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4473 }
4474 else
4475 return 0;
4476 }
4477
4478
4479 /* Value is non-zero if P is a pointer to a live vector-like object.
4480 M is a pointer to the mem_block for P. */
4481
4482 static bool
4483 live_vector_p (struct mem_node *m, void *p)
4484 {
4485 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4486 {
4487 /* This memory node corresponds to a vector block. */
4488 struct vector_block *block = m->start;
4489 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4490
4491 /* P is in the block's allocation range. Scan the block
4492 up to P and see whether P points to the start of some
4493 vector which is not on a free list. FIXME: check whether
4494 some allocation patterns (probably a lot of short vectors)
4495 may cause a substantial overhead of this loop. */
4496 while (VECTOR_IN_BLOCK (vector, block)
4497 && vector <= (struct Lisp_Vector *) p)
4498 {
4499 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4500 return 1;
4501 else
4502 vector = ADVANCE (vector, vector_nbytes (vector));
4503 }
4504 }
4505 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4506 /* This memory node corresponds to a large vector. */
4507 return 1;
4508 return 0;
4509 }
4510
4511
4512 /* Value is non-zero if P is a pointer to a live buffer. M is a
4513 pointer to the mem_block for P. */
4514
4515 static bool
4516 live_buffer_p (struct mem_node *m, void *p)
4517 {
4518 /* P must point to the start of the block, and the buffer
4519 must not have been killed. */
4520 return (m->type == MEM_TYPE_BUFFER
4521 && p == m->start
4522 && !NILP (((struct buffer *) p)->name_));
4523 }
4524
4525 /* Mark OBJ if we can prove it's a Lisp_Object. */
4526
4527 static void
4528 mark_maybe_object (Lisp_Object obj)
4529 {
4530 #if USE_VALGRIND
4531 if (valgrind_p)
4532 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4533 #endif
4534
4535 if (INTEGERP (obj))
4536 return;
4537
4538 void *po = XPNTR (obj);
4539 struct mem_node *m = mem_find (po);
4540
4541 if (m != MEM_NIL)
4542 {
4543 bool mark_p = false;
4544
4545 switch (XTYPE (obj))
4546 {
4547 case Lisp_String:
4548 mark_p = (live_string_p (m, po)
4549 && !STRING_MARKED_P ((struct Lisp_String *) po));
4550 break;
4551
4552 case Lisp_Cons:
4553 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4554 break;
4555
4556 case Lisp_Symbol:
4557 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4558 break;
4559
4560 case Lisp_Float:
4561 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4562 break;
4563
4564 case Lisp_Vectorlike:
4565 /* Note: can't check BUFFERP before we know it's a
4566 buffer because checking that dereferences the pointer
4567 PO which might point anywhere. */
4568 if (live_vector_p (m, po))
4569 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4570 else if (live_buffer_p (m, po))
4571 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4572 break;
4573
4574 case Lisp_Misc:
4575 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4576 break;
4577
4578 default:
4579 break;
4580 }
4581
4582 if (mark_p)
4583 mark_object (obj);
4584 }
4585 }
4586
4587 /* Return true if P can point to Lisp data, and false otherwise.
4588 Symbols are implemented via offsets not pointers, but the offsets
4589 are also multiples of GCALIGNMENT. */
4590
4591 static bool
4592 maybe_lisp_pointer (void *p)
4593 {
4594 return (uintptr_t) p % GCALIGNMENT == 0;
4595 }
4596
4597 /* If P points to Lisp data, mark that as live if it isn't already
4598 marked. */
4599
4600 static void
4601 mark_maybe_pointer (void *p)
4602 {
4603 struct mem_node *m;
4604
4605 #if USE_VALGRIND
4606 if (valgrind_p)
4607 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4608 #endif
4609
4610 if (!maybe_lisp_pointer (p))
4611 return;
4612
4613 m = mem_find (p);
4614 if (m != MEM_NIL)
4615 {
4616 Lisp_Object obj = Qnil;
4617
4618 switch (m->type)
4619 {
4620 case MEM_TYPE_NON_LISP:
4621 case MEM_TYPE_SPARE:
4622 /* Nothing to do; not a pointer to Lisp memory. */
4623 break;
4624
4625 case MEM_TYPE_BUFFER:
4626 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4627 XSETVECTOR (obj, p);
4628 break;
4629
4630 case MEM_TYPE_CONS:
4631 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4632 XSETCONS (obj, p);
4633 break;
4634
4635 case MEM_TYPE_STRING:
4636 if (live_string_p (m, p)
4637 && !STRING_MARKED_P ((struct Lisp_String *) p))
4638 XSETSTRING (obj, p);
4639 break;
4640
4641 case MEM_TYPE_MISC:
4642 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4643 XSETMISC (obj, p);
4644 break;
4645
4646 case MEM_TYPE_SYMBOL:
4647 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4648 XSETSYMBOL (obj, p);
4649 break;
4650
4651 case MEM_TYPE_FLOAT:
4652 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4653 XSETFLOAT (obj, p);
4654 break;
4655
4656 case MEM_TYPE_VECTORLIKE:
4657 case MEM_TYPE_VECTOR_BLOCK:
4658 if (live_vector_p (m, p))
4659 {
4660 Lisp_Object tem;
4661 XSETVECTOR (tem, p);
4662 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4663 obj = tem;
4664 }
4665 break;
4666
4667 default:
4668 emacs_abort ();
4669 }
4670
4671 if (!NILP (obj))
4672 mark_object (obj);
4673 }
4674 }
4675
4676
4677 /* Alignment of pointer values. Use alignof, as it sometimes returns
4678 a smaller alignment than GCC's __alignof__ and mark_memory might
4679 miss objects if __alignof__ were used. */
4680 #define GC_POINTER_ALIGNMENT alignof (void *)
4681
4682 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4683 or END+OFFSET..START. */
4684
4685 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4686 mark_memory (void *start, void *end)
4687 {
4688 void **pp;
4689 int i;
4690
4691 /* Make START the pointer to the start of the memory region,
4692 if it isn't already. */
4693 if (end < start)
4694 {
4695 void *tem = start;
4696 start = end;
4697 end = tem;
4698 }
4699
4700 /* Mark Lisp data pointed to. This is necessary because, in some
4701 situations, the C compiler optimizes Lisp objects away, so that
4702 only a pointer to them remains. Example:
4703
4704 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4705 ()
4706 {
4707 Lisp_Object obj = build_string ("test");
4708 struct Lisp_String *s = XSTRING (obj);
4709 Fgarbage_collect ();
4710 fprintf (stderr, "test '%s'\n", s->data);
4711 return Qnil;
4712 }
4713
4714 Here, `obj' isn't really used, and the compiler optimizes it
4715 away. The only reference to the life string is through the
4716 pointer `s'. */
4717
4718 for (pp = start; (void *) pp < end; pp++)
4719 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4720 {
4721 void *p = *(void **) ((char *) pp + i);
4722 mark_maybe_pointer (p);
4723 mark_maybe_object (XIL ((intptr_t) p));
4724 }
4725 }
4726
4727 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4728
4729 static bool setjmp_tested_p;
4730 static int longjmps_done;
4731
4732 #define SETJMP_WILL_LIKELY_WORK "\
4733 \n\
4734 Emacs garbage collector has been changed to use conservative stack\n\
4735 marking. Emacs has determined that the method it uses to do the\n\
4736 marking will likely work on your system, but this isn't sure.\n\
4737 \n\
4738 If you are a system-programmer, or can get the help of a local wizard\n\
4739 who is, please take a look at the function mark_stack in alloc.c, and\n\
4740 verify that the methods used are appropriate for your system.\n\
4741 \n\
4742 Please mail the result to <emacs-devel@gnu.org>.\n\
4743 "
4744
4745 #define SETJMP_WILL_NOT_WORK "\
4746 \n\
4747 Emacs garbage collector has been changed to use conservative stack\n\
4748 marking. Emacs has determined that the default method it uses to do the\n\
4749 marking will not work on your system. We will need a system-dependent\n\
4750 solution for your system.\n\
4751 \n\
4752 Please take a look at the function mark_stack in alloc.c, and\n\
4753 try to find a way to make it work on your system.\n\
4754 \n\
4755 Note that you may get false negatives, depending on the compiler.\n\
4756 In particular, you need to use -O with GCC for this test.\n\
4757 \n\
4758 Please mail the result to <emacs-devel@gnu.org>.\n\
4759 "
4760
4761
4762 /* Perform a quick check if it looks like setjmp saves registers in a
4763 jmp_buf. Print a message to stderr saying so. When this test
4764 succeeds, this is _not_ a proof that setjmp is sufficient for
4765 conservative stack marking. Only the sources or a disassembly
4766 can prove that. */
4767
4768 static void
4769 test_setjmp (void)
4770 {
4771 char buf[10];
4772 register int x;
4773 sys_jmp_buf jbuf;
4774
4775 /* Arrange for X to be put in a register. */
4776 sprintf (buf, "1");
4777 x = strlen (buf);
4778 x = 2 * x - 1;
4779
4780 sys_setjmp (jbuf);
4781 if (longjmps_done == 1)
4782 {
4783 /* Came here after the longjmp at the end of the function.
4784
4785 If x == 1, the longjmp has restored the register to its
4786 value before the setjmp, and we can hope that setjmp
4787 saves all such registers in the jmp_buf, although that
4788 isn't sure.
4789
4790 For other values of X, either something really strange is
4791 taking place, or the setjmp just didn't save the register. */
4792
4793 if (x == 1)
4794 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4795 else
4796 {
4797 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4798 exit (1);
4799 }
4800 }
4801
4802 ++longjmps_done;
4803 x = 2;
4804 if (longjmps_done == 1)
4805 sys_longjmp (jbuf, 1);
4806 }
4807
4808 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4809
4810
4811 /* Mark live Lisp objects on the C stack.
4812
4813 There are several system-dependent problems to consider when
4814 porting this to new architectures:
4815
4816 Processor Registers
4817
4818 We have to mark Lisp objects in CPU registers that can hold local
4819 variables or are used to pass parameters.
4820
4821 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4822 something that either saves relevant registers on the stack, or
4823 calls mark_maybe_object passing it each register's contents.
4824
4825 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4826 implementation assumes that calling setjmp saves registers we need
4827 to see in a jmp_buf which itself lies on the stack. This doesn't
4828 have to be true! It must be verified for each system, possibly
4829 by taking a look at the source code of setjmp.
4830
4831 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4832 can use it as a machine independent method to store all registers
4833 to the stack. In this case the macros described in the previous
4834 two paragraphs are not used.
