]> code.delx.au - gnu-emacs/blob - lisp/emacs-lisp/rx.el
ae150078785dbf4808229b9505518950389bde68
[gnu-emacs] / lisp / emacs-lisp / rx.el
1 ;;; rx.el --- sexp notation for regular expressions
2
3 ;; Copyright (C) 2001, 2002, 2003, 2004, 2005,
4 ;; 2006, 2007 Free Software Foundation, Inc.
5
6 ;; Author: Gerd Moellmann <gerd@gnu.org>
7 ;; Maintainer: FSF
8 ;; Keywords: strings, regexps, extensions
9
10 ;; This file is part of GNU Emacs.
11
12 ;; GNU Emacs is free software; you can redistribute it and/or modify
13 ;; it under the terms of the GNU General Public License as published by
14 ;; the Free Software Foundation; either version 3, or (at your option)
15 ;; any later version.
16
17 ;; GNU Emacs is distributed in the hope that it will be useful,
18 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
19 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 ;; GNU General Public License for more details.
21
22 ;; You should have received a copy of the GNU General Public License
23 ;; along with GNU Emacs; see the file COPYING. If not, write to the
24 ;; Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
25 ;; Boston, MA 02110-1301, USA.
26
27 ;;; Commentary:
28
29 ;; This is another implementation of sexp-form regular expressions.
30 ;; It was unfortunately written without being aware of the Sregex
31 ;; package coming with Emacs, but as things stand, Rx completely
32 ;; covers all regexp features, which Sregex doesn't, doesn't suffer
33 ;; from the bugs mentioned in the commentary section of Sregex, and
34 ;; uses a nicer syntax (IMHO, of course :-).
35
36 ;; This significantly extended version of the original, is almost
37 ;; compatible with Sregex. The only incompatibility I (fx) know of is
38 ;; that the `repeat' form can't have multiple regexp args.
39
40 ;; Now alternative forms are provided for a degree of compatibility
41 ;; with Shivers' attempted definitive SRE notation
42 ;; <URL:http://www.ai.mit.edu/~/shivers/sre.txt>. SRE forms not
43 ;; catered for include: dsm, uncase, w/case, w/nocase, ,@<exp>,
44 ;; ,<exp>, (word ...), word+, posix-string, and character class forms.
45 ;; Some forms are inconsistent with SRE, either for historical reasons
46 ;; or because of the implementation -- simple translation into Emacs
47 ;; regexp strings. These include: any, word. Also, case-sensitivity
48 ;; and greediness are controlled by variables external to the regexp,
49 ;; and you need to feed the forms to the `posix-' functions to get
50 ;; SRE's POSIX semantics. There are probably more difficulties.
51
52 ;; Rx translates a sexp notation for regular expressions into the
53 ;; usual string notation. The translation can be done at compile-time
54 ;; by using the `rx' macro. It can be done at run-time by calling
55 ;; function `rx-to-string'. See the documentation of `rx' for a
56 ;; complete description of the sexp notation.
57 ;;
58 ;; Some examples of string regexps and their sexp counterparts:
59 ;;
60 ;; "^[a-z]*"
61 ;; (rx (and line-start (0+ (in "a-z"))))
62 ;;
63 ;; "\n[^ \t]"
64 ;; (rx (and "\n" (not blank))), or
65 ;; (rx (and "\n" (not (any " \t"))))
66 ;;
67 ;; "\\*\\*\\* EOOH \\*\\*\\*\n"
68 ;; (rx "*** EOOH ***\n")
69 ;;
70 ;; "\\<\\(catch\\|finally\\)\\>[^_]"
71 ;; (rx (and word-start (submatch (or "catch" "finally")) word-end
72 ;; (not (any ?_))))
73 ;;
74 ;; "[ \t\n]*:\\([^:]+\\|$\\)"
75 ;; (rx (and (zero-or-more (in " \t\n")) ":"
76 ;; (submatch (or line-end (one-or-more (not (any ?:)))))))
77 ;;
78 ;; "^content-transfer-encoding:\\(\n?[\t ]\\)*quoted-printable\\(\n?[\t ]\\)*"
79 ;; (rx (and line-start
80 ;; "content-transfer-encoding:"
81 ;; (+ (? ?\n)) blank
82 ;; "quoted-printable"
83 ;; (+ (? ?\n)) blank))
84 ;;
85 ;; (concat "^\\(?:" something-else "\\)")
86 ;; (rx (and line-start (eval something-else))), statically or
87 ;; (rx-to-string '(and line-start ,something-else)), dynamically.
88 ;;
89 ;; (regexp-opt '(STRING1 STRING2 ...))
90 ;; (rx (or STRING1 STRING2 ...)), or in other words, `or' automatically
91 ;; calls `regexp-opt' as needed.
