;;; cl-macs.el --- Common Lisp macros ;; Copyright (C) 1993, 2001-2012 Free Software Foundation, Inc. ;; Author: Dave Gillespie ;; Version: 2.02 ;; Keywords: extensions ;; Package: emacs ;; This file is part of GNU Emacs. ;; GNU Emacs is free software: you can redistribute it and/or modify ;; it under the terms of the GNU General Public License as published by ;; the Free Software Foundation, either version 3 of the License, or ;; (at your option) any later version. ;; GNU Emacs is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;; GNU General Public License for more details. ;; You should have received a copy of the GNU General Public License ;; along with GNU Emacs. If not, see . ;;; Commentary: ;; These are extensions to Emacs Lisp that provide a degree of ;; Common Lisp compatibility, beyond what is already built-in ;; in Emacs Lisp. ;; ;; This package was written by Dave Gillespie; it is a complete ;; rewrite of Cesar Quiroz's original cl.el package of December 1986. ;; ;; Bug reports, comments, and suggestions are welcome! ;; This file contains the portions of the Common Lisp extensions ;; package which should be autoloaded, but need only be present ;; if the compiler or interpreter is used---this file is not ;; necessary for executing compiled code. ;; See cl.el for Change Log. ;;; Code: (require 'cl-lib) (defmacro cl-pop2 (place) (declare (debug edebug-sexps)) `(prog1 (car (cdr ,place)) (setq ,place (cdr (cdr ,place))))) (defvar cl-optimize-safety) (defvar cl-optimize-speed) ;; This kludge allows macros which use cl-transform-function-property ;; to be called at compile-time. (eval-and-compile (or (fboundp 'cl-transform-function-property) (defun cl-transform-function-property (n p f) `(put ',n ',p #'(lambda . ,f))))) ;;; Initialization. (defvar cl-old-bc-file-form nil) ;;; Some predicates for analyzing Lisp forms. These are used by various ;;; macro expanders to optimize the results in certain common cases. (defconst cl-simple-funcs '(car cdr nth aref elt if and or + - 1+ 1- min max car-safe cdr-safe progn prog1 prog2)) (defconst cl-safe-funcs '(* / % length memq list vector vectorp < > <= >= = error)) ;;; Check if no side effects, and executes quickly. (defun cl-simple-expr-p (x &optional size) (or size (setq size 10)) (if (and (consp x) (not (memq (car x) '(quote function cl-function)))) (and (symbolp (car x)) (or (memq (car x) cl-simple-funcs) (get (car x) 'side-effect-free)) (progn (setq size (1- size)) (while (and (setq x (cdr x)) (setq size (cl-simple-expr-p (car x) size)))) (and (null x) (>= size 0) size))) (and (> size 0) (1- size)))) (defun cl-simple-exprs-p (xs) (while (and xs (cl-simple-expr-p (car xs))) (setq xs (cdr xs))) (not xs)) ;;; Check if no side effects. (defun cl-safe-expr-p (x) (or (not (and (consp x) (not (memq (car x) '(quote function cl-function))))) (and (symbolp (car x)) (or (memq (car x) cl-simple-funcs) (memq (car x) cl-safe-funcs) (get (car x) 'side-effect-free)) (progn (while (and (setq x (cdr x)) (cl-safe-expr-p (car x)))) (null x))))) ;;; Check if constant (i.e., no side effects or dependencies). (defun cl-const-expr-p (x) (cond ((consp x) (or (eq (car x) 'quote) (and (memq (car x) '(function cl-function)) (or (symbolp (nth 1 x)) (and (eq (car-safe (nth 1 x)) 'lambda) 'func))))) ((symbolp x) (and (memq x '(nil t)) t)) (t t))) (defun cl-const-exprs-p (xs) (while (and xs (cl-const-expr-p (car xs))) (setq xs (cdr xs))) (not xs)) (defun cl-const-expr-val (x) (and (eq (cl-const-expr-p x) t) (if (consp x) (nth 1 x) x))) (defun cl-expr-access-order (x v) ;; This apparently tries to return nil iff the expression X evaluates ;; the variables V in the same order as they appear in V (so as to ;; be able to replace those vars with the expressions they're bound ;; to). ;; FIXME: This is very naive, it doesn't even check to see if those ;; variables appear more than once. (if (cl-const-expr-p x) v (if (consp x) (progn (while (setq x (cdr x)) (setq v (cl-expr-access-order (car x) v))) v) (if (eq x (car v)) (cdr v) '(t))))) ;;; Count number of times X refers to Y. Return nil for 0 times. (defun cl-expr-contains (x y) ;; FIXME: This is naive, and it will cl-count Y as referred twice in ;; (let ((Y 1)) Y) even though it should be 0. Also it is often called on ;; non-macroexpanded code, so it may also miss some occurrences that would ;; only appear in the expanded code. (cond ((equal y x) 1) ((and (consp x) (not (memq (car x) '(quote function cl-function)))) (let ((sum 0)) (while (consp x) (setq sum (+ sum (or (cl-expr-contains (pop x) y) 0)))) (setq sum (+ sum (or (cl-expr-contains x y) 0))) (and (> sum 0) sum))) (t nil))) (defun cl-expr-contains-any (x y) (while (and y (not (cl-expr-contains x (car y)))) (pop y)) y) ;;; Check whether X may depend on any of the symbols in Y. (defun cl-expr-depends-p (x y) (and (not (cl-const-expr-p x)) (or (not (cl-safe-expr-p x)) (cl-expr-contains-any x y)))) ;;; Symbols. (defvar cl--gensym-counter) ;;;###autoload (defun cl-gensym (&optional prefix) "Generate a new uninterned symbol. The name is made by appending a number to PREFIX, default \"G\"." (let ((pfix (if (stringp prefix) prefix "G")) (num (if (integerp prefix) prefix (prog1 cl--gensym-counter (setq cl--gensym-counter (1+ cl--gensym-counter)))))) (make-symbol (format "%s%d" pfix num)))) ;;;###autoload (defun cl-gentemp (&optional prefix) "Generate a new interned symbol with a unique name. The name is made by appending a number to PREFIX, default \"G\"." (let ((pfix (if (stringp prefix) prefix "G")) name) (while (intern-soft (setq name (format "%s%d" pfix cl--gensym-counter))) (setq cl--gensym-counter (1+ cl--gensym-counter))) (intern name))) ;;; Program structure. (def-edebug-spec cl-declarations (&rest ("cl-declare" &rest sexp))) (def-edebug-spec cl-declarations-or-string (&or stringp cl-declarations)) (def-edebug-spec cl-lambda-list (([&rest arg] [&optional ["&optional" cl-&optional-arg &rest cl-&optional-arg]] [&optional ["&rest" arg]] [&optional ["&key" [cl-&key-arg &rest cl-&key-arg] &optional "&allow-other-keys"]] [&optional ["&aux" &rest &or (symbolp &optional def-form) symbolp]] ))) (def-edebug-spec cl-&optional-arg (&or (arg &optional def-form arg) arg)) (def-edebug-spec cl-&key-arg (&or ([&or (symbolp arg) arg] &optional def-form arg) arg)) ;;;###autoload (defmacro cl-defun (name args &rest body) "Define NAME as a function. Like normal `defun', except ARGLIST allows full Common Lisp conventions, and BODY is implicitly surrounded by (cl-block NAME ...). \(fn NAME ARGLIST [DOCSTRING] BODY...)" (declare (debug ;; Same as defun but use cl-lambda-list. (&define [&or name ("cl-setf" :name cl-setf name)] cl-lambda-list cl-declarations-or-string [&optional ("interactive" interactive)] def-body)) (doc-string 3) (indent 2)) (let* ((res (cl-transform-lambda (cons args body) name)) (form `(defun ,name ,@(cdr res)))) (if (car res) `(progn ,(car res) ,form) form))) ;; The lambda list for macros is different from that of normal lambdas. ;; Note that &environment is only allowed as first or last items in the ;; top level list. (def-edebug-spec cl-macro-list (([&optional "&environment" arg] [&rest cl-macro-arg] [&optional ["&optional" &rest &or (cl-macro-arg &optional def-form cl-macro-arg) arg]] [&optional [[&or "&rest" "&body"] cl-macro-arg]] [&optional ["&key" [&rest [&or ([&or (symbolp cl-macro-arg) arg] &optional def-form cl-macro-arg) arg]] &optional "&allow-other-keys"]] [&optional ["&aux" &rest &or (symbolp &optional def-form) symbolp]] [&optional "&environment" arg] ))) (def-edebug-spec cl-macro-arg (&or arg cl-macro-list1)) (def-edebug-spec cl-macro-list1 (([&optional "&whole" arg] ;; only allowed at lower levels [&rest cl-macro-arg] [&optional ["&optional" &rest &or (cl-macro-arg &optional def-form cl-macro-arg) arg]] [&optional [[&or "&rest" "&body"] cl-macro-arg]] [&optional ["&key" [&rest [&or ([&or (symbolp cl-macro-arg) arg] &optional def-form cl-macro-arg) arg]] &optional "&allow-other-keys"]] [&optional ["&aux" &rest &or (symbolp &optional def-form) symbolp]] . [&or arg nil]))) ;;;###autoload (defmacro cl-defmacro (name args &rest body) "Define NAME as a macro. Like normal `defmacro', except ARGLIST allows full Common Lisp conventions, and BODY is implicitly surrounded by (cl-block NAME ...). \(fn NAME ARGLIST [DOCSTRING] BODY...)" (declare (debug (&define name cl-macro-list cl-declarations-or-string def-body)) (doc-string 3) (indent 2)) (let* ((res (cl-transform-lambda (cons args body) name)) (form `(defmacro ,name ,@(cdr res)))) (if (car res) `(progn ,(car res) ,form) form))) (def-edebug-spec cl-lambda-expr (&define ("lambda" cl-lambda-list ;;cl-declarations-or-string ;;[&optional ("interactive" interactive)] def-body))) ;; Redefine function-form to also match cl-function (def-edebug-spec function-form ;; form at the end could also handle "function", ;; but recognize it specially to avoid wrapping function forms. (&or ([&or "quote" "function"] &or symbolp lambda-expr) ("cl-function" cl-function) form)) ;;;###autoload (defmacro cl-function (func) "Introduce a function. Like normal `function', except that if argument is a lambda form, its argument list allows full Common Lisp conventions." (declare (debug (&or symbolp cl-lambda-expr))) (if (eq (car-safe func) 'lambda) (let* ((res (cl-transform-lambda (cdr func) 'cl-none)) (form `(function (lambda . ,(cdr res))))) (if (car res) `(progn ,(car res) ,form) form)) `(function ,func))) (defun cl-transform-function-property (func prop form) (let ((res (cl-transform-lambda form func))) `(progn ,@(cdr (cdr (car res))) (put ',func ',prop #'(lambda . ,(cdr res)))))) (defconst cl-lambda-list-keywords '(&optional &rest &key &allow-other-keys &aux &whole &body &environment)) (defvar cl-macro-environment nil "Keep the list of currently active macros. It is a list of elements of the form either: - (SYMBOL . FUNCTION) where FUNCTION is the macro expansion function. - (SYMBOL-NAME . EXPANSION) where SYMBOL-NAME is the name of a symbol macro.") (defvar cl-bind-block) (defvar cl-bind-defs) (defvar cl-bind-enquote) (defvar cl-bind-inits) (defvar cl-bind-lets) (defvar cl-bind-forms) (declare-function help-add-fundoc-usage "help-fns" (docstring arglist)) (defun cl--make-usage-var (x) "X can be a var or a (destructuring) lambda-list." (cond ((symbolp x) (make-symbol (upcase (symbol-name x)))) ((consp x) (cl--make-usage-args x)) (t x))) (defun cl--make-usage-args (arglist) ;; `orig-args' can contain &cl-defs (an internal ;; CL thingy I don't understand), so remove it. (let ((x (memq '&cl-defs arglist))) (when x (setq arglist (delq (car x) (remq (cadr x) arglist))))) (let ((state nil)) (mapcar (lambda (x) (cond ((symbolp x) (if (eq ?\& (aref (symbol-name x) 0)) (setq state x) (make-symbol (upcase (symbol-name x))))) ((not (consp x)) x) ((memq state '(nil &rest)) (cl--make-usage-args x)) (t ;(VAR INITFORM SVAR) or ((KEYWORD VAR) INITFORM SVAR). (cl-list* (if (and (consp (car x)) (eq state '&key)) (list (caar x) (cl--make-usage-var (nth 1 (car x)))) (cl--make-usage-var (car x))) (nth 1 x) ;INITFORM. (cl--make-usage-args (nthcdr 2 x)) ;SVAR. )))) arglist))) (defun cl-transform-lambda (form cl-bind-block) (let* ((args (car form)) (body (cdr form)) (orig-args args) (cl-bind-defs nil) (cl-bind-enquote nil) (cl-bind-inits nil) (cl-bind-lets nil) (cl-bind-forms nil) (header nil) (simple-args nil)) (while (or (stringp (car body)) (memq (car-safe (car body)) '(interactive cl-declare))) (push (pop body) header)) (setq args (if (listp args) (cl-copy-list args) (list '&rest args))) (let ((p (last args))) (if (cdr p) (setcdr p (list '&rest (cdr p))))) (if (setq cl-bind-defs (cadr (memq '&cl-defs args))) (setq args (delq '&cl-defs (delq cl-bind-defs args)) cl-bind-defs (cadr cl-bind-defs))) (if (setq cl-bind-enquote (memq '&cl-quote args)) (setq args (delq '&cl-quote args))) (if (memq '&whole args) (error "&whole not currently implemented")) (let* ((p (memq '&environment args)) (v (cadr p))) (if p (setq args (nconc (delq (car p) (delq v args)) (list '&aux (list v 'cl-macro-environment)))))) (while (and args (symbolp (car args)) (not (memq (car args) '(nil &rest &body &key &aux))) (not (and (eq (car args) '&optional) (or cl-bind-defs (consp (cadr args)))))) (push (pop args) simple-args)) (or (eq cl-bind-block 'cl-none) (setq body (list `(cl-block ,cl-bind-block ,@body)))) (if (null args) (cl-list* nil (nreverse simple-args) (nconc (nreverse header) body)) (if (memq '&optional simple-args) (push '&optional args)) (cl-do-arglist args nil (- (length simple-args) (if (memq '&optional simple-args) 1 0))) (setq cl-bind-lets (nreverse cl-bind-lets)) (cl-list* (and cl-bind-inits `(cl-eval-when (compile load eval) ,@(nreverse cl-bind-inits))) (nconc (nreverse simple-args) (list '&rest (car (pop cl-bind-lets)))) (nconc (let ((hdr (nreverse header))) ;; Macro expansion can take place in the middle of ;; apparently harmless computation, so it should not ;; touch the match-data. (save-match-data (require 'help-fns) (cons (help-add-fundoc-usage (if (stringp (car hdr)) (pop hdr)) (format "%S" (cons 'fn (cl--make-usage-args orig-args)))) hdr))) (list `(let* ,cl-bind-lets ,@(nreverse cl-bind-forms) ,@body))))))) (defun cl-do-arglist (args expr &optional num) ; uses