]> code.delx.au - gnu-emacs/blob - src/lisp.h
bb25ebd9be3f6a91701f1ee769c5eaba92ce4232
[gnu-emacs] / src / lisp.h
1 /* Fundamental definitions for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2015 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #ifndef EMACS_LISP_H
22 #define EMACS_LISP_H
23
24 #include <setjmp.h>
25 #include <stdalign.h>
26 #include <stdarg.h>
27 #include <stddef.h>
28 #include <float.h>
29 #include <inttypes.h>
30 #include <limits.h>
31
32 #include <intprops.h>
33 #include <verify.h>
34
35 INLINE_HEADER_BEGIN
36
37 /* Define a TYPE constant ID as an externally visible name. Use like this:
38
39 DEFINE_GDB_SYMBOL_BEGIN (TYPE, ID)
40 # define ID (some integer preprocessor expression of type TYPE)
41 DEFINE_GDB_SYMBOL_END (ID)
42
43 This hack is for the benefit of compilers that do not make macro
44 definitions or enums visible to the debugger. It's used for symbols
45 that .gdbinit needs. */
46
47 #define DECLARE_GDB_SYM(type, id) type const id EXTERNALLY_VISIBLE
48 #ifdef MAIN_PROGRAM
49 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) DECLARE_GDB_SYM (type, id)
50 # define DEFINE_GDB_SYMBOL_END(id) = id;
51 #else
52 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) extern DECLARE_GDB_SYM (type, id)
53 # define DEFINE_GDB_SYMBOL_END(val) ;
54 #endif
55
56 /* The ubiquitous max and min macros. */
57 #undef min
58 #undef max
59 #define max(a, b) ((a) > (b) ? (a) : (b))
60 #define min(a, b) ((a) < (b) ? (a) : (b))
61
62 /* Number of elements in an array. */
63 #define ARRAYELTS(arr) (sizeof (arr) / sizeof (arr)[0])
64
65 /* Number of bits in a Lisp_Object tag. */
66 DEFINE_GDB_SYMBOL_BEGIN (int, GCTYPEBITS)
67 #define GCTYPEBITS 3
68 DEFINE_GDB_SYMBOL_END (GCTYPEBITS)
69
70 /* The number of bits needed in an EMACS_INT over and above the number
71 of bits in a pointer. This is 0 on systems where:
72 1. We can specify multiple-of-8 alignment on static variables.
73 2. We know malloc returns a multiple of 8. */
74 #if (defined alignas \
75 && (defined GNU_MALLOC || defined DOUG_LEA_MALLOC || defined __GLIBC__ \
76 || defined DARWIN_OS || defined __sun || defined __MINGW32__ \
77 || defined CYGWIN))
78 # define NONPOINTER_BITS 0
79 #else
80 # define NONPOINTER_BITS GCTYPEBITS
81 #endif
82
83 /* EMACS_INT - signed integer wide enough to hold an Emacs value
84 EMACS_INT_MAX - maximum value of EMACS_INT; can be used in #if
85 pI - printf length modifier for EMACS_INT
86 EMACS_UINT - unsigned variant of EMACS_INT */
87 #ifndef EMACS_INT_MAX
88 # if INTPTR_MAX <= 0
89 # error "INTPTR_MAX misconfigured"
90 # elif INTPTR_MAX <= INT_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
91 typedef int EMACS_INT;
92 typedef unsigned int EMACS_UINT;
93 # define EMACS_INT_MAX INT_MAX
94 # define pI ""
95 # elif INTPTR_MAX <= LONG_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
96 typedef long int EMACS_INT;
97 typedef unsigned long EMACS_UINT;
98 # define EMACS_INT_MAX LONG_MAX
99 # define pI "l"
100 /* Check versus LLONG_MAX, not LLONG_MAX >> NONPOINTER_BITS.
101 In theory this is not safe, but in practice it seems to be OK. */
102 # elif INTPTR_MAX <= LLONG_MAX
103 typedef long long int EMACS_INT;
104 typedef unsigned long long int EMACS_UINT;
105 # define EMACS_INT_MAX LLONG_MAX
106 # define pI "ll"
107 # else
108 # error "INTPTR_MAX too large"
109 # endif
110 #endif
111
112 /* Number of bits to put in each character in the internal representation
113 of bool vectors. This should not vary across implementations. */
114 enum { BOOL_VECTOR_BITS_PER_CHAR =
115 #define BOOL_VECTOR_BITS_PER_CHAR 8
116 BOOL_VECTOR_BITS_PER_CHAR
117 };
118
119 /* An unsigned integer type representing a fixed-length bit sequence,
120 suitable for bool vector words, GC mark bits, etc. Normally it is size_t
121 for speed, but it is unsigned char on weird platforms. */
122 #if BOOL_VECTOR_BITS_PER_CHAR == CHAR_BIT
123 typedef size_t bits_word;
124 # define BITS_WORD_MAX SIZE_MAX
125 enum { BITS_PER_BITS_WORD = CHAR_BIT * sizeof (bits_word) };
126 #else
127 typedef unsigned char bits_word;
128 # define BITS_WORD_MAX ((1u << BOOL_VECTOR_BITS_PER_CHAR) - 1)
129 enum { BITS_PER_BITS_WORD = BOOL_VECTOR_BITS_PER_CHAR };
130 #endif
131 verify (BITS_WORD_MAX >> (BITS_PER_BITS_WORD - 1) == 1);
132
133 /* Number of bits in some machine integer types. */
134 enum
135 {
136 BITS_PER_CHAR = CHAR_BIT,
137 BITS_PER_SHORT = CHAR_BIT * sizeof (short),
138 BITS_PER_LONG = CHAR_BIT * sizeof (long int),
139 BITS_PER_EMACS_INT = CHAR_BIT * sizeof (EMACS_INT)
140 };
141
142 /* printmax_t and uprintmax_t are types for printing large integers.
143 These are the widest integers that are supported for printing.
144 pMd etc. are conversions for printing them.
145 On C99 hosts, there's no problem, as even the widest integers work.
146 Fall back on EMACS_INT on pre-C99 hosts. */
147 #ifdef PRIdMAX
148 typedef intmax_t printmax_t;
149 typedef uintmax_t uprintmax_t;
150 # define pMd PRIdMAX
151 # define pMu PRIuMAX
152 #else
153 typedef EMACS_INT printmax_t;
154 typedef EMACS_UINT uprintmax_t;
155 # define pMd pI"d"
156 # define pMu pI"u"
157 #endif
158
159 /* Use pD to format ptrdiff_t values, which suffice for indexes into
160 buffers and strings. Emacs never allocates objects larger than
161 PTRDIFF_MAX bytes, as they cause problems with pointer subtraction.
162 In C99, pD can always be "t"; configure it here for the sake of
163 pre-C99 libraries such as glibc 2.0 and Solaris 8. */
164 #if PTRDIFF_MAX == INT_MAX
165 # define pD ""
166 #elif PTRDIFF_MAX == LONG_MAX
167 # define pD "l"
168 #elif PTRDIFF_MAX == LLONG_MAX
169 # define pD "ll"
170 #else
171 # define pD "t"
172 #endif
173
174 /* Extra internal type checking? */
175
176 /* Define Emacs versions of <assert.h>'s 'assert (COND)' and <verify.h>'s
177 'assume (COND)'. COND should be free of side effects, as it may or
178 may not be evaluated.
179
180 'eassert (COND)' checks COND at runtime if ENABLE_CHECKING is
181 defined and suppress_checking is false, and does nothing otherwise.
182 Emacs dies if COND is checked and is false. The suppress_checking
183 variable is initialized to 0 in alloc.c. Set it to 1 using a
184 debugger to temporarily disable aborting on detected internal
185 inconsistencies or error conditions.
186
187 In some cases, a good compiler may be able to optimize away the
188 eassert macro even if ENABLE_CHECKING is true, e.g., if XSTRING (x)
189 uses eassert to test STRINGP (x), but a particular use of XSTRING
190 is invoked only after testing that STRINGP (x) is true, making the
191 test redundant.
192
193 eassume is like eassert except that it also causes the compiler to
194 assume that COND is true afterwards, regardless of whether runtime
195 checking is enabled. This can improve performance in some cases,
196 though it can degrade performance in others. It's often suboptimal
197 for COND to call external functions or access volatile storage. */
198
199 #ifndef ENABLE_CHECKING
200 # define eassert(cond) ((void) (false && (cond))) /* Check COND compiles. */
201 # define eassume(cond) assume (cond)
202 #else /* ENABLE_CHECKING */
203
204 extern _Noreturn void die (const char *, const char *, int);
205
206 extern bool suppress_checking EXTERNALLY_VISIBLE;
207
208 # define eassert(cond) \
209 (suppress_checking || (cond) \
210 ? (void) 0 \
211 : die (# cond, __FILE__, __LINE__))
212 # define eassume(cond) \
213 (suppress_checking \
214 ? assume (cond) \
215 : (cond) \
216 ? (void) 0 \
217 : die (# cond, __FILE__, __LINE__))
218 #endif /* ENABLE_CHECKING */
219
220 \f
221 /* Use the configure flag --enable-check-lisp-object-type to make
222 Lisp_Object use a struct type instead of the default int. The flag
223 causes CHECK_LISP_OBJECT_TYPE to be defined. */
224
225 /***** Select the tagging scheme. *****/
226 /* The following option controls the tagging scheme:
227 - USE_LSB_TAG means that we can assume the least 3 bits of pointers are
228 always 0, and we can thus use them to hold tag bits, without
229 restricting our addressing space.
230
231 If ! USE_LSB_TAG, then use the top 3 bits for tagging, thus
232 restricting our possible address range.
233
234 USE_LSB_TAG not only requires the least 3 bits of pointers returned by
235 malloc to be 0 but also needs to be able to impose a mult-of-8 alignment
236 on the few static Lisp_Objects used: lispsym, all the defsubr, and
237 the two special buffers buffer_defaults and buffer_local_symbols. */
238
239 enum Lisp_Bits
240 {
241 /* 2**GCTYPEBITS. This must be a macro that expands to a literal
242 integer constant, for MSVC. */
243 #define GCALIGNMENT 8
244
245 /* Number of bits in a Lisp_Object value, not counting the tag. */
246 VALBITS = BITS_PER_EMACS_INT - GCTYPEBITS,
247
248 /* Number of bits in a Lisp fixnum tag. */
249 INTTYPEBITS = GCTYPEBITS - 1,
250
251 /* Number of bits in a Lisp fixnum value, not counting the tag. */
252 FIXNUM_BITS = VALBITS + 1
253 };
254
255 #if GCALIGNMENT != 1 << GCTYPEBITS
256 # error "GCALIGNMENT and GCTYPEBITS are inconsistent"
257 #endif
258
259 /* The maximum value that can be stored in a EMACS_INT, assuming all
260 bits other than the type bits contribute to a nonnegative signed value.
261 This can be used in #if, e.g., '#if USB_TAG' below expands to an
262 expression involving VAL_MAX. */
263 #define VAL_MAX (EMACS_INT_MAX >> (GCTYPEBITS - 1))
264
265 /* Whether the least-significant bits of an EMACS_INT contain the tag.
266 On hosts where pointers-as-ints do not exceed VAL_MAX / 2, USE_LSB_TAG is:
267 a. unnecessary, because the top bits of an EMACS_INT are unused, and
268 b. slower, because it typically requires extra masking.
269 So, USE_LSB_TAG is true only on hosts where it might be useful. */
270 DEFINE_GDB_SYMBOL_BEGIN (bool, USE_LSB_TAG)
271 #define USE_LSB_TAG (VAL_MAX / 2 < INTPTR_MAX)
272 DEFINE_GDB_SYMBOL_END (USE_LSB_TAG)
273
274 #if !USE_LSB_TAG && !defined WIDE_EMACS_INT
275 # error "USE_LSB_TAG not supported on this platform; please report this." \
276 "Try 'configure --with-wide-int' to work around the problem."
277 error !;
278 #endif
279
280 #ifndef alignas
281 # error "alignas not defined"
282 #endif
283
284 #ifdef HAVE_STRUCT_ATTRIBUTE_ALIGNED
285 # define GCALIGNED __attribute__ ((aligned (GCALIGNMENT)))
286 #else
287 # define GCALIGNED /* empty */
288 #endif
289
290 /* Some operations are so commonly executed that they are implemented
291 as macros, not functions, because otherwise runtime performance would
292 suffer too much when compiling with GCC without optimization.
293 There's no need to inline everything, just the operations that
294 would otherwise cause a serious performance problem.
295
296 For each such operation OP, define a macro lisp_h_OP that contains
297 the operation's implementation. That way, OP can be implemented
298 via a macro definition like this:
299
300 #define OP(x) lisp_h_OP (x)
301
302 and/or via a function definition like this:
303
304 LISP_MACRO_DEFUN (OP, Lisp_Object, (Lisp_Object x), (x))
305
306 which macro-expands to this:
307
308 Lisp_Object (OP) (Lisp_Object x) { return lisp_h_OP (x); }
309
310 without worrying about the implementations diverging, since
311 lisp_h_OP defines the actual implementation. The lisp_h_OP macros
312 are intended to be private to this include file, and should not be
313 used elsewhere.
314
315 FIXME: Remove the lisp_h_OP macros, and define just the inline OP
316 functions, once most developers have access to GCC 4.8 or later and
317 can use "gcc -Og" to debug. Maybe in the year 2016. See
318 Bug#11935.
319
320 Commentary for these macros can be found near their corresponding
321 functions, below. */
322
323 #if CHECK_LISP_OBJECT_TYPE
324 # define lisp_h_XLI(o) ((o).i)
325 # define lisp_h_XIL(i) ((Lisp_Object) { i })
326 #else
327 # define lisp_h_XLI(o) (o)
328 # define lisp_h_XIL(i) (i)
329 #endif
330 #define lisp_h_CHECK_LIST_CONS(x, y) CHECK_TYPE (CONSP (x), Qlistp, y)
331 #define lisp_h_CHECK_NUMBER(x) CHECK_TYPE (INTEGERP (x), Qintegerp, x)
332 #define lisp_h_CHECK_SYMBOL(x) CHECK_TYPE (SYMBOLP (x), Qsymbolp, x)
333 #define lisp_h_CHECK_TYPE(ok, predicate, x) \
334 ((ok) ? (void) 0 : (void) wrong_type_argument (predicate, x))
335 #define lisp_h_CONSP(x) (XTYPE (x) == Lisp_Cons)
336 #define lisp_h_EQ(x, y) (XLI (x) == XLI (y))
337 #define lisp_h_FLOATP(x) (XTYPE (x) == Lisp_Float)
338 #define lisp_h_INTEGERP(x) ((XTYPE (x) & (Lisp_Int0 | ~Lisp_Int1)) == Lisp_Int0)
339 #define lisp_h_MARKERP(x) (MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Marker)
340 #define lisp_h_MISCP(x) (XTYPE (x) == Lisp_Misc)
341 #define lisp_h_NILP(x) EQ (x, Qnil)
342 #define lisp_h_SET_SYMBOL_VAL(sym, v) \
343 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value = (v))
344 #define lisp_h_SYMBOL_CONSTANT_P(sym) (XSYMBOL (sym)->constant)
345 #define lisp_h_SYMBOL_VAL(sym) \
346 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value)
347 #define lisp_h_SYMBOLP(x) (XTYPE (x) == Lisp_Symbol)
348 #define lisp_h_VECTORLIKEP(x) (XTYPE (x) == Lisp_Vectorlike)
349 #define lisp_h_XCAR(c) XCONS (c)->car
350 #define lisp_h_XCDR(c) XCONS (c)->u.cdr
351 #define lisp_h_XCONS(a) \
352 (eassert (CONSP (a)), (struct Lisp_Cons *) XUNTAG (a, Lisp_Cons))
353 #define lisp_h_XHASH(a) XUINT (a)
354 #define lisp_h_XPNTR(a) \
355 (SYMBOLP (a) ? XSYMBOL (a) : (void *) ((intptr_t) (XLI (a) & VALMASK)))
356 #ifndef GC_CHECK_CONS_LIST
357 # define lisp_h_check_cons_list() ((void) 0)
358 #endif
359 #if USE_LSB_TAG
360 # define lisp_h_make_number(n) \
361 XIL ((EMACS_INT) (((EMACS_UINT) (n) << INTTYPEBITS) + Lisp_Int0))
362 # define lisp_h_XFASTINT(a) XINT (a)
363 # define lisp_h_XINT(a) (XLI (a) >> INTTYPEBITS)
364 # define lisp_h_XSYMBOL(a) \
365 (eassert (SYMBOLP (a)), \
366 (struct Lisp_Symbol *) ((uintptr_t) XLI (a) - Lisp_Symbol \
367 + (char *) lispsym))
368 # define lisp_h_XTYPE(a) ((enum Lisp_Type) (XLI (a) & ~VALMASK))
369 # define lisp_h_XUNTAG(a, type) ((void *) (intptr_t) (XLI (a) - (type)))
370 #endif
371
372 /* When compiling via gcc -O0, define the key operations as macros, as
373 Emacs is too slow otherwise. To disable this optimization, compile
374 with -DINLINING=false. */
375 #if (defined __NO_INLINE__ \
376 && ! defined __OPTIMIZE__ && ! defined __OPTIMIZE_SIZE__ \
377 && ! (defined INLINING && ! INLINING))
378 # define XLI(o) lisp_h_XLI (o)
379 # define XIL(i) lisp_h_XIL (i)
380 # define CHECK_LIST_CONS(x, y) lisp_h_CHECK_LIST_CONS (x, y)
381 # define CHECK_NUMBER(x) lisp_h_CHECK_NUMBER (x)
382 # define CHECK_SYMBOL(x) lisp_h_CHECK_SYMBOL (x)
383 # define CHECK_TYPE(ok, predicate, x) lisp_h_CHECK_TYPE (ok, predicate, x)
384 # define CONSP(x) lisp_h_CONSP (x)
385 # define EQ(x, y) lisp_h_EQ (x, y)
386 # define FLOATP(x) lisp_h_FLOATP (x)
387 # define INTEGERP(x) lisp_h_INTEGERP (x)
388 # define MARKERP(x) lisp_h_MARKERP (x)
389 # define MISCP(x) lisp_h_MISCP (x)
390 # define NILP(x) lisp_h_NILP (x)
391 # define SET_SYMBOL_VAL(sym, v) lisp_h_SET_SYMBOL_VAL (sym, v)
392 # define SYMBOL_CONSTANT_P(sym) lisp_h_SYMBOL_CONSTANT_P (sym)
393 # define SYMBOL_VAL(sym) lisp_h_SYMBOL_VAL (sym)
394 # define SYMBOLP(x) lisp_h_SYMBOLP (x)
395 # define VECTORLIKEP(x) lisp_h_VECTORLIKEP (x)
396 # define XCAR(c) lisp_h_XCAR (c)
397 # define XCDR(c) lisp_h_XCDR (c)
398 # define XCONS(a) lisp_h_XCONS (a)
399 # define XHASH(a) lisp_h_XHASH (a)
400 # define XPNTR(a) lisp_h_XPNTR (a)
401 # ifndef GC_CHECK_CONS_LIST
402 # define check_cons_list() lisp_h_check_cons_list ()
403 # endif
404 # if USE_LSB_TAG
405 # define make_number(n) lisp_h_make_number (n)
406 # define XFASTINT(a) lisp_h_XFASTINT (a)
407 # define XINT(a) lisp_h_XINT (a)
408 # define XSYMBOL(a) lisp_h_XSYMBOL (a)
409 # define XTYPE(a) lisp_h_XTYPE (a)
410 # define XUNTAG(a, type) lisp_h_XUNTAG (a, type)
411 # endif
412 #endif
413
414 /* Define NAME as a lisp.h inline function that returns TYPE and has
415 arguments declared as ARGDECLS and passed as ARGS. ARGDECLS and
416 ARGS should be parenthesized. Implement the function by calling
417 lisp_h_NAME ARGS. */
418 #define LISP_MACRO_DEFUN(name, type, argdecls, args) \
419 INLINE type (name) argdecls { return lisp_h_##name args; }
420
421 /* like LISP_MACRO_DEFUN, except NAME returns void. */
422 #define LISP_MACRO_DEFUN_VOID(name, argdecls, args) \
423 INLINE void (name) argdecls { lisp_h_##name args; }
424
425
426 /* Define the fundamental Lisp data structures. */
427
428 /* This is the set of Lisp data types. If you want to define a new
429 data type, read the comments after Lisp_Fwd_Type definition
430 below. */
431
432 /* Lisp integers use 2 tags, to give them one extra bit, thus
433 extending their range from, e.g., -2^28..2^28-1 to -2^29..2^29-1. */
434 #define INTMASK (EMACS_INT_MAX >> (INTTYPEBITS - 1))
435 #define case_Lisp_Int case Lisp_Int0: case Lisp_Int1
436
437 /* Idea stolen from GDB. Pedantic GCC complains about enum bitfields,
438 MSVC doesn't support them, and xlc and Oracle Studio c99 complain
439 vociferously about them. */
440 #if (defined __STRICT_ANSI__ || defined _MSC_VER || defined __IBMC__ \
441 || (defined __SUNPRO_C && __STDC__))
442 #define ENUM_BF(TYPE) unsigned int
443 #else
444 #define ENUM_BF(TYPE) enum TYPE
445 #endif
446
447
448 enum Lisp_Type
449 {
450 /* Symbol. XSYMBOL (object) points to a struct Lisp_Symbol. */
451 Lisp_Symbol = 0,
452
453 /* Miscellaneous. XMISC (object) points to a union Lisp_Misc,
454 whose first member indicates the subtype. */
455 Lisp_Misc = 1,
456
457 /* Integer. XINT (obj) is the integer value. */
458 Lisp_Int0 = 2,
459 Lisp_Int1 = USE_LSB_TAG ? 6 : 3,
460
461 /* String. XSTRING (object) points to a struct Lisp_String.
462 The length of the string, and its contents, are stored therein. */
463 Lisp_String = 4,
464
465 /* Vector of Lisp objects, or something resembling it.
466 XVECTOR (object) points to a struct Lisp_Vector, which contains
467 the size and contents. The size field also contains the type
468 information, if it's not a real vector object. */
469 Lisp_Vectorlike = 5,
470
471 /* Cons. XCONS (object) points to a struct Lisp_Cons. */
472 Lisp_Cons = USE_LSB_TAG ? 3 : 6,
473
474 Lisp_Float = 7
475 };
476
477 /* This is the set of data types that share a common structure.
478 The first member of the structure is a type code from this set.
479 The enum values are arbitrary, but we'll use large numbers to make it
480 more likely that we'll spot the error if a random word in memory is
481 mistakenly interpreted as a Lisp_Misc. */
482 enum Lisp_Misc_Type
483 {
484 Lisp_Misc_Free = 0x5eab,
485 Lisp_Misc_Marker,
486 Lisp_Misc_Overlay,
487 Lisp_Misc_Save_Value,
488 Lisp_Misc_Finalizer,
489 /* Currently floats are not a misc type,
490 but let's define this in case we want to change that. */
491 Lisp_Misc_Float,
492 /* This is not a type code. It is for range checking. */
493 Lisp_Misc_Limit
494 };
495
496 /* These are the types of forwarding objects used in the value slot
497 of symbols for special built-in variables whose value is stored in
498 C variables. */
499 enum Lisp_Fwd_Type
500 {
501 Lisp_Fwd_Int, /* Fwd to a C `int' variable. */
502 Lisp_Fwd_Bool, /* Fwd to a C boolean var. */
503 Lisp_Fwd_Obj, /* Fwd to a C Lisp_Object variable. */
504 Lisp_Fwd_Buffer_Obj, /* Fwd to a Lisp_Object field of buffers. */
505 Lisp_Fwd_Kboard_Obj /* Fwd to a Lisp_Object field of kboards. */
506 };
507
508 /* If you want to define a new Lisp data type, here are some
509 instructions. See the thread at
510 http://lists.gnu.org/archive/html/emacs-devel/2012-10/msg00561.html
511 for more info.
512
513 First, there are already a couple of Lisp types that can be used if
514 your new type does not need to be exposed to Lisp programs nor
515 displayed to users. These are Lisp_Save_Value, a Lisp_Misc
516 subtype; and PVEC_OTHER, a kind of vectorlike object. The former
517 is suitable for temporarily stashing away pointers and integers in
518 a Lisp object. The latter is useful for vector-like Lisp objects
519 that need to be used as part of other objects, but which are never
520 shown to users or Lisp code (search for PVEC_OTHER in xterm.c for
521 an example).
522
523 These two types don't look pretty when printed, so they are
524 unsuitable for Lisp objects that can be exposed to users.
525
526 To define a new data type, add one more Lisp_Misc subtype or one
527 more pseudovector subtype. Pseudovectors are more suitable for
528 objects with several slots that need to support fast random access,
529 while Lisp_Misc types are for everything else. A pseudovector object
530 provides one or more slots for Lisp objects, followed by struct
531 members that are accessible only from C. A Lisp_Misc object is a
532 wrapper for a C struct that can contain anything you like.
533
534 Explicit freeing is discouraged for Lisp objects in general. But if
535 you really need to exploit this, use Lisp_Misc (check free_misc in
536 alloc.c to see why). There is no way to free a vectorlike object.
537
538 To add a new pseudovector type, extend the pvec_type enumeration;
539 to add a new Lisp_Misc, extend the Lisp_Misc_Type enumeration.
540
541 For a Lisp_Misc, you will also need to add your entry to union
542 Lisp_Misc (but make sure the first word has the same structure as
543 the others, starting with a 16-bit member of the Lisp_Misc_Type
544 enumeration and a 1-bit GC markbit) and make sure the overall size
545 of the union is not increased by your addition.