4835
4836 Stack Layout
4837
4838 Architectures differ in the way their processor stack is organized.
4839 For example, the stack might look like this
4840
4841 +----------------+
4842 | Lisp_Object | size = 4
4843 +----------------+
4844 | something else | size = 2
4845 +----------------+
4846 | Lisp_Object | size = 4
4847 +----------------+
4848 | ... |
4849
4850 In such a case, not every Lisp_Object will be aligned equally. To
4851 find all Lisp_Object on the stack it won't be sufficient to walk
4852 the stack in steps of 4 bytes. Instead, two passes will be
4853 necessary, one starting at the start of the stack, and a second
4854 pass starting at the start of the stack + 2. Likewise, if the
4855 minimal alignment of Lisp_Objects on the stack is 1, four passes
4856 would be necessary, each one starting with one byte more offset
4857 from the stack start. */
4858
4859 static void
4860 mark_stack (void *end)
4861 {
4862
4863 /* This assumes that the stack is a contiguous region in memory. If
4864 that's not the case, something has to be done here to iterate
4865 over the stack segments. */
4866 mark_memory (stack_base, end);
4867
4868 /* Allow for marking a secondary stack, like the register stack on the
4869 ia64. */
4870 #ifdef GC_MARK_SECONDARY_STACK
4871 GC_MARK_SECONDARY_STACK ();
4872 #endif
4873 }
4874
4875 static bool
4876 c_symbol_p (struct Lisp_Symbol *sym)
4877 {
4878 char *lispsym_ptr = (char *) lispsym;
4879 char *sym_ptr = (char *) sym;
4880 ptrdiff_t lispsym_offset = sym_ptr - lispsym_ptr;
4881 return 0 <= lispsym_offset && lispsym_offset < sizeof lispsym;
4882 }
4883
4884 /* Determine whether it is safe to access memory at address P. */
4885 static int
4886 valid_pointer_p (void *p)
4887 {
4888 #ifdef WINDOWSNT
4889 return w32_valid_pointer_p (p, 16);
4890 #else
4891
4892 if (ADDRESS_SANITIZER)
4893 return p ? -1 : 0;
4894
4895 int fd[2];
4896
4897 /* Obviously, we cannot just access it (we would SEGV trying), so we
4898 trick the o/s to tell us whether p is a valid pointer.
4899 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4900 not validate p in that case. */
4901
4902 if (emacs_pipe (fd) == 0)
4903 {
4904 bool valid = emacs_write (fd[1], p, 16) == 16;
4905 emacs_close (fd[1]);
4906 emacs_close (fd[0]);
4907 return valid;
4908 }
4909
4910 return -1;
4911 #endif
4912 }
4913
4914 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4915 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4916 cannot validate OBJ. This function can be quite slow, so its primary
4917 use is the manual debugging. The only exception is print_object, where
4918 we use it to check whether the memory referenced by the pointer of
4919 Lisp_Save_Value object contains valid objects. */
4920
4921 int
4922 valid_lisp_object_p (Lisp_Object obj)
4923 {
4924 if (INTEGERP (obj))
4925 return 1;
4926
4927 void *p = XPNTR (obj);
4928 if (PURE_P (p))
4929 return 1;
4930
4931 if (SYMBOLP (obj) && c_symbol_p (p))
4932 return ((char *) p - (char *) lispsym) % sizeof lispsym[0] == 0;
4933
4934 if (p == &buffer_defaults || p == &buffer_local_symbols)
4935 return 2;
4936
4937 struct mem_node *m = mem_find (p);
4938
4939 if (m == MEM_NIL)
4940 {
4941 int valid = valid_pointer_p (p);
4942 if (valid <= 0)
4943 return valid;
4944
4945 if (SUBRP (obj))
4946 return 1;
4947
4948 return 0;
4949 }
4950
4951 switch (m->type)
4952 {
4953 case MEM_TYPE_NON_LISP:
4954 case MEM_TYPE_SPARE:
4955 return 0;
4956
4957 case MEM_TYPE_BUFFER:
4958 return live_buffer_p (m, p) ? 1 : 2;
4959
4960 case MEM_TYPE_CONS:
4961 return live_cons_p (m, p);
4962
4963 case MEM_TYPE_STRING:
4964 return live_string_p (m, p);
4965
4966 case MEM_TYPE_MISC:
4967 return live_misc_p (m, p);
4968
4969 case MEM_TYPE_SYMBOL:
4970 return live_symbol_p (m, p);
4971
4972 case MEM_TYPE_FLOAT:
4973 return live_float_p (m, p);
4974
4975 case MEM_TYPE_VECTORLIKE:
4976 case MEM_TYPE_VECTOR_BLOCK:
4977 return live_vector_p (m, p);
4978
4979 default:
4980 break;
4981 }
4982
4983 return 0;
4984 }
4985
4986 /***********************************************************************
4987 Pure Storage Management
4988 ***********************************************************************/
4989
4990 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4991 pointer to it. TYPE is the Lisp type for which the memory is
4992 allocated. TYPE < 0 means it's not used for a Lisp object. */
4993
4994 static void *
4995 pure_alloc (size_t size, int type)
4996 {
4997 void *result;
4998
4999 again:
5000 if (type >= 0)
5001 {
5002 /* Allocate space for a Lisp object from the beginning of the free
5003 space with taking account of alignment. */
5004 result = ALIGN (purebeg + pure_bytes_used_lisp, GCALIGNMENT);
5005 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5006 }
5007 else
5008 {
5009 /* Allocate space for a non-Lisp object from the end of the free
5010 space. */
5011 pure_bytes_used_non_lisp += size;
5012 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5013 }
5014 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5015
5016 if (pure_bytes_used <= pure_size)
5017 return result;
5018
5019 /* Don't allocate a large amount here,
5020 because it might get mmap'd and then its address
5021 might not be usable. */
5022 purebeg = xmalloc (10000);
5023 pure_size = 10000;
5024 pure_bytes_used_before_overflow += pure_bytes_used - size;
5025 pure_bytes_used = 0;
5026 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5027 goto again;
5028 }
5029
5030
5031 /* Print a warning if PURESIZE is too small. */
5032
5033 void
5034 check_pure_size (void)
5035 {
5036 if (pure_bytes_used_before_overflow)
5037 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5038 " bytes needed)"),
5039 pure_bytes_used + pure_bytes_used_before_overflow);
5040 }
5041
5042
5043 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5044 the non-Lisp data pool of the pure storage, and return its start
5045 address. Return NULL if not found. */
5046
5047 static char *
5048 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5049 {
5050 int i;
5051 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5052 const unsigned char *p;
5053 char *non_lisp_beg;
5054
5055 if (pure_bytes_used_non_lisp <= nbytes)
5056 return NULL;
5057
5058 /* Set up the Boyer-Moore table. */
5059 skip = nbytes + 1;
5060 for (i = 0; i < 256; i++)
5061 bm_skip[i] = skip;
5062
5063 p = (const unsigned char *) data;
5064 while (--skip > 0)
5065 bm_skip[*p++] = skip;
5066
5067 last_char_skip = bm_skip['\0'];
5068
5069 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5070 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5071
5072 /* See the comments in the function `boyer_moore' (search.c) for the
5073 use of `infinity'. */
5074 infinity = pure_bytes_used_non_lisp + 1;
5075 bm_skip['\0'] = infinity;
5076
5077 p = (const unsigned char *) non_lisp_beg + nbytes;
5078 start = 0;
5079 do
5080 {
5081 /* Check the last character (== '\0'). */
5082 do
5083 {
5084 start += bm_skip[*(p + start)];
5085 }
5086 while (start <= start_max);
5087
5088 if (start < infinity)
5089 /* Couldn't find the last character. */
5090 return NULL;
5091
5092 /* No less than `infinity' means we could find the last
5093 character at `p[start - infinity]'. */
5094 start -= infinity;
5095
5096 /* Check the remaining characters. */
5097 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5098 /* Found. */
5099 return non_lisp_beg + start;
5100
5101 start += last_char_skip;
5102 }
5103 while (start <= start_max);
5104
5105 return NULL;
5106 }
5107
5108
5109 /* Return a string allocated in pure space. DATA is a buffer holding
5110 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5111 means make the result string multibyte.
5112
5113 Must get an error if pure storage is full, since if it cannot hold
5114 a large string it may be able to hold conses that point to that
5115 string; then the string is not protected from gc. */
5116
5117 Lisp_Object
5118 make_pure_string (const char *data,
5119 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5120 {
5121 Lisp_Object string;
5122 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5123 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5124 if (s->data == NULL)
5125 {
5126 s->data = pure_alloc (nbytes + 1, -1);
5127 memcpy (s->data, data, nbytes);
5128 s->data[nbytes] = '\0';
5129 }
5130 s->size = nchars;
5131 s->size_byte = multibyte ? nbytes : -1;
5132 s->intervals = NULL;
5133 XSETSTRING (string, s);
5134 return string;
5135 }
5136
5137 /* Return a string allocated in pure space. Do not
5138 allocate the string data, just point to DATA. */
5139
5140 Lisp_Object
5141 make_pure_c_string (const char *data, ptrdiff_t nchars)
5142 {
5143 Lisp_Object string;
5144 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5145 s->size = nchars;
5146 s->size_byte = -1;
5147 s->data = (unsigned char *) data;
5148 s->intervals = NULL;
5149 XSETSTRING (string, s);
5150 return string;
5151 }
5152
5153 static Lisp_Object purecopy (Lisp_Object obj);
5154
5155 /* Return a cons allocated from pure space. Give it pure copies
5156 of CAR as car and CDR as cdr. */
5157
5158 Lisp_Object
5159 pure_cons (Lisp_Object car, Lisp_Object cdr)
5160 {
5161 Lisp_Object new;
5162 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5163 XSETCONS (new, p);
5164 XSETCAR (new, purecopy (car));
5165 XSETCDR (new, purecopy (cdr));
5166 return new;
5167 }
5168
5169
5170 /* Value is a float object with value NUM allocated from pure space. */
5171
5172 static Lisp_Object
5173 make_pure_float (double num)
5174 {
5175 Lisp_Object new;
5176 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5177 XSETFLOAT (new, p);
5178 XFLOAT_INIT (new, num);
5179 return new;
5180 }
5181
5182
5183 /* Return a vector with room for LEN Lisp_Objects allocated from
5184 pure space. */
5185
5186 static Lisp_Object
5187 make_pure_vector (ptrdiff_t len)
5188 {
5189 Lisp_Object new;
5190 size_t size = header_size + len * word_size;
5191 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5192 XSETVECTOR (new, p);
5193 XVECTOR (new)->header.size = len;
5194 return new;
5195 }
5196
5197 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5198 doc: /* Make a copy of object OBJ in pure storage.