92 ;;
93 ;; "^;;\\s-*\n\\|^\n"
94 ;; (rx (or (and line-start ";;" (0+ space) ?\n)
95 ;; (and line-start ?\n)))
96 ;;
97 ;; "\\$[I]d: [^ ]+ \\([^ ]+\\) "
98 ;; (rx (and "$Id: "
99 ;; (1+ (not (in " ")))
100 ;; " "
101 ;; (submatch (1+ (not (in " "))))
102 ;; " "))
103 ;;
104 ;; "\\\\\\\\\\[\\w+"
105 ;; (rx (and ?\\ ?\\ ?\[ (1+ word)))
106 ;;
107 ;; etc.
108
109 ;;; History:
110 ;;
111
112 ;;; Code:
113
114 (defconst rx-constituents
115 '((and . (rx-and 1 nil))
116 (seq . and) ; SRE
117 (: . and) ; SRE
118 (sequence . and) ; sregex
119 (or . (rx-or 1 nil))
120 (| . or) ; SRE
121 (not-newline . ".")
122 (nonl . not-newline) ; SRE
123 (anything . "\\(?:.\\|\n\\)")
124 (any . (rx-any 1 nil rx-check-any)) ; inconsistent with SRE
125 (in . any)
126 (char . any) ; sregex
127 (not-char . (rx-not-char 1 nil rx-check-any)) ; sregex
128 (not . (rx-not 1 1 rx-check-not))
129 ;; Partially consistent with sregex, whose `repeat' is like our
130 ;; `**'. (`repeat' with optional max arg and multiple sexp forms
131 ;; is ambiguous.)
132 (repeat . (rx-repeat 2 3))
133 (= . (rx-= 2 nil)) ; SRE
134 (>= . (rx->= 2 nil)) ; SRE
135 (** . (rx-** 2 nil)) ; SRE
136 (submatch . (rx-submatch 1 nil)) ; SRE
137 (group . submatch)
138 (zero-or-more . (rx-kleene 1 nil))
139 (one-or-more . (rx-kleene 1 nil))
140 (zero-or-one . (rx-kleene 1 nil))
141 (\? . zero-or-one) ; SRE
142 (\?? . zero-or-one)
143 (* . zero-or-more) ; SRE
144 (*? . zero-or-more)
145 (0+ . zero-or-more)
146 (+ . one-or-more) ; SRE
147 (+? . one-or-more)
148 (1+ . one-or-more)
149 (optional . zero-or-one)
150 (opt . zero-or-one) ; sregex
151 (minimal-match . (rx-greedy 1 1))
152 (maximal-match . (rx-greedy 1 1))
153 (backref . (rx-backref 1 1 rx-check-backref))
154 (line-start . "^")
155 (bol . line-start) ; SRE
156 (line-end . "$")
157 (eol . line-end) ; SRE
158 (string-start . "\\`")
159 (bos . string-start) ; SRE
160 (bot . string-start) ; sregex
161 (string-end . "\\'")
162 (eos . string-end) ; SRE
163 (eot . string-end) ; sregex
164 (buffer-start . "\\`")
165 (buffer-end . "\\'")
166 (point . "\\=")
167 (word-start . "\\<")
168 (bow . word-start) ; SRE
169 (word-end . "\\>")
170 (eow . word-end) ; SRE
171 (word-boundary . "\\b")
172 (not-word-boundary . "\\B") ; sregex
173 (symbol-start . "\\_<")
174 (symbol-end . "\\_>")
175 (syntax . (rx-syntax 1 1))
176 (not-syntax . (rx-not-syntax 1 1)) ; sregex
177 (category . (rx-category 1 1 rx-check-category))
178 (eval . (rx-eval 1 1))
179 (regexp . (rx-regexp 1 1 stringp))
180 (digit . "[[:digit:]]")
181 (numeric . digit) ; SRE
182 (num . digit) ; SRE
183 (control . "[[:cntrl:]]") ; SRE
184 (cntrl . control) ; SRE
185 (hex-digit . "[[:xdigit:]]") ; SRE
186 (hex . hex-digit) ; SRE
187 (xdigit . hex-digit) ; SRE
188 (blank . "[[:blank:]]") ; SRE
189 (graphic . "[[:graph:]]") ; SRE
190 (graph . graphic) ; SRE
191 (printing . "[[:print:]]") ; SRE
192 (print . printing) ; SRE
193 (alphanumeric . "[[:alnum:]]") ; SRE
194 (alnum . alphanumeric) ; SRE
195 (letter . "[[:alpha:]]")
196 (alphabetic . letter) ; SRE
197 (alpha . letter) ; SRE
198 (ascii . "[[:ascii:]]") ; SRE
199 (nonascii . "[[:nonascii:]]")
200 (lower . "[[:lower:]]") ; SRE
201 (lower-case . lower) ; SRE
202 (punctuation . "[[:punct:]]") ; SRE
203 (punct . punctuation) ; SRE
204 (space . "[[:space:]]") ; SRE
205 (whitespace . space) ; SRE
206 (white . space) ; SRE
207 (upper . "[[:upper:]]") ; SRE
208 (upper-case . upper) ; SRE
209 (word . "[[:word:]]") ; inconsistent with SRE
210 (wordchar . word) ; sregex
211 (not-wordchar . "[^[:word:]]") ; sregex (use \\W?)