546
547 For a new pseudovector, it's highly desirable to limit the size
548 of your data type by VBLOCK_BYTES_MAX bytes (defined in alloc.c).
549 Otherwise you will need to change sweep_vectors (also in alloc.c).
550
551 Then you will need to add switch branches in print.c (in
552 print_object, to print your object, and possibly also in
553 print_preprocess) and to alloc.c, to mark your object (in
554 mark_object) and to free it (in gc_sweep). The latter is also the
555 right place to call any code specific to your data type that needs
556 to run when the object is recycled -- e.g., free any additional
557 resources allocated for it that are not Lisp objects. You can even
558 make a pointer to the function that frees the resources a slot in
559 your object -- this way, the same object could be used to represent
560 several disparate C structures. */
561
562 #ifdef CHECK_LISP_OBJECT_TYPE
563
564 typedef struct { EMACS_INT i; } Lisp_Object;
565
566 #define LISP_INITIALLY(i) {i}
567
568 #undef CHECK_LISP_OBJECT_TYPE
569 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = true };
570 #else /* CHECK_LISP_OBJECT_TYPE */
571
572 /* If a struct type is not wanted, define Lisp_Object as just a number. */
573
574 typedef EMACS_INT Lisp_Object;
575 #define LISP_INITIALLY(i) (i)
576 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = false };
577 #endif /* CHECK_LISP_OBJECT_TYPE */
578
579 #define LISP_INITIALLY_ZERO LISP_INITIALLY (0)
580 \f
581 /* Forward declarations. */
582
583 /* Defined in this file. */
584 union Lisp_Fwd;
585 INLINE bool BOOL_VECTOR_P (Lisp_Object);
586 INLINE bool BUFFER_OBJFWDP (union Lisp_Fwd *);
587 INLINE bool BUFFERP (Lisp_Object);
588 INLINE bool CHAR_TABLE_P (Lisp_Object);
589 INLINE Lisp_Object CHAR_TABLE_REF_ASCII (Lisp_Object, ptrdiff_t);
590 INLINE bool (CONSP) (Lisp_Object);
591 INLINE bool (FLOATP) (Lisp_Object);
592 INLINE bool functionp (Lisp_Object);
593 INLINE bool (INTEGERP) (Lisp_Object);
594 INLINE bool (MARKERP) (Lisp_Object);
595 INLINE bool (MISCP) (Lisp_Object);
596 INLINE bool (NILP) (Lisp_Object);
597 INLINE bool OVERLAYP (Lisp_Object);
598 INLINE bool PROCESSP (Lisp_Object);
599 INLINE bool PSEUDOVECTORP (Lisp_Object, int);
600 INLINE bool SAVE_VALUEP (Lisp_Object);
601 INLINE bool FINALIZERP (Lisp_Object);
602 INLINE void set_sub_char_table_contents (Lisp_Object, ptrdiff_t,
603 Lisp_Object);
604 INLINE bool STRINGP (Lisp_Object);
605 INLINE bool SUB_CHAR_TABLE_P (Lisp_Object);
606 INLINE bool SUBRP (Lisp_Object);
607 INLINE bool (SYMBOLP) (Lisp_Object);
608 INLINE bool (VECTORLIKEP) (Lisp_Object);
609 INLINE bool WINDOWP (Lisp_Object);
610 INLINE bool TERMINALP (Lisp_Object);
611 INLINE struct Lisp_Save_Value *XSAVE_VALUE (Lisp_Object);
612 INLINE struct Lisp_Finalizer *XFINALIZER (Lisp_Object);
613 INLINE struct Lisp_Symbol *(XSYMBOL) (Lisp_Object);
614 INLINE void *(XUNTAG) (Lisp_Object, int);
615
616 /* Defined in chartab.c. */
617 extern Lisp_Object char_table_ref (Lisp_Object, int);
618 extern void char_table_set (Lisp_Object, int, Lisp_Object);
619
620 /* Defined in data.c. */
621 extern _Noreturn Lisp_Object wrong_type_argument (Lisp_Object, Lisp_Object);
622 extern _Noreturn void wrong_choice (Lisp_Object, Lisp_Object);
623
624 /* Defined in emacs.c. */
625 extern bool might_dump;
626 /* True means Emacs has already been initialized.
627 Used during startup to detect startup of dumped Emacs. */
628 extern bool initialized;
629
630 /* Defined in floatfns.c. */
631 extern double extract_float (Lisp_Object);
632
633 \f
634 /* Interned state of a symbol. */
635
636 enum symbol_interned
637 {
638 SYMBOL_UNINTERNED = 0,
639 SYMBOL_INTERNED = 1,
640 SYMBOL_INTERNED_IN_INITIAL_OBARRAY = 2
641 };
642
643 enum symbol_redirect
644 {
645 SYMBOL_PLAINVAL = 4,
646 SYMBOL_VARALIAS = 1,
647 SYMBOL_LOCALIZED = 2,
648 SYMBOL_FORWARDED = 3
649 };
650
651 struct Lisp_Symbol
652 {
653 bool_bf gcmarkbit : 1;
654
655 /* Indicates where the value can be found:
656 0 : it's a plain var, the value is in the `value' field.
657 1 : it's a varalias, the value is really in the `alias' symbol.
658 2 : it's a localized var, the value is in the `blv' object.
659 3 : it's a forwarding variable, the value is in `forward'. */
660 ENUM_BF (symbol_redirect) redirect : 3;
661
662 /* Non-zero means symbol is constant, i.e. changing its value
663 should signal an error. If the value is 3, then the var
664 can be changed, but only by `defconst'. */
665 unsigned constant : 2;
666
667 /* Interned state of the symbol. This is an enumerator from
668 enum symbol_interned. */
669 unsigned interned : 2;
670
671 /* True means that this variable has been explicitly declared
672 special (with `defvar' etc), and shouldn't be lexically bound. */
673 bool_bf declared_special : 1;
674
675 /* True if pointed to from purespace and hence can't be GC'd. */
676 bool_bf pinned : 1;
677
678 /* The symbol's name, as a Lisp string. */
679 Lisp_Object name;
680
681 /* Value of the symbol or Qunbound if unbound. Which alternative of the
682 union is used depends on the `redirect' field above. */
683 union {
684 Lisp_Object value;
685 struct Lisp_Symbol *alias;
686 struct Lisp_Buffer_Local_Value *blv;
687 union Lisp_Fwd *fwd;
688 } val;
689
690 /* Function value of the symbol or Qnil if not fboundp. */
691 Lisp_Object function;
692
693 /* The symbol's property list. */
694 Lisp_Object plist;
695
696 /* Next symbol in obarray bucket, if the symbol is interned. */
697 struct Lisp_Symbol *next;
698 };
699
700 /* Declare a Lisp-callable function. The MAXARGS parameter has the same
701 meaning as in the DEFUN macro, and is used to construct a prototype. */
702 /* We can use the same trick as in the DEFUN macro to generate the
703 appropriate prototype. */
704 #define EXFUN(fnname, maxargs) \
705 extern Lisp_Object fnname DEFUN_ARGS_ ## maxargs
706
707 /* Note that the weird token-substitution semantics of ANSI C makes
708 this work for MANY and UNEVALLED. */
709 #define DEFUN_ARGS_MANY (ptrdiff_t, Lisp_Object *)
710 #define DEFUN_ARGS_UNEVALLED (Lisp_Object)
711 #define DEFUN_ARGS_0 (void)
712 #define DEFUN_ARGS_1 (Lisp_Object)
713 #define DEFUN_ARGS_2 (Lisp_Object, Lisp_Object)
714 #define DEFUN_ARGS_3 (Lisp_Object, Lisp_Object, Lisp_Object)
715 #define DEFUN_ARGS_4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
716 #define DEFUN_ARGS_5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
717 Lisp_Object)
718 #define DEFUN_ARGS_6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
719 Lisp_Object, Lisp_Object)
720 #define DEFUN_ARGS_7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
721 Lisp_Object, Lisp_Object, Lisp_Object)
722 #define DEFUN_ARGS_8 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
723 Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
724
725 /* Yield an integer that contains TAG along with PTR. */
726 #define TAG_PTR(tag, ptr) \
727 ((USE_LSB_TAG ? (tag) : (EMACS_UINT) (tag) << VALBITS) + (uintptr_t) (ptr))
728
729 /* Yield an integer that contains a symbol tag along with OFFSET.
730 OFFSET should be the offset in bytes from 'lispsym' to the symbol. */
731 #define TAG_SYMOFFSET(offset) TAG_PTR (Lisp_Symbol, offset)
732
733 /* XLI_BUILTIN_LISPSYM (iQwhatever) is equivalent to
734 XLI (builtin_lisp_symbol (Qwhatever)),
735 except the former expands to an integer constant expression. */
736 #define XLI_BUILTIN_LISPSYM(iname) TAG_SYMOFFSET ((iname) * sizeof *lispsym)
737
738 /* Declare extern constants for Lisp symbols. These can be helpful
739 when using a debugger like GDB, on older platforms where the debug
740 format does not represent C macros. */
741 #define DEFINE_LISP_SYMBOL(name) \
742 DEFINE_GDB_SYMBOL_BEGIN (Lisp_Object, name) \
743 DEFINE_GDB_SYMBOL_END (LISP_INITIALLY (XLI_BUILTIN_LISPSYM (i##name)))
744
745 /* By default, define macros for Qt, etc., as this leads to a bit
746 better performance in the core Emacs interpreter. A plugin can
747 define DEFINE_NON_NIL_Q_SYMBOL_MACROS to be false, to be portable to
748 other Emacs instances that assign different values to Qt, etc. */
749 #ifndef DEFINE_NON_NIL_Q_SYMBOL_MACROS
750 # define DEFINE_NON_NIL_Q_SYMBOL_MACROS true
751 #endif
752
753 #include "globals.h"
754
755 /* Convert a Lisp_Object to the corresponding EMACS_INT and vice versa.
756 At the machine level, these operations are no-ops. */
757 LISP_MACRO_DEFUN (XLI, EMACS_INT, (Lisp_Object o), (o))
758 LISP_MACRO_DEFUN (XIL, Lisp_Object, (EMACS_INT i), (i))
759
760 /* In the size word of a vector, this bit means the vector has been marked. */
761
762 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, ARRAY_MARK_FLAG)
763 # define ARRAY_MARK_FLAG PTRDIFF_MIN
764 DEFINE_GDB_SYMBOL_END (ARRAY_MARK_FLAG)
765
766 /* In the size word of a struct Lisp_Vector, this bit means it's really
767 some other vector-like object. */
768 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, PSEUDOVECTOR_FLAG)
769 # define PSEUDOVECTOR_FLAG (PTRDIFF_MAX - PTRDIFF_MAX / 2)
770 DEFINE_GDB_SYMBOL_END (PSEUDOVECTOR_FLAG)
771
772 /* In a pseudovector, the size field actually contains a word with one
773 PSEUDOVECTOR_FLAG bit set, and one of the following values extracted
774 with PVEC_TYPE_MASK to indicate the actual type. */
775 enum pvec_type
776 {
777 PVEC_NORMAL_VECTOR,
778 PVEC_FREE,
779 PVEC_PROCESS,
780 PVEC_FRAME,
781 PVEC_WINDOW,
782 PVEC_BOOL_VECTOR,
783 PVEC_BUFFER,
784 PVEC_HASH_TABLE,
785 PVEC_TERMINAL,
786 PVEC_WINDOW_CONFIGURATION,
787 PVEC_SUBR,
788 PVEC_OTHER,
789 /* These should be last, check internal_equal to see why. */
790 PVEC_COMPILED,
791 PVEC_CHAR_TABLE,
792 PVEC_SUB_CHAR_TABLE,
793 PVEC_FONT /* Should be last because it's used for range checking. */
794 };
795
796 enum More_Lisp_Bits
797 {
798 /* For convenience, we also store the number of elements in these bits.
799 Note that this size is not necessarily the memory-footprint size, but
800 only the number of Lisp_Object fields (that need to be traced by GC).
801 The distinction is used, e.g., by Lisp_Process, which places extra
802 non-Lisp_Object fields at the end of the structure. */
803 PSEUDOVECTOR_SIZE_BITS = 12,
804 PSEUDOVECTOR_SIZE_MASK = (1 << PSEUDOVECTOR_SIZE_BITS) - 1,
805
806 /* To calculate the memory footprint of the pseudovector, it's useful
807 to store the size of non-Lisp area in word_size units here. */
808 PSEUDOVECTOR_REST_BITS = 12,
809 PSEUDOVECTOR_REST_MASK = (((1 << PSEUDOVECTOR_REST_BITS) - 1)
810 << PSEUDOVECTOR_SIZE_BITS),
811
812 /* Used to extract pseudovector subtype information. */
813 PSEUDOVECTOR_AREA_BITS = PSEUDOVECTOR_SIZE_BITS + PSEUDOVECTOR_REST_BITS,
814 PVEC_TYPE_MASK = 0x3f << PSEUDOVECTOR_AREA_BITS
815 };
816 \f
817 /* These functions extract various sorts of values from a Lisp_Object.
818 For example, if tem is a Lisp_Object whose type is Lisp_Cons,
819 XCONS (tem) is the struct Lisp_Cons * pointing to the memory for
820 that cons. */
821
822 /* Mask for the value (as opposed to the type bits) of a Lisp object. */
823 DEFINE_GDB_SYMBOL_BEGIN (EMACS_INT, VALMASK)
824 # define VALMASK (USE_LSB_TAG ? - (1 << GCTYPEBITS) : VAL_MAX)
825 DEFINE_GDB_SYMBOL_END (VALMASK)
826
827 /* Largest and smallest representable fixnum values. These are the C
828 values. They are macros for use in static initializers. */
829 #define MOST_POSITIVE_FIXNUM (EMACS_INT_MAX >> INTTYPEBITS)
830 #define MOST_NEGATIVE_FIXNUM (-1 - MOST_POSITIVE_FIXNUM)
831
832 #if USE_LSB_TAG
833
834 LISP_MACRO_DEFUN (make_number, Lisp_Object, (EMACS_INT n), (n))
835 LISP_MACRO_DEFUN (XINT, EMACS_INT, (Lisp_Object a), (a))
836 LISP_MACRO_DEFUN (XFASTINT, EMACS_INT, (Lisp_Object a), (a))
837 LISP_MACRO_DEFUN (XSYMBOL, struct Lisp_Symbol *, (Lisp_Object a), (a))
838 LISP_MACRO_DEFUN (XTYPE, enum Lisp_Type, (Lisp_Object a), (a))
839 LISP_MACRO_DEFUN (XUNTAG, void *, (Lisp_Object a, int type), (a, type))
840
841 #else /* ! USE_LSB_TAG */
842
843 /* Although compiled only if ! USE_LSB_TAG, the following functions
844 also work when USE_LSB_TAG; this is to aid future maintenance when
845 the lisp_h_* macros are eventually removed. */
846
847 /* Make a Lisp integer representing the value of the low order
848 bits of N. */
849 INLINE Lisp_Object
850 make_number (EMACS_INT n)
851 {
852 EMACS_INT int0 = Lisp_Int0;
853 if (USE_LSB_TAG)
854 {
855 EMACS_UINT u = n;
856 n = u << INTTYPEBITS;
857 n += int0;
858 }
859 else
860 {
861 n &= INTMASK;
862 n += (int0 << VALBITS);
863 }
864 return XIL (n);
865 }
866
867 /* Extract A's value as a signed integer. */
868 INLINE EMACS_INT
869 XINT (Lisp_Object a)
870 {
871 EMACS_INT i = XLI (a);
872 if (! USE_LSB_TAG)
873 {
874 EMACS_UINT u = i;
875 i = u << INTTYPEBITS;
876 }
877 return i >> INTTYPEBITS;
878 }
879
880 /* Like XINT (A), but may be faster. A must be nonnegative.
881 If ! USE_LSB_TAG, this takes advantage of the fact that Lisp
882 integers have zero-bits in their tags. */
883 INLINE EMACS_INT
884 XFASTINT (Lisp_Object a)
885 {
886 EMACS_INT int0 = Lisp_Int0;
887 EMACS_INT n = USE_LSB_TAG ? XINT (a) : XLI (a) - (int0 << VALBITS);
888 eassert (0 <= n);
889 return n;
890 }
891
892 /* Extract A's value as a symbol. */
893 INLINE struct Lisp_Symbol *
894 XSYMBOL (Lisp_Object a)
895 {
896 uintptr_t i = (uintptr_t) XUNTAG (a, Lisp_Symbol);
897 void *p = (char *) lispsym + i;
898 return p;
899 }
900
901 /* Extract A's type. */
902 INLINE enum Lisp_Type
903 XTYPE (Lisp_Object a)
904 {
905 EMACS_UINT i = XLI (a);
906 return USE_LSB_TAG ? i & ~VALMASK : i >> VALBITS;
907 }
908
909 /* Extract A's pointer value, assuming A's type is TYPE. */
910 INLINE void *
911 XUNTAG (Lisp_Object a, int type)
912 {
913 intptr_t i = USE_LSB_TAG ? XLI (a) - type : XLI (a) & VALMASK;
914 return (void *) i;
915 }
916
917 #endif /* ! USE_LSB_TAG */
918
919 /* Extract the pointer hidden within A. */
920 LISP_MACRO_DEFUN (XPNTR, void *, (Lisp_Object a), (a))
921
922 /* Extract A's value as an unsigned integer. */
923 INLINE EMACS_UINT
924 XUINT (Lisp_Object a)
925 {
926 EMACS_UINT i = XLI (a);
927 return USE_LSB_TAG ? i >> INTTYPEBITS : i & INTMASK;
928 }
929
930 /* Return A's (Lisp-integer sized) hash. Happens to be like XUINT
931 right now, but XUINT should only be applied to objects we know are
932 integers. */
933 LISP_MACRO_DEFUN (XHASH, EMACS_INT, (Lisp_Object a), (a))
934
935 /* Like make_number (N), but may be faster. N must be in nonnegative range. */
936 INLINE Lisp_Object
937 make_natnum (EMACS_INT n)
938 {
939 eassert (0 <= n && n <= MOST_POSITIVE_FIXNUM);
940 EMACS_INT int0 = Lisp_Int0;
941 return USE_LSB_TAG ? make_number (n) : XIL (n + (int0 << VALBITS));
942 }
943
944 /* Return true if X and Y are the same object. */
945 LISP_MACRO_DEFUN (EQ, bool, (Lisp_Object x, Lisp_Object y), (x, y))
946
947 /* Value is true if I doesn't fit into a Lisp fixnum. It is
948 written this way so that it also works if I is of unsigned
949 type or if I is a NaN. */
950
951 #define FIXNUM_OVERFLOW_P(i) \
952 (! ((0 <= (i) || MOST_NEGATIVE_FIXNUM <= (i)) && (i) <= MOST_POSITIVE_FIXNUM))
953
954 INLINE ptrdiff_t
955 clip_to_bounds (ptrdiff_t lower, EMACS_INT num, ptrdiff_t upper)
956 {
957 return num < lower ? lower : num <= upper ? num : upper;
958 }
959 \f
960
961 /* Extract a value or address from a Lisp_Object. */
962
963 LISP_MACRO_DEFUN (XCONS, struct Lisp_Cons *, (Lisp_Object a), (a))
964
965 INLINE struct Lisp_Vector *
966 XVECTOR (Lisp_Object a)
967 {
968 eassert (VECTORLIKEP (a));
969 return XUNTAG (a, Lisp_Vectorlike);
970 }
971
972 INLINE struct Lisp_String *
973 XSTRING (Lisp_Object a)
974 {
975 eassert (STRINGP (a));
976 return XUNTAG (a, Lisp_String);
977 }
978
979 /* The index of the C-defined Lisp symbol SYM.
980 This can be used in a static initializer. */
981 #define SYMBOL_INDEX(sym) i##sym
982
983 INLINE struct Lisp_Float *
984 XFLOAT (Lisp_Object a)
985 {
986 eassert (FLOATP (a));
987 return XUNTAG (a, Lisp_Float);
988 }
989
990 /* Pseudovector types. */
991
992 INLINE struct Lisp_Process *
993 XPROCESS (Lisp_Object a)
994 {
995 eassert (PROCESSP (a));
996 return XUNTAG (a, Lisp_Vectorlike);
997 }
998
999 INLINE struct window *
1000 XWINDOW (Lisp_Object a)
1001 {
1002 eassert (WINDOWP (a));
1003 return XUNTAG (a, Lisp_Vectorlike);
1004 }
1005
1006 INLINE struct terminal *
1007 XTERMINAL (Lisp_Object a)
1008 {
1009 eassert (TERMINALP (a));
1010 return XUNTAG (a, Lisp_Vectorlike);
1011 }
1012
1013 INLINE struct Lisp_Subr *
1014 XSUBR (Lisp_Object a)
1015 {
1016 eassert (SUBRP (a));
1017 return XUNTAG (a, Lisp_Vectorlike);
1018 }
1019
1020 INLINE struct buffer *
1021 XBUFFER (Lisp_Object a)
1022 {
1023 eassert (BUFFERP (a));
1024 return XUNTAG (a, Lisp_Vectorlike);
1025 }
1026
1027 INLINE struct Lisp_Char_Table *
1028 XCHAR_TABLE (Lisp_Object a)
1029 {
1030 eassert (CHAR_TABLE_P (a));
1031 return XUNTAG (a, Lisp_Vectorlike);
1032 }
1033
1034 INLINE struct Lisp_Sub_Char_Table *
1035 XSUB_CHAR_TABLE (Lisp_Object a)
1036 {
1037 eassert (SUB_CHAR_TABLE_P (a));
1038 return XUNTAG (a, Lisp_Vectorlike);
1039 }
1040
1041 INLINE struct Lisp_Bool_Vector *
1042 XBOOL_VECTOR (Lisp_Object a)
1043 {
1044 eassert (BOOL_VECTOR_P (a));
1045 return XUNTAG (a, Lisp_Vectorlike);
1046 }
1047
1048 /* Construct a Lisp_Object from a value or address. */
1049
1050 INLINE Lisp_Object
1051 make_lisp_ptr (void *ptr, enum Lisp_Type type)
1052 {
1053 Lisp_Object a = XIL (TAG_PTR (type, ptr));
1054 eassert (XTYPE (a) == type && XUNTAG (a, type) == ptr);
1055 return a;
1056 }
1057
1058 INLINE Lisp_Object
1059 make_lisp_symbol (struct Lisp_Symbol *sym)
1060 {
1061 Lisp_Object a = XIL (TAG_SYMOFFSET ((char *) sym - (char *) lispsym));
1062 eassert (XSYMBOL (a) == sym);
1063 return a;
1064 }
1065
1066 INLINE Lisp_Object
1067 builtin_lisp_symbol (int index)
1068 {
1069 return make_lisp_symbol (lispsym + index);
1070 }
1071
1072 #define XSETINT(a, b) ((a) = make_number (b))
1073 #define XSETFASTINT(a, b) ((a) = make_natnum (b))
1074 #define XSETCONS(a, b) ((a) = make_lisp_ptr (b, Lisp_Cons))
1075 #define XSETVECTOR(a, b) ((a) = make_lisp_ptr (b, Lisp_Vectorlike))
1076 #define XSETSTRING(a, b) ((a) = make_lisp_ptr (b, Lisp_String))
1077 #define XSETSYMBOL(a, b) ((a) = make_lisp_symbol (b))
1078 #define XSETFLOAT(a, b) ((a) = make_lisp_ptr (b, Lisp_Float))
1079 #define XSETMISC(a, b) ((a) = make_lisp_ptr (b, Lisp_Misc))
1080
1081 /* Pseudovector types. */
1082
1083 #define XSETPVECTYPE(v, code) \
1084 ((v)->header.size |= PSEUDOVECTOR_FLAG | ((code) << PSEUDOVECTOR_AREA_BITS))
1085 #define XSETPVECTYPESIZE(v, code, lispsize, restsize) \
1086 ((v)->header.size = (PSEUDOVECTOR_FLAG \
1087 | ((code) << PSEUDOVECTOR_AREA_BITS) \
1088 | ((restsize) << PSEUDOVECTOR_SIZE_BITS) \
1089 | (lispsize)))
1090
1091 /* The cast to struct vectorlike_header * avoids aliasing issues. */
1092 #define XSETPSEUDOVECTOR(a, b, code) \
1093 XSETTYPED_PSEUDOVECTOR (a, b, \
1094 (((struct vectorlike_header *) \
1095 XUNTAG (a, Lisp_Vectorlike)) \
1096 ->size), \
1097 code)
1098 #define XSETTYPED_PSEUDOVECTOR(a, b, size, code) \
1099 (XSETVECTOR (a, b), \
1100 eassert ((size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK)) \
1101 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS))))
1102
1103 #define XSETWINDOW_CONFIGURATION(a, b) \
1104 (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW_CONFIGURATION))
1105 #define XSETPROCESS(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_PROCESS))
1106 #define XSETWINDOW(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW))
1107 #define XSETTERMINAL(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_TERMINAL))
1108 #define XSETSUBR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUBR))
1109 #define XSETCOMPILED(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_COMPILED))
1110 #define XSETBUFFER(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BUFFER))
1111 #define XSETCHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_CHAR_TABLE))
1112 #define XSETBOOL_VECTOR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BOOL_VECTOR))
1113 #define XSETSUB_CHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUB_CHAR_TABLE))
1114
1115 /* Efficiently convert a pointer to a Lisp object and back. The
1116 pointer is represented as a Lisp integer, so the garbage collector
1117 does not know about it. The pointer should not have both Lisp_Int1
1118 bits set, which makes this conversion inherently unportable. */
1119
1120 INLINE void *
1121 XINTPTR (Lisp_Object a)
1122 {
1123 return XUNTAG (a, Lisp_Int0);
1124 }
1125
1126 INLINE Lisp_Object
1127 make_pointer_integer (void *p)
1128 {
1129 Lisp_Object a = XIL (TAG_PTR (Lisp_Int0, p));
1130 eassert (INTEGERP (a) && XINTPTR (a) == p);
1131 return a;
1132 }
1133
1134 /* Type checking. */
1135
1136 LISP_MACRO_DEFUN_VOID (CHECK_TYPE,
1137 (int ok, Lisp_Object predicate, Lisp_Object x),
1138 (ok, predicate, x))
1139
1140 /* See the macros in intervals.h. */
1141
1142 typedef struct interval *INTERVAL;
1143
1144 struct GCALIGNED Lisp_Cons
1145 {
1146 /* Car of this cons cell. */
1147 Lisp_Object car;
1148
1149 union
1150 {
1151 /* Cdr of this cons cell. */
1152 Lisp_Object cdr;
1153
1154 /* Used to chain conses on a free list. */
1155 struct Lisp_Cons *chain;
1156 } u;
1157 };
1158
1159 /* Take the car or cdr of something known to be a cons cell. */
1160 /* The _addr functions shouldn't be used outside of the minimal set
1161 of code that has to know what a cons cell looks like. Other code not
1162 part of the basic lisp implementation should assume that the car and cdr
1163 fields are not accessible. (What if we want to switch to
1164 a copying collector someday? Cached cons cell field addresses may be
1165 invalidated at arbitrary points.) */
1166 INLINE Lisp_Object *
1167 xcar_addr (Lisp_Object c)
1168 {
1169 return &XCONS (c)->car;
1170 }
1171 INLINE Lisp_Object *
1172 xcdr_addr (Lisp_Object c)
1173 {
1174 return &XCONS (c)->u.cdr;
1175 }
1176
1177 /* Use these from normal code. */
1178 LISP_MACRO_DEFUN (XCAR, Lisp_Object, (Lisp_Object c), (c))
1179 LISP_MACRO_DEFUN (XCDR, Lisp_Object, (Lisp_Object c), (c))
1180
1181 /* Use these to set the fields of a cons cell.
