]> code.delx.au - gnu-emacs/blob - src/alloc.c
796de9354a696c38dd12983695b84f67e0413230
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22 #include <stdio.h>
23 #include <limits.h> /* For CHAR_BIT. */
24 #include <setjmp.h>
25
26 #ifdef ALLOC_DEBUG
27 #undef INLINE
28 #endif
29
30 #include <signal.h>
31
32 #ifdef HAVE_GTK_AND_PTHREAD
33 #include <pthread.h>
34 #endif
35
36 /* This file is part of the core Lisp implementation, and thus must
37 deal with the real data structures. If the Lisp implementation is
38 replaced, this file likely will not be used. */
39
40 #undef HIDE_LISP_IMPLEMENTATION
41 #include "lisp.h"
42 #include "process.h"
43 #include "intervals.h"
44 #include "puresize.h"
45 #include "buffer.h"
46 #include "window.h"
47 #include "keyboard.h"
48 #include "frame.h"
49 #include "blockinput.h"
50 #include "character.h"
51 #include "syssignal.h"
52 #include "termhooks.h" /* For struct terminal. */
53 #include <setjmp.h>
54
55 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
56 memory. Can do this only if using gmalloc.c. */
57
58 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
59 #undef GC_MALLOC_CHECK
60 #endif
61
62 #include <unistd.h>
63 #ifndef HAVE_UNISTD_H
64 extern POINTER_TYPE *sbrk ();
65 #endif
66
67 #include <fcntl.h>
68
69 #ifdef WINDOWSNT
70 #include "w32.h"
71 #endif
72
73 #ifdef DOUG_LEA_MALLOC
74
75 #include <malloc.h>
76 /* malloc.h #defines this as size_t, at least in glibc2. */
77 #ifndef __malloc_size_t
78 #define __malloc_size_t int
79 #endif
80
81 /* Specify maximum number of areas to mmap. It would be nice to use a
82 value that explicitly means "no limit". */
83
84 #define MMAP_MAX_AREAS 100000000
85
86 #else /* not DOUG_LEA_MALLOC */
87
88 /* The following come from gmalloc.c. */
89
90 #define __malloc_size_t size_t
91 extern __malloc_size_t _bytes_used;
92 extern __malloc_size_t __malloc_extra_blocks;
93
94 #endif /* not DOUG_LEA_MALLOC */
95
96 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
97
98 /* When GTK uses the file chooser dialog, different backends can be loaded
99 dynamically. One such a backend is the Gnome VFS backend that gets loaded
100 if you run Gnome. That backend creates several threads and also allocates
101 memory with malloc.
102
103 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
104 functions below are called from malloc, there is a chance that one
105 of these threads preempts the Emacs main thread and the hook variables
106 end up in an inconsistent state. So we have a mutex to prevent that (note
107 that the backend handles concurrent access to malloc within its own threads
108 but Emacs code running in the main thread is not included in that control).
109
110 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
111 happens in one of the backend threads we will have two threads that tries
112 to run Emacs code at once, and the code is not prepared for that.
113 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
114
115 static pthread_mutex_t alloc_mutex;
116
117 #define BLOCK_INPUT_ALLOC \
118 do \
119 { \
120 if (pthread_equal (pthread_self (), main_thread)) \
121 BLOCK_INPUT; \
122 pthread_mutex_lock (&alloc_mutex); \
123 } \
124 while (0)
125 #define UNBLOCK_INPUT_ALLOC \
126 do \
127 { \
128 pthread_mutex_unlock (&alloc_mutex); \
129 if (pthread_equal (pthread_self (), main_thread)) \
130 UNBLOCK_INPUT; \
131 } \
132 while (0)
133
134 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
135
136 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
137 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
138
139 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
140
141 /* Value of _bytes_used, when spare_memory was freed. */
142
143 static __malloc_size_t bytes_used_when_full;
144
145 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
146 to a struct Lisp_String. */
147
148 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
149 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
150 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
151
152 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
153 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
154 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
155
156 /* Value is the number of bytes/chars of S, a pointer to a struct
157 Lisp_String. This must be used instead of STRING_BYTES (S) or
158 S->size during GC, because S->size contains the mark bit for
159 strings. */
160
161 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
162 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
163
164 /* Global variables. */
165 struct emacs_globals globals;
166
167 /* Number of bytes of consing done since the last gc. */
168
169 int consing_since_gc;
170
171 /* Similar minimum, computed from Vgc_cons_percentage. */
172
173 EMACS_INT gc_relative_threshold;
174
175 /* Minimum number of bytes of consing since GC before next GC,
176 when memory is full. */
177
178 EMACS_INT memory_full_cons_threshold;
179
180 /* Nonzero during GC. */
181
182 int gc_in_progress;
183
184 /* Nonzero means abort if try to GC.
185 This is for code which is written on the assumption that
186 no GC will happen, so as to verify that assumption. */
187
188 int abort_on_gc;
189
190 /* Number of live and free conses etc. */
191
192 static int total_conses, total_markers, total_symbols, total_vector_size;
193 static int total_free_conses, total_free_markers, total_free_symbols;
194 static int total_free_floats, total_floats;
195
196 /* Points to memory space allocated as "spare", to be freed if we run
197 out of memory. We keep one large block, four cons-blocks, and
198 two string blocks. */
199
200 static char *spare_memory[7];
201
202 /* Amount of spare memory to keep in large reserve block. */
203
204 #define SPARE_MEMORY (1 << 14)
205
206 /* Number of extra blocks malloc should get when it needs more core. */
207
208 static int malloc_hysteresis;
209
210 /* Initialize it to a nonzero value to force it into data space
211 (rather than bss space). That way unexec will remap it into text
212 space (pure), on some systems. We have not implemented the
213 remapping on more recent systems because this is less important
214 nowadays than in the days of small memories and timesharing. */
215
216 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
217 #define PUREBEG (char *) pure
218
219 /* Pointer to the pure area, and its size. */
220
221 static char *purebeg;
222 static size_t pure_size;
223
224 /* Number of bytes of pure storage used before pure storage overflowed.
225 If this is non-zero, this implies that an overflow occurred. */
226
227 static size_t pure_bytes_used_before_overflow;
228
229 /* Value is non-zero if P points into pure space. */
230
231 #define PURE_POINTER_P(P) \
232 (((PNTR_COMPARISON_TYPE) (P) \
233 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
234 && ((PNTR_COMPARISON_TYPE) (P) \
235 >= (PNTR_COMPARISON_TYPE) purebeg))
236
237 /* Index in pure at which next pure Lisp object will be allocated.. */
238
239 static EMACS_INT pure_bytes_used_lisp;
240
241 /* Number of bytes allocated for non-Lisp objects in pure storage. */
242
243 static EMACS_INT pure_bytes_used_non_lisp;
244
245 /* If nonzero, this is a warning delivered by malloc and not yet
246 displayed. */
247
248 const char *pending_malloc_warning;
249
250 /* Maximum amount of C stack to save when a GC happens. */
251
252 #ifndef MAX_SAVE_STACK
253 #define MAX_SAVE_STACK 16000
254 #endif
255
256 /* Buffer in which we save a copy of the C stack at each GC. */
257
258 static char *stack_copy;
259 static int stack_copy_size;
260
261 /* Non-zero means ignore malloc warnings. Set during initialization.
262 Currently not used. */
263
264 static int ignore_warnings;
265
266 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
267
268 /* Hook run after GC has finished. */
269
270 Lisp_Object Qpost_gc_hook;
271
272 static void mark_buffer (Lisp_Object);
273 static void mark_terminals (void);
274 extern void mark_kboards (void);
275 extern void mark_ttys (void);
276 extern void mark_backtrace (void);
277 static void gc_sweep (void);
278 static void mark_glyph_matrix (struct glyph_matrix *);
279 static void mark_face_cache (struct face_cache *);
280
281 #ifdef HAVE_WINDOW_SYSTEM
282 extern void mark_fringe_data (void);
283 #endif /* HAVE_WINDOW_SYSTEM */
284
285 static struct Lisp_String *allocate_string (void);
286 static void compact_small_strings (void);
287 static void free_large_strings (void);
288 static void sweep_strings (void);
289
290 extern int message_enable_multibyte;
291
292 /* When scanning the C stack for live Lisp objects, Emacs keeps track
293 of what memory allocated via lisp_malloc is intended for what
294 purpose. This enumeration specifies the type of memory. */
295
296 enum mem_type
297 {
298 MEM_TYPE_NON_LISP,
299 MEM_TYPE_BUFFER,
300 MEM_TYPE_CONS,
301 MEM_TYPE_STRING,
302 MEM_TYPE_MISC,
303 MEM_TYPE_SYMBOL,
304 MEM_TYPE_FLOAT,
305 /* We used to keep separate mem_types for subtypes of vectors such as
306 process, hash_table, frame, terminal, and window, but we never made
307 use of the distinction, so it only caused source-code complexity
308 and runtime slowdown. Minor but pointless. */
309 MEM_TYPE_VECTORLIKE
310 };
311
312 static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
313 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
314
315
316 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
317
318 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
319 #include <stdio.h> /* For fprintf. */
320 #endif
321
322 /* A unique object in pure space used to make some Lisp objects
323 on free lists recognizable in O(1). */
324
325 static Lisp_Object Vdead;
326
327 #ifdef GC_MALLOC_CHECK
328
329 enum mem_type allocated_mem_type;
330 static int dont_register_blocks;
331
332 #endif /* GC_MALLOC_CHECK */
333
334 /* A node in the red-black tree describing allocated memory containing
335 Lisp data. Each such block is recorded with its start and end
336 address when it is allocated, and removed from the tree when it
337 is freed.
338
339 A red-black tree is a balanced binary tree with the following
340 properties:
341
342 1. Every node is either red or black.
343 2. Every leaf is black.
344 3. If a node is red, then both of its children are black.
345 4. Every simple path from a node to a descendant leaf contains
346 the same number of black nodes.
347 5. The root is always black.
348
349 When nodes are inserted into the tree, or deleted from the tree,
350 the tree is "fixed" so that these properties are always true.
351
352 A red-black tree with N internal nodes has height at most 2
353 log(N+1). Searches, insertions and deletions are done in O(log N).
354 Please see a text book about data structures for a detailed
355 description of red-black trees. Any book worth its salt should
356 describe them. */
357
358 struct mem_node
359 {
360 /* Children of this node. These pointers are never NULL. When there
361 is no child, the value is MEM_NIL, which points to a dummy node. */
362 struct mem_node *left, *right;
363
364 /* The parent of this node. In the root node, this is NULL. */
365 struct mem_node *parent;
366
367 /* Start and end of allocated region. */
368 void *start, *end;
369
370 /* Node color. */
371 enum {MEM_BLACK, MEM_RED} color;
372
373 /* Memory type. */
374 enum mem_type type;
375 };
376
377 /* Base address of stack. Set in main. */
378
379 Lisp_Object *stack_base;
380
381 /* Root of the tree describing allocated Lisp memory. */
382
383 static struct mem_node *mem_root;
384
385 /* Lowest and highest known address in the heap. */
386
387 static void *min_heap_address, *max_heap_address;
388
389 /* Sentinel node of the tree. */
390
391 static struct mem_node mem_z;
392 #define MEM_NIL &mem_z
393
394 static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
395 static void lisp_free (POINTER_TYPE *);
396 static void mark_stack (void);
397 static int live_vector_p (struct mem_node *, void *);
398 static int live_buffer_p (struct mem_node *, void *);
399 static int live_string_p (struct mem_node *, void *);
400 static int live_cons_p (struct mem_node *, void *);
401 static int live_symbol_p (struct mem_node *, void *);
402 static int live_float_p (struct mem_node *, void *);
403 static int live_misc_p (struct mem_node *, void *);
404 static void mark_maybe_object (Lisp_Object);
405 static void mark_memory (void *, void *, int);
406 static void mem_init (void);
407 static struct mem_node *mem_insert (void *, void *, enum mem_type);
408 static void mem_insert_fixup (struct mem_node *);
409 static void mem_rotate_left (struct mem_node *);
410 static void mem_rotate_right (struct mem_node *);
411 static void mem_delete (struct mem_node *);
412 static void mem_delete_fixup (struct mem_node *);
413 static INLINE struct mem_node *mem_find (void *);
414
415
416 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
417 static void check_gcpros (void);
418 #endif
419
420 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
421
422 /* Recording what needs to be marked for gc. */
423
424 struct gcpro *gcprolist;
425
426 /* Addresses of staticpro'd variables. Initialize it to a nonzero
427 value; otherwise some compilers put it into BSS. */
428
429 #define NSTATICS 0x640
430 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
431
432 /* Index of next unused slot in staticvec. */
433
434 static int staticidx = 0;
435
436 static POINTER_TYPE *pure_alloc (size_t, int);
437
438
439 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
440 ALIGNMENT must be a power of 2. */
441
442 #define ALIGN(ptr, ALIGNMENT) \
443 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
444 & ~((ALIGNMENT) - 1)))
445
446
447 \f
448 /************************************************************************
449 Malloc
450 ************************************************************************/
451
452 /* Function malloc calls this if it finds we are near exhausting storage. */
453
454 void
455 malloc_warning (const char *str)
456 {
457 pending_malloc_warning = str;
458 }
459
460
461 /* Display an already-pending malloc warning. */
462
463 void
464 display_malloc_warning (void)
465 {
466 call3 (intern ("display-warning"),
467 intern ("alloc"),
468 build_string (pending_malloc_warning),
469 intern ("emergency"));
470 pending_malloc_warning = 0;
471 }
472
473
474 #ifdef DOUG_LEA_MALLOC
475 # define BYTES_USED (mallinfo ().uordblks)
476 #else
477 # define BYTES_USED _bytes_used
478 #endif
479 \f
480 /* Called if we can't allocate relocatable space for a buffer. */
481
482 void
483 buffer_memory_full (void)
484 {
485 /* If buffers use the relocating allocator, no need to free
486 spare_memory, because we may have plenty of malloc space left
487 that we could get, and if we don't, the malloc that fails will
488 itself cause spare_memory to be freed. If buffers don't use the
489 relocating allocator, treat this like any other failing
490 malloc. */
491
492 #ifndef REL_ALLOC
493 memory_full ();
494 #endif
495
496 /* This used to call error, but if we've run out of memory, we could
497 get infinite recursion trying to build the string. */
498 xsignal (Qnil, Vmemory_signal_data);
499 }
500
501
502 #ifdef XMALLOC_OVERRUN_CHECK
503
504 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
505 and a 16 byte trailer around each block.
506
507 The header consists of 12 fixed bytes + a 4 byte integer contaning the
508 original block size, while the trailer consists of 16 fixed bytes.
509
510 The header is used to detect whether this block has been allocated
511 through these functions -- as it seems that some low-level libc
512 functions may bypass the malloc hooks.
513 */
514
515
516 #define XMALLOC_OVERRUN_CHECK_SIZE 16
517
518 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
519 { 0x9a, 0x9b, 0xae, 0xaf,
520 0xbf, 0xbe, 0xce, 0xcf,
521 0xea, 0xeb, 0xec, 0xed };
522
523 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
524 { 0xaa, 0xab, 0xac, 0xad,
525 0xba, 0xbb, 0xbc, 0xbd,
526 0xca, 0xcb, 0xcc, 0xcd,
527 0xda, 0xdb, 0xdc, 0xdd };
528
529 /* Macros to insert and extract the block size in the header. */
530
531 #define XMALLOC_PUT_SIZE(ptr, size) \
532 (ptr[-1] = (size & 0xff), \
533 ptr[-2] = ((size >> 8) & 0xff), \
534 ptr[-3] = ((size >> 16) & 0xff), \
535 ptr[-4] = ((size >> 24) & 0xff))
536
537 #define XMALLOC_GET_SIZE(ptr) \
538 (size_t)((unsigned)(ptr[-1]) | \
539 ((unsigned)(ptr[-2]) << 8) | \
540 ((unsigned)(ptr[-3]) << 16) | \
541 ((unsigned)(ptr[-4]) << 24))
542
543
544 /* The call depth in overrun_check functions. For example, this might happen:
545 xmalloc()
546 overrun_check_malloc()
547 -> malloc -> (via hook)_-> emacs_blocked_malloc
548 -> overrun_check_malloc
549 call malloc (hooks are NULL, so real malloc is called).
550 malloc returns 10000.
551 add overhead, return 10016.
552 <- (back in overrun_check_malloc)
553 add overhead again, return 10032
554 xmalloc returns 10032.
555
556 (time passes).
557
558 xfree(10032)
559 overrun_check_free(10032)
560 decrease overhed
561 free(10016) <- crash, because 10000 is the original pointer. */
562
563 static int check_depth;
564
565 /* Like malloc, but wraps allocated block with header and trailer. */
566
567 POINTER_TYPE *
568 overrun_check_malloc (size)
569 size_t size;
570 {
571 register unsigned char *val;
572 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
573
574 val = (unsigned char *) malloc (size + overhead);
575 if (val && check_depth == 1)
576 {
577 memcpy (val, xmalloc_overrun_check_header,
578 XMALLOC_OVERRUN_CHECK_SIZE - 4);
579 val += XMALLOC_OVERRUN_CHECK_SIZE;
580 XMALLOC_PUT_SIZE(val, size);
581 memcpy (val + size, xmalloc_overrun_check_trailer,
582 XMALLOC_OVERRUN_CHECK_SIZE);
583 }
584 --check_depth;
585 return (POINTER_TYPE *)val;
586 }
587
588
589 /* Like realloc, but checks old block for overrun, and wraps new block
590 with header and trailer. */
591
592 POINTER_TYPE *
593 overrun_check_realloc (block, size)
594 POINTER_TYPE *block;
595 size_t size;
596 {
597 register unsigned char *val = (unsigned char *)block;
598 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
599
600 if (val
601 && check_depth == 1
602 && memcmp (xmalloc_overrun_check_header,
603 val - XMALLOC_OVERRUN_CHECK_SIZE,
604 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
605 {
606 size_t osize = XMALLOC_GET_SIZE (val);
607 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
608 XMALLOC_OVERRUN_CHECK_SIZE))
609 abort ();
610 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
611 val -= XMALLOC_OVERRUN_CHECK_SIZE;
612 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
613 }
614
615 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
616
617 if (val && check_depth == 1)
618 {
619 memcpy (val, xmalloc_overrun_check_header,
620 XMALLOC_OVERRUN_CHECK_SIZE - 4);
621 val += XMALLOC_OVERRUN_CHECK_SIZE;
622 XMALLOC_PUT_SIZE(val, size);
623 memcpy (val + size, xmalloc_overrun_check_trailer,
624 XMALLOC_OVERRUN_CHECK_SIZE);
625 }
626 --check_depth;
627 return (POINTER_TYPE *)val;
628 }
629
630 /* Like free, but checks block for overrun. */
631
632 void
633 overrun_check_free (block)
634 POINTER_TYPE *block;
635 {
636 unsigned char *val = (unsigned char *)block;
637
638 ++check_depth;
639 if (val
640 && check_depth == 1
641 && memcmp (xmalloc_overrun_check_header,
642 val - XMALLOC_OVERRUN_CHECK_SIZE,
643 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
644 {
645 size_t osize = XMALLOC_GET_SIZE (val);
646 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
647 XMALLOC_OVERRUN_CHECK_SIZE))
648 abort ();
649 #ifdef XMALLOC_CLEAR_FREE_MEMORY
650 val -= XMALLOC_OVERRUN_CHECK_SIZE;
651 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
652 #else
653 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
654 val -= XMALLOC_OVERRUN_CHECK_SIZE;
655 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
656 #endif
657 }
658
659 free (val);
660 --check_depth;
661 }
662
663 #undef malloc
664 #undef realloc
665 #undef free
666 #define malloc overrun_check_malloc
667 #define realloc overrun_check_realloc
668 #define free overrun_check_free
669 #endif
670
671 #ifdef SYNC_INPUT
672 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
673 there's no need to block input around malloc. */
674 #define MALLOC_BLOCK_INPUT ((void)0)
675 #define MALLOC_UNBLOCK_INPUT ((void)0)
676 #else
677 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
678 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
679 #endif
680
681 /* Like malloc but check for no memory and block interrupt input.. */
682
683 POINTER_TYPE *
684 xmalloc (size_t size)
685 {
686 register POINTER_TYPE *val;
687
688 MALLOC_BLOCK_INPUT;
689 val = (POINTER_TYPE *) malloc (size);
690 MALLOC_UNBLOCK_INPUT;
691
692 if (!val && size)
693 memory_full ();
694 return val;
695 }
696
697
698 /* Like realloc but check for no memory and block interrupt input.. */
699
700 POINTER_TYPE *
701 xrealloc (POINTER_TYPE *block, size_t size)
702 {
703 register POINTER_TYPE *val;
704
705 MALLOC_BLOCK_INPUT;
706 /* We must call malloc explicitly when BLOCK is 0, since some
707 reallocs don't do this. */
708 if (! block)
709 val = (POINTER_TYPE *) malloc (size);
710 else
711 val = (POINTER_TYPE *) realloc (block, size);
712 MALLOC_UNBLOCK_INPUT;
713
714 if (!val && size) memory_full ();
715 return val;
716 }
717
718
719 /* Like free but block interrupt input. */
720
721 void
722 xfree (POINTER_TYPE *block)
723 {
724 if (!block)
725 return;
726 MALLOC_BLOCK_INPUT;
727 free (block);
728 MALLOC_UNBLOCK_INPUT;
729 /* We don't call refill_memory_reserve here
730 because that duplicates doing so in emacs_blocked_free
731 and the criterion should go there. */
732 }
733
734
735 /* Like strdup, but uses xmalloc. */
736
737 char *
738 xstrdup (const char *s)
739 {
740 size_t len = strlen (s) + 1;
741 char *p = (char *) xmalloc (len);
742 memcpy (p, s, len);
743 return p;
744 }
745
746
747 /* Unwind for SAFE_ALLOCA */
748
749 Lisp_Object
750 safe_alloca_unwind (Lisp_Object arg)
751 {
752 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
753
754 p->dogc = 0;
755 xfree (p->pointer);
756 p->pointer = 0;
757 free_misc (arg);
758 return Qnil;
759 }
760
761
762 /* Like malloc but used for allocating Lisp data. NBYTES is the
763 number of bytes to allocate, TYPE describes the intended use of the
764 allcated memory block (for strings, for conses, ...). */
765
766 #ifndef USE_LSB_TAG
767 static void *lisp_malloc_loser;
768 #endif
769
770 static POINTER_TYPE *
771 lisp_malloc (size_t nbytes, enum mem_type type)
772 {
773 register void *val;
774
775 MALLOC_BLOCK_INPUT;
776
777 #ifdef GC_MALLOC_CHECK
778 allocated_mem_type = type;
779 #endif
780
781 val = (void *) malloc (nbytes);
782
783 #ifndef USE_LSB_TAG
784 /* If the memory just allocated cannot be addressed thru a Lisp
785 object's pointer, and it needs to be,
786 that's equivalent to running out of memory. */
787 if (val && type != MEM_TYPE_NON_LISP)
788 {
789 Lisp_Object tem;
790 XSETCONS (tem, (char *) val + nbytes - 1);
791 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
792 {
793 lisp_malloc_loser = val;
794 free (val);
795 val = 0;
796 }
797 }
798 #endif
799
800 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
801 if (val && type != MEM_TYPE_NON_LISP)
802 mem_insert (val, (char *) val + nbytes, type);
803 #endif
804
805 MALLOC_UNBLOCK_INPUT;
806 if (!val && nbytes)
807 memory_full ();
808 return val;
809 }
810
811 /* Free BLOCK. This must be called to free memory allocated with a
812 call to lisp_malloc. */
813
814 static void
815 lisp_free (POINTER_TYPE *block)
816 {
817 MALLOC_BLOCK_INPUT;
818 free (block);
819 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
820 mem_delete (mem_find (block));
821 #endif
822 MALLOC_UNBLOCK_INPUT;
823 }
824
825 /* Allocation of aligned blocks of memory to store Lisp data. */
826 /* The entry point is lisp_align_malloc which returns blocks of at most */
827 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
828
829 /* Use posix_memalloc if the system has it and we're using the system's
830 malloc (because our gmalloc.c routines don't have posix_memalign although
831 its memalloc could be used). */
832 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
833 #define USE_POSIX_MEMALIGN 1
834 #endif
835
836 /* BLOCK_ALIGN has to be a power of 2. */
837 #define BLOCK_ALIGN (1 << 10)
838
839 /* Padding to leave at the end of a malloc'd block. This is to give
840 malloc a chance to minimize the amount of memory wasted to alignment.