212 )
213 "Alist of sexp form regexp constituents.
214 Each element of the alist has the form (SYMBOL . DEFN).
215 SYMBOL is a valid constituent of sexp regular expressions.
216 If DEFN is a string, SYMBOL is translated into DEFN.
217 If DEFN is a symbol, use the definition of DEFN, recursively.
218 Otherwise, DEFN must be a list (FUNCTION MIN-ARGS MAX-ARGS PREDICATE).
219 FUNCTION is used to produce code for SYMBOL. MIN-ARGS and MAX-ARGS
220 are the minimum and maximum number of arguments the function-form
221 sexp constituent SYMBOL may have in sexp regular expressions.
222 MAX-ARGS nil means no limit. PREDICATE, if specified, means that
223 all arguments must satisfy PREDICATE.")
224
225
226 (defconst rx-syntax
227 '((whitespace . ?-)
228 (punctuation . ?.)
229 (word . ?w)
230 (symbol . ?_)
231 (open-parenthesis . ?\()
232 (close-parenthesis . ?\))
233 (expression-prefix . ?\')
234 (string-quote . ?\")
235 (paired-delimiter . ?$)
236 (escape . ?\\)
237 (character-quote . ?/)
238 (comment-start . ?<)
239 (comment-end . ?>)
240 (string-delimiter . ?|)
241 (comment-delimiter . ?!))
242 "Alist mapping Rx syntax symbols to syntax characters.
243 Each entry has the form (SYMBOL . CHAR), where SYMBOL is a valid
244 symbol in `(syntax SYMBOL)', and CHAR is the syntax character
245 corresponding to SYMBOL, as it would be used with \\s or \\S in
246 regular expressions.")
247
248
249 (defconst rx-categories
250 '((consonant . ?0)
251 (base-vowel . ?1)
252 (upper-diacritical-mark . ?2)
253 (lower-diacritical-mark . ?3)
254 (tone-mark . ?4)
255 (symbol . ?5)
256 (digit . ?6)
257 (vowel-modifying-diacritical-mark . ?7)
258 (vowel-sign . ?8)
259 (semivowel-lower . ?9)
260 (not-at-end-of-line . ?<)
261 (not-at-beginning-of-line . ?>)
262 (alpha-numeric-two-byte . ?A)
263 (chinse-two-byte . ?C)
264 (greek-two-byte . ?G)
265 (japanese-hiragana-two-byte . ?H)
266 (indian-two-byte . ?I)
267 (japanese-katakana-two-byte . ?K)
268 (korean-hangul-two-byte . ?N)
269 (cyrillic-two-byte . ?Y)
270 (combining-diacritic . ?^)
271 (ascii . ?a)
272 (arabic . ?b)
273 (chinese . ?c)
274 (ethiopic . ?e)
275 (greek . ?g)
276 (korean . ?h)
277 (indian . ?i)
278 (japanese . ?j)
279 (japanese-katakana . ?k)
280 (latin . ?l)
281 (lao . ?o)
282 (tibetan . ?q)
283 (japanese-roman . ?r)
284 (thai . ?t)
285 (vietnamese . ?v)
286 (hebrew . ?w)
287 (cyrillic . ?y)
288 (can-break . ?|))
289 "Alist mapping symbols to category characters.
290 Each entry has the form (SYMBOL . CHAR), where SYMBOL is a valid
291 symbol in `(category SYMBOL)', and CHAR is the category character
292 corresponding to SYMBOL, as it would be used with `\\c' or `\\C' in
293 regular expression strings.")
294
295
296 (defvar rx-greedy-flag t
297 "Non-nil means produce greedy regular expressions for `zero-or-one',
298 `zero-or-more', and `one-or-more'. Dynamically bound.")
299
300
301 (defun rx-info (op)
302 "Return parsing/code generation info for OP.
303 If OP is the space character ASCII 32, return info for the symbol `?'.
304 If OP is the character `?', return info for the symbol `??'.
305 See also `rx-constituents'."
306 (cond ((eq op ? ) (setq op '\?))
307 ((eq op ??) (setq op '\??)))
308 (while (and (not (null op)) (symbolp op))
309 (setq op (cdr (assq op rx-constituents))))
310 op)
311
312
313 (defun rx-check (form)
314 "Check FORM according to its car's parsing info."