1182
1183 Note that both arguments may refer to the same object, so 'n'
1184 should not be read after 'c' is first modified. */
1185 INLINE void
1186 XSETCAR (Lisp_Object c, Lisp_Object n)
1187 {
1188 *xcar_addr (c) = n;
1189 }
1190 INLINE void
1191 XSETCDR (Lisp_Object c, Lisp_Object n)
1192 {
1193 *xcdr_addr (c) = n;
1194 }
1195
1196 /* Take the car or cdr of something whose type is not known. */
1197 INLINE Lisp_Object
1198 CAR (Lisp_Object c)
1199 {
1200 return (CONSP (c) ? XCAR (c)
1201 : NILP (c) ? Qnil
1202 : wrong_type_argument (Qlistp, c));
1203 }
1204 INLINE Lisp_Object
1205 CDR (Lisp_Object c)
1206 {
1207 return (CONSP (c) ? XCDR (c)
1208 : NILP (c) ? Qnil
1209 : wrong_type_argument (Qlistp, c));
1210 }
1211
1212 /* Take the car or cdr of something whose type is not known. */
1213 INLINE Lisp_Object
1214 CAR_SAFE (Lisp_Object c)
1215 {
1216 return CONSP (c) ? XCAR (c) : Qnil;
1217 }
1218 INLINE Lisp_Object
1219 CDR_SAFE (Lisp_Object c)
1220 {
1221 return CONSP (c) ? XCDR (c) : Qnil;
1222 }
1223
1224 /* In a string or vector, the sign bit of the `size' is the gc mark bit. */
1225
1226 struct GCALIGNED Lisp_String
1227 {
1228 ptrdiff_t size;
1229 ptrdiff_t size_byte;
1230 INTERVAL intervals; /* Text properties in this string. */
1231 unsigned char *data;
1232 };
1233
1234 /* True if STR is a multibyte string. */
1235 INLINE bool
1236 STRING_MULTIBYTE (Lisp_Object str)
1237 {
1238 return 0 <= XSTRING (str)->size_byte;
1239 }
1240
1241 /* An upper bound on the number of bytes in a Lisp string, not
1242 counting the terminating null. This a tight enough bound to
1243 prevent integer overflow errors that would otherwise occur during
1244 string size calculations. A string cannot contain more bytes than
1245 a fixnum can represent, nor can it be so long that C pointer
1246 arithmetic stops working on the string plus its terminating null.
1247 Although the actual size limit (see STRING_BYTES_MAX in alloc.c)
1248 may be a bit smaller than STRING_BYTES_BOUND, calculating it here
1249 would expose alloc.c internal details that we'd rather keep
1250 private.
1251
1252 This is a macro for use in static initializers. The cast to
1253 ptrdiff_t ensures that the macro is signed. */
1254 #define STRING_BYTES_BOUND \
1255 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, min (SIZE_MAX, PTRDIFF_MAX) - 1))
1256
1257 /* Mark STR as a unibyte string. */
1258 #define STRING_SET_UNIBYTE(STR) \
1259 do { \
1260 if (EQ (STR, empty_multibyte_string)) \
1261 (STR) = empty_unibyte_string; \
1262 else \
1263 XSTRING (STR)->size_byte = -1; \
1264 } while (false)
1265
1266 /* Mark STR as a multibyte string. Assure that STR contains only
1267 ASCII characters in advance. */
1268 #define STRING_SET_MULTIBYTE(STR) \
1269 do { \
1270 if (EQ (STR, empty_unibyte_string)) \
1271 (STR) = empty_multibyte_string; \
1272 else \
1273 XSTRING (STR)->size_byte = XSTRING (STR)->size; \
1274 } while (false)
1275
1276 /* Convenience functions for dealing with Lisp strings. */
1277
1278 INLINE unsigned char *
1279 SDATA (Lisp_Object string)
1280 {
1281 return XSTRING (string)->data;
1282 }
1283 INLINE char *
1284 SSDATA (Lisp_Object string)
1285 {
1286 /* Avoid "differ in sign" warnings. */
1287 return (char *) SDATA (string);
1288 }
1289 INLINE unsigned char
1290 SREF (Lisp_Object string, ptrdiff_t index)
1291 {
1292 return SDATA (string)[index];
1293 }
1294 INLINE void
1295 SSET (Lisp_Object string, ptrdiff_t index, unsigned char new)
1296 {
1297 SDATA (string)[index] = new;
1298 }
1299 INLINE ptrdiff_t
1300 SCHARS (Lisp_Object string)
1301 {
1302 return XSTRING (string)->size;
1303 }
1304
1305 #ifdef GC_CHECK_STRING_BYTES
1306 extern ptrdiff_t string_bytes (struct Lisp_String *);
1307 #endif
1308 INLINE ptrdiff_t
1309 STRING_BYTES (struct Lisp_String *s)
1310 {
1311 #ifdef GC_CHECK_STRING_BYTES
1312 return string_bytes (s);
1313 #else
1314 return s->size_byte < 0 ? s->size : s->size_byte;
1315 #endif
1316 }
1317
1318 INLINE ptrdiff_t
1319 SBYTES (Lisp_Object string)
1320 {
1321 return STRING_BYTES (XSTRING (string));
1322 }
1323 INLINE void
1324 STRING_SET_CHARS (Lisp_Object string, ptrdiff_t newsize)
1325 {
1326 XSTRING (string)->size = newsize;
1327 }
1328
1329 /* Header of vector-like objects. This documents the layout constraints on
1330 vectors and pseudovectors (objects of PVEC_xxx subtype). It also prevents
1331 compilers from being fooled by Emacs's type punning: XSETPSEUDOVECTOR
1332 and PSEUDOVECTORP cast their pointers to struct vectorlike_header *,
1333 because when two such pointers potentially alias, a compiler won't
1334 incorrectly reorder loads and stores to their size fields. See
1335 Bug#8546. */
1336 struct vectorlike_header
1337 {
1338 /* The only field contains various pieces of information:
1339 - The MSB (ARRAY_MARK_FLAG) holds the gcmarkbit.
1340 - The next bit (PSEUDOVECTOR_FLAG) indicates whether this is a plain
1341 vector (0) or a pseudovector (1).
1342 - If PSEUDOVECTOR_FLAG is 0, the rest holds the size (number
1343 of slots) of the vector.
1344 - If PSEUDOVECTOR_FLAG is 1, the rest is subdivided into three fields:
1345 - a) pseudovector subtype held in PVEC_TYPE_MASK field;
1346 - b) number of Lisp_Objects slots at the beginning of the object
1347 held in PSEUDOVECTOR_SIZE_MASK field. These objects are always
1348 traced by the GC;
1349 - c) size of the rest fields held in PSEUDOVECTOR_REST_MASK and
1350 measured in word_size units. Rest fields may also include
1351 Lisp_Objects, but these objects usually needs some special treatment
1352 during GC.
1353 There are some exceptions. For PVEC_FREE, b) is always zero. For
1354 PVEC_BOOL_VECTOR and PVEC_SUBR, both b) and c) are always zero.
1355 Current layout limits the pseudovectors to 63 PVEC_xxx subtypes,
1356 4095 Lisp_Objects in GC-ed area and 4095 word-sized other slots. */
1357 ptrdiff_t size;
1358 };
1359
1360 /* A regular vector is just a header plus an array of Lisp_Objects. */
1361
1362 struct Lisp_Vector
1363 {
1364 struct vectorlike_header header;
1365 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1366 };
1367
1368 /* C11 prohibits alignof (struct Lisp_Vector), so compute it manually. */
1369 enum
1370 {
1371 ALIGNOF_STRUCT_LISP_VECTOR
1372 = alignof (union { struct vectorlike_header a; Lisp_Object b; })
1373 };
1374
1375 /* A boolvector is a kind of vectorlike, with contents like a string. */
1376
1377 struct Lisp_Bool_Vector
1378 {
1379 /* HEADER.SIZE is the vector's size field. It doesn't have the real size,
1380 just the subtype information. */
1381 struct vectorlike_header header;
1382 /* This is the size in bits. */
1383 EMACS_INT size;
1384 /* The actual bits, packed into bytes.
1385 Zeros fill out the last word if needed.
1386 The bits are in little-endian order in the bytes, and
1387 the bytes are in little-endian order in the words. */
1388 bits_word data[FLEXIBLE_ARRAY_MEMBER];
1389 };
1390
1391 INLINE EMACS_INT
1392 bool_vector_size (Lisp_Object a)
1393 {
1394 EMACS_INT size = XBOOL_VECTOR (a)->size;
1395 eassume (0 <= size);
1396 return size;
1397 }
1398
1399 INLINE bits_word *
1400 bool_vector_data (Lisp_Object a)
1401 {
1402 return XBOOL_VECTOR (a)->data;
1403 }
1404
1405 INLINE unsigned char *
1406 bool_vector_uchar_data (Lisp_Object a)
1407 {
1408 return (unsigned char *) bool_vector_data (a);
1409 }
1410
1411 /* The number of data words and bytes in a bool vector with SIZE bits. */
1412
1413 INLINE EMACS_INT
1414 bool_vector_words (EMACS_INT size)
1415 {
1416 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1417 return (size + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
1418 }
1419
1420 INLINE EMACS_INT
1421 bool_vector_bytes (EMACS_INT size)
1422 {
1423 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1424 return (size + BOOL_VECTOR_BITS_PER_CHAR - 1) / BOOL_VECTOR_BITS_PER_CHAR;
1425 }
1426
1427 /* True if A's Ith bit is set. */
1428
1429 INLINE bool
1430 bool_vector_bitref (Lisp_Object a, EMACS_INT i)
1431 {
1432 eassume (0 <= i && i < bool_vector_size (a));
1433 return !! (bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR]
1434 & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR)));
1435 }
1436
1437 INLINE Lisp_Object
1438 bool_vector_ref (Lisp_Object a, EMACS_INT i)
1439 {
1440 return bool_vector_bitref (a, i) ? Qt : Qnil;
1441 }
1442
1443 /* Set A's Ith bit to B. */
1444
1445 INLINE void
1446 bool_vector_set (Lisp_Object a, EMACS_INT i, bool b)
1447 {
1448 unsigned char *addr;
1449
1450 eassume (0 <= i && i < bool_vector_size (a));
1451 addr = &bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR];
1452
1453 if (b)
1454 *addr |= 1 << (i % BOOL_VECTOR_BITS_PER_CHAR);
1455 else
1456 *addr &= ~ (1 << (i % BOOL_VECTOR_BITS_PER_CHAR));
1457 }
1458
1459 /* Some handy constants for calculating sizes
1460 and offsets, mostly of vectorlike objects. */
1461
1462 enum
1463 {
1464 header_size = offsetof (struct Lisp_Vector, contents),
1465 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
1466 word_size = sizeof (Lisp_Object)
1467 };
1468
1469 /* Conveniences for dealing with Lisp arrays. */
1470
1471 INLINE Lisp_Object
1472 AREF (Lisp_Object array, ptrdiff_t idx)
1473 {
1474 return XVECTOR (array)->contents[idx];
1475 }
1476
1477 INLINE Lisp_Object *
1478 aref_addr (Lisp_Object array, ptrdiff_t idx)
1479 {
1480 return & XVECTOR (array)->contents[idx];
1481 }
1482
1483 INLINE ptrdiff_t
1484 ASIZE (Lisp_Object array)
1485 {
1486 return XVECTOR (array)->header.size;
1487 }
1488
1489 INLINE void
1490 ASET (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1491 {
1492 eassert (0 <= idx && idx < ASIZE (array));
1493 XVECTOR (array)->contents[idx] = val;
1494 }
1495
1496 INLINE void
1497 gc_aset (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1498 {
1499 /* Like ASET, but also can be used in the garbage collector:
1500 sweep_weak_table calls set_hash_key etc. while the table is marked. */
1501 eassert (0 <= idx && idx < (ASIZE (array) & ~ARRAY_MARK_FLAG));
1502 XVECTOR (array)->contents[idx] = val;
1503 }
1504
1505 /* True, since Qnil's representation is zero. Every place in the code
1506 that assumes Qnil is zero should verify (NIL_IS_ZERO), to make it easy
1507 to find such assumptions later if we change Qnil to be nonzero. */
1508 enum { NIL_IS_ZERO = XLI_BUILTIN_LISPSYM (iQnil) == 0 };
1509
1510 /* Clear the object addressed by P, with size NBYTES, so that all its
1511 bytes are zero and all its Lisp values are nil. */
1512 INLINE void
1513 memclear (void *p, ptrdiff_t nbytes)
1514 {
1515 eassert (0 <= nbytes);
1516 verify (NIL_IS_ZERO);
1517 /* Since Qnil is zero, memset suffices. */
1518 memset (p, 0, nbytes);
1519 }
1520
1521 /* If a struct is made to look like a vector, this macro returns the length
1522 of the shortest vector that would hold that struct. */
1523
1524 #define VECSIZE(type) \
1525 ((sizeof (type) - header_size + word_size - 1) / word_size)
1526
1527 /* Like VECSIZE, but used when the pseudo-vector has non-Lisp_Object fields
1528 at the end and we need to compute the number of Lisp_Object fields (the
1529 ones that the GC needs to trace). */
1530
1531 #define PSEUDOVECSIZE(type, nonlispfield) \
1532 ((offsetof (type, nonlispfield) - header_size) / word_size)
1533
1534 /* Compute A OP B, using the unsigned comparison operator OP. A and B
1535 should be integer expressions. This is not the same as
1536 mathematical comparison; for example, UNSIGNED_CMP (0, <, -1)
1537 returns true. For efficiency, prefer plain unsigned comparison if A
1538 and B's sizes both fit (after integer promotion). */
1539 #define UNSIGNED_CMP(a, op, b) \
1540 (max (sizeof ((a) + 0), sizeof ((b) + 0)) <= sizeof (unsigned) \
1541 ? ((a) + (unsigned) 0) op ((b) + (unsigned) 0) \
1542 : ((a) + (uintmax_t) 0) op ((b) + (uintmax_t) 0))
1543
1544 /* True iff C is an ASCII character. */
1545 #define ASCII_CHAR_P(c) UNSIGNED_CMP (c, <, 0x80)
1546
1547 /* A char-table is a kind of vectorlike, with contents are like a
1548 vector but with a few other slots. For some purposes, it makes
1549 sense to handle a char-table with type struct Lisp_Vector. An
1550 element of a char table can be any Lisp objects, but if it is a sub
1551 char-table, we treat it a table that contains information of a
1552 specific range of characters. A sub char-table is like a vector but
1553 with two integer fields between the header and Lisp data, which means
1554 that it has to be marked with some precautions (see mark_char_table
1555 in alloc.c). A sub char-table appears only in an element of a char-table,
1556 and there's no way to access it directly from Emacs Lisp program. */
1557
1558 enum CHARTAB_SIZE_BITS
1559 {
1560 CHARTAB_SIZE_BITS_0 = 6,
1561 CHARTAB_SIZE_BITS_1 = 4,
1562 CHARTAB_SIZE_BITS_2 = 5,
1563 CHARTAB_SIZE_BITS_3 = 7
1564 };
1565
1566 extern const int chartab_size[4];
1567
1568 struct Lisp_Char_Table
1569 {
1570 /* HEADER.SIZE is the vector's size field, which also holds the
1571 pseudovector type information. It holds the size, too.
1572 The size counts the defalt, parent, purpose, ascii,
1573 contents, and extras slots. */
1574 struct vectorlike_header header;
1575
1576 /* This holds a default value,
1577 which is used whenever the value for a specific character is nil. */
1578 Lisp_Object defalt;
1579
1580 /* This points to another char table, which we inherit from when the
1581 value for a specific character is nil. The `defalt' slot takes
1582 precedence over this. */
1583 Lisp_Object parent;
1584
1585 /* This is a symbol which says what kind of use this char-table is
1586 meant for. */
1587 Lisp_Object purpose;
1588
1589 /* The bottom sub char-table for characters of the range 0..127. It
1590 is nil if none of ASCII character has a specific value. */
1591 Lisp_Object ascii;
1592
1593 Lisp_Object contents[(1 << CHARTAB_SIZE_BITS_0)];
1594
1595 /* These hold additional data. It is a vector. */
1596 Lisp_Object extras[FLEXIBLE_ARRAY_MEMBER];
1597 };
1598
1599 struct Lisp_Sub_Char_Table
1600 {
1601 /* HEADER.SIZE is the vector's size field, which also holds the
1602 pseudovector type information. It holds the size, too. */
1603 struct vectorlike_header header;
1604
1605 /* Depth of this sub char-table. It should be 1, 2, or 3. A sub
1606 char-table of depth 1 contains 16 elements, and each element
1607 covers 4096 (128*32) characters. A sub char-table of depth 2
1608 contains 32 elements, and each element covers 128 characters. A
1609 sub char-table of depth 3 contains 128 elements, and each element
1610 is for one character. */
1611 int depth;
1612
1613 /* Minimum character covered by the sub char-table. */
1614 int min_char;
1615
1616 /* Use set_sub_char_table_contents to set this. */
1617 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1618 };
1619
1620 INLINE Lisp_Object
1621 CHAR_TABLE_REF_ASCII (Lisp_Object ct, ptrdiff_t idx)
1622 {
1623 struct Lisp_Char_Table *tbl = NULL;
1624 Lisp_Object val;
1625 do
1626 {
1627 tbl = tbl ? XCHAR_TABLE (tbl->parent) : XCHAR_TABLE (ct);
1628 val = (! SUB_CHAR_TABLE_P (tbl->ascii) ? tbl->ascii
1629 : XSUB_CHAR_TABLE (tbl->ascii)->contents[idx]);
1630 if (NILP (val))
1631 val = tbl->defalt;
1632 }
1633 while (NILP (val) && ! NILP (tbl->parent));
1634
1635 return val;
1636 }
1637
1638 /* Almost equivalent to Faref (CT, IDX) with optimization for ASCII
1639 characters. Do not check validity of CT. */
1640 INLINE Lisp_Object
1641 CHAR_TABLE_REF (Lisp_Object ct, int idx)
1642 {
1643 return (ASCII_CHAR_P (idx)
1644 ? CHAR_TABLE_REF_ASCII (ct, idx)
1645 : char_table_ref (ct, idx));
1646 }
1647
1648 /* Equivalent to Faset (CT, IDX, VAL) with optimization for ASCII and
1649 8-bit European characters. Do not check validity of CT. */
1650 INLINE void
1651 CHAR_TABLE_SET (Lisp_Object ct, int idx, Lisp_Object val)
1652 {
1653 if (ASCII_CHAR_P (idx) && SUB_CHAR_TABLE_P (XCHAR_TABLE (ct)->ascii))
1654 set_sub_char_table_contents (XCHAR_TABLE (ct)->ascii, idx, val);
1655 else
1656 char_table_set (ct, idx, val);
1657 }
1658
1659 /* This structure describes a built-in function.
1660 It is generated by the DEFUN macro only.
1661 defsubr makes it into a Lisp object. */
1662
1663 struct Lisp_Subr
1664 {
1665 struct vectorlike_header header;
1666 union {
1667 Lisp_Object (*a0) (void);
1668 Lisp_Object (*a1) (Lisp_Object);
1669 Lisp_Object (*a2) (Lisp_Object, Lisp_Object);
1670 Lisp_Object (*a3) (Lisp_Object, Lisp_Object, Lisp_Object);
1671 Lisp_Object (*a4) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1672 Lisp_Object (*a5) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1673 Lisp_Object (*a6) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1674 Lisp_Object (*a7) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1675 Lisp_Object (*a8) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1676 Lisp_Object (*aUNEVALLED) (Lisp_Object args);
1677 Lisp_Object (*aMANY) (ptrdiff_t, Lisp_Object *);
1678 } function;
1679 short min_args, max_args;
1680 const char *symbol_name;
1681 const char *intspec;
1682 const char *doc;
1683 };
1684
1685 enum char_table_specials
1686 {
1687 /* This is the number of slots that every char table must have. This
1688 counts the ordinary slots and the top, defalt, parent, and purpose
1689 slots. */
1690 CHAR_TABLE_STANDARD_SLOTS = PSEUDOVECSIZE (struct Lisp_Char_Table, extras),
1691
1692 /* This is an index of first Lisp_Object field in Lisp_Sub_Char_Table
1693 when the latter is treated as an ordinary Lisp_Vector. */
1694 SUB_CHAR_TABLE_OFFSET = PSEUDOVECSIZE (struct Lisp_Sub_Char_Table, contents)
1695 };
1696
1697 /* Return the number of "extra" slots in the char table CT. */
1698
1699 INLINE int
1700 CHAR_TABLE_EXTRA_SLOTS (struct Lisp_Char_Table *ct)
1701 {
1702 return ((ct->header.size & PSEUDOVECTOR_SIZE_MASK)
1703 - CHAR_TABLE_STANDARD_SLOTS);
1704 }
1705
1706 /* Make sure that sub char-table contents slot is where we think it is. */
1707 verify (offsetof (struct Lisp_Sub_Char_Table, contents)
1708 == offsetof (struct Lisp_Vector, contents[SUB_CHAR_TABLE_OFFSET]));
1709
1710 /***********************************************************************
1711 Symbols
1712 ***********************************************************************/
1713
1714 /* Value is name of symbol. */
1715
1716 LISP_MACRO_DEFUN (SYMBOL_VAL, Lisp_Object, (struct Lisp_Symbol *sym), (sym))
1717
1718 INLINE struct Lisp_Symbol *
1719 SYMBOL_ALIAS (struct Lisp_Symbol *sym)
1720 {
1721 eassert (sym->redirect == SYMBOL_VARALIAS);
1722 return sym->val.alias;
1723 }
1724 INLINE struct Lisp_Buffer_Local_Value *
1725 SYMBOL_BLV (struct Lisp_Symbol *sym)
1726 {
1727 eassert (sym->redirect == SYMBOL_LOCALIZED);
1728 return sym->val.blv;
1729 }
1730 INLINE union Lisp_Fwd *
1731 SYMBOL_FWD (struct Lisp_Symbol *sym)
1732 {
1733 eassert (sym->redirect == SYMBOL_FORWARDED);
1734 return sym->val.fwd;
1735 }
1736
1737 LISP_MACRO_DEFUN_VOID (SET_SYMBOL_VAL,
1738 (struct Lisp_Symbol *sym, Lisp_Object v), (sym, v))
1739
1740 INLINE void
1741 SET_SYMBOL_ALIAS (struct Lisp_Symbol *sym, struct Lisp_Symbol *v)
1742 {
1743 eassert (sym->redirect == SYMBOL_VARALIAS);
1744 sym->val.alias = v;
1745 }
1746 INLINE void
1747 SET_SYMBOL_BLV (struct Lisp_Symbol *sym, struct Lisp_Buffer_Local_Value *v)
1748 {
1749 eassert (sym->redirect == SYMBOL_LOCALIZED);
1750 sym->val.blv = v;
1751 }
1752 INLINE void
1753 SET_SYMBOL_FWD (struct Lisp_Symbol *sym, union Lisp_Fwd *v)
1754 {
1755 eassert (sym->redirect == SYMBOL_FORWARDED);
1756 sym->val.fwd = v;
1757 }
1758
1759 INLINE Lisp_Object
1760 SYMBOL_NAME (Lisp_Object sym)
1761 {
1762 return XSYMBOL (sym)->name;
1763 }
1764
1765 /* Value is true if SYM is an interned symbol. */
1766
1767 INLINE bool
1768 SYMBOL_INTERNED_P (Lisp_Object sym)
1769 {
1770 return XSYMBOL (sym)->interned != SYMBOL_UNINTERNED;
1771 }
1772
1773 /* Value is true if SYM is interned in initial_obarray. */
1774
1775 INLINE bool
1776 SYMBOL_INTERNED_IN_INITIAL_OBARRAY_P (Lisp_Object sym)
1777 {
1778 return XSYMBOL (sym)->interned == SYMBOL_INTERNED_IN_INITIAL_OBARRAY;
1779 }
1780
1781 /* Value is non-zero if symbol is considered a constant, i.e. its
1782 value cannot be changed (there is an exception for keyword symbols,
1783 whose value can be set to the keyword symbol itself). */
1784
1785 LISP_MACRO_DEFUN (SYMBOL_CONSTANT_P, int, (Lisp_Object sym), (sym))
1786
1787 /* Placeholder for make-docfile to process. The actual symbol
1788 definition is done by lread.c's defsym. */
1789 #define DEFSYM(sym, name) /* empty */
1790
1791 \f
1792 /***********************************************************************
1793 Hash Tables
1794 ***********************************************************************/
1795
1796 /* The structure of a Lisp hash table. */
1797
1798 struct hash_table_test
1799 {
1800 /* Name of the function used to compare keys. */
1801 Lisp_Object name;
1802
1803 /* User-supplied hash function, or nil. */
1804 Lisp_Object user_hash_function;
1805
1806 /* User-supplied key comparison function, or nil. */
1807 Lisp_Object user_cmp_function;
1808
1809 /* C function to compare two keys. */
1810 bool (*cmpfn) (struct hash_table_test *t, Lisp_Object, Lisp_Object);
1811
1812 /* C function to compute hash code. */
1813 EMACS_UINT (*hashfn) (struct hash_table_test *t, Lisp_Object);
1814 };
1815
1816 struct Lisp_Hash_Table
1817 {
1818 /* This is for Lisp; the hash table code does not refer to it. */
1819 struct vectorlike_header header;
1820
1821 /* Nil if table is non-weak. Otherwise a symbol describing the
1822 weakness of the table. */
1823 Lisp_Object weak;
1824
1825 /* When the table is resized, and this is an integer, compute the
1826 new size by adding this to the old size. If a float, compute the
1827 new size by multiplying the old size with this factor. */
1828 Lisp_Object rehash_size;
1829
1830 /* Resize hash table when number of entries/ table size is >= this
1831 ratio, a float. */
1832 Lisp_Object rehash_threshold;
1833
1834 /* Vector of hash codes. If hash[I] is nil, this means that the
1835 I-th entry is unused. */
1836 Lisp_Object hash;
1837
1838 /* Vector used to chain entries. If entry I is free, next[I] is the
1839 entry number of the next free item. If entry I is non-free,
1840 next[I] is the index of the next entry in the collision chain. */
1841 Lisp_Object next;
1842
1843 /* Index of first free entry in free list. */
1844 Lisp_Object next_free;
1845
1846 /* Bucket vector. A non-nil entry is the index of the first item in
1847 a collision chain. This vector's size can be larger than the
1848 hash table size to reduce collisions. */
1849 Lisp_Object index;
1850
1851 /* Only the fields above are traced normally by the GC. The ones below
1852 `count' are special and are either ignored by the GC or traced in
1853 a special way (e.g. because of weakness). */
1854
1855 /* Number of key/value entries in the table. */
1856 ptrdiff_t count;
1857
1858 /* Vector of keys and values. The key of item I is found at index
1859 2 * I, the value is found at index 2 * I + 1.