841 It should be tuned to the particular malloc library used.
842 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
843 posix_memalign on the other hand would ideally prefer a value of 4
844 because otherwise, there's 1020 bytes wasted between each ablocks.
845 In Emacs, testing shows that those 1020 can most of the time be
846 efficiently used by malloc to place other objects, so a value of 0 can
847 still preferable unless you have a lot of aligned blocks and virtually
848 nothing else. */
849 #define BLOCK_PADDING 0
850 #define BLOCK_BYTES \
851 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
852
853 /* Internal data structures and constants. */
854
855 #define ABLOCKS_SIZE 16
856
857 /* An aligned block of memory. */
858 struct ablock
859 {
860 union
861 {
862 char payload[BLOCK_BYTES];
863 struct ablock *next_free;
864 } x;
865 /* `abase' is the aligned base of the ablocks. */
866 /* It is overloaded to hold the virtual `busy' field that counts
867 the number of used ablock in the parent ablocks.
868 The first ablock has the `busy' field, the others have the `abase'
869 field. To tell the difference, we assume that pointers will have
870 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
871 is used to tell whether the real base of the parent ablocks is `abase'
872 (if not, the word before the first ablock holds a pointer to the
873 real base). */
874 struct ablocks *abase;
875 /* The padding of all but the last ablock is unused. The padding of
876 the last ablock in an ablocks is not allocated. */
877 #if BLOCK_PADDING
878 char padding[BLOCK_PADDING];
879 #endif
880 };
881
882 /* A bunch of consecutive aligned blocks. */
883 struct ablocks
884 {
885 struct ablock blocks[ABLOCKS_SIZE];
886 };
887
888 /* Size of the block requested from malloc or memalign. */
889 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
890
891 #define ABLOCK_ABASE(block) \
892 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
893 ? (struct ablocks *)(block) \
894 : (block)->abase)
895
896 /* Virtual `busy' field. */
897 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
898
899 /* Pointer to the (not necessarily aligned) malloc block. */
900 #ifdef USE_POSIX_MEMALIGN
901 #define ABLOCKS_BASE(abase) (abase)
902 #else
903 #define ABLOCKS_BASE(abase) \
904 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
905 #endif
906
907 /* The list of free ablock. */
908 static struct ablock *free_ablock;
909
910 /* Allocate an aligned block of nbytes.
911 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
912 smaller or equal to BLOCK_BYTES. */
913 static POINTER_TYPE *
914 lisp_align_malloc (size_t nbytes, enum mem_type type)
915 {
916 void *base, *val;
917 struct ablocks *abase;
918
919 eassert (nbytes <= BLOCK_BYTES);
920
921 MALLOC_BLOCK_INPUT;
922
923 #ifdef GC_MALLOC_CHECK
924 allocated_mem_type = type;
925 #endif
926
927 if (!free_ablock)
928 {
929 int i;
930 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
931
932 #ifdef DOUG_LEA_MALLOC
933 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
934 because mapped region contents are not preserved in
935 a dumped Emacs. */
936 mallopt (M_MMAP_MAX, 0);
937 #endif
938
939 #ifdef USE_POSIX_MEMALIGN
940 {
941 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
942 if (err)
943 base = NULL;
944 abase = base;
945 }
946 #else
947 base = malloc (ABLOCKS_BYTES);
948 abase = ALIGN (base, BLOCK_ALIGN);
949 #endif
950
951 if (base == 0)
952 {
953 MALLOC_UNBLOCK_INPUT;
954 memory_full ();
955 }
956
957 aligned = (base == abase);
958 if (!aligned)
959 ((void**)abase)[-1] = base;
960
961 #ifdef DOUG_LEA_MALLOC
962 /* Back to a reasonable maximum of mmap'ed areas. */
963 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
964 #endif
965
966 #ifndef USE_LSB_TAG
967 /* If the memory just allocated cannot be addressed thru a Lisp
968 object's pointer, and it needs to be, that's equivalent to
969 running out of memory. */
970 if (type != MEM_TYPE_NON_LISP)
971 {
972 Lisp_Object tem;
973 char *end = (char *) base + ABLOCKS_BYTES - 1;
974 XSETCONS (tem, end);
975 if ((char *) XCONS (tem) != end)
976 {
977 lisp_malloc_loser = base;
978 free (base);
979 MALLOC_UNBLOCK_INPUT;
980 memory_full ();
981 }
982 }
983 #endif
984
985 /* Initialize the blocks and put them on the free list.
986 Is `base' was not properly aligned, we can't use the last block. */
987 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
988 {
989 abase->blocks[i].abase = abase;
990 abase->blocks[i].x.next_free = free_ablock;
991 free_ablock = &abase->blocks[i];
992 }
993 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
994
995 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
996 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
997 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
998 eassert (ABLOCKS_BASE (abase) == base);
999 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1000 }
1001
1002 abase = ABLOCK_ABASE (free_ablock);
1003 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1004 val = free_ablock;
1005 free_ablock = free_ablock->x.next_free;
1006
1007 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1008 if (val && type != MEM_TYPE_NON_LISP)
1009 mem_insert (val, (char *) val + nbytes, type);
1010 #endif
1011
1012 MALLOC_UNBLOCK_INPUT;
1013 if (!val && nbytes)
1014 memory_full ();
1015
1016 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1017 return val;
1018 }
1019
1020 static void
1021 lisp_align_free (POINTER_TYPE *block)
1022 {
1023 struct ablock *ablock = block;
1024 struct ablocks *abase = ABLOCK_ABASE (ablock);
1025
1026 MALLOC_BLOCK_INPUT;
1027 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1028 mem_delete (mem_find (block));
1029 #endif
1030 /* Put on free list. */
1031 ablock->x.next_free = free_ablock;
1032 free_ablock = ablock;
1033 /* Update busy count. */
1034 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1035
1036 if (2 > (long) ABLOCKS_BUSY (abase))
1037 { /* All the blocks are free. */
1038 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1039 struct ablock **tem = &free_ablock;
1040 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1041
1042 while (*tem)
1043 {
1044 if (*tem >= (struct ablock *) abase && *tem < atop)
1045 {
1046 i++;
1047 *tem = (*tem)->x.next_free;
1048 }
1049 else
1050 tem = &(*tem)->x.next_free;
1051 }
1052 eassert ((aligned & 1) == aligned);
1053 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1054 #ifdef USE_POSIX_MEMALIGN
1055 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1056 #endif
1057 free (ABLOCKS_BASE (abase));
1058 }
1059 MALLOC_UNBLOCK_INPUT;
1060 }
1061
1062 /* Return a new buffer structure allocated from the heap with
1063 a call to lisp_malloc. */
1064
1065 struct buffer *
1066 allocate_buffer (void)
1067 {
1068 struct buffer *b
1069 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1070 MEM_TYPE_BUFFER);
1071 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1072 XSETPVECTYPE (b, PVEC_BUFFER);
1073 return b;
1074 }
1075
1076 \f
1077 #ifndef SYSTEM_MALLOC
1078
1079 /* Arranging to disable input signals while we're in malloc.
1080
1081 This only works with GNU malloc. To help out systems which can't
1082 use GNU malloc, all the calls to malloc, realloc, and free
1083 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1084 pair; unfortunately, we have no idea what C library functions
1085 might call malloc, so we can't really protect them unless you're
1086 using GNU malloc. Fortunately, most of the major operating systems
1087 can use GNU malloc. */
1088
1089 #ifndef SYNC_INPUT
1090 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1091 there's no need to block input around malloc. */
1092
1093 #ifndef DOUG_LEA_MALLOC
1094 extern void * (*__malloc_hook) (size_t, const void *);
1095 extern void * (*__realloc_hook) (void *, size_t, const void *);
1096 extern void (*__free_hook) (void *, const void *);
1097 /* Else declared in malloc.h, perhaps with an extra arg. */
1098 #endif /* DOUG_LEA_MALLOC */
1099 static void * (*old_malloc_hook) (size_t, const void *);
1100 static void * (*old_realloc_hook) (void *, size_t, const void*);
1101 static void (*old_free_hook) (void*, const void*);
1102
1103 static __malloc_size_t bytes_used_when_reconsidered;
1104
1105 /* This function is used as the hook for free to call. */
1106
1107 static void
1108 emacs_blocked_free (void *ptr, const void *ptr2)
1109 {
1110 BLOCK_INPUT_ALLOC;
1111
1112 #ifdef GC_MALLOC_CHECK
1113 if (ptr)
1114 {
1115 struct mem_node *m;
1116
1117 m = mem_find (ptr);
1118 if (m == MEM_NIL || m->start != ptr)
1119 {
1120 fprintf (stderr,
1121 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1122 abort ();
1123 }
1124 else
1125 {
1126 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1127 mem_delete (m);
1128 }
1129 }
1130 #endif /* GC_MALLOC_CHECK */
1131
1132 __free_hook = old_free_hook;
1133 free (ptr);
1134
1135 /* If we released our reserve (due to running out of memory),
1136 and we have a fair amount free once again,
1137 try to set aside another reserve in case we run out once more. */
1138 if (! NILP (Vmemory_full)
1139 /* Verify there is enough space that even with the malloc
1140 hysteresis this call won't run out again.
1141 The code here is correct as long as SPARE_MEMORY
1142 is substantially larger than the block size malloc uses. */
1143 && (bytes_used_when_full
1144 > ((bytes_used_when_reconsidered = BYTES_USED)
1145 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1146 refill_memory_reserve ();
1147
1148 __free_hook = emacs_blocked_free;
1149 UNBLOCK_INPUT_ALLOC;
1150 }
1151
1152
1153 /* This function is the malloc hook that Emacs uses. */
1154
1155 static void *
1156 emacs_blocked_malloc (size_t size, const void *ptr)
1157 {
1158 void *value;
1159
1160 BLOCK_INPUT_ALLOC;
1161 __malloc_hook = old_malloc_hook;
1162 #ifdef DOUG_LEA_MALLOC
1163 /* Segfaults on my system. --lorentey */
1164 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1165 #else
1166 __malloc_extra_blocks = malloc_hysteresis;
1167 #endif
1168
1169 value = (void *) malloc (size);
1170
1171 #ifdef GC_MALLOC_CHECK
1172 {
1173 struct mem_node *m = mem_find (value);
1174 if (m != MEM_NIL)
1175 {
1176 fprintf (stderr, "Malloc returned %p which is already in use\n",
1177 value);
1178 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1179 m->start, m->end, (char *) m->end - (char *) m->start,
1180 m->type);
1181 abort ();
1182 }
1183
1184 if (!dont_register_blocks)
1185 {
1186 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1187 allocated_mem_type = MEM_TYPE_NON_LISP;
1188 }
1189 }
1190 #endif /* GC_MALLOC_CHECK */
1191
1192 __malloc_hook = emacs_blocked_malloc;
1193 UNBLOCK_INPUT_ALLOC;
1194
1195 /* fprintf (stderr, "%p malloc\n", value); */
1196 return value;
1197 }
1198
1199
1200 /* This function is the realloc hook that Emacs uses. */
1201
1202 static void *
1203 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1204 {
1205 void *value;
1206
1207 BLOCK_INPUT_ALLOC;
1208 __realloc_hook = old_realloc_hook;
1209
1210 #ifdef GC_MALLOC_CHECK
1211 if (ptr)
1212 {
1213 struct mem_node *m = mem_find (ptr);
1214 if (m == MEM_NIL || m->start != ptr)
1215 {
1216 fprintf (stderr,
1217 "Realloc of %p which wasn't allocated with malloc\n",
1218 ptr);
1219 abort ();
1220 }
1221
1222 mem_delete (m);
1223 }
1224
1225 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1226
1227 /* Prevent malloc from registering blocks. */
1228 dont_register_blocks = 1;
1229 #endif /* GC_MALLOC_CHECK */
1230
1231 value = (void *) realloc (ptr, size);
1232
1233 #ifdef GC_MALLOC_CHECK
1234 dont_register_blocks = 0;
1235
1236 {
1237 struct mem_node *m = mem_find (value);
1238 if (m != MEM_NIL)
1239 {
1240 fprintf (stderr, "Realloc returns memory that is already in use\n");
1241 abort ();
1242 }
1243
1244 /* Can't handle zero size regions in the red-black tree. */
1245 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1246 }
1247
1248 /* fprintf (stderr, "%p <- realloc\n", value); */
1249 #endif /* GC_MALLOC_CHECK */
1250
1251 __realloc_hook = emacs_blocked_realloc;
1252 UNBLOCK_INPUT_ALLOC;
1253
1254 return value;
1255 }
1256
1257
1258 #ifdef HAVE_GTK_AND_PTHREAD
1259 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1260 normal malloc. Some thread implementations need this as they call
1261 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1262 calls malloc because it is the first call, and we have an endless loop. */
1263
1264 void
1265 reset_malloc_hooks ()
1266 {
1267 __free_hook = old_free_hook;
1268 __malloc_hook = old_malloc_hook;
1269 __realloc_hook = old_realloc_hook;
1270 }
1271 #endif /* HAVE_GTK_AND_PTHREAD */
1272
1273
1274 /* Called from main to set up malloc to use our hooks. */
1275
1276 void
1277 uninterrupt_malloc (void)
1278 {
1279 #ifdef HAVE_GTK_AND_PTHREAD
1280 #ifdef DOUG_LEA_MALLOC
1281 pthread_mutexattr_t attr;
1282
1283 /* GLIBC has a faster way to do this, but lets keep it portable.
1284 This is according to the Single UNIX Specification. */
1285 pthread_mutexattr_init (&attr);
1286 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1287 pthread_mutex_init (&alloc_mutex, &attr);
1288 #else /* !DOUG_LEA_MALLOC */
1289 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1290 and the bundled gmalloc.c doesn't require it. */
1291 pthread_mutex_init (&alloc_mutex, NULL);
1292 #endif /* !DOUG_LEA_MALLOC */
1293 #endif /* HAVE_GTK_AND_PTHREAD */
1294
1295 if (__free_hook != emacs_blocked_free)
1296 old_free_hook = __free_hook;
1297 __free_hook = emacs_blocked_free;
1298
1299 if (__malloc_hook != emacs_blocked_malloc)
1300 old_malloc_hook = __malloc_hook;
1301 __malloc_hook = emacs_blocked_malloc;
1302
1303 if (__realloc_hook != emacs_blocked_realloc)
1304 old_realloc_hook = __realloc_hook;
1305 __realloc_hook = emacs_blocked_realloc;
1306 }
1307
1308 #endif /* not SYNC_INPUT */
1309 #endif /* not SYSTEM_MALLOC */
1310
1311
1312 \f
1313 /***********************************************************************
1314 Interval Allocation
1315 ***********************************************************************/
1316
1317 /* Number of intervals allocated in an interval_block structure.
1318 The 1020 is 1024 minus malloc overhead. */
1319
1320 #define INTERVAL_BLOCK_SIZE \
1321 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1322
1323 /* Intervals are allocated in chunks in form of an interval_block
1324 structure. */
1325
1326 struct interval_block
1327 {
1328 /* Place `intervals' first, to preserve alignment. */
1329 struct interval intervals[INTERVAL_BLOCK_SIZE];
1330 struct interval_block *next;
1331 };
1332
1333 /* Current interval block. Its `next' pointer points to older
1334 blocks. */
1335
1336 static struct interval_block *interval_block;
1337
1338 /* Index in interval_block above of the next unused interval
1339 structure. */
1340
1341 static int interval_block_index;
1342
1343 /* Number of free and live intervals. */
1344
1345 static int total_free_intervals, total_intervals;
1346
1347 /* List of free intervals. */
1348
1349 INTERVAL interval_free_list;
1350
1351 /* Total number of interval blocks now in use. */
1352
1353 static int n_interval_blocks;
1354
1355
1356 /* Initialize interval allocation. */
1357
1358 static void
1359 init_intervals (void)
1360 {
1361 interval_block = NULL;
1362 interval_block_index = INTERVAL_BLOCK_SIZE;
1363 interval_free_list = 0;
1364 n_interval_blocks = 0;
1365 }
1366
1367
1368 /* Return a new interval. */
1369
1370 INTERVAL
1371 make_interval (void)
1372 {
1373 INTERVAL val;
1374
1375 /* eassert (!handling_signal); */
1376
1377 MALLOC_BLOCK_INPUT;
1378
1379 if (interval_free_list)
1380 {
1381 val = interval_free_list;
1382 interval_free_list = INTERVAL_PARENT (interval_free_list);
1383 }
1384 else
1385 {
1386 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1387 {
1388 register struct interval_block *newi;
1389
1390 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1391 MEM_TYPE_NON_LISP);
1392
1393 newi->next = interval_block;
1394 interval_block = newi;
1395 interval_block_index = 0;
1396 n_interval_blocks++;
1397 }
1398 val = &interval_block->intervals[interval_block_index++];
1399 }
1400
1401 MALLOC_UNBLOCK_INPUT;
1402
1403 consing_since_gc += sizeof (struct interval);
1404 intervals_consed++;
1405 RESET_INTERVAL (val);
1406 val->gcmarkbit = 0;
1407 return val;
1408 }
1409
1410
1411 /* Mark Lisp objects in interval I. */
1412
1413 static void
1414 mark_interval (register INTERVAL i, Lisp_Object dummy)
1415 {
1416 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1417 i->gcmarkbit = 1;
1418 mark_object (i->plist);
1419 }
1420
1421
1422 /* Mark the interval tree rooted in TREE. Don't call this directly;
1423 use the macro MARK_INTERVAL_TREE instead. */
1424
1425 static void
1426 mark_interval_tree (register INTERVAL tree)
1427 {
1428 /* No need to test if this tree has been marked already; this
1429 function is always called through the MARK_INTERVAL_TREE macro,
1430 which takes care of that. */
1431
1432 traverse_intervals_noorder (tree, mark_interval, Qnil);
1433 }
1434
1435
1436 /* Mark the interval tree rooted in I. */
1437
1438 #define MARK_INTERVAL_TREE(i) \
1439 do { \
1440 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1441 mark_interval_tree (i); \
1442 } while (0)
1443
1444
1445 #define UNMARK_BALANCE_INTERVALS(i) \
1446 do { \
1447 if (! NULL_INTERVAL_P (i)) \
1448 (i) = balance_intervals (i); \
1449 } while (0)
1450
1451 \f
1452 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1453 can't create number objects in macros. */
1454 #ifndef make_number
1455 Lisp_Object
1456 make_number (EMACS_INT n)
1457 {
1458 Lisp_Object obj;
1459 obj.s.val = n;
1460 obj.s.type = Lisp_Int;
1461 return obj;
1462 }
1463 #endif
1464 \f
1465 /***********************************************************************
1466 String Allocation
1467 ***********************************************************************/
1468
1469 /* Lisp_Strings are allocated in string_block structures. When a new
1470 string_block is allocated, all the Lisp_Strings it contains are
1471 added to a free-list string_free_list. When a new Lisp_String is
1472 needed, it is taken from that list. During the sweep phase of GC,
1473 string_blocks that are entirely free are freed, except two which
1474 we keep.
1475
1476 String data is allocated from sblock structures. Strings larger
1477 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1478 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1479
1480 Sblocks consist internally of sdata structures, one for each
1481 Lisp_String. The sdata structure points to the Lisp_String it
1482 belongs to. The Lisp_String points back to the `u.data' member of
1483 its sdata structure.
1484
1485 When a Lisp_String is freed during GC, it is put back on
1486 string_free_list, and its `data' member and its sdata's `string'
1487 pointer is set to null. The size of the string is recorded in the
1488 `u.nbytes' member of the sdata. So, sdata structures that are no
1489 longer used, can be easily recognized, and it's easy to compact the
1490 sblocks of small strings which we do in compact_small_strings. */
1491
1492 /* Size in bytes of an sblock structure used for small strings. This
1493 is 8192 minus malloc overhead. */
1494
1495 #define SBLOCK_SIZE 8188
1496
1497 /* Strings larger than this are considered large strings. String data
1498 for large strings is allocated from individual sblocks. */
1499
1500 #define LARGE_STRING_BYTES 1024
1501
1502 /* Structure describing string memory sub-allocated from an sblock.