315 (unless (listp form)
316 (error "rx `%s' needs argument(s)" form))
317 (let* ((rx (rx-info (car form)))
318 (nargs (1- (length form)))
319 (min-args (nth 1 rx))
320 (max-args (nth 2 rx))
321 (type-pred (nth 3 rx)))
322 (when (and (not (null min-args))
323 (< nargs min-args))
324 (error "rx form `%s' requires at least %d args"
325 (car form) min-args))
326 (when (and (not (null max-args))
327 (> nargs max-args))
328 (error "rx form `%s' accepts at most %d args"
329 (car form) max-args))
330 (when (not (null type-pred))
331 (dolist (sub-form (cdr form))
332 (unless (funcall type-pred sub-form)
333 (error "rx form `%s' requires args satisfying `%s'"
334 (car form) type-pred))))))
335
336
337 (defun rx-and (form)
338 "Parse and produce code from FORM.
339 FORM is of the form `(and FORM1 ...)'."
340 (rx-check form)
341 (concat "\\(?:"
342 (mapconcat
343 (function (lambda (x) (rx-to-string x 'no-group)))
344 (cdr form) nil)
345 "\\)"))
346
347
348 (defun rx-or (form)
349 "Parse and produce code from FORM, which is `(or FORM1 ...)'."
350 (rx-check form)
351 (let ((all-args-strings t))
352 (dolist (arg (cdr form))
353 (unless (stringp arg)
354 (setq all-args-strings nil)))
355 (concat "\\(?:"
356 (if all-args-strings
357 (regexp-opt (cdr form))
358 (mapconcat #'rx-to-string (cdr form) "\\|"))
359 "\\)")))
360
361
362 (defvar rx-bracket) ; dynamically bound in `rx-any'
363
364 (defun rx-check-any (arg)
365 "Check arg ARG for Rx `any'."
366 (if (integerp arg)
367 (setq arg (string arg)))
368 (when (stringp arg)
369 (if (zerop (length arg))
370 (error "String arg for Rx `any' must not be empty"))
371 ;; Quote ^ at start; don't bother to check whether this is first arg.
372 (if (eq ?^ (aref arg 0))
373 (setq arg (concat "\\" arg)))
374 ;; Remove ] and set flag for adding it to start of overall result.
375 (when (string-match "\\]" arg)
376 (setq arg (replace-regexp-in-string "\\]" "" arg)
377 rx-bracket "]")))
378 (when (symbolp arg)
379 (let ((translation (condition-case nil
380 (rx-to-string arg 'no-group)
381 (error nil))))
382 (unless translation (error "Invalid char class `%s' in Rx `any'" arg))
383 (setq arg (substring translation 1 -1)))) ; strip outer brackets
384 ;; sregex compatibility
385 (when (and (integerp (car-safe arg))
386 (integerp (cdr-safe arg)))
387 (setq arg (string (car arg) ?- (cdr arg))))
388 (unless (stringp arg)
389 (error "rx `any' requires string, character, char pair or char class args"))
390 arg)
391
392 (defun rx-any (form)
393 "Parse and produce code from FORM, which is `(any ARG ...)'.
394 ARG is optional."
395 (rx-check form)
396 (let* ((rx-bracket nil)
397 (args (mapcar #'rx-check-any (cdr form)))) ; side-effects `rx-bracket'
398 ;; If there was a ?- in the form, move it to the front to avoid
399 ;; accidental range.
400 (if (member "-" args)
401 (setq args (cons "-" (delete "-" args))))
402 (apply #'concat "[" rx-bracket (append args '("]")))))
403
404
405 (defun rx-check-not (arg)
406 "Check arg ARG for Rx `not'."
407 (unless (or (and (symbolp arg)
408 (string-match "\\`\\[\\[:[-a-z]:\\]\\]\\'"
409 (condition-case nil
410 (rx-to-string arg 'no-group)
411 (error ""))))
412 (eq arg 'word-boundary)
413 (and (consp arg)
414 (memq (car arg) '(not any in syntax category))))
415 (error "rx `not' syntax error: %s" arg))
416 t)
417
418
419 (defun rx-not (form)
420 "Parse and produce code from FORM. FORM is `(not ...)'."
421 (rx-check form)
422 (let ((result (rx-to-string (cadr form) 'no-group))
423 case-fold-search)
424 (cond ((string-match "\\`\\[^" result)
425 (if (= (length result) 4)
426 (substring result 2 3)
427 (concat "[" (substring result 2))))
428 ((eq ?\[ (aref result 0))
429 (concat "[^" (substring result 1)))
430 ((string-match "\\`\\\\[scb]" result)
431 (concat (capitalize (substring result 0 2)) (substring result 2)))
432 (t
433 (concat "[^" result "]")))))
434
435
436 (defun rx-not-char (form)
437 "Parse and produce code from FORM. FORM is `(not-char ...)'."
438 (rx-check form)
439 (rx-not `(not (in ,@(cdr form)))))
440
441
442 (defun rx-not-syntax (form)
443 "Parse and produce code from FORM. FORM is `(not-syntax SYNTAX)'."
444 (rx-check form)
445 (rx-not `(not (syntax ,@(cdr form)))))
446
447
448 (defun rx-trans-forms (form &optional skip)
449 "If FORM's length is greater than two, transform it to length two.