1860 This is gc_marked specially if the table is weak. */
1861 Lisp_Object key_and_value;
1862
1863 /* The comparison and hash functions. */
1864 struct hash_table_test test;
1865
1866 /* Next weak hash table if this is a weak hash table. The head
1867 of the list is in weak_hash_tables. */
1868 struct Lisp_Hash_Table *next_weak;
1869 };
1870
1871
1872 INLINE struct Lisp_Hash_Table *
1873 XHASH_TABLE (Lisp_Object a)
1874 {
1875 return XUNTAG (a, Lisp_Vectorlike);
1876 }
1877
1878 #define XSET_HASH_TABLE(VAR, PTR) \
1879 (XSETPSEUDOVECTOR (VAR, PTR, PVEC_HASH_TABLE))
1880
1881 INLINE bool
1882 HASH_TABLE_P (Lisp_Object a)
1883 {
1884 return PSEUDOVECTORP (a, PVEC_HASH_TABLE);
1885 }
1886
1887 /* Value is the key part of entry IDX in hash table H. */
1888 INLINE Lisp_Object
1889 HASH_KEY (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1890 {
1891 return AREF (h->key_and_value, 2 * idx);
1892 }
1893
1894 /* Value is the value part of entry IDX in hash table H. */
1895 INLINE Lisp_Object
1896 HASH_VALUE (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1897 {
1898 return AREF (h->key_and_value, 2 * idx + 1);
1899 }
1900
1901 /* Value is the index of the next entry following the one at IDX
1902 in hash table H. */
1903 INLINE Lisp_Object
1904 HASH_NEXT (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1905 {
1906 return AREF (h->next, idx);
1907 }
1908
1909 /* Value is the hash code computed for entry IDX in hash table H. */
1910 INLINE Lisp_Object
1911 HASH_HASH (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1912 {
1913 return AREF (h->hash, idx);
1914 }
1915
1916 /* Value is the index of the element in hash table H that is the
1917 start of the collision list at index IDX in the index vector of H. */
1918 INLINE Lisp_Object
1919 HASH_INDEX (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1920 {
1921 return AREF (h->index, idx);
1922 }
1923
1924 /* Value is the size of hash table H. */
1925 INLINE ptrdiff_t
1926 HASH_TABLE_SIZE (struct Lisp_Hash_Table *h)
1927 {
1928 return ASIZE (h->next);
1929 }
1930
1931 /* Default size for hash tables if not specified. */
1932
1933 enum DEFAULT_HASH_SIZE { DEFAULT_HASH_SIZE = 65 };
1934
1935 /* Default threshold specifying when to resize a hash table. The
1936 value gives the ratio of current entries in the hash table and the
1937 size of the hash table. */
1938
1939 static double const DEFAULT_REHASH_THRESHOLD = 0.8;
1940
1941 /* Default factor by which to increase the size of a hash table. */
1942
1943 static double const DEFAULT_REHASH_SIZE = 1.5;
1944
1945 /* Combine two integers X and Y for hashing. The result might not fit
1946 into a Lisp integer. */
1947
1948 INLINE EMACS_UINT
1949 sxhash_combine (EMACS_UINT x, EMACS_UINT y)
1950 {
1951 return (x << 4) + (x >> (BITS_PER_EMACS_INT - 4)) + y;
1952 }
1953
1954 /* Hash X, returning a value that fits into a fixnum. */
1955
1956 INLINE EMACS_UINT
1957 SXHASH_REDUCE (EMACS_UINT x)
1958 {
1959 return (x ^ x >> (BITS_PER_EMACS_INT - FIXNUM_BITS)) & INTMASK;
1960 }
1961
1962 /* These structures are used for various misc types. */
1963
1964 struct Lisp_Misc_Any /* Supertype of all Misc types. */
1965 {
1966 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_??? */
1967 bool_bf gcmarkbit : 1;
1968 unsigned spacer : 15;
1969 };
1970
1971 struct Lisp_Marker
1972 {
1973 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Marker */
1974 bool_bf gcmarkbit : 1;
1975 unsigned spacer : 13;
1976 /* This flag is temporarily used in the functions
1977 decode/encode_coding_object to record that the marker position
1978 must be adjusted after the conversion. */
1979 bool_bf need_adjustment : 1;
1980 /* True means normal insertion at the marker's position
1981 leaves the marker after the inserted text. */
1982 bool_bf insertion_type : 1;
1983 /* This is the buffer that the marker points into, or 0 if it points nowhere.
1984 Note: a chain of markers can contain markers pointing into different
1985 buffers (the chain is per buffer_text rather than per buffer, so it's
1986 shared between indirect buffers). */
1987 /* This is used for (other than NULL-checking):
1988 - Fmarker_buffer
1989 - Fset_marker: check eq(oldbuf, newbuf) to avoid unchain+rechain.
1990 - unchain_marker: to find the list from which to unchain.
1991 - Fkill_buffer: to only unchain the markers of current indirect buffer.
1992 */
1993 struct buffer *buffer;
1994
1995 /* The remaining fields are meaningless in a marker that
1996 does not point anywhere. */
1997
1998 /* For markers that point somewhere,
1999 this is used to chain of all the markers in a given buffer. */
2000 /* We could remove it and use an array in buffer_text instead.
2001 That would also allow to preserve it ordered. */
2002 struct Lisp_Marker *next;
2003 /* This is the char position where the marker points. */
2004 ptrdiff_t charpos;
2005 /* This is the byte position.
2006 It's mostly used as a charpos<->bytepos cache (i.e. it's not directly
2007 used to implement the functionality of markers, but rather to (ab)use
2008 markers as a cache for char<->byte mappings). */
2009 ptrdiff_t bytepos;
2010 };
2011
2012 /* START and END are markers in the overlay's buffer, and
2013 PLIST is the overlay's property list. */
2014 struct Lisp_Overlay
2015 /* An overlay's real data content is:
2016 - plist
2017 - buffer (really there are two buffer pointers, one per marker,
2018 and both points to the same buffer)
2019 - insertion type of both ends (per-marker fields)
2020 - start & start byte (of start marker)
2021 - end & end byte (of end marker)
2022 - next (singly linked list of overlays)
2023 - next fields of start and end markers (singly linked list of markers).
2024 I.e. 9words plus 2 bits, 3words of which are for external linked lists.
2025 */
2026 {
2027 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Overlay */
2028 bool_bf gcmarkbit : 1;
2029 unsigned spacer : 15;
2030 struct Lisp_Overlay *next;
2031 Lisp_Object start;
2032 Lisp_Object end;
2033 Lisp_Object plist;
2034 };
2035
2036 /* Types of data which may be saved in a Lisp_Save_Value. */
2037
2038 enum
2039 {
2040 SAVE_UNUSED,
2041 SAVE_INTEGER,
2042 SAVE_FUNCPOINTER,
2043 SAVE_POINTER,
2044 SAVE_OBJECT
2045 };
2046
2047 /* Number of bits needed to store one of the above values. */
2048 enum { SAVE_SLOT_BITS = 3 };
2049
2050 /* Number of slots in a save value where save_type is nonzero. */
2051 enum { SAVE_VALUE_SLOTS = 4 };
2052
2053 /* Bit-width and values for struct Lisp_Save_Value's save_type member. */
2054
2055 enum { SAVE_TYPE_BITS = SAVE_VALUE_SLOTS * SAVE_SLOT_BITS + 1 };
2056
2057 enum Lisp_Save_Type
2058 {
2059 SAVE_TYPE_INT_INT = SAVE_INTEGER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2060 SAVE_TYPE_INT_INT_INT
2061 = (SAVE_INTEGER + (SAVE_TYPE_INT_INT << SAVE_SLOT_BITS)),
2062 SAVE_TYPE_OBJ_OBJ = SAVE_OBJECT + (SAVE_OBJECT << SAVE_SLOT_BITS),
2063 SAVE_TYPE_OBJ_OBJ_OBJ = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ << SAVE_SLOT_BITS),
2064 SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
2065 = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ_OBJ << SAVE_SLOT_BITS),
2066 SAVE_TYPE_PTR_INT = SAVE_POINTER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2067 SAVE_TYPE_PTR_OBJ = SAVE_POINTER + (SAVE_OBJECT << SAVE_SLOT_BITS),
2068 SAVE_TYPE_PTR_PTR = SAVE_POINTER + (SAVE_POINTER << SAVE_SLOT_BITS),
2069 SAVE_TYPE_FUNCPTR_PTR_OBJ
2070 = SAVE_FUNCPOINTER + (SAVE_TYPE_PTR_OBJ << SAVE_SLOT_BITS),
2071
2072 /* This has an extra bit indicating it's raw memory. */
2073 SAVE_TYPE_MEMORY = SAVE_TYPE_PTR_INT + (1 << (SAVE_TYPE_BITS - 1))
2074 };
2075
2076 /* Special object used to hold a different values for later use.
2077
2078 This is mostly used to package C integers and pointers to call
2079 record_unwind_protect when two or more values need to be saved.
2080 For example:
2081
2082 ...
2083 struct my_data *md = get_my_data ();
2084 ptrdiff_t mi = get_my_integer ();
2085 record_unwind_protect (my_unwind, make_save_ptr_int (md, mi));
2086 ...
2087
2088 Lisp_Object my_unwind (Lisp_Object arg)
2089 {
2090 struct my_data *md = XSAVE_POINTER (arg, 0);
2091 ptrdiff_t mi = XSAVE_INTEGER (arg, 1);
2092 ...
2093 }
2094
2095 If ENABLE_CHECKING is in effect, XSAVE_xxx macros do type checking of the
2096 saved objects and raise eassert if type of the saved object doesn't match
2097 the type which is extracted. In the example above, XSAVE_INTEGER (arg, 2)
2098 and XSAVE_OBJECT (arg, 0) are wrong because nothing was saved in slot 2 and
2099 slot 0 is a pointer. */
2100
2101 typedef void (*voidfuncptr) (void);
2102
2103 struct Lisp_Save_Value
2104 {
2105 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Save_Value */
2106 bool_bf gcmarkbit : 1;
2107 unsigned spacer : 32 - (16 + 1 + SAVE_TYPE_BITS);
2108
2109 /* V->data may hold up to SAVE_VALUE_SLOTS entries. The type of
2110 V's data entries are determined by V->save_type. E.g., if
2111 V->save_type == SAVE_TYPE_PTR_OBJ, V->data[0] is a pointer,
2112 V->data[1] is an integer, and V's other data entries are unused.
2113
2114 If V->save_type == SAVE_TYPE_MEMORY, V->data[0].pointer is the address of
2115 a memory area containing V->data[1].integer potential Lisp_Objects. */
2116 ENUM_BF (Lisp_Save_Type) save_type : SAVE_TYPE_BITS;
2117 union {
2118 void *pointer;
2119 voidfuncptr funcpointer;
2120 ptrdiff_t integer;
2121 Lisp_Object object;
2122 } data[SAVE_VALUE_SLOTS];
2123 };
2124
2125 /* Return the type of V's Nth saved value. */
2126 INLINE int
2127 save_type (struct Lisp_Save_Value *v, int n)
2128 {
2129 eassert (0 <= n && n < SAVE_VALUE_SLOTS);
2130 return (v->save_type >> (SAVE_SLOT_BITS * n) & ((1 << SAVE_SLOT_BITS) - 1));
2131 }
2132
2133 /* Get and set the Nth saved pointer. */
2134
2135 INLINE void *
2136 XSAVE_POINTER (Lisp_Object obj, int n)
2137 {
2138 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2139 return XSAVE_VALUE (obj)->data[n].pointer;
2140 }
2141 INLINE void
2142 set_save_pointer (Lisp_Object obj, int n, void *val)
2143 {
2144 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2145 XSAVE_VALUE (obj)->data[n].pointer = val;
2146 }
2147 INLINE voidfuncptr
2148 XSAVE_FUNCPOINTER (Lisp_Object obj, int n)
2149 {
2150 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_FUNCPOINTER);
2151 return XSAVE_VALUE (obj)->data[n].funcpointer;
2152 }
2153
2154 /* Likewise for the saved integer. */
2155
2156 INLINE ptrdiff_t
2157 XSAVE_INTEGER (Lisp_Object obj, int n)
2158 {
2159 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2160 return XSAVE_VALUE (obj)->data[n].integer;
2161 }
2162 INLINE void
2163 set_save_integer (Lisp_Object obj, int n, ptrdiff_t val)
2164 {
2165 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2166 XSAVE_VALUE (obj)->data[n].integer = val;
2167 }
2168
2169 /* Extract Nth saved object. */
2170
2171 INLINE Lisp_Object
2172 XSAVE_OBJECT (Lisp_Object obj, int n)
2173 {
2174 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_OBJECT);
2175 return XSAVE_VALUE (obj)->data[n].object;
2176 }
2177
2178 /* A finalizer sentinel. */
2179 struct Lisp_Finalizer
2180 {
2181 struct Lisp_Misc_Any base;
2182
2183 /* Circular list of all active weak references. */
2184 struct Lisp_Finalizer *prev;
2185 struct Lisp_Finalizer *next;
2186
2187 /* Call FUNCTION when the finalizer becomes unreachable, even if
2188 FUNCTION contains a reference to the finalizer; i.e., call
2189 FUNCTION when it is reachable _only_ through finalizers. */
2190 Lisp_Object function;
2191 };
2192
2193 /* A miscellaneous object, when it's on the free list. */
2194 struct Lisp_Free
2195 {
2196 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Free */
2197 bool_bf gcmarkbit : 1;
2198 unsigned spacer : 15;
2199 union Lisp_Misc *chain;
2200 };
2201
2202 /* To get the type field of a union Lisp_Misc, use XMISCTYPE.
2203 It uses one of these struct subtypes to get the type field. */
2204
2205 union Lisp_Misc
2206 {
2207 struct Lisp_Misc_Any u_any; /* Supertype of all Misc types. */
2208 struct Lisp_Free u_free;
2209 struct Lisp_Marker u_marker;
2210 struct Lisp_Overlay u_overlay;
2211 struct Lisp_Save_Value u_save_value;
2212 struct Lisp_Finalizer u_finalizer;
2213 };
2214
2215 INLINE union Lisp_Misc *
2216 XMISC (Lisp_Object a)
2217 {
2218 return XUNTAG (a, Lisp_Misc);
2219 }
2220
2221 INLINE struct Lisp_Misc_Any *
2222 XMISCANY (Lisp_Object a)
2223 {
2224 eassert (MISCP (a));
2225 return & XMISC (a)->u_any;
2226 }
2227
2228 INLINE enum Lisp_Misc_Type
2229 XMISCTYPE (Lisp_Object a)
2230 {
2231 return XMISCANY (a)->type;
2232 }
2233
2234 INLINE struct Lisp_Marker *
2235 XMARKER (Lisp_Object a)
2236 {
2237 eassert (MARKERP (a));
2238 return & XMISC (a)->u_marker;
2239 }
2240
2241 INLINE struct Lisp_Overlay *
2242 XOVERLAY (Lisp_Object a)
2243 {
2244 eassert (OVERLAYP (a));
2245 return & XMISC (a)->u_overlay;
2246 }
2247
2248 INLINE struct Lisp_Save_Value *
2249 XSAVE_VALUE (Lisp_Object a)
2250 {
2251 eassert (SAVE_VALUEP (a));
2252 return & XMISC (a)->u_save_value;
2253 }
2254
2255 INLINE struct Lisp_Finalizer *
2256 XFINALIZER (Lisp_Object a)
2257 {
2258 eassert (FINALIZERP (a));
2259 return & XMISC (a)->u_finalizer;
2260 }
2261
2262 \f
2263 /* Forwarding pointer to an int variable.
2264 This is allowed only in the value cell of a symbol,
2265 and it means that the symbol's value really lives in the
2266 specified int variable. */
2267 struct Lisp_Intfwd
2268 {
2269 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Int */
2270 EMACS_INT *intvar;
2271 };
2272
2273 /* Boolean forwarding pointer to an int variable.
2274 This is like Lisp_Intfwd except that the ostensible
2275 "value" of the symbol is t if the bool variable is true,
2276 nil if it is false. */
2277 struct Lisp_Boolfwd
2278 {
2279 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Bool */
2280 bool *boolvar;
2281 };
2282
2283 /* Forwarding pointer to a Lisp_Object variable.
2284 This is allowed only in the value cell of a symbol,
2285 and it means that the symbol's value really lives in the
2286 specified variable. */
2287 struct Lisp_Objfwd
2288 {
2289 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Obj */
2290 Lisp_Object *objvar;
2291 };
2292
2293 /* Like Lisp_Objfwd except that value lives in a slot in the
2294 current buffer. Value is byte index of slot within buffer. */
2295 struct Lisp_Buffer_Objfwd
2296 {
2297 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Buffer_Obj */
2298 int offset;
2299 /* One of Qnil, Qintegerp, Qsymbolp, Qstringp, Qfloatp or Qnumberp. */
2300 Lisp_Object predicate;
2301 };
2302
2303 /* struct Lisp_Buffer_Local_Value is used in a symbol value cell when
2304 the symbol has buffer-local or frame-local bindings. (Exception:
2305 some buffer-local variables are built-in, with their values stored
2306 in the buffer structure itself. They are handled differently,
2307 using struct Lisp_Buffer_Objfwd.)
2308
2309 The `realvalue' slot holds the variable's current value, or a
2310 forwarding pointer to where that value is kept. This value is the
2311 one that corresponds to the loaded binding. To read or set the
2312 variable, you must first make sure the right binding is loaded;
2313 then you can access the value in (or through) `realvalue'.
2314
2315 `buffer' and `frame' are the buffer and frame for which the loaded
2316 binding was found. If those have changed, to make sure the right
2317 binding is loaded it is necessary to find which binding goes with
2318 the current buffer and selected frame, then load it. To load it,
2319 first unload the previous binding, then copy the value of the new
2320 binding into `realvalue' (or through it). Also update
2321 LOADED-BINDING to point to the newly loaded binding.
2322
2323 `local_if_set' indicates that merely setting the variable creates a
2324 local binding for the current buffer. Otherwise the latter, setting
2325 the variable does not do that; only make-local-variable does that. */
2326
2327 struct Lisp_Buffer_Local_Value
2328 {
2329 /* True means that merely setting the variable creates a local
2330 binding for the current buffer. */
2331 bool_bf local_if_set : 1;
2332 /* True means this variable can have frame-local bindings, otherwise, it is
2333 can have buffer-local bindings. The two cannot be combined. */
2334 bool_bf frame_local : 1;
2335 /* True means that the binding now loaded was found.
2336 Presumably equivalent to (defcell!=valcell). */
2337 bool_bf found : 1;
2338 /* If non-NULL, a forwarding to the C var where it should also be set. */
2339 union Lisp_Fwd *fwd; /* Should never be (Buffer|Kboard)_Objfwd. */
2340 /* The buffer or frame for which the loaded binding was found. */
2341 Lisp_Object where;
2342 /* A cons cell that holds the default value. It has the form
2343 (SYMBOL . DEFAULT-VALUE). */
2344 Lisp_Object defcell;
2345 /* The cons cell from `where's parameter alist.
2346 It always has the form (SYMBOL . VALUE)
2347 Note that if `forward' is non-nil, VALUE may be out of date.
2348 Also if the currently loaded binding is the default binding, then
2349 this is `eq'ual to defcell. */
2350 Lisp_Object valcell;
2351 };
2352
2353 /* Like Lisp_Objfwd except that value lives in a slot in the
2354 current kboard. */
2355 struct Lisp_Kboard_Objfwd
2356 {
2357 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Kboard_Obj */
2358 int offset;
2359 };
2360
2361 union Lisp_Fwd
2362 {
2363 struct Lisp_Intfwd u_intfwd;
2364 struct Lisp_Boolfwd u_boolfwd;
2365 struct Lisp_Objfwd u_objfwd;
2366 struct Lisp_Buffer_Objfwd u_buffer_objfwd;
2367 struct Lisp_Kboard_Objfwd u_kboard_objfwd;
2368 };
2369
2370 INLINE enum Lisp_Fwd_Type
2371 XFWDTYPE (union Lisp_Fwd *a)
2372 {
2373 return a->u_intfwd.type;
2374 }
2375
2376 INLINE struct Lisp_Buffer_Objfwd *
2377 XBUFFER_OBJFWD (union Lisp_Fwd *a)
2378 {
2379 eassert (BUFFER_OBJFWDP (a));
2380 return &a->u_buffer_objfwd;
2381 }
2382 \f
2383 /* Lisp floating point type. */
2384 struct Lisp_Float
2385 {
2386 union
2387 {
2388 double data;
2389 struct Lisp_Float *chain;
2390 } u;
2391 };
2392
2393 INLINE double
2394 XFLOAT_DATA (Lisp_Object f)
2395 {
2396 return XFLOAT (f)->u.data;
2397 }
2398
2399 /* Most hosts nowadays use IEEE floating point, so they use IEC 60559
2400 representations, have infinities and NaNs, and do not trap on
2401 exceptions. Define IEEE_FLOATING_POINT if this host is one of the
2402 typical ones. The C11 macro __STDC_IEC_559__ is close to what is
2403 wanted here, but is not quite right because Emacs does not require
2404 all the features of C11 Annex F (and does not require C11 at all,
2405 for that matter). */
2406 enum
2407 {
2408 IEEE_FLOATING_POINT
2409 = (FLT_RADIX == 2 && FLT_MANT_DIG == 24
2410 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
2411 };
2412
2413 /* A character, declared with the following typedef, is a member
2414 of some character set associated with the current buffer. */
2415 #ifndef _UCHAR_T /* Protect against something in ctab.h on AIX. */
2416 #define _UCHAR_T
2417 typedef unsigned char UCHAR;
2418 #endif
2419
2420 /* Meanings of slots in a Lisp_Compiled: */
2421
2422 enum Lisp_Compiled
2423 {
2424 COMPILED_ARGLIST = 0,
2425 COMPILED_BYTECODE = 1,
2426 COMPILED_CONSTANTS = 2,
2427 COMPILED_STACK_DEPTH = 3,
2428 COMPILED_DOC_STRING = 4,
2429 COMPILED_INTERACTIVE = 5
2430 };
2431
2432 /* Flag bits in a character. These also get used in termhooks.h.