bind-* (if (nlistp args) (if (or (memq args cl-lambda-list-keywords) (not (symbolp args))) (error "Invalid argument name: %s" args) (push (list args expr) cl-bind-lets)) (setq args (cl-copy-list args)) (let ((p (last args))) (if (cdr p) (setcdr p (list '&rest (cdr p))))) (let ((p (memq '&body args))) (if p (setcar p '&rest))) (if (memq '&environment args) (error "&environment used incorrectly")) (let ((save-args args) (restarg (memq '&rest args)) (safety (if (cl-compiling-file) cl-optimize-safety 3)) (keys nil) (laterarg nil) (exactarg nil) minarg) (or num (setq num 0)) (if (listp (cadr restarg)) (setq restarg (make-symbol "--cl-rest--")) (setq restarg (cadr restarg))) (push (list restarg expr) cl-bind-lets) (if (eq (car args) '&whole) (push (list (cl-pop2 args) restarg) cl-bind-lets)) (let ((p args)) (setq minarg restarg) (while (and p (not (memq (car p) cl-lambda-list-keywords))) (or (eq p args) (setq minarg (list 'cdr minarg))) (setq p (cdr p))) (if (memq (car p) '(nil &aux)) (setq minarg `(= (length ,restarg) ,(length (cl-ldiff args p))) exactarg (not (eq args p))))) (while (and args (not (memq (car args) cl-lambda-list-keywords))) (let ((poparg (list (if (or (cdr args) (not exactarg)) 'pop 'car) restarg))) (cl-do-arglist (pop args) (if (or laterarg (= safety 0)) poparg `(if ,minarg ,poparg (signal 'wrong-number-of-arguments (list ,(and (not (eq cl-bind-block 'cl-none)) `',cl-bind-block) (length ,restarg))))))) (setq num (1+ num) laterarg t)) (while (and (eq (car args) '&optional) (pop args)) (while (and args (not (memq (car args) cl-lambda-list-keywords))) (let ((arg (pop args))) (or (consp arg) (setq arg (list arg))) (if (cddr arg) (cl-do-arglist (nth 2 arg) `(and ,restarg t))) (let ((def (if (cdr arg) (nth 1 arg) (or (car cl-bind-defs) (nth 1 (assq (car arg) cl-bind-defs))))) (poparg `(pop ,restarg))) (and def cl-bind-enquote (setq def `',def)) (cl-do-arglist (car arg) (if def `(if ,restarg ,poparg ,def) poparg)) (setq num (1+ num)))))) (if (eq (car args) '&rest) (let ((arg (cl-pop2 args))) (if (consp arg) (cl-do-arglist arg restarg))) (or (eq (car args) '&key) (= safety 0) exactarg (push `(if ,restarg (signal 'wrong-number-of-arguments (list ,(and (not (eq cl-bind-block 'cl-none)) `',cl-bind-block) (+ ,num (length ,restarg))))) cl-bind-forms))) (while (and (eq (car args) '&key) (pop args)) (while (and args (not (memq (car args) cl-lambda-list-keywords))) (let ((arg (pop args))) (or (consp arg) (setq arg (list arg))) (let* ((karg (if (consp (car arg)) (caar arg) (intern (format ":%s" (car arg))))) (varg (if (consp (car arg)) (cl-cadar arg) (car arg))) (def (if (cdr arg) (cadr arg) (or (car cl-bind-defs) (cadr (assq varg cl-bind-defs))))) (look `(memq ',karg ,restarg))) (and def cl-bind-enquote (setq def `',def)) (if (cddr arg) (let* ((temp (or (nth 2 arg) (make-symbol "--cl-var--"))) (val `(car (cdr ,temp)))) (cl-do-arglist temp look) (cl-do-arglist varg `(if ,temp (prog1 ,val (setq ,temp t)) ,def))) (cl-do-arglist varg `(car (cdr ,(if (null def) look `(or ,look ,(if (eq (cl-const-expr-p def) t) `'(nil ,(cl-const-expr-val def)) `(list nil ,def)))))))) (push karg keys))))) (setq keys (nreverse keys)) (or (and (eq (car args) '&allow-other-keys) (pop args)) (null keys) (= safety 0) (let* ((var (make-symbol "--cl-keys--")) (allow '(:allow-other-keys)) (check `(while ,var (cond ((memq (car ,var) ',(append keys allow)) (setq ,var (cdr (cdr ,var)))) ((car (cdr (memq (quote ,@allow) ,restarg))) (setq ,var nil)) (t (error ,(format "Keyword argument %%s not one of %s" keys) (car ,var))))))) (push `(let ((,var ,restarg)) ,check) cl-bind-forms))) (while (and (eq (car args) '&aux) (pop args)) (while (and args (not (memq (car args) cl-lambda-list-keywords))) (if (consp (car args)) (if (and cl-bind-enquote (cl-cadar args)) (cl-do-arglist (caar args) `',(cadr (pop args))) (cl-do-arglist (caar args) (cadr (pop args)))) (cl-do-arglist (pop args) nil)))) (if args (error "Malformed argument list %s" save-args))))) (defun cl-arglist-args (args) (if (nlistp args) (list args) (let ((res nil) (kind nil) arg) (while (consp args) (setq arg (pop args)) (if (memq arg cl-lambda-list-keywords) (setq kind arg) (if (eq arg '&cl-defs) (pop args) (and (consp arg) kind (setq arg (car arg))) (and (consp arg) (cdr arg) (eq kind '&key) (setq arg (cadr arg))) (setq res (nconc res (cl-arglist-args arg)))))) (nconc res (and args (list args)))))) ;;;###autoload (defmacro cl-destructuring-bind (args expr &rest body) (declare (indent 2) (debug (&define cl-macro-list def-form cl-declarations def-body))) (let* ((cl-bind-lets nil) (cl-bind-forms nil) (cl-bind-inits nil) (cl-bind-defs nil) (cl-bind-block 'cl-none) (cl-bind-enquote nil)) (cl-do-arglist (or args '(&aux)) expr) (append '(progn) cl-bind-inits (list `(let* ,(nreverse cl-bind-lets) ,@(nreverse cl-bind-forms) ,@body))))) ;;; The `cl-eval-when' form. (defvar cl-not-toplevel nil) ;;;###autoload (defmacro cl-eval-when (when &rest body) "Control when BODY is evaluated. If `compile' is in WHEN, BODY is evaluated when compiled at top-level. If `load' is in WHEN, BODY is evaluated when loaded after top-level compile. If `eval' is in WHEN, BODY is evaluated when interpreted or at non-top-level. \(fn (WHEN...) BODY...)" (declare (indent 1) (debug ((&rest &or "compile" "load" "eval") body))) (if (and (fboundp 'cl-compiling-file) (cl-compiling-file) (not cl-not-toplevel) (not (boundp 'for-effect))) ; horrible kludge (let ((comp (or (memq 'compile when) (memq :compile-toplevel when))) (cl-not-toplevel t)) (if (or (memq 'load when) (memq :load-toplevel when)) (if comp (cons 'progn (mapcar 'cl-compile-time-too body)) `(if nil nil ,@body)) (progn (if comp (eval (cons 'progn body))) nil))) (and (or (memq 'eval when) (memq :execute when)) (cons 'progn body)))) (defun cl-compile-time-too (form) (or (and (symbolp (car-safe form)) (get (car-safe form) 'byte-hunk-handler)) (setq form (macroexpand form (cons '(cl-eval-when) byte-compile-macro-environment)))) (cond ((eq (car-safe form) 'progn) (cons 'progn (mapcar 'cl-compile-time-too (cdr form)))) ((eq (car-safe form) 'cl-eval-when) (let ((when (nth 1 form))) (if (or (memq 'eval when) (memq :execute when)) `(cl-eval-when (compile ,@when) ,@(cddr form)) form))) (t (eval form) form))) ;;;###autoload (defmacro cl-load-time-value (form &optional read-only) "Like `progn', but evaluates the body at load time. The result of the body appears to the compiler as a quoted constant." (declare (debug (form &optional sexp))) (if (cl-compiling-file) (let* ((temp (cl-gentemp "--cl-load-time--")) (set `(set ',temp ,form))) (if (and (fboundp 'byte-compile-file-form-defmumble) (boundp 'this-kind) (boundp 'that-one)) (fset 'byte-compile-file-form `(lambda (form) (fset 'byte-compile-file-form ',(symbol-function 'byte-compile-file-form)) (byte-compile-file-form ',set) (byte-compile-file-form form))) (print set (symbol-value 'byte-compile--outbuffer))) `(symbol-value ',temp)) `',(eval form))) ;;; Conditional control structures. ;;;###autoload (defmacro cl-case (expr &rest clauses) "Eval EXPR and choose among clauses on that value. Each clause looks like (KEYLIST BODY...). EXPR is evaluated and compared against each key in each KEYLIST; the corresponding BODY is evaluated. If no clause succeeds, cl-case returns nil. A single atom may be used in place of a KEYLIST of one atom. A KEYLIST of t or `otherwise' is allowed only in the final clause, and matches if no other keys match. Key values are compared by `eql'. \n(fn EXPR (KEYLIST BODY...)...)" (declare (indent 1) (debug (form &rest (sexp body)))) (let* ((temp (if (cl-simple-expr-p expr 3) expr (make-symbol "--cl-var--"))) (head-list nil) (body (cons 'cond (mapcar (function (lambda (c) (cons (cond ((memq (car c) '(t otherwise)) t) ((eq (car c) 'cl--ecase-error-flag) `(error "cl-ecase failed: %s, %s" ,temp ',(reverse head-list))) ((listp (car c)) (setq head-list (append (car c) head-list)) `(cl-member ,temp ',(car c))) (t (if (memq (car c) head-list) (error "Duplicate key in case: %s" (car c))) (push (car c) head-list) `(eql ,temp ',(car c)))) (or (cdr c) '(nil))))) clauses)))) (if (eq temp expr) body `(let ((,temp ,expr)) ,body)))) ;;;###autoload (defmacro cl-ecase (expr &rest clauses) "Like `cl-case', but error if no cl-case fits. `otherwise'-clauses are not allowed. \n(fn EXPR (KEYLIST BODY...)...)" (declare (indent 1) (debug cl-case)) `(cl-case ,expr ,@clauses (cl--ecase-error-flag))) ;;;###autoload (defmacro cl-typecase (expr &rest clauses) "Evals EXPR, chooses among clauses on that value. Each clause looks like (TYPE BODY...). EXPR is evaluated and, if it satisfies TYPE, the corresponding BODY is evaluated. If no clause succeeds, cl-typecase returns nil. A TYPE of t or `otherwise' is allowed only in the final clause, and matches if no other keys match. \n(fn EXPR (TYPE BODY...)...)" (declare (indent 1) (debug (form &rest ([&or cl-type-spec "otherwise"] body)))) (let* ((temp (if (cl-simple-expr-p expr 3) expr (make-symbol "--cl-var--"))) (type-list nil) (body (cons 'cond (mapcar (function (lambda (c) (cons (cond ((eq (car c) 'otherwise) t) ((eq (car c) 'cl--ecase-error-flag) `(error "cl-etypecase failed: %s, %s" ,temp ',(reverse type-list))) (t (push (car c) type-list) (cl-make-type-test temp (car c)))) (or (cdr c) '(nil))))) clauses)))) (if (eq temp expr) body `(let ((,temp ,expr)) ,body)))) ;;;###autoload (defmacro cl-etypecase (expr &rest clauses) "Like `cl-typecase', but error if no case fits. `otherwise'-clauses are not allowed. \n(fn EXPR (TYPE BODY...)...)" (declare (indent 1) (debug cl-typecase)) `(cl-typecase ,expr ,@clauses (cl--ecase-error-flag))) ;;; Blocks and exits. ;;;###autoload (defmacro cl-block (name &rest body) "Define a lexically-scoped block named NAME. NAME may be any symbol. Code inside the BODY forms can call `cl-return-from' to jump prematurely out of the block. This differs from `catch' and `throw' in two respects: First, the NAME is an unevaluated symbol rather than a quoted symbol or other form; and second, NAME is lexically rather than dynamically scoped: Only references to it within BODY will work. These references may appear inside macro expansions, but not inside functions called from BODY." (declare (indent 1) (debug (symbolp body))) (if (cl-safe-expr-p `(progn ,@body)) `(progn ,@body) `(cl-block-wrapper (catch ',(intern (format "--cl-block-%s--" name)) ,@body)))) ;;;###autoload (defmacro cl-return (&optional result) "Return from the block named nil. This is equivalent to `(cl-return-from nil RESULT)'." (declare (debug (&optional form))) `(cl-return-from nil ,result)) ;;;###autoload (defmacro cl-return-from (name &optional result) "Return from the block named NAME. This jumps out to the innermost enclosing `(cl-block NAME ...)' form, returning RESULT from that form (or nil if RESULT is omitted). This is compatible with Common Lisp, but note that `defun' and `defmacro' do not create implicit blocks as they do in Common Lisp." (declare (indent 1) (debug (symbolp &optional form))) (let ((name2 (intern (format "--cl-block-%s--" name)))) `(cl-block-throw ',name2 ,result))) ;;; The "cl-loop" macro. (defvar cl-loop-args) (defvar cl-loop-accum-var) (defvar cl-loop-accum-vars) (defvar cl-loop-bindings) (defvar cl-loop-body) (defvar cl-loop-destr-temps) (defvar cl-loop-finally) (defvar cl-loop-finish-flag) (defvar cl-loop-first-flag) (defvar cl-loop-initially) (defvar cl-loop-map-form) (defvar cl-loop-name) (defvar cl-loop-result) (defvar cl-loop-result-explicit) (defvar cl-loop-result-var) (defvar cl-loop-steps) (defvar cl-loop-symbol-macs) ;;;###autoload (defmacro cl-loop (&rest cl-loop-args) "The Common Lisp `cl-loop' macro. Valid clauses are: for VAR from/upfrom/downfrom NUM to/upto/downto/above/below NUM by NUM, for VAR in LIST by FUNC, for VAR on LIST by FUNC, for VAR = INIT then EXPR, for VAR across ARRAY, repeat NUM, with VAR = INIT, while COND, until COND, always COND, never COND, thereis COND, collect EXPR into VAR, append EXPR into VAR, nconc EXPR into VAR, sum EXPR into VAR, count EXPR into VAR, maximize EXPR into VAR, minimize EXPR into VAR, if COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...], unless COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...], do EXPRS..., initially EXPRS..., finally EXPRS..., return EXPR, finally return EXPR, named NAME. \(fn CLAUSE...)" (declare (debug (&rest &or symbolp form))) (if (not (memq t (mapcar 'symbolp (delq nil (delq t (cl-copy-list cl-loop-args)))))) `(cl-block nil (while t ,@cl-loop-args)) (let ((cl-loop-name nil) (cl-loop-bindings nil) (cl-loop-body nil) (cl-loop-steps nil) (cl-loop-result nil) (cl-loop-result-explicit nil) (cl-loop-result-var nil) (cl-loop-finish-flag nil) (cl-loop-accum-var nil) (cl-loop-accum-vars nil) (cl-loop-initially nil) (cl-loop-finally nil) (cl-loop-map-form nil) (cl-loop-first-flag nil) (cl-loop-destr-temps nil) (cl-loop-symbol-macs nil)) (setq cl-loop-args (append cl-loop-args '(cl-end-loop))) (while (not (eq (car cl-loop-args) 'cl-end-loop)) (cl-parse-loop-clause)) (if cl-loop-finish-flag (push `((,cl-loop-finish-flag t)) cl-loop-bindings)) (if cl-loop-first-flag (progn (push `((,cl-loop-first-flag t)) cl-loop-bindings) (push `(setq ,cl-loop-first-flag nil) cl-loop-steps))) (let* ((epilogue (nconc (nreverse cl-loop-finally) (list (or cl-loop-result-explicit cl-loop-result)))) (ands (cl-loop-build-ands (nreverse cl-loop-body))) (while-body (nconc (cadr ands) (nreverse cl-loop-steps))) (body (append (nreverse cl-loop-initially) (list (if cl-loop-map-form `(cl-block --cl-finish-- ,(cl-subst (if (eq (car ands) t) while-body (cons `(or ,(car ands) (cl-return-from --cl-finish-- nil)) while-body)) '--cl-map cl-loop-map-form)) `(while ,(car ands) ,@while-body))) (if cl-loop-finish-flag (if (equal epilogue '(nil)) (list cl-loop-result-var) `((if ,cl-loop-finish-flag (progn ,@epilogue) ,cl-loop-result-var))) epilogue)))) (if cl-loop-result-var (push (list cl-loop-result-var) cl-loop-bindings)) (while cl-loop-bindings (if (cdar cl-loop-bindings) (setq body (list (cl-loop-let (pop cl-loop-bindings) body t))) (let ((lets nil)) (while (and cl-loop-bindings (not (cdar cl-loop-bindings))) (push (car (pop cl-loop-bindings)) lets)) (setq body (list (cl-loop-let lets body nil)))))) (if cl-loop-symbol-macs (setq body (list `(cl-symbol-macrolet ,cl-loop-symbol-macs ,@body)))) `(cl-block ,cl-loop-name ,@body))))) ;; Below is a complete spec for cl-loop, in several parts that correspond ;; to the syntax given in CLtL2. The specs do more than specify where ;; the forms are; it also specifies, as much as Edebug allows, all the ;; syntactically valid cl-loop clauses. The disadvantage of this ;; completeness is rigidity, but the "for ... being" clause allows ;; arbitrary extensions of the form: [symbolp &rest &or symbolp form]. ;; (def-edebug-spec cl-loop ;; ([&optional ["named" symbolp]] ;; [&rest ;; &or ;; ["repeat" form] ;; loop-for-as ;; loop-with ;; loop-initial-final] ;; [&rest loop-clause] ;; )) ;; (def-edebug-spec loop-with ;; ("with" loop-var ;; loop-type-spec ;; [&optional ["=" form]] ;; &rest ["and" loop-var ;; loop-type-spec ;; [&optional ["=" form]]])) ;; (def-edebug-spec loop-for-as ;; ([&or "for" "as"] loop-for-as-subclause ;; &rest ["and" loop-for-as-subclause])) ;; (def-edebug-spec loop-for-as-subclause ;; (loop-var ;; loop-type-spec ;; &or ;; [[&or "in" "on" "in-ref" "across-ref"] ;; form &optional ["by" function-form]] ;; ["=" form &optional ["then" form]] ;; ["across" form] ;; ["being" ;; [&or "the" "each"] ;; &or ;; [[&or "element" "elements"] ;; [&or "of" "in" "of-ref"] form ;; &optional "using" ["index" symbolp]];; is this right? ;; [[&or "hash-key" "hash-keys" ;; "hash-value" "hash-values"] ;; [&or "of" "in"] ;; hash-table-p &optional ["using" ([&or "hash-value" "hash-values" ;; "hash-key" "hash-keys"] sexp)]] ;; [[&or "symbol" "present-symbol" "external-symbol" ;; "symbols" "present-symbols" "external-symbols"] ;; [&or "in" "of"] package-p] ;; ;; Extensions for Emacs Lisp, including Lucid Emacs. ;; [[&or "frame" "frames" ;; "screen" "screens" ;; "buffer" "buffers"]] ;; [[&or "window" "windows"] ;; [&or "of" "in"] form] ;; [[&or "overlay" "overlays" ;; "extent" "extents"] ;; [&or "of" "in"] form ;; &optional [[&or "from" "to"] form]] ;; [[&or "interval" "intervals"] ;; [&or "in" "of"] form ;; &optional [[&or "from" "to"] form] ;; ["property" form]] ;; [[&or "key-code" "key-codes" ;; "key-seq" "key-seqs" ;; "key-binding" "key-bindings"] ;; [&or "in" "of"] form ;; &optional ["using" ([&or "key-code" "key-codes" ;; "key-seq" "key-seqs" ;; "key-binding" "key-bindings"] ;; sexp)]] ;; ;; For arbitrary extensions, recognize anything else. ;; [symbolp &rest &or symbolp form] ;; ] ;; ;; arithmetic - must be last since all parts are optional. ;; [[&optional [[&or "from" "downfrom" "upfrom"] form]] ;; [&optional [[&or "to" "downto" "upto" "below" "above"] form]] ;; [&optional ["by" form]] ;; ])) ;; (def-edebug-spec loop-initial-final ;; (&or ["initially" ;; ;; [&optional &or "do" "doing"] ;; CLtL2 doesn't allow this. ;; &rest loop-non-atomic-expr] ;; ["finally" &or ;; [[&optional &or "do" "doing"] &rest loop-non-atomic-expr] ;; ["return" form]])) ;; (def-edebug-spec loop-and-clause ;; (loop-clause &rest ["and" loop-clause])) ;; (def-edebug-spec loop-clause ;; (&or ;; [[&or "while" "until" "always" "never" "thereis"] form] ;; [[&or "collect" "collecting" ;; "append" "appending" ;; "nconc" "nconcing" ;; "concat" "vconcat"] form ;; [&optional ["into" loop-var]]] ;; [[&or "count" "counting" ;; "sum" "summing" ;; "maximize" "maximizing" ;; "minimize" "minimizing"] form ;; [&optional ["into" loop-var]] ;; loop-type-spec] ;; [[&or "if" "when" "unless"] ;; form loop-and-clause ;; [&optional ["else" loop-and-clause]] ;; [&optional "end"]] ;; [[&or "do" "doing"] &rest loop-non-atomic-expr] ;; ["return" form] ;; loop-initial-final ;; )) ;; (def-edebug-spec loop-non-atomic-expr ;; ([¬ atom] form)) ;; (def-edebug-spec loop-var ;; ;; The symbolp must be last alternative to recognize e.g. (a b . c) ;; ;; loop-var => ;; ;; (loop-var . [&or nil loop-var]) ;; ;; (symbolp . [&or nil loop-var]) ;; ;; (symbolp . loop-var) ;; ;; (symbolp . (symbolp . [&or nil loop-var])) ;; ;; (symbolp . (symbolp . loop-var)) ;; ;; (symbolp . (symbolp . symbolp)) == (symbolp symbolp . symbolp) ;; (&or (loop-var . [&or nil loop-var]) [gate symbolp])) ;; (def-edebug-spec loop-type-spec ;; (&optional ["of-type" loop-d-type-spec])) ;; (def-edebug-spec loop-d-type-spec ;; (&or (loop-d-type-spec . [&or nil loop-d-type-spec]) cl-type-spec)) (defun cl-parse-loop-clause () ; uses loop-* (let ((word (pop cl-loop-args)) (hash-types '(hash-key hash-keys hash-value hash-values)) (key-types '(key-code key-codes key-seq key-seqs key-binding key-bindings))) (cond ((null cl-loop-args) (error "Malformed `cl-loop' macro")) ((eq word 'named) (setq cl-loop-name (pop cl-loop-args))) ((eq word 'initially) (if (memq (car cl-loop-args) '(do doing)) (pop cl-loop-args)) (or (consp (car cl-loop-args)) (error "Syntax error on `initially' clause")) (while (consp (car cl-loop-args)) (push (pop cl-loop-args) cl-loop-initially))) ((eq word 'finally) (if (eq (car cl-loop-args) 'return) (setq cl-loop-result-explicit (or (cl-pop2 cl-loop-args) '(quote nil))) (if (memq (car cl-loop-args) '(do doing)) (pop cl-loop-args)) (or (consp (car cl-loop-args)) (error "Syntax error on `finally' clause")) (if (and (eq (caar cl-loop-args) 'return) (null cl-loop-name)) (setq cl-loop-result-explicit (or (nth 1 (pop cl-loop-args)) '(quote nil))) (while (consp (car cl-loop-args)) (push (pop cl-loop-args) cl-loop-finally))))) ((memq word '(for as)) (let ((loop-for-bindings nil) (loop-for-sets nil) (loop-for-steps nil) (ands nil)) (while ;; Use `cl-gensym' rather than `make-symbol'. It's important that ;; (not (eq (symbol-name var1) (symbol-name var2))) because ;; these vars get added to the cl-macro-environment. (let ((var (or (pop cl-loop-args) (cl-gensym "--cl-var--")))) (setq word (pop cl-loop-args)) (if (eq word 'being) (setq word (pop cl-loop-args))) (if (memq word '(the each)) (setq word (pop cl-loop-args))) (if (memq word '(buffer buffers)) (setq word 'in cl-loop-args (cons '(buffer-list) cl-loop-args))) (cond ((memq word '(from downfrom upfrom to downto upto above below by)) (push word cl-loop-args) (if (memq (car cl-loop-args) '(downto above)) (error "Must specify `from' value for downward cl-loop")) (let* ((down (or (eq (car cl-loop-args) 'downfrom) (memq (cl-caddr cl-loop-args) '(downto above)))) (excl (or (memq (car cl-loop-args) '(above below)) (memq (cl-caddr cl-loop-args) '(above below)))) (start (and (memq (car cl-loop-args) '(from upfrom downfrom)) (cl-pop2 cl-loop-args))) (end (and (memq (car cl-loop-args) '(to upto downto above below)) (cl-pop2 cl-loop-args))) (step (and (eq (car cl-loop-args) 'by) (cl-pop2 cl-loop-args))) (end-var (and (not (cl-const-expr-p end)) (make-symbol "--cl-var--"))) (step-var (and (not (cl-const-expr-p step)) (make-symbol "--cl-var--")))) (and step (numberp step) (<= step 0) (error "Loop `by' value is not positive: %s" step)) (push (list var (or start 0)) loop-for-bindings) (if end-var (push (list end-var end) loop-for-bindings)) (if step-var (push (list step-var step) loop-for-bindings)) (if end (push (list (if down (if excl '> '>=) (if excl '< '<=)) var (or end-var end)) cl-loop-body)) (push (list var (list (if down '- '+) var (or step-var step 1))) loop-for-steps))) ((memq word '(in in-ref on)) (let* ((on (eq word 'on)) (temp (if (and on (symbolp var)) var (make-symbol "--cl-var--")))) (push (list temp (pop cl-loop-args)) loop-for-bindings) (push `(consp ,temp) cl-loop-body) (if (eq word 'in-ref) (push (list var `(car ,temp)) cl-loop-symbol-macs) (or (eq temp var) (progn (push (list var nil) loop-for-bindings) (push (list var (if on temp `(car ,temp))) loop-for-sets)))) (push (list temp (if (eq (car cl-loop-args) 'by) (let ((step (cl-pop2 cl-loop-args))) (if (and (memq (car-safe step) '(quote function cl-function)) (symbolp (nth 1 step))) (list (nth 1 step) temp) `(funcall ,step ,temp))) `(cdr ,temp))) loop-for-steps))) ((eq word '=) (let* ((start (pop cl-loop-args)) (then (if (eq (car cl-loop-args) 'then) (cl-pop2 cl-loop-args) start))) (push (list var nil) loop-for-bindings) (if (or ands (eq (car cl-loop-args) 'and)) (progn (push `(,var (if ,(or cl-loop-first-flag (setq cl-loop-first-flag (make-symbol "--cl-var--"))) ,start ,var)) loop-for-sets) (push (list var then) loop-for-steps)) (push (list var (if (eq start then) start `(if ,(or cl-loop-first-flag (setq cl-loop-first-flag (make-symbol "--cl-var--"))) ,start ,then))) loop-for-sets)))) ((memq word '(across across-ref)) (let ((temp-vec (make-symbol "--cl-vec--")) (temp-idx (make-symbol "--cl-idx--"))) (push (list temp-vec (pop cl-loop-args)) loop-for-bindings) (push (list temp-idx -1) loop-for-bindings) (push `(< (setq ,temp-idx (1+ ,temp-idx)) (length ,temp-vec)) cl-loop-body) (if (eq word 'across-ref) (push (list var `(aref ,temp-vec ,temp-idx)) cl-loop-symbol-macs) (push (list var nil) loop-for-bindings) (push (list var `(aref ,temp-vec ,temp-idx)) loop-for-sets)))) ((memq word '(element elements)) (let ((ref (or (memq (car cl-loop-args) '(in-ref of-ref)) (and (not (memq (car cl-loop-args) '(in of))) (error "Expected `of'")))) (seq (cl-pop2 cl-loop-args)) (temp-seq (make-symbol "--cl-seq--")) (temp-idx (if (eq (car cl-loop-args) 'using) (if (and (= (length (cadr cl-loop-args)) 2) (eq (cl-caadr cl-loop-args) 'index)) (cadr (cl-pop2 cl-loop-args)) (error "Bad `using' clause")) (make-symbol "--cl-idx--")))) (push (list temp-seq seq) loop-for-bindings) (push (list temp-idx 0) loop-for-bindings) (if ref (let ((temp-len (make-symbol "--cl-len--"))) (push (list temp-len `(length ,temp-seq)) loop-for-bindings) (push (list var `(elt ,temp-seq temp-idx)) cl-loop-symbol-macs) (push `(< ,temp-idx ,temp-len) cl-loop-body)) (push (list var nil) loop-for-bindings) (push `(and ,temp-seq (or (consp ,temp-seq) (< ,temp-idx (length ,temp-seq)))) cl-loop-body) (push (list var `(if (consp ,temp-seq) (pop ,temp-seq) (aref ,temp-seq ,temp-idx))) loop-for-sets)) (push (list temp-idx `(1+ ,temp-idx)) loop-for-steps))) ((memq word hash-types) (or (memq (car cl-loop-args) '(in of)) (error "Expected `of'")) (let* ((table (cl-pop2 cl-loop-args)) (other (if (eq (car cl-loop-args) 'using) (if (and (= (length (cadr cl-loop-args)) 2) (memq (cl-caadr cl-loop-args) hash-types) (not (eq (cl-caadr cl-loop-args) word))) (cadr (cl-pop2 cl-loop-args)) (error "Bad `using' clause")) (make-symbol "--cl-var--")))) (if (memq word '(hash-value hash-values)) (setq var (prog1 other (setq other var)))) (setq cl-loop-map-form `(maphash (lambda (,var ,other) . --cl-map) ,table)))) ((memq word '(symbol present-symbol external-symbol symbols present-symbols external-symbols)) (let ((ob (and (memq (car cl-loop-args) '(in of)) (cl-pop2 cl-loop-args)))) (setq cl-loop-map-form `(mapatoms (lambda (,var) . --cl-map) ,ob)))) ((memq word '(overlay overlays extent extents)) (let ((buf nil) (from nil) (to nil)) (while (memq (car cl-loop-args) '(in of from to)) (cond ((eq (car cl-loop-args) 'from) (setq from (cl-pop2 cl-loop-args))) ((eq (car cl-loop-args) 'to) (setq to (cl-pop2 cl-loop-args))) (t (setq buf (cl-pop2 cl-loop-args))))) (setq cl-loop-map-form `(cl-map-extents (lambda (,var ,(make-symbol "--cl-var--")) (progn . --cl-map) nil) ,buf ,from ,to)))) ((memq word '(interval intervals)) (let ((buf nil) (prop nil) (from nil) (to nil) (var1 (make-symbol "--cl-var1--")) (var2 (make-symbol "--cl-var2--"))) (while (memq (car cl-loop-args) '(in of property from to)) (cond ((eq (car cl-loop-args) 'from) (setq from (cl-pop2 cl-loop-args))) ((eq (car cl-loop-args) 'to) (setq to (cl-pop2 cl-loop-args))) ((eq (car cl-loop-args) 'property) (setq prop (cl-pop2 cl-loop-args))) (t (setq buf (cl-pop2 cl-loop-args))))) (if (and (consp var) (symbolp (car var)) (symbolp (cdr var))) (setq var1 (car var) var2 (cdr var)) (push (list var `(cons ,var1 ,var2)) loop-for-sets)) (setq cl-loop-map-form `(cl-map-intervals (lambda (,var1 ,var2) . --cl-map) ,buf ,prop ,from ,to)))) ((memq word key-types) (or (memq (car cl-loop-args) '(in of)) (error "Expected `of'")) (let ((cl-map (cl-pop2 cl-loop-args)) (other (if (eq (car cl-loop-args) 'using) (if (and (= (length (cadr cl-loop-args)) 2) (memq (cl-caadr cl-loop-args) key-types) (not (eq (cl-caadr cl-loop-args) word))) (cadr (cl-pop2 cl-loop-args)) (error "Bad `using' clause")) (make-symbol "--cl-var--")))) (if (memq