450 A form (HEAD REST ...) becomes (HEAD (and REST ...)).
451 If SKIP is non-nil, allow that number of items after the head, i.e.
452 `(= N REST ...)' becomes `(= N (and REST ...))' if SKIP is 1."
453 (unless skip (setq skip 0))
454 (let ((tail (nthcdr (1+ skip) form)))
455 (if (= (length tail) 1)
456 form
457 (let ((form (copy-sequence form)))
458 (setcdr (nthcdr skip form) (list (cons 'and tail)))
459 form))))
460
461
462 (defun rx-= (form)
463 "Parse and produce code from FORM `(= N ...)'."
464 (rx-check form)
465 (setq form (rx-trans-forms form 1))
466 (unless (and (integerp (nth 1 form))
467 (> (nth 1 form) 0))
468 (error "rx `=' requires positive integer first arg"))
469 (format "%s\\{%d\\}" (rx-to-string (nth 2 form)) (nth 1 form)))
470
471
472 (defun rx->= (form)
473 "Parse and produce code from FORM `(>= N ...)'."
474 (rx-check form)
475 (setq form (rx-trans-forms form 1))
476 (unless (and (integerp (nth 1 form))
477 (> (nth 1 form) 0))
478 (error "rx `>=' requires positive integer first arg"))
479 (format "%s\\{%d,\\}" (rx-to-string (nth 2 form)) (nth 1 form)))
480
481
482 (defun rx-** (form)
483 "Parse and produce code from FORM `(** N M ...)'."
484 (rx-check form)
485 (setq form (cons 'repeat (cdr (rx-trans-forms form 2))))
486 (rx-to-string form))
487
488
489 (defun rx-repeat (form)
490 "Parse and produce code from FORM.
491 FORM is either `(repeat N FORM1)' or `(repeat N M FORM1)'."
492 (rx-check form)
493 (cond ((= (length form) 3)
494 (unless (and (integerp (nth 1 form))
495 (> (nth 1 form) 0))
496 (error "rx `repeat' requires positive integer first arg"))
497 (format "%s\\{%d\\}" (rx-to-string (nth 2 form)) (nth 1 form)))
498 ((or (not (integerp (nth 2 form)))
499 (< (nth 2 form) 0)
500 (not (integerp (nth 1 form)))
501 (< (nth 1 form) 0)
502 (< (nth 2 form) (nth 1 form)))
503 (error "rx `repeat' range error"))
504 (t
505 (format "%s\\{%d,%d\\}" (rx-to-string (nth 3 form))
506 (nth 1 form) (nth 2 form)))))
507
508
509 (defun rx-submatch (form)
510 "Parse and produce code from FORM, which is `(submatch ...)'."
511 (concat "\\("
512 (mapconcat (function (lambda (x) (rx-to-string x 'no-group)))
513 (cdr form) nil)
514 "\\)"))
515
516 (defun rx-backref (form)
517 "Parse and produce code from FORM, which is `(backref N)'."
518 (rx-check form)
519 (format "\\%d" (nth 1 form)))
520
521 (defun rx-check-backref (arg)
522 "Check arg ARG for Rx `backref'."
523 (or (and (integerp arg) (>= arg 1) (<= arg 9))
524 (error "rx `backref' requires numeric 1<=arg<=9: %s" arg)))
525
526 (defun rx-kleene (form)
527 "Parse and produce code from FORM.
528 FORM is `(OP FORM1)', where OP is one of the `zero-or-one',
529 `zero-or-more' etc. operators.
530 If OP is one of `*', `+', `?', produce a greedy regexp.
531 If OP is one of `*?', `+?', `??', produce a non-greedy regexp.
532 If OP is anything else, produce a greedy regexp if `rx-greedy-flag'
533 is non-nil."
534 (rx-check form)
535 (setq form (rx-trans-forms form))
536 (let ((suffix (cond ((memq (car form) '(* + ? )) "")
537 ((memq (car form) '(*? +? ??)) "?")
538 (rx-greedy-flag "")
539 (t "?")))
540 (op (cond ((memq (car form) '(* *? 0+ zero-or-more)) "*")
541 ((memq (car form) '(+ +? 1+ one-or-more)) "+")
542 (t "?")))
543 (result (rx-to-string (cadr form) 'no-group)))
544 (if (not (rx-atomic-p result))
545 (setq result (concat "\\(?:" result "\\)")))
546 (concat result op suffix)))
547
548 (defun rx-atomic-p (r)
549 "Return non-nil if regexp string R is atomic.
550 An atomic regexp R is one such that a suffix operator
551 appended to R will apply to all of R. For example, \"a\"
552 \"[abc]\" and \"\\(ab\\|ab*c\\)\" are atomic and \"ab\",
553 \"[ab]c\", and \"ab\\|ab*c\" are not atomic.