2433 Richard Stallman <rms@gnu.ai.mit.edu> thinks that MULE
2434 (MUlti-Lingual Emacs) might need 22 bits for the character value
2435 itself, so we probably shouldn't use any bits lower than 0x0400000. */
2436 enum char_bits
2437 {
2438 CHAR_ALT = 0x0400000,
2439 CHAR_SUPER = 0x0800000,
2440 CHAR_HYPER = 0x1000000,
2441 CHAR_SHIFT = 0x2000000,
2442 CHAR_CTL = 0x4000000,
2443 CHAR_META = 0x8000000,
2444
2445 CHAR_MODIFIER_MASK =
2446 CHAR_ALT | CHAR_SUPER | CHAR_HYPER | CHAR_SHIFT | CHAR_CTL | CHAR_META,
2447
2448 /* Actually, the current Emacs uses 22 bits for the character value
2449 itself. */
2450 CHARACTERBITS = 22
2451 };
2452 \f
2453 /* Data type checking. */
2454
2455 LISP_MACRO_DEFUN (NILP, bool, (Lisp_Object x), (x))
2456
2457 INLINE bool
2458 NUMBERP (Lisp_Object x)
2459 {
2460 return INTEGERP (x) || FLOATP (x);
2461 }
2462 INLINE bool
2463 NATNUMP (Lisp_Object x)
2464 {
2465 return INTEGERP (x) && 0 <= XINT (x);
2466 }
2467
2468 INLINE bool
2469 RANGED_INTEGERP (intmax_t lo, Lisp_Object x, intmax_t hi)
2470 {
2471 return INTEGERP (x) && lo <= XINT (x) && XINT (x) <= hi;
2472 }
2473
2474 #define TYPE_RANGED_INTEGERP(type, x) \
2475 (INTEGERP (x) \
2476 && (TYPE_SIGNED (type) ? TYPE_MINIMUM (type) <= XINT (x) : 0 <= XINT (x)) \
2477 && XINT (x) <= TYPE_MAXIMUM (type))
2478
2479 LISP_MACRO_DEFUN (CONSP, bool, (Lisp_Object x), (x))
2480 LISP_MACRO_DEFUN (FLOATP, bool, (Lisp_Object x), (x))
2481 LISP_MACRO_DEFUN (MISCP, bool, (Lisp_Object x), (x))
2482 LISP_MACRO_DEFUN (SYMBOLP, bool, (Lisp_Object x), (x))
2483 LISP_MACRO_DEFUN (INTEGERP, bool, (Lisp_Object x), (x))
2484 LISP_MACRO_DEFUN (VECTORLIKEP, bool, (Lisp_Object x), (x))
2485 LISP_MACRO_DEFUN (MARKERP, bool, (Lisp_Object x), (x))
2486
2487 INLINE bool
2488 STRINGP (Lisp_Object x)
2489 {
2490 return XTYPE (x) == Lisp_String;
2491 }
2492 INLINE bool
2493 VECTORP (Lisp_Object x)
2494 {
2495 return VECTORLIKEP (x) && ! (ASIZE (x) & PSEUDOVECTOR_FLAG);
2496 }
2497 INLINE bool
2498 OVERLAYP (Lisp_Object x)
2499 {
2500 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Overlay;
2501 }
2502 INLINE bool
2503 SAVE_VALUEP (Lisp_Object x)
2504 {
2505 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Save_Value;
2506 }
2507
2508 INLINE bool
2509 FINALIZERP (Lisp_Object x)
2510 {
2511 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Finalizer;
2512 }
2513
2514 INLINE bool
2515 AUTOLOADP (Lisp_Object x)
2516 {
2517 return CONSP (x) && EQ (Qautoload, XCAR (x));
2518 }
2519
2520 INLINE bool
2521 BUFFER_OBJFWDP (union Lisp_Fwd *a)
2522 {
2523 return XFWDTYPE (a) == Lisp_Fwd_Buffer_Obj;
2524 }
2525
2526 INLINE bool
2527 PSEUDOVECTOR_TYPEP (struct vectorlike_header *a, int code)
2528 {
2529 return ((a->size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK))
2530 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS)));
2531 }
2532
2533 /* True if A is a pseudovector whose code is CODE. */
2534 INLINE bool
2535 PSEUDOVECTORP (Lisp_Object a, int code)
2536 {
2537 if (! VECTORLIKEP (a))
2538 return false;
2539 else
2540 {
2541 /* Converting to struct vectorlike_header * avoids aliasing issues. */
2542 struct vectorlike_header *h = XUNTAG (a, Lisp_Vectorlike);
2543 return PSEUDOVECTOR_TYPEP (h, code);
2544 }
2545 }
2546
2547
2548 /* Test for specific pseudovector types. */
2549
2550 INLINE bool
2551 WINDOW_CONFIGURATIONP (Lisp_Object a)
2552 {
2553 return PSEUDOVECTORP (a, PVEC_WINDOW_CONFIGURATION);
2554 }
2555
2556 INLINE bool
2557 PROCESSP (Lisp_Object a)
2558 {
2559 return PSEUDOVECTORP (a, PVEC_PROCESS);
2560 }
2561
2562 INLINE bool
2563 WINDOWP (Lisp_Object a)
2564 {
2565 return PSEUDOVECTORP (a, PVEC_WINDOW);
2566 }
2567
2568 INLINE bool
2569 TERMINALP (Lisp_Object a)
2570 {
2571 return PSEUDOVECTORP (a, PVEC_TERMINAL);
2572 }
2573
2574 INLINE bool
2575 SUBRP (Lisp_Object a)
2576 {
2577 return PSEUDOVECTORP (a, PVEC_SUBR);
2578 }
2579
2580 INLINE bool
2581 COMPILEDP (Lisp_Object a)
2582 {
2583 return PSEUDOVECTORP (a, PVEC_COMPILED);
2584 }
2585
2586 INLINE bool
2587 BUFFERP (Lisp_Object a)
2588 {
2589 return PSEUDOVECTORP (a, PVEC_BUFFER);
2590 }
2591
2592 INLINE bool
2593 CHAR_TABLE_P (Lisp_Object a)
2594 {
2595 return PSEUDOVECTORP (a, PVEC_CHAR_TABLE);
2596 }
2597
2598 INLINE bool
2599 SUB_CHAR_TABLE_P (Lisp_Object a)
2600 {
2601 return PSEUDOVECTORP (a, PVEC_SUB_CHAR_TABLE);
2602 }
2603
2604 INLINE bool
2605 BOOL_VECTOR_P (Lisp_Object a)
2606 {
2607 return PSEUDOVECTORP (a, PVEC_BOOL_VECTOR);
2608 }
2609
2610 INLINE bool
2611 FRAMEP (Lisp_Object a)
2612 {
2613 return PSEUDOVECTORP (a, PVEC_FRAME);
2614 }
2615
2616 /* Test for image (image . spec) */
2617 INLINE bool
2618 IMAGEP (Lisp_Object x)
2619 {
2620 return CONSP (x) && EQ (XCAR (x), Qimage);
2621 }
2622
2623 /* Array types. */
2624 INLINE bool
2625 ARRAYP (Lisp_Object x)
2626 {
2627 return VECTORP (x) || STRINGP (x) || CHAR_TABLE_P (x) || BOOL_VECTOR_P (x);
2628 }
2629 \f
2630 INLINE void
2631 CHECK_LIST (Lisp_Object x)
2632 {
2633 CHECK_TYPE (CONSP (x) || NILP (x), Qlistp, x);
2634 }
2635
2636 LISP_MACRO_DEFUN_VOID (CHECK_LIST_CONS, (Lisp_Object x, Lisp_Object y), (x, y))
2637 LISP_MACRO_DEFUN_VOID (CHECK_SYMBOL, (Lisp_Object x), (x))
2638 LISP_MACRO_DEFUN_VOID (CHECK_NUMBER, (Lisp_Object x), (x))
2639
2640 INLINE void
2641 CHECK_STRING (Lisp_Object x)
2642 {
2643 CHECK_TYPE (STRINGP (x), Qstringp, x);
2644 }
2645 INLINE void
2646 CHECK_STRING_CAR (Lisp_Object x)
2647 {
2648 CHECK_TYPE (STRINGP (XCAR (x)), Qstringp, XCAR (x));
2649 }
2650 INLINE void
2651 CHECK_CONS (Lisp_Object x)
2652 {
2653 CHECK_TYPE (CONSP (x), Qconsp, x);
2654 }
2655 INLINE void
2656 CHECK_VECTOR (Lisp_Object x)
2657 {
2658 CHECK_TYPE (VECTORP (x), Qvectorp, x);
2659 }
2660 INLINE void
2661 CHECK_BOOL_VECTOR (Lisp_Object x)
2662 {
2663 CHECK_TYPE (BOOL_VECTOR_P (x), Qbool_vector_p, x);
2664 }
2665 /* This is a bit special because we always need size afterwards. */
2666 INLINE ptrdiff_t
2667 CHECK_VECTOR_OR_STRING (Lisp_Object x)
2668 {
2669 if (VECTORP (x))
2670 return ASIZE (x);
2671 if (STRINGP (x))
2672 return SCHARS (x);
2673 wrong_type_argument (Qarrayp, x);
2674 }
2675 INLINE void
2676 CHECK_ARRAY (Lisp_Object x, Lisp_Object predicate)
2677 {
2678 CHECK_TYPE (ARRAYP (x), predicate, x);
2679 }
2680 INLINE void
2681 CHECK_BUFFER (Lisp_Object x)
2682 {
2683 CHECK_TYPE (BUFFERP (x), Qbufferp, x);
2684 }
2685 INLINE void
2686 CHECK_WINDOW (Lisp_Object x)
2687 {
2688 CHECK_TYPE (WINDOWP (x), Qwindowp, x);
2689 }
2690 #ifdef subprocesses
2691 INLINE void
2692 CHECK_PROCESS (Lisp_Object x)
2693 {
2694 CHECK_TYPE (PROCESSP (x), Qprocessp, x);
2695 }
2696 #endif
2697 INLINE void
2698 CHECK_NATNUM (Lisp_Object x)
2699 {
2700 CHECK_TYPE (NATNUMP (x), Qwholenump, x);
2701 }
2702
2703 #define CHECK_RANGED_INTEGER(x, lo, hi) \
2704 do { \
2705 CHECK_NUMBER (x); \
2706 if (! ((lo) <= XINT (x) && XINT (x) <= (hi))) \
2707 args_out_of_range_3 \
2708 (x, \
2709 make_number ((lo) < 0 && (lo) < MOST_NEGATIVE_FIXNUM \
2710 ? MOST_NEGATIVE_FIXNUM \
2711 : (lo)), \
2712 make_number (min (hi, MOST_POSITIVE_FIXNUM))); \
2713 } while (false)
2714 #define CHECK_TYPE_RANGED_INTEGER(type, x) \
2715 do { \
2716 if (TYPE_SIGNED (type)) \
2717 CHECK_RANGED_INTEGER (x, TYPE_MINIMUM (type), TYPE_MAXIMUM (type)); \
2718 else \
2719 CHECK_RANGED_INTEGER (x, 0, TYPE_MAXIMUM (type)); \
2720 } while (false)
2721
2722 #define CHECK_NUMBER_COERCE_MARKER(x) \
2723 do { \
2724 if (MARKERP ((x))) \
2725 XSETFASTINT (x, marker_position (x)); \
2726 else \
2727 CHECK_TYPE (INTEGERP (x), Qinteger_or_marker_p, x); \
2728 } while (false)
2729
2730 INLINE double
2731 XFLOATINT (Lisp_Object n)
2732 {
2733 return extract_float (n);
2734 }
2735
2736 INLINE void
2737 CHECK_NUMBER_OR_FLOAT (Lisp_Object x)
2738 {
2739 CHECK_TYPE (FLOATP (x) || INTEGERP (x), Qnumberp, x);
2740 }
2741
2742 #define CHECK_NUMBER_OR_FLOAT_COERCE_MARKER(x) \
2743 do { \
2744 if (MARKERP (x)) \
2745 XSETFASTINT (x, marker_position (x)); \
2746 else \
2747 CHECK_TYPE (INTEGERP (x) || FLOATP (x), Qnumber_or_marker_p, x); \
2748 } while (false)
2749
2750 /* Since we can't assign directly to the CAR or CDR fields of a cons
2751 cell, use these when checking that those fields contain numbers. */
2752 INLINE void
2753 CHECK_NUMBER_CAR (Lisp_Object x)
2754 {
2755 Lisp_Object tmp = XCAR (x);
2756 CHECK_NUMBER (tmp);
2757 XSETCAR (x, tmp);
2758 }
2759
2760 INLINE void
2761 CHECK_NUMBER_CDR (Lisp_Object x)
2762 {
2763 Lisp_Object tmp = XCDR (x);
2764 CHECK_NUMBER (tmp);
2765 XSETCDR (x, tmp);
2766 }
2767 \f
2768 /* Define a built-in function for calling from Lisp.
2769 `lname' should be the name to give the function in Lisp,
2770 as a null-terminated C string.
2771 `fnname' should be the name of the function in C.
2772 By convention, it starts with F.
2773 `sname' should be the name for the C constant structure
2774 that records information on this function for internal use.
2775 By convention, it should be the same as `fnname' but with S instead of F.
2776 It's too bad that C macros can't compute this from `fnname'.
2777 `minargs' should be a number, the minimum number of arguments allowed.
2778 `maxargs' should be a number, the maximum number of arguments allowed,
2779 or else MANY or UNEVALLED.
2780 MANY means pass a vector of evaluated arguments,
2781 in the form of an integer number-of-arguments
2782 followed by the address of a vector of Lisp_Objects
2783 which contains the argument values.
2784 UNEVALLED means pass the list of unevaluated arguments
2785 `intspec' says how interactive arguments are to be fetched.
2786 If the string starts with a `(', `intspec' is evaluated and the resulting
2787 list is the list of arguments.
2788 If it's a string that doesn't start with `(', the value should follow
2789 the one of the doc string for `interactive'.
2790 A null string means call interactively with no arguments.
2791 `doc' is documentation for the user. */
2792
2793 /* This version of DEFUN declares a function prototype with the right
2794 arguments, so we can catch errors with maxargs at compile-time. */
2795 #ifdef _MSC_VER
2796 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2797 Lisp_Object fnname DEFUN_ARGS_ ## maxargs ; \
2798 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2799 { { (PVEC_SUBR << PSEUDOVECTOR_AREA_BITS) \
2800 | (sizeof (struct Lisp_Subr) / sizeof (EMACS_INT)) }, \
2801 { (Lisp_Object (__cdecl *)(void))fnname }, \
2802 minargs, maxargs, lname, intspec, 0}; \
2803 Lisp_Object fnname
2804 #else /* not _MSC_VER */
2805 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2806 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2807 { { PVEC_SUBR << PSEUDOVECTOR_AREA_BITS }, \
2808 { .a ## maxargs = fnname }, \
2809 minargs, maxargs, lname, intspec, 0}; \
2810 Lisp_Object fnname
2811 #endif
2812
2813 /* True if OBJ is a Lisp function. */
2814 INLINE bool
2815 FUNCTIONP (Lisp_Object obj)
2816 {
2817 return functionp (obj);
2818 }
2819
2820 /* defsubr (Sname);
2821 is how we define the symbol for function `name' at start-up time. */
2822 extern void defsubr (struct Lisp_Subr *);
2823
2824 enum maxargs
2825 {
2826 MANY = -2,
2827 UNEVALLED = -1
2828 };
2829
2830 /* Call a function F that accepts many args, passing it ARRAY's elements. */
2831 #define CALLMANY(f, array) (f) (ARRAYELTS (array), array)
2832
2833 /* Call a function F that accepts many args, passing it the remaining args,
2834 E.g., 'return CALLN (Fformat, fmt, text);' is less error-prone than
2835 '{ Lisp_Object a[2]; a[0] = fmt; a[1] = text; return Fformat (2, a); }'.
2836 CALLN is overkill for simple usages like 'Finsert (1, &text);'. */
2837 #define CALLN(f, ...) CALLMANY (f, ((Lisp_Object []) {__VA_ARGS__}))
2838
2839 extern void defvar_lisp (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2840 extern void defvar_lisp_nopro (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2841 extern void defvar_bool (struct Lisp_Boolfwd *, const char *, bool *);
2842 extern void defvar_int (struct Lisp_Intfwd *, const char *, EMACS_INT *);
2843 extern void defvar_kboard (struct Lisp_Kboard_Objfwd *, const char *, int);
2844
2845 /* Macros we use to define forwarded Lisp variables.
2846 These are used in the syms_of_FILENAME functions.
2847
2848 An ordinary (not in buffer_defaults, per-buffer, or per-keyboard)
2849 lisp variable is actually a field in `struct emacs_globals'. The
2850 field's name begins with "f_", which is a convention enforced by
2851 these macros. Each such global has a corresponding #define in
2852 globals.h; the plain name should be used in the code.
2853
2854 E.g., the global "cons_cells_consed" is declared as "int
2855 f_cons_cells_consed" in globals.h, but there is a define:
2856
2857 #define cons_cells_consed globals.f_cons_cells_consed
2858
2859 All C code uses the `cons_cells_consed' name. This is all done
2860 this way to support indirection for multi-threaded Emacs. */
2861
2862 #define DEFVAR_LISP(lname, vname, doc) \
2863 do { \
2864 static struct Lisp_Objfwd o_fwd; \
2865 defvar_lisp (&o_fwd, lname, &globals.f_ ## vname); \
2866 } while (false)
2867 #define DEFVAR_LISP_NOPRO(lname, vname, doc) \
2868 do { \
2869 static struct Lisp_Objfwd o_fwd; \
2870 defvar_lisp_nopro (&o_fwd, lname, &globals.f_ ## vname); \
2871 } while (false)
2872 #define DEFVAR_BOOL(lname, vname, doc) \
2873 do { \
2874 static struct Lisp_Boolfwd b_fwd; \
2875 defvar_bool (&b_fwd, lname, &globals.f_ ## vname); \
2876 } while (false)
2877 #define DEFVAR_INT(lname, vname, doc) \
2878 do { \
2879 static struct Lisp_Intfwd i_fwd; \
2880 defvar_int (&i_fwd, lname, &globals.f_ ## vname); \
2881 } while (false)
2882
2883 #define DEFVAR_BUFFER_DEFAULTS(lname, vname, doc) \
2884 do { \
2885 static struct Lisp_Objfwd o_fwd; \
2886 defvar_lisp_nopro (&o_fwd, lname, &BVAR (&buffer_defaults, vname)); \
2887 } while (false)
2888
2889 #define DEFVAR_KBOARD(lname, vname, doc) \
2890 do { \
2891 static struct Lisp_Kboard_Objfwd ko_fwd; \
2892 defvar_kboard (&ko_fwd, lname, offsetof (KBOARD, vname ## _)); \
2893 } while (false)
2894 \f
2895 /* Save and restore the instruction and environment pointers,
2896 without affecting the signal mask. */
2897
2898 #ifdef HAVE__SETJMP
2899 typedef jmp_buf sys_jmp_buf;
2900 # define sys_setjmp(j) _setjmp (j)
2901 # define sys_longjmp(j, v) _longjmp (j, v)
2902 #elif defined HAVE_SIGSETJMP
2903 typedef sigjmp_buf sys_jmp_buf;
2904 # define sys_setjmp(j) sigsetjmp (j, 0)
2905 # define sys_longjmp(j, v) siglongjmp (j, v)
2906 #else
2907 /* A platform that uses neither _longjmp nor siglongjmp; assume
2908 longjmp does not affect the sigmask. */
2909 typedef jmp_buf sys_jmp_buf;
2910 # define sys_setjmp(j) setjmp (j)
2911 # define sys_longjmp(j, v) longjmp (j, v)
2912 #endif
2913
2914 \f
2915 /* Elisp uses several stacks:
2916 - the C stack.
2917 - the bytecode stack: used internally by the bytecode interpreter.
2918 Allocated from the C stack.
2919 - The specpdl stack: keeps track of active unwind-protect and
2920 dynamic-let-bindings. Allocated from the `specpdl' array, a manually
2921 managed stack.
2922 - The handler stack: keeps track of active catch tags and condition-case
2923 handlers. Allocated in a manually managed stack implemented by a
2924 doubly-linked list allocated via xmalloc and never freed. */
2925
2926 /* Structure for recording Lisp call stack for backtrace purposes. */
2927
2928 /* The special binding stack holds the outer values of variables while
2929 they are bound by a function application or a let form, stores the
2930 code to be executed for unwind-protect forms.
2931
2932 NOTE: The specbinding union is defined here, because SPECPDL_INDEX is
2933 used all over the place, needs to be fast, and needs to know the size of
2934 union specbinding. But only eval.c should access it. */
2935
2936 enum specbind_tag {
2937 SPECPDL_UNWIND, /* An unwind_protect function on Lisp_Object. */
2938 SPECPDL_UNWIND_PTR, /* Likewise, on void *. */
2939 SPECPDL_UNWIND_INT, /* Likewise, on int. */
2940 SPECPDL_UNWIND_VOID, /* Likewise, with no arg. */
2941 SPECPDL_BACKTRACE, /* An element of the backtrace. */
2942 SPECPDL_LET, /* A plain and simple dynamic let-binding. */
2943 /* Tags greater than SPECPDL_LET must be "subkinds" of LET. */
2944 SPECPDL_LET_LOCAL, /* A buffer-local let-binding. */
2945 SPECPDL_LET_DEFAULT /* A global binding for a localized var. */
2946 };
2947
2948 union specbinding
2949 {
2950 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2951 struct {
2952 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2953 void (*func) (Lisp_Object);
2954 Lisp_Object arg;
2955 } unwind;
2956 struct {
2957 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2958 void (*func) (void *);
2959 void *arg;
2960 } unwind_ptr;
2961 struct {
2962 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2963 void (*func) (int);
2964 int arg;
2965 } unwind_int;
2966 struct {
2967 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2968 void (*func) (void);
2969 } unwind_void;
2970 struct {
2971 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2972 /* `where' is not used in the case of SPECPDL_LET. */
2973 Lisp_Object symbol, old_value, where;
2974 } let;
2975 struct {
2976 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2977 bool_bf debug_on_exit : 1;
2978 Lisp_Object function;
2979 Lisp_Object *args;
2980 ptrdiff_t nargs;
2981 } bt;
2982 };
2983
2984 extern union specbinding *specpdl;
2985 extern union specbinding *specpdl_ptr;
2986 extern ptrdiff_t specpdl_size;
2987
2988 INLINE ptrdiff_t
2989 SPECPDL_INDEX (void)
2990 {
2991 return specpdl_ptr - specpdl;
2992 }
2993
2994 /* This structure helps implement the `catch/throw' and `condition-case/signal'
2995 control structures. A struct handler contains all the information needed to
2996 restore the state of the interpreter after a non-local jump.
2997
2998 handler structures are chained together in a doubly linked list; the `next'
2999 member points to the next outer catchtag and the `nextfree' member points in
3000 the other direction to the next inner element (which is typically the next
3001 free element since we mostly use it on the deepest handler).
3002
3003 A call like (throw TAG VAL) searches for a catchtag whose `tag_or_ch'
3004 member is TAG, and then unbinds to it. The `val' member is used to
3005 hold VAL while the stack is unwound; `val' is returned as the value
3006 of the catch form.
3007
3008 All the other members are concerned with restoring the interpreter
3009 state.
3010
3011 Members are volatile if their values need to survive _longjmp when
3012 a 'struct handler' is a local variable. */
3013
3014 enum handlertype { CATCHER, CONDITION_CASE };
3015
3016 struct handler
3017 {
3018 enum handlertype type;
3019 Lisp_Object tag_or_ch;
3020 Lisp_Object val;
3021 struct handler *next;
3022 struct handler *nextfree;
3023
3024 /* The bytecode interpreter can have several handlers active at the same
3025 time, so when we longjmp to one of them, it needs to know which handler
3026 this was and what was the corresponding internal state. This is stored
3027 here, and when we longjmp we make sure that handlerlist points to the
3028 proper handler. */
3029 Lisp_Object *bytecode_top;
3030 int bytecode_dest;
3031
3032 /* Most global vars are reset to their value via the specpdl mechanism,
3033 but a few others are handled by storing their value here. */
3034 #if true /* GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS, but defined later. */
3035 struct gcpro *gcpro;
3036 #endif
3037 sys_jmp_buf jmp;
3038 EMACS_INT lisp_eval_depth;
3039 ptrdiff_t pdlcount;
3040 int poll_suppress_count;
3041 int interrupt_input_blocked;
3042 struct byte_stack *byte_stack;
3043 };
3044
3045 /* Fill in the components of c, and put it on the list. */
3046 #define PUSH_HANDLER(c, tag_ch_val, handlertype) \
3047 if (handlerlist->nextfree) \
3048 (c) = handlerlist->nextfree; \
3049 else \
3050 { \
3051 (c) = xmalloc (sizeof (struct handler)); \
3052 (c)->nextfree = NULL; \
3053 handlerlist->nextfree = (c); \
3054 } \
3055 (c)->type = (handlertype); \
3056 (c)->tag_or_ch = (tag_ch_val); \
3057 (c)->val = Qnil; \
3058 (c)->next = handlerlist; \
3059 (c)->lisp_eval_depth = lisp_eval_depth; \
3060 (c)->pdlcount = SPECPDL_INDEX (); \
3061 (c)->poll_suppress_count = poll_suppress_count; \
3062 (c)->interrupt_input_blocked = interrupt_input_blocked;\
3063 (c)->gcpro = gcprolist; \
3064 (c)->byte_stack = byte_stack_list; \
3065 handlerlist = (c);
3066
3067
3068 extern Lisp_Object memory_signal_data;
3069
3070 /* An address near the bottom of the stack.