5199 Recursively copies contents of vectors and cons cells.
5200 Does not copy symbols. Copies strings without text properties. */)
5201 (register Lisp_Object obj)
5202 {
5203 if (NILP (Vpurify_flag))
5204 return obj;
5205 else if (MARKERP (obj) || OVERLAYP (obj)
5206 || HASH_TABLE_P (obj) || SYMBOLP (obj))
5207 /* Can't purify those. */
5208 return obj;
5209 else
5210 return purecopy (obj);
5211 }
5212
5213 static Lisp_Object
5214 purecopy (Lisp_Object obj)
5215 {
5216 if (INTEGERP (obj)
5217 || (! SYMBOLP (obj) && PURE_P (XPNTR_OR_SYMBOL_OFFSET (obj)))
5218 || SUBRP (obj))
5219 return obj; /* Already pure. */
5220
5221 if (STRINGP (obj) && XSTRING (obj)->intervals)
5222 message_with_string ("Dropping text-properties while making string `%s' pure",
5223 obj, true);
5224
5225 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5226 {
5227 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5228 if (!NILP (tmp))
5229 return tmp;
5230 }
5231
5232 if (CONSP (obj))
5233 obj = pure_cons (XCAR (obj), XCDR (obj));
5234 else if (FLOATP (obj))
5235 obj = make_pure_float (XFLOAT_DATA (obj));
5236 else if (STRINGP (obj))
5237 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5238 SBYTES (obj),
5239 STRING_MULTIBYTE (obj));
5240 else if (COMPILEDP (obj) || VECTORP (obj) || HASH_TABLE_P (obj))
5241 {
5242 struct Lisp_Vector *objp = XVECTOR (obj);
5243 ptrdiff_t nbytes = vector_nbytes (objp);
5244 struct Lisp_Vector *vec = pure_alloc (nbytes, Lisp_Vectorlike);
5245 register ptrdiff_t i;
5246 ptrdiff_t size = ASIZE (obj);
5247 if (size & PSEUDOVECTOR_FLAG)
5248 size &= PSEUDOVECTOR_SIZE_MASK;
5249 memcpy (vec, objp, nbytes);
5250 for (i = 0; i < size; i++)
5251 vec->contents[i] = purecopy (vec->contents[i]);
5252 XSETVECTOR (obj, vec);
5253 }
5254 else if (SYMBOLP (obj))
5255 {
5256 if (!XSYMBOL (obj)->pinned && !c_symbol_p (XSYMBOL (obj)))
5257 { /* We can't purify them, but they appear in many pure objects.
5258 Mark them as `pinned' so we know to mark them at every GC cycle. */
5259 XSYMBOL (obj)->pinned = true;
5260 symbol_block_pinned = symbol_block;
5261 }
5262 /* Don't hash-cons it. */
5263 return obj;
5264 }
5265 else
5266 {
5267 Lisp_Object fmt = build_pure_c_string ("Don't know how to purify: %S");
5268 Fsignal (Qerror, list1 (CALLN (Fformat, fmt, obj)));
5269 }
5270
5271 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5272 Fputhash (obj, obj, Vpurify_flag);
5273
5274 return obj;
5275 }
5276
5277
5278 \f
5279 /***********************************************************************
5280 Protection from GC
5281 ***********************************************************************/
5282
5283 /* Put an entry in staticvec, pointing at the variable with address
5284 VARADDRESS. */
5285
5286 void
5287 staticpro (Lisp_Object *varaddress)
5288 {
5289 if (staticidx >= NSTATICS)
5290 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5291 staticvec[staticidx++] = varaddress;
5292 }
5293
5294 \f
5295 /***********************************************************************
5296 Protection from GC
5297 ***********************************************************************/
5298
5299 /* Temporarily prevent garbage collection. */
5300
5301 ptrdiff_t
5302 inhibit_garbage_collection (void)
5303 {
5304 ptrdiff_t count = SPECPDL_INDEX ();
5305
5306 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5307 return count;
5308 }
5309
5310 /* Used to avoid possible overflows when
5311 converting from C to Lisp integers. */
5312
5313 static Lisp_Object
5314 bounded_number (EMACS_INT number)
5315 {
5316 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5317 }
5318
5319 /* Calculate total bytes of live objects. */
5320
5321 static size_t
5322 total_bytes_of_live_objects (void)
5323 {
5324 size_t tot = 0;
5325 tot += total_conses * sizeof (struct Lisp_Cons);
5326 tot += total_symbols * sizeof (struct Lisp_Symbol);
5327 tot += total_markers * sizeof (union Lisp_Misc);
5328 tot += total_string_bytes;
5329 tot += total_vector_slots * word_size;
5330 tot += total_floats * sizeof (struct Lisp_Float);
5331 tot += total_intervals * sizeof (struct interval);
5332 tot += total_strings * sizeof (struct Lisp_String);
5333 return tot;
5334 }
5335
5336 #ifdef HAVE_WINDOW_SYSTEM
5337
5338 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5339 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5340
5341 static Lisp_Object
5342 compact_font_cache_entry (Lisp_Object entry)
5343 {
5344 Lisp_Object tail, *prev = &entry;
5345
5346 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5347 {
5348 bool drop = 0;
5349 Lisp_Object obj = XCAR (tail);
5350
5351 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5352 if (CONSP (obj) && GC_FONT_SPEC_P (XCAR (obj))
5353 && !VECTOR_MARKED_P (GC_XFONT_SPEC (XCAR (obj)))
5354 /* Don't use VECTORP here, as that calls ASIZE, which could
5355 hit assertion violation during GC. */
5356 && (VECTORLIKEP (XCDR (obj))
5357 && ! (gc_asize (XCDR (obj)) & PSEUDOVECTOR_FLAG)))
5358 {
5359 ptrdiff_t i, size = gc_asize (XCDR (obj));
5360 Lisp_Object obj_cdr = XCDR (obj);
5361
5362 /* If font-spec is not marked, most likely all font-entities
5363 are not marked too. But we must be sure that nothing is
5364 marked within OBJ before we really drop it. */
5365 for (i = 0; i < size; i++)
5366 {
5367 Lisp_Object objlist;
5368
5369 if (VECTOR_MARKED_P (GC_XFONT_ENTITY (AREF (obj_cdr, i))))
5370 break;
5371
5372 objlist = AREF (AREF (obj_cdr, i), FONT_OBJLIST_INDEX);
5373 for (; CONSP (objlist); objlist = XCDR (objlist))
5374 {
5375 Lisp_Object val = XCAR (objlist);
5376 struct font *font = GC_XFONT_OBJECT (val);
5377
5378 if (!NILP (AREF (val, FONT_TYPE_INDEX))
5379 && VECTOR_MARKED_P(font))
5380 break;
5381 }
5382 if (CONSP (objlist))
5383 {
5384 /* Found a marked font, bail out. */
5385 break;
5386 }
5387 }
5388
5389 if (i == size)
5390 {
5391 /* No marked fonts were found, so this entire font
5392 entity can be dropped. */
5393 drop = 1;
5394 }
5395 }
5396 if (drop)
5397 *prev = XCDR (tail);
5398 else
5399 prev = xcdr_addr (tail);
5400 }
5401 return entry;
5402 }
5403
5404 /* Compact font caches on all terminals and mark
5405 everything which is still here after compaction. */
5406
5407 static void
5408 compact_font_caches (void)
5409 {
5410 struct terminal *t;
5411
5412 for (t = terminal_list; t; t = t->next_terminal)
5413 {
5414 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5415 if (CONSP (cache))
5416 {
5417 Lisp_Object entry;
5418
5419 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5420 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5421 }
5422 mark_object (cache);
5423 }
5424 }
5425
5426 #else /* not HAVE_WINDOW_SYSTEM */
5427
5428 #define compact_font_caches() (void)(0)
5429
5430 #endif /* HAVE_WINDOW_SYSTEM */
5431
5432 /* Remove (MARKER . DATA) entries with unmarked MARKER
5433 from buffer undo LIST and return changed list. */
5434
5435 static Lisp_Object
5436 compact_undo_list (Lisp_Object list)
5437 {
5438 Lisp_Object tail, *prev = &list;
5439
5440 for (tail = list; CONSP (tail); tail = XCDR (tail))
5441 {
5442 if (CONSP (XCAR (tail))
5443 && MARKERP (XCAR (XCAR (tail)))
5444 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5445 *prev = XCDR (tail);
5446 else
5447 prev = xcdr_addr (tail);
5448 }
5449 return list;
5450 }
5451
5452 static void
5453 mark_pinned_symbols (void)
5454 {
5455 struct symbol_block *sblk;
5456 int lim = (symbol_block_pinned == symbol_block
5457 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5458
5459 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5460 {
5461 union aligned_Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5462 for (; sym < end; ++sym)
5463 if (sym->s.pinned)
5464 mark_object (make_lisp_symbol (&sym->s));
5465
5466 lim = SYMBOL_BLOCK_SIZE;
5467 }
5468 }
5469
5470 /* Subroutine of Fgarbage_collect that does most of the work. It is a
5471 separate function so that we could limit mark_stack in searching
5472 the stack frames below this function, thus avoiding the rare cases
5473 where mark_stack finds values that look like live Lisp objects on
5474 portions of stack that couldn't possibly contain such live objects.
5475 For more details of this, see the discussion at
5476 http://lists.gnu.org/archive/html/emacs-devel/2014-05/msg00270.html. */
5477 static Lisp_Object
5478 garbage_collect_1 (void *end)
5479 {
5480 struct buffer *nextb;
5481 char stack_top_variable;
5482 ptrdiff_t i;
5483 bool message_p;
5484 ptrdiff_t count = SPECPDL_INDEX ();
5485 struct timespec start;
5486 Lisp_Object retval = Qnil;
5487 size_t tot_before = 0;
5488
5489 if (abort_on_gc)
5490 emacs_abort ();
5491
5492 /* Can't GC if pure storage overflowed because we can't determine
5493 if something is a pure object or not. */
5494 if (pure_bytes_used_before_overflow)
5495 return Qnil;
5496
5497 /* Record this function, so it appears on the profiler's backtraces. */
5498 record_in_backtrace (Qautomatic_gc, 0, 0);
5499
5500 check_cons_list ();
5501
5502 /* Don't keep undo information around forever.