word '(key-binding key-bindings)) (setq var (prog1 other (setq other var)))) (setq cl-loop-map-form `(,(if (memq word '(key-seq key-seqs)) 'cl-map-keymap-recursively 'map-keymap) (lambda (,var ,other) . --cl-map) ,cl-map)))) ((memq word '(frame frames screen screens)) (let ((temp (make-symbol "--cl-var--"))) (push (list var '(selected-frame)) loop-for-bindings) (push (list temp nil) loop-for-bindings) (push `(prog1 (not (eq ,var ,temp)) (or ,temp (setq ,temp ,var))) cl-loop-body) (push (list var `(next-frame ,var)) loop-for-steps))) ((memq word '(window windows)) (let ((scr (and (memq (car cl-loop-args) '(in of)) (cl-pop2 cl-loop-args))) (temp (make-symbol "--cl-var--")) (minip (make-symbol "--cl-minip--"))) (push (list var (if scr `(frame-selected-window ,scr) '(selected-window))) loop-for-bindings) ;; If we started in the minibuffer, we need to ;; ensure that next-window will bring us back there ;; at some point. (Bug#7492). ;; (Consider using walk-windows instead of cl-loop if ;; you care about such things.) (push (list minip `(minibufferp (window-buffer ,var))) loop-for-bindings) (push (list temp nil) loop-for-bindings) (push `(prog1 (not (eq ,var ,temp)) (or ,temp (setq ,temp ,var))) cl-loop-body) (push (list var `(next-window ,var ,minip)) loop-for-steps))) (t (let ((handler (and (symbolp word) (get word 'cl-loop-for-handler)))) (if handler (funcall handler var) (error "Expected a `for' preposition, found %s" word))))) (eq (car cl-loop-args) 'and)) (setq ands t) (pop cl-loop-args)) (if (and ands loop-for-bindings) (push (nreverse loop-for-bindings) cl-loop-bindings) (setq cl-loop-bindings (nconc (mapcar 'list loop-for-bindings) cl-loop-bindings))) (if loop-for-sets (push `(progn ,(cl-loop-let (nreverse loop-for-sets) 'setq ands) t) cl-loop-body)) (if loop-for-steps (push (cons (if ands 'cl-psetq 'setq) (apply 'append (nreverse loop-for-steps))) cl-loop-steps)))) ((eq word 'repeat) (let ((temp (make-symbol "--cl-var--"))) (push (list (list temp (pop cl-loop-args))) cl-loop-bindings) (push `(>= (setq ,temp (1- ,temp)) 0) cl-loop-body))) ((memq word '(collect collecting)) (let ((what (pop cl-loop-args)) (var (cl-loop-handle-accum nil 'nreverse))) (if (eq var cl-loop-accum-var) (push `(progn (push ,what ,var) t) cl-loop-body) (push `(progn (setq ,var (nconc ,var (list ,what))) t) cl-loop-body)))) ((memq word '(nconc nconcing append appending)) (let ((what (pop cl-loop-args)) (var (cl-loop-handle-accum nil 'nreverse))) (push `(progn (setq ,var ,(if (eq var cl-loop-accum-var) `(nconc (,(if (memq word '(nconc nconcing)) #'nreverse #'reverse) ,what) ,var) `(,(if (memq word '(nconc nconcing)) #'nconc #'append) ,var ,what))) t) cl-loop-body))) ((memq word '(concat concating)) (let ((what (pop cl-loop-args)) (var (cl-loop-handle-accum ""))) (push `(progn (cl-callf concat ,var ,what) t) cl-loop-body))) ((memq word '(vconcat vconcating)) (let ((what (pop cl-loop-args)) (var (cl-loop-handle-accum []))) (push `(progn (cl-callf vconcat ,var ,what) t) cl-loop-body))) ((memq word '(sum summing)) (let ((what (pop cl-loop-args)) (var (cl-loop-handle-accum 0))) (push `(progn (cl-incf ,var ,what) t) cl-loop-body))) ((memq word '(count counting)) (let ((what (pop cl-loop-args)) (var (cl-loop-handle-accum 0))) (push `(progn (if ,what (cl-incf ,var)) t) cl-loop-body))) ((memq word '(minimize minimizing maximize maximizing)) (let* ((what (pop cl-loop-args)) (temp (if (cl-simple-expr-p what) what (make-symbol "--cl-var--"))) (var (cl-loop-handle-accum nil)) (func (intern (substring (symbol-name word) 0 3))) (set `(setq ,var (if ,var (,func ,var ,temp) ,temp)))) (push `(progn ,(if (eq temp what) set `(let ((,temp ,what)) ,set)) t) cl-loop-body))) ((eq word 'with) (let ((bindings nil)) (while (progn (push (list (pop cl-loop-args) (and (eq (car cl-loop-args) '=) (cl-pop2 cl-loop-args))) bindings) (eq (car cl-loop-args) 'and)) (pop cl-loop-args)) (push (nreverse bindings) cl-loop-bindings))) ((eq word 'while) (push (pop cl-loop-args) cl-loop-body)) ((eq word 'until) (push `(not ,(pop cl-loop-args)) cl-loop-body)) ((eq word 'always) (or cl-loop-finish-flag (setq cl-loop-finish-flag (make-symbol "--cl-flag--"))) (push `(setq ,cl-loop-finish-flag ,(pop cl-loop-args)) cl-loop-body) (setq cl-loop-result t)) ((eq word 'never) (or cl-loop-finish-flag (setq cl-loop-finish-flag (make-symbol "--cl-flag--"))) (push `(setq ,cl-loop-finish-flag (not ,(pop cl-loop-args))) cl-loop-body) (setq cl-loop-result t)) ((eq word 'thereis) (or cl-loop-finish-flag (setq cl-loop-finish-flag (make-symbol "--cl-flag--"))) (or cl-loop-result-var (setq cl-loop-result-var (make-symbol "--cl-var--"))) (push `(setq ,cl-loop-finish-flag (not (setq ,cl-loop-result-var ,(pop cl-loop-args)))) cl-loop-body)) ((memq word '(if when unless)) (let* ((cond (pop cl-loop-args)) (then (let ((cl-loop-body nil)) (cl-parse-loop-clause) (cl-loop-build-ands (nreverse cl-loop-body)))) (else (let ((cl-loop-body nil)) (if (eq (car cl-loop-args) 'else) (progn (pop cl-loop-args) (cl-parse-loop-clause))) (cl-loop-build-ands (nreverse cl-loop-body)))) (simple (and (eq (car then) t) (eq (car else) t)))) (if (eq (car cl-loop-args) 'end) (pop cl-loop-args)) (if (eq word 'unless) (setq then (prog1 else (setq else then)))) (let ((form (cons (if simple (cons 'progn (nth 1 then)) (nth 2 then)) (if simple (nth 1 else) (list (nth 2 else)))))) (if (cl-expr-contains form 'it) (let ((temp (make-symbol "--cl-var--"))) (push (list temp) cl-loop-bindings) (setq form `(if (setq ,temp ,cond) ,@(cl-subst temp 'it form)))) (setq form `(if ,cond ,@form))) (push (if simple `(progn ,form t) form) cl-loop-body)))) ((memq word '(do doing)) (let ((body nil)) (or (consp (car cl-loop-args)) (error "Syntax error on `do' clause")) (while (consp (car cl-loop-args)) (push (pop cl-loop-args) body)) (push (cons 'progn (nreverse (cons t body))) cl-loop-body))) ((eq word 'return) (or cl-loop-finish-flag (setq cl-loop-finish-flag (make-symbol "--cl-var--"))) (or cl-loop-result-var (setq cl-loop-result-var (make-symbol "--cl-var--"))) (push `(setq ,cl-loop-result-var ,(pop cl-loop-args) ,cl-loop-finish-flag nil) cl-loop-body)) (t (let ((handler (and (symbolp word) (get word 'cl-loop-handler)))) (or handler (error "Expected a cl-loop keyword, found %s" word)) (funcall handler)))) (if (eq (car cl-loop-args) 'and) (progn (pop cl-loop-args) (cl-parse-loop-clause))))) (defun cl-loop-let (specs body par) ; uses loop-* (let ((p specs) (temps nil) (new nil)) (while (and p (or (symbolp (car-safe (car p))) (null (cl-cadar p)))) (setq p (cdr p))) (and par p (progn (setq par nil p specs) (while p (or (cl-const-expr-p (cl-cadar p)) (let ((temp (make-symbol "--cl-var--"))) (push (list temp (cl-cadar p)) temps) (setcar (cdar p) temp))) (setq p (cdr p))))) (while specs (if (and (consp (car specs)) (listp (caar specs))) (let* ((spec (caar specs)) (nspecs nil) (expr (cadr (pop specs))) (temp (cdr (or (assq spec cl-loop-destr-temps) (car (push (cons spec (or (last spec 0) (make-symbol "--cl-var--"))) cl-loop-destr-temps)))))) (push (list temp expr) new) (while (consp spec) (push (list (pop spec) (and expr (list (if spec 'pop 'car) temp))) nspecs)) (setq specs (nconc (nreverse nspecs) specs))) (push (pop specs) new))) (if (eq body 'setq) (let ((set (cons (if par 'cl-psetq 'setq) (apply 'nconc (nreverse new))))) (if temps `(let* ,(nreverse temps) ,set) set)) `(,(if par 'let 'let*) ,(nconc (nreverse temps) (nreverse new)) ,@body)))) (defun cl-loop-handle-accum (def &optional func) ; uses loop-* (if (eq (car cl-loop-args) 'into) (let ((var (cl-pop2 cl-loop-args))) (or (memq var cl-loop-accum-vars) (progn (push (list (list var def)) cl-loop-bindings) (push var cl-loop-accum-vars))) var) (or cl-loop-accum-var (progn (push (list (list (setq cl-loop-accum-var (make-symbol "--cl-var--")) def)) cl-loop-bindings) (setq cl-loop-result (if func (list func cl-loop-accum-var) cl-loop-accum-var)) cl-loop-accum-var)))) (defun cl-loop-build-ands (clauses) (let ((ands nil) (body nil)) (while clauses (if (and (eq (car-safe (car clauses)) 'progn) (eq (car (last (car clauses))) t)) (if (cdr clauses) (setq clauses (cons (nconc (butlast (car clauses)) (if (eq (car-safe (cadr clauses)) 'progn) (cl-cdadr clauses) (list (cadr clauses)))) (cddr clauses))) (setq body (cdr (butlast (pop clauses))))) (push (pop clauses) ands))) (setq ands (or (nreverse ands) (list t))) (list (if (cdr ands) (cons 'and ands) (car ands)) body (let ((full (if body (append ands (list (cons 'progn (append body '(t))))) ands))) (if (cdr full) (cons 'and full) (car full)))))) ;;; Other iteration control structures. ;;;###autoload (defmacro cl-do (steps endtest &rest body) "The Common Lisp `cl-do' loop. \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" (declare (indent 2) (debug ((&rest &or symbolp (symbolp &optional form form)) (form body) cl-declarations body))) (cl-expand-do-loop steps endtest body nil)) ;;;###autoload (defmacro cl-do* (steps endtest &rest body) "The Common Lisp `cl-do*' loop. \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" (declare (indent 2) (debug cl-do)) (cl-expand-do-loop steps endtest body t)) (defun cl-expand-do-loop (steps endtest body star) `(cl-block nil (,(if star 'let* 'let) ,(mapcar (lambda (c) (if (consp c) (list (car c) (nth 1 c)) c)) steps) (while (not ,(car endtest)) ,@body ,@(let ((sets (mapcar (lambda (c) (and (consp c) (cdr (cdr c)) (list (car c) (nth 2 c)))) steps))) (setq sets (delq nil sets)) (and sets (list (cons (if (or star (not (cdr sets))) 'setq 'cl-psetq) (apply 'append sets)))))) ,@(or (cdr endtest) '(nil))))) ;;;###autoload (defmacro cl-dolist (spec &rest body) "Loop over a list. Evaluate BODY with VAR bound to each `car' from LIST, in turn. Then evaluate RESULT to get return value, default nil. An implicit nil block is established around the loop. \(fn (VAR LIST [RESULT]) BODY...)" (declare (debug ((symbolp form &optional form) cl-declarations body))) (let ((temp (make-symbol "--cl-dolist-temp--"))) ;; FIXME: Copy&pasted from subr.el. `(cl-block nil ;; This is not a reliable test, but it does not matter because both ;; semantics are acceptable, tho one is slightly faster with dynamic ;; scoping and the other is slightly faster (and has cleaner semantics) ;; with lexical scoping. ,(if lexical-binding `(let ((,temp ,(nth 1 spec))) (while ,temp (let ((,(car spec) (car ,temp))) ,@body (setq ,temp (cdr ,temp)))) ,@(if (cdr (cdr spec)) ;; FIXME: This let often leads to "unused var" warnings. `((let ((,(car spec) nil)) ,@(cdr (cdr spec)))))) `(let ((,temp ,(nth 1 spec)) ,(car spec)) (while ,temp (setq ,(car spec) (car ,temp)) ,@body (setq ,temp (cdr ,temp))) ,@(if (cdr (cdr spec)) `((setq ,(car spec) nil) ,@(cddr spec)))))))) ;;;###autoload (defmacro cl-dotimes (spec &rest body) "Loop a certain number of times. Evaluate BODY with VAR bound to successive integers from 0, inclusive, to COUNT, exclusive. Then evaluate RESULT to get return value, default nil. \(fn (VAR COUNT [RESULT]) BODY...)" (declare (debug cl-dolist)) (let ((temp (make-symbol "--cl-dotimes-temp--")) (end (nth 1 spec))) ;; FIXME: Copy&pasted from subr.el. `(cl-block nil ;; This is not a reliable test, but it does not matter because both ;; semantics are acceptable, tho one is slightly faster with dynamic ;; scoping and the other has cleaner semantics. ,(if lexical-binding (let ((counter '--dotimes-counter--)) `(let ((,temp ,end) (,counter 0)) (while (< ,counter ,temp) (let ((,(car spec) ,counter)) ,@body) (setq ,counter (1+ ,counter))) ,@(if (cddr spec) ;; FIXME: This let often leads to "unused var" warnings. `((let ((,(car spec) ,counter)) ,@(cddr spec)))))) `(let ((,temp ,end) (,(car spec) 0)) (while (< ,(car spec) ,temp) ,@body (cl-incf ,(car spec))) ,@(cdr (cdr spec))))))) ;;;###autoload (defmacro cl-do-symbols (spec &rest body) "Loop over all symbols. Evaluate BODY with VAR bound to each interned symbol, or to each symbol from OBARRAY. \(fn (VAR [OBARRAY [RESULT]]) BODY...)" (declare (indent 1) (debug ((symbolp &optional form form) cl-declarations body))) ;; Apparently this doesn't have an implicit block. `(cl-block nil (let (,(car spec)) (mapatoms #'(lambda (,(car spec)) ,@body) ,@(and (cadr spec) (list (cadr spec)))) ,(cl-caddr spec)))) ;;;###autoload (defmacro cl-do-all-symbols (spec &rest body) (declare (indent 1) (debug ((symbolp &optional form) cl-declarations body))) `(cl-do-symbols (,(car spec) nil ,(cadr spec)) ,@body)) ;;; Assignments. ;;;###autoload (defmacro cl-psetq (&rest args) "Set SYMs to the values VALs in parallel. This is like `setq', except that all VAL forms are evaluated (in order) before assigning any symbols SYM to the corresponding values. \(fn SYM VAL SYM VAL ...)" (declare (debug setq)) (cons 'cl-psetf args)) ;;; Binding control structures. ;;;###autoload (defmacro cl-progv (symbols values &rest body) "Bind SYMBOLS to VALUES dynamically in BODY. The forms SYMBOLS and VALUES are evaluated, and must evaluate to lists. Each symbol in the first list is bound to the corresponding value in the second list (or made unbound if VALUES is shorter than SYMBOLS); then the BODY forms are executed and their result is returned. This is much like a `let' form, except that the list of symbols can be computed at run-time." (declare (indent 