3071 Tells GC how to save a copy of the stack. */
3072 extern char *stack_bottom;
3073
3074 /* Check quit-flag and quit if it is non-nil.
3075 Typing C-g does not directly cause a quit; it only sets Vquit_flag.
3076 So the program needs to do QUIT at times when it is safe to quit.
3077 Every loop that might run for a long time or might not exit
3078 ought to do QUIT at least once, at a safe place.
3079 Unless that is impossible, of course.
3080 But it is very desirable to avoid creating loops where QUIT is impossible.
3081
3082 Exception: if you set immediate_quit to true,
3083 then the handler that responds to the C-g does the quit itself.
3084 This is a good thing to do around a loop that has no side effects
3085 and (in particular) cannot call arbitrary Lisp code.
3086
3087 If quit-flag is set to `kill-emacs' the SIGINT handler has received
3088 a request to exit Emacs when it is safe to do. */
3089
3090 extern void process_pending_signals (void);
3091 extern bool volatile pending_signals;
3092
3093 extern void process_quit_flag (void);
3094 #define QUIT \
3095 do { \
3096 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
3097 process_quit_flag (); \
3098 else if (pending_signals) \
3099 process_pending_signals (); \
3100 } while (false)
3101
3102
3103 /* True if ought to quit now. */
3104
3105 #define QUITP (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
3106 \f
3107 extern Lisp_Object Vascii_downcase_table;
3108 extern Lisp_Object Vascii_canon_table;
3109 \f
3110 /* Structure for recording stack slots that need marking. */
3111
3112 /* This is a chain of structures, each of which points at a Lisp_Object
3113 variable whose value should be marked in garbage collection.
3114 Normally every link of the chain is an automatic variable of a function,
3115 and its `val' points to some argument or local variable of the function.
3116 On exit to the function, the chain is set back to the value it had on entry.
3117 This way, no link remains in the chain when the stack frame containing the
3118 link disappears.
3119
3120 Every function that can call Feval must protect in this fashion all
3121 Lisp_Object variables whose contents will be used again. */
3122
3123 extern struct gcpro *gcprolist;
3124
3125 struct gcpro
3126 {
3127 struct gcpro *next;
3128
3129 /* Address of first protected variable. */
3130 volatile Lisp_Object *var;
3131
3132 /* Number of consecutive protected variables. */
3133 ptrdiff_t nvars;
3134
3135 #ifdef DEBUG_GCPRO
3136 /* File name where this record is used. */
3137 const char *name;
3138
3139 /* Line number in this file. */
3140 int lineno;
3141
3142 /* Index in the local chain of records. */
3143 int idx;
3144
3145 /* Nesting level. */
3146 int level;
3147 #endif
3148 };
3149
3150 /* Values of GC_MARK_STACK during compilation:
3151
3152 0 Use GCPRO as before
3153 1 Do the real thing, make GCPROs and UNGCPRO no-ops.
3154 2 Mark the stack, and check that everything GCPRO'd is
3155 marked.
3156 3 Mark using GCPRO's, mark stack last, and count how many
3157 dead objects are kept alive.
3158
3159 Formerly, method 0 was used. Currently, method 1 is used unless
3160 otherwise specified by hand when building, e.g.,
3161 "make CPPFLAGS='-DGC_MARK_STACK=GC_USE_GCPROS_AS_BEFORE'".
3162 Methods 2 and 3 are present mainly to debug the transition from 0 to 1. */
3163
3164 #define GC_USE_GCPROS_AS_BEFORE 0
3165 #define GC_MAKE_GCPROS_NOOPS 1
3166 #define GC_MARK_STACK_CHECK_GCPROS 2
3167 #define GC_USE_GCPROS_CHECK_ZOMBIES 3
3168
3169 #ifndef GC_MARK_STACK
3170 #define GC_MARK_STACK GC_MAKE_GCPROS_NOOPS
3171 #endif
3172
3173 /* Whether we do the stack marking manually. */
3174 #define BYTE_MARK_STACK !(GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
3175 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
3176
3177
3178 #if GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS
3179
3180 /* Do something silly with gcproN vars just so gcc shuts up. */
3181 /* You get warnings from MIPSPro... */
3182
3183 #define GCPRO1(varname) ((void) gcpro1)
3184 #define GCPRO2(varname1, varname2) ((void) gcpro2, (void) gcpro1)
3185 #define GCPRO3(varname1, varname2, varname3) \
3186 ((void) gcpro3, (void) gcpro2, (void) gcpro1)
3187 #define GCPRO4(varname1, varname2, varname3, varname4) \
3188 ((void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3189 #define GCPRO5(varname1, varname2, varname3, varname4, varname5) \
3190 ((void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3191 #define GCPRO6(varname1, varname2, varname3, varname4, varname5, varname6) \
3192 ((void) gcpro6, (void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, \
3193 (void) gcpro1)
3194 #define GCPRO7(a, b, c, d, e, f, g) (GCPRO6 (a, b, c, d, e, f), (void) gcpro7)
3195 #define UNGCPRO ((void) 0)
3196
3197 #else /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3198
3199 #ifndef DEBUG_GCPRO
3200
3201 #define GCPRO1(a) \
3202 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3203 gcprolist = &gcpro1; }
3204
3205 #define GCPRO2(a, b) \
3206 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3207 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3208 gcprolist = &gcpro2; }
3209
3210 #define GCPRO3(a, b, c) \
3211 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3212 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3213 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3214 gcprolist = &gcpro3; }
3215
3216 #define GCPRO4(a, b, c, d) \
3217 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3218 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3219 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3220 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3221 gcprolist = &gcpro4; }
3222
3223 #define GCPRO5(a, b, c, d, e) \
3224 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3225 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3226 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3227 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3228 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3229 gcprolist = &gcpro5; }
3230
3231 #define GCPRO6(a, b, c, d, e, f) \
3232 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3233 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3234 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3235 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3236 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3237 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3238 gcprolist = &gcpro6; }
3239
3240 #define GCPRO7(a, b, c, d, e, f, g) \
3241 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3242 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3243 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3244 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3245 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3246 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3247 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3248 gcprolist = &gcpro7; }
3249
3250 #define UNGCPRO (gcprolist = gcpro1.next)
3251
3252 #else /* !DEBUG_GCPRO */
3253
3254 extern int gcpro_level;
3255
3256 #define GCPRO1(a) \
3257 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3258 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3259 gcpro1.level = gcpro_level++; \
3260 gcprolist = &gcpro1; }
3261
3262 #define GCPRO2(a, b) \
3263 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3264 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3265 gcpro1.level = gcpro_level; \
3266 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3267 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3268 gcpro2.level = gcpro_level++; \
3269 gcprolist = &gcpro2; }
3270
3271 #define GCPRO3(a, b, c) \
3272 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3273 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3274 gcpro1.level = gcpro_level; \
3275 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3276 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3277 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3278 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3279 gcpro3.level = gcpro_level++; \
3280 gcprolist = &gcpro3; }
3281
3282 #define GCPRO4(a, b, c, d) \
3283 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3284 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3285 gcpro1.level = gcpro_level; \
3286 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3287 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3288 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3289 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3290 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3291 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3292 gcpro4.level = gcpro_level++; \
3293 gcprolist = &gcpro4; }
3294
3295 #define GCPRO5(a, b, c, d, e) \
3296 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3297 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3298 gcpro1.level = gcpro_level; \
3299 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3300 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3301 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3302 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3303 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3304 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3305 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3306 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3307 gcpro5.level = gcpro_level++; \
3308 gcprolist = &gcpro5; }
3309
3310 #define GCPRO6(a, b, c, d, e, f) \
3311 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3312 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3313 gcpro1.level = gcpro_level; \
3314 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3315 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3316 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3317 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3318 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3319 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3320 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3321 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3322 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3323 gcpro6.name = __FILE__; gcpro6.lineno = __LINE__; gcpro6.idx = 6; \
3324 gcpro6.level = gcpro_level++; \
3325 gcprolist = &gcpro6; }
3326
3327 #define GCPRO7(a, b, c, d, e, f, g) \
3328 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3329 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3330 gcpro1.level = gcpro_level; \
3331 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3332 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3333 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3334 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3335 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3336 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3337 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3338 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3339 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3340 gcpro6.name = __FILE__; gcpro6.lineno = __LINE__; gcpro6.idx = 6; \
3341 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3342 gcpro7.name = __FILE__; gcpro7.lineno = __LINE__; gcpro7.idx = 7; \
3343 gcpro7.level = gcpro_level++; \
3344 gcprolist = &gcpro7; }
3345
3346 #define UNGCPRO \
3347 (--gcpro_level != gcpro1.level \
3348 ? emacs_abort () \
3349 : (void) (gcprolist = gcpro1.next))
3350
3351 #endif /* DEBUG_GCPRO */
3352 #endif /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3353
3354
3355 /* Evaluate expr, UNGCPRO, and then return the value of expr. */
3356 #define RETURN_UNGCPRO(expr) \
3357 do \
3358 { \
3359 Lisp_Object ret_ungc_val; \
3360 ret_ungc_val = (expr); \
3361 UNGCPRO; \
3362 return ret_ungc_val; \
3363 } \
3364 while (false)
3365
3366 /* Call staticpro (&var) to protect static variable `var'. */
3367
3368 void staticpro (Lisp_Object *);
3369 \f
3370 /* Forward declarations for prototypes. */
3371 struct window;
3372 struct frame;
3373
3374 /* Copy COUNT Lisp_Objects from ARGS to contents of V starting from OFFSET. */
3375
3376 INLINE void
3377 vcopy (Lisp_Object v, ptrdiff_t offset, Lisp_Object *args, ptrdiff_t count)
3378 {
3379 eassert (0 <= offset && 0 <= count && offset + count <= ASIZE (v));
3380 memcpy (XVECTOR (v)->contents + offset, args, count * sizeof *args);
3381 }
3382
3383 /* Functions to modify hash tables. */
3384
3385 INLINE void
3386 set_hash_key_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3387 {
3388 gc_aset (h->key_and_value, 2 * idx, val);
3389 }
3390
3391 INLINE void
3392 set_hash_value_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3393 {
3394 gc_aset (h->key_and_value, 2 * idx + 1, val);
3395 }
3396
3397 /* Use these functions to set Lisp_Object
3398 or pointer slots of struct Lisp_Symbol. */
3399
3400 INLINE void
3401 set_symbol_function (Lisp_Object sym, Lisp_Object function)
3402 {
3403 XSYMBOL (sym)->function = function;
3404 }
3405
3406 INLINE void
3407 set_symbol_plist (Lisp_Object sym, Lisp_Object plist)
3408 {
3409 XSYMBOL (sym)->plist = plist;
3410 }
3411
3412 INLINE void
3413 set_symbol_next (Lisp_Object sym, struct Lisp_Symbol *next)
3414 {
3415 XSYMBOL (sym)->next = next;
3416 }
3417
3418 /* Buffer-local (also frame-local) variable access functions. */
3419
3420 INLINE int
3421 blv_found (struct Lisp_Buffer_Local_Value *blv)
3422 {
3423 eassert (blv->found == !EQ (blv->defcell, blv->valcell));
3424 return blv->found;
3425 }
3426
3427 /* Set overlay's property list. */
3428
3429 INLINE void
3430 set_overlay_plist (Lisp_Object overlay, Lisp_Object plist)
3431 {
3432 XOVERLAY (overlay)->plist = plist;
3433 }
3434
3435 /* Get text properties of S. */
3436
3437 INLINE INTERVAL
3438 string_intervals (Lisp_Object s)
3439 {
3440 return XSTRING (s)->intervals;
3441 }
3442
3443 /* Set text properties of S to I. */
3444
3445 INLINE void
3446 set_string_intervals (Lisp_Object s, INTERVAL i)
3447 {
3448 XSTRING (s)->intervals = i;
3449 }
3450
3451 /* Set a Lisp slot in TABLE to VAL. Most code should use this instead
3452 of setting slots directly. */
3453
3454 INLINE void
3455 set_char_table_defalt (Lisp_Object table, Lisp_Object val)
3456 {
3457 XCHAR_TABLE (table)->defalt = val;
3458 }
3459 INLINE void
3460 set_char_table_purpose (Lisp_Object table, Lisp_Object val)
3461 {
3462 XCHAR_TABLE (table)->purpose = val;
3463 }
3464
3465 /* Set different slots in (sub)character tables. */
3466
3467 INLINE void
3468 set_char_table_extras (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3469 {
3470 eassert (0 <= idx && idx < CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (table)));
3471 XCHAR_TABLE (table)->extras[idx] = val;
3472 }
3473
3474 INLINE void
3475 set_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3476 {
3477 eassert (0 <= idx && idx < (1 << CHARTAB_SIZE_BITS_0));
3478 XCHAR_TABLE (table)->contents[idx] = val;
3479 }
3480
3481 INLINE void
3482 set_sub_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3483 {
3484 XSUB_CHAR_TABLE (table)->contents[idx] = val;
3485 }
3486
3487 /* Defined in data.c. */
3488 extern Lisp_Object indirect_function (Lisp_Object);
3489 extern Lisp_Object find_symbol_value (Lisp_Object);
3490 enum Arith_Comparison {
3491 ARITH_EQUAL,
3492 ARITH_NOTEQUAL,
3493 ARITH_LESS,
3494 ARITH_GRTR,
3495 ARITH_LESS_OR_EQUAL,
3496 ARITH_GRTR_OR_EQUAL
3497 };
3498 extern Lisp_Object arithcompare (Lisp_Object num1, Lisp_Object num2,
3499 enum Arith_Comparison comparison);
3500
3501 /* Convert the integer I to an Emacs representation, either the integer
3502 itself, or a cons of two or three integers, or if all else fails a float.
3503 I should not have side effects. */
3504 #define INTEGER_TO_CONS(i) \
3505 (! FIXNUM_OVERFLOW_P (i) \
3506 ? make_number (i) \
3507 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16) \
3508 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16)) \
3509 && FIXNUM_OVERFLOW_P ((i) >> 16)) \
3510 ? Fcons (make_number ((i) >> 16), make_number ((i) & 0xffff)) \
3511 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16 >> 24) \
3512 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16 >> 24)) \
3513 && FIXNUM_OVERFLOW_P ((i) >> 16 >> 24)) \
3514 ? Fcons (make_number ((i) >> 16 >> 24), \
3515 Fcons (make_number ((i) >> 16 & 0xffffff), \
3516 make_number ((i) & 0xffff))) \
3517 : make_float (i))
3518
3519 /* Convert the Emacs representation CONS back to an integer of type
3520 TYPE, storing the result the variable VAR. Signal an error if CONS
3521 is not a valid representation or is out of range for TYPE. */
3522 #define CONS_TO_INTEGER(cons, type, var) \
3523 (TYPE_SIGNED (type) \
3524 ? ((var) = cons_to_signed (cons, TYPE_MINIMUM (type), TYPE_MAXIMUM (type))) \
3525 : ((var) = cons_to_unsigned (cons, TYPE_MAXIMUM (type))))
3526 extern intmax_t cons_to_signed (Lisp_Object, intmax_t, intmax_t);
3527 extern uintmax_t cons_to_unsigned (Lisp_Object, uintmax_t);
3528
3529 extern struct Lisp_Symbol *indirect_variable (struct Lisp_Symbol *);
3530 extern _Noreturn void args_out_of_range (Lisp_Object, Lisp_Object);
3531 extern _Noreturn void args_out_of_range_3 (Lisp_Object, Lisp_Object,
3532 Lisp_Object);
3533 extern Lisp_Object do_symval_forwarding (union Lisp_Fwd *);
3534 extern void set_internal (Lisp_Object, Lisp_Object, Lisp_Object, bool);
3535 extern void syms_of_data (void);
3536 extern void swap_in_global_binding (struct Lisp_Symbol *);
3537
3538 /* Defined in cmds.c */
3539 extern void syms_of_cmds (void);
3540 extern void keys_of_cmds (void);
3541
3542 /* Defined in coding.c. */
3543 extern Lisp_Object detect_coding_system (const unsigned char *, ptrdiff_t,
3544 ptrdiff_t, bool, bool, Lisp_Object);
3545 extern void init_coding (void);
3546 extern void init_coding_once (void);
3547 extern void syms_of_coding (void);
3548
3549 /* Defined in character.c. */
3550 extern ptrdiff_t chars_in_text (const unsigned char *, ptrdiff_t);
3551 extern ptrdiff_t multibyte_chars_in_text (const unsigned char *, ptrdiff_t);
3552 extern void syms_of_character (void);
3553
3554 /* Defined in charset.c. */
3555 extern void init_charset (void);
3556 extern void init_charset_once (void);
3557 extern void syms_of_charset (void);
3558 /* Structure forward declarations. */
3559 struct charset;
3560
3561 /* Defined in syntax.c. */
3562 extern void init_syntax_once (void);
3563 extern void syms_of_syntax (void);
3564
3565 /* Defined in fns.c. */
3566 enum { NEXT_ALMOST_PRIME_LIMIT = 11 };
3567 extern EMACS_INT next_almost_prime (EMACS_INT) ATTRIBUTE_CONST;
3568 extern Lisp_Object larger_vector (Lisp_Object, ptrdiff_t, ptrdiff_t);
3569 extern void sweep_weak_hash_tables (void);
3570 EMACS_UINT hash_string (char const *, ptrdiff_t);
3571 EMACS_UINT sxhash (Lisp_Object, int);
3572 Lisp_Object make_hash_table (struct hash_table_test, Lisp_Object, Lisp_Object,
3573 Lisp_Object, Lisp_Object);
3574 ptrdiff_t hash_lookup (struct Lisp_Hash_Table *, Lisp_Object, EMACS_UINT *);
3575 ptrdiff_t hash_put (struct Lisp_Hash_Table *, Lisp_Object, Lisp_Object,
3576 EMACS_UINT);
3577 extern struct hash_table_test hashtest_eql, hashtest_equal;
3578 extern void validate_subarray (Lisp_Object, Lisp_Object, Lisp_Object,
3579 ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
3580 extern Lisp_Object substring_both (Lisp_Object, ptrdiff_t, ptrdiff_t,
3581 ptrdiff_t, ptrdiff_t);
3582 extern Lisp_Object merge (Lisp_Object, Lisp_Object, Lisp_Object);
3583 extern Lisp_Object do_yes_or_no_p (Lisp_Object);
3584 extern Lisp_Object concat2 (Lisp_Object, Lisp_Object);
3585 extern Lisp_Object concat3 (Lisp_Object, Lisp_Object, Lisp_Object);
3586 extern Lisp_Object nconc2 (Lisp_Object, Lisp_Object);
3587 extern Lisp_Object assq_no_quit (Lisp_Object, Lisp_Object);
3588 extern Lisp_Object assoc_no_quit (Lisp_Object, Lisp_Object);
3589 extern void clear_string_char_byte_cache (void);
3590 extern ptrdiff_t string_char_to_byte (Lisp_Object, ptrdiff_t);
3591 extern ptrdiff_t string_byte_to_char (Lisp_Object, ptrdiff_t);
3592 extern Lisp_Object string_to_multibyte (Lisp_Object);
3593 extern Lisp_Object string_make_unibyte (Lisp_Object);
3594 extern void syms_of_fns (void);
3595
3596 /* Defined in floatfns.c. */
3597 extern void syms_of_floatfns (void);
3598 extern Lisp_Object fmod_float (Lisp_Object x, Lisp_Object y);
3599
3600 /* Defined in fringe.c. */
3601 extern void syms_of_fringe (void);
3602 extern void init_fringe (void);
3603 #ifdef HAVE_WINDOW_SYSTEM
3604 extern void mark_fringe_data (void);
3605 extern void init_fringe_once (void);
3606 #endif /* HAVE_WINDOW_SYSTEM */
3607
3608 /* Defined in image.c. */
3609 extern int x_bitmap_mask (struct frame *, ptrdiff_t);
3610 extern void reset_image_types (void);
3611 extern void syms_of_image (void);
3612
3613 /* Defined in insdel.c. */
3614 extern void move_gap_both (ptrdiff_t, ptrdiff_t);
3615 extern _Noreturn void buffer_overflow (void);
3616 extern void make_gap (ptrdiff_t);
3617 extern void make_gap_1 (struct buffer *, ptrdiff_t);
3618 extern ptrdiff_t copy_text (const unsigned char *, unsigned char *,
3619 ptrdiff_t, bool, bool);
3620 extern int count_combining_before (const unsigned char *,
3621 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3622 extern int count_combining_after (const unsigned char *,
3623 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3624 extern void insert (const char *, ptrdiff_t);
3625 extern void insert_and_inherit (const char *, ptrdiff_t);
3626 extern void insert_1_both (const char *, ptrdiff_t, ptrdiff_t,
3627 bool, bool, bool);
3628 extern void insert_from_gap (ptrdiff_t, ptrdiff_t, bool text_at_gap_tail);
3629 extern void insert_from_string (Lisp_Object, ptrdiff_t, ptrdiff_t,
3630 ptrdiff_t, ptrdiff_t, bool);
3631 extern void insert_from_buffer (struct buffer *, ptrdiff_t, ptrdiff_t, bool);
3632 extern void insert_char (int);
3633 extern void insert_string (const char *);
3634 extern void insert_before_markers (const char *, ptrdiff_t);
3635 extern void insert_before_markers_and_inherit (const char *, ptrdiff_t);
3636 extern void insert_from_string_before_markers (Lisp_Object, ptrdiff_t,
3637 ptrdiff_t, ptrdiff_t,
3638 ptrdiff_t, bool);
3639 extern void del_range (ptrdiff_t, ptrdiff_t);
3640 extern Lisp_Object del_range_1 (ptrdiff_t, ptrdiff_t, bool, bool);
3641 extern void del_range_byte (ptrdiff_t, ptrdiff_t, bool);
3642 extern void del_range_both (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t, bool);
3643 extern Lisp_Object del_range_2 (ptrdiff_t, ptrdiff_t,
3644 ptrdiff_t, ptrdiff_t, bool);
3645 extern void modify_text (ptrdiff_t, ptrdiff_t);
3646 extern void prepare_to_modify_buffer (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3647 extern void prepare_to_modify_buffer_1 (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3648 extern void invalidate_buffer_caches (struct buffer *, ptrdiff_t, ptrdiff_t);
3649 extern void signal_after_change (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3650 extern void adjust_after_insert (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3651 ptrdiff_t, ptrdiff_t);
3652 extern void adjust_markers_for_delete (ptrdiff_t, ptrdiff_t,
3653 ptrdiff_t, ptrdiff_t);
3654 extern void replace_range (ptrdiff_t, ptrdiff_t, Lisp_Object, bool, bool, bool);
3655 extern void replace_range_2 (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3656 const char *, ptrdiff_t, ptrdiff_t, bool);
3657 extern void syms_of_insdel (void);
3658
3659 /* Defined in dispnew.c. */
3660 #if (defined PROFILING \
3661 && (defined __FreeBSD__ || defined GNU_LINUX || defined __MINGW32__))
3662 _Noreturn void __executable_start (void);
3663 #endif
3664 extern Lisp_Object Vwindow_system;
3665 extern Lisp_Object sit_for (Lisp_Object, bool, int);
3666
3667 /* Defined in xdisp.c. */
3668 extern bool noninteractive_need_newline;
3669 extern Lisp_Object echo_area_buffer[2];
3670 extern void add_to_log (char const *, ...);
3671 extern void vadd_to_log (char const *, va_list);
3672 extern void check_message_stack (void);
3673 extern void setup_echo_area_for_printing (bool);
3674 extern bool push_message (void);
3675 extern void pop_message_unwind (void);
3676 extern Lisp_Object restore_message_unwind (Lisp_Object);
3677 extern void restore_message (void);
3678 extern Lisp_Object current_message (void);
3679 extern void clear_message (bool, bool);
3680 extern void message (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3681 extern void message1 (const char *);
3682 extern void message1_nolog (const char *);
3683 extern void message3 (Lisp_Object);
3684 extern void message3_nolog (Lisp_Object);
3685 extern void message_dolog (const char *, ptrdiff_t, bool, bool);
3686 extern void message_with_string (const char *, Lisp_Object, bool);
3687 extern void message_log_maybe_newline (void);
3688 extern void update_echo_area (void);
3689 extern void truncate_echo_area (ptrdiff_t);
3690 extern void redisplay (void);
3691
3692 void set_frame_cursor_types (struct frame *, Lisp_Object);
3693 extern void syms_of_xdisp (void);
3694 extern void init_xdisp (void);
3695 extern Lisp_Object safe_eval (Lisp_Object);
3696 extern bool pos_visible_p (struct window *, ptrdiff_t, int *,
3697 int *, int *, int *, int *, int *);
3698
3699 /* Defined in xsettings.c. */
3700 extern void syms_of_xsettings (void);
3701
3702 /* Defined in vm-limit.c. */
3703 extern void memory_warnings (void *, void (*warnfun) (const char *));
3704
3705 /* Defined in character.c. */
3706 extern void parse_str_as_multibyte (const unsigned char *, ptrdiff_t,
3707 ptrdiff_t *, ptrdiff_t *);
3708
3709 /* Defined in alloc.c. */
3710 extern void check_pure_size (void);
3711 extern void free_misc (Lisp_Object);
3712 extern void allocate_string_data (struct Lisp_String *, EMACS_INT, EMACS_INT);
3713 extern void malloc_warning (const char *);
3714 extern _Noreturn void memory_full (size_t);
3715 extern _Noreturn void buffer_memory_full (ptrdiff_t);
3716 extern bool survives_gc_p (Lisp_Object);
3717 extern void mark_object (Lisp_Object);
3718 #if defined REL_ALLOC && !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3719 extern void refill_memory_reserve (void);
3720 #endif
3721 extern const char *pending_malloc_warning;
3722 extern Lisp_Object zero_vector;
3723 extern Lisp_Object *stack_base;
3724 extern EMACS_INT consing_since_gc;
3725 extern EMACS_INT gc_relative_threshold;
3726 extern EMACS_INT memory_full_cons_threshold;
3727 extern Lisp_Object list1 (Lisp_Object);
3728 extern Lisp_Object list2 (Lisp_Object, Lisp_Object);
3729 extern Lisp_Object list3 (Lisp_Object, Lisp_Object, Lisp_Object);
3730 extern Lisp_Object list4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3731 extern Lisp_Object list5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object,
3732 Lisp_Object);
3733 enum constype {CONSTYPE_HEAP, CONSTYPE_PURE};
3734 extern Lisp_Object listn (enum constype, ptrdiff_t, Lisp_Object, ...);
3735
3736 /* Build a frequently used 2/3/4-integer lists. */
3737
3738 INLINE Lisp_Object
3739 list2i (EMACS_INT x, EMACS_INT y)
3740 {
3741 return list2 (make_number (x), make_number (y));
3742 }
3743
3744 INLINE Lisp_Object
3745 list3i (EMACS_INT x, EMACS_INT y, EMACS_INT w)
3746 {
3747 return list3 (make_number (x), make_number (y), make_number (w));
3748 }
3749
3750 INLINE Lisp_Object
3751 list4i (EMACS_INT x, EMACS_INT y, EMACS_INT w, EMACS_INT h)
3752 {
3753 return list4 (make_number (x), make_number (y),
3754 make_number (w), make_number (h));
3755 }
3756
3757 extern Lisp_Object make_uninit_bool_vector (EMACS_INT);
3758 extern Lisp_Object bool_vector_fill (Lisp_Object, Lisp_Object);
3759 extern _Noreturn void string_overflow (void);
3760 extern Lisp_Object make_string (const char *, ptrdiff_t);
3761 extern Lisp_Object make_formatted_string (char *, const char *, ...)