554
555 This function may return false negatives, but it will not
556 return false positives. It is nevertheless useful in
557 situations where an efficiency shortcut can be taken only if a
558 regexp is atomic. The function can be improved to detect
559 more cases of atomic regexps. Presently, this function
560 detects the following categories of atomic regexp;
561
562 a group or shy group: \\(...\\)
563 a character class: [...]
564 a single character: a
565
566 On the other hand, false negatives will be returned for
567 regexps that are atomic but end in operators, such as
568 \"a+\". I think these are rare. Probably such cases could
569 be detected without much effort. A guarantee of no false
570 negatives would require a theoretic specification of the set
571 of all atomic regexps."
572 (let ((l (length r)))
573 (or (equal l 1)
574 (and (>= l 6)
575 (equal (substring r 0 2) "\\(")
576 (equal (substring r -2) "\\)"))
577 (and (>= l 2)
578 (equal (substring r 0 1) "[")
579 (equal (substring r -1) "]")))))
580
581
582 (defun rx-syntax (form)
583 "Parse and produce code from FORM, which is `(syntax SYMBOL)'."
584 (rx-check form)
585 (let* ((sym (cadr form))
586 (syntax (assq sym rx-syntax)))
587 (unless syntax
588 ;; Try sregex compatibility.
589 (let ((name (symbol-name sym)))
590 (if (= 1 (length name))
591 (setq syntax (rassq (aref name 0) rx-syntax))))
592 (unless syntax
593 (error "Unknown rx syntax `%s'" (cadr form))))
594 (format "\\s%c" (cdr syntax))))
595
596
597 (defun rx-check-category (form)
598 "Check the argument FORM of a `(category FORM)'."
599 (unless (or (integerp form)
600 (cdr (assq form rx-categories)))
601 (error "Unknown category `%s'" form))
602 t)
603
604
605 (defun rx-category (form)
606 "Parse and produce code from FORM, which is `(category SYMBOL)'."
607 (rx-check form)
608 (let ((char (if (integerp (cadr form))
609 (cadr form)
610 (cdr (assq (cadr form) rx-categories)))))
611 (format "\\c%c" char)))
612
613
614 (defun rx-eval (form)
615 "Parse and produce code from FORM, which is `(eval FORM)'."
616 (rx-check form)
617 (rx-to-string (eval (cadr form))))
618
619
620 (defun rx-greedy (form)
621 "Parse and produce code from FORM.
622 If FORM is '(minimal-match FORM1)', non-greedy versions of `*',
623 `+', and `?' operators will be used in FORM1. If FORM is
624 '(maximal-match FORM1)', greedy operators will be used."
625 (rx-check form)
626 (let ((rx-greedy-flag (eq (car form) 'maximal-match)))
627 (rx-to-string (cadr form))))
628
629
630 (defun rx-regexp (form)
631 "Parse and produce code from FORM, which is `(regexp STRING)'."
632 (rx-check form)
633 (concat "\\(?:" (cadr form) "\\)"))
634
635
636 ;;;###autoload
637 (defun rx-to-string (form &optional no-group)
638 "Parse and produce code for regular expression FORM.
639 FORM is a regular expression in sexp form.
640 NO-GROUP non-nil means don't put shy groups around the result."
641 (cond ((stringp form)
642 (regexp-quote form))
643 ((integerp form)
644 (regexp-quote (char-to-string form)))
645 ((symbolp form)
646 (let ((info (rx-info form)))
647 (cond ((stringp info)
648 info)
649 ((null info)
650 (error "Unknown rx form `%s'" form))
651 (t
652 (funcall (nth 0 info) form)))))
653 ((consp form)
654 (let ((info (rx-info (car form))))
655 (unless (consp info)
656 (error "Unknown rx form `%s'" (car form)))
657 (let ((result (funcall (nth 0 info) form)))
658 (if (or no-group (string-match "\\`\\\\[(]" result))
659 result
660 (concat "\\(?:" result "\\)")))))
661 (t
662 (error "rx syntax error at `%s'" form))))
663
664
665 ;;;###autoload
666 (defmacro rx (&rest regexps)
667 "Translate regular expressions REGEXPS in sexp form to a regexp string.
668 REGEXPS is a non-empty sequence of forms of the sort listed below.
669 See also `rx-to-string' for how to do such a translation at run-time.
670
671 The following are valid subforms of regular expressions in sexp
672 notation.
673
674 STRING
675 matches string STRING literally.
676
677 CHAR
678 matches character CHAR literally.
679
680 `not-newline', `nonl'
681 matches any character except a newline.
682 .
683 `anything'
684 matches any character
685
686 `(any SET ...)'
687 `(in SET ...)'
688 `(char SET ...)'
689 matches any character in SET .... SET may be a character or string.
690 Ranges of characters can be specified as `A-Z' in strings.
691 Ranges may also be specified as conses like `(?A . ?Z)'.
692
693 SET may also be the name of a character class: `digit',
694 `control', `hex-digit', `blank', `graph', `print', `alnum',
695 `alpha', `ascii', `nonascii', `lower', `punct', `space', `upper',
696 `word', or one of their synonyms.