2) (debug (form form body))) `(let ((cl-progv-save nil)) (unwind-protect (progn (cl-progv-before ,symbols ,values) ,@body) (cl-progv-after)))) ;;; This should really have some way to shadow 'byte-compile properties, etc. ;;;###autoload (defmacro cl-flet (bindings &rest body) "Make temporary function definitions. This is an analogue of `let' that operates on the function cell of FUNC rather than its value cell. The FORMs are evaluated with the specified function definitions in place, then the definitions are undone (the FUNCs go back to their previous definitions, or lack thereof). \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" (declare (indent 1) (debug ((&rest (cl-defun)) cl-declarations body))) `(cl-letf* ,(mapcar (lambda (x) (if (or (and (fboundp (car x)) (eq (car-safe (symbol-function (car x))) 'macro)) (cdr (assq (car x) cl-macro-environment))) (error "Use `cl-labels', not `cl-flet', to rebind macro names")) (let ((func `(cl-function (lambda ,(cadr x) (cl-block ,(car x) ,@(cddr x)))))) (when (cl-compiling-file) ;; Bug#411. It would be nice to fix this. (and (get (car x) 'byte-compile) (error "Byte-compiling a redefinition of `%s' \ will not work - use `cl-labels' instead" (symbol-name (car x)))) ;; FIXME This affects the rest of the file, when it ;; should be restricted to the cl-flet body. (and (boundp 'byte-compile-function-environment) (push (cons (car x) (eval func)) byte-compile-function-environment))) (list `(symbol-function ',(car x)) func))) bindings) ,@body)) ;;;###autoload (defmacro cl-labels (bindings &rest body) "Make temporary function bindings. This is like `cl-flet', except the bindings are lexical instead of dynamic. Unlike `cl-flet', this macro is fully compliant with the Common Lisp standard. \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" (declare (indent 1) (debug cl-flet)) (let ((vars nil) (sets nil) (cl-macro-environment cl-macro-environment)) (while bindings ;; Use `cl-gensym' rather than `make-symbol'. It's important that ;; (not (eq (symbol-name var1) (symbol-name var2))) because these ;; vars get added to the cl-macro-environment. (let ((var (cl-gensym "--cl-var--"))) (push var vars) (push `(cl-function (lambda . ,(cdar bindings))) sets) (push var sets) (push (list (car (pop bindings)) 'lambda '(&rest cl-labels-args) `(cl-list* 'funcall ',var cl-labels-args)) cl-macro-environment))) (cl-macroexpand-all `(cl-lexical-let ,vars (setq ,@sets) ,@body) cl-macro-environment))) ;; The following ought to have a better definition for use with newer ;; byte compilers. ;;;###autoload (defmacro cl-macrolet (bindings &rest body) "Make temporary macro definitions. This is like `cl-flet', but for macros instead of functions. \(fn ((NAME ARGLIST BODY...) ...) FORM...)" (declare (indent 1) (debug ((&rest (&define name (&rest arg) cl-declarations-or-string def-body)) cl-declarations body))) (if (cdr bindings) `(cl-macrolet (,(car bindings)) (cl-macrolet ,(cdr bindings) ,@body)) (if (null bindings) (cons 'progn body) (let* ((name (caar bindings)) (res (cl-transform-lambda (cdar bindings) name))) (eval (car res)) (cl-macroexpand-all (cons 'progn body) (cons (cl-list* name 'lambda (cdr res)) cl-macro-environment)))))) ;;;###autoload (defmacro cl-symbol-macrolet (bindings &rest body) "Make symbol macro definitions. Within the body FORMs, references to the variable NAME will be replaced by EXPANSION, and (setq NAME ...) will act like (cl-setf EXPANSION ...). \(fn ((NAME EXPANSION) ...) FORM...)" (declare (indent 1) (debug ((&rest (symbol sexp)) cl-declarations body))) (if (cdr bindings) `(cl-symbol-macrolet (,(car bindings)) (cl-symbol-macrolet ,(cdr bindings) ,@body)) (if (null bindings) (cons 'progn body) (cl-macroexpand-all (cons 'progn body) (cons (list (symbol-name (caar bindings)) (cl-cadar bindings)) cl-macro-environment))))) (defvar cl-closure-vars nil) ;;;###autoload (defmacro cl-lexical-let (bindings &rest body) "Like `let', but lexically scoped. The main visible difference is that lambdas inside BODY will create lexical closures as in Common Lisp. \n(fn BINDINGS BODY)" (declare (indent 1) (debug let)) (let* ((cl-closure-vars cl-closure-vars) (vars (mapcar (function (lambda (x) (or (consp x) (setq x (list x))) (push (make-symbol (format "--cl-%s--" (car x))) cl-closure-vars) (set (car cl-closure-vars) [bad-lexical-ref]) (list (car x) (cadr x) (car cl-closure-vars)))) bindings)) (ebody (cl-macroexpand-all (cons 'progn body) (nconc (mapcar (function (lambda (x) (list (symbol-name (car x)) `(symbol-value ,(cl-caddr x)) t))) vars) (list '(defun . cl-defun-expander)) cl-macro-environment)))) (if (not (get (car (last cl-closure-vars)) 'used)) ;; Turn (let ((foo (cl-gensym))) ;; (set foo ) ...(symbol-value foo)...) ;; into (let ((foo )) ...(symbol-value 'foo)...). ;; This is good because it's more efficient but it only works with ;; dynamic scoping, since with lexical scoping we'd need ;; (let ((foo )) ...foo...). `(progn ,@(mapcar (lambda (x) `(defvar ,(cl-caddr x))) vars) (let ,(mapcar (lambda (x) (list (cl-caddr x) (cadr x))) vars) ,(cl-sublis (mapcar (lambda (x) (cons (cl-caddr x) `',(cl-caddr x))) vars) ebody))) `(let ,(mapcar (lambda (x) (list (cl-caddr x) `(make-symbol ,(format "--%s--" (car x))))) vars) (cl-setf ,@(apply #'append (mapcar (lambda (x) (list `(symbol-value ,(cl-caddr x)) (cadr x))) vars))) ,ebody)))) ;;;###autoload (defmacro cl-lexical-let* (bindings &rest body) "Like `let*', but lexically scoped. The main visible difference is that lambdas inside BODY, and in successive bindings within BINDINGS, will create lexical closures as in Common Lisp. This is similar to the behavior of `let*' in Common Lisp. \n(fn BINDINGS BODY)" (declare (indent 1) (debug let)) (if (null bindings) (cons 'progn body) (setq bindings (reverse bindings)) (while bindings (setq body (list `(cl-lexical-let (,(pop bindings)) ,@body)))) (car body))) (defun cl-defun-expander (func &rest rest) `(progn (defalias ',func #'(lambda ,@rest)) ',func)) ;;; Multiple values. ;;;###autoload (defmacro cl-multiple-value-bind (vars form &rest body) "Collect multiple return values. FORM must return a list; the BODY is then executed with the first N elements of this list bound (`let'-style) to each of the symbols SYM in turn. This is analogous to the Common Lisp `cl-multiple-value-bind' macro, using lists to simulate true multiple return values. For compatibility, (cl-values A B C) is a synonym for (list A B C). \(fn (SYM...) FORM BODY)" (declare (indent 2) (debug ((&rest symbolp) form body))) (let ((temp (make-symbol "--cl-var--")) (n -1)) `(let* ((,temp ,form) ,@(mapcar (lambda (v) (list v `(nth ,(setq n (1+ n)) ,temp))) vars)) ,@body))) ;;;###autoload (defmacro cl-multiple-value-setq (vars form) "Collect multiple return values. FORM must return a list; the first N elements of this list are stored in each of the symbols SYM in turn. This is analogous to the Common Lisp `cl-multiple-value-setq' macro, using lists to simulate true multiple return values. For compatibility, (cl-values A B C) is a synonym for (list A B C). \(fn (SYM...) FORM)" (declare (indent 1) (debug ((&rest symbolp) form))) (cond ((null vars) `(progn ,form nil)) ((null (cdr vars)) `(setq ,(car vars) (car ,form))) (t (let* ((temp (make-symbol "--cl-var--")) (n 0)) `(let ((,temp ,form)) (prog1 (setq ,(pop vars) (car ,temp)) (setq ,@(apply #'nconc (mapcar (lambda (v) (list v `(nth ,(setq n (1+ n)) ,temp))) vars))))))))) ;;; Declarations. ;;;###autoload (defmacro cl-locally (&rest body) (declare (debug t)) (cons 'progn body)) ;;;###autoload (defmacro cl-the (type form) (declare (indent 1) (debug (cl-type-spec form))) form) (defvar cl-proclaim-history t) ; for future compilers (defvar cl-declare-stack t) ; for future compilers (defun cl-do-proclaim (spec hist) (and hist (listp cl-proclaim-history) (push spec cl-proclaim-history)) (cond ((eq (car-safe spec) 'special) (if (boundp 'byte-compile-bound-variables) (setq byte-compile-bound-variables (append (cdr spec) byte-compile-bound-variables)))) ((eq (car-safe spec) 'inline) (while (setq spec (cdr spec)) (or (memq (get (car spec) 'byte-optimizer) '(nil byte-compile-inline-expand)) (error "%s already has a byte-optimizer, can't make it inline" (car spec))) (put (car spec) 'byte-optimizer 'byte-compile-inline-expand))) ((eq (car-safe spec) 'notinline) (while (setq spec (cdr spec)) (if (eq (get (car spec) 'byte-optimizer) 'byte-compile-inline-expand) (put (car spec) 'byte-optimizer nil)))) ((eq (car-safe spec) 'optimize) (let ((speed (assq (nth 1 (assq 'speed (cdr spec))) '((0 nil) (1 t) (2 t) (3 t)))) (safety (assq (nth 1 (assq 'safety (cdr spec))) '((0 t) (1 t) (2 t) (3 nil))))) (if speed (setq cl-optimize-speed (car speed) byte-optimize (nth 1 speed))) (if safety (setq cl-optimize-safety (car safety) byte-compile-delete-errors (nth 1 safety))))) ((and (eq (car-safe spec) 'warn) (boundp 'byte-compile-warnings)) (while (setq spec (cdr spec)) (if (consp (car spec)) (if (eq (cl-cadar spec) 0) (byte-compile-disable-warning (caar spec)) (byte-compile-enable-warning (caar spec))))))) nil) ;;; Process any proclamations made before cl-macs was loaded. (defvar cl-proclaims-deferred) (let ((p (reverse cl-proclaims-deferred))) (while p (cl-do-proclaim (pop p) t)) (setq cl-proclaims-deferred nil)) ;;;###autoload (defmacro cl-declare (&rest specs) "Declare SPECS about the current function while compiling. For instance \(cl-declare (warn 0)) will turn off byte-compile warnings in the function. See Info node `(cl)Declarations' for details." (if (cl-compiling-file) (while specs (if (listp cl-declare-stack) (push (car specs) cl-declare-stack)) (cl-do-proclaim (pop specs) nil))) nil) ;;; Generalized variables. ;;;###autoload (defmacro cl-define-setf-method (func args &rest body) "Define a `cl-setf' method. This method shows how to handle `cl-setf's to places of the form (NAME ARGS...). The argument forms ARGS are bound according to ARGLIST, as if NAME were going to be expanded as a macro, then the BODY forms are executed and must return a list of five elements: a temporary-variables list, a value-forms list, a store-variables list (of length one), a store-form, and an access- form. See `cl-defsetf' for a simpler way to define most setf-methods. \(fn NAME ARGLIST BODY...)" (declare (debug (&define name cl-lambda-list cl-declarations-or-string def-body))) `(cl-eval-when (compile load eval) ,@(if (stringp (car body)) (list `(put ',func 'setf-documentation ,(pop body)))) ,(cl-transform-function-property func 'setf-method (cons args body)))) (defalias 'cl-define-setf-expander 'cl-define-setf-method) ;;;###autoload (defmacro cl-defsetf (func arg1 &rest args) "Define a `cl-setf' method. This macro is an easy-to-use substitute for `cl-define-setf-method' that works well for simple place forms. In the simple `cl-defsetf' form, `cl-setf's of the form (cl-setf (NAME ARGS...) VAL) are transformed to function or macro calls of the form (FUNC ARGS... VAL). Example: (cl-defsetf aref aset) Alternate form: (cl-defsetf NAME ARGLIST (STORE) BODY...). Here, the above `cl-setf' call is expanded by binding the argument forms ARGS according to ARGLIST, binding the value form VAL to STORE, then executing BODY, which must return a Lisp form that does the necessary `cl-setf' operation. Actually, ARGLIST and STORE may be bound to temporary variables which are introduced automatically to preserve proper execution order of the arguments. Example: (cl-defsetf nth (n x) (v) `(setcar (nthcdr ,n ,x) ,v)) \(fn NAME [FUNC | ARGLIST (STORE) BODY...])" (declare (debug (&define name [&or [symbolp &optional stringp] [cl-lambda-list (symbolp)]] cl-declarations-or-string def-body))) (if (and (listp arg1) (consp args)) (let* ((largs nil) (largsr nil) (temps nil) (tempsr nil) (restarg nil) (rest-temps nil) (store-var (car (prog1 (car args) (setq args (cdr args))))) (store-temp (intern (format "--%s--temp--" store-var))) (lets1 nil) (lets2 nil) (docstr nil) (p arg1)) (if (stringp (car args)) (setq docstr (prog1 (car args) (setq args (cdr args))))) (while (and p (not (eq (car p) '&aux))) (if (eq (car p) '&rest) (setq p (cdr p) restarg (car p)) (or (memq (car p) '(&optional &key &allow-other-keys)) (setq largs (cons (if (consp (car p)) (car (car p)) (car p)) largs) temps (cons (intern (format "--%s--temp--" (car largs))) temps)))) (setq p (cdr p))) (setq largs (nreverse largs) temps (nreverse temps)) (if restarg (setq largsr (append largs (list restarg)) rest-temps (intern (format "--%s--temp--" restarg)) tempsr (append temps (list rest-temps))) (setq largsr largs tempsr temps)) (let ((p1 largs) (p2 temps)) (while p1 (setq lets1 (cons `(,(car p2) (make-symbol ,(format "--cl-%s--" (car p1)))) lets1) lets2 (cons (list (car p1) (car p2)) lets2) p1 (cdr p1) p2 (cdr p2)))) (if restarg (setq lets2 (cons (list restarg rest-temps) lets2))) `(cl-define-setf-method ,func ,arg1 ,@(and docstr (list docstr)) (let* ,(nreverse (cons `(,store-temp (make-symbol ,(format "--cl-%s--" store-var))) (if restarg `((,rest-temps (mapcar (lambda (_) (make-symbol "--cl-var--")) ,restarg)) ,@lets1) lets1))) (list ; 'values (,(if restarg 'cl-list* 'list) ,@tempsr) (,(if restarg 'cl-list* 'list) ,@largsr) (list ,store-temp) (let* ,(nreverse (cons (list store-var