3762 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3763 extern Lisp_Object make_unibyte_string (const char *, ptrdiff_t);
3764
3765 /* Make unibyte string from C string when the length isn't known. */
3766
3767 INLINE Lisp_Object
3768 build_unibyte_string (const char *str)
3769 {
3770 return make_unibyte_string (str, strlen (str));
3771 }
3772
3773 extern Lisp_Object make_multibyte_string (const char *, ptrdiff_t, ptrdiff_t);
3774 extern Lisp_Object make_event_array (ptrdiff_t, Lisp_Object *);
3775 extern Lisp_Object make_uninit_string (EMACS_INT);
3776 extern Lisp_Object make_uninit_multibyte_string (EMACS_INT, EMACS_INT);
3777 extern Lisp_Object make_string_from_bytes (const char *, ptrdiff_t, ptrdiff_t);
3778 extern Lisp_Object make_specified_string (const char *,
3779 ptrdiff_t, ptrdiff_t, bool);
3780 extern Lisp_Object make_pure_string (const char *, ptrdiff_t, ptrdiff_t, bool);
3781 extern Lisp_Object make_pure_c_string (const char *, ptrdiff_t);
3782
3783 /* Make a string allocated in pure space, use STR as string data. */
3784
3785 INLINE Lisp_Object
3786 build_pure_c_string (const char *str)
3787 {
3788 return make_pure_c_string (str, strlen (str));
3789 }
3790
3791 /* Make a string from the data at STR, treating it as multibyte if the
3792 data warrants. */
3793
3794 INLINE Lisp_Object
3795 build_string (const char *str)
3796 {
3797 return make_string (str, strlen (str));
3798 }
3799
3800 extern Lisp_Object pure_cons (Lisp_Object, Lisp_Object);
3801 extern void make_byte_code (struct Lisp_Vector *);
3802 extern struct Lisp_Vector *allocate_vector (EMACS_INT);
3803
3804 /* Make an uninitialized vector for SIZE objects. NOTE: you must
3805 be sure that GC cannot happen until the vector is completely
3806 initialized. E.g. the following code is likely to crash:
3807
3808 v = make_uninit_vector (3);
3809 ASET (v, 0, obj0);
3810 ASET (v, 1, Ffunction_can_gc ());
3811 ASET (v, 2, obj1); */
3812
3813 INLINE Lisp_Object
3814 make_uninit_vector (ptrdiff_t size)
3815 {
3816 Lisp_Object v;
3817 struct Lisp_Vector *p;
3818
3819 p = allocate_vector (size);
3820 XSETVECTOR (v, p);
3821 return v;
3822 }
3823
3824 /* Like above, but special for sub char-tables. */
3825
3826 INLINE Lisp_Object
3827 make_uninit_sub_char_table (int depth, int min_char)
3828 {
3829 int slots = SUB_CHAR_TABLE_OFFSET + chartab_size[depth];
3830 Lisp_Object v = make_uninit_vector (slots);
3831
3832 XSETPVECTYPE (XVECTOR (v), PVEC_SUB_CHAR_TABLE);
3833 XSUB_CHAR_TABLE (v)->depth = depth;
3834 XSUB_CHAR_TABLE (v)->min_char = min_char;
3835 return v;
3836 }
3837
3838 extern struct Lisp_Vector *allocate_pseudovector (int, int, int,
3839 enum pvec_type);
3840
3841 /* Allocate partially initialized pseudovector where all Lisp_Object
3842 slots are set to Qnil but the rest (if any) is left uninitialized. */
3843
3844 #define ALLOCATE_PSEUDOVECTOR(type, field, tag) \
3845 ((type *) allocate_pseudovector (VECSIZE (type), \
3846 PSEUDOVECSIZE (type, field), \
3847 PSEUDOVECSIZE (type, field), tag))
3848
3849 /* Allocate fully initialized pseudovector where all Lisp_Object
3850 slots are set to Qnil and the rest (if any) is zeroed. */
3851
3852 #define ALLOCATE_ZEROED_PSEUDOVECTOR(type, field, tag) \
3853 ((type *) allocate_pseudovector (VECSIZE (type), \
3854 PSEUDOVECSIZE (type, field), \
3855 VECSIZE (type), tag))
3856
3857 extern bool gc_in_progress;
3858 extern bool abort_on_gc;
3859 extern Lisp_Object make_float (double);
3860 extern void display_malloc_warning (void);
3861 extern ptrdiff_t inhibit_garbage_collection (void);
3862 extern Lisp_Object make_save_int_int_int (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3863 extern Lisp_Object make_save_obj_obj_obj_obj (Lisp_Object, Lisp_Object,
3864 Lisp_Object, Lisp_Object);
3865 extern Lisp_Object make_save_ptr (void *);
3866 extern Lisp_Object make_save_ptr_int (void *, ptrdiff_t);
3867 extern Lisp_Object make_save_ptr_ptr (void *, void *);
3868 extern Lisp_Object make_save_funcptr_ptr_obj (void (*) (void), void *,
3869 Lisp_Object);
3870 extern Lisp_Object make_save_memory (Lisp_Object *, ptrdiff_t);
3871 extern void free_save_value (Lisp_Object);
3872 extern Lisp_Object build_overlay (Lisp_Object, Lisp_Object, Lisp_Object);
3873 extern void free_marker (Lisp_Object);
3874 extern void free_cons (struct Lisp_Cons *);
3875 extern void init_alloc_once (void);
3876 extern void init_alloc (void);
3877 extern void syms_of_alloc (void);
3878 extern struct buffer * allocate_buffer (void);
3879 extern int valid_lisp_object_p (Lisp_Object);
3880 extern int relocatable_string_data_p (const char *);
3881 #ifdef GC_CHECK_CONS_LIST
3882 extern void check_cons_list (void);
3883 #else
3884 INLINE void (check_cons_list) (void) { lisp_h_check_cons_list (); }
3885 #endif
3886
3887 #ifdef REL_ALLOC
3888 /* Defined in ralloc.c. */
3889 extern void *r_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3890 extern void r_alloc_free (void **);
3891 extern void *r_re_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3892 extern void r_alloc_reset_variable (void **, void **);
3893 extern void r_alloc_inhibit_buffer_relocation (int);
3894 #endif
3895
3896 /* Defined in chartab.c. */
3897 extern Lisp_Object copy_char_table (Lisp_Object);
3898 extern Lisp_Object char_table_ref_and_range (Lisp_Object, int,
3899 int *, int *);
3900 extern void char_table_set_range (Lisp_Object, int, int, Lisp_Object);
3901 extern void map_char_table (void (*) (Lisp_Object, Lisp_Object,
3902 Lisp_Object),
3903 Lisp_Object, Lisp_Object, Lisp_Object);
3904 extern void map_char_table_for_charset (void (*c_function) (Lisp_Object, Lisp_Object),
3905 Lisp_Object, Lisp_Object,
3906 Lisp_Object, struct charset *,
3907 unsigned, unsigned);
3908 extern Lisp_Object uniprop_table (Lisp_Object);
3909 extern void syms_of_chartab (void);
3910
3911 /* Defined in print.c. */
3912 extern Lisp_Object Vprin1_to_string_buffer;
3913 extern void debug_print (Lisp_Object) EXTERNALLY_VISIBLE;
3914 extern void temp_output_buffer_setup (const char *);
3915 extern int print_level;
3916 extern void write_string (const char *);
3917 extern void print_error_message (Lisp_Object, Lisp_Object, const char *,
3918 Lisp_Object);
3919 extern Lisp_Object internal_with_output_to_temp_buffer
3920 (const char *, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3921 #define FLOAT_TO_STRING_BUFSIZE 350
3922 extern int float_to_string (char *, double);
3923 extern void init_print_once (void);
3924 extern void syms_of_print (void);
3925
3926 /* Defined in doprnt.c. */
3927 extern ptrdiff_t doprnt (char *, ptrdiff_t, const char *, const char *,
3928 va_list);
3929 extern ptrdiff_t esprintf (char *, char const *, ...)
3930 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3931 extern ptrdiff_t exprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3932 char const *, ...)
3933 ATTRIBUTE_FORMAT_PRINTF (5, 6);
3934 extern ptrdiff_t evxprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3935 char const *, va_list)
3936 ATTRIBUTE_FORMAT_PRINTF (5, 0);
3937
3938 /* Defined in lread.c. */
3939 extern Lisp_Object check_obarray (Lisp_Object);
3940 extern Lisp_Object intern_1 (const char *, ptrdiff_t);
3941 extern Lisp_Object intern_c_string_1 (const char *, ptrdiff_t);
3942 extern Lisp_Object intern_driver (Lisp_Object, Lisp_Object, Lisp_Object);
3943 extern void init_symbol (Lisp_Object, Lisp_Object);
3944 extern Lisp_Object oblookup (Lisp_Object, const char *, ptrdiff_t, ptrdiff_t);
3945 INLINE void
3946 LOADHIST_ATTACH (Lisp_Object x)
3947 {
3948 if (initialized)
3949 Vcurrent_load_list = Fcons (x, Vcurrent_load_list);
3950 }
3951 extern int openp (Lisp_Object, Lisp_Object, Lisp_Object,
3952 Lisp_Object *, Lisp_Object, bool);
3953 extern Lisp_Object string_to_number (char const *, int, bool);
3954 extern void map_obarray (Lisp_Object, void (*) (Lisp_Object, Lisp_Object),
3955 Lisp_Object);
3956 extern void dir_warning (const char *, Lisp_Object);
3957 extern void init_obarray (void);
3958 extern void init_lread (void);
3959 extern void syms_of_lread (void);
3960
3961 INLINE Lisp_Object
3962 intern (const char *str)
3963 {
3964 return intern_1 (str, strlen (str));
3965 }
3966
3967 INLINE Lisp_Object
3968 intern_c_string (const char *str)
3969 {
3970 return intern_c_string_1 (str, strlen (str));
3971 }
3972
3973 /* Defined in eval.c. */
3974 extern EMACS_INT lisp_eval_depth;
3975 extern Lisp_Object Vautoload_queue;
3976 extern Lisp_Object Vrun_hooks;
3977 extern Lisp_Object Vsignaling_function;
3978 extern Lisp_Object inhibit_lisp_code;
3979 extern struct handler *handlerlist;
3980
3981 /* To run a normal hook, use the appropriate function from the list below.
3982 The calling convention:
3983
3984 if (!NILP (Vrun_hooks))
3985 call1 (Vrun_hooks, Qmy_funny_hook);
3986
3987 should no longer be used. */
3988 extern void run_hook (Lisp_Object);
3989 extern void run_hook_with_args_2 (Lisp_Object, Lisp_Object, Lisp_Object);
3990 extern Lisp_Object run_hook_with_args (ptrdiff_t nargs, Lisp_Object *args,
3991 Lisp_Object (*funcall)
3992 (ptrdiff_t nargs, Lisp_Object *args));
3993 extern _Noreturn void xsignal (Lisp_Object, Lisp_Object);
3994 extern _Noreturn void xsignal0 (Lisp_Object);
3995 extern _Noreturn void xsignal1 (Lisp_Object, Lisp_Object);
3996 extern _Noreturn void xsignal2 (Lisp_Object, Lisp_Object, Lisp_Object);
3997 extern _Noreturn void xsignal3 (Lisp_Object, Lisp_Object, Lisp_Object,
3998 Lisp_Object);
3999 extern _Noreturn void signal_error (const char *, Lisp_Object);
4000 extern Lisp_Object eval_sub (Lisp_Object form);
4001 extern Lisp_Object apply1 (Lisp_Object, Lisp_Object);
4002 extern Lisp_Object call0 (Lisp_Object);
4003 extern Lisp_Object call1 (Lisp_Object, Lisp_Object);
4004 extern Lisp_Object call2 (Lisp_Object, Lisp_Object, Lisp_Object);
4005 extern Lisp_Object call3 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4006 extern Lisp_Object call4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4007 extern Lisp_Object call5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4008 extern Lisp_Object call6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4009 extern Lisp_Object call7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4010 extern Lisp_Object internal_catch (Lisp_Object, Lisp_Object (*) (Lisp_Object), Lisp_Object);
4011 extern Lisp_Object internal_lisp_condition_case (Lisp_Object, Lisp_Object, Lisp_Object);
4012 extern Lisp_Object internal_condition_case (Lisp_Object (*) (void), Lisp_Object, Lisp_Object (*) (Lisp_Object));
4013 extern Lisp_Object internal_condition_case_1 (Lisp_Object (*) (Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
4014 extern Lisp_Object internal_condition_case_2 (Lisp_Object (*) (Lisp_Object, Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
4015 extern Lisp_Object internal_condition_case_n
4016 (Lisp_Object (*) (ptrdiff_t, Lisp_Object *), ptrdiff_t, Lisp_Object *,
4017 Lisp_Object, Lisp_Object (*) (Lisp_Object, ptrdiff_t, Lisp_Object *));
4018 extern void specbind (Lisp_Object, Lisp_Object);
4019 extern void record_unwind_protect (void (*) (Lisp_Object), Lisp_Object);
4020 extern void record_unwind_protect_ptr (void (*) (void *), void *);
4021 extern void record_unwind_protect_int (void (*) (int), int);
4022 extern void record_unwind_protect_void (void (*) (void));
4023 extern void record_unwind_protect_nothing (void);
4024 extern void clear_unwind_protect (ptrdiff_t);
4025 extern void set_unwind_protect (ptrdiff_t, void (*) (Lisp_Object), Lisp_Object);
4026 extern void set_unwind_protect_ptr (ptrdiff_t, void (*) (void *), void *);
4027 extern Lisp_Object unbind_to (ptrdiff_t, Lisp_Object);
4028 extern _Noreturn void error (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
4029 extern _Noreturn void verror (const char *, va_list)
4030 ATTRIBUTE_FORMAT_PRINTF (1, 0);
4031 extern void un_autoload (Lisp_Object);
4032 extern Lisp_Object call_debugger (Lisp_Object arg);
4033 extern void *near_C_stack_top (void);
4034 extern void init_eval_once (void);
4035 extern Lisp_Object safe_call (ptrdiff_t, Lisp_Object, ...);
4036 extern Lisp_Object safe_call1 (Lisp_Object, Lisp_Object);
4037 extern Lisp_Object safe_call2 (Lisp_Object, Lisp_Object, Lisp_Object);
4038 extern void init_eval (void);
4039 extern void syms_of_eval (void);
4040 extern void unwind_body (Lisp_Object);
4041 extern ptrdiff_t record_in_backtrace (Lisp_Object, Lisp_Object *, ptrdiff_t);
4042 extern void mark_specpdl (void);
4043 extern void get_backtrace (Lisp_Object array);
4044 Lisp_Object backtrace_top_function (void);
4045 extern bool let_shadows_buffer_binding_p (struct Lisp_Symbol *symbol);
4046 extern bool let_shadows_global_binding_p (Lisp_Object symbol);
4047
4048
4049 /* Defined in editfns.c. */
4050 extern void insert1 (Lisp_Object);
4051 extern Lisp_Object save_excursion_save (void);
4052 extern Lisp_Object save_restriction_save (void);
4053 extern void save_excursion_restore (Lisp_Object);
4054 extern void save_restriction_restore (Lisp_Object);
4055 extern _Noreturn void time_overflow (void);
4056 extern Lisp_Object make_buffer_string (ptrdiff_t, ptrdiff_t, bool);
4057 extern Lisp_Object make_buffer_string_both (ptrdiff_t, ptrdiff_t, ptrdiff_t,
4058 ptrdiff_t, bool);
4059 extern void init_editfns (bool);
4060 extern void syms_of_editfns (void);
4061
4062 /* Defined in buffer.c. */
4063 extern bool mouse_face_overlay_overlaps (Lisp_Object);
4064 extern _Noreturn void nsberror (Lisp_Object);
4065 extern void adjust_overlays_for_insert (ptrdiff_t, ptrdiff_t);
4066 extern void adjust_overlays_for_delete (ptrdiff_t, ptrdiff_t);
4067 extern void fix_start_end_in_overlays (ptrdiff_t, ptrdiff_t);
4068 extern void report_overlay_modification (Lisp_Object, Lisp_Object, bool,
4069 Lisp_Object, Lisp_Object, Lisp_Object);
4070 extern bool overlay_touches_p (ptrdiff_t);
4071 extern Lisp_Object other_buffer_safely (Lisp_Object);
4072 extern Lisp_Object get_truename_buffer (Lisp_Object);
4073 extern void init_buffer_once (void);
4074 extern void init_buffer (int);
4075 extern void syms_of_buffer (void);
4076 extern void keys_of_buffer (void);
4077
4078 /* Defined in marker.c. */
4079
4080 extern ptrdiff_t marker_position (Lisp_Object);
4081 extern ptrdiff_t marker_byte_position (Lisp_Object);
4082 extern void clear_charpos_cache (struct buffer *);
4083 extern ptrdiff_t buf_charpos_to_bytepos (struct buffer *, ptrdiff_t);
4084 extern ptrdiff_t buf_bytepos_to_charpos (struct buffer *, ptrdiff_t);
4085 extern void unchain_marker (struct Lisp_Marker *marker);
4086 extern Lisp_Object set_marker_restricted (Lisp_Object, Lisp_Object, Lisp_Object);
4087 extern Lisp_Object set_marker_both (Lisp_Object, Lisp_Object, ptrdiff_t, ptrdiff_t);
4088 extern Lisp_Object set_marker_restricted_both (Lisp_Object, Lisp_Object,
4089 ptrdiff_t, ptrdiff_t);
4090 extern Lisp_Object build_marker (struct buffer *, ptrdiff_t, ptrdiff_t);
4091 extern void syms_of_marker (void);
4092
4093 /* Defined in fileio.c. */
4094
4095 extern Lisp_Object expand_and_dir_to_file (Lisp_Object, Lisp_Object);
4096 extern Lisp_Object write_region (Lisp_Object, Lisp_Object, Lisp_Object,
4097 Lisp_Object, Lisp_Object, Lisp_Object,
4098 Lisp_Object, int);
4099 extern void close_file_unwind (int);
4100 extern void fclose_unwind (void *);
4101 extern void restore_point_unwind (Lisp_Object);
4102 extern _Noreturn void report_file_errno (const char *, Lisp_Object, int);
4103 extern _Noreturn void report_file_error (const char *, Lisp_Object);
4104 extern bool internal_delete_file (Lisp_Object);
4105 extern Lisp_Object emacs_readlinkat (int, const char *);
4106 extern bool file_directory_p (const char *);
4107 extern bool file_accessible_directory_p (Lisp_Object);
4108 extern void init_fileio (void);
4109 extern void syms_of_fileio (void);
4110 extern Lisp_Object make_temp_name (Lisp_Object, bool);
4111
4112 /* Defined in search.c. */
4113 extern void shrink_regexp_cache (void);
4114 extern void restore_search_regs (void);
4115 extern void record_unwind_save_match_data (void);
4116 struct re_registers;
4117 extern struct re_pattern_buffer *compile_pattern (Lisp_Object,
4118 struct re_registers *,
4119 Lisp_Object, bool, bool);
4120 extern ptrdiff_t fast_string_match_internal (Lisp_Object, Lisp_Object,
4121 Lisp_Object);
4122
4123 INLINE ptrdiff_t
4124 fast_string_match (Lisp_Object regexp, Lisp_Object string)
4125 {
4126 return fast_string_match_internal (regexp, string, Qnil);
4127 }
4128
4129 INLINE ptrdiff_t
4130 fast_string_match_ignore_case (Lisp_Object regexp, Lisp_Object string)
4131 {
4132 return fast_string_match_internal (regexp, string, Vascii_canon_table);
4133 }
4134
4135 extern ptrdiff_t fast_c_string_match_ignore_case (Lisp_Object, const char *,
4136 ptrdiff_t);
4137 extern ptrdiff_t fast_looking_at (Lisp_Object, ptrdiff_t, ptrdiff_t,
4138 ptrdiff_t, ptrdiff_t, Lisp_Object);
4139 extern ptrdiff_t find_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4140 ptrdiff_t, ptrdiff_t *, ptrdiff_t *, bool);
4141 extern ptrdiff_t scan_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4142 ptrdiff_t, bool);
4143 extern ptrdiff_t scan_newline_from_point (ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
4144 extern ptrdiff_t find_newline_no_quit (ptrdiff_t, ptrdiff_t,
4145 ptrdiff_t, ptrdiff_t *);
4146 extern ptrdiff_t find_before_next_newline (ptrdiff_t, ptrdiff_t,
4147 ptrdiff_t, ptrdiff_t *);
4148 extern void syms_of_search (void);
4149 extern void clear_regexp_cache (void);
4150
4151 /* Defined in minibuf.c. */
4152
4153 extern Lisp_Object Vminibuffer_list;
4154 extern Lisp_Object last_minibuf_string;
4155 extern Lisp_Object get_minibuffer (EMACS_INT);
4156 extern void init_minibuf_once (void);
4157 extern void syms_of_minibuf (void);
4158
4159 /* Defined in callint.c. */
4160
4161 extern void syms_of_callint (void);
4162
4163 /* Defined in casefiddle.c. */
4164
4165 extern void syms_of_casefiddle (void);
4166 extern void keys_of_casefiddle (void);
4167
4168 /* Defined in casetab.c. */
4169
4170 extern void init_casetab_once (void);
4171 extern void syms_of_casetab (void);
4172
4173 /* Defined in keyboard.c. */
4174
4175 extern Lisp_Object echo_message_buffer;
4176 extern struct kboard *echo_kboard;
4177 extern void cancel_echoing (void);
4178 extern Lisp_Object last_undo_boundary;
4179 extern bool input_pending;
4180 #ifdef HAVE_STACK_OVERFLOW_HANDLING
4181 extern sigjmp_buf return_to_command_loop;
4182 #endif
4183 extern Lisp_Object menu_bar_items (Lisp_Object);
4184 extern Lisp_Object tool_bar_items (Lisp_Object, int *);
4185 extern void discard_mouse_events (void);
4186 #ifdef USABLE_SIGIO
4187 void handle_input_available_signal (int);
4188 #endif
4189 extern Lisp_Object pending_funcalls;
4190 extern bool detect_input_pending (void);
4191 extern bool detect_input_pending_ignore_squeezables (void);
4192 extern bool detect_input_pending_run_timers (bool);
4193 extern void safe_run_hooks (Lisp_Object);
4194 extern void cmd_error_internal (Lisp_Object, const char *);
4195 extern Lisp_Object command_loop_1 (void);
4196 extern Lisp_Object read_menu_command (void);
4197 extern Lisp_Object recursive_edit_1 (void);
4198 extern void record_auto_save (void);
4199 extern void force_auto_save_soon (void);
4200 extern void init_keyboard (void);
4201 extern void syms_of_keyboard (void);
4202 extern void keys_of_keyboard (void);
4203
4204 /* Defined in indent.c. */
4205 extern ptrdiff_t current_column (void);
4206 extern void invalidate_current_column (void);
4207 extern bool indented_beyond_p (ptrdiff_t, ptrdiff_t, EMACS_INT);
4208 extern void syms_of_indent (void);
4209
4210 /* Defined in frame.c. */
4211 extern void store_frame_param (struct frame *, Lisp_Object, Lisp_Object);
4212 extern void store_in_alist (Lisp_Object *, Lisp_Object, Lisp_Object);
4213 extern Lisp_Object do_switch_frame (Lisp_Object, int, int, Lisp_Object);
4214 extern Lisp_Object get_frame_param (struct frame *, Lisp_Object);
4215 extern void frames_discard_buffer (Lisp_Object);
4216 extern void syms_of_frame (void);
4217
4218 /* Defined in emacs.c. */
4219 extern char **initial_argv;
4220 extern int initial_argc;
4221 #if defined (HAVE_X_WINDOWS) || defined (HAVE_NS)
4222 extern bool display_arg;
4223 #endif
4224 extern Lisp_Object decode_env_path (const char *, const char *, bool);
4225 extern Lisp_Object empty_unibyte_string, empty_multibyte_string;
4226 extern _Noreturn void terminate_due_to_signal (int, int);
4227 #ifdef WINDOWSNT
4228 extern Lisp_Object Vlibrary_cache;
4229 #endif
4230 #if HAVE_SETLOCALE
4231 void fixup_locale (void);
4232 void synchronize_system_messages_locale (void);
4233 void synchronize_system_time_locale (void);
4234 #else
4235 INLINE void fixup_locale (void) {}
4236 INLINE void synchronize_system_messages_locale (void) {}
4237 INLINE void synchronize_system_time_locale (void) {}
4238 #endif
4239 extern void shut_down_emacs (int, Lisp_Object);
4240
4241 /* True means don't do interactive redisplay and don't change tty modes. */
4242 extern bool noninteractive;
4243
4244 /* True means remove site-lisp directories from load-path. */
4245 extern bool no_site_lisp;
4246
4247 /* Pipe used to send exit notification to the daemon parent at
4248 startup. On Windows, we use a kernel event instead. */
4249 #ifndef WINDOWSNT
4250 extern int daemon_pipe[2];
4251 #define IS_DAEMON (daemon_pipe[1] != 0)
4252 #define DAEMON_RUNNING (daemon_pipe[1] >= 0)
4253 #else /* WINDOWSNT */
4254 extern void *w32_daemon_event;
4255 #define IS_DAEMON (w32_daemon_event != NULL)
4256 #define DAEMON_RUNNING (w32_daemon_event != INVALID_HANDLE_VALUE)
4257 #endif
4258
4259 /* True if handling a fatal error already. */
4260 extern bool fatal_error_in_progress;
4261
4262 /* True means don't do use window-system-specific display code. */
4263 extern bool inhibit_window_system;
4264 /* True means that a filter or a sentinel is running. */
4265 extern bool running_asynch_code;
4266
4267 /* Defined in process.c. */
4268 extern void kill_buffer_processes (Lisp_Object);
4269 extern int wait_reading_process_output (intmax_t, int, int, bool, Lisp_Object,
4270 struct Lisp_Process *, int);
4271 /* Max value for the first argument of wait_reading_process_output. */
4272 #if __GNUC__ == 3 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 5)
4273 /* Work around a bug in GCC 3.4.2, known to be fixed in GCC 4.6.3.