697
698 `(not (any SET ...))'
699 matches any character not in SET ...
700
701 `line-start', `bol'
702 matches the empty string, but only at the beginning of a line
703 in the text being matched
704
705 `line-end', `eol'
706 is similar to `line-start' but matches only at the end of a line
707
708 `string-start', `bos', `bot'
709 matches the empty string, but only at the beginning of the
710 string being matched against.
711
712 `string-end', `eos', `eot'
713 matches the empty string, but only at the end of the
714 string being matched against.
715
716 `buffer-start'
717 matches the empty string, but only at the beginning of the
718 buffer being matched against. Actually equivalent to `string-start'.
719
720 `buffer-end'
721 matches the empty string, but only at the end of the
722 buffer being matched against. Actually equivalent to `string-end'.
723
724 `point'
725 matches the empty string, but only at point.
726
727 `word-start', `bow'
728 matches the empty string, but only at the beginning of a word.
729
730 `word-end', `eow'
731 matches the empty string, but only at the end of a word.
732
733 `word-boundary'
734 matches the empty string, but only at the beginning or end of a
735 word.
736
737 `(not word-boundary)'
738 `not-word-boundary'
739 matches the empty string, but not at the beginning or end of a
740 word.
741
742 `symbol-start'
743 matches the empty string, but only at the beginning of a symbol.
744
745 `symbol-end'
746 matches the empty string, but only at the end of a symbol.
747
748 `digit', `numeric', `num'
749 matches 0 through 9.
750
751 `control', `cntrl'
752 matches ASCII control characters.
753
754 `hex-digit', `hex', `xdigit'
755 matches 0 through 9, a through f and A through F.
756
757 `blank'
758 matches space and tab only.
759
760 `graphic', `graph'
761 matches graphic characters--everything except ASCII control chars,
762 space, and DEL.
763
764 `printing', `print'
765 matches printing characters--everything except ASCII control chars
766 and DEL.
767
768 `alphanumeric', `alnum'
769 matches letters and digits. (But at present, for multibyte characters,
770 it matches anything that has word syntax.)
771
772 `letter', `alphabetic', `alpha'
773 matches letters. (But at present, for multibyte characters,
774 it matches anything that has word syntax.)
775
776 `ascii'
777 matches ASCII (unibyte) characters.
778
779 `nonascii'
780 matches non-ASCII (multibyte) characters.
781
782 `lower', `lower-case'
783 matches anything lower-case.
784
785 `upper', `upper-case'
786 matches anything upper-case.
787
788 `punctuation', `punct'
789 matches punctuation. (But at present, for multibyte characters,
790 it matches anything that has non-word syntax.)
791
792 `space', `whitespace', `white'
793 matches anything that has whitespace syntax.
794
795 `word', `wordchar'
796 matches anything that has word syntax.
797
798 `not-wordchar'
799 matches anything that has non-word syntax.
800
801 `(syntax SYNTAX)'
802 matches a character with syntax SYNTAX. SYNTAX must be one
803 of the following symbols, or a symbol corresponding to the syntax
804 character, e.g. `\\.' for `\\s.'.
805
806 `whitespace' (\\s- in string notation)
807 `punctuation' (\\s.)
808 `word' (\\sw)
809 `symbol' (\\s_)
810 `open-parenthesis' (\\s()
811 `close-parenthesis' (\\s))
812 `expression-prefix' (\\s')
813 `string-quote' (\\s\")
814 `paired-delimiter' (\\s$)
815 `escape' (\\s\\)
816 `character-quote' (\\s/)
817 `comment-start' (\\s<)
818 `comment-end' (\\s>)
819 `string-delimiter' (\\s|)
820 `comment-delimiter' (\\s!)
821
822 `(not (syntax SYNTAX))'
823 matches a character that doesn't have syntax SYNTAX.
824
825 `(category CATEGORY)'
826 matches a character with category CATEGORY. CATEGORY must be
827 either a character to use for C, or one of the following symbols.
828
829 `consonant' (\\c0 in string notation)
830 `base-vowel' (\\c1)
831 `upper-diacritical-mark' (\\c2)
832 `lower-diacritical-mark' (\\c3)
833 `tone-mark' (\\c4)
834 `symbol' (\\c5)
835 `digit' (\\c6)
836 `vowel-modifying-diacritical-mark' (\\c7)
837 `vowel-sign' (\\c8)
838 `semivowel-lower' (\\c9)
839 `not-at-end-of-line' (\\c<)
840 `not-at-beginning-of-line' (\\c>)
841 `alpha-numeric-two-byte' (\\cA)
842 `chinse-two-byte' (\\cC)
843 `greek-two-byte' (\\cG)
844 `japanese-hiragana-two-byte' (\\cH)
845 `indian-tow-byte' (\\cI)
846 `japanese-katakana-two-byte' (\\cK)
847 `korean-hangul-two-byte' (\\cN)
848 `cyrillic-two-byte' (\\cY)
849 `combining-diacritic' (\\c^)
850 `ascii' (\\ca)
851 `arabic' (\\cb)
852 `chinese' (\\cc)
853 `ethiopic' (\\ce)
854 `greek' (\\cg)
855 `korean' (\\ch)
856 `indian' (\\ci)
857 `japanese' (\\cj)
858 `japanese-katakana' (\\ck)
859 `latin' (\\cl)
860 `lao' (\\co)
861 `tibetan' (\\cq)
862 `japanese-roman' (\\cr)
863 `thai' (\\ct)
864 `vietnamese' (\\cv)
865 `hebrew' (\\cw)
866 `cyrillic' (\\cy)
867 `can-break' (\\c|)
868
869 `(not (category CATEGORY))'
870 matches a character that doesn't have category CATEGORY.