1503 This is where the contents of Lisp strings are stored. */
1504
1505 struct sdata
1506 {
1507 /* Back-pointer to the string this sdata belongs to. If null, this
1508 structure is free, and the NBYTES member of the union below
1509 contains the string's byte size (the same value that STRING_BYTES
1510 would return if STRING were non-null). If non-null, STRING_BYTES
1511 (STRING) is the size of the data, and DATA contains the string's
1512 contents. */
1513 struct Lisp_String *string;
1514
1515 #ifdef GC_CHECK_STRING_BYTES
1516
1517 EMACS_INT nbytes;
1518 unsigned char data[1];
1519
1520 #define SDATA_NBYTES(S) (S)->nbytes
1521 #define SDATA_DATA(S) (S)->data
1522
1523 #else /* not GC_CHECK_STRING_BYTES */
1524
1525 union
1526 {
1527 /* When STRING in non-null. */
1528 unsigned char data[1];
1529
1530 /* When STRING is null. */
1531 EMACS_INT nbytes;
1532 } u;
1533
1534
1535 #define SDATA_NBYTES(S) (S)->u.nbytes
1536 #define SDATA_DATA(S) (S)->u.data
1537
1538 #endif /* not GC_CHECK_STRING_BYTES */
1539 };
1540
1541
1542 /* Structure describing a block of memory which is sub-allocated to
1543 obtain string data memory for strings. Blocks for small strings
1544 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1545 as large as needed. */
1546
1547 struct sblock
1548 {
1549 /* Next in list. */
1550 struct sblock *next;
1551
1552 /* Pointer to the next free sdata block. This points past the end
1553 of the sblock if there isn't any space left in this block. */
1554 struct sdata *next_free;
1555
1556 /* Start of data. */
1557 struct sdata first_data;
1558 };
1559
1560 /* Number of Lisp strings in a string_block structure. The 1020 is
1561 1024 minus malloc overhead. */
1562
1563 #define STRING_BLOCK_SIZE \
1564 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1565
1566 /* Structure describing a block from which Lisp_String structures
1567 are allocated. */
1568
1569 struct string_block
1570 {
1571 /* Place `strings' first, to preserve alignment. */
1572 struct Lisp_String strings[STRING_BLOCK_SIZE];
1573 struct string_block *next;
1574 };
1575
1576 /* Head and tail of the list of sblock structures holding Lisp string
1577 data. We always allocate from current_sblock. The NEXT pointers
1578 in the sblock structures go from oldest_sblock to current_sblock. */
1579
1580 static struct sblock *oldest_sblock, *current_sblock;
1581
1582 /* List of sblocks for large strings. */
1583
1584 static struct sblock *large_sblocks;
1585
1586 /* List of string_block structures, and how many there are. */
1587
1588 static struct string_block *string_blocks;
1589 static int n_string_blocks;
1590
1591 /* Free-list of Lisp_Strings. */
1592
1593 static struct Lisp_String *string_free_list;
1594
1595 /* Number of live and free Lisp_Strings. */
1596
1597 static int total_strings, total_free_strings;
1598
1599 /* Number of bytes used by live strings. */
1600
1601 static EMACS_INT total_string_size;
1602
1603 /* Given a pointer to a Lisp_String S which is on the free-list
1604 string_free_list, return a pointer to its successor in the
1605 free-list. */
1606
1607 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1608
1609 /* Return a pointer to the sdata structure belonging to Lisp string S.
1610 S must be live, i.e. S->data must not be null. S->data is actually
1611 a pointer to the `u.data' member of its sdata structure; the
1612 structure starts at a constant offset in front of that. */
1613
1614 #ifdef GC_CHECK_STRING_BYTES
1615
1616 #define SDATA_OF_STRING(S) \
1617 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1618 - sizeof (EMACS_INT)))
1619
1620 #else /* not GC_CHECK_STRING_BYTES */
1621
1622 #define SDATA_OF_STRING(S) \
1623 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1624
1625 #endif /* not GC_CHECK_STRING_BYTES */
1626
1627
1628 #ifdef GC_CHECK_STRING_OVERRUN
1629
1630 /* We check for overrun in string data blocks by appending a small
1631 "cookie" after each allocated string data block, and check for the
1632 presence of this cookie during GC. */
1633
1634 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1635 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1636 { 0xde, 0xad, 0xbe, 0xef };
1637
1638 #else
1639 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1640 #endif
1641
1642 /* Value is the size of an sdata structure large enough to hold NBYTES
1643 bytes of string data. The value returned includes a terminating
1644 NUL byte, the size of the sdata structure, and padding. */
1645
1646 #ifdef GC_CHECK_STRING_BYTES
1647
1648 #define SDATA_SIZE(NBYTES) \
1649 ((sizeof (struct Lisp_String *) \
1650 + (NBYTES) + 1 \
1651 + sizeof (EMACS_INT) \
1652 + sizeof (EMACS_INT) - 1) \
1653 & ~(sizeof (EMACS_INT) - 1))
1654
1655 #else /* not GC_CHECK_STRING_BYTES */
1656
1657 #define SDATA_SIZE(NBYTES) \
1658 ((sizeof (struct Lisp_String *) \
1659 + (NBYTES) + 1 \
1660 + sizeof (EMACS_INT) - 1) \
1661 & ~(sizeof (EMACS_INT) - 1))
1662
1663 #endif /* not GC_CHECK_STRING_BYTES */
1664
1665 /* Extra bytes to allocate for each string. */
1666
1667 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1668
1669 /* Initialize string allocation. Called from init_alloc_once. */
1670
1671 static void
1672 init_strings (void)
1673 {
1674 total_strings = total_free_strings = total_string_size = 0;
1675 oldest_sblock = current_sblock = large_sblocks = NULL;
1676 string_blocks = NULL;
1677 n_string_blocks = 0;
1678 string_free_list = NULL;
1679 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1680 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1681 }
1682
1683
1684 #ifdef GC_CHECK_STRING_BYTES
1685
1686 static int check_string_bytes_count;
1687
1688 static void check_string_bytes (int);
1689 static void check_sblock (struct sblock *);
1690
1691 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1692
1693
1694 /* Like GC_STRING_BYTES, but with debugging check. */
1695
1696 EMACS_INT
1697 string_bytes (struct Lisp_String *s)
1698 {
1699 EMACS_INT nbytes =
1700 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1701
1702 if (!PURE_POINTER_P (s)
1703 && s->data
1704 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1705 abort ();
1706 return nbytes;
1707 }
1708
1709 /* Check validity of Lisp strings' string_bytes member in B. */
1710
1711 static void
1712 check_sblock (b)
1713 struct sblock *b;
1714 {
1715 struct sdata *from, *end, *from_end;
1716
1717 end = b->next_free;
1718
1719 for (from = &b->first_data; from < end; from = from_end)
1720 {
1721 /* Compute the next FROM here because copying below may
1722 overwrite data we need to compute it. */
1723 EMACS_INT nbytes;
1724
1725 /* Check that the string size recorded in the string is the
1726 same as the one recorded in the sdata structure. */
1727 if (from->string)
1728 CHECK_STRING_BYTES (from->string);
1729
1730 if (from->string)
1731 nbytes = GC_STRING_BYTES (from->string);
1732 else
1733 nbytes = SDATA_NBYTES (from);
1734
1735 nbytes = SDATA_SIZE (nbytes);
1736 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1737 }
1738 }
1739
1740
1741 /* Check validity of Lisp strings' string_bytes member. ALL_P
1742 non-zero means check all strings, otherwise check only most
1743 recently allocated strings. Used for hunting a bug. */
1744
1745 static void
1746 check_string_bytes (all_p)
1747 int all_p;
1748 {
1749 if (all_p)
1750 {
1751 struct sblock *b;
1752
1753 for (b = large_sblocks; b; b = b->next)
1754 {
1755 struct Lisp_String *s = b->first_data.string;
1756 if (s)
1757 CHECK_STRING_BYTES (s);
1758 }
1759
1760 for (b = oldest_sblock; b; b = b->next)
1761 check_sblock (b);
1762 }
1763 else
1764 check_sblock (current_sblock);
1765 }
1766
1767 #endif /* GC_CHECK_STRING_BYTES */
1768
1769 #ifdef GC_CHECK_STRING_FREE_LIST
1770
1771 /* Walk through the string free list looking for bogus next pointers.
1772 This may catch buffer overrun from a previous string. */
1773
1774 static void
1775 check_string_free_list ()
1776 {
1777 struct Lisp_String *s;
1778
1779 /* Pop a Lisp_String off the free-list. */
1780 s = string_free_list;
1781 while (s != NULL)
1782 {
1783 if ((unsigned long)s < 1024)
1784 abort();
1785 s = NEXT_FREE_LISP_STRING (s);
1786 }
1787 }
1788 #else
1789 #define check_string_free_list()
1790 #endif
1791
1792 /* Return a new Lisp_String. */
1793
1794 static struct Lisp_String *
1795 allocate_string (void)
1796 {
1797 struct Lisp_String *s;
1798
1799 /* eassert (!handling_signal); */
1800
1801 MALLOC_BLOCK_INPUT;
1802
1803 /* If the free-list is empty, allocate a new string_block, and
1804 add all the Lisp_Strings in it to the free-list. */
1805 if (string_free_list == NULL)
1806 {
1807 struct string_block *b;
1808 int i;
1809
1810 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1811 memset (b, 0, sizeof *b);
1812 b->next = string_blocks;
1813 string_blocks = b;
1814 ++n_string_blocks;
1815
1816 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1817 {
1818 s = b->strings + i;
1819 NEXT_FREE_LISP_STRING (s) = string_free_list;
1820 string_free_list = s;
1821 }
1822
1823 total_free_strings += STRING_BLOCK_SIZE;
1824 }
1825
1826 check_string_free_list ();
1827
1828 /* Pop a Lisp_String off the free-list. */
1829 s = string_free_list;
1830 string_free_list = NEXT_FREE_LISP_STRING (s);
1831
1832 MALLOC_UNBLOCK_INPUT;
1833
1834 /* Probably not strictly necessary, but play it safe. */
1835 memset (s, 0, sizeof *s);
1836
1837 --total_free_strings;
1838 ++total_strings;
1839 ++strings_consed;
1840 consing_since_gc += sizeof *s;
1841
1842 #ifdef GC_CHECK_STRING_BYTES
1843 if (!noninteractive)
1844 {
1845 if (++check_string_bytes_count == 200)
1846 {
1847 check_string_bytes_count = 0;
1848 check_string_bytes (1);
1849 }
1850 else
1851 check_string_bytes (0);
1852 }
1853 #endif /* GC_CHECK_STRING_BYTES */
1854
1855 return s;
1856 }
1857
1858
1859 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1860 plus a NUL byte at the end. Allocate an sdata structure for S, and
1861 set S->data to its `u.data' member. Store a NUL byte at the end of
1862 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1863 S->data if it was initially non-null. */
1864
1865 void
1866 allocate_string_data (struct Lisp_String *s,
1867 EMACS_INT nchars, EMACS_INT nbytes)
1868 {
1869 struct sdata *data, *old_data;
1870 struct sblock *b;
1871 EMACS_INT needed, old_nbytes;
1872
1873 /* Determine the number of bytes needed to store NBYTES bytes
1874 of string data. */
1875 needed = SDATA_SIZE (nbytes);
1876 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1877 old_nbytes = GC_STRING_BYTES (s);
1878
1879 MALLOC_BLOCK_INPUT;
1880
1881 if (nbytes > LARGE_STRING_BYTES)
1882 {
1883 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1884
1885 #ifdef DOUG_LEA_MALLOC
1886 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1887 because mapped region contents are not preserved in
1888 a dumped Emacs.
1889
1890 In case you think of allowing it in a dumped Emacs at the
1891 cost of not being able to re-dump, there's another reason:
1892 mmap'ed data typically have an address towards the top of the
1893 address space, which won't fit into an EMACS_INT (at least on
1894 32-bit systems with the current tagging scheme). --fx */
1895 mallopt (M_MMAP_MAX, 0);
1896 #endif
1897
1898 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1899
1900 #ifdef DOUG_LEA_MALLOC
1901 /* Back to a reasonable maximum of mmap'ed areas. */
1902 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1903 #endif
1904
1905 b->next_free = &b->first_data;
1906 b->first_data.string = NULL;
1907 b->next = large_sblocks;
1908 large_sblocks = b;
1909 }
1910 else if (current_sblock == NULL
1911 || (((char *) current_sblock + SBLOCK_SIZE
1912 - (char *) current_sblock->next_free)
1913 < (needed + GC_STRING_EXTRA)))
1914 {
1915 /* Not enough room in the current sblock. */
1916 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1917 b->next_free = &b->first_data;
1918 b->first_data.string = NULL;
1919 b->next = NULL;
1920
1921 if (current_sblock)
1922 current_sblock->next = b;
1923 else
1924 oldest_sblock = b;
1925 current_sblock = b;
1926 }
1927 else
1928 b = current_sblock;
1929
1930 data = b->next_free;
1931 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1932
1933 MALLOC_UNBLOCK_INPUT;
1934
1935 data->string = s;
1936 s->data = SDATA_DATA (data);
1937 #ifdef GC_CHECK_STRING_BYTES
1938 SDATA_NBYTES (data) = nbytes;
1939 #endif
1940 s->size = nchars;
1941 s->size_byte = nbytes;
1942 s->data[nbytes] = '\0';
1943 #ifdef GC_CHECK_STRING_OVERRUN
1944 memcpy (data + needed, string_overrun_cookie, GC_STRING_OVERRUN_COOKIE_SIZE);
1945 #endif
1946
1947 /* If S had already data assigned, mark that as free by setting its
1948 string back-pointer to null, and recording the size of the data
1949 in it. */
1950 if (old_data)
1951 {
1952 SDATA_NBYTES (old_data) = old_nbytes;
1953 old_data->string = NULL;
1954 }
1955
1956 consing_since_gc += needed;
1957 }
1958
1959
1960 /* Sweep and compact strings. */
1961
1962 static void
1963 sweep_strings (void)
1964 {
1965 struct string_block *b, *next;
1966 struct string_block *live_blocks = NULL;
1967
1968 string_free_list = NULL;
1969 total_strings = total_free_strings = 0;
1970 total_string_size = 0;
1971
1972 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1973 for (b = string_blocks; b; b = next)
1974 {
1975 int i, nfree = 0;
1976 struct Lisp_String *free_list_before = string_free_list;
1977
1978 next = b->next;
1979
1980 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1981 {
1982 struct Lisp_String *s = b->strings + i;
1983
1984 if (s->data)
1985 {
1986 /* String was not on free-list before. */
1987 if (STRING_MARKED_P (s))
1988 {
1989 /* String is live; unmark it and its intervals. */
1990 UNMARK_STRING (s);
1991
1992 if (!NULL_INTERVAL_P (s->intervals))
1993 UNMARK_BALANCE_INTERVALS (s->intervals);
1994
1995 ++total_strings;
1996 total_string_size += STRING_BYTES (s);
1997 }
1998 else
1999 {
2000 /* String is dead. Put it on the free-list. */
2001 struct sdata *data = SDATA_OF_STRING (s);
2002
2003 /* Save the size of S in its sdata so that we know
2004 how large that is. Reset the sdata's string
2005 back-pointer so that we know it's free. */
2006 #ifdef GC_CHECK_STRING_BYTES
2007 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2008 abort ();
2009 #else
2010 data->u.nbytes = GC_STRING_BYTES (s);
2011 #endif
2012 data->string = NULL;
2013
2014 /* Reset the strings's `data' member so that we
2015 know it's free. */
2016 s->data = NULL;
2017
2018 /* Put the string on the free-list. */
2019 NEXT_FREE_LISP_STRING (s) = string_free_list;
2020 string_free_list = s;
2021 ++nfree;
2022 }
2023 }
2024 else
2025 {
2026 /* S was on the free-list before. Put it there again. */
2027 NEXT_FREE_LISP_STRING (s) = string_free_list;
2028 string_free_list = s;
2029 ++nfree;
2030 }
2031 }
2032
2033 /* Free blocks that contain free Lisp_Strings only, except
2034 the first two of them. */
2035 if (nfree == STRING_BLOCK_SIZE
2036 && total_free_strings > STRING_BLOCK_SIZE)
2037 {
2038 lisp_free (b);
2039 --n_string_blocks;
2040 string_free_list = free_list_before;
2041 }
2042 else
2043 {
2044 total_free_strings += nfree;
2045 b->next = live_blocks;
2046 live_blocks = b;
2047 }
2048 }
2049
2050 check_string_free_list ();
2051
2052 string_blocks = live_blocks;
2053 free_large_strings ();
2054 compact_small_strings ();
2055
2056 check_string_free_list ();
2057 }
2058
2059
2060 /* Free dead large strings. */
2061
2062 static void
2063 free_large_strings (void)
2064 {
2065 struct sblock *b, *next;
2066 struct sblock *live_blocks = NULL;
2067
2068 for (b = large_sblocks; b; b = next)
2069 {
2070 next = b->next;
2071
2072 if (b->first_data.string == NULL)
2073 lisp_free (b);
2074 else
2075 {
2076 b->next = live_blocks;
2077 live_blocks = b;
2078 }
2079 }
2080
2081 large_sblocks = live_blocks;
2082 }
2083
2084
2085 /* Compact data of small strings. Free sblocks that don't contain
2086 data of live strings after compaction. */
2087
2088 static void
2089 compact_small_strings (void)
2090 {
2091 struct sblock *b, *tb, *next;
2092 struct sdata *from, *to, *end, *tb_end;
2093 struct sdata *to_end, *from_end;
2094
2095 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2096 to, and TB_END is the end of TB. */
2097 tb = oldest_sblock;
2098 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2099 to = &tb->first_data;
2100
2101 /* Step through the blocks from the oldest to the youngest. We
2102 expect that old blocks will stabilize over time, so that less
2103 copying will happen this way. */
2104 for (b = oldest_sblock; b; b = b->next)
2105 {
2106 end = b->next_free;
2107 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2108
2109 for (from = &b->first_data; from < end; from = from_end)
2110 {
2111 /* Compute the next FROM here because copying below may
2112 overwrite data we need to compute it. */
2113 EMACS_INT nbytes;
2114
2115 #ifdef GC_CHECK_STRING_BYTES
2116 /* Check that the string size recorded in the string is the
2117 same as the one recorded in the sdata structure. */
2118 if (from->string
2119 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2120 abort ();
2121 #endif /* GC_CHECK_STRING_BYTES */
2122
2123 if (from->string)
2124 nbytes = GC_STRING_BYTES (from->string);
2125 else
2126 nbytes = SDATA_NBYTES (from);
2127
2128 if (nbytes > LARGE_STRING_BYTES)
2129 abort ();
2130
2131 nbytes = SDATA_SIZE (nbytes);
2132 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2133
2134 #ifdef GC_CHECK_STRING_OVERRUN
2135 if (memcmp (string_overrun_cookie,
2136 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2137 GC_STRING_OVERRUN_COOKIE_SIZE))
2138 abort ();
2139 #endif
2140
2141 /* FROM->string non-null means it's alive. Copy its data. */
2142 if (from->string)
2143 {
2144 /* If TB is full, proceed with the next sblock. */
2145 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2146 if (to_end > tb_end)
2147 {
2148 tb->next_free = to;
2149 tb = tb->next;
2150 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2151 to = &tb->first_data;
2152 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2153 }
2154
2155 /* Copy, and update the string's `data' pointer. */
2156 if (from != to)
2157 {
2158 xassert (tb != b || to <= from);
2159 memmove (to, from, nbytes + GC_STRING_EXTRA);
2160 to->string->data = SDATA_DATA (to);
2161 }
2162
2163 /* Advance past the sdata we copied to. */
2164 to = to_end;
2165 }
2166 }
2167 }
2168
2169 /* The rest of the sblocks following TB don't contain live data, so
2170 we can free them. */
2171 for (b = tb->next; b; b = next)
2172 {
2173 next = b->next;
2174 lisp_free (b);
2175 }
2176
2177 tb->next_free = to;
2178 tb->next = NULL;
2179 current_sblock = tb;
2180 }
2181
2182
2183 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2184 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2185 LENGTH must be an integer.