store-temp) lets2)) ,@args) (,(if restarg 'cl-list* 'list) ,@(cons `',func tempsr)))))) `(cl-defsetf ,func (&rest args) (store) ,(let ((call `(cons ',arg1 (append args (list store))))) (if (car args) `(list 'progn ,call store) call))))) ;;; Some standard place types from Common Lisp. (cl-defsetf aref aset) (cl-defsetf car setcar) (cl-defsetf cdr setcdr) (cl-defsetf caar (x) (val) `(setcar (car ,x) ,val)) (cl-defsetf cadr (x) (val) `(setcar (cdr ,x) ,val)) (cl-defsetf cdar (x) (val) `(setcdr (car ,x) ,val)) (cl-defsetf cddr (x) (val) `(setcdr (cdr ,x) ,val)) (cl-defsetf elt (seq n) (store) `(if (listp ,seq) (setcar (nthcdr ,n ,seq) ,store) (aset ,seq ,n ,store))) (cl-defsetf get put) (cl-defsetf cl-get (x y &optional d) (store) `(put ,x ,y ,store)) (cl-defsetf gethash (x h &optional d) (store) `(puthash ,x ,store ,h)) (cl-defsetf nth (n x) (store) `(setcar (nthcdr ,n ,x) ,store)) (cl-defsetf cl-subseq (seq start &optional end) (new) `(progn (cl-replace ,seq ,new :start1 ,start :end1 ,end) ,new)) (cl-defsetf symbol-function fset) (cl-defsetf symbol-plist setplist) (cl-defsetf symbol-value set) ;;; Various car/cdr aliases. Note that `cadr' is handled specially. (cl-defsetf cl-first setcar) (cl-defsetf cl-second (x) (store) `(setcar (cdr ,x) ,store)) (cl-defsetf cl-third (x) (store) `(setcar (cddr ,x) ,store)) (cl-defsetf cl-fourth (x) (store) `(setcar (cl-cdddr ,x) ,store)) (cl-defsetf cl-fifth (x) (store) `(setcar (nthcdr 4 ,x) ,store)) (cl-defsetf cl-sixth (x) (store) `(setcar (nthcdr 5 ,x) ,store)) (cl-defsetf cl-seventh (x) (store) `(setcar (nthcdr 6 ,x) ,store)) (cl-defsetf cl-eighth (x) (store) `(setcar (nthcdr 7 ,x) ,store)) (cl-defsetf cl-ninth (x) (store) `(setcar (nthcdr 8 ,x) ,store)) (cl-defsetf cl-tenth (x) (store) `(setcar (nthcdr 9 ,x) ,store)) (cl-defsetf cl-rest setcdr) ;;; Some more Emacs-related place types. (cl-defsetf buffer-file-name set-visited-file-name t) (cl-defsetf buffer-modified-p (&optional buf) (flag) `(with-current-buffer ,buf (set-buffer-modified-p ,flag))) (cl-defsetf buffer-name rename-buffer t) (cl-defsetf buffer-string () (store) `(progn (erase-buffer) (insert ,store))) (cl-defsetf buffer-substring cl-set-buffer-substring) (cl-defsetf current-buffer set-buffer) (cl-defsetf current-case-table set-case-table) (cl-defsetf current-column move-to-column t) (cl-defsetf current-global-map use-global-map t) (cl-defsetf current-input-mode () (store) `(progn (apply #'set-input-mode ,store) ,store)) (cl-defsetf current-local-map use-local-map t) (cl-defsetf current-window-configuration set-window-configuration t) (cl-defsetf default-file-modes set-default-file-modes t) (cl-defsetf default-value set-default) (cl-defsetf documentation-property put) (cl-defsetf face-background (f &optional s) (x) `(set-face-background ,f ,x ,s)) (cl-defsetf face-background-pixmap (f &optional s) (x) `(set-face-background-pixmap ,f ,x ,s)) (cl-defsetf face-font (f &optional s) (x) `(set-face-font ,f ,x ,s)) (cl-defsetf face-foreground (f &optional s) (x) `(set-face-foreground ,f ,x ,s)) (cl-defsetf face-underline-p (f &optional s) (x) `(set-face-underline-p ,f ,x ,s)) (cl-defsetf file-modes set-file-modes t) (cl-defsetf frame-height set-screen-height t) (cl-defsetf frame-parameters modify-frame-parameters t) (cl-defsetf frame-visible-p cl-set-frame-visible-p) (cl-defsetf frame-width set-screen-width t) (cl-defsetf frame-parameter set-frame-parameter t) (cl-defsetf terminal-parameter set-terminal-parameter) (cl-defsetf getenv setenv t) (cl-defsetf get-register set-register) (cl-defsetf global-key-binding global-set-key) (cl-defsetf keymap-parent set-keymap-parent) (cl-defsetf local-key-binding local-set-key) (cl-defsetf mark set-mark t) (cl-defsetf mark-marker set-mark t) (cl-defsetf marker-position set-marker t) (cl-defsetf match-data set-match-data t) (cl-defsetf mouse-position (scr) (store) `(set-mouse-position ,scr (car ,store) (cadr ,store) (cddr ,store))) (cl-defsetf overlay-get overlay-put) (cl-defsetf overlay-start (ov) (store) `(progn (move-overlay ,ov ,store (overlay-end ,ov)) ,store)) (cl-defsetf overlay-end (ov) (store) `(progn (move-overlay ,ov (overlay-start ,ov) ,store) ,store)) (cl-defsetf point goto-char) (cl-defsetf point-marker goto-char t) (cl-defsetf point-max () (store) `(progn (narrow-to-region (point-min) ,store) ,store)) (cl-defsetf point-min () (store) `(progn (narrow-to-region ,store (point-max)) ,store)) (cl-defsetf process-buffer set-process-buffer) (cl-defsetf process-filter set-process-filter) (cl-defsetf process-sentinel set-process-sentinel) (cl-defsetf process-get process-put) (cl-defsetf read-mouse-position (scr) (store) `(set-mouse-position ,scr (car ,store) (cdr ,store))) (cl-defsetf screen-height set-screen-height t) (cl-defsetf screen-width set-screen-width t) (cl-defsetf selected-window select-window) (cl-defsetf selected-screen select-screen) (cl-defsetf selected-frame select-frame) (cl-defsetf standard-case-table set-standard-case-table) (cl-defsetf syntax-table set-syntax-table) (cl-defsetf visited-file-modtime set-visited-file-modtime t) (cl-defsetf window-buffer set-window-buffer t) (cl-defsetf window-display-table set-window-display-table t) (cl-defsetf window-dedicated-p set-window-dedicated-p t) (cl-defsetf window-height () (store) `(progn (enlarge-window (- ,store (window-height))) ,store)) (cl-defsetf window-hscroll set-window-hscroll) (cl-defsetf window-parameter set-window-parameter) (cl-defsetf window-point set-window-point) (cl-defsetf window-start set-window-start) (cl-defsetf window-width () (store) `(progn (enlarge-window (- ,store (window-width)) t) ,store)) (cl-defsetf x-get-secondary-selection x-own-secondary-selection t) (cl-defsetf x-get-selection x-own-selection t) ;; This is a hack that allows (cl-setf (eq a 7) B) to mean either ;; (setq a 7) or (setq a nil) depending on whether B is nil or not. ;; This is useful when you have control over the PLACE but not over ;; the VALUE, as is the case in define-minor-mode's :variable. (cl-define-setf-method eq (place val) (let ((method (cl-get-setf-method place cl-macro-environment)) (val-temp (make-symbol "--eq-val--")) (store-temp (make-symbol "--eq-store--"))) (list (append (nth 0 method) (list val-temp)) (append (nth 1 method) (list val)) (list store-temp) `(let ((,(car (nth 2 method)) (if ,store-temp ,val-temp (not ,val-temp)))) ,(nth 3 method) ,store-temp) `(eq ,(nth 4 method) ,val-temp)))) ;;; More complex setf-methods. ;; These should take &environment arguments, but since full arglists aren't ;; available while compiling cl-macs, we fake it by referring to the global ;; variable cl-macro-environment directly. (cl-define-setf-method apply (func arg1 &rest rest) (or (and (memq (car-safe func) '(quote function cl-function)) (symbolp (car-safe (cdr-safe func)))) (error "First arg to apply in cl-setf is not (function SYM): %s" func)) (let* ((form (cons (nth 1 func) (cons arg1 rest))) (method (cl-get-setf-method form cl-macro-environment))) (list (car method) (nth 1 method) (nth 2 method) (cl-setf-make-apply (nth 3 method) (cadr func) (car method)) (cl-setf-make-apply (nth 4 method) (cadr func) (car method))))) (defun cl-setf-make-apply (form func temps) (if (eq (car form) 'progn) `(progn ,(cl-setf-make-apply (cadr form) func temps) ,@(cddr form)) (or (equal (last form) (last temps)) (error "%s is not suitable for use with setf-of-apply" func)) `(apply ',(car form) ,@(cdr form)))) (cl-define-setf-method nthcdr (n place) (let ((method (cl-get-setf-method place cl-macro-environment)) (n-temp (make-symbol "--cl-nthcdr-n--")) (store-temp (make-symbol "--cl-nthcdr-store--"))) (list (cons n-temp (car method)) (cons n (nth 1 method)) (list store-temp) `(let ((,(car (nth 2 method)) (cl-set-nthcdr ,n-temp ,(nth 4 method) ,store-temp))) ,(nth 3 method) ,store-temp) `(nthcdr ,n-temp ,(nth 4 method))))) (cl-define-setf-method cl-getf (place tag &optional def) (let ((method (cl-get-setf-method place cl-macro-environment)) (tag-temp (make-symbol "--cl-getf-tag--")) (def-temp (make-symbol "--cl-getf-def--")) (store-temp (make-symbol "--cl-getf-store--"))) (list (append (car method) (list tag-temp def-temp)) (append (nth 1 method) (list tag def)) (list store-temp) `(let ((,(car (nth 2 method)) (cl-set-getf ,(nth 4 method) ,tag-temp ,store-temp))) ,(nth 3 method) ,store-temp) `(cl-getf ,(nth 4 method) ,tag-temp ,def-temp)))) (cl-define-setf-method substring (place from &optional to) (let ((method (cl-get-setf-method place cl-macro-environment)) (from-temp (make-symbol "--cl-substring-from--")) (to-temp (make-symbol "--cl-substring-to--")) (store-temp (make-symbol "--cl-substring-store--"))) (list (append (car method) (list from-temp to-temp)) (append (nth 1 method) (list from to)) (list store-temp) `(let ((,(car (nth 2 method)) (cl-set-substring ,(nth 4 method) ,from-temp ,to-temp ,store-temp))) ,(nth 3 method) ,store-temp) `(substring ,(nth 4 method) ,from-temp ,to-temp)))) ;;; Getting and optimizing setf-methods. ;;;###autoload (defun cl-get-setf-method (place &optional env) "Return a list of five values describing the setf-method for PLACE. PLACE may be any Lisp form which can appear as the PLACE argument to a macro like `cl-setf' or `cl-incf'." (if (symbolp place) (let ((temp (make-symbol "--cl-setf--"))) (list nil nil (list temp) `(setq ,place ,temp) place)) (or (and (symbolp (car place)) (let* ((func (car place)) (name (symbol-name func)) (method (get func 'setf-method)) (case-fold-search nil)) (or (and method (let ((cl-macro-environment env)) (setq method (apply method (cdr place)))) (if (and (consp method) (= (length method) 5)) method (error "Setf-method for %s returns malformed method" func))) (and (string-match-p "\\`c[ad][ad][ad]?[ad]?r\\'" name) (cl-get-setf-method (cl-compiler-macroexpand place))) (and (eq func 'edebug-after) (cl-get-setf-method (nth (1- (length place)) place) env))))) (if (eq place (setq place (macroexpand place env))) (if (and (symbolp (car place)) (fboundp (car place)) (symbolp (symbol-function (car place)))) (cl-get-setf-method (cons (symbol-function (car place)) (cdr place)) env) (error "No setf-method known for %s" (car place))) (cl-get-setf-method place env))))) (defun cl-setf-do-modify (place opt-expr) (let* ((method (cl-get-setf-method place cl-macro-environment)) (temps (car method)) (values (nth 1 method)) (lets nil) (subs nil) (optimize (and (not (eq opt-expr 'no-opt)) (or (and (not (eq opt-expr 'unsafe)) (cl-safe-expr-p opt-expr)) (cl-setf-simple-store-p (car (nth 2 method)) (nth 3 method))))) (simple (and optimize (consp place) (cl-simple-exprs-p (cdr place))))) (while values (if (or simple (cl-const-expr-p (car values))) (push (cons (pop temps) (pop values)) subs) (push (list (pop temps) (pop values)) lets))) (list (nreverse lets) (cons (car (nth 2 method)) (cl-sublis subs (nth 3 method))) (cl-sublis subs (nth 4 method))))) (defun cl-setf-do-store (spec val) (let ((sym (car spec)) (form (cdr spec))) (if (or (cl-const-expr-p val) (and (cl-simple-expr-p val) (eq (cl-expr-contains form sym) 1)) (cl-setf-simple-store-p sym form)) (cl-subst val sym form) `(let ((,sym ,val)) ,form)))) (defun cl-setf-simple-store-p (sym form) (and (consp form) (eq (cl-expr-contains form sym) 1) (eq (nth (1- (length form)) form) sym) (symbolp (car form)) (fboundp (car form)) (not (eq (car-safe (symbol-function (car form))) 'macro)))) ;;; The standard modify macros. ;;;###autoload (defmacro cl-setf (&rest args) "Set each PLACE to the value of its VAL. This is a generalized version of `setq'; the PLACEs may be symbolic references such as (car x) or (aref x i), as well as plain symbols. For example, (cl-setf (cl-cadar x) y) is equivalent to (setcar (cdar x) y). The return value is the last VAL in the list. \(fn PLACE VAL PLACE VAL ...)" (declare (debug (&rest [place form]))) (if (cdr (cdr args)) (let ((sets nil)) (while args (push `(cl-setf ,(pop args) ,(pop args)) sets)) (cons 'progn (nreverse sets))) (if (symbolp (car args)) (and args (cons 'setq args)) (let* ((method (cl-setf-do-modify (car args) (nth 1 args))) (store (cl-setf-do-store (nth 1 method) (nth 1 args)))) (if (car method) `(let* ,(car method) ,store) store))))) ;;;###autoload (defmacro cl-psetf (&rest args) "Set PLACEs to the values VALs in parallel. This is like `cl-setf', except that all VAL forms are evaluated (in order) before assigning any PLACEs to the corresponding values. \(fn PLACE VAL PLACE VAL ...)" (declare (debug cl-setf)) (let ((p args) (simple t) (vars nil)) (while p (if (or (not (symbolp (car p))) (cl-expr-depends-p (nth 1 p) vars)) (setq simple nil)) (if (memq (car p) vars) (error "Destination duplicated in psetf: %s" (car p))) (push (pop p) vars) (or p (error "Odd number of arguments to cl-psetf")) (pop p)) (if simple `(progn (cl-setf ,@args) nil) (setq args (reverse args)) (let ((expr `(cl-setf ,(cadr args) ,(car args)))) (while (setq args (cddr args)) (setq expr `(cl-setf ,(cadr args) (prog1 ,(car args) ,expr)))) `(progn ,expr nil))))) ;;;###autoload (defun cl-do-pop (place) (if (cl-simple-expr-p place) `(prog1 (car ,place) (cl-setf ,place (cdr ,place))) (let* ((method (cl-setf-do-modify place t)) (temp (make-symbol "--cl-pop--"))) `(let* (,@(car method) (,temp ,(nth 2 method))) (prog1 (car ,temp) ,(cl-setf-do-store (nth 1 method) `(cdr ,temp))))))) ;;;###autoload (defmacro cl-remf (place tag) "Remove TAG from property list PLACE. PLACE may be a symbol, or any generalized variable allowed by `cl-setf'. The form returns true if TAG was found and removed, nil otherwise." (declare (debug (place form))) (let* ((method (cl-setf-do-modify place t)) (tag-temp (and (not (cl-const-expr-p tag)) (make-symbol "--cl-remf-tag--"))) (val-temp (and (not (cl-simple-expr-p place)) (make-symbol "--cl-remf-place--"))) (ttag (or tag-temp tag)) (tval (or val-temp (nth 2 method)))) `(let* (,@(car method) ,@(and val-temp `((,val-temp ,(nth 2 method)))) ,@(and tag-temp `((,tag-temp ,tag)))) (if (eq ,ttag (car ,tval)) (progn ,(cl-setf-do-store (nth 1 method) `(cddr ,tval)) t) `(cl-do-remf ,tval ,ttag))))) ;;;###autoload (defmacro cl-shiftf (place &rest args) "Shift left among PLACEs. Example: (cl-shiftf A B C) sets A to B, B to C, and returns the old A. Each PLACE may be a symbol, or any generalized variable allowed by `cl-setf'. \(fn PLACE... VAL)" (declare (debug (&rest place))) (cond ((null args) place) ((symbolp place) `(prog1 ,place (setq ,place (cl-shiftf ,@args)))) (t (let ((method (cl-setf-do-modify place 'unsafe))) `(let* ,(car method) (prog1 ,(nth 2 method) ,(cl-setf-do-store (nth 1 method) `(cl-shiftf ,@args)))))))) ;;;###autoload (defmacro cl-rotatef (&rest args) "Rotate left among PLACEs. Example: (cl-rotatef A B C) sets A to B, B to C, and C to A. It returns nil. Each PLACE may be a symbol, or any generalized variable allowed by `cl-setf'. \(fn PLACE...)" (declare (debug (&rest place))) (if (not (memq nil (mapcar 'symbolp args))) (and (cdr args) (let ((sets nil) (first (car args))) (while (cdr args) (setq sets (nconc sets (list (pop args) (car args))))) `(cl-psetf ,@sets ,(car args) ,first))) (let* ((places (reverse args)) (temp (make-symbol "--cl-rotatef--")) (form temp)) (while (cdr places) (let ((method (cl-setf-do-modify (pop places) 'unsafe))) (setq form `(let* ,(car method) (prog1 ,(nth 2 method) ,(cl-setf-do-store (nth 1 method) form)))))) (let ((method (cl-setf-do-modify (car places) 'unsafe))) `(let* (,@(car method) (,temp ,(nth 2 method))) ,(cl-setf-do-store (nth 1 method) form) nil))))) ;;;###autoload (defmacro cl-letf (bindings &rest body) "Temporarily bind to PLACEs. This is the analogue of `let', but with generalized variables (in the sense of `cl-setf') for the PLACEs. Each PLACE is set to the corresponding VALUE, then the BODY forms are executed. On exit, either normally or because of a `throw' or error, the PLACEs are set back to their original values. Note that this macro is *not* available in Common Lisp. As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)', the PLACE is not modified before executing BODY. \(fn ((PLACE VALUE) ...) BODY...)" (declare (indent 1) (debug ((&rest (gate place &optional form)) body))) (if (and (not (cdr bindings)) (cdar bindings) (symbolp (caar bindings))) `(let ,bindings ,@body) (let ((lets nil) (sets nil) (unsets nil) (rev (reverse bindings))) (while rev (let* ((place (if (symbolp (caar rev)) `(symbol-value ',(caar rev)) (caar rev))) (value (cl-cadar rev)) (method (cl-setf-do-modify place 'no-opt)) (save (make-symbol "--cl-letf-save--")) (bound (and (memq (car place) '(symbol-value symbol-function)) (make-symbol "--cl-letf-bound--"))) (temp (and (not (cl-const-expr-p value)) (cdr bindings) (make-symbol "--cl-letf-val--")))) (setq lets (nconc (car method) (if bound (list (list bound (list (if (eq (car place) 'symbol-value) 'boundp 'fboundp) (nth 1 (nth 2 method)))) (list save `(and ,bound ,(nth 2 method)))) (list (list save (nth 2 method)))) (and temp (list (list temp value))) lets) body (list `(unwind-protect (progn ,@(if (cdr (car rev)) (cons (cl-setf-do-store (nth 1 method) (or temp value)) body) body)) ,(if bound `(if ,bound ,(cl-setf-do-store (nth 1 method) save) (,(if (eq (car place) 'symbol-value) #'makunbound #'fmakunbound) ,(nth 1 (nth 2 method)))) (cl-setf-do-store (nth 1 method) save)))) rev (cdr rev)))) `(let* ,lets ,@body)))) ;;;###autoload (defmacro cl-letf* (bindings &rest body) "Temporarily bind to PLACEs. This is the analogue of `let*', but with generalized variables (in the sense of `cl-setf') for the PLACEs. Each PLACE is set to the corresponding VALUE, then the BODY forms are executed. On exit, either normally or because of a `throw' or error, the PLACEs are set back to their original values. Note that this macro is *not* available in Common Lisp. As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)', the PLACE is not modified before executing BODY. \(fn ((PLACE VALUE) ...) BODY...)" (declare (indent 1) (debug cl-letf)) (if (null bindings) (cons 'progn body) (setq bindings (reverse bindings)) (while bindings (setq body (list `(cl-letf (,(pop bindings)) ,@body)))) (car body))) ;;;###autoload (defmacro cl-callf (func place &rest args) "Set PLACE to (FUNC PLACE ARGS...). FUNC should be an unquoted function name. PLACE may be a symbol, or any generalized variable allowed by `cl-setf'. \(fn FUNC PLACE ARGS...)" (declare (indent 2) (debug (cl-function place &rest form))) (let* ((method (cl-setf-do-modify place (cons 'list args))) (rargs (cons (nth 2 method) args))) `(let* ,(car method) ,(cl-setf-do-store (nth 1 method) (if (symbolp func) (cons func rargs) `(funcall #',func ,@rargs)))))) ;;;###autoload (defmacro cl-callf2 (func arg1 place &rest args) "Set PLACE to (FUNC ARG1 PLACE ARGS...). Like `cl-callf', but PLACE is the second argument of FUNC, not the first. \(fn FUNC ARG1 PLACE ARGS...)" (declare (indent 3) (debug (cl-function form place &rest form))) (if (and (cl-safe-expr-p arg1) (cl-simple-expr-p place) (symbolp func)) `(cl-setf ,place (,func ,arg1 ,place ,@args)) (let* ((method (cl-setf-do-modify place (cons 'list args))) (temp (and (not (cl-const-expr-p arg1)) (make-symbol "--cl-arg1--"))) (rargs (cl-list* (or temp arg1) (nth 2 method) args))) `(let* (,@(and temp (list (list temp arg1))) ,@(car method)) ,(cl-setf-do-store (nth 1 method) (if (symbolp func) (cons func rargs) `(funcall #',func ,@rargs))))))) ;;;###autoload (defmacro cl-define-modify-macro (name arglist func &optional doc) "Define a `cl-setf'-like modify macro. If NAME is called, it combines its PLACE argument with the other arguments from ARGLIST using FUNC: (cl-define-modify-macro cl-incf (&optional (n 1)) +)" (declare (debug (&define name cl-lambda-list ;; should exclude &key symbolp &optional stringp))) (if (memq '&key arglist) (error "&key not allowed in cl-define-modify-macro")) (let ((place (make-symbol "--cl-place--"))) `(cl-defmacro ,name (,place ,@arglist) ,doc (,(if (memq '&rest arglist) #'cl-list* #'list) #'cl-callf ',func ,place ,@(cl-arglist-args arglist))))) ;;; Structures. ;;;###autoload (defmacro cl-defstruct (struct &rest descs) "Define a struct type. This macro defines a new data type called NAME that stores data in SLOTs. It defines a `make-NAME' constructor, a `copy-NAME' copier, a `NAME-p' predicate, and slot accessors named `NAME-SLOT'. You can use the accessors to set the corresponding slots, via `cl-setf'. NAME may instead take the form (NAME OPTIONS...), where each OPTION is either a single keyword or (KEYWORD VALUE). See Info node `(cl)Structures' for a list of valid keywords. Each SLOT may instead take the form (SLOT SLOT-OPTS...), where SLOT-OPTS are keyword-value pairs for that slot. Currently, only one keyword is supported, `:read-only'. If this has a non-nil value, that slot cannot be set via `cl-setf'. \(fn NAME SLOTS...)" (declare (doc-string 2) (debug (&define ;Makes top-level form not be wrapped. [&or symbolp (gate symbolp &rest (&or [":conc-name" symbolp] [":constructor" symbolp &optional cl-lambda-list] [":copier" symbolp] [":predicate" symbolp] [":include" symbolp &rest sexp] ;; Not finished. ;; The following are not supported. ;; [":print-function" ...] ;; [":type" ...] ;; [":initial-offset" ...] ))] [&optional stringp] ;; All the above is for the following def-form. &rest &or symbolp (symbolp def-form &optional ":read-only" sexp)))) (let* ((name (if (consp struct) (car struct) struct)) (opts (cdr-safe struct)) (slots nil) (defaults nil) (conc-name (concat (symbol-name name) "-")) (constructor (intern (format "make-%s" name))) (constrs nil) (copier (intern (format "copy-%s" name))) (predicate (intern (format "%s-p" name))) (print-func nil) (print-auto nil) (safety (if (cl-compiling-file) cl-optimize-safety 3)) (include nil) (tag (intern (format "cl-struct-%s" name))) (tag-symbol (intern (format "cl-struct-%s-tags" name))) (include-descs nil) (side-eff nil) (type nil) (named nil) (forms nil) pred-form pred-check) (if (stringp (car descs)) (push `(put ',name 'structure-documentation ,(pop descs)) forms)) (setq descs (cons '(cl-tag-slot) (mapcar (function (lambda (x) (if (consp x) x (list x)))) descs))) (while opts (let ((opt (if (consp (car opts)) (caar opts) (car opts))) (args (cdr-safe (pop opts)))) (cond ((eq opt :conc-name) (if args (setq conc-name (if (car args) (symbol-name (car args)) "")))) ((eq opt :constructor) (if (cdr args) (progn ;; If this defines a constructor of the same name as ;; the default one, don't define the default. (if (eq (car args) constructor) (setq constructor nil)) (push args constrs)) (if args (setq constructor (car args))))) ((eq opt :copier) (if args (setq copier (car args)))) ((eq opt :predicate) (if args (setq predicate (car args)))) ((eq opt :include) (setq include (car args) include-descs (mapcar (function (lambda (x) (if (consp x) x (list x)))) (cdr args)))) ((eq opt :print-function) (setq print-func (car args))) ((eq opt :type) (setq type (car args))) ((eq opt :named) (setq named t)) ((eq opt :initial-offset) (setq descs (nconc (make-list (car args) '(cl-skip-slot)) descs))) (t (error "Slot option %s unrecognized" opt))))) (if print-func (setq print-func `(progn (funcall #',print-func cl-x cl-s cl-n) t)) (or type (and include (not (get include 'cl-struct-print))) (setq print-auto t print-func (and (or (not (or include type)) (null print-func)) `(progn (princ ,(format "#S(%s" name) cl-s)))))) (if include (let ((inc-type (get include 'cl-struct-type)) (old-descs (get include 'cl-struct-slots))) (or inc-type (error "%s is not a struct name" include)) (and type (not (eq (car inc-type) type)) (error ":type disagrees with :include for %s" name)) (while include-descs (setcar (memq (or (assq (caar include-descs) old-descs) (error "No slot %s in included struct %s" (caar include-descs) include)) old-descs) (pop include-descs))) (setq descs (append old-descs (delq (assq 'cl-tag-slot descs) descs)) type (car inc-type) named (assq 'cl-tag-slot descs)) (if (cadr inc-type) (setq tag name named t)) (let ((incl include)) (while incl (push `(cl-pushnew ',tag ,(intern (format "cl-struct-%s-tags" incl))) forms) (setq incl (get incl 'cl-struct-include))))) (if type (progn (or (memq type '(vector list)) (error "Invalid :type specifier: %s" type)) (if named (setq tag name))) (setq type 'vector named 'true))) (or named (setq descs (delq (assq 'cl-tag-slot descs) descs))) (push `(defvar ,tag-symbol) forms) (setq pred-form (and named (let ((pos (- (length descs) (length (memq (assq 'cl-tag-slot descs) descs))))) (if (eq type 'vector) `(and (vectorp cl-x) (>= (length cl-x) ,(length descs)) (memq (aref cl-x ,pos) ,tag-symbol)) (if (= pos 0) `(memq (car-safe cl-x) ,tag-symbol) `(and (consp cl-x) (memq (nth ,pos cl-x) ,tag-symbol)))))) pred-check (and pred-form (> safety 0) (if (and (eq (cl-caadr pred-form) 'vectorp) (= safety 1)) (cons 'and (cl-cdddr pred-form)) pred-form))) (let ((pos 0) (descp descs)) (while descp (let* ((desc (pop descp)) (slot (car desc))) (if (memq slot '(cl-tag-slot cl-skip-slot)) (progn (push nil slots) (push (and (eq slot 'cl-tag-slot) `',tag) defaults)) (if (assq slot descp) (error "Duplicate slots named %s in %s" slot name)) (let ((accessor (intern (format "%s%s" conc-name slot)))) (push slot slots) (push (nth 1 desc) defaults) (push (cl-list* 'cl-defsubst accessor '(cl-x) (append (and pred-check (list `(or ,pred-check (error "%s accessing a non-%s" ',accessor ',name)))) (list (if (eq type 'vector) `(aref cl-x ,pos) (if (= pos 0) '(car cl-x) `(nth ,pos cl-x)))))) forms) (push (cons accessor t) side-eff) (push `(cl-define-setf-method ,accessor (cl-x) ,(if (cadr (memq :read-only (cddr desc))) `(progn (ignore cl-x) (error "%s is a read-only slot" ',accessor)) ;; If cl is loaded only for compilation, ;; the call to cl-struct-setf-expander would ;; cause a warning because it may not be ;; defined at run time. Suppress that warning. `(progn (declare-function cl-struct-setf-expander "cl-macs" (x name accessor pred-form pos)) (cl-struct-setf-expander cl-x ',name ',accessor ,(and pred-check `',pred-check) ,pos)))) forms) (if print-auto (nconc print-func (list `(princ ,(format " %s" slot) cl-s) `(prin1 (,accessor cl-x) cl-s))))))) (setq pos (1+ pos)))) (setq slots (nreverse slots) defaults (nreverse defaults)) (and predicate pred-form (progn (push `(cl-defsubst ,predicate (cl-x) ,(if (eq (car pred-form) 'and) (append pred-form '(t)) `(and ,pred-form t))) forms) (push (cons predicate 'error-free) side-eff))) (and copier (progn (push `(defun ,copier (x) (copy-sequence x)) forms) (push (cons copier