5503 Do this early on, so it is no problem if the user quits. */
5504 FOR_EACH_BUFFER (nextb)
5505 compact_buffer (nextb);
5506
5507 if (profiler_memory_running)
5508 tot_before = total_bytes_of_live_objects ();
5509
5510 start = current_timespec ();
5511
5512 /* In case user calls debug_print during GC,
5513 don't let that cause a recursive GC. */
5514 consing_since_gc = 0;
5515
5516 /* Save what's currently displayed in the echo area. */
5517 message_p = push_message ();
5518 record_unwind_protect_void (pop_message_unwind);
5519
5520 /* Save a copy of the contents of the stack, for debugging. */
5521 #if MAX_SAVE_STACK > 0
5522 if (NILP (Vpurify_flag))
5523 {
5524 char *stack;
5525 ptrdiff_t stack_size;
5526 if (&stack_top_variable < stack_bottom)
5527 {
5528 stack = &stack_top_variable;
5529 stack_size = stack_bottom - &stack_top_variable;
5530 }
5531 else
5532 {
5533 stack = stack_bottom;
5534 stack_size = &stack_top_variable - stack_bottom;
5535 }
5536 if (stack_size <= MAX_SAVE_STACK)
5537 {
5538 if (stack_copy_size < stack_size)
5539 {
5540 stack_copy = xrealloc (stack_copy, stack_size);
5541 stack_copy_size = stack_size;
5542 }
5543 no_sanitize_memcpy (stack_copy, stack, stack_size);
5544 }
5545 }
5546 #endif /* MAX_SAVE_STACK > 0 */
5547
5548 if (garbage_collection_messages)
5549 message1_nolog ("Garbage collecting...");
5550
5551 block_input ();
5552
5553 shrink_regexp_cache ();
5554
5555 gc_in_progress = 1;
5556
5557 /* Mark all the special slots that serve as the roots of accessibility. */
5558
5559 mark_buffer (&buffer_defaults);
5560 mark_buffer (&buffer_local_symbols);
5561
5562 for (i = 0; i < ARRAYELTS (lispsym); i++)
5563 mark_object (builtin_lisp_symbol (i));
5564
5565 for (i = 0; i < staticidx; i++)
5566 mark_object (*staticvec[i]);
5567
5568 mark_pinned_symbols ();
5569 mark_specpdl ();
5570 mark_terminals ();
5571 mark_kboards ();
5572
5573 #ifdef USE_GTK
5574 xg_mark_data ();
5575 #endif
5576
5577 mark_stack (end);
5578
5579 {
5580 struct handler *handler;
5581 for (handler = handlerlist; handler; handler = handler->next)
5582 {
5583 mark_object (handler->tag_or_ch);
5584 mark_object (handler->val);
5585 }
5586 }
5587 #ifdef HAVE_WINDOW_SYSTEM
5588 mark_fringe_data ();
5589 #endif
5590
5591 /* Everything is now marked, except for the data in font caches,
5592 undo lists, and finalizers. The first two are compacted by
5593 removing an items which aren't reachable otherwise. */
5594
5595 compact_font_caches ();
5596
5597 FOR_EACH_BUFFER (nextb)
5598 {
5599 if (!EQ (BVAR (nextb, undo_list), Qt))
5600 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5601 /* Now that we have stripped the elements that need not be
5602 in the undo_list any more, we can finally mark the list. */
5603 mark_object (BVAR (nextb, undo_list));
5604 }
5605
5606 /* Now pre-sweep finalizers. Here, we add any unmarked finalizers
5607 to doomed_finalizers so we can run their associated functions
5608 after GC. It's important to scan finalizers at this stage so
5609 that we can be sure that unmarked finalizers are really
5610 unreachable except for references from their associated functions
5611 and from other finalizers. */
5612
5613 queue_doomed_finalizers (&doomed_finalizers, &finalizers);
5614 mark_finalizer_list (&doomed_finalizers);
5615
5616 gc_sweep ();
5617
5618 relocate_byte_stack ();
5619
5620 /* Clear the mark bits that we set in certain root slots. */
5621 VECTOR_UNMARK (&buffer_defaults);
5622 VECTOR_UNMARK (&buffer_local_symbols);
5623
5624 check_cons_list ();
5625
5626 gc_in_progress = 0;
5627
5628 unblock_input ();
5629
5630 consing_since_gc = 0;
5631 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5632 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5633
5634 gc_relative_threshold = 0;
5635 if (FLOATP (Vgc_cons_percentage))
5636 { /* Set gc_cons_combined_threshold. */
5637 double tot = total_bytes_of_live_objects ();
5638
5639 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5640 if (0 < tot)
5641 {
5642 if (tot < TYPE_MAXIMUM (EMACS_INT))
5643 gc_relative_threshold = tot;
5644 else
5645 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5646 }
5647 }
5648
5649 if (garbage_collection_messages)
5650 {
5651 if (message_p || minibuf_level > 0)
5652 restore_message ();
5653 else
5654 message1_nolog ("Garbage collecting...done");
5655 }
5656
5657 unbind_to (count, Qnil);
5658
5659 Lisp_Object total[] = {
5660 list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5661 bounded_number (total_conses),
5662 bounded_number (total_free_conses)),
5663 list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5664 bounded_number (total_symbols),
5665 bounded_number (total_free_symbols)),
5666 list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5667 bounded_number (total_markers),
5668 bounded_number (total_free_markers)),
5669 list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5670 bounded_number (total_strings),
5671 bounded_number (total_free_strings)),
5672 list3 (Qstring_bytes, make_number (1),
5673 bounded_number (total_string_bytes)),
5674 list3 (Qvectors,
5675 make_number (header_size + sizeof (Lisp_Object)),
5676 bounded_number (total_vectors)),
5677 list4 (Qvector_slots, make_number (word_size),
5678 bounded_number (total_vector_slots),
5679 bounded_number (total_free_vector_slots)),
5680 list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5681 bounded_number (total_floats),
5682 bounded_number (total_free_floats)),
5683 list4 (Qintervals, make_number (sizeof (struct interval)),
5684 bounded_number (total_intervals),
5685 bounded_number (total_free_intervals)),
5686 list3 (Qbuffers, make_number (sizeof (struct buffer)),
5687 bounded_number (total_buffers)),
5688
5689 #ifdef DOUG_LEA_MALLOC
5690 list4 (Qheap, make_number (1024),
5691 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5692 bounded_number ((mallinfo ().fordblks + 1023) >> 10)),
5693 #endif
5694 };
5695 retval = CALLMANY (Flist, total);
5696
5697 /* GC is complete: now we can run our finalizer callbacks. */
5698 run_finalizers (&doomed_finalizers);
5699
5700 if (!NILP (Vpost_gc_hook))
5701 {
5702 ptrdiff_t gc_count = inhibit_garbage_collection ();
5703 safe_run_hooks (Qpost_gc_hook);
5704 unbind_to (gc_count, Qnil);
5705 }
5706
5707 /* Accumulate statistics. */
5708 if (FLOATP (Vgc_elapsed))
5709 {
5710 struct timespec since_start = timespec_sub (current_timespec (), start);
5711 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5712 + timespectod (since_start));
5713 }
5714
5715 gcs_done++;
5716
5717 /* Collect profiling data. */
5718 if (profiler_memory_running)
5719 {
5720 size_t swept = 0;
5721 size_t tot_after = total_bytes_of_live_objects ();
5722 if (tot_before > tot_after)
5723 swept = tot_before - tot_after;
5724 malloc_probe (swept);
5725 }
5726
5727 return retval;
5728 }
5729
5730 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5731 doc: /* Reclaim storage for Lisp objects no longer needed.
5732 Garbage collection happens automatically if you cons more than
5733 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5734 `garbage-collect' normally returns a list with info on amount of space in use,
5735 where each entry has the form (NAME SIZE USED FREE), where:
5736 - NAME is a symbol describing the kind of objects this entry represents,
5737 - SIZE is the number of bytes used by each one,
5738 - USED is the number of those objects that were found live in the heap,
5739 - FREE is the number of those objects that are not live but that Emacs
5740 keeps around for future allocations (maybe because it does not know how
5741 to return them to the OS).
5742 However, if there was overflow in pure space, `garbage-collect'
5743 returns nil, because real GC can't be done.
5744 See Info node `(elisp)Garbage Collection'. */)
5745 (void)
5746 {
5747 void *end;
5748
5749 #ifdef HAVE___BUILTIN_UNWIND_INIT
5750 /* Force callee-saved registers and register windows onto the stack.
5751 This is the preferred method if available, obviating the need for
5752 machine dependent methods. */
5753 __builtin_unwind_init ();
5754 end = &end;
5755 #else /* not HAVE___BUILTIN_UNWIND_INIT */
5756 #ifndef GC_SAVE_REGISTERS_ON_STACK
5757 /* jmp_buf may not be aligned enough on darwin-ppc64 */
5758 union aligned_jmpbuf {
5759 Lisp_Object o;
5760 sys_jmp_buf j;
5761 } j;
5762 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
5763 #endif
5764 /* This trick flushes the register windows so that all the state of
5765 the process is contained in the stack. */
5766 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
5767 needed on ia64 too. See mach_dep.c, where it also says inline
5768 assembler doesn't work with relevant proprietary compilers. */
5769 #ifdef __sparc__
5770 #if defined (__sparc64__) && defined (__FreeBSD__)
5771 /* FreeBSD does not have a ta 3 handler. */
5772 asm ("flushw");
5773 #else
5774 asm ("ta 3");
5775 #endif
5776 #endif
5777
5778 /* Save registers that we need to see on the stack. We need to see
5779 registers used to hold register variables and registers used to
5780 pass parameters. */
5781 #ifdef GC_SAVE_REGISTERS_ON_STACK
5782 GC_SAVE_REGISTERS_ON_STACK (end);
5783 #else /* not GC_SAVE_REGISTERS_ON_STACK */
5784
5785 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
5786 setjmp will definitely work, test it
5787 and print a message with the result
5788 of the test. */
5789 if (!setjmp_tested_p)
5790 {
5791 setjmp_tested_p = 1;
5792 test_setjmp ();
5793 }
5794 #endif /* GC_SETJMP_WORKS */
5795
5796 sys_setjmp (j.j);
5797 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
5798 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
5799 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
5800 return garbage_collect_1 (end);
5801 }
5802
5803 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5804 only interesting objects referenced from glyphs are strings. */
5805
5806 static void
5807 mark_glyph_matrix (struct glyph_matrix *matrix)
5808 {
5809 struct glyph_row *row = matrix->rows;
5810 struct glyph_row *end = row + matrix->nrows;
5811
5812 for (; row < end; ++row)
5813 if (row->enabled_p)
5814 {
5815 int area;
5816 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5817 {
5818 struct glyph *glyph = row->glyphs[area];
5819 struct glyph *end_glyph = glyph + row->used[area];
5820
5821 for (; glyph < end_glyph; ++glyph)
5822 if (STRINGP (glyph->object)
5823 && !STRING_MARKED_P (XSTRING (glyph->object)))
5824 mark_object (glyph->object);
5825 }
5826 }
5827 }
5828
5829 /* Mark reference to a Lisp_Object.
5830 If the object referred to has not been seen yet, recursively mark
5831 all the references contained in it. */
5832
5833 #define LAST_MARKED_SIZE 500
5834 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5835 static int last_marked_index;
5836
5837 /* For debugging--call abort when we cdr down this many
5838 links of a list, in mark_object. In debugging,
5839 the call to abort will hit a breakpoint.
5840 Normally this is zero and the check never goes off. */
5841 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5842
5843 static void
5844 mark_vectorlike (struct Lisp_Vector *ptr)
5845 {
5846 ptrdiff_t size = ptr->header.size;
5847 ptrdiff_t i;
5848
5849 eassert (!VECTOR_MARKED_P (ptr));
5850 VECTOR_MARK (ptr); /* Else mark it. */
5851 if (size & PSEUDOVECTOR_FLAG)
5852 size &= PSEUDOVECTOR_SIZE_MASK;
5853
5854 /* Note that this size is not the memory-footprint size, but only
5855 the number of Lisp_Object fields that we should trace.