2186 INIT must be an integer that represents a character. */)
2187 (Lisp_Object length, Lisp_Object init)
2188 {
2189 register Lisp_Object val;
2190 register unsigned char *p, *end;
2191 int c;
2192 EMACS_INT nbytes;
2193
2194 CHECK_NATNUM (length);
2195 CHECK_NUMBER (init);
2196
2197 c = XINT (init);
2198 if (ASCII_CHAR_P (c))
2199 {
2200 nbytes = XINT (length);
2201 val = make_uninit_string (nbytes);
2202 p = SDATA (val);
2203 end = p + SCHARS (val);
2204 while (p != end)
2205 *p++ = c;
2206 }
2207 else
2208 {
2209 unsigned char str[MAX_MULTIBYTE_LENGTH];
2210 int len = CHAR_STRING (c, str);
2211 EMACS_INT string_len = XINT (length);
2212
2213 if (string_len > MOST_POSITIVE_FIXNUM / len)
2214 error ("Maximum string size exceeded");
2215 nbytes = len * string_len;
2216 val = make_uninit_multibyte_string (string_len, nbytes);
2217 p = SDATA (val);
2218 end = p + nbytes;
2219 while (p != end)
2220 {
2221 memcpy (p, str, len);
2222 p += len;
2223 }
2224 }
2225
2226 *p = 0;
2227 return val;
2228 }
2229
2230
2231 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2232 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2233 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2234 (Lisp_Object length, Lisp_Object init)
2235 {
2236 register Lisp_Object val;
2237 struct Lisp_Bool_Vector *p;
2238 int real_init, i;
2239 EMACS_INT length_in_chars, length_in_elts;
2240 int bits_per_value;
2241
2242 CHECK_NATNUM (length);
2243
2244 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2245
2246 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2247 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2248 / BOOL_VECTOR_BITS_PER_CHAR);
2249
2250 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2251 slot `size' of the struct Lisp_Bool_Vector. */
2252 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2253
2254 /* Get rid of any bits that would cause confusion. */
2255 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2256 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2257 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2258
2259 p = XBOOL_VECTOR (val);
2260 p->size = XFASTINT (length);
2261
2262 real_init = (NILP (init) ? 0 : -1);
2263 for (i = 0; i < length_in_chars ; i++)
2264 p->data[i] = real_init;
2265
2266 /* Clear the extraneous bits in the last byte. */
2267 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2268 p->data[length_in_chars - 1]
2269 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2270
2271 return val;
2272 }
2273
2274
2275 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2276 of characters from the contents. This string may be unibyte or
2277 multibyte, depending on the contents. */
2278
2279 Lisp_Object
2280 make_string (const char *contents, EMACS_INT nbytes)
2281 {
2282 register Lisp_Object val;
2283 EMACS_INT nchars, multibyte_nbytes;
2284
2285 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2286 if (nbytes == nchars || nbytes != multibyte_nbytes)
2287 /* CONTENTS contains no multibyte sequences or contains an invalid
2288 multibyte sequence. We must make unibyte string. */
2289 val = make_unibyte_string (contents, nbytes);
2290 else
2291 val = make_multibyte_string (contents, nchars, nbytes);
2292 return val;
2293 }
2294
2295
2296 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2297
2298 Lisp_Object
2299 make_unibyte_string (const char *contents, EMACS_INT length)
2300 {
2301 register Lisp_Object val;
2302 val = make_uninit_string (length);
2303 memcpy (SDATA (val), contents, length);
2304 STRING_SET_UNIBYTE (val);
2305 return val;
2306 }
2307
2308
2309 /* Make a multibyte string from NCHARS characters occupying NBYTES
2310 bytes at CONTENTS. */
2311
2312 Lisp_Object
2313 make_multibyte_string (const char *contents,
2314 EMACS_INT nchars, EMACS_INT nbytes)
2315 {
2316 register Lisp_Object val;
2317 val = make_uninit_multibyte_string (nchars, nbytes);
2318 memcpy (SDATA (val), contents, nbytes);
2319 return val;
2320 }
2321
2322
2323 /* Make a string from NCHARS characters occupying NBYTES bytes at
2324 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2325
2326 Lisp_Object
2327 make_string_from_bytes (const char *contents,
2328 EMACS_INT nchars, EMACS_INT nbytes)
2329 {
2330 register Lisp_Object val;
2331 val = make_uninit_multibyte_string (nchars, nbytes);
2332 memcpy (SDATA (val), contents, nbytes);
2333 if (SBYTES (val) == SCHARS (val))
2334 STRING_SET_UNIBYTE (val);
2335 return val;
2336 }
2337
2338
2339 /* Make a string from NCHARS characters occupying NBYTES bytes at
2340 CONTENTS. The argument MULTIBYTE controls whether to label the
2341 string as multibyte. If NCHARS is negative, it counts the number of
2342 characters by itself. */
2343
2344 Lisp_Object
2345 make_specified_string (const char *contents,
2346 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
2347 {
2348 register Lisp_Object val;
2349
2350 if (nchars < 0)
2351 {
2352 if (multibyte)
2353 nchars = multibyte_chars_in_text (contents, nbytes);
2354 else
2355 nchars = nbytes;
2356 }
2357 val = make_uninit_multibyte_string (nchars, nbytes);
2358 memcpy (SDATA (val), contents, nbytes);
2359 if (!multibyte)
2360 STRING_SET_UNIBYTE (val);
2361 return val;
2362 }
2363
2364
2365 /* Make a string from the data at STR, treating it as multibyte if the
2366 data warrants. */
2367
2368 Lisp_Object
2369 build_string (const char *str)
2370 {
2371 return make_string (str, strlen (str));
2372 }
2373
2374
2375 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2376 occupying LENGTH bytes. */
2377
2378 Lisp_Object
2379 make_uninit_string (EMACS_INT length)
2380 {
2381 Lisp_Object val;
2382
2383 if (!length)
2384 return empty_unibyte_string;
2385 val = make_uninit_multibyte_string (length, length);
2386 STRING_SET_UNIBYTE (val);
2387 return val;
2388 }
2389
2390
2391 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2392 which occupy NBYTES bytes. */
2393
2394 Lisp_Object
2395 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2396 {
2397 Lisp_Object string;
2398 struct Lisp_String *s;
2399
2400 if (nchars < 0)
2401 abort ();
2402 if (!nbytes)
2403 return empty_multibyte_string;
2404
2405 s = allocate_string ();
2406 allocate_string_data (s, nchars, nbytes);
2407 XSETSTRING (string, s);
2408 string_chars_consed += nbytes;
2409 return string;
2410 }
2411
2412
2413 \f
2414 /***********************************************************************
2415 Float Allocation
2416 ***********************************************************************/
2417
2418 /* We store float cells inside of float_blocks, allocating a new
2419 float_block with malloc whenever necessary. Float cells reclaimed
2420 by GC are put on a free list to be reallocated before allocating
2421 any new float cells from the latest float_block. */
2422
2423 #define FLOAT_BLOCK_SIZE \
2424 (((BLOCK_BYTES - sizeof (struct float_block *) \
2425 /* The compiler might add padding at the end. */ \
2426 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2427 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2428
2429 #define GETMARKBIT(block,n) \
2430 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2431 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2432 & 1)
2433
2434 #define SETMARKBIT(block,n) \
2435 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2436 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2437
2438 #define UNSETMARKBIT(block,n) \
2439 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2440 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2441
2442 #define FLOAT_BLOCK(fptr) \
2443 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2444
2445 #define FLOAT_INDEX(fptr) \
2446 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2447
2448 struct float_block
2449 {
2450 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2451 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2452 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2453 struct float_block *next;
2454 };
2455
2456 #define FLOAT_MARKED_P(fptr) \
2457 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2458
2459 #define FLOAT_MARK(fptr) \
2460 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2461
2462 #define FLOAT_UNMARK(fptr) \
2463 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2464
2465 /* Current float_block. */
2466
2467 struct float_block *float_block;
2468
2469 /* Index of first unused Lisp_Float in the current float_block. */
2470
2471 int float_block_index;
2472
2473 /* Total number of float blocks now in use. */
2474
2475 int n_float_blocks;
2476
2477 /* Free-list of Lisp_Floats. */
2478
2479 struct Lisp_Float *float_free_list;
2480
2481
2482 /* Initialize float allocation. */
2483
2484 static void
2485 init_float (void)
2486 {
2487 float_block = NULL;
2488 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2489 float_free_list = 0;
2490 n_float_blocks = 0;
2491 }
2492
2493
2494 /* Return a new float object with value FLOAT_VALUE. */
2495
2496 Lisp_Object
2497 make_float (double float_value)
2498 {
2499 register Lisp_Object val;
2500
2501 /* eassert (!handling_signal); */
2502
2503 MALLOC_BLOCK_INPUT;
2504
2505 if (float_free_list)
2506 {
2507 /* We use the data field for chaining the free list
2508 so that we won't use the same field that has the mark bit. */
2509 XSETFLOAT (val, float_free_list);
2510 float_free_list = float_free_list->u.chain;
2511 }
2512 else
2513 {
2514 if (float_block_index == FLOAT_BLOCK_SIZE)
2515 {
2516 register struct float_block *new;
2517
2518 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2519 MEM_TYPE_FLOAT);
2520 new->next = float_block;
2521 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2522 float_block = new;
2523 float_block_index = 0;
2524 n_float_blocks++;
2525 }
2526 XSETFLOAT (val, &float_block->floats[float_block_index]);
2527 float_block_index++;
2528 }
2529
2530 MALLOC_UNBLOCK_INPUT;
2531
2532 XFLOAT_INIT (val, float_value);
2533 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2534 consing_since_gc += sizeof (struct Lisp_Float);
2535 floats_consed++;
2536 return val;
2537 }
2538
2539
2540 \f
2541 /***********************************************************************
2542 Cons Allocation
2543 ***********************************************************************/
2544
2545 /* We store cons cells inside of cons_blocks, allocating a new
2546 cons_block with malloc whenever necessary. Cons cells reclaimed by
2547 GC are put on a free list to be reallocated before allocating
2548 any new cons cells from the latest cons_block. */
2549
2550 #define CONS_BLOCK_SIZE \
2551 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2552 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2553
2554 #define CONS_BLOCK(fptr) \
2555 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2556
2557 #define CONS_INDEX(fptr) \
2558 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2559
2560 struct cons_block
2561 {
2562 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2563 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2564 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2565 struct cons_block *next;
2566 };
2567
2568 #define CONS_MARKED_P(fptr) \
2569 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2570
2571 #define CONS_MARK(fptr) \
2572 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2573
2574 #define CONS_UNMARK(fptr) \
2575 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2576
2577 /* Current cons_block. */
2578
2579 struct cons_block *cons_block;
2580
2581 /* Index of first unused Lisp_Cons in the current block. */
2582
2583 int cons_block_index;
2584
2585 /* Free-list of Lisp_Cons structures. */
2586
2587 struct Lisp_Cons *cons_free_list;
2588
2589 /* Total number of cons blocks now in use. */
2590
2591 static int n_cons_blocks;
2592
2593
2594 /* Initialize cons allocation. */
2595
2596 static void
2597 init_cons (void)
2598 {
2599 cons_block = NULL;
2600 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2601 cons_free_list = 0;
2602 n_cons_blocks = 0;
2603 }
2604
2605
2606 /* Explicitly free a cons cell by putting it on the free-list. */
2607
2608 void
2609 free_cons (struct Lisp_Cons *ptr)
2610 {
2611 ptr->u.chain = cons_free_list;
2612 #if GC_MARK_STACK
2613 ptr->car = Vdead;
2614 #endif
2615 cons_free_list = ptr;
2616 }
2617
2618 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2619 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2620 (Lisp_Object car, Lisp_Object cdr)
2621 {
2622 register Lisp_Object val;
2623
2624 /* eassert (!handling_signal); */
2625
2626 MALLOC_BLOCK_INPUT;
2627
2628 if (cons_free_list)
2629 {
2630 /* We use the cdr for chaining the free list
2631 so that we won't use the same field that has the mark bit. */
2632 XSETCONS (val, cons_free_list);
2633 cons_free_list = cons_free_list->u.chain;
2634 }
2635 else
2636 {
2637 if (cons_block_index == CONS_BLOCK_SIZE)
2638 {
2639 register struct cons_block *new;
2640 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2641 MEM_TYPE_CONS);
2642 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2643 new->next = cons_block;
2644 cons_block = new;
2645 cons_block_index = 0;
2646 n_cons_blocks++;
2647 }
2648 XSETCONS (val, &cons_block->conses[cons_block_index]);
2649 cons_block_index++;
2650 }
2651
2652 MALLOC_UNBLOCK_INPUT;
2653
2654 XSETCAR (val, car);
2655 XSETCDR (val, cdr);
2656 eassert (!CONS_MARKED_P (XCONS (val)));
2657 consing_since_gc += sizeof (struct Lisp_Cons);
2658 cons_cells_consed++;
2659 return val;
2660 }
2661
2662 /* Get an error now if there's any junk in the cons free list. */
2663 void
2664 check_cons_list (void)
2665 {
2666 #ifdef GC_CHECK_CONS_LIST
2667 struct Lisp_Cons *tail = cons_free_list;
2668
2669 while (tail)
2670 tail = tail->u.chain;
2671 #endif
2672 }
2673
2674 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2675
2676 Lisp_Object
2677 list1 (Lisp_Object arg1)
2678 {
2679 return Fcons (arg1, Qnil);
2680 }
2681
2682 Lisp_Object
2683 list2 (Lisp_Object arg1, Lisp_Object arg2)
2684 {
2685 return Fcons (arg1, Fcons (arg2, Qnil));
2686 }
2687
2688
2689 Lisp_Object
2690 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2691 {
2692 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2693 }
2694
2695
2696 Lisp_Object
2697 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2698 {
2699 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2700 }
2701
2702
2703 Lisp_Object
2704 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2705 {
2706 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2707 Fcons (arg5, Qnil)))));
2708 }
2709
2710
2711 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2712 doc: /* Return a newly created list with specified arguments as elements.
2713 Any number of arguments, even zero arguments, are allowed.
2714 usage: (list &rest OBJECTS) */)
2715 (int nargs, register Lisp_Object *args)
2716 {
2717 register Lisp_Object val;
2718 val = Qnil;
2719
2720 while (nargs > 0)
2721 {
2722 nargs--;
2723 val = Fcons (args[nargs], val);
2724 }
2725 return val;
2726 }
2727
2728
2729 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2730 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2731 (register Lisp_Object length, Lisp_Object init)
2732 {
2733 register Lisp_Object val;
2734 register EMACS_INT size;
2735
2736 CHECK_NATNUM (length);
2737 size = XFASTINT (length);
2738
2739 val = Qnil;
2740 while (size > 0)
2741 {
2742 val = Fcons (init, val);
2743 --size;
2744
2745 if (size > 0)
2746 {
2747 val = Fcons (init, val);
2748 --size;
2749
2750 if (size > 0)
2751 {
2752 val = Fcons (init, val);
2753 --size;
2754
2755 if (size > 0)
2756 {
2757 val = Fcons (init, val);
2758 --size;
2759
2760 if (size > 0)
2761 {
2762 val = Fcons (init, val);
2763 --size;
2764 }
2765 }
2766 }
2767 }
2768
2769 QUIT;
2770 }
2771
2772 return val;
2773 }
2774
2775
2776 \f
2777 /***********************************************************************
2778 Vector Allocation
2779 ***********************************************************************/
2780
2781 /* Singly-linked list of all vectors. */
2782
2783 static struct Lisp_Vector *all_vectors;
2784
2785 /* Total number of vector-like objects now in use. */
2786
2787 static int n_vectors;
2788
2789
2790 /* Value is a pointer to a newly allocated Lisp_Vector structure
2791 with room for LEN Lisp_Objects. */
2792
2793 static struct Lisp_Vector *
2794 allocate_vectorlike (EMACS_INT len)
2795 {
2796 struct Lisp_Vector *p;
2797 size_t nbytes;
2798
2799 MALLOC_BLOCK_INPUT;
2800
2801 #ifdef DOUG_LEA_MALLOC
2802 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2803 because mapped region contents are not preserved in
2804 a dumped Emacs. */
2805 mallopt (M_MMAP_MAX, 0);
2806 #endif
2807
2808 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2809 /* eassert (!handling_signal); */
2810
2811 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2812 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2813
2814 #ifdef DOUG_LEA_MALLOC
2815 /* Back to a reasonable maximum of mmap'ed areas. */
2816 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2817 #endif
2818
2819 consing_since_gc += nbytes;
2820 vector_cells_consed += len;
2821
2822 p->next = all_vectors;
2823 all_vectors = p;
2824
2825 MALLOC_UNBLOCK_INPUT;
2826
2827 ++n_vectors;
2828 return p;
2829 }
2830
2831
2832 /* Allocate a vector with NSLOTS slots. */
2833
2834 struct Lisp_Vector *
2835 allocate_vector (EMACS_INT nslots)
2836 {
2837 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2838 v->size = nslots;
2839 return v;
2840 }
2841
2842
2843 /* Allocate other vector-like structures. */
2844
2845 struct Lisp_Vector *
2846 allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
2847 {
2848 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2849 EMACS_INT i;
2850
2851 /* Only the first lisplen slots will be traced normally by the GC. */
2852 v->size = lisplen;
2853 for (i = 0; i < lisplen; ++i)
2854 v->contents[i] = Qnil;
2855
2856 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2857 return v;
2858 }
2859
2860 struct Lisp_Hash_Table *
2861 allocate_hash_table (void)
2862 {
2863 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2864 }
2865
2866
2867 struct window *
2868 allocate_window (void)
2869 {
2870 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2871 }
2872
2873
2874 struct terminal *
2875 allocate_terminal (void)
2876 {
2877 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2878 next_terminal, PVEC_TERMINAL);
2879 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2880 memset (&t->next_terminal, 0,
2881 (char*) (t + 1) - (char*) &t->next_terminal);
2882
2883 return t;
2884 }
2885
2886 struct frame *
2887 allocate_frame (void)
2888 {
2889 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
2890 face_cache, PVEC_FRAME);
2891 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2892 memset (&f->face_cache, 0,
2893 (char *) (f + 1) - (char *) &f->face_cache);
2894 return f;
2895 }
2896
2897
2898 struct Lisp_Process *
2899 allocate_process (void)
2900 {
2901 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
2902 }
2903
2904
2905 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2906 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2907 See also the function `vector'. */)
2908 (register Lisp_Object length, Lisp_Object init)
2909 {
2910 Lisp_Object vector;
2911 register EMACS_INT sizei;
2912 register EMACS_INT index;
2913 register struct Lisp_Vector *p;
2914
2915 CHECK_NATNUM (length);
2916 sizei = XFASTINT (length);
2917
2918 p = allocate_vector (sizei);
2919 for (index = 0; index < sizei; index++)
2920 p->contents[index] = init;
2921
2922 XSETVECTOR (vector, p);
2923 return vector;
2924 }
2925
2926
2927 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2928 doc: /* Return a newly created vector with specified arguments as elements.
2929 Any number of arguments, even zero arguments, are allowed.
2930 usage: (vector &rest OBJECTS) */)
2931 (register int nargs, Lisp_Object *args)
2932 {
2933 register Lisp_Object len, val;
2934 register int index;
2935 register struct Lisp_Vector *p;
2936
2937 XSETFASTINT (len, nargs);
2938 val = Fmake_vector (len, Qnil);
2939 p = XVECTOR (val);
2940 for (index = 0; index < nargs; index++)
2941 p->contents[index] = args[index];
2942 return val;
2943 }
2944
2945
2946 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2947 doc: /* Create a byte-code object with specified arguments as elements.
2948 The arguments should be the arglist, bytecode-string, constant vector,
2949 stack size, (optional) doc string, and (optional) interactive spec.
2950 The first four arguments are required; at most six have any
2951 significance.
2952 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2953 (register int nargs, Lisp_Object *args)
2954 {
2955 register Lisp_Object len, val;
2956 register int index;
2957 register struct Lisp_Vector *p;
2958
2959 XSETFASTINT (len, nargs);
2960 if (!NILP (Vpurify_flag))
2961 val = make_pure_vector ((EMACS_INT) nargs);
2962 else
2963 val = Fmake_vector (len, Qnil);
2964
2965 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2966 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2967 earlier because they produced a raw 8-bit string for byte-code
2968 and now such a byte-code string is loaded as multibyte while
2969 raw 8-bit characters converted to multibyte form. Thus, now we
2970 must convert them back to the original unibyte form. */
2971 args[1] = Fstring_as_unibyte (args[1]);
2972
2973 p = XVECTOR (val);
2974 for (index = 0; index < nargs; index++)
2975 {
2976 if (!NILP (Vpurify_flag))
2977 args[index] = Fpurecopy (args[index]);
2978 p->contents[index] = args[index];
2979 }
2980 XSETPVECTYPE (p, PVEC_COMPILED);
2981 XSETCOMPILED (val, p);
2982 return val;
2983 }
2984
2985
2986 \f
2987 /***********************************************************************
2988 Symbol Allocation
2989 ***********************************************************************/
2990
2991 /* Each symbol_block is just under 1020 bytes long, since malloc
2992 really allocates in units of powers of two and uses 4 bytes for its
2993 own overhead. */
2994
2995 #define SYMBOL_BLOCK_SIZE \
2996 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2997
2998 struct symbol_block
2999 {
3000 /* Place `symbols' first, to preserve alignment. */
3001 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3002 struct symbol_block *next;
3003 };
3004
3005 /* Current symbol block and index of first unused Lisp_Symbol
3006 structure in it. */
3007
3008 static struct symbol_block *symbol_block;
3009 static int symbol_block_index;
3010
3011 /* List of free symbols. */
3012
3013 static struct Lisp_Symbol *symbol_free_list;
3014
3015 /* Total number of symbol blocks now in use. */
3016
3017 static int n_symbol_blocks;
3018
3019
3020 /* Initialize symbol allocation. */
3021
3022 static void
3023 init_symbol (void)
3024 {
3025 symbol_block = NULL;
3026 symbol_block_index = SYMBOL_BLOCK_SIZE;
3027 symbol_free_list = 0;
3028 n_symbol_blocks = 0;
3029 }
3030
3031
3032 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3033 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3034 Its value and function definition are void, and its property list is nil. */)
3035 (Lisp_Object name)
3036 {
3037 register Lisp_Object val;
3038 register struct Lisp_Symbol *p;
3039
3040 CHECK_STRING (name);
3041
3042 /* eassert (!handling_signal); */
3043
3044 MALLOC_BLOCK_INPUT;
3045
3046 if (symbol_free_list)
3047 {
3048 XSETSYMBOL (val, symbol_free_list);
3049 symbol_free_list = symbol_free_list->next;
3050 }
3051 else
3052 {
3053 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3054 {
3055 struct symbol_block *new;
3056 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3057 MEM_TYPE_SYMBOL);
3058 new->next = symbol_block;
3059 symbol_block = new;
3060 symbol_block_index = 0;
3061 n_symbol_blocks++;
3062 }
3063 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3064 symbol_block_index++;
3065 }
3066
3067 MALLOC_UNBLOCK_INPUT;
3068
3069 p = XSYMBOL (val);
3070 p->xname = name;
3071 p->plist = Qnil;
3072 p->redirect = SYMBOL_PLAINVAL;
3073 SET_SYMBOL_VAL (p, Qunbound);
3074 p->function = Qunbound;
3075 p->next = NULL;
3076 p->gcmarkbit = 0;
3077 p->interned = SYMBOL_UNINTERNED;
3078 p->constant = 0;
3079 consing_since_gc += sizeof (struct Lisp_Symbol);
3080 symbols_consed++;
3081 return val;
3082 }
3083
3084
3085 \f
3086 /***********************************************************************
3087 Marker (Misc) Allocation
3088 ***********************************************************************/
3089
3090 /* Allocation of markers and other objects that share that structure.
3091 Works like allocation of conses. */
3092
3093 #define MARKER_BLOCK_SIZE \
3094 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3095
3096 struct marker_block
3097 {
3098 /* Place `markers' first, to preserve alignment. */
3099 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3100 struct marker_block *next;
3101 };
3102
3103 static struct marker_block *marker_block;
3104 static int marker_block_index;
3105
3106 static union Lisp_Misc *marker_free_list;
3107
3108 /* Total number of marker blocks now in use. */
3109
3110 static int n_marker_blocks;
3111
3112 static void
3113 init_marker (void)
3114 {
3115 marker_block = NULL;
3116 marker_block_index = MARKER_BLOCK_SIZE;
3117 marker_free_list = 0;
3118 n_marker_blocks = 0;
3119 }
3120
3121 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3122
3123 Lisp_Object
3124 allocate_misc (void)
3125 {
3126 Lisp_Object val;
3127
3128 /* eassert (!handling_signal); */
3129
3130 MALLOC_BLOCK_INPUT;
3131
3132 if (marker_free_list)
3133 {
3134 XSETMISC (val, marker_free_list);
3135 marker_free_list = marker_free_list->u_free.chain;
3136 }
3137 else
3138 {
3139 if (marker_block_index == MARKER_BLOCK_SIZE)
3140 {
3141 struct marker_block *new;
3142 new = (struct marker_block *) lisp_malloc (sizeof *new,
3143 MEM_TYPE_MISC);
3144 new->next = marker_block;
3145 marker_block = new;
3146 marker_block_index = 0;
3147 n_marker_blocks++;
3148 total_free_markers += MARKER_BLOCK_SIZE;
3149 }
3150 XSETMISC (val, &marker_block->markers[marker_block_index]);
3151 marker_block_index++;
3152 }
3153
3154 MALLOC_UNBLOCK_INPUT;
3155
3156 --total_free_markers;
3157 consing_since_gc += sizeof (union Lisp_Misc);
3158 misc_objects_consed++;
3159 XMISCANY (val)->gcmarkbit = 0;
3160 return val;
3161 }
3162
3163 /* Free a Lisp_Misc object */
3164
3165 void
3166 free_misc (Lisp_Object misc)
3167 {
3168 XMISCTYPE (misc) = Lisp_Misc_Free;
3169 XMISC (misc)->u_free.chain = marker_free_list;
3170 marker_free_list = XMISC (misc);
3171
3172 total_free_markers++;
3173 }
3174
3175 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3176 INTEGER. This is used to package C values to call record_unwind_protect.