871
872 `(and SEXP1 SEXP2 ...)'
873 `(: SEXP1 SEXP2 ...)'
874 `(seq SEXP1 SEXP2 ...)'
875 `(sequence SEXP1 SEXP2 ...)'
876 matches what SEXP1 matches, followed by what SEXP2 matches, etc.
877
878 `(submatch SEXP1 SEXP2 ...)'
879 `(group SEXP1 SEXP2 ...)'
880 like `and', but makes the match accessible with `match-end',
881 `match-beginning', and `match-string'.
882
883 `(group SEXP1 SEXP2 ...)'
884 another name for `submatch'.
885
886 `(or SEXP1 SEXP2 ...)'
887 `(| SEXP1 SEXP2 ...)'
888 matches anything that matches SEXP1 or SEXP2, etc. If all
889 args are strings, use `regexp-opt' to optimize the resulting
890 regular expression.
891
892 `(minimal-match SEXP)'
893 produce a non-greedy regexp for SEXP. Normally, regexps matching
894 zero or more occurrences of something are \"greedy\" in that they
895 match as much as they can, as long as the overall regexp can
896 still match. A non-greedy regexp matches as little as possible.
897
898 `(maximal-match SEXP)'
899 produce a greedy regexp for SEXP. This is the default.
900
901 Below, `SEXP ...' represents a sequence of regexp forms, treated as if
902 enclosed in `(and ...)'.
903
904 `(zero-or-more SEXP ...)'
905 `(0+ SEXP ...)'
906 matches zero or more occurrences of what SEXP ... matches.
907
908 `(* SEXP ...)'
909 like `zero-or-more', but always produces a greedy regexp, independent
910 of `rx-greedy-flag'.
911
912 `(*? SEXP ...)'
913 like `zero-or-more', but always produces a non-greedy regexp,
914 independent of `rx-greedy-flag'.
915
916 `(one-or-more SEXP ...)'
917 `(1+ SEXP ...)'
918 matches one or more occurrences of SEXP ...
919
920 `(+ SEXP ...)'
921 like `one-or-more', but always produces a greedy regexp.
922
923 `(+? SEXP ...)'
924 like `one-or-more', but always produces a non-greedy regexp.
925
926 `(zero-or-one SEXP ...)'
927 `(optional SEXP ...)'
928 `(opt SEXP ...)'
929 matches zero or one occurrences of A.
930
931 `(? SEXP ...)'
932 like `zero-or-one', but always produces a greedy regexp.
933
934 `(?? SEXP ...)'
935 like `zero-or-one', but always produces a non-greedy regexp.
936
937 `(repeat N SEXP)'
938 `(= N SEXP ...)'
939 matches N occurrences.
940
941 `(>= N SEXP ...)'
942 matches N or more occurrences.
943
944 `(repeat N M SEXP)'
945 `(** N M SEXP ...)'
946 matches N to M occurrences.
947
948 `(backref N)'
949 matches what was matched previously by submatch N.
950
951 `(backref N)'
952 matches what was matched previously by submatch N.
953
954 `(backref N)'
955 matches what was matched previously by submatch N.
956
957 `(eval FORM)'
958 evaluate FORM and insert result. If result is a string,
959 `regexp-quote' it.
960
961 `(regexp REGEXP)'
962 include REGEXP in string notation in the result."
963 (cond ((null regexps)
964 (error "No regexp"))
965 ((cdr regexps)
966 (rx-to-string `(and ,@regexps) t))
967 (t
968 (rx-to-string (car regexps) t))))
969 \f
970 ;; ;; sregex.el replacement
971
972 ;; ;;;###autoload (provide 'sregex)
973 ;; ;;;###autoload (autoload 'sregex "rx")
974 ;; (defalias 'sregex 'rx-to-string)
975 ;; ;;;###autoload (autoload 'sregexq "rx" nil nil 'macro)
976 ;; (defalias 'sregexq 'rx)
977 \f
978 (provide 'rx)
979
980 ;; arch-tag: 12d01a63-0008-42bb-ab8c-1c7d63be370b
981 ;;; rx.el ends here