5856 The distinction is used e.g. by Lisp_Process which places extra
5857 non-Lisp_Object fields at the end of the structure... */
5858 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5859 mark_object (ptr->contents[i]);
5860 }
5861
5862 /* Like mark_vectorlike but optimized for char-tables (and
5863 sub-char-tables) assuming that the contents are mostly integers or
5864 symbols. */
5865
5866 static void
5867 mark_char_table (struct Lisp_Vector *ptr, enum pvec_type pvectype)
5868 {
5869 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5870 /* Consult the Lisp_Sub_Char_Table layout before changing this. */
5871 int i, idx = (pvectype == PVEC_SUB_CHAR_TABLE ? SUB_CHAR_TABLE_OFFSET : 0);
5872
5873 eassert (!VECTOR_MARKED_P (ptr));
5874 VECTOR_MARK (ptr);
5875 for (i = idx; i < size; i++)
5876 {
5877 Lisp_Object val = ptr->contents[i];
5878
5879 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5880 continue;
5881 if (SUB_CHAR_TABLE_P (val))
5882 {
5883 if (! VECTOR_MARKED_P (XVECTOR (val)))
5884 mark_char_table (XVECTOR (val), PVEC_SUB_CHAR_TABLE);
5885 }
5886 else
5887 mark_object (val);
5888 }
5889 }
5890
5891 NO_INLINE /* To reduce stack depth in mark_object. */
5892 static Lisp_Object
5893 mark_compiled (struct Lisp_Vector *ptr)
5894 {
5895 int i, size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5896
5897 VECTOR_MARK (ptr);
5898 for (i = 0; i < size; i++)
5899 if (i != COMPILED_CONSTANTS)
5900 mark_object (ptr->contents[i]);
5901 return size > COMPILED_CONSTANTS ? ptr->contents[COMPILED_CONSTANTS] : Qnil;
5902 }
5903
5904 /* Mark the chain of overlays starting at PTR. */
5905
5906 static void
5907 mark_overlay (struct Lisp_Overlay *ptr)
5908 {
5909 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5910 {
5911 ptr->gcmarkbit = 1;
5912 /* These two are always markers and can be marked fast. */
5913 XMARKER (ptr->start)->gcmarkbit = 1;
5914 XMARKER (ptr->end)->gcmarkbit = 1;
5915 mark_object (ptr->plist);
5916 }
5917 }
5918
5919 /* Mark Lisp_Objects and special pointers in BUFFER. */
5920
5921 static void
5922 mark_buffer (struct buffer *buffer)
5923 {
5924 /* This is handled much like other pseudovectors... */
5925 mark_vectorlike ((struct Lisp_Vector *) buffer);
5926
5927 /* ...but there are some buffer-specific things. */
5928
5929 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5930
5931 /* For now, we just don't mark the undo_list. It's done later in
5932 a special way just before the sweep phase, and after stripping
5933 some of its elements that are not needed any more. */
5934
5935 mark_overlay (buffer->overlays_before);
5936 mark_overlay (buffer->overlays_after);
5937
5938 /* If this is an indirect buffer, mark its base buffer. */
5939 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5940 mark_buffer (buffer->base_buffer);
5941 }
5942
5943 /* Mark Lisp faces in the face cache C. */
5944
5945 NO_INLINE /* To reduce stack depth in mark_object. */
5946 static void
5947 mark_face_cache (struct face_cache *c)
5948 {
5949 if (c)
5950 {
5951 int i, j;
5952 for (i = 0; i < c->used; ++i)
5953 {
5954 struct face *face = FACE_FROM_ID (c->f, i);
5955
5956 if (face)
5957 {
5958 if (face->font && !VECTOR_MARKED_P (face->font))
5959 mark_vectorlike ((struct Lisp_Vector *) face->font);
5960
5961 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5962 mark_object (face->lface[j]);
5963 }
5964 }
5965 }
5966 }
5967
5968 NO_INLINE /* To reduce stack depth in mark_object. */
5969 static void
5970 mark_localized_symbol (struct Lisp_Symbol *ptr)
5971 {
5972 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5973 Lisp_Object where = blv->where;
5974 /* If the value is set up for a killed buffer or deleted
5975 frame, restore its global binding. If the value is
5976 forwarded to a C variable, either it's not a Lisp_Object
5977 var, or it's staticpro'd already. */
5978 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
5979 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
5980 swap_in_global_binding (ptr);
5981 mark_object (blv->where);
5982 mark_object (blv->valcell);
5983 mark_object (blv->defcell);
5984 }
5985
5986 NO_INLINE /* To reduce stack depth in mark_object. */
5987 static void
5988 mark_save_value (struct Lisp_Save_Value *ptr)
5989 {
5990 /* If `save_type' is zero, `data[0].pointer' is the address
5991 of a memory area containing `data[1].integer' potential
5992 Lisp_Objects. */
5993 if (ptr->save_type == SAVE_TYPE_MEMORY)
5994 {
5995 Lisp_Object *p = ptr->data[0].pointer;
5996 ptrdiff_t nelt;
5997 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
5998 mark_maybe_object (*p);
5999 }
6000 else
6001 {
6002 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6003 int i;
6004 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6005 if (save_type (ptr, i) == SAVE_OBJECT)
6006 mark_object (ptr->data[i].object);
6007 }
6008 }
6009
6010 /* Remove killed buffers or items whose car is a killed buffer from
6011 LIST, and mark other items. Return changed LIST, which is marked. */
6012
6013 static Lisp_Object
6014 mark_discard_killed_buffers (Lisp_Object list)
6015 {
6016 Lisp_Object tail, *prev = &list;
6017
6018 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
6019 tail = XCDR (tail))
6020 {
6021 Lisp_Object tem = XCAR (tail);
6022 if (CONSP (tem))
6023 tem = XCAR (tem);
6024 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
6025 *prev = XCDR (tail);
6026 else
6027 {
6028 CONS_MARK (XCONS (tail));
6029 mark_object (XCAR (tail));
6030 prev = xcdr_addr (tail);
6031 }
6032 }
6033 mark_object (tail);
6034 return list;
6035 }
6036
6037 /* Determine type of generic Lisp_Object and mark it accordingly.
6038
6039 This function implements a straightforward depth-first marking
6040 algorithm and so the recursion depth may be very high (a few
6041 tens of thousands is not uncommon). To minimize stack usage,
6042 a few cold paths are moved out to NO_INLINE functions above.
6043 In general, inlining them doesn't help you to gain more speed. */
6044
6045 void
6046 mark_object (Lisp_Object arg)
6047 {
6048 register Lisp_Object obj;
6049 void *po;
6050 #ifdef GC_CHECK_MARKED_OBJECTS
6051 struct mem_node *m;
6052 #endif
6053 ptrdiff_t cdr_count = 0;
6054
6055 obj = arg;
6056 loop:
6057
6058 po = XPNTR (obj);
6059 if (PURE_P (po))
6060 return;
6061
6062 last_marked[last_marked_index++] = obj;
6063 if (last_marked_index == LAST_MARKED_SIZE)
6064 last_marked_index = 0;
6065
6066 /* Perform some sanity checks on the objects marked here. Abort if
6067 we encounter an object we know is bogus. This increases GC time
6068 by ~80%. */
6069 #ifdef GC_CHECK_MARKED_OBJECTS
6070
6071 /* Check that the object pointed to by PO is known to be a Lisp
6072 structure allocated from the heap. */
6073 #define CHECK_ALLOCATED() \
6074 do { \
6075 m = mem_find (po); \
6076 if (m == MEM_NIL) \
6077 emacs_abort (); \
6078 } while (0)
6079
6080 /* Check that the object pointed to by PO is live, using predicate
6081 function LIVEP. */
6082 #define CHECK_LIVE(LIVEP) \
6083 do { \
6084 if (!LIVEP (m, po)) \
6085 emacs_abort (); \
6086 } while (0)
6087
6088 /* Check both of the above conditions, for non-symbols. */
6089 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6090 do { \
6091 CHECK_ALLOCATED (); \
6092 CHECK_LIVE (LIVEP); \
6093 } while (0) \
6094
6095 /* Check both of the above conditions, for symbols. */
6096 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() \
6097 do { \
6098 if (!c_symbol_p (ptr)) \
6099 { \
6100 CHECK_ALLOCATED (); \
6101 CHECK_LIVE (live_symbol_p); \
6102 } \
6103 } while (0) \
6104
6105 #else /* not GC_CHECK_MARKED_OBJECTS */
6106
6107 #define CHECK_LIVE(LIVEP) ((void) 0)
6108 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) ((void) 0)
6109 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() ((void) 0)
6110
6111 #endif /* not GC_CHECK_MARKED_OBJECTS */
6112
6113 switch (XTYPE (obj))
6114 {
6115 case Lisp_String:
6116 {
6117 register struct Lisp_String *ptr = XSTRING (obj);
6118 if (STRING_MARKED_P (ptr))
6119 break;
6120 CHECK_ALLOCATED_AND_LIVE (live_string_p);
6121 MARK_STRING (ptr);
6122 MARK_INTERVAL_TREE (ptr->intervals);
6123 #ifdef GC_CHECK_STRING_BYTES
6124 /* Check that the string size recorded in the string is the
6125 same as the one recorded in the sdata structure. */
6126 string_bytes (ptr);
6127 #endif /* GC_CHECK_STRING_BYTES */
6128 }
6129 break;
6130
6131 case Lisp_Vectorlike:
6132 {
6133 register struct Lisp_Vector *ptr = XVECTOR (obj);
6134 register ptrdiff_t pvectype;
6135
6136 if (VECTOR_MARKED_P (ptr))
6137 break;
6138
6139 #ifdef GC_CHECK_MARKED_OBJECTS
6140 m = mem_find (po);
6141 if (m == MEM_NIL && !SUBRP (obj))
6142 emacs_abort ();
6143 #endif /* GC_CHECK_MARKED_OBJECTS */
6144
6145 if (ptr->header.size & PSEUDOVECTOR_FLAG)
6146 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
6147 >> PSEUDOVECTOR_AREA_BITS);
6148 else
6149 pvectype = PVEC_NORMAL_VECTOR;
6150
6151 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
6152 CHECK_LIVE (live_vector_p);
6153
6154 switch (pvectype)
6155 {
6156 case PVEC_BUFFER:
6157 #ifdef GC_CHECK_MARKED_OBJECTS
6158 {
6159 struct buffer *b;
6160 FOR_EACH_BUFFER (b)
6161 if (b == po)
6162 break;
6163 if (b == NULL)
6164 emacs_abort ();
6165 }
6166 #endif /* GC_CHECK_MARKED_OBJECTS */
6167 mark_buffer ((struct buffer *) ptr);
6168 break;
6169
6170 case PVEC_COMPILED:
6171 /* Although we could treat this just like a vector, mark_compiled
6172 returns the COMPILED_CONSTANTS element, which is marked at the
6173 next iteration of goto-loop here. This is done to avoid a few
6174 recursive calls to mark_object. */
6175 obj = mark_compiled (ptr);
6176 if (!NILP (obj))
6177 goto loop;
6178 break;
6179
6180 case PVEC_FRAME:
6181 {
6182 struct frame *f = (struct frame *) ptr;
6183
6184 mark_vectorlike (ptr);
6185 mark_face_cache (f->face_cache);
6186 #ifdef HAVE_WINDOW_SYSTEM
6187 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6188 {
6189 struct font *font = FRAME_FONT (f);
6190
6191 if (font && !VECTOR_MARKED_P (font))
6192 mark_vectorlike ((struct Lisp_Vector *) font);
6193 }
6194 #endif
6195 }
6196 break;
6197
6198 case PVEC_WINDOW:
6199 {
6200 struct window *w = (struct window *) ptr;
6201
6202 mark_vectorlike (ptr);
6203
6204 /* Mark glyph matrices, if any. Marking window
6205 matrices is sufficient because frame matrices
6206 use the same glyph memory. */
6207 if (w->current_matrix)
6208 {
6209 mark_glyph_matrix (w->current_matrix);
6210 mark_glyph_matrix (w->desired_matrix);
6211 }
6212
6213 /* Filter out killed buffers from both buffer lists
6214 in attempt to help GC to reclaim killed buffers faster.
6215 We can do it elsewhere for live windows, but this is the
6216 best place to do it for dead windows. */
6217 wset_prev_buffers
6218 (w, mark_discard_killed_buffers (w->prev_buffers));
6219 wset_next_buffers
6220 (w, mark_discard_killed_buffers (w->next_buffers));
6221 }
6222 break;
6223
6224 case PVEC_HASH_TABLE:
6225 {
6226 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6227
6228 mark_vectorlike (ptr);
6229 mark_object (h->test.name);
6230 mark_object (h->test.user_hash_function);
6231 mark_object (h->test.user_cmp_function);
6232 /* If hash table is not weak, mark all keys and values.