3177 The unwind function can get the C values back using XSAVE_VALUE. */
3178
3179 Lisp_Object
3180 make_save_value (void *pointer, int integer)
3181 {
3182 register Lisp_Object val;
3183 register struct Lisp_Save_Value *p;
3184
3185 val = allocate_misc ();
3186 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3187 p = XSAVE_VALUE (val);
3188 p->pointer = pointer;
3189 p->integer = integer;
3190 p->dogc = 0;
3191 return val;
3192 }
3193
3194 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3195 doc: /* Return a newly allocated marker which does not point at any place. */)
3196 (void)
3197 {
3198 register Lisp_Object val;
3199 register struct Lisp_Marker *p;
3200
3201 val = allocate_misc ();
3202 XMISCTYPE (val) = Lisp_Misc_Marker;
3203 p = XMARKER (val);
3204 p->buffer = 0;
3205 p->bytepos = 0;
3206 p->charpos = 0;
3207 p->next = NULL;
3208 p->insertion_type = 0;
3209 return val;
3210 }
3211
3212 /* Put MARKER back on the free list after using it temporarily. */
3213
3214 void
3215 free_marker (Lisp_Object marker)
3216 {
3217 unchain_marker (XMARKER (marker));
3218 free_misc (marker);
3219 }
3220
3221 \f
3222 /* Return a newly created vector or string with specified arguments as
3223 elements. If all the arguments are characters that can fit
3224 in a string of events, make a string; otherwise, make a vector.
3225
3226 Any number of arguments, even zero arguments, are allowed. */
3227
3228 Lisp_Object
3229 make_event_array (register int nargs, Lisp_Object *args)
3230 {
3231 int i;
3232
3233 for (i = 0; i < nargs; i++)
3234 /* The things that fit in a string
3235 are characters that are in 0...127,
3236 after discarding the meta bit and all the bits above it. */
3237 if (!INTEGERP (args[i])
3238 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3239 return Fvector (nargs, args);
3240
3241 /* Since the loop exited, we know that all the things in it are
3242 characters, so we can make a string. */
3243 {
3244 Lisp_Object result;
3245
3246 result = Fmake_string (make_number (nargs), make_number (0));
3247 for (i = 0; i < nargs; i++)
3248 {
3249 SSET (result, i, XINT (args[i]));
3250 /* Move the meta bit to the right place for a string char. */
3251 if (XINT (args[i]) & CHAR_META)
3252 SSET (result, i, SREF (result, i) | 0x80);
3253 }
3254
3255 return result;
3256 }
3257 }
3258
3259
3260 \f
3261 /************************************************************************
3262 Memory Full Handling
3263 ************************************************************************/
3264
3265
3266 /* Called if malloc returns zero. */
3267
3268 void
3269 memory_full (void)
3270 {
3271 int i;
3272
3273 Vmemory_full = Qt;
3274
3275 memory_full_cons_threshold = sizeof (struct cons_block);
3276
3277 /* The first time we get here, free the spare memory. */
3278 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3279 if (spare_memory[i])
3280 {
3281 if (i == 0)
3282 free (spare_memory[i]);
3283 else if (i >= 1 && i <= 4)
3284 lisp_align_free (spare_memory[i]);
3285 else
3286 lisp_free (spare_memory[i]);
3287 spare_memory[i] = 0;
3288 }
3289
3290 /* Record the space now used. When it decreases substantially,
3291 we can refill the memory reserve. */
3292 #ifndef SYSTEM_MALLOC
3293 bytes_used_when_full = BYTES_USED;
3294 #endif
3295
3296 /* This used to call error, but if we've run out of memory, we could
3297 get infinite recursion trying to build the string. */
3298 xsignal (Qnil, Vmemory_signal_data);
3299 }
3300
3301 /* If we released our reserve (due to running out of memory),
3302 and we have a fair amount free once again,
3303 try to set aside another reserve in case we run out once more.
3304
3305 This is called when a relocatable block is freed in ralloc.c,
3306 and also directly from this file, in case we're not using ralloc.c. */
3307
3308 void
3309 refill_memory_reserve (void)
3310 {
3311 #ifndef SYSTEM_MALLOC
3312 if (spare_memory[0] == 0)
3313 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3314 if (spare_memory[1] == 0)
3315 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3316 MEM_TYPE_CONS);
3317 if (spare_memory[2] == 0)
3318 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3319 MEM_TYPE_CONS);
3320 if (spare_memory[3] == 0)
3321 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3322 MEM_TYPE_CONS);
3323 if (spare_memory[4] == 0)
3324 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3325 MEM_TYPE_CONS);
3326 if (spare_memory[5] == 0)
3327 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3328 MEM_TYPE_STRING);
3329 if (spare_memory[6] == 0)
3330 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3331 MEM_TYPE_STRING);
3332 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3333 Vmemory_full = Qnil;
3334 #endif
3335 }
3336 \f
3337 /************************************************************************
3338 C Stack Marking
3339 ************************************************************************/
3340
3341 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3342
3343 /* Conservative C stack marking requires a method to identify possibly
3344 live Lisp objects given a pointer value. We do this by keeping
3345 track of blocks of Lisp data that are allocated in a red-black tree
3346 (see also the comment of mem_node which is the type of nodes in
3347 that tree). Function lisp_malloc adds information for an allocated
3348 block to the red-black tree with calls to mem_insert, and function
3349 lisp_free removes it with mem_delete. Functions live_string_p etc
3350 call mem_find to lookup information about a given pointer in the
3351 tree, and use that to determine if the pointer points to a Lisp
3352 object or not. */
3353
3354 /* Initialize this part of alloc.c. */
3355
3356 static void
3357 mem_init (void)
3358 {
3359 mem_z.left = mem_z.right = MEM_NIL;
3360 mem_z.parent = NULL;
3361 mem_z.color = MEM_BLACK;
3362 mem_z.start = mem_z.end = NULL;
3363 mem_root = MEM_NIL;
3364 }
3365
3366
3367 /* Value is a pointer to the mem_node containing START. Value is
3368 MEM_NIL if there is no node in the tree containing START. */
3369
3370 static INLINE struct mem_node *
3371 mem_find (void *start)
3372 {
3373 struct mem_node *p;
3374
3375 if (start < min_heap_address || start > max_heap_address)
3376 return MEM_NIL;
3377
3378 /* Make the search always successful to speed up the loop below. */
3379 mem_z.start = start;
3380 mem_z.end = (char *) start + 1;
3381
3382 p = mem_root;
3383 while (start < p->start || start >= p->end)
3384 p = start < p->start ? p->left : p->right;
3385 return p;
3386 }
3387
3388
3389 /* Insert a new node into the tree for a block of memory with start
3390 address START, end address END, and type TYPE. Value is a
3391 pointer to the node that was inserted. */
3392
3393 static struct mem_node *
3394 mem_insert (void *start, void *end, enum mem_type type)
3395 {
3396 struct mem_node *c, *parent, *x;
3397
3398 if (min_heap_address == NULL || start < min_heap_address)
3399 min_heap_address = start;
3400 if (max_heap_address == NULL || end > max_heap_address)
3401 max_heap_address = end;
3402
3403 /* See where in the tree a node for START belongs. In this
3404 particular application, it shouldn't happen that a node is already
3405 present. For debugging purposes, let's check that. */
3406 c = mem_root;
3407 parent = NULL;
3408
3409 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3410
3411 while (c != MEM_NIL)
3412 {
3413 if (start >= c->start && start < c->end)
3414 abort ();
3415 parent = c;
3416 c = start < c->start ? c->left : c->right;
3417 }
3418
3419 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3420
3421 while (c != MEM_NIL)
3422 {
3423 parent = c;
3424 c = start < c->start ? c->left : c->right;
3425 }
3426
3427 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3428
3429 /* Create a new node. */
3430 #ifdef GC_MALLOC_CHECK
3431 x = (struct mem_node *) _malloc_internal (sizeof *x);
3432 if (x == NULL)
3433 abort ();
3434 #else
3435 x = (struct mem_node *) xmalloc (sizeof *x);
3436 #endif
3437 x->start = start;
3438 x->end = end;
3439 x->type = type;
3440 x->parent = parent;
3441 x->left = x->right = MEM_NIL;
3442 x->color = MEM_RED;
3443
3444 /* Insert it as child of PARENT or install it as root. */
3445 if (parent)
3446 {
3447 if (start < parent->start)
3448 parent->left = x;
3449 else
3450 parent->right = x;
3451 }
3452 else
3453 mem_root = x;
3454
3455 /* Re-establish red-black tree properties. */
3456 mem_insert_fixup (x);
3457
3458 return x;
3459 }
3460
3461
3462 /* Re-establish the red-black properties of the tree, and thereby
3463 balance the tree, after node X has been inserted; X is always red. */
3464
3465 static void
3466 mem_insert_fixup (struct mem_node *x)
3467 {
3468 while (x != mem_root && x->parent->color == MEM_RED)
3469 {
3470 /* X is red and its parent is red. This is a violation of
3471 red-black tree property #3. */
3472
3473 if (x->parent == x->parent->parent->left)
3474 {
3475 /* We're on the left side of our grandparent, and Y is our
3476 "uncle". */
3477 struct mem_node *y = x->parent->parent->right;
3478
3479 if (y->color == MEM_RED)
3480 {
3481 /* Uncle and parent are red but should be black because
3482 X is red. Change the colors accordingly and proceed
3483 with the grandparent. */
3484 x->parent->color = MEM_BLACK;
3485 y->color = MEM_BLACK;
3486 x->parent->parent->color = MEM_RED;
3487 x = x->parent->parent;
3488 }
3489 else
3490 {
3491 /* Parent and uncle have different colors; parent is
3492 red, uncle is black. */
3493 if (x == x->parent->right)
3494 {
3495 x = x->parent;
3496 mem_rotate_left (x);
3497 }
3498
3499 x->parent->color = MEM_BLACK;
3500 x->parent->parent->color = MEM_RED;
3501 mem_rotate_right (x->parent->parent);
3502 }
3503 }
3504 else
3505 {
3506 /* This is the symmetrical case of above. */
3507 struct mem_node *y = x->parent->parent->left;
3508
3509 if (y->color == MEM_RED)
3510 {
3511 x->parent->color = MEM_BLACK;
3512 y->color = MEM_BLACK;
3513 x->parent->parent->color = MEM_RED;
3514 x = x->parent->parent;
3515 }
3516 else
3517 {
3518 if (x == x->parent->left)
3519 {
3520 x = x->parent;
3521 mem_rotate_right (x);
3522 }
3523
3524 x->parent->color = MEM_BLACK;
3525 x->parent->parent->color = MEM_RED;
3526 mem_rotate_left (x->parent->parent);
3527 }
3528 }
3529 }
3530
3531 /* The root may have been changed to red due to the algorithm. Set
3532 it to black so that property #5 is satisfied. */
3533 mem_root->color = MEM_BLACK;
3534 }
3535
3536
3537 /* (x) (y)
3538 / \ / \
3539 a (y) ===> (x) c
3540 / \ / \
3541 b c a b */
3542
3543 static void
3544 mem_rotate_left (struct mem_node *x)
3545 {
3546 struct mem_node *y;
3547
3548 /* Turn y's left sub-tree into x's right sub-tree. */
3549 y = x->right;
3550 x->right = y->left;
3551 if (y->left != MEM_NIL)
3552 y->left->parent = x;
3553
3554 /* Y's parent was x's parent. */
3555 if (y != MEM_NIL)
3556 y->parent = x->parent;
3557
3558 /* Get the parent to point to y instead of x. */
3559 if (x->parent)
3560 {
3561 if (x == x->parent->left)
3562 x->parent->left = y;
3563 else
3564 x->parent->right = y;
3565 }
3566 else
3567 mem_root = y;
3568
3569 /* Put x on y's left. */
3570 y->left = x;
3571 if (x != MEM_NIL)
3572 x->parent = y;
3573 }
3574
3575
3576 /* (x) (Y)
3577 / \ / \
3578 (y) c ===> a (x)
3579 / \ / \
3580 a b b c */
3581
3582 static void
3583 mem_rotate_right (struct mem_node *x)
3584 {
3585 struct mem_node *y = x->left;
3586
3587 x->left = y->right;
3588 if (y->right != MEM_NIL)
3589 y->right->parent = x;
3590
3591 if (y != MEM_NIL)
3592 y->parent = x->parent;
3593 if (x->parent)
3594 {
3595 if (x == x->parent->right)
3596 x->parent->right = y;
3597 else
3598 x->parent->left = y;
3599 }
3600 else
3601 mem_root = y;
3602
3603 y->right = x;
3604 if (x != MEM_NIL)
3605 x->parent = y;
3606 }
3607
3608
3609 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3610
3611 static void
3612 mem_delete (struct mem_node *z)
3613 {
3614 struct mem_node *x, *y;
3615
3616 if (!z || z == MEM_NIL)
3617 return;
3618
3619 if (z->left == MEM_NIL || z->right == MEM_NIL)
3620 y = z;
3621 else
3622 {
3623 y = z->right;
3624 while (y->left != MEM_NIL)
3625 y = y->left;
3626 }
3627
3628 if (y->left != MEM_NIL)
3629 x = y->left;
3630 else
3631 x = y->right;
3632
3633 x->parent = y->parent;
3634 if (y->parent)
3635 {
3636 if (y == y->parent->left)
3637 y->parent->left = x;
3638 else
3639 y->parent->right = x;
3640 }
3641 else
3642 mem_root = x;
3643
3644 if (y != z)
3645 {
3646 z->start = y->start;
3647 z->end = y->end;
3648 z->type = y->type;
3649 }
3650
3651 if (y->color == MEM_BLACK)
3652 mem_delete_fixup (x);
3653
3654 #ifdef GC_MALLOC_CHECK
3655 _free_internal (y);
3656 #else
3657 xfree (y);
3658 #endif
3659 }
3660
3661
3662 /* Re-establish the red-black properties of the tree, after a
3663 deletion. */
3664
3665 static void
3666 mem_delete_fixup (struct mem_node *x)
3667 {
3668 while (x != mem_root && x->color == MEM_BLACK)
3669 {
3670 if (x == x->parent->left)
3671 {
3672 struct mem_node *w = x->parent->right;
3673
3674 if (w->color == MEM_RED)
3675 {
3676 w->color = MEM_BLACK;
3677 x->parent->color = MEM_RED;
3678 mem_rotate_left (x->parent);
3679 w = x->parent->right;
3680 }
3681
3682 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3683 {
3684 w->color = MEM_RED;
3685 x = x->parent;
3686 }
3687 else
3688 {
3689 if (w->right->color == MEM_BLACK)
3690 {
3691 w->left->color = MEM_BLACK;
3692 w->color = MEM_RED;
3693 mem_rotate_right (w);
3694 w = x->parent->right;
3695 }
3696 w->color = x->parent->color;
3697 x->parent->color = MEM_BLACK;
3698 w->right->color = MEM_BLACK;
3699 mem_rotate_left (x->parent);
3700 x = mem_root;
3701 }
3702 }
3703 else
3704 {
3705 struct mem_node *w = x->parent->left;
3706
3707 if (w->color == MEM_RED)
3708 {
3709 w->color = MEM_BLACK;
3710 x->parent->color = MEM_RED;
3711 mem_rotate_right (x->parent);
3712 w = x->parent->left;
3713 }
3714
3715 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3716 {
3717 w->color = MEM_RED;
3718 x = x->parent;
3719 }
3720 else
3721 {
3722 if (w->left->color == MEM_BLACK)
3723 {
3724 w->right->color = MEM_BLACK;
3725 w->color = MEM_RED;
3726 mem_rotate_left (w);
3727 w = x->parent->left;
3728 }
3729
3730 w->color = x->parent->color;
3731 x->parent->color = MEM_BLACK;
3732 w->left->color = MEM_BLACK;
3733 mem_rotate_right (x->parent);
3734 x = mem_root;
3735 }
3736 }
3737 }
3738
3739 x->color = MEM_BLACK;
3740 }
3741
3742
3743 /* Value is non-zero if P is a pointer to a live Lisp string on
3744 the heap. M is a pointer to the mem_block for P. */
3745
3746 static INLINE int
3747 live_string_p (struct mem_node *m, void *p)
3748 {
3749 if (m->type == MEM_TYPE_STRING)
3750 {
3751 struct string_block *b = (struct string_block *) m->start;
3752 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
3753
3754 /* P must point to the start of a Lisp_String structure, and it
3755 must not be on the free-list. */
3756 return (offset >= 0
3757 && offset % sizeof b->strings[0] == 0
3758 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3759 && ((struct Lisp_String *) p)->data != NULL);
3760 }
3761 else
3762 return 0;
3763 }
3764
3765
3766 /* Value is non-zero if P is a pointer to a live Lisp cons on
3767 the heap. M is a pointer to the mem_block for P. */
3768
3769 static INLINE int
3770 live_cons_p (struct mem_node *m, void *p)
3771 {
3772 if (m->type == MEM_TYPE_CONS)
3773 {
3774 struct cons_block *b = (struct cons_block *) m->start;
3775 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
3776
3777 /* P must point to the start of a Lisp_Cons, not be
3778 one of the unused cells in the current cons block,
3779 and not be on the free-list. */
3780 return (offset >= 0
3781 && offset % sizeof b->conses[0] == 0
3782 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3783 && (b != cons_block
3784 || offset / sizeof b->conses[0] < cons_block_index)
3785 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3786 }
3787 else
3788 return 0;
3789 }
3790
3791
3792 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3793 the heap. M is a pointer to the mem_block for P. */
3794
3795 static INLINE int
3796 live_symbol_p (struct mem_node *m, void *p)
3797 {
3798 if (m->type == MEM_TYPE_SYMBOL)
3799 {
3800 struct symbol_block *b = (struct symbol_block *) m->start;
3801 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
3802
3803 /* P must point to the start of a Lisp_Symbol, not be
3804 one of the unused cells in the current symbol block,
3805 and not be on the free-list. */
3806 return (offset >= 0
3807 && offset % sizeof b->symbols[0] == 0
3808 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3809 && (b != symbol_block
3810 || offset / sizeof b->symbols[0] < symbol_block_index)
3811 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3812 }
3813 else
3814 return 0;
3815 }
3816
3817
3818 /* Value is non-zero if P is a pointer to a live Lisp float on
3819 the heap. M is a pointer to the mem_block for P. */
3820
3821 static INLINE int
3822 live_float_p (struct mem_node *m, void *p)
3823 {
3824 if (m->type == MEM_TYPE_FLOAT)
3825 {
3826 struct float_block *b = (struct float_block *) m->start;
3827 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
3828
3829 /* P must point to the start of a Lisp_Float and not be
3830 one of the unused cells in the current float block. */
3831 return (offset >= 0
3832 && offset % sizeof b->floats[0] == 0
3833 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3834 && (b != float_block
3835 || offset / sizeof b->floats[0] < float_block_index));
3836 }
3837 else
3838 return 0;
3839 }
3840
3841
3842 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3843 the heap. M is a pointer to the mem_block for P. */
3844
3845 static INLINE int
3846 live_misc_p (struct mem_node *m, void *p)
3847 {
3848 if (m->type == MEM_TYPE_MISC)
3849 {
3850 struct marker_block *b = (struct marker_block *) m->start;
3851 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
3852
3853 /* P must point to the start of a Lisp_Misc, not be
3854 one of the unused cells in the current misc block,
3855 and not be on the free-list. */
3856 return (offset >= 0
3857 && offset % sizeof b->markers[0] == 0
3858 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3859 && (b != marker_block
3860 || offset / sizeof b->markers[0] < marker_block_index)
3861 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
3862 }
3863 else
3864 return 0;
3865 }
3866
3867
3868 /* Value is non-zero if P is a pointer to a live vector-like object.