4274 The bug merely causes a bogus warning, but the warning is annoying. */
4275 # define WAIT_READING_MAX min (TYPE_MAXIMUM (time_t), INTMAX_MAX)
4276 #else
4277 # define WAIT_READING_MAX INTMAX_MAX
4278 #endif
4279 #ifdef HAVE_TIMERFD
4280 extern void add_timer_wait_descriptor (int);
4281 #endif
4282 extern void add_keyboard_wait_descriptor (int);
4283 extern void delete_keyboard_wait_descriptor (int);
4284 #ifdef HAVE_GPM
4285 extern void add_gpm_wait_descriptor (int);
4286 extern void delete_gpm_wait_descriptor (int);
4287 #endif
4288 extern void init_process_emacs (void);
4289 extern void syms_of_process (void);
4290 extern void setup_process_coding_systems (Lisp_Object);
4291
4292 /* Defined in callproc.c. */
4293 #ifndef DOS_NT
4294 _Noreturn
4295 #endif
4296 extern int child_setup (int, int, int, char **, bool, Lisp_Object);
4297 extern void init_callproc_1 (void);
4298 extern void init_callproc (void);
4299 extern void set_initial_environment (void);
4300 extern void syms_of_callproc (void);
4301
4302 /* Defined in doc.c. */
4303 enum text_quoting_style
4304 {
4305 /* Use curved single quotes ‘like this’. */
4306 CURVE_QUOTING_STYLE,
4307
4308 /* Use grave accent and apostrophe `like this'. */
4309 GRAVE_QUOTING_STYLE,
4310
4311 /* Use apostrophes 'like this'. */
4312 STRAIGHT_QUOTING_STYLE
4313 };
4314 extern enum text_quoting_style text_quoting_style (void);
4315 extern Lisp_Object read_doc_string (Lisp_Object);
4316 extern Lisp_Object get_doc_string (Lisp_Object, bool, bool);
4317 extern void syms_of_doc (void);
4318 extern int read_bytecode_char (bool);
4319
4320 /* Defined in bytecode.c. */
4321 extern void syms_of_bytecode (void);
4322 extern struct byte_stack *byte_stack_list;
4323 #if BYTE_MARK_STACK
4324 extern void mark_byte_stack (void);
4325 #endif
4326 extern void unmark_byte_stack (void);
4327 extern Lisp_Object exec_byte_code (Lisp_Object, Lisp_Object, Lisp_Object,
4328 Lisp_Object, ptrdiff_t, Lisp_Object *);
4329
4330 /* Defined in macros.c. */
4331 extern void init_macros (void);
4332 extern void syms_of_macros (void);
4333
4334 /* Defined in undo.c. */
4335 extern void truncate_undo_list (struct buffer *);
4336 extern void record_insert (ptrdiff_t, ptrdiff_t);
4337 extern void record_delete (ptrdiff_t, Lisp_Object, bool);
4338 extern void record_first_change (void);
4339 extern void record_change (ptrdiff_t, ptrdiff_t);
4340 extern void record_property_change (ptrdiff_t, ptrdiff_t,
4341 Lisp_Object, Lisp_Object,
4342 Lisp_Object);
4343 extern void syms_of_undo (void);
4344
4345 /* Defined in textprop.c. */
4346 extern void report_interval_modification (Lisp_Object, Lisp_Object);
4347
4348 /* Defined in menu.c. */
4349 extern void syms_of_menu (void);
4350
4351 /* Defined in xmenu.c. */
4352 extern void syms_of_xmenu (void);
4353
4354 /* Defined in termchar.h. */
4355 struct tty_display_info;
4356
4357 /* Defined in termhooks.h. */
4358 struct terminal;
4359
4360 /* Defined in sysdep.c. */
4361 #ifndef HAVE_GET_CURRENT_DIR_NAME
4362 extern char *get_current_dir_name (void);
4363 #endif
4364 extern void stuff_char (char c);
4365 extern void init_foreground_group (void);
4366 extern void sys_subshell (void);
4367 extern void sys_suspend (void);
4368 extern void discard_tty_input (void);
4369 extern void init_sys_modes (struct tty_display_info *);
4370 extern void reset_sys_modes (struct tty_display_info *);
4371 extern void init_all_sys_modes (void);
4372 extern void reset_all_sys_modes (void);
4373 extern void child_setup_tty (int);
4374 extern void setup_pty (int);
4375 extern int set_window_size (int, int, int);
4376 extern EMACS_INT get_random (void);
4377 extern void seed_random (void *, ptrdiff_t);
4378 extern void init_random (void);
4379 extern void emacs_backtrace (int);
4380 extern _Noreturn void emacs_abort (void) NO_INLINE;
4381 extern int emacs_open (const char *, int, int);
4382 extern int emacs_pipe (int[2]);
4383 extern int emacs_close (int);
4384 extern ptrdiff_t emacs_read (int, void *, ptrdiff_t);
4385 extern ptrdiff_t emacs_write (int, void const *, ptrdiff_t);
4386 extern ptrdiff_t emacs_write_sig (int, void const *, ptrdiff_t);
4387 extern void emacs_perror (char const *);
4388
4389 extern void unlock_all_files (void);
4390 extern void lock_file (Lisp_Object);
4391 extern void unlock_file (Lisp_Object);
4392 extern void unlock_buffer (struct buffer *);
4393 extern void syms_of_filelock (void);
4394 extern int str_collate (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4395
4396 /* Defined in sound.c. */
4397 extern void syms_of_sound (void);
4398
4399 /* Defined in category.c. */
4400 extern void init_category_once (void);
4401 extern Lisp_Object char_category_set (int);
4402 extern void syms_of_category (void);
4403
4404 /* Defined in ccl.c. */
4405 extern void syms_of_ccl (void);
4406
4407 /* Defined in dired.c. */
4408 extern void syms_of_dired (void);
4409 extern Lisp_Object directory_files_internal (Lisp_Object, Lisp_Object,
4410 Lisp_Object, Lisp_Object,
4411 bool, Lisp_Object);
4412
4413 /* Defined in term.c. */
4414 extern int *char_ins_del_vector;
4415 extern void syms_of_term (void);
4416 extern _Noreturn void fatal (const char *msgid, ...)
4417 ATTRIBUTE_FORMAT_PRINTF (1, 2);
4418
4419 /* Defined in terminal.c. */
4420 extern void syms_of_terminal (void);
4421
4422 /* Defined in font.c. */
4423 extern void syms_of_font (void);
4424 extern void init_font (void);
4425
4426 #ifdef HAVE_WINDOW_SYSTEM
4427 /* Defined in fontset.c. */
4428 extern void syms_of_fontset (void);
4429 #endif
4430
4431 /* Defined in gfilenotify.c */
4432 #ifdef HAVE_GFILENOTIFY
4433 extern void globals_of_gfilenotify (void);
4434 extern void syms_of_gfilenotify (void);
4435 #endif
4436
4437 /* Defined in inotify.c */
4438 #ifdef HAVE_INOTIFY
4439 extern void syms_of_inotify (void);
4440 #endif
4441
4442 #ifdef HAVE_W32NOTIFY
4443 /* Defined on w32notify.c. */
4444 extern void syms_of_w32notify (void);
4445 #endif
4446
4447 /* Defined in xfaces.c. */
4448 extern Lisp_Object Vface_alternative_font_family_alist;
4449 extern Lisp_Object Vface_alternative_font_registry_alist;
4450 extern void syms_of_xfaces (void);
4451
4452 #ifdef HAVE_X_WINDOWS
4453 /* Defined in xfns.c. */
4454 extern void syms_of_xfns (void);
4455
4456 /* Defined in xsmfns.c. */
4457 extern void syms_of_xsmfns (void);
4458
4459 /* Defined in xselect.c. */
4460 extern void syms_of_xselect (void);
4461
4462 /* Defined in xterm.c. */
4463 extern void init_xterm (void);
4464 extern void syms_of_xterm (void);
4465 #endif /* HAVE_X_WINDOWS */
4466
4467 #ifdef HAVE_WINDOW_SYSTEM
4468 /* Defined in xterm.c, nsterm.m, w32term.c. */
4469 extern char *x_get_keysym_name (int);
4470 #endif /* HAVE_WINDOW_SYSTEM */
4471
4472 #ifdef HAVE_LIBXML2
4473 /* Defined in xml.c. */
4474 extern void syms_of_xml (void);
4475 extern void xml_cleanup_parser (void);
4476 #endif
4477
4478 #ifdef HAVE_ZLIB
4479 /* Defined in decompress.c. */
4480 extern void syms_of_decompress (void);
4481 #endif
4482
4483 #ifdef HAVE_DBUS
4484 /* Defined in dbusbind.c. */
4485 void init_dbusbind (void);
4486 void syms_of_dbusbind (void);
4487 #endif
4488
4489
4490 /* Defined in profiler.c. */
4491 extern bool profiler_memory_running;
4492 extern void malloc_probe (size_t);
4493 extern void syms_of_profiler (void);
4494
4495
4496 #ifdef DOS_NT
4497 /* Defined in msdos.c, w32.c. */
4498 extern char *emacs_root_dir (void);
4499 #endif /* DOS_NT */
4500
4501 /* Defined in lastfile.c. */
4502 extern char my_edata[];
4503 extern char my_endbss[];
4504 extern char *my_endbss_static;
4505
4506 /* True means ^G can quit instantly. */
4507 extern bool immediate_quit;
4508
4509 extern void *xmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4510 extern void *xzalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4511 extern void *xrealloc (void *, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
4512 extern void xfree (void *);
4513 extern void *xnmalloc (ptrdiff_t, ptrdiff_t) ATTRIBUTE_MALLOC_SIZE ((1,2));
4514 extern void *xnrealloc (void *, ptrdiff_t, ptrdiff_t)
4515 ATTRIBUTE_ALLOC_SIZE ((2,3));
4516 extern void *xpalloc (void *, ptrdiff_t *, ptrdiff_t, ptrdiff_t, ptrdiff_t);
4517
4518 extern char *xstrdup (const char *) ATTRIBUTE_MALLOC;
4519 extern char *xlispstrdup (Lisp_Object) ATTRIBUTE_MALLOC;
4520 extern void dupstring (char **, char const *);
4521
4522 /* Make DEST a copy of STRING's data. Return a pointer to DEST's terminating
4523 null byte. This is like stpcpy, except the source is a Lisp string. */
4524
4525 INLINE char *
4526 lispstpcpy (char *dest, Lisp_Object string)
4527 {
4528 ptrdiff_t len = SBYTES (string);
4529 memcpy (dest, SDATA (string), len + 1);
4530 return dest + len;
4531 }
4532
4533 extern void xputenv (const char *);
4534
4535 extern char *egetenv_internal (const char *, ptrdiff_t);
4536
4537 INLINE char *
4538 egetenv (const char *var)
4539 {
4540 /* When VAR is a string literal, strlen can be optimized away. */
4541 return egetenv_internal (var, strlen (var));
4542 }
4543
4544 /* Set up the name of the machine we're running on. */
4545 extern void init_system_name (void);
4546
4547 /* Return the absolute value of X. X should be a signed integer
4548 expression without side effects, and X's absolute value should not
4549 exceed the maximum for its promoted type. This is called 'eabs'
4550 because 'abs' is reserved by the C standard. */
4551 #define eabs(x) ((x) < 0 ? -(x) : (x))
4552
4553 /* Return a fixnum or float, depending on whether VAL fits in a Lisp
4554 fixnum. */
4555
4556 #define make_fixnum_or_float(val) \
4557 (FIXNUM_OVERFLOW_P (val) ? make_float (val) : make_number (val))
4558
4559 /* SAFE_ALLOCA normally allocates memory on the stack, but if size is
4560 larger than MAX_ALLOCA, use xmalloc to avoid overflowing the stack. */
4561
4562 enum MAX_ALLOCA { MAX_ALLOCA = 16 * 1024 };
4563
4564 extern void *record_xmalloc (size_t) ATTRIBUTE_ALLOC_SIZE ((1));
4565
4566 #define USE_SAFE_ALLOCA \
4567 ptrdiff_t sa_avail = MAX_ALLOCA; \
4568 ptrdiff_t sa_count = SPECPDL_INDEX (); bool sa_must_free = false
4569
4570 #define AVAIL_ALLOCA(size) (sa_avail -= (size), alloca (size))
4571
4572 /* SAFE_ALLOCA allocates a simple buffer. */
4573
4574 #define SAFE_ALLOCA(size) ((size) <= sa_avail \
4575 ? AVAIL_ALLOCA (size) \
4576 : (sa_must_free = true, record_xmalloc (size)))
4577
4578 /* SAFE_NALLOCA sets BUF to a newly allocated array of MULTIPLIER *
4579 NITEMS items, each of the same type as *BUF. MULTIPLIER must
4580 positive. The code is tuned for MULTIPLIER being a constant. */
4581
4582 #define SAFE_NALLOCA(buf, multiplier, nitems) \
4583 do { \
4584 if ((nitems) <= sa_avail / sizeof *(buf) / (multiplier)) \
4585 (buf) = AVAIL_ALLOCA (sizeof *(buf) * (multiplier) * (nitems)); \
4586 else \
4587 { \
4588 (buf) = xnmalloc (nitems, sizeof *(buf) * (multiplier)); \
4589 sa_must_free = true; \
4590 record_unwind_protect_ptr (xfree, buf); \
4591 } \
4592 } while (false)
4593
4594 /* SAFE_ALLOCA_STRING allocates a C copy of a Lisp string. */
4595
4596 #define SAFE_ALLOCA_STRING(ptr, string) \
4597 do { \
4598 (ptr) = SAFE_ALLOCA (SBYTES (string) + 1); \
4599 memcpy (ptr, SDATA (string), SBYTES (string) + 1); \
4600 } while (false)
4601
4602 /* SAFE_FREE frees xmalloced memory and enables GC as needed. */
4603
4604 #define SAFE_FREE() \
4605 do { \
4606 if (sa_must_free) { \
4607 sa_must_free = false; \
4608 unbind_to (sa_count, Qnil); \
4609 } \
4610 } while (false)
4611
4612
4613 /* Return floor (NBYTES / WORD_SIZE). */
4614
4615 INLINE ptrdiff_t
4616 lisp_word_count (ptrdiff_t nbytes)
4617 {
4618 if (-1 >> 1 == -1)
4619 switch (word_size)
4620 {
4621 case 2: return nbytes >> 1;
4622 case 4: return nbytes >> 2;
4623 case 8: return nbytes >> 3;
4624 case 16: return nbytes >> 4;
4625 }
4626 return nbytes / word_size - (nbytes % word_size < 0);
4627 }
4628
4629 /* SAFE_ALLOCA_LISP allocates an array of Lisp_Objects. */
4630
4631 #define SAFE_ALLOCA_LISP(buf, nelt) \
4632 do { \
4633 if ((nelt) <= lisp_word_count (sa_avail)) \
4634 (buf) = AVAIL_ALLOCA ((nelt) * word_size); \
4635 else if ((nelt) <= min (PTRDIFF_MAX, SIZE_MAX) / word_size) \
4636 { \
4637 Lisp_Object arg_; \
4638 (buf) = xmalloc ((nelt) * word_size); \
4639 arg_ = make_save_memory (buf, nelt); \
4640 sa_must_free = true; \
4641 record_unwind_protect (free_save_value, arg_); \
4642 } \
4643 else \
4644 memory_full (SIZE_MAX); \
4645 } while (false)
4646
4647
4648 /* If USE_STACK_LISP_OBJECTS, define macros that and functions that allocate
4649 block-scoped conses and strings. These objects are not
4650 managed by the garbage collector, so they are dangerous: passing them
4651 out of their scope (e.g., to user code) results in undefined behavior.
4652 Conversely, they have better performance because GC is not involved.
4653
4654 This feature is experimental and requires careful debugging.
4655 Build with CPPFLAGS='-DUSE_STACK_LISP_OBJECTS=0' to disable it. */
4656
4657 #ifndef USE_STACK_LISP_OBJECTS
4658 # define USE_STACK_LISP_OBJECTS true
4659 #endif
4660
4661 /* USE_STACK_LISP_OBJECTS requires GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS. */
4662
4663 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
4664 # undef USE_STACK_LISP_OBJECTS
4665 # define USE_STACK_LISP_OBJECTS false
4666 #endif
4667
4668 #ifdef GC_CHECK_STRING_BYTES
4669 enum { defined_GC_CHECK_STRING_BYTES = true };
4670 #else
4671 enum { defined_GC_CHECK_STRING_BYTES = false };
4672 #endif
4673
4674 /* Struct inside unions that are typically no larger and aligned enough. */
4675
4676 union Aligned_Cons
4677 {
4678 struct Lisp_Cons s;
4679 double d; intmax_t i; void *p;
4680 };
4681
4682 union Aligned_String
4683 {
4684 struct Lisp_String s;
4685 double d; intmax_t i; void *p;
4686 };
4687
4688 /* True for stack-based cons and string implementations, respectively.
4689 Use stack-based strings only if stack-based cons also works.
4690 Otherwise, STACK_CONS would create heap-based cons cells that
4691 could point to stack-based strings, which is a no-no. */
4692
4693 enum
4694 {
4695 USE_STACK_CONS = (USE_STACK_LISP_OBJECTS
4696 && alignof (union Aligned_Cons) % GCALIGNMENT == 0),
4697 USE_STACK_STRING = (USE_STACK_CONS
4698 && !defined_GC_CHECK_STRING_BYTES
4699 && alignof (union Aligned_String) % GCALIGNMENT == 0)
4700 };
4701
4702 /* Auxiliary macros used for auto allocation of Lisp objects. Please
4703 use these only in macros like AUTO_CONS that declare a local
4704 variable whose lifetime will be clear to the programmer. */
4705 #define STACK_CONS(a, b) \
4706 make_lisp_ptr (&(union Aligned_Cons) { { a, { b } } }.s, Lisp_Cons)
4707 #define AUTO_CONS_EXPR(a, b) \
4708 (USE_STACK_CONS ? STACK_CONS (a, b) : Fcons (a, b))
4709
4710 /* Declare NAME as an auto Lisp cons or short list if possible, a
4711 GC-based one otherwise. This is in the sense of the C keyword
4712 'auto'; i.e., the object has the lifetime of the containing block.
4713 The resulting object should not be made visible to user Lisp code. */
4714
4715 #define AUTO_CONS(name, a, b) Lisp_Object name = AUTO_CONS_EXPR (a, b)
4716 #define AUTO_LIST1(name, a) \
4717 Lisp_Object name = (USE_STACK_CONS ? STACK_CONS (a, Qnil) : list1 (a))
4718 #define AUTO_LIST2(name, a, b) \
4719 Lisp_Object name = (USE_STACK_CONS \
4720 ? STACK_CONS (a, STACK_CONS (b, Qnil)) \
4721 : list2 (a, b))
4722 #define AUTO_LIST3(name, a, b, c) \
4723 Lisp_Object name = (USE_STACK_CONS \
4724 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, Qnil))) \
4725 : list3 (a, b, c))
4726 #define AUTO_LIST4(name, a, b, c, d) \
4727 Lisp_Object name \
4728 = (USE_STACK_CONS \
4729 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, \
4730 STACK_CONS (d, Qnil)))) \
4731 : list4 (a, b, c, d))
4732
4733 /* Check whether stack-allocated strings are ASCII-only. */
4734
4735 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
4736 extern const char *verify_ascii (const char *);
4737 #else
4738 # define verify_ascii(str) (str)
4739 #endif
4740
4741 /* Declare NAME as an auto Lisp string if possible, a GC-based one if not.
4742 Take its value from STR. STR is not necessarily copied and should
4743 contain only ASCII characters. The resulting Lisp string should
4744 not be modified or made visible to user code. */
4745
4746 #define AUTO_STRING(name, str) \
4747 Lisp_Object name = \
4748 (USE_STACK_STRING \
4749 ? (make_lisp_ptr \
4750 ((&(union Aligned_String) \
4751 {{strlen (str), -1, 0, (unsigned char *) verify_ascii (str)}}.s), \
4752 Lisp_String)) \
4753 : build_string (verify_ascii (str)))
4754
4755 /* Loop over all tails of a list, checking for cycles.
4756 FIXME: Make tortoise and n internal declarations.
4757 FIXME: Unroll the loop body so we don't need `n'. */
4758 #define FOR_EACH_TAIL(hare, list, tortoise, n) \
4759 for ((tortoise) = (hare) = (list), (n) = true; \
4760 CONSP (hare); \
4761 (hare = XCDR (hare), (n) = !(n), \
4762 ((n) \
4763 ? (EQ (hare, tortoise) \
4764 ? xsignal1 (Qcircular_list, list) \
4765 : (void) 0) \
4766 /* Move tortoise before the next iteration, in case */ \
4767 /* the next iteration does an Fsetcdr. */ \
4768 : (void) ((tortoise) = XCDR (tortoise)))))
4769
4770 /* Do a `for' loop over alist values. */
4771
4772 #define FOR_EACH_ALIST_VALUE(head_var, list_var, value_var) \
4773 for ((list_var) = (head_var); \
4774 (CONSP (list_var) && ((value_var) = XCDR (XCAR (list_var)), true)); \
4775 (list_var) = XCDR (list_var))
4776
4777 /* Check whether it's time for GC, and run it if so. */
4778
4779 INLINE void
4780 maybe_gc (void)
4781 {
4782 if ((consing_since_gc > gc_cons_threshold
4783 && consing_since_gc > gc_relative_threshold)
4784 || (!NILP (Vmemory_full)
4785 && consing_since_gc > memory_full_cons_threshold))
4786 Fgarbage_collect ();
4787 }
4788
4789 INLINE bool
4790 functionp (Lisp_Object object)
4791 {
4792 if (SYMBOLP (object) && !NILP (Ffboundp (object)))
4793 {
4794 object = Findirect_function (object, Qt);
4795
4796 if (CONSP (object) && EQ (XCAR (object), Qautoload))
4797 {
4798 /* Autoloaded symbols are functions, except if they load
4799 macros or keymaps. */
4800 int i;
4801 for (i = 0; i < 4 && CONSP (object); i++)
4802 object = XCDR (object);
4803
4804 return ! (CONSP (object) && !NILP (XCAR (object)));
4805 }
4806 }
4807
4808 if (SUBRP (object))
4809 return XSUBR (object)->max_args != UNEVALLED;
4810 else if (COMPILEDP (object))
4811 return true;
4812 else if (CONSP (object))
4813 {
4814 Lisp_Object car = XCAR (object);
4815 return EQ (car, Qlambda) || EQ (car, Qclosure);
4816 }
4817 else
4818 return false;
4819 }
4820
4821 INLINE_HEADER_END
4822
4823 #endif /* EMACS_LISP_H */