6233 For weak tables, mark only the vector. */
6234 if (NILP (h->weak))
6235 mark_object (h->key_and_value);
6236 else
6237 VECTOR_MARK (XVECTOR (h->key_and_value));
6238 }
6239 break;
6240
6241 case PVEC_CHAR_TABLE:
6242 case PVEC_SUB_CHAR_TABLE:
6243 mark_char_table (ptr, (enum pvec_type) pvectype);
6244 break;
6245
6246 case PVEC_BOOL_VECTOR:
6247 /* No Lisp_Objects to mark in a bool vector. */
6248 VECTOR_MARK (ptr);
6249 break;
6250
6251 case PVEC_SUBR:
6252 break;
6253
6254 case PVEC_FREE:
6255 emacs_abort ();
6256
6257 default:
6258 mark_vectorlike (ptr);
6259 }
6260 }
6261 break;
6262
6263 case Lisp_Symbol:
6264 {
6265 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6266 nextsym:
6267 if (ptr->gcmarkbit)
6268 break;
6269 CHECK_ALLOCATED_AND_LIVE_SYMBOL ();
6270 ptr->gcmarkbit = 1;
6271 /* Attempt to catch bogus objects. */
6272 eassert (valid_lisp_object_p (ptr->function));
6273 mark_object (ptr->function);
6274 mark_object (ptr->plist);
6275 switch (ptr->redirect)
6276 {
6277 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6278 case SYMBOL_VARALIAS:
6279 {
6280 Lisp_Object tem;
6281 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6282 mark_object (tem);
6283 break;
6284 }
6285 case SYMBOL_LOCALIZED:
6286 mark_localized_symbol (ptr);
6287 break;
6288 case SYMBOL_FORWARDED:
6289 /* If the value is forwarded to a buffer or keyboard field,
6290 these are marked when we see the corresponding object.
6291 And if it's forwarded to a C variable, either it's not
6292 a Lisp_Object var, or it's staticpro'd already. */
6293 break;
6294 default: emacs_abort ();
6295 }
6296 if (!PURE_P (XSTRING (ptr->name)))
6297 MARK_STRING (XSTRING (ptr->name));
6298 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6299 /* Inner loop to mark next symbol in this bucket, if any. */
6300 po = ptr = ptr->next;
6301 if (ptr)
6302 goto nextsym;
6303 }
6304 break;
6305
6306 case Lisp_Misc:
6307 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6308
6309 if (XMISCANY (obj)->gcmarkbit)
6310 break;
6311
6312 switch (XMISCTYPE (obj))
6313 {
6314 case Lisp_Misc_Marker:
6315 /* DO NOT mark thru the marker's chain.
6316 The buffer's markers chain does not preserve markers from gc;
6317 instead, markers are removed from the chain when freed by gc. */
6318 XMISCANY (obj)->gcmarkbit = 1;
6319 break;
6320
6321 case Lisp_Misc_Save_Value:
6322 XMISCANY (obj)->gcmarkbit = 1;
6323 mark_save_value (XSAVE_VALUE (obj));
6324 break;
6325
6326 case Lisp_Misc_Overlay:
6327 mark_overlay (XOVERLAY (obj));
6328 break;
6329
6330 case Lisp_Misc_Finalizer:
6331 XMISCANY (obj)->gcmarkbit = true;
6332 mark_object (XFINALIZER (obj)->function);
6333 break;
6334
6335 #ifdef HAVE_MODULES
6336 case Lisp_Misc_User_Ptr:
6337 XMISCANY (obj)->gcmarkbit = true;
6338 break;
6339 #endif
6340
6341 default:
6342 emacs_abort ();
6343 }
6344 break;
6345
6346 case Lisp_Cons:
6347 {
6348 register struct Lisp_Cons *ptr = XCONS (obj);
6349 if (CONS_MARKED_P (ptr))
6350 break;
6351 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6352 CONS_MARK (ptr);
6353 /* If the cdr is nil, avoid recursion for the car. */
6354 if (EQ (ptr->u.cdr, Qnil))
6355 {
6356 obj = ptr->car;
6357 cdr_count = 0;
6358 goto loop;
6359 }
6360 mark_object (ptr->car);
6361 obj = ptr->u.cdr;
6362 cdr_count++;
6363 if (cdr_count == mark_object_loop_halt)
6364 emacs_abort ();
6365 goto loop;
6366 }
6367
6368 case Lisp_Float:
6369 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6370 FLOAT_MARK (XFLOAT (obj));
6371 break;
6372
6373 case_Lisp_Int:
6374 break;
6375
6376 default:
6377 emacs_abort ();
6378 }
6379
6380 #undef CHECK_LIVE
6381 #undef CHECK_ALLOCATED
6382 #undef CHECK_ALLOCATED_AND_LIVE
6383 }
6384 /* Mark the Lisp pointers in the terminal objects.
6385 Called by Fgarbage_collect. */
6386
6387 static void
6388 mark_terminals (void)
6389 {
6390 struct terminal *t;
6391 for (t = terminal_list; t; t = t->next_terminal)
6392 {
6393 eassert (t->name != NULL);
6394 #ifdef HAVE_WINDOW_SYSTEM
6395 /* If a terminal object is reachable from a stacpro'ed object,
6396 it might have been marked already. Make sure the image cache
6397 gets marked. */
6398 mark_image_cache (t->image_cache);
6399 #endif /* HAVE_WINDOW_SYSTEM */
6400 if (!VECTOR_MARKED_P (t))
6401 mark_vectorlike ((struct Lisp_Vector *)t);
6402 }
6403 }
6404
6405
6406
6407 /* Value is non-zero if OBJ will survive the current GC because it's
6408 either marked or does not need to be marked to survive. */
6409
6410 bool
6411 survives_gc_p (Lisp_Object obj)
6412 {
6413 bool survives_p;
6414
6415 switch (XTYPE (obj))
6416 {
6417 case_Lisp_Int:
6418 survives_p = 1;
6419 break;
6420
6421 case Lisp_Symbol:
6422 survives_p = XSYMBOL (obj)->gcmarkbit;
6423 break;
6424
6425 case Lisp_Misc:
6426 survives_p = XMISCANY (obj)->gcmarkbit;
6427 break;
6428
6429 case Lisp_String:
6430 survives_p = STRING_MARKED_P (XSTRING (obj));
6431 break;
6432
6433 case Lisp_Vectorlike:
6434 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6435 break;
6436
6437 case Lisp_Cons:
6438 survives_p = CONS_MARKED_P (XCONS (obj));
6439 break;
6440
6441 case Lisp_Float:
6442 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6443 break;
6444
6445 default:
6446 emacs_abort ();
6447 }
6448
6449 return survives_p || PURE_P (XPNTR (obj));
6450 }
6451
6452
6453 \f
6454
6455 NO_INLINE /* For better stack traces */
6456 static void
6457 sweep_conses (void)
6458 {
6459 struct cons_block *cblk;
6460 struct cons_block **cprev = &cons_block;
6461 int lim = cons_block_index;
6462 EMACS_INT num_free = 0, num_used = 0;
6463
6464 cons_free_list = 0;
6465
6466 for (cblk = cons_block; cblk; cblk = *cprev)
6467 {
6468 int i = 0;
6469 int this_free = 0;
6470 int ilim = (lim + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
6471
6472 /* Scan the mark bits an int at a time. */
6473 for (i = 0; i < ilim; i++)
6474 {
6475 if (cblk->gcmarkbits[i] == BITS_WORD_MAX)
6476 {
6477 /* Fast path - all cons cells for this int are marked. */
6478 cblk->gcmarkbits[i] = 0;
6479 num_used += BITS_PER_BITS_WORD;
6480 }
6481 else
6482 {
6483 /* Some cons cells for this int are not marked.