3869 M is a pointer to the mem_block for P. */
3870
3871 static INLINE int
3872 live_vector_p (struct mem_node *m, void *p)
3873 {
3874 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
3875 }
3876
3877
3878 /* Value is non-zero if P is a pointer to a live buffer. M is a
3879 pointer to the mem_block for P. */
3880
3881 static INLINE int
3882 live_buffer_p (struct mem_node *m, void *p)
3883 {
3884 /* P must point to the start of the block, and the buffer
3885 must not have been killed. */
3886 return (m->type == MEM_TYPE_BUFFER
3887 && p == m->start
3888 && !NILP (((struct buffer *) p)->name));
3889 }
3890
3891 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3892
3893 #if GC_MARK_STACK
3894
3895 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3896
3897 /* Array of objects that are kept alive because the C stack contains
3898 a pattern that looks like a reference to them . */
3899
3900 #define MAX_ZOMBIES 10
3901 static Lisp_Object zombies[MAX_ZOMBIES];
3902
3903 /* Number of zombie objects. */
3904
3905 static int nzombies;
3906
3907 /* Number of garbage collections. */
3908
3909 static int ngcs;
3910
3911 /* Average percentage of zombies per collection. */
3912
3913 static double avg_zombies;
3914
3915 /* Max. number of live and zombie objects. */
3916
3917 static int max_live, max_zombies;
3918
3919 /* Average number of live objects per GC. */
3920
3921 static double avg_live;
3922
3923 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3924 doc: /* Show information about live and zombie objects. */)
3925 (void)
3926 {
3927 Lisp_Object args[8], zombie_list = Qnil;
3928 int i;
3929 for (i = 0; i < nzombies; i++)
3930 zombie_list = Fcons (zombies[i], zombie_list);
3931 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3932 args[1] = make_number (ngcs);
3933 args[2] = make_float (avg_live);
3934 args[3] = make_float (avg_zombies);
3935 args[4] = make_float (avg_zombies / avg_live / 100);
3936 args[5] = make_number (max_live);
3937 args[6] = make_number (max_zombies);
3938 args[7] = zombie_list;
3939 return Fmessage (8, args);
3940 }
3941
3942 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3943
3944
3945 /* Mark OBJ if we can prove it's a Lisp_Object. */
3946
3947 static INLINE void
3948 mark_maybe_object (Lisp_Object obj)
3949 {
3950 void *po;
3951 struct mem_node *m;
3952
3953 if (INTEGERP (obj))
3954 return;
3955
3956 po = (void *) XPNTR (obj);
3957 m = mem_find (po);
3958
3959 if (m != MEM_NIL)
3960 {
3961 int mark_p = 0;
3962
3963 switch (XTYPE (obj))
3964 {
3965 case Lisp_String:
3966 mark_p = (live_string_p (m, po)
3967 && !STRING_MARKED_P ((struct Lisp_String *) po));
3968 break;
3969
3970 case Lisp_Cons:
3971 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3972 break;
3973
3974 case Lisp_Symbol:
3975 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3976 break;
3977
3978 case Lisp_Float:
3979 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3980 break;
3981
3982 case Lisp_Vectorlike:
3983 /* Note: can't check BUFFERP before we know it's a
3984 buffer because checking that dereferences the pointer
3985 PO which might point anywhere. */
3986 if (live_vector_p (m, po))
3987 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3988 else if (live_buffer_p (m, po))
3989 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
3990 break;
3991
3992 case Lisp_Misc:
3993 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
3994 break;
3995
3996 default:
3997 break;
3998 }
3999
4000 if (mark_p)
4001 {
4002 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4003 if (nzombies < MAX_ZOMBIES)
4004 zombies[nzombies] = obj;
4005 ++nzombies;
4006 #endif
4007 mark_object (obj);
4008 }
4009 }
4010 }
4011
4012
4013 /* If P points to Lisp data, mark that as live if it isn't already
4014 marked. */
4015
4016 static INLINE void
4017 mark_maybe_pointer (void *p)
4018 {
4019 struct mem_node *m;
4020
4021 /* Quickly rule out some values which can't point to Lisp data. */
4022 if ((EMACS_INT) p %
4023 #ifdef USE_LSB_TAG
4024 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4025 #else
4026 2 /* We assume that Lisp data is aligned on even addresses. */
4027 #endif
4028 )
4029 return;
4030
4031 m = mem_find (p);
4032 if (m != MEM_NIL)
4033 {
4034 Lisp_Object obj = Qnil;
4035
4036 switch (m->type)
4037 {
4038 case MEM_TYPE_NON_LISP:
4039 /* Nothing to do; not a pointer to Lisp memory. */
4040 break;
4041
4042 case MEM_TYPE_BUFFER:
4043 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4044 XSETVECTOR (obj, p);
4045 break;
4046
4047 case MEM_TYPE_CONS:
4048 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4049 XSETCONS (obj, p);
4050 break;
4051
4052 case MEM_TYPE_STRING:
4053 if (live_string_p (m, p)
4054 && !STRING_MARKED_P ((struct Lisp_String *) p))
4055 XSETSTRING (obj, p);
4056 break;
4057
4058 case MEM_TYPE_MISC:
4059 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4060 XSETMISC (obj, p);
4061 break;
4062
4063 case MEM_TYPE_SYMBOL:
4064 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4065 XSETSYMBOL (obj, p);
4066 break;
4067
4068 case MEM_TYPE_FLOAT:
4069 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4070 XSETFLOAT (obj, p);
4071 break;
4072
4073 case MEM_TYPE_VECTORLIKE:
4074 if (live_vector_p (m, p))
4075 {
4076 Lisp_Object tem;
4077 XSETVECTOR (tem, p);
4078 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4079 obj = tem;
4080 }
4081 break;
4082
4083 default:
4084 abort ();
4085 }
4086
4087 if (!NILP (obj))
4088 mark_object (obj);
4089 }
4090 }
4091
4092
4093 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4094 or END+OFFSET..START. */
4095
4096 static void
4097 mark_memory (void *start, void *end, int offset)
4098 {
4099 Lisp_Object *p;
4100 void **pp;
4101
4102 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4103 nzombies = 0;
4104 #endif
4105
4106 /* Make START the pointer to the start of the memory region,
4107 if it isn't already. */
4108 if (end < start)
4109 {
4110 void *tem = start;
4111 start = end;
4112 end = tem;
4113 }
4114
4115 /* Mark Lisp_Objects. */
4116 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4117 mark_maybe_object (*p);
4118
4119 /* Mark Lisp data pointed to. This is necessary because, in some
4120 situations, the C compiler optimizes Lisp objects away, so that
4121 only a pointer to them remains. Example:
4122
4123 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4124 ()
4125 {
4126 Lisp_Object obj = build_string ("test");
4127 struct Lisp_String *s = XSTRING (obj);
4128 Fgarbage_collect ();
4129 fprintf (stderr, "test `%s'\n", s->data);
4130 return Qnil;
4131 }
4132
4133 Here, `obj' isn't really used, and the compiler optimizes it
4134 away. The only reference to the life string is through the
4135 pointer `s'. */
4136
4137 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4138 mark_maybe_pointer (*pp);
4139 }
4140
4141 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4142 the GCC system configuration. In gcc 3.2, the only systems for
4143 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4144 by others?) and ns32k-pc532-min. */
4145
4146 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4147
4148 static int setjmp_tested_p, longjmps_done;
4149
4150 #define SETJMP_WILL_LIKELY_WORK "\
4151 \n\
4152 Emacs garbage collector has been changed to use conservative stack\n\
4153 marking. Emacs has determined that the method it uses to do the\n\
4154 marking will likely work on your system, but this isn't sure.\n\
4155 \n\
4156 If you are a system-programmer, or can get the help of a local wizard\n\
4157 who is, please take a look at the function mark_stack in alloc.c, and\n\
4158 verify that the methods used are appropriate for your system.\n\
4159 \n\
4160 Please mail the result to <emacs-devel@gnu.org>.\n\
4161 "
4162
4163 #define SETJMP_WILL_NOT_WORK "\
4164 \n\
4165 Emacs garbage collector has been changed to use conservative stack\n\
4166 marking. Emacs has determined that the default method it uses to do the\n\
4167 marking will not work on your system. We will need a system-dependent\n\
4168 solution for your system.\n\
4169 \n\
4170 Please take a look at the function mark_stack in alloc.c, and\n\
4171 try to find a way to make it work on your system.\n\
4172 \n\
4173 Note that you may get false negatives, depending on the compiler.\n\
4174 In particular, you need to use -O with GCC for this test.\n\
4175 \n\
4176 Please mail the result to <emacs-devel@gnu.org>.\n\
4177 "
4178
4179
4180 /* Perform a quick check if it looks like setjmp saves registers in a
4181 jmp_buf. Print a message to stderr saying so. When this test
4182 succeeds, this is _not_ a proof that setjmp is sufficient for
4183 conservative stack marking. Only the sources or a disassembly
4184 can prove that. */
4185
4186 static void
4187 test_setjmp (void)
4188 {
4189 char buf[10];
4190 register int x;
4191 jmp_buf jbuf;
4192 int result = 0;
4193
4194 /* Arrange for X to be put in a register. */
4195 sprintf (buf, "1");
4196 x = strlen (buf);
4197 x = 2 * x - 1;
4198
4199 setjmp (jbuf);
4200 if (longjmps_done == 1)
4201 {
4202 /* Came here after the longjmp at the end of the function.
4203
4204 If x == 1, the longjmp has restored the register to its
4205 value before the setjmp, and we can hope that setjmp
4206 saves all such registers in the jmp_buf, although that
4207 isn't sure.
4208
4209 For other values of X, either something really strange is
4210 taking place, or the setjmp just didn't save the register. */
4211
4212 if (x == 1)
4213 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4214 else
4215 {
4216 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4217 exit (1);
4218 }
4219 }
4220
4221 ++longjmps_done;
4222 x = 2;
4223 if (longjmps_done == 1)
4224 longjmp (jbuf, 1);
4225 }
4226
4227 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4228
4229
4230 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4231
4232 /* Abort if anything GCPRO'd doesn't survive the GC. */
4233
4234 static void
4235 check_gcpros (void)
4236 {
4237 struct gcpro *p;
4238 int i;
4239
4240 for (p = gcprolist; p; p = p->next)
4241 for (i = 0; i < p->nvars; ++i)
4242 if (!survives_gc_p (p->var[i]))
4243 /* FIXME: It's not necessarily a bug. It might just be that the
4244 GCPRO is unnecessary or should release the object sooner. */
4245 abort ();
4246 }
4247
4248 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4249
4250 static void
4251 dump_zombies (void)
4252 {
4253 int i;
4254
4255 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4256 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4257 {
4258 fprintf (stderr, " %d = ", i);
4259 debug_print (zombies[i]);
4260 }
4261 }
4262
4263 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4264
4265
4266 /* Mark live Lisp objects on the C stack.
4267
4268 There are several system-dependent problems to consider when
4269 porting this to new architectures:
4270
4271 Processor Registers
4272
4273 We have to mark Lisp objects in CPU registers that can hold local
4274 variables or are used to pass parameters.
4275
4276 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4277 something that either saves relevant registers on the stack, or
4278 calls mark_maybe_object passing it each register's contents.
4279
4280 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4281 implementation assumes that calling setjmp saves registers we need
4282 to see in a jmp_buf which itself lies on the stack. This doesn't
4283 have to be true! It must be verified for each system, possibly
4284 by taking a look at the source code of setjmp.
4285
4286 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4287 can use it as a machine independent method to store all registers
4288 to the stack. In this case the macros described in the previous
4289 two paragraphs are not used.
4290
4291 Stack Layout
4292
4293 Architectures differ in the way their processor stack is organized.
4294 For example, the stack might look like this
4295
4296 +----------------+
4297 | Lisp_Object | size = 4
4298 +----------------+
4299 | something else | size = 2
4300 +----------------+
4301 | Lisp_Object | size = 4
4302 +----------------+
4303 | ... |
4304
4305 In such a case, not every Lisp_Object will be aligned equally. To
4306 find all Lisp_Object on the stack it won't be sufficient to walk
4307 the stack in steps of 4 bytes. Instead, two passes will be
4308 necessary, one starting at the start of the stack, and a second
4309 pass starting at the start of the stack + 2. Likewise, if the
4310 minimal alignment of Lisp_Objects on the stack is 1, four passes
4311 would be necessary, each one starting with one byte more offset
4312 from the stack start.
4313
4314 The current code assumes by default that Lisp_Objects are aligned
4315 equally on the stack. */
4316
4317 static void
4318 mark_stack (void)
4319 {
4320 int i;
4321 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4322 union aligned_jmpbuf {
4323 Lisp_Object o;
4324 jmp_buf j;
4325 } j;
4326 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4327 void *end;
4328
4329 #ifdef HAVE___BUILTIN_UNWIND_INIT
4330 /* Force callee-saved registers and register windows onto the stack.
4331 This is the preferred method if available, obviating the need for
4332 machine dependent methods. */
4333 __builtin_unwind_init ();
4334 end = &end;
4335 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4336 /* This trick flushes the register windows so that all the state of
4337 the process is contained in the stack. */
4338 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4339 needed on ia64 too. See mach_dep.c, where it also says inline
4340 assembler doesn't work with relevant proprietary compilers. */
4341 #ifdef __sparc__
4342 #if defined (__sparc64__) && defined (__FreeBSD__)
4343 /* FreeBSD does not have a ta 3 handler. */
4344 asm ("flushw");
4345 #else
4346 asm ("ta 3");
4347 #endif
4348 #endif
4349
4350 /* Save registers that we need to see on the stack. We need to see
4351 registers used to hold register variables and registers used to
4352 pass parameters. */
4353 #ifdef GC_SAVE_REGISTERS_ON_STACK
4354 GC_SAVE_REGISTERS_ON_STACK (end);
4355 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4356
4357 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4358 setjmp will definitely work, test it
4359 and print a message with the result
4360 of the test. */
4361 if (!setjmp_tested_p)
4362 {
4363 setjmp_tested_p = 1;
4364 test_setjmp ();
4365 }
4366 #endif /* GC_SETJMP_WORKS */
4367
4368 setjmp (j.j);
4369 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4370 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4371 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4372
4373 /* This assumes that the stack is a contiguous region in memory. If
4374 that's not the case, something has to be done here to iterate
4375 over the stack segments. */
4376 #ifndef GC_LISP_OBJECT_ALIGNMENT
4377 #ifdef __GNUC__
4378 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4379 #else
4380 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4381 #endif
4382 #endif
4383 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4384 mark_memory (stack_base, end, i);
4385 /* Allow for marking a secondary stack, like the register stack on the
4386 ia64. */
4387 #ifdef GC_MARK_SECONDARY_STACK
4388 GC_MARK_SECONDARY_STACK ();
4389 #endif
4390
4391 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4392 check_gcpros ();
4393 #endif
4394 }
4395
4396 #endif /* GC_MARK_STACK != 0 */
4397
4398
4399 /* Determine whether it is safe to access memory at address P. */
4400 static int
4401 valid_pointer_p (void *p)
4402 {
4403 #ifdef WINDOWSNT
4404 return w32_valid_pointer_p (p, 16);
4405 #else
4406 int fd;
4407
4408 /* Obviously, we cannot just access it (we would SEGV trying), so we
4409 trick the o/s to tell us whether p is a valid pointer.
4410 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4411 not validate p in that case. */
4412
4413 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4414 {
4415 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4416 emacs_close (fd);
4417 unlink ("__Valid__Lisp__Object__");
4418 return valid;
4419 }
4420
4421 return -1;
4422 #endif
4423 }
4424
4425 /* Return 1 if OBJ is a valid lisp object.
4426 Return 0 if OBJ is NOT a valid lisp object.
4427 Return -1 if we cannot validate OBJ.
4428 This function can be quite slow,
4429 so it should only be used in code for manual debugging. */
4430
4431 int
4432 valid_lisp_object_p (Lisp_Object obj)
4433 {
4434 void *p;
4435 #if GC_MARK_STACK
4436 struct mem_node *m;
4437 #endif
4438
4439 if (INTEGERP (obj))
4440 return 1;
4441
4442 p = (void *) XPNTR (obj);
4443 if (PURE_POINTER_P (p))
4444 return 1;
4445
4446 #if !GC_MARK_STACK
4447 return valid_pointer_p (p);
4448 #else
4449
4450 m = mem_find (p);
4451
4452 if (m == MEM_NIL)
4453 {
4454 int valid = valid_pointer_p (p);
4455 if (valid <= 0)
4456 return valid;
4457
4458 if (SUBRP (obj))
4459 return 1;
4460
4461 return 0;
4462 }
4463
4464 switch (m->type)
4465 {
4466 case MEM_TYPE_NON_LISP:
4467 return 0;
4468
4469 case MEM_TYPE_BUFFER:
4470 return live_buffer_p (m, p);
4471
4472 case MEM_TYPE_CONS:
4473 return live_cons_p (m, p);
4474
4475 case MEM_TYPE_STRING:
4476 return live_string_p (m, p);
4477
4478 case MEM_TYPE_MISC:
4479 return live_misc_p (m, p);
4480
4481 case MEM_TYPE_SYMBOL:
4482 return live_symbol_p (m, p);
4483
4484 case MEM_TYPE_FLOAT:
4485 return live_float_p (m, p);
4486
4487 case MEM_TYPE_VECTORLIKE:
4488 return live_vector_p (m, p);
4489
4490 default:
4491 break;
4492 }
4493
4494 return 0;
4495 #endif
4496 }
4497
4498
4499
4500 \f
4501 /***********************************************************************
4502 Pure Storage Management
4503 ***********************************************************************/
4504
4505 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4506 pointer to it. TYPE is the Lisp type for which the memory is
4507 allocated. TYPE < 0 means it's not used for a Lisp object. */
4508
4509 static POINTER_TYPE *
4510 pure_alloc (size_t size, int type)
4511 {
4512 POINTER_TYPE *result;
4513 #ifdef USE_LSB_TAG
4514 size_t alignment = (1 << GCTYPEBITS);
4515 #else
4516 size_t alignment = sizeof (EMACS_INT);
4517
4518 /* Give Lisp_Floats an extra alignment. */
4519 if (type == Lisp_Float)
4520 {
4521 #if defined __GNUC__ && __GNUC__ >= 2
4522 alignment = __alignof (struct Lisp_Float);
4523 #else
4524 alignment = sizeof (struct Lisp_Float);
4525 #endif
4526 }
4527 #endif
4528
4529 again:
4530 if (type >= 0)
4531 {
4532 /* Allocate space for a Lisp object from the beginning of the free
4533 space with taking account of alignment. */
4534 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4535 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4536 }
4537 else
4538 {
4539 /* Allocate space for a non-Lisp object from the end of the free
4540 space. */
4541 pure_bytes_used_non_lisp += size;
4542 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4543 }
4544 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4545
4546 if (pure_bytes_used <= pure_size)
4547 return result;
4548
4549 /* Don't allocate a large amount here,
4550 because it might get mmap'd and then its address
4551 might not be usable. */
4552 purebeg = (char *) xmalloc (10000);
4553 pure_size = 10000;
4554 pure_bytes_used_before_overflow += pure_bytes_used - size;
4555 pure_bytes_used = 0;
4556 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4557 goto again;
4558 }
4559
4560
4561 /* Print a warning if PURESIZE is too small. */
4562
4563 void
4564 check_pure_size (void)
4565 {
4566 if (pure_bytes_used_before_overflow)
4567 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4568 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4569 }
4570
4571
4572 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4573 the non-Lisp data pool of the pure storage, and return its start
4574 address. Return NULL if not found. */
4575
4576 static char *
4577 find_string_data_in_pure (const char *data, EMACS_INT nbytes)
4578 {
4579 int i;
4580 EMACS_INT skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4581 const unsigned char *p;
4582 char *non_lisp_beg;
4583
4584 if (pure_bytes_used_non_lisp < nbytes + 1)
4585 return NULL;
4586
4587 /* Set up the Boyer-Moore table. */
4588 skip = nbytes + 1;
4589 for (i = 0; i < 256; i++)
4590 bm_skip[i] = skip;
4591
4592 p = (const unsigned char *) data;
4593 while (--skip > 0)
4594 bm_skip[*p++] = skip;
4595
4596 last_char_skip = bm_skip['\0'];
4597
4598 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4599 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4600
4601 /* See the comments in the function `boyer_moore' (search.c) for the
4602 use of `infinity'. */
4603 infinity = pure_bytes_used_non_lisp + 1;
4604 bm_skip['\0'] = infinity;
4605
4606 p = (const unsigned char *) non_lisp_beg + nbytes;
4607 start = 0;
4608 do
4609 {
4610 /* Check the last character (== '\0'). */
4611 do
4612 {
4613 start += bm_skip[*(p + start)];
4614 }
4615 while (start <= start_max);
4616
4617 if (start < infinity)
4618 /* Couldn't find the last character. */
4619 return NULL;
4620
4621 /* No less than `infinity' means we could find the last
4622 character at `p[start - infinity]'. */
4623 start -= infinity;
4624
4625 /* Check the remaining characters. */
4626 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4627 /* Found. */
4628 return non_lisp_beg + start;
4629
4630 start += last_char_skip;
4631 }
4632 while (start <= start_max);
4633
4634 return NULL;
4635 }
4636
4637
4638 /* Return a string allocated in pure space. DATA is a buffer holding
4639 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4640 non-zero means make the result string multibyte.
4641
4642 Must get an error if pure storage is full, since if it cannot hold
4643 a large string it may be able to hold conses that point to that
4644 string; then the string is not protected from gc. */
4645
4646 Lisp_Object
4647 make_pure_string (const char *data,
4648 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
4649 {
4650 Lisp_Object string;
4651 struct Lisp_String *s;
4652
4653 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4654 s->data = find_string_data_in_pure (data, nbytes);
4655 if (s->data == NULL)
4656 {
4657 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4658 memcpy (s->data, data, nbytes);
4659 s->data[nbytes] = '\0';
4660 }
4661 s->size = nchars;
4662 s->size_byte = multibyte ? nbytes : -1;
4663 s->intervals = NULL_INTERVAL;
4664 XSETSTRING (string, s);
4665 return string;
4666 }
4667
4668 /* Return a string a string allocated in pure space. Do not allocate
4669 the string data, just point to DATA. */
4670
4671 Lisp_Object
4672 make_pure_c_string (const char *data)
4673 {
4674 Lisp_Object string;
4675 struct Lisp_String *s;
4676 EMACS_INT nchars = strlen (data);
4677
4678 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4679 s->size = nchars;
4680 s->size_byte = -1;
4681 s->data = (unsigned char *) data;
4682 s->intervals = NULL_INTERVAL;
4683 XSETSTRING (string, s);
4684 return string;
4685 }
4686
4687 /* Return a cons allocated from pure space. Give it pure copies
4688 of CAR as car and CDR as cdr. */
4689
4690 Lisp_Object
4691 pure_cons (Lisp_Object car, Lisp_Object cdr)
4692 {
4693 register Lisp_Object new;
4694 struct Lisp_Cons *p;
4695
4696 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4697 XSETCONS (new, p);
4698 XSETCAR (new, Fpurecopy (car));
4699 XSETCDR (new, Fpurecopy (cdr));
4700 return new;
4701 }
4702
4703
4704 /* Value is a float object with value NUM allocated from pure space. */
4705
4706 static Lisp_Object
4707 make_pure_float (double num)
4708 {
4709 register Lisp_Object new;
4710 struct Lisp_Float *p;
4711
4712 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4713 XSETFLOAT (new, p);
4714 XFLOAT_INIT (new, num);
4715 return new;
4716 }
4717
4718
4719 /* Return a vector with room for LEN Lisp_Objects allocated from
4720 pure space. */
4721
4722 Lisp_Object
4723 make_pure_vector (EMACS_INT len)
4724 {
4725 Lisp_Object new;
4726 struct Lisp_Vector *p;
4727 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4728
4729 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4730 XSETVECTOR (new, p);
4731 XVECTOR (new)->size = len;
4732 return new;
4733 }
4734
4735
4736 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4737 doc: /* Make a copy of object OBJ in pure storage.
4738 Recursively copies contents of vectors and cons cells.
4739 Does not copy symbols. Copies strings without text properties. */)
4740 (register Lisp_Object obj)
4741 {
4742 if (NILP (Vpurify_flag))
4743 return obj;
4744
4745 if (PURE_POINTER_P (XPNTR (obj)))
4746 return obj;
4747
4748 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4749 {
4750 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4751 if (!NILP (tmp))
4752 return tmp;
4753 }
4754
4755 if (CONSP (obj))
4756 obj = pure_cons (XCAR (obj), XCDR (obj));
4757 else if (FLOATP (obj))
4758 obj = make_pure_float (XFLOAT_DATA (obj));
4759 else if (STRINGP (obj))
4760 obj = make_pure_string (SDATA (obj), SCHARS (obj),
4761 SBYTES (obj),
4762 STRING_MULTIBYTE (obj));
4763 else if (COMPILEDP (obj) || VECTORP (obj))
4764 {
4765 register struct Lisp_Vector *vec;
4766 register EMACS_INT i;
4767 EMACS_INT size;
4768
4769 size = XVECTOR (obj)->size;
4770 if (size & PSEUDOVECTOR_FLAG)
4771 size &= PSEUDOVECTOR_SIZE_MASK;
4772 vec = XVECTOR (make_pure_vector (size));
4773 for (i = 0; i < size; i++)
4774 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4775 if (COMPILEDP (obj))
4776 {
4777 XSETPVECTYPE (vec, PVEC_COMPILED);
4778 XSETCOMPILED (obj, vec);
4779 }
4780 else
4781 XSETVECTOR (obj, vec);
4782 }
4783 else if (MARKERP (obj))
4784 error ("Attempt to copy a marker to pure storage");
4785 else
4786 /* Not purified, don't hash-cons. */
4787 return obj;
4788
4789 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4790 Fputhash (obj, obj, Vpurify_flag);
4791
4792 return obj;
4793 }
4794
4795
4796 \f
4797 /***********************************************************************
4798 Protection from GC
4799 ***********************************************************************/
4800
4801 /* Put an entry in staticvec, pointing at the variable with address
4802 VARADDRESS. */
4803
4804 void
4805 staticpro (Lisp_Object *varaddress)
4806 {
4807 staticvec[staticidx++] = varaddress;
4808 if (staticidx >= NSTATICS)
4809 abort ();
4810 }
4811
4812 \f
4813 /***********************************************************************
4814 Protection from GC
4815 ***********************************************************************/
4816
4817 /* Temporarily prevent garbage collection. */
4818
4819 int
4820 inhibit_garbage_collection (void)
4821 {
4822 int count = SPECPDL_INDEX ();
4823 int nbits = min (VALBITS, BITS_PER_INT);
4824
4825 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4826 return count;
4827 }
4828
4829
4830 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4831 doc: /* Reclaim storage for Lisp objects no longer needed.
4832 Garbage collection happens automatically if you cons more than
4833 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4834 `garbage-collect' normally returns a list with info on amount of space in use:
4835 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4836 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4837 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4838 (USED-STRINGS . FREE-STRINGS))
4839 However, if there was overflow in pure space, `garbage-collect'
4840 returns nil, because real GC can't be done. */)
4841 (void)
4842 {
4843 register struct specbinding *bind;
4844 struct catchtag *catch;
4845 struct handler *handler;
4846 char stack_top_variable;
4847 register int i;
4848 int message_p;
4849 Lisp_Object total[8];
4850 int count = SPECPDL_INDEX ();
4851 EMACS_TIME t1, t2, t3;
4852
4853 if (abort_on_gc)
4854 abort ();
4855
4856 /* Can't GC if pure storage overflowed because we can't determine
4857 if something is a pure object or not. */
4858 if (pure_bytes_used_before_overflow)
4859 return Qnil;
4860
4861 CHECK_CONS_LIST ();
4862
4863 /* Don't keep undo information around forever.
4864 Do this early on, so it is no problem if the user quits. */
4865 {
4866 register struct buffer *nextb = all_buffers;
4867
4868 while (nextb)
4869 {
4870 /* If a buffer's undo list is Qt, that means that undo is
4871 turned off in that buffer. Calling truncate_undo_list on
4872 Qt tends to return NULL, which effectively turns undo back on.
4873 So don't call truncate_undo_list if undo_list is Qt. */
4874 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
4875 truncate_undo_list (nextb);
4876
4877 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4878 if (nextb->base_buffer == 0 && !NILP (nextb->name)
4879 && ! nextb->text->inhibit_shrinking)
4880 {
4881 /* If a buffer's gap size is more than 10% of the buffer
4882 size, or larger than 2000 bytes, then shrink it
4883 accordingly. Keep a minimum size of 20 bytes. */
4884 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4885
4886 if (nextb->text->gap_size > size)
4887 {
4888 struct buffer *save_current = current_buffer;
4889 current_buffer = nextb;
4890 make_gap (-(nextb->text->gap_size - size));
4891 current_buffer = save_current;
4892 }
4893 }
4894
4895 nextb = nextb->next;
4896 }
4897 }
4898
4899 EMACS_GET_TIME (t1);
4900
4901 /* In case user calls debug_print during GC,
4902 don't let that cause a recursive GC. */
4903 consing_since_gc = 0;
4904
4905 /* Save what's currently displayed in the echo area. */
4906 message_p = push_message ();
4907 record_unwind_protect (pop_message_unwind, Qnil);
4908
4909 /* Save a copy of the contents of the stack, for debugging. */
4910 #if MAX_SAVE_STACK > 0
4911 if (NILP (Vpurify_flag))
4912 {
4913 i = &stack_top_variable - stack_bottom;
4914 if (i < 0) i = -i;
4915 if (i < MAX_SAVE_STACK)
4916 {
4917 if (stack_copy == 0)
4918 stack_copy = (char *) xmalloc (stack_copy_size = i);
4919 else if (stack_copy_size < i)
4920 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4921 if (stack_copy)
4922 {
4923 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4924 memcpy (stack_copy, stack_bottom, i);
4925 else
4926 memcpy (stack_copy, &stack_top_variable, i);
4927 }
4928 }
4929 }
4930 #endif /* MAX_SAVE_STACK > 0 */
4931
4932 if (garbage_collection_messages)
4933 message1_nolog ("Garbage collecting...");
4934
4935 BLOCK_INPUT;
4936
4937 shrink_regexp_cache ();
4938
4939 gc_in_progress = 1;
4940
4941 /* clear_marks (); */
4942
4943 /* Mark all the special slots that serve as the roots of accessibility. */
4944
4945 for (i = 0; i < staticidx; i++)
4946 mark_object (*staticvec[i]);
4947
4948 for (bind = specpdl; bind != specpdl_ptr; bind++)
4949 {
4950 mark_object (bind->symbol);
4951 mark_object (bind->old_value);
4952 }
4953 mark_terminals ();
4954 mark_kboards ();
4955 mark_ttys ();
4956
4957 #ifdef USE_GTK
4958 {
4959 extern void xg_mark_data (void);
4960 xg_mark_data ();
4961 }
4962 #endif
4963
4964 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4965 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4966 mark_stack ();
4967 #else
4968 {
4969 register struct gcpro *tail;
4970 for (tail = gcprolist; tail; tail = tail->next)
4971 for (i = 0; i < tail->nvars; i++)
4972 mark_object (tail->var[i]);
4973 }
4974 #endif
4975
4976 mark_byte_stack ();
4977 for (catch = catchlist; catch; catch = catch->next)
4978 {
4979 mark_object (catch->tag);
4980 mark_object (catch->val);
4981 }
4982 for (handler = handlerlist; handler; handler = handler->next)
4983 {
4984 mark_object (handler->handler);
4985 mark_object (handler->var);
4986 }
4987 mark_backtrace ();
4988
4989 #ifdef HAVE_WINDOW_SYSTEM
4990 mark_fringe_data ();
4991 #endif
4992
4993 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4994 mark_stack ();
4995 #endif
4996
4997 /* Everything is now marked, except for the things that require special
4998 finalization, i.e. the undo_list.
4999 Look thru every buffer's undo list
5000 for elements that update markers that were not marked,
5001 and delete them. */
5002 {
5003 register struct buffer *nextb = all_buffers;
5004
5005 while (nextb)
5006 {
5007 /* If a buffer's undo list is Qt, that means that undo is
5008 turned off in that buffer. Calling truncate_undo_list on
5009 Qt tends to return NULL, which effectively turns undo back on.
5010 So don't call truncate_undo_list if undo_list is Qt. */
5011 if (! EQ (nextb->undo_list, Qt))
5012 {
5013 Lisp_Object tail, prev;
5014 tail = nextb->undo_list;
5015 prev = Qnil;
5016 while (CONSP (tail))
5017 {
5018 if (CONSP (XCAR (tail))
5019 && MARKERP (XCAR (XCAR (tail)))
5020 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5021 {
5022 if (NILP (prev))
5023 nextb->undo_list = tail = XCDR (tail);
5024 else
5025 {
5026 tail = XCDR (tail);
5027 XSETCDR (prev, tail);
5028 }
5029 }
5030 else
5031 {
5032 prev = tail;
5033 tail = XCDR (tail);
5034 }
5035 }
5036 }
5037 /* Now that we have stripped the elements that need not be in the
5038 undo_list any more, we can finally mark the list. */
5039 mark_object (nextb->undo_list);
5040
5041 nextb = nextb->next;
5042 }
5043 }
5044
5045 gc_sweep ();
5046
5047 /* Clear the mark bits that we set in certain root slots. */
5048
5049 unmark_byte_stack ();
5050 VECTOR_UNMARK (&buffer_defaults);
5051 VECTOR_UNMARK (&buffer_local_symbols);
5052
5053 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5054 dump_zombies ();
5055 #endif
5056
5057 UNBLOCK_INPUT;
5058
5059 CHECK_CONS_LIST ();
5060
5061 /* clear_marks (); */
5062 gc_in_progress = 0;
5063
5064 consing_since_gc = 0;
5065 if (gc_cons_threshold < 10000)
5066 gc_cons_threshold = 10000;
5067
5068 if (FLOATP (Vgc_cons_percentage))
5069 { /* Set gc_cons_combined_threshold. */
5070 EMACS_INT total = 0;
5071
5072 total += total_conses * sizeof (struct Lisp_Cons);
5073 total += total_symbols * sizeof (struct Lisp_Symbol);
5074 total += total_markers * sizeof (union Lisp_Misc);
5075 total += total_string_size;
5076 total += total_vector_size * sizeof (Lisp_Object);
5077 total += total_floats * sizeof (struct Lisp_Float);
5078 total += total_intervals * sizeof (struct interval);
5079 total += total_strings * sizeof (struct Lisp_String);
5080
5081 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5082 }
5083 else
5084 gc_relative_threshold = 0;
5085
5086 if (garbage_collection_messages)
5087 {
5088 if (message_p || minibuf_level > 0)
5089 restore_message ();
5090 else
5091 message1_nolog ("Garbage collecting...done");
5092 }
5093
5094 unbind_to (count, Qnil);
5095
5096 total[0] = Fcons (make_number (total_conses),
5097 make_number (total_free_conses));
5098 total[1] = Fcons (make_number (total_symbols),
5099 make_number (total_free_symbols));
5100 total[2] = Fcons (make_number (total_markers),
5101 make_number (total_free_markers));
5102 total[3] = make_number (total_string_size);
5103 total[4] = make_number (total_vector_size);
5104 total[5] = Fcons (make_number (total_floats),
5105 make_number (total_free_floats));
5106 total[6] = Fcons (make_number (total_intervals),
5107 make_number (total_free_intervals));
5108 total[7] = Fcons (make_number (total_strings),
5109 make_number (total_free_strings));
5110
5111 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5112 {
5113 /* Compute average percentage of zombies. */
5114 double nlive = 0;
5115
5116 for (i = 0; i < 7; ++i)
5117 if (CONSP (total[i]))
5118 nlive += XFASTINT (XCAR (total[i]));
5119
5120 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5121 max_live = max (nlive, max_live);
5122 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5123 max_zombies = max (nzombies, max_zombies);
5124 ++ngcs;
5125 }
5126 #endif
5127
5128 if (!NILP (Vpost_gc_hook))
5129 {
5130 int count = inhibit_garbage_collection ();
5131 safe_run_hooks (Qpost_gc_hook);
5132 unbind_to (count, Qnil);
5133 }
5134
5135 /* Accumulate statistics. */
5136 EMACS_GET_TIME (t2);
5137 EMACS_SUB_TIME (t3, t2, t1);
5138 if (FLOATP (Vgc_elapsed))
5139 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5140 EMACS_SECS (t3) +
5141 EMACS_USECS (t3) * 1.0e-6);
5142 gcs_done++;
5143
5144 return Flist (sizeof total / sizeof *total, total);
5145 }
5146
5147
5148 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5149 only interesting objects referenced from glyphs are strings. */
5150
5151 static void
5152 mark_glyph_matrix (struct glyph_matrix *matrix)
5153 {
5154 struct glyph_row *row = matrix->rows;
5155 struct glyph_row *end = row + matrix->nrows;
5156
5157 for (; row < end; ++row)
5158 if (row->enabled_p)
5159 {
5160 int area;
5161 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5162 {
5163 struct glyph *glyph = row->glyphs[area];
5164 struct glyph *end_glyph = glyph + row->used[area];
5165
5166 for (; glyph < end_glyph; ++glyph)
5167 if (STRINGP (glyph->object)
5168 && !STRING_MARKED_P (XSTRING (glyph->object)))
5169 mark_object (glyph->object);
5170 }
5171 }
5172 }
5173
5174
5175 /* Mark Lisp faces in the face cache C. */
5176
5177 static void
5178 mark_face_cache (struct face_cache *c)
5179 {
5180 if (c)
5181 {
5182 int i, j;
5183 for (i = 0; i < c->used; ++i)
5184 {
5185 struct face *face = FACE_FROM_ID (c->f, i);
5186
5187 if (face)
5188 {
5189 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5190 mark_object (face->lface[j]);
5191 }
5192 }
5193 }
5194 }
5195
5196
5197 \f
5198 /* Mark reference to a Lisp_Object.
5199 If the object referred to has not been seen yet, recursively mark
5200 all the references contained in it. */
5201
5202 #define LAST_MARKED_SIZE 500
5203 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5204 int last_marked_index;
5205
5206 /* For debugging--call abort when we cdr down this many
5207 links of a list, in mark_object. In debugging,
5208 the call to abort will hit a breakpoint.
5209 Normally this is zero and the check never goes off. */
5210 static int mark_object_loop_halt;
5211
5212 static void
5213 mark_vectorlike (struct Lisp_Vector *ptr)
5214 {
5215 register EMACS_UINT size = ptr->size;
5216 register EMACS_UINT i;
5217
5218 eassert (!VECTOR_MARKED_P (ptr));
5219 VECTOR_MARK (ptr); /* Else mark it */
5220 if (size & PSEUDOVECTOR_FLAG)
5221 size &= PSEUDOVECTOR_SIZE_MASK;
5222
5223 /* Note that this size is not the memory-footprint size, but only
5224 the number of Lisp_Object fields that we should trace.
5225 The distinction is used e.g. by Lisp_Process which places extra
5226 non-Lisp_Object fields at the end of the structure. */
5227 for (i = 0; i < size; i++) /* and then mark its elements */
5228 mark_object (ptr->contents[i]);
5229 }
5230
5231 /* Like mark_vectorlike but optimized for char-tables (and
5232 sub-char-tables) assuming that the contents are mostly integers or
5233 symbols. */
5234
5235 static void
5236 mark_char_table (struct Lisp_Vector *ptr)
5237 {
5238 register EMACS_UINT size = ptr->size & PSEUDOVECTOR_SIZE_MASK;
5239 register EMACS_UINT i;
5240
5241 eassert (!VECTOR_MARKED_P (ptr));
5242 VECTOR_MARK (ptr);
5243 for (i = 0; i < size; i++)
5244 {
5245 Lisp_Object val = ptr->contents[i];
5246
5247 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5248 continue;
5249 if (SUB_CHAR_TABLE_P (val))
5250 {
5251 if (! VECTOR_MARKED_P (XVECTOR (val)))
5252 mark_char_table (XVECTOR (val));
5253 }
5254 else
5255 mark_object (val);
5256 }
5257 }
5258
5259 void
5260 mark_object (Lisp_Object arg)
5261 {
5262 register Lisp_Object obj = arg;
5263 #ifdef GC_CHECK_MARKED_OBJECTS
5264 void *po;
5265 struct mem_node *m;
5266 #endif
5267 int cdr_count = 0;
5268
5269 loop:
5270
5271 if (PURE_POINTER_P (XPNTR (obj)))
5272 return;
5273
5274 last_marked[last_marked_index++] = obj;
5275 if (last_marked_index == LAST_MARKED_SIZE)
5276 last_marked_index = 0;
5277
5278 /* Perform some sanity checks on the objects marked here. Abort if
5279 we encounter an object we know is bogus. This increases GC time
5280 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5281 #ifdef GC_CHECK_MARKED_OBJECTS
5282
5283 po = (void *) XPNTR (obj);
5284
5285 /* Check that the object pointed to by PO is known to be a Lisp
5286 structure allocated from the heap. */
5287 #define CHECK_ALLOCATED() \
5288 do { \
5289 m = mem_find (po); \
5290 if (m == MEM_NIL) \
5291 abort (); \
5292 } while (0)
5293
5294 /* Check that the object pointed to by PO is live, using predicate
5295 function LIVEP. */
5296 #define CHECK_LIVE(LIVEP) \
5297 do { \
5298 if (!LIVEP (m, po)) \
5299 abort (); \
5300 } while (0)
5301
5302 /* Check both of the above conditions. */
5303 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5304 do { \
5305 CHECK_ALLOCATED (); \
5306 CHECK_LIVE (LIVEP); \
5307 } while (0) \
5308
5309 #else /* not GC_CHECK_MARKED_OBJECTS */
5310
5311 #define CHECK_ALLOCATED() (void) 0
5312 #define CHECK_LIVE(LIVEP) (void) 0
5313 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5314
5315 #endif /* not GC_CHECK_MARKED_OBJECTS */
5316
5317 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5318 {
5319 case Lisp_String:
5320 {
5321 register struct Lisp_String *ptr = XSTRING (obj);
5322 if (STRING_MARKED_P (ptr))
5323 break;
5324 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5325 MARK_INTERVAL_TREE (ptr->intervals);
5326 MARK_STRING (ptr);
5327 #ifdef GC_CHECK_STRING_BYTES
5328 /* Check that the string size recorded in the string is the
5329 same as the one recorded in the sdata structure. */
5330 CHECK_STRING_BYTES (ptr);
5331 #endif /* GC_CHECK_STRING_BYTES */
5332 }
5333 break;
5334
5335 case Lisp_Vectorlike:
5336 if (VECTOR_MARKED_P (XVECTOR (obj)))
5337 break;
5338 #ifdef GC_CHECK_MARKED_OBJECTS
5339 m = mem_find (po);
5340 if (m == MEM_NIL && !SUBRP (obj)
5341 && po != &buffer_defaults
5342 && po != &buffer_local_symbols)
5343 abort ();
5344 #endif /* GC_CHECK_MARKED_OBJECTS */
5345
5346 if (BUFFERP (obj))
5347 {
5348 #ifdef GC_CHECK_MARKED_OBJECTS
5349 if (po != &buffer_defaults && po != &buffer_local_symbols)
5350 {
5351 struct buffer *b;
5352 for (b = all_buffers; b && b != po; b = b->next)
5353 ;
5354 if (b == NULL)
5355 abort ();
5356 }
5357 #endif /* GC_CHECK_MARKED_OBJECTS */
5358 mark_buffer (obj);
5359 }
5360 else if (SUBRP (obj))
5361 break;
5362 else if (COMPILEDP (obj))
5363 /* We could treat this just like a vector, but it is better to
5364 save the COMPILED_CONSTANTS element for last and avoid
5365 recursion there. */
5366 {
5367 register struct Lisp_Vector *ptr = XVECTOR (obj);
5368 register EMACS_UINT size = ptr->size;
5369 register EMACS_UINT i;
5370
5371 CHECK_LIVE (live_vector_p);
5372 VECTOR_MARK (ptr); /* Else mark it */
5373 size &= PSEUDOVECTOR_SIZE_MASK;
5374 for (i = 0; i < size; i++) /* and then mark its elements */
5375 {
5376 if (i != COMPILED_CONSTANTS)
5377 mark_object (ptr->contents[i]);
5378 }
5379 obj = ptr->contents[COMPILED_CONSTANTS];
5380 goto loop;
5381 }
5382 else if (FRAMEP (obj))
5383 {
5384 register struct frame *ptr = XFRAME (obj);
5385 mark_vectorlike (XVECTOR (obj));
5386 mark_face_cache (ptr->face_cache);
5387 }
5388 else if (WINDOWP (obj))
5389 {
5390 register struct Lisp_Vector *ptr = XVECTOR (obj);
5391 struct window *w = XWINDOW (obj);
5392 mark_vectorlike (ptr);
5393 /* Mark glyphs for leaf windows. Marking window matrices is
5394 sufficient because frame matrices use the same glyph
5395 memory. */
5396 if (NILP (w->hchild)
5397 && NILP (w->vchild)
5398 && w->current_matrix)
5399 {
5400 mark_glyph_matrix (w->current_matrix);
5401 mark_glyph_matrix (w->desired_matrix);
5402 }
5403 }
5404 else if (HASH_TABLE_P (obj))
5405 {
5406 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5407 mark_vectorlike ((struct Lisp_Vector *)h);
5408 /* If hash table is not weak, mark all keys and values.
5409 For weak tables, mark only the vector. */
5410 if (NILP (h->weak))
5411 mark_object (h->key_and_value);
5412 else
5413 VECTOR_MARK (XVECTOR (h->key_and_value));
5414 }
5415 else if (CHAR_TABLE_P (obj))
5416 mark_char_table (XVECTOR (obj));
5417 else
5418 mark_vectorlike (XVECTOR (obj));
5419 break;
5420
5421 case Lisp_Symbol:
5422 {
5423 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5424 struct Lisp_Symbol *ptrx;
5425
5426 if (ptr->gcmarkbit)
5427 break;
5428 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5429 ptr->gcmarkbit = 1;
5430 mark_object (ptr->function);
5431 mark_object (ptr->plist);
5432 switch (ptr->redirect)
5433 {
5434 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5435 case SYMBOL_VARALIAS:
5436 {
5437 Lisp_Object tem;
5438 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5439 mark_object (tem);
5440 break;
5441 }
5442 case SYMBOL_LOCALIZED:
5443 {
5444 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5445 /* If the value is forwarded to a buffer or keyboard field,
5446 these are marked when we see the corresponding object.
5447 And if it's forwarded to a C variable, either it's not
5448 a Lisp_Object var, or it's staticpro'd already. */
5449 mark_object (blv->where);
5450 mark_object (blv->valcell);
5451 mark_object (blv->defcell);
5452 break;
5453 }
5454 case SYMBOL_FORWARDED:
5455 /* If the value is forwarded to a buffer or keyboard field,
5456 these are marked when we see the corresponding object.
5457 And if it's forwarded to a C variable, either it's not
5458 a Lisp_Object var, or it's staticpro'd already. */
5459 break;
5460 default: abort ();
5461 }
5462 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5463 MARK_STRING (XSTRING (ptr->xname));
5464 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5465
5466 ptr = ptr->next;
5467 if (ptr)
5468 {
5469 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5470 XSETSYMBOL (obj, ptrx);
5471 goto loop;
5472 }
5473 }
5474 break;
5475
5476 case Lisp_Misc:
5477 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5478 if (XMISCANY (obj)->gcmarkbit)
5479 break;
5480 XMISCANY (obj)->gcmarkbit = 1;
5481
5482 switch (XMISCTYPE (obj))
5483 {
5484
5485 case Lisp_Misc_Marker:
5486 /* DO NOT mark thru the marker's chain.