6484 Find which ones, and free them. */
6485 int start, pos, stop;
6486
6487 start = i * BITS_PER_BITS_WORD;
6488 stop = lim - start;
6489 if (stop > BITS_PER_BITS_WORD)
6490 stop = BITS_PER_BITS_WORD;
6491 stop += start;
6492
6493 for (pos = start; pos < stop; pos++)
6494 {
6495 if (!CONS_MARKED_P (&cblk->conses[pos]))
6496 {
6497 this_free++;
6498 cblk->conses[pos].u.chain = cons_free_list;
6499 cons_free_list = &cblk->conses[pos];
6500 cons_free_list->car = Vdead;
6501 }
6502 else
6503 {
6504 num_used++;
6505 CONS_UNMARK (&cblk->conses[pos]);
6506 }
6507 }
6508 }
6509 }
6510
6511 lim = CONS_BLOCK_SIZE;
6512 /* If this block contains only free conses and we have already
6513 seen more than two blocks worth of free conses then deallocate
6514 this block. */
6515 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6516 {
6517 *cprev = cblk->next;
6518 /* Unhook from the free list. */
6519 cons_free_list = cblk->conses[0].u.chain;
6520 lisp_align_free (cblk);
6521 }
6522 else
6523 {
6524 num_free += this_free;
6525 cprev = &cblk->next;
6526 }
6527 }
6528 total_conses = num_used;
6529 total_free_conses = num_free;
6530 }
6531
6532 NO_INLINE /* For better stack traces */
6533 static void
6534 sweep_floats (void)
6535 {
6536 register struct float_block *fblk;
6537 struct float_block **fprev = &float_block;
6538 register int lim = float_block_index;
6539 EMACS_INT num_free = 0, num_used = 0;
6540
6541 float_free_list = 0;
6542
6543 for (fblk = float_block; fblk; fblk = *fprev)
6544 {
6545 register int i;
6546 int this_free = 0;
6547 for (i = 0; i < lim; i++)
6548 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6549 {
6550 this_free++;
6551 fblk->floats[i].u.chain = float_free_list;
6552 float_free_list = &fblk->floats[i];
6553 }
6554 else
6555 {
6556 num_used++;
6557 FLOAT_UNMARK (&fblk->floats[i]);
6558 }
6559 lim = FLOAT_BLOCK_SIZE;
6560 /* If this block contains only free floats and we have already
6561 seen more than two blocks worth of free floats then deallocate
6562 this block. */
6563 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6564 {
6565 *fprev = fblk->next;
6566 /* Unhook from the free list. */
6567 float_free_list = fblk->floats[0].u.chain;
6568 lisp_align_free (fblk);
6569 }
6570 else
6571 {
6572 num_free += this_free;
6573 fprev = &fblk->next;
6574 }
6575 }
6576 total_floats = num_used;
6577 total_free_floats = num_free;
6578 }
6579
6580 NO_INLINE /* For better stack traces */
6581 static void
6582 sweep_intervals (void)
6583 {
6584 register struct interval_block *iblk;
6585 struct interval_block **iprev = &interval_block;
6586 register int lim = interval_block_index;
6587 EMACS_INT num_free = 0, num_used = 0;
6588
6589 interval_free_list = 0;
6590
6591 for (iblk = interval_block; iblk; iblk = *iprev)
6592 {
6593 register int i;
6594 int this_free = 0;
6595
6596 for (i = 0; i < lim; i++)
6597 {
6598 if (!iblk->intervals[i].gcmarkbit)
6599 {
6600 set_interval_parent (&iblk->intervals[i], interval_free_list);
6601 interval_free_list = &iblk->intervals[i];
6602 this_free++;
6603 }
6604 else
6605 {
6606 num_used++;
6607 iblk->intervals[i].gcmarkbit = 0;
6608 }
6609 }
6610 lim = INTERVAL_BLOCK_SIZE;
6611 /* If this block contains only free intervals and we have already
6612 seen more than two blocks worth of free intervals then
6613 deallocate this block. */
6614 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6615 {
6616 *iprev = iblk->next;
6617 /* Unhook from the free list. */
6618 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6619 lisp_free (iblk);
6620 }
6621 else
6622 {
6623 num_free += this_free;
6624 iprev = &iblk->next;
6625 }
6626 }
6627 total_intervals = num_used;
6628 total_free_intervals = num_free;
6629 }
6630
6631 NO_INLINE /* For better stack traces */
6632 static void
6633 sweep_symbols (void)
6634 {
6635 struct symbol_block *sblk;
6636 struct symbol_block **sprev = &symbol_block;
6637 int lim = symbol_block_index;
6638 EMACS_INT num_free = 0, num_used = ARRAYELTS (lispsym);
6639
6640 symbol_free_list = NULL;
6641
6642 for (int i = 0; i < ARRAYELTS (lispsym); i++)
6643 lispsym[i].gcmarkbit = 0;
6644
6645 for (sblk = symbol_block; sblk; sblk = *sprev)
6646 {
6647 int this_free = 0;
6648 union aligned_Lisp_Symbol *sym = sblk->symbols;
6649 union aligned_Lisp_Symbol *end = sym + lim;
6650
6651 for (; sym < end; ++sym)
6652 {
6653 if (!sym->s.gcmarkbit)
6654 {
6655 if (sym->s.redirect == SYMBOL_LOCALIZED)
6656 xfree (SYMBOL_BLV (&sym->s));
6657 sym->s.next = symbol_free_list;
6658 symbol_free_list = &sym->s;
6659 symbol_free_list->function = Vdead;
6660 ++this_free;
6661 }
6662 else
6663 {
6664 ++num_used;
6665 sym->s.gcmarkbit = 0;
6666 /* Attempt to catch bogus objects. */
6667 eassert (valid_lisp_object_p (sym->s.function));
6668 }
6669 }
6670
6671 lim = SYMBOL_BLOCK_SIZE;
6672 /* If this block contains only free symbols and we have already
6673 seen more than two blocks worth of free symbols then deallocate
6674 this block. */
6675 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6676 {
6677 *sprev = sblk->next;
6678 /* Unhook from the free list. */
6679 symbol_free_list = sblk->symbols[0].s.next;
6680 lisp_free (sblk);
6681 }
6682 else
6683 {
6684 num_free += this_free;
6685 sprev = &sblk->next;
6686 }
6687 }
6688 total_symbols = num_used;
6689 total_free_symbols = num_free;
6690 }
6691
6692 NO_INLINE /* For better stack traces. */
6693 static void
6694 sweep_misc (void)
6695 {
6696 register struct marker_block *mblk;
6697 struct marker_block **mprev = &marker_block;
6698 register int lim = marker_block_index;
6699 EMACS_INT num_free = 0, num_used = 0;
6700
6701 /* Put all unmarked misc's on free list. For a marker, first
6702 unchain it from the buffer it points into. */
6703
6704 marker_free_list = 0;
6705
6706 for (mblk = marker_block; mblk; mblk = *mprev)
6707 {
6708 register int i;
6709 int this_free = 0;
6710
6711 for (i = 0; i < lim; i++)
6712 {
6713 if (!mblk->markers[i].m.u_any.gcmarkbit)
6714 {
6715 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6716 unchain_marker (&mblk->markers[i].m.u_marker);
6717 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_Finalizer)
6718 unchain_finalizer (&mblk->markers[i].m.u_finalizer);
6719 #ifdef HAVE_MODULES
6720 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_User_Ptr)
6721 {
6722 struct Lisp_User_Ptr *uptr = &mblk->markers[i].m.u_user_ptr;
6723 uptr->finalizer (uptr->p);
6724 }
6725 #endif
6726 /* Set the type of the freed object to Lisp_Misc_Free.
6727 We could leave the type alone, since nobody checks it,
6728 but this might catch bugs faster. */
6729 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6730 mblk->markers[i].m.u_free.chain = marker_free_list;
6731 marker_free_list = &mblk->markers[i].m;
6732 this_free++;
6733 }
6734 else
6735 {
6736 num_used++;
6737 mblk->markers[i].m.u_any.gcmarkbit = 0;
6738 }
6739 }
6740 lim = MARKER_BLOCK_SIZE;
6741 /* If this block contains only free markers and we have already
6742 seen more than two blocks worth of free markers then deallocate
6743 this block. */
6744 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6745 {
6746 *mprev = mblk->next;
6747 /* Unhook from the free list. */
6748 marker_free_list = mblk->markers[0].m.u_free.chain;
6749 lisp_free (mblk);
6750 }
6751 else
6752 {
6753 num_free += this_free;
6754 mprev = &mblk->next;
6755 }
6756 }
6757
6758 total_markers = num_used;
6759 total_free_markers = num_free;
6760 }
6761
6762 NO_INLINE /* For better stack traces */
6763 static void
6764 sweep_buffers (void)
6765 {
6766 register struct buffer *buffer, **bprev = &all_buffers;
6767
6768 total_buffers = 0;
6769 for (buffer = all_buffers; buffer; buffer = *bprev)
6770 if (!VECTOR_MARKED_P (buffer))
6771 {
6772 *bprev = buffer->next;
6773 lisp_free (buffer);
6774 }
6775 else
6776 {
6777 VECTOR_UNMARK (buffer);
6778 /* Do not use buffer_(set|get)_intervals here. */
6779 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6780 total_buffers++;
6781 bprev = &buffer->next;
6782 }
6783 }
6784
6785 /* Sweep: find all structures not marked, and free them. */
6786 static void
6787 gc_sweep (void)
6788 {
6789 /* Remove or mark entries in weak hash tables.
6790 This must be done before any object is unmarked. */
6791 sweep_weak_hash_tables ();
6792
6793 sweep_strings ();
6794 check_string_bytes (!noninteractive);
6795 sweep_conses ();
6796 sweep_floats ();
6797 sweep_intervals ();
6798 sweep_symbols ();
6799 sweep_misc ();
6800 sweep_buffers ();
6801 sweep_vectors ();
6802 check_string_bytes (!noninteractive);
6803 }
6804
6805 DEFUN ("memory-info", Fmemory_info, Smemory_info, 0, 0, 0,
6806 doc: /* Return a list of (TOTAL-RAM FREE-RAM TOTAL-SWAP FREE-SWAP).
6807 All values are in Kbytes. If there is no swap space,
6808 last two values are zero. If the system is not supported
6809 or memory information can't be obtained, return nil. */)
6810 (void)
6811 {
6812 #if defined HAVE_LINUX_SYSINFO
6813 struct sysinfo si;
6814 uintmax_t units;
6815
6816 if (sysinfo (&si))
6817 return Qnil;
6818 #ifdef LINUX_SYSINFO_UNIT
6819 units = si.mem_unit;
6820 #else
6821 units = 1;
6822 #endif
6823 return list4i ((uintmax_t) si.totalram * units / 1024,
6824 (uintmax_t) si.freeram * units / 1024,
6825 (uintmax_t) si.totalswap * units / 1024,
6826 (uintmax_t) si.freeswap * units / 1024);
6827 #elif defined WINDOWSNT
6828 unsigned long long totalram, freeram, totalswap, freeswap;
6829
6830 if (w32_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
6831 return list4i ((uintmax_t) totalram / 1024,
6832 (uintmax_t) freeram / 1024,
6833 (uintmax_t) totalswap / 1024,
6834 (uintmax_t) freeswap / 1024);
6835 else
6836 return Qnil;
6837 #elif defined MSDOS
6838 unsigned long totalram, freeram, totalswap, freeswap;
6839
6840 if (dos_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
6841 return list4i ((uintmax_t) totalram / 1024,
6842 (uintmax_t) freeram / 1024,
6843 (uintmax_t) totalswap / 1024,
6844 (uintmax_t) freeswap / 1024);
6845 else
6846 return Qnil;
6847 #else /* not HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
6848 /* FIXME: add more systems. */
6849 return Qnil;
6850 #endif /* HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
6851 }
6852
6853 /* Debugging aids. */
6854
6855 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6856 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6857 This may be helpful in debugging Emacs's memory usage.
6858 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6859 (void)
6860 {
6861 Lisp_Object end;
6862
6863 #ifdef HAVE_NS
6864 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
6865 XSETINT (end, 0);
6866 #else
6867 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6868 #endif
6869
6870 return end;
6871 }
6872
6873 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6874 doc: /* Return a list of counters that measure how much consing there has been.
6875 Each of these counters increments for a certain kind of object.
6876 The counters wrap around from the largest positive integer to zero.
6877 Garbage collection does not decrease them.
6878 The elements of the value are as follows:
6879 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6880 All are in units of 1 = one object consed
6881 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6882 objects consed.
6883 MISCS include overlays, markers, and some internal types.
6884 Frames, windows, buffers, and subprocesses count as vectors
6885 (but the contents of a buffer's text do not count here). */)
6886 (void)
6887 {
6888 return listn (CONSTYPE_HEAP, 8,
6889 bounded_number (cons_cells_consed),
6890 bounded_number (floats_consed),
6891 bounded_number (vector_cells_consed),
6892 bounded_number (symbols_consed),
6893 bounded_number (string_chars_consed),
6894 bounded_number (misc_objects_consed),
6895 bounded_number (intervals_consed),
6896 bounded_number (strings_consed));
6897 }
6898
6899 static bool
6900 symbol_uses_obj (Lisp_Object symbol, Lisp_Object obj)
6901 {
6902 struct Lisp_Symbol *sym = XSYMBOL (symbol);
6903 Lisp_Object val = find_symbol_value (symbol);
6904 return (EQ (val, obj)
6905 || EQ (sym->function, obj)
6906 || (!NILP (sym->function)
6907 && COMPILEDP (sym->function)
6908 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6909 || (!NILP (val)
6910 && COMPILEDP (val)
6911 && EQ (AREF (val, COMPILED_BYTECODE), obj)));
6912 }
6913
6914 /* Find at most FIND_MAX symbols which have OBJ as their value or
6915 function. This is used in gdbinit's `xwhichsymbols' command. */
6916
6917 Lisp_Object
6918 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6919 {
6920 struct symbol_block *sblk;
6921 ptrdiff_t gc_count = inhibit_garbage_collection ();
6922 Lisp_Object found = Qnil;
6923
6924 if (! DEADP (obj))
6925 {
6926 for (int i = 0; i < ARRAYELTS (lispsym); i++)
6927 {
6928 Lisp_Object sym = builtin_lisp_symbol (i);
6929 if (symbol_uses_obj (sym, obj))
6930 {
6931 found = Fcons (sym, found);
6932 if (--find_max == 0)
6933 goto out;
6934 }
6935 }
6936
6937 for (sblk = symbol_block; sblk; sblk = sblk->next)
6938 {
6939 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6940 int bn;
6941
6942 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6943 {
6944 if (sblk == symbol_block && bn >= symbol_block_index)
6945 break;
6946
6947 Lisp_Object sym = make_lisp_symbol (&aligned_sym->s);
6948 if (symbol_uses_obj (sym, obj))
6949 {
6950 found = Fcons (sym, found);
6951 if (--find_max == 0)
6952 goto out;
6953 }
6954 }
6955 }
6956 }
6957
6958 out:
6959 unbind_to (gc_count, Qnil);
6960 return found;
6961 }
6962
6963 #ifdef SUSPICIOUS_OBJECT_CHECKING
6964
6965 static void *
6966 find_suspicious_object_in_range (void *begin, void *end)
6967 {
6968 char *begin_a = begin;
6969 char *end_a = end;
6970 int i;
6971
6972 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
6973 {
6974 char *suspicious_object = suspicious_objects[i];
6975 if (begin_a <= suspicious_object && suspicious_object < end_a)
6976 return suspicious_object;
6977 }
6978
6979 return NULL;
6980 }
6981
6982 static void
6983 note_suspicious_free (void* ptr)
6984 {
6985 struct suspicious_free_record* rec;
6986
6987 rec = &suspicious_free_history[suspicious_free_history_index++];
6988 if (suspicious_free_history_index ==
6989 ARRAYELTS (suspicious_free_history))
6990 {
6991 suspicious_free_history_index = 0;
6992 }
6993
6994 memset (rec, 0, sizeof (*rec));
6995 rec->suspicious_object = ptr;
6996 backtrace (&rec->backtrace[0], ARRAYELTS (rec->backtrace));
6997 }
6998
6999 static void
7000 detect_suspicious_free (void* ptr)
7001 {
7002 int i;
7003
7004 eassert (ptr != NULL);
7005
7006 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7007 if (suspicious_objects[i] == ptr)
7008 {
7009 note_suspicious_free (ptr);
7010 suspicious_objects[i] = NULL;
7011 }
7012 }
7013
7014 #endif /* SUSPICIOUS_OBJECT_CHECKING */
7015
7016 DEFUN ("suspicious-object", Fsuspicious_object, Ssuspicious_object, 1, 1, 0,
7017 doc: /* Return OBJ, maybe marking it for extra scrutiny.
7018 If Emacs is compiled with suspicious object checking, capture
7019 a stack trace when OBJ is freed in order to help track down
7020 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
7021 (Lisp_Object obj)
7022 {
7023 #ifdef SUSPICIOUS_OBJECT_CHECKING
7024 /* Right now, we care only about vectors. */
7025 if (VECTORLIKEP (obj))
7026 {
7027 suspicious_objects[suspicious_object_index++] = XVECTOR (obj);
7028 if (suspicious_object_index == ARRAYELTS (suspicious_objects))
7029 suspicious_object_index = 0;
7030 }
7031 #endif
7032 return obj;
7033 }
7034
7035 #ifdef ENABLE_CHECKING
7036
7037 bool suppress_checking;
7038
7039 void
7040 die (const char *msg, const char *file, int line)
7041 {
7042 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
7043 file, line, msg);
7044 terminate_due_to_signal (SIGABRT, INT_MAX);
7045 }
7046
7047 #endif /* ENABLE_CHECKING */
7048
7049 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
7050
7051 /* Debugging check whether STR is ASCII-only. */
7052
7053 const char *
7054 verify_ascii (const char *str)
7055 {
7056 const unsigned char *ptr = (unsigned char *) str, *end = ptr + strlen (str);
7057 while (ptr < end)
7058 {
7059 int c = STRING_CHAR_ADVANCE (ptr);
7060 if (!ASCII_CHAR_P (c))
7061 emacs_abort ();
7062 }
7063 return str;
7064 }
7065
7066 /* Stress alloca with inconveniently sized requests and check
7067 whether all allocated areas may be used for Lisp_Object. */
7068
7069 NO_INLINE static void
7070 verify_alloca (void)
7071 {
7072 int i;
7073 enum { ALLOCA_CHECK_MAX = 256 };
7074 /* Start from size of the smallest Lisp object. */
7075 for (i = sizeof (struct Lisp_Cons); i <= ALLOCA_CHECK_MAX; i++)
7076 {
7077 void *ptr = alloca (i);
7078 make_lisp_ptr (ptr, Lisp_Cons);
7079 }
7080 }
7081
7082 #else /* not ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7083
7084 #define verify_alloca() ((void) 0)
7085
7086 #endif /* ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7087
7088 /* Initialization. */
7089
7090 void
7091 init_alloc_once (void)
7092 {
7093 /* Even though Qt's contents are not set up, its address is known. */
7094 Vpurify_flag = Qt;
7095
7096 purebeg = PUREBEG;
7097 pure_size = PURESIZE;
7098
7099 verify_alloca ();
7100 init_finalizer_list (&finalizers);
7101 init_finalizer_list (&doomed_finalizers);
7102
7103 mem_init ();
7104 Vdead = make_pure_string ("DEAD", 4, 4, 0);
7105
7106 #ifdef DOUG_LEA_MALLOC
7107 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
7108 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
7109 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
7110 #endif
7111 init_strings ();
7112 init_vectors ();
7113
7114 refill_memory_reserve ();
7115 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
7116 }
7117
7118 void
7119 init_alloc (void)
7120 {
7121 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
7122 setjmp_tested_p = longjmps_done = 0;
7123 #endif
7124 Vgc_elapsed = make_float (0.0);
7125 gcs_done = 0;
7126
7127 #if USE_VALGRIND
7128 valgrind_p = RUNNING_ON_VALGRIND != 0;
7129 #endif
7130 }
7131
7132 void
7133 syms_of_alloc (void)
7134 {
7135 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
7136 doc: /* Number of bytes of consing between garbage collections.
7137 Garbage collection can happen automatically once this many bytes have been
7138 allocated since the last garbage collection. All data types count.
7139
7140 Garbage collection happens automatically only when `eval' is called.
7141
7142 By binding this temporarily to a large number, you can effectively
7143 prevent garbage collection during a part of the program.
7144 See also `gc-cons-percentage'. */);
7145
7146 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
7147 doc: /* Portion of the heap used for allocation.
7148 Garbage collection can happen automatically once this portion of the heap
7149 has been allocated since the last garbage collection.
7150 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7151 Vgc_cons_percentage = make_float (0.1);
7152
7153 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
7154 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
7155
7156 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
7157 doc: /* Number of cons cells that have been consed so far. */);
7158
7159 DEFVAR_INT ("floats-consed", floats_consed,
7160 doc: /* Number of floats that have been consed so far. */);
7161
7162 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
7163 doc: /* Number of vector cells that have been consed so far. */);
7164
7165 DEFVAR_INT ("symbols-consed", symbols_consed,
7166 doc: /* Number of symbols that have been consed so far. */);
7167 symbols_consed += ARRAYELTS (lispsym);
7168
7169 DEFVAR_INT ("string-chars-consed", string_chars_consed,
7170 doc: /* Number of string characters that have been consed so far. */);
7171
7172 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
7173 doc: /* Number of miscellaneous objects that have been consed so far.
7174 These include markers and overlays, plus certain objects not visible
7175 to users. */);
7176
7177 DEFVAR_INT ("intervals-consed", intervals_consed,
7178 doc: /* Number of intervals that have been consed so far. */);
7179
7180 DEFVAR_INT ("strings-consed", strings_consed,
7181 doc: /* Number of strings that have been consed so far. */);
7182
7183 DEFVAR_LISP ("purify-flag", Vpurify_flag,
7184 doc: /* Non-nil means loading Lisp code in order to dump an executable.
7185 This means that certain objects should be allocated in shared (pure) space.
7186 It can also be set to a hash-table, in which case this table is used to
7187 do hash-consing of the objects allocated to pure space. */);
7188
7189 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
7190 doc: /* Non-nil means display messages at start and end of garbage collection. */);
7191 garbage_collection_messages = 0;
7192
7193 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
7194 doc: /* Hook run after garbage collection has finished. */);
7195 Vpost_gc_hook = Qnil;
7196 DEFSYM (Qpost_gc_hook, "post-gc-hook");
7197
7198 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
7199 doc: /* Precomputed `signal' argument for memory-full error. */);
7200 /* We build this in advance because if we wait until we need it, we might
7201 not be able to allocate the memory to hold it. */
7202 Vmemory_signal_data
7203 = listn (CONSTYPE_PURE, 2, Qerror,
7204 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7205
7206 DEFVAR_LISP ("memory-full", Vmemory_full,
7207 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7208 Vmemory_full = Qnil;
7209
7210 DEFSYM (Qconses, "conses");
7211 DEFSYM (Qsymbols, "symbols");
7212 DEFSYM (Qmiscs, "miscs");
7213 DEFSYM (Qstrings, "strings");
7214 DEFSYM (Qvectors, "vectors");
7215 DEFSYM (Qfloats, "floats");
7216 DEFSYM (Qintervals, "intervals");
7217 DEFSYM (Qbuffers, "buffers");
7218 DEFSYM (Qstring_bytes, "string-bytes");
7219 DEFSYM (Qvector_slots, "vector-slots");
7220 DEFSYM (Qheap, "heap");
7221 DEFSYM (Qautomatic_gc, "Automatic GC");
7222
7223 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
7224 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
7225
7226 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
7227 doc: /* Accumulated time elapsed in garbage collections.
7228 The time is in seconds as a floating point value. */);
7229 DEFVAR_INT ("gcs-done", gcs_done,
7230 doc: /* Accumulated number of garbage collections done. */);
7231
7232 defsubr (&Scons);
7233 defsubr (&Slist);
7234 defsubr (&Svector);
7235 defsubr (&Sbool_vector);
7236 defsubr (&Smake_byte_code);
7237 defsubr (&Smake_list);
7238 defsubr (&Smake_vector);
7239 defsubr (&Smake_string);
7240 defsubr (&Smake_bool_vector);
7241 defsubr (&Smake_symbol);
7242 defsubr (&Smake_marker);
7243 defsubr (&Smake_finalizer);
7244 defsubr (&Spurecopy);
7245 defsubr (&Sgarbage_collect);
7246 defsubr (&Smemory_limit);
7247 defsubr (&Smemory_info);
7248 defsubr (&Smemory_use_counts);
7249 defsubr (&Ssuspicious_object);
7250 }
7251
7252 /* When compiled with GCC, GDB might say "No enum type named
7253 pvec_type" if we don't have at least one symbol with that type, and
7254 then xbacktrace could fail. Similarly for the other enums and
7255 their values. Some non-GCC compilers don't like these constructs. */
7256 #ifdef __GNUC__
7257 union
7258 {
7259 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7260 enum char_table_specials char_table_specials;
7261 enum char_bits char_bits;
7262 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
7263 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
7264 enum Lisp_Bits Lisp_Bits;
7265 enum Lisp_Compiled Lisp_Compiled;
7266 enum maxargs maxargs;
7267 enum MAX_ALLOCA MAX_ALLOCA;
7268 enum More_Lisp_Bits More_Lisp_Bits;
7269 enum pvec_type pvec_type;
7270 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
7271 #endif /* __GNUC__ */