5487 The buffer's markers chain does not preserve markers from gc;
5488 instead, markers are removed from the chain when freed by gc. */
5489 break;
5490
5491 case Lisp_Misc_Save_Value:
5492 #if GC_MARK_STACK
5493 {
5494 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5495 /* If DOGC is set, POINTER is the address of a memory
5496 area containing INTEGER potential Lisp_Objects. */
5497 if (ptr->dogc)
5498 {
5499 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5500 int nelt;
5501 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5502 mark_maybe_object (*p);
5503 }
5504 }
5505 #endif
5506 break;
5507
5508 case Lisp_Misc_Overlay:
5509 {
5510 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5511 mark_object (ptr->start);
5512 mark_object (ptr->end);
5513 mark_object (ptr->plist);
5514 if (ptr->next)
5515 {
5516 XSETMISC (obj, ptr->next);
5517 goto loop;
5518 }
5519 }
5520 break;
5521
5522 default:
5523 abort ();
5524 }
5525 break;
5526
5527 case Lisp_Cons:
5528 {
5529 register struct Lisp_Cons *ptr = XCONS (obj);
5530 if (CONS_MARKED_P (ptr))
5531 break;
5532 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5533 CONS_MARK (ptr);
5534 /* If the cdr is nil, avoid recursion for the car. */
5535 if (EQ (ptr->u.cdr, Qnil))
5536 {
5537 obj = ptr->car;
5538 cdr_count = 0;
5539 goto loop;
5540 }
5541 mark_object (ptr->car);
5542 obj = ptr->u.cdr;
5543 cdr_count++;
5544 if (cdr_count == mark_object_loop_halt)
5545 abort ();
5546 goto loop;
5547 }
5548
5549 case Lisp_Float:
5550 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5551 FLOAT_MARK (XFLOAT (obj));
5552 break;
5553
5554 case_Lisp_Int:
5555 break;
5556
5557 default:
5558 abort ();
5559 }
5560
5561 #undef CHECK_LIVE
5562 #undef CHECK_ALLOCATED
5563 #undef CHECK_ALLOCATED_AND_LIVE
5564 }
5565
5566 /* Mark the pointers in a buffer structure. */
5567
5568 static void
5569 mark_buffer (Lisp_Object buf)
5570 {
5571 register struct buffer *buffer = XBUFFER (buf);
5572 register Lisp_Object *ptr, tmp;
5573 Lisp_Object base_buffer;
5574
5575 eassert (!VECTOR_MARKED_P (buffer));
5576 VECTOR_MARK (buffer);
5577
5578 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5579
5580 /* For now, we just don't mark the undo_list. It's done later in
5581 a special way just before the sweep phase, and after stripping
5582 some of its elements that are not needed any more. */
5583
5584 if (buffer->overlays_before)
5585 {
5586 XSETMISC (tmp, buffer->overlays_before);
5587 mark_object (tmp);
5588 }
5589 if (buffer->overlays_after)
5590 {
5591 XSETMISC (tmp, buffer->overlays_after);
5592 mark_object (tmp);
5593 }
5594
5595 /* buffer-local Lisp variables start at `undo_list',
5596 tho only the ones from `name' on are GC'd normally. */
5597 for (ptr = &buffer->name;
5598 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5599 ptr++)
5600 mark_object (*ptr);
5601
5602 /* If this is an indirect buffer, mark its base buffer. */
5603 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5604 {
5605 XSETBUFFER (base_buffer, buffer->base_buffer);
5606 mark_buffer (base_buffer);
5607 }
5608 }
5609
5610 /* Mark the Lisp pointers in the terminal objects.
5611 Called by the Fgarbage_collector. */
5612
5613 static void
5614 mark_terminals (void)
5615 {
5616 struct terminal *t;
5617 for (t = terminal_list; t; t = t->next_terminal)
5618 {
5619 eassert (t->name != NULL);
5620 #ifdef HAVE_WINDOW_SYSTEM
5621 /* If a terminal object is reachable from a stacpro'ed object,
5622 it might have been marked already. Make sure the image cache
5623 gets marked. */
5624 mark_image_cache (t->image_cache);
5625 #endif /* HAVE_WINDOW_SYSTEM */
5626 if (!VECTOR_MARKED_P (t))
5627 mark_vectorlike ((struct Lisp_Vector *)t);
5628 }
5629 }
5630
5631
5632
5633 /* Value is non-zero if OBJ will survive the current GC because it's
5634 either marked or does not need to be marked to survive. */
5635
5636 int
5637 survives_gc_p (Lisp_Object obj)
5638 {
5639 int survives_p;
5640
5641 switch (XTYPE (obj))
5642 {
5643 case_Lisp_Int:
5644 survives_p = 1;
5645 break;
5646
5647 case Lisp_Symbol:
5648 survives_p = XSYMBOL (obj)->gcmarkbit;
5649 break;
5650
5651 case Lisp_Misc:
5652 survives_p = XMISCANY (obj)->gcmarkbit;
5653 break;
5654
5655 case Lisp_String:
5656 survives_p = STRING_MARKED_P (XSTRING (obj));
5657 break;
5658
5659 case Lisp_Vectorlike:
5660 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5661 break;
5662
5663 case Lisp_Cons:
5664 survives_p = CONS_MARKED_P (XCONS (obj));
5665 break;
5666
5667 case Lisp_Float:
5668 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5669 break;
5670
5671 default:
5672 abort ();
5673 }
5674
5675 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5676 }
5677
5678
5679 \f
5680 /* Sweep: find all structures not marked, and free them. */
5681
5682 static void
5683 gc_sweep (void)
5684 {
5685 /* Remove or mark entries in weak hash tables.
5686 This must be done before any object is unmarked. */
5687 sweep_weak_hash_tables ();
5688
5689 sweep_strings ();
5690 #ifdef GC_CHECK_STRING_BYTES
5691 if (!noninteractive)
5692 check_string_bytes (1);
5693 #endif
5694
5695 /* Put all unmarked conses on free list */
5696 {
5697 register struct cons_block *cblk;
5698 struct cons_block **cprev = &cons_block;
5699 register int lim = cons_block_index;
5700 register int num_free = 0, num_used = 0;
5701
5702 cons_free_list = 0;
5703
5704 for (cblk = cons_block; cblk; cblk = *cprev)
5705 {
5706 register int i = 0;
5707 int this_free = 0;
5708 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5709
5710 /* Scan the mark bits an int at a time. */
5711 for (i = 0; i <= ilim; i++)
5712 {
5713 if (cblk->gcmarkbits[i] == -1)
5714 {
5715 /* Fast path - all cons cells for this int are marked. */
5716 cblk->gcmarkbits[i] = 0;
5717 num_used += BITS_PER_INT;
5718 }
5719 else
5720 {
5721 /* Some cons cells for this int are not marked.
5722 Find which ones, and free them. */
5723 int start, pos, stop;
5724
5725 start = i * BITS_PER_INT;
5726 stop = lim - start;
5727 if (stop > BITS_PER_INT)
5728 stop = BITS_PER_INT;
5729 stop += start;
5730
5731 for (pos = start; pos < stop; pos++)
5732 {
5733 if (!CONS_MARKED_P (&cblk->conses[pos]))
5734 {
5735 this_free++;
5736 cblk->conses[pos].u.chain = cons_free_list;
5737 cons_free_list = &cblk->conses[pos];
5738 #if GC_MARK_STACK
5739 cons_free_list->car = Vdead;
5740 #endif
5741 }
5742 else
5743 {
5744 num_used++;
5745 CONS_UNMARK (&cblk->conses[pos]);
5746 }
5747 }
5748 }
5749 }
5750
5751 lim = CONS_BLOCK_SIZE;
5752 /* If this block contains only free conses and we have already
5753 seen more than two blocks worth of free conses then deallocate
5754 this block. */
5755 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5756 {
5757 *cprev = cblk->next;
5758 /* Unhook from the free list. */
5759 cons_free_list = cblk->conses[0].u.chain;
5760 lisp_align_free (cblk);
5761 n_cons_blocks--;
5762 }
5763 else
5764 {
5765 num_free += this_free;
5766 cprev = &cblk->next;
5767 }
5768 }
5769 total_conses = num_used;
5770 total_free_conses = num_free;
5771 }
5772
5773 /* Put all unmarked floats on free list */
5774 {
5775 register struct float_block *fblk;
5776 struct float_block **fprev = &float_block;
5777 register int lim = float_block_index;
5778 register int num_free = 0, num_used = 0;
5779
5780 float_free_list = 0;
5781
5782 for (fblk = float_block; fblk; fblk = *fprev)
5783 {
5784 register int i;
5785 int this_free = 0;
5786 for (i = 0; i < lim; i++)
5787 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5788 {
5789 this_free++;
5790 fblk->floats[i].u.chain = float_free_list;
5791 float_free_list = &fblk->floats[i];
5792 }
5793 else
5794 {
5795 num_used++;
5796 FLOAT_UNMARK (&fblk->floats[i]);
5797 }
5798 lim = FLOAT_BLOCK_SIZE;
5799 /* If this block contains only free floats and we have already
5800 seen more than two blocks worth of free floats then deallocate
5801 this block. */
5802 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5803 {
5804 *fprev = fblk->next;
5805 /* Unhook from the free list. */
5806 float_free_list = fblk->floats[0].u.chain;
5807 lisp_align_free (fblk);
5808 n_float_blocks--;
5809 }
5810 else
5811 {
5812 num_free += this_free;
5813 fprev = &fblk->next;
5814 }
5815 }
5816 total_floats = num_used;
5817 total_free_floats = num_free;
5818 }
5819
5820 /* Put all unmarked intervals on free list */
5821 {
5822 register struct interval_block *iblk;
5823 struct interval_block **iprev = &interval_block;
5824 register int lim = interval_block_index;
5825 register int num_free = 0, num_used = 0;
5826
5827 interval_free_list = 0;
5828
5829 for (iblk = interval_block; iblk; iblk = *iprev)
5830 {
5831 register int i;
5832 int this_free = 0;
5833
5834 for (i = 0; i < lim; i++)
5835 {
5836 if (!iblk->intervals[i].gcmarkbit)
5837 {
5838 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5839 interval_free_list = &iblk->intervals[i];
5840 this_free++;
5841 }
5842 else
5843 {
5844 num_used++;
5845 iblk->intervals[i].gcmarkbit = 0;
5846 }
5847 }
5848 lim = INTERVAL_BLOCK_SIZE;
5849 /* If this block contains only free intervals and we have already
5850 seen more than two blocks worth of free intervals then
5851 deallocate this block. */
5852 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5853 {
5854 *iprev = iblk->next;
5855 /* Unhook from the free list. */
5856 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5857 lisp_free (iblk);
5858 n_interval_blocks--;
5859 }
5860 else
5861 {
5862 num_free += this_free;
5863 iprev = &iblk->next;
5864 }
5865 }
5866 total_intervals = num_used;
5867 total_free_intervals = num_free;
5868 }
5869
5870 /* Put all unmarked symbols on free list */
5871 {
5872 register struct symbol_block *sblk;
5873 struct symbol_block **sprev = &symbol_block;
5874 register int lim = symbol_block_index;
5875 register int num_free = 0, num_used = 0;
5876
5877 symbol_free_list = NULL;
5878
5879 for (sblk = symbol_block; sblk; sblk = *sprev)
5880 {
5881 int this_free = 0;
5882 struct Lisp_Symbol *sym = sblk->symbols;
5883 struct Lisp_Symbol *end = sym + lim;
5884
5885 for (; sym < end; ++sym)
5886 {
5887 /* Check if the symbol was created during loadup. In such a case
5888 it might be pointed to by pure bytecode which we don't trace,
5889 so we conservatively assume that it is live. */
5890 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5891
5892 if (!sym->gcmarkbit && !pure_p)
5893 {
5894 if (sym->redirect == SYMBOL_LOCALIZED)
5895 xfree (SYMBOL_BLV (sym));
5896 sym->next = symbol_free_list;
5897 symbol_free_list = sym;
5898 #if GC_MARK_STACK
5899 symbol_free_list->function = Vdead;
5900 #endif
5901 ++this_free;
5902 }
5903 else
5904 {
5905 ++num_used;
5906 if (!pure_p)
5907 UNMARK_STRING (XSTRING (sym->xname));
5908 sym->gcmarkbit = 0;
5909 }
5910 }
5911
5912 lim = SYMBOL_BLOCK_SIZE;
5913 /* If this block contains only free symbols and we have already
5914 seen more than two blocks worth of free symbols then deallocate
5915 this block. */
5916 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5917 {
5918 *sprev = sblk->next;
5919 /* Unhook from the free list. */
5920 symbol_free_list = sblk->symbols[0].next;
5921 lisp_free (sblk);
5922 n_symbol_blocks--;
5923 }
5924 else
5925 {
5926 num_free += this_free;
5927 sprev = &sblk->next;
5928 }
5929 }
5930 total_symbols = num_used;
5931 total_free_symbols = num_free;
5932 }
5933
5934 /* Put all unmarked misc's on free list.
5935 For a marker, first unchain it from the buffer it points into. */
5936 {
5937 register struct marker_block *mblk;
5938 struct marker_block **mprev = &marker_block;
5939 register int lim = marker_block_index;
5940 register int num_free = 0, num_used = 0;
5941
5942 marker_free_list = 0;
5943
5944 for (mblk = marker_block; mblk; mblk = *mprev)
5945 {
5946 register int i;
5947 int this_free = 0;
5948
5949 for (i = 0; i < lim; i++)
5950 {
5951 if (!mblk->markers[i].u_any.gcmarkbit)
5952 {
5953 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
5954 unchain_marker (&mblk->markers[i].u_marker);
5955 /* Set the type of the freed object to Lisp_Misc_Free.
5956 We could leave the type alone, since nobody checks it,
5957 but this might catch bugs faster. */
5958 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5959 mblk->markers[i].u_free.chain = marker_free_list;
5960 marker_free_list = &mblk->markers[i];
5961 this_free++;
5962 }
5963 else
5964 {
5965 num_used++;
5966 mblk->markers[i].u_any.gcmarkbit = 0;
5967 }
5968 }
5969 lim = MARKER_BLOCK_SIZE;
5970 /* If this block contains only free markers and we have already
5971 seen more than two blocks worth of free markers then deallocate
5972 this block. */
5973 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5974 {
5975 *mprev = mblk->next;
5976 /* Unhook from the free list. */
5977 marker_free_list = mblk->markers[0].u_free.chain;
5978 lisp_free (mblk);
5979 n_marker_blocks--;
5980 }
5981 else
5982 {
5983 num_free += this_free;
5984 mprev = &mblk->next;
5985 }
5986 }
5987
5988 total_markers = num_used;
5989 total_free_markers = num_free;
5990 }
5991
5992 /* Free all unmarked buffers */
5993 {
5994 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5995
5996 while (buffer)
5997 if (!VECTOR_MARKED_P (buffer))
5998 {
5999 if (prev)
6000 prev->next = buffer->next;
6001 else
6002 all_buffers = buffer->next;
6003 next = buffer->next;
6004 lisp_free (buffer);
6005 buffer = next;
6006 }
6007 else
6008 {
6009 VECTOR_UNMARK (buffer);
6010 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6011 prev = buffer, buffer = buffer->next;
6012 }
6013 }
6014
6015 /* Free all unmarked vectors */
6016 {
6017 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6018 total_vector_size = 0;
6019
6020 while (vector)
6021 if (!VECTOR_MARKED_P (vector))
6022 {
6023 if (prev)
6024 prev->next = vector->next;
6025 else
6026 all_vectors = vector->next;
6027 next = vector->next;
6028 lisp_free (vector);
6029 n_vectors--;
6030 vector = next;
6031
6032 }
6033 else
6034 {
6035 VECTOR_UNMARK (vector);
6036 if (vector->size & PSEUDOVECTOR_FLAG)
6037 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6038 else
6039 total_vector_size += vector->size;
6040 prev = vector, vector = vector->next;
6041 }
6042 }
6043
6044 #ifdef GC_CHECK_STRING_BYTES
6045 if (!noninteractive)
6046 check_string_bytes (1);
6047 #endif
6048 }
6049
6050
6051
6052 \f
6053 /* Debugging aids. */
6054
6055 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6056 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6057 This may be helpful in debugging Emacs's memory usage.
6058 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6059 (void)
6060 {
6061 Lisp_Object end;
6062
6063 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6064
6065 return end;
6066 }
6067
6068 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6069 doc: /* Return a list of counters that measure how much consing there has been.
6070 Each of these counters increments for a certain kind of object.
6071 The counters wrap around from the largest positive integer to zero.
6072 Garbage collection does not decrease them.
6073 The elements of the value are as follows:
6074 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6075 All are in units of 1 = one object consed
6076 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6077 objects consed.
6078 MISCS include overlays, markers, and some internal types.
6079 Frames, windows, buffers, and subprocesses count as vectors
6080 (but the contents of a buffer's text do not count here). */)
6081 (void)
6082 {
6083 Lisp_Object consed[8];
6084
6085 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6086 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6087 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6088 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6089 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6090 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6091 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6092 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6093
6094 return Flist (8, consed);
6095 }
6096
6097 int suppress_checking;
6098
6099 void
6100 die (const char *msg, const char *file, int line)
6101 {
6102 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6103 file, line, msg);
6104 abort ();
6105 }
6106 \f
6107 /* Initialization */
6108
6109 void
6110 init_alloc_once (void)
6111 {
6112 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6113 purebeg = PUREBEG;
6114 pure_size = PURESIZE;
6115 pure_bytes_used = 0;
6116 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6117 pure_bytes_used_before_overflow = 0;
6118
6119 /* Initialize the list of free aligned blocks. */
6120 free_ablock = NULL;
6121
6122 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6123 mem_init ();
6124 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6125 #endif
6126
6127 all_vectors = 0;
6128 ignore_warnings = 1;
6129 #ifdef DOUG_LEA_MALLOC
6130 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6131 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6132 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6133 #endif
6134 init_strings ();
6135 init_cons ();
6136 init_symbol ();
6137 init_marker ();
6138 init_float ();
6139 init_intervals ();
6140 init_weak_hash_tables ();
6141
6142 #ifdef REL_ALLOC
6143 malloc_hysteresis = 32;
6144 #else
6145 malloc_hysteresis = 0;
6146 #endif
6147
6148 refill_memory_reserve ();
6149
6150 ignore_warnings = 0;
6151 gcprolist = 0;
6152 byte_stack_list = 0;
6153 staticidx = 0;
6154 consing_since_gc = 0;
6155 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6156 gc_relative_threshold = 0;
6157 }
6158
6159 void
6160 init_alloc (void)
6161 {
6162 gcprolist = 0;
6163 byte_stack_list = 0;
6164 #if GC_MARK_STACK
6165 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6166 setjmp_tested_p = longjmps_done = 0;
6167 #endif
6168 #endif
6169 Vgc_elapsed = make_float (0.0);
6170 gcs_done = 0;
6171 }
6172
6173 void
6174 syms_of_alloc (void)
6175 {
6176 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6177 doc: /* *Number of bytes of consing between garbage collections.
6178 Garbage collection can happen automatically once this many bytes have been
6179 allocated since the last garbage collection. All data types count.
6180
6181 Garbage collection happens automatically only when `eval' is called.
6182
6183 By binding this temporarily to a large number, you can effectively
6184 prevent garbage collection during a part of the program.
6185 See also `gc-cons-percentage'. */);
6186
6187 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6188 doc: /* *Portion of the heap used for allocation.
6189 Garbage collection can happen automatically once this portion of the heap
6190 has been allocated since the last garbage collection.
6191 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6192 Vgc_cons_percentage = make_float (0.1);
6193
6194 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6195 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6196
6197 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6198 doc: /* Number of cons cells that have been consed so far. */);
6199
6200 DEFVAR_INT ("floats-consed", floats_consed,
6201 doc: /* Number of floats that have been consed so far. */);
6202
6203 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6204 doc: /* Number of vector cells that have been consed so far. */);
6205
6206 DEFVAR_INT ("symbols-consed", symbols_consed,
6207 doc: /* Number of symbols that have been consed so far. */);
6208
6209 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6210 doc: /* Number of string characters that have been consed so far. */);
6211
6212 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6213 doc: /* Number of miscellaneous objects that have been consed so far. */);
6214
6215 DEFVAR_INT ("intervals-consed", intervals_consed,
6216 doc: /* Number of intervals that have been consed so far. */);
6217
6218 DEFVAR_INT ("strings-consed", strings_consed,
6219 doc: /* Number of strings that have been consed so far. */);
6220
6221 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6222 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6223 This means that certain objects should be allocated in shared (pure) space.
6224 It can also be set to a hash-table, in which case this table is used to
6225 do hash-consing of the objects allocated to pure space. */);
6226
6227 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6228 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6229 garbage_collection_messages = 0;
6230
6231 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6232 doc: /* Hook run after garbage collection has finished. */);
6233 Vpost_gc_hook = Qnil;
6234 Qpost_gc_hook = intern_c_string ("post-gc-hook");
6235 staticpro (&Qpost_gc_hook);
6236
6237 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6238 doc: /* Precomputed `signal' argument for memory-full error. */);
6239 /* We build this in advance because if we wait until we need it, we might
6240 not be able to allocate the memory to hold it. */
6241 Vmemory_signal_data
6242 = pure_cons (Qerror,
6243 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6244
6245 DEFVAR_LISP ("memory-full", Vmemory_full,
6246 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6247 Vmemory_full = Qnil;
6248
6249 staticpro (&Qgc_cons_threshold);
6250 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
6251
6252 staticpro (&Qchar_table_extra_slots);
6253 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
6254
6255 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6256 doc: /* Accumulated time elapsed in garbage collections.
6257 The time is in seconds as a floating point value. */);
6258 DEFVAR_INT ("gcs-done", gcs_done,
6259 doc: /* Accumulated number of garbage collections done. */);
6260
6261 defsubr (&Scons);
6262 defsubr (&Slist);
6263 defsubr (&Svector);
6264 defsubr (&Smake_byte_code);
6265 defsubr (&Smake_list);
6266 defsubr (&Smake_vector);
6267 defsubr (&Smake_string);
6268 defsubr (&Smake_bool_vector);
6269 defsubr (&Smake_symbol);
6270 defsubr (&Smake_marker);
6271 defsubr (&Spurecopy);
6272 defsubr (&Sgarbage_collect);
6273 defsubr (&Smemory_limit);
6274 defsubr (&Smemory_use_counts);
6275
6276 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6277 defsubr (&Sgc_status);
6278 #endif
6279 }
6280