t) side-eff))) (if constructor (push (list constructor (cons '&key (delq nil (copy-sequence slots)))) constrs)) (while constrs (let* ((name (caar constrs)) (args (cadr (pop constrs))) (anames (cl-arglist-args args)) (make (cl-mapcar (function (lambda (s d) (if (memq s anames) s d))) slots defaults))) (push `(cl-defsubst ,name (&cl-defs '(nil ,@descs) ,@args) (,type ,@make)) forms) (if (cl-safe-expr-p `(progn ,@(mapcar #'cl-second descs))) (push (cons name t) side-eff)))) (if print-auto (nconc print-func (list '(princ ")" cl-s) t))) (if print-func (push `(push ;; The auto-generated function does not pay attention to ;; the depth argument cl-n. (lambda (cl-x cl-s ,(if print-auto '_cl-n 'cl-n)) (and ,pred-form ,print-func)) cl-custom-print-functions) forms)) (push `(setq ,tag-symbol (list ',tag)) forms) (push `(cl-eval-when (compile load eval) (put ',name 'cl-struct-slots ',descs) (put ',name 'cl-struct-type ',(list type (eq named t))) (put ',name 'cl-struct-include ',include) (put ',name 'cl-struct-print ,print-auto) ,@(mapcar (lambda (x) `(put ',(car x) 'side-effect-free ',(cdr x))) side-eff)) forms) `(progn ,@(nreverse (cons `',name forms))))) ;;;###autoload (defun cl-struct-setf-expander (x name accessor pred-form pos) (let* ((temp (make-symbol "--cl-x--")) (store (make-symbol "--cl-store--"))) (list (list temp) (list x) (list store) `(progn ,@(and pred-form (list `(or ,(cl-subst temp 'cl-x pred-form) (error ,(format "%s storing a non-%s" accessor name))))) ,(if (eq (car (get name 'cl-struct-type)) 'vector) `(aset ,temp ,pos ,store) `(setcar ,(if (<= pos 5) (let ((xx temp)) (while (>= (setq pos (1- pos)) 0) (setq xx `(cdr ,xx))) xx) `(nthcdr ,pos ,temp)) ,store))) (list accessor temp)))) ;;; Types and assertions. ;;;###autoload (defmacro cl-deftype (name arglist &rest body) "Define NAME as a new data type. The type name can then be used in `cl-typecase', `cl-check-type', etc." (declare (debug cl-defmacro) (doc-string 3)) `(cl-eval-when (compile load eval) ,(cl-transform-function-property name 'cl-deftype-handler (cons `(&cl-defs '('*) ,@arglist) body)))) (defun cl-make-type-test (val type) (if (symbolp type) (cond ((get type 'cl-deftype-handler) (cl-make-type-test val (funcall (get type 'cl-deftype-handler)))) ((memq type '(nil t)) type) ((eq type 'null) `(null ,val)) ((eq type 'atom) `(atom ,val)) ((eq type 'float) `(cl-floatp-safe ,val)) ((eq type 'real) `(numberp ,val)) ((eq type 'fixnum) `(integerp ,val)) ;; FIXME: Should `character' accept things like ?\C-\M-a ? --Stef ((memq type '(character string-char)) `(characterp ,val)) (t (let* ((name (symbol-name type)) (namep (intern (concat name "p")))) (if (fboundp namep) (list namep val) (list (intern (concat name "-p")) val))))) (cond ((get (car type) 'cl-deftype-handler) (cl-make-type-test val (apply (get (car type) 'cl-deftype-handler) (cdr type)))) ((memq (car type) '(integer float real number)) (delq t `(and ,(cl-make-type-test val (car type)) ,(if (memq (cadr type) '(* nil)) t (if (consp (cadr type)) `(> ,val ,(cl-caadr type)) `(>= ,val ,(cadr type)))) ,(if (memq (cl-caddr type) '(* nil)) t (if (consp (cl-caddr type)) `(< ,val ,(cl-caaddr type)) `(<= ,val ,(cl-caddr type))))))) ((memq (car type) '(and or not)) (cons (car type) (mapcar (function (lambda (x) (cl-make-type-test val x))) (cdr type)))) ((memq (car type) '(member cl-member)) `(and (cl-member ,val ',(cdr type)) t)) ((eq (car type) 'satisfies) (list (cadr type) val)) (t (error "Bad type spec: %s" type))))) ;;;###autoload (defun cl-typep (object type) ; See compiler macro below. "Check that OBJECT is of type TYPE. TYPE is a Common Lisp-style type specifier." (eval (cl-make-type-test 'object type))) ;;;###autoload (defmacro cl-check-type (form type &optional string) "Verify that FORM is of type TYPE; signal an error if not. STRING is an optional description of the desired type." (declare (debug (place cl-type-spec &optional stringp))) (and (or (not (cl-compiling-file)) (< cl-optimize-speed 3) (= cl-optimize-safety 3)) (let* ((temp (if (cl-simple-expr-p form 3) form (make-symbol "--cl-var--"))) (body `(or ,(cl-make-type-test temp type) (signal 'wrong-type-argument (list ,(or string `',type) ,temp ',form))))) (if (eq temp form) `(progn ,body nil) `(let ((,temp ,form)) ,body nil))))) ;;;###autoload (defmacro cl-assert (form &optional show-args string &rest args) "Verify that FORM returns non-nil; signal an error if not. Second arg SHOW-ARGS means to include arguments of FORM in message. Other args STRING and ARGS... are arguments to be passed to `error'. They are not evaluated unless the assertion fails. If STRING is omitted, a default message listing FORM itself is used." (declare (debug (form &rest form))) (and (or (not (cl-compiling-file)) (< cl-optimize-speed 3) (= cl-optimize-safety 3)) (let ((sargs (and show-args (delq nil (mapcar (lambda (x) (unless (cl-const-expr-p x) x)) (cdr form)))))) `(progn (or ,form ,(if string `(error ,string ,@sargs ,@args) `(signal 'cl-assertion-failed (list ',form ,@sargs)))) nil)))) ;;; Compiler macros. ;;;###autoload (defmacro cl-define-compiler-macro (func args &rest body) "Define a compiler-only macro. This is like `defmacro', but macro expansion occurs only if the call to FUNC is compiled (i.e., not interpreted). Compiler macros should be used for optimizing the way calls to FUNC are compiled; the form returned by BODY should do the same thing as a call to the normal function called FUNC, though possibly more efficiently. Note that, like regular macros, compiler macros are expanded repeatedly until no further expansions are possible. Unlike regular macros, BODY can decide to \"punt\" and leave the original function call alone by declaring an initial `&whole foo' parameter and then returning foo." (declare (debug cl-defmacro)) (let ((p args) (res nil)) (while (consp p) (push (pop p) res)) (setq args (nconc (nreverse res) (and p (list '&rest p))))) `(cl-eval-when (compile load eval) ,(cl-transform-function-property func 'cl-compiler-macro (cons (if (memq '&whole args) (delq '&whole args) (cons '_cl-whole-arg args)) body)) (or (get ',func 'byte-compile) (progn (put ',func 'byte-compile 'cl-byte-compile-compiler-macro) ;; This is so that describe-function can locate ;; the macro definition. (let ((file ,(or buffer-file-name (and (boundp 'byte-compile-current-file) (stringp byte-compile-current-file) byte-compile-current-file)))) (if file (put ',func 'compiler-macro-file (purecopy (file-name-nondirectory file))))))))) ;;;###autoload (defun cl-compiler-macroexpand (form) (while (let ((func (car-safe form)) (handler nil)) (while (and (symbolp func) (not (setq handler (get func 'cl-compiler-macro))) (fboundp func) (or (not (eq (car-safe (symbol-function func)) 'autoload)) (load (nth 1 (symbol-function func))))) (setq func (symbol-function func))) (and handler (not (eq form (setq form (apply handler form (cdr form)))))))) form) (defun cl-byte-compile-compiler-macro (form) (if (eq form (setq form (cl-compiler-macroexpand form))) (byte-compile-normal-call form) (byte-compile-form form))) ;; Optimize away unused block-wrappers. (defvar cl-active-block-names nil) (cl-define-compiler-macro cl-block-wrapper (cl-form) (let* ((cl-entry (cons (nth 1 (nth 1 cl-form)) nil)) (cl-active-block-names (cons cl-entry cl-active-block-names)) (cl-body (macroexpand-all ;Performs compiler-macro expansions. (cons 'progn (cddr cl-form)) macroexpand-all-environment))) ;; FIXME: To avoid re-applying macroexpand-all, we'd like to be able ;; to indicate that this return value is already fully expanded. (if (cdr cl-entry) `(catch ,(nth 1 cl-form) ,@(cdr cl-body)) cl-body))) (cl-define-compiler-macro cl-block-throw (cl-tag cl-value) (let ((cl-found (assq (nth 1 cl-tag) cl-active-block-names))) (if cl-found (setcdr cl-found t))) `(throw ,cl-tag ,cl-value)) ;;;###autoload (defmacro cl-defsubst (name args &rest body) "Define NAME as a function. Like `defun', except the function is automatically declared `inline', ARGLIST allows full Common Lisp conventions, and BODY is implicitly surrounded by (cl-block NAME ...). \(fn NAME ARGLIST [DOCSTRING] BODY...)" (declare (debug cl-defun)) (let* ((argns (cl-arglist-args args)) (p argns) (pbody (cons 'progn body)) (unsafe (not (cl-safe-expr-p pbody)))) (while (and p (eq (cl-expr-contains args (car p)) 1)) (pop p)) `(progn ,(if p nil ; give up if defaults refer to earlier args `(cl-define-compiler-macro ,name ,(if (memq '&key args) `(&whole cl-whole &cl-quote ,@args) (cons '&cl-quote args)) (cl-defsubst-expand ',argns '(cl-block ,name ,@body) ;; We used to pass `simple' as ;; (not (or unsafe (cl-expr-access-order pbody argns))) ;; But this is much too simplistic since it ;; does not pay attention to the argvs (and ;; cl-expr-access-order itself is also too naive). nil ,(and (memq '&key args) 'cl-whole) ,unsafe ,@argns))) (cl-defun ,name ,args ,@body)))) (defun cl-defsubst-expand (argns body simple whole unsafe &rest argvs) (if (and whole (not (cl-safe-expr-p (cons 'progn argvs)))) whole (if (cl-simple-exprs-p argvs) (setq simple t)) (let* ((substs ()) (lets (delq nil (cl-mapcar (lambda (argn argv) (if (or simple (cl-const-expr-p argv)) (progn (push (cons argn argv) substs) (and unsafe (list argn argv))) (list argn argv))) argns argvs)))) ;; FIXME: `sublis/subst' will happily substitute the symbol ;; `argn' in places where it's not used as a reference ;; to a variable. ;; FIXME: `sublis/subst' will happily copy `argv' to a different ;; scope, leading to name capture. (setq body (cond ((null substs) body) ((null (cdr substs)) (cl-subst (cdar substs) (caar substs) body)) (t (cl-sublis substs body)))) (if lets `(let ,lets ,body) body)))) ;; Compile-time optimizations for some functions defined in this package. ;; Note that cl.el arranges to force cl-macs to be loaded at compile-time, ;; mainly to make sure these macros will be present. (put 'eql 'byte-compile nil) (cl-define-compiler-macro eql (&whole form a b) (cond ((eq (cl-const-expr-p a) t) (let ((val (cl-const-expr-val a))) (if (and (numberp val) (not (integerp val))) `(equal ,a ,b) `(eq ,a ,b)))) ((eq (cl-const-expr-p b) t) (let ((val (cl-const-expr-val b))) (if (and (numberp val) (not (integerp val))) `(equal ,a ,b) `(eq ,a ,b)))) ((cl-simple-expr-p a 5) `(if (numberp ,a) (equal ,a ,b) (eq ,a ,b))) ((and (cl-safe-expr-p a) (cl-simple-expr-p b 5)) `(if (numberp ,b) (equal ,a ,b) (eq ,a ,b))) (t form))) (cl-define-compiler-macro cl-member (&whole form a list &rest keys) (let ((test (and (= (length keys) 2) (eq (car keys) :test) (cl-const-expr-val (nth 1 keys))))) (cond ((eq test 'eq) `(memq ,a ,list)) ((eq test 'equal) `(member ,a ,list)) ((or (null keys) (eq test 'eql)) `(memql ,a ,list)) (t form)))) (cl-define-compiler-macro cl-assoc (&whole form a list &rest keys) (let ((test (and (= (length keys) 2) (eq (car keys) :test) (cl-const-expr-val (nth 1 keys))))) (cond ((eq test 'eq) `(assq ,a ,list)) ((eq test 'equal) `(assoc ,a ,list)) ((and (eq (cl-const-expr-p a) t) (or (null keys) (eq test 'eql))) (if (cl-floatp-safe (cl-const-expr-val a)) `(assoc ,a ,list) `(assq ,a ,list))) (t form)))) (cl-define-compiler-macro cl-adjoin (&whole form a list &rest keys) (if (and (cl-simple-expr-p a) (cl-simple-expr-p list) (not (memq :key keys))) `(if (cl-member ,a ,list ,@keys) ,list (cons ,a ,list)) form)) (cl-define-compiler-macro cl-list* (arg &rest others) (let* ((args (reverse (cons arg others))) (form (car args))) (while (setq args (cdr args)) (setq form `(cons ,(car args) ,form))) form)) (cl-define-compiler-macro cl-get (sym prop &optional def) (if def `(cl-getf (symbol-plist ,sym) ,prop ,def) `(get ,sym ,prop))) (cl-define-compiler-macro cl-typep (&whole form val type) (if (cl-const-expr-p type) (let ((res (cl-make-type-test val (cl-const-expr-val type)))) (if (or (memq (cl-expr-contains res val) '(nil 1)) (cl-simple-expr-p val)) res (let ((temp (make-symbol "--cl-var--"))) `(let ((,temp ,val)) ,(cl-subst temp val res))))) form)) (mapc (lambda (y) (put (car y) 'side-effect-free t) (put (car y) 'byte-compile 'cl-byte-compile-compiler-macro) (put (car y) 'cl-compiler-macro `(lambda (w x) ,(if (symbolp (cadr y)) `(list ',(cadr y) (list ',(cl-caddr y) x)) (cons 'list (cdr y)))))) '((cl-first 'car x) (cl-second 'cadr x) (cl-third 'cl-caddr x) (cl-fourth 'cl-cadddr x) (cl-fifth 'nth 4 x) (cl-sixth 'nth 5 x) (cl-seventh 'nth 6 x) (cl-eighth 'nth 7 x) (cl-ninth 'nth 8 x) (cl-tenth 'nth 9 x) (cl-rest 'cdr x) (cl-endp 'null x) (cl-plusp '> x 0) (cl-minusp '< x 0) (cl-caaar car caar) (cl-caadr car cadr) (cl-cadar car cdar) (cl-caddr car cddr) (cl-cdaar cdr caar) (cl-cdadr cdr cadr) (cl-cddar cdr cdar) (cl-cdddr cdr cddr) (cl-caaaar car cl-caaar) (cl-caaadr car cl-caadr) (cl-caadar car cl-cadar) (cl-caaddr car cl-caddr) (cl-cadaar car cl-cdaar) (cl-cadadr car cl-cdadr) (cl-caddar car cl-cddar) (cl-cadddr car cl-cdddr) (cl-cdaaar cdr cl-caaar) (cl-cdaadr cdr cl-caadr) (cl-cdadar cdr cl-cadar) (cl-cdaddr cdr cl-caddr) (cl-cddaar cdr cl-cdaar) (cl-cddadr cdr cl-cdadr) (cl-cdddar cdr cl-cddar) (cl-cddddr cdr cl-cdddr) )) ;;; Things that are inline. (cl-proclaim '(inline cl-floatp-safe cl-acons cl-map cl-concatenate cl-notany cl-notevery cl-set-elt cl-revappend cl-nreconc gethash)) ;;; Things that are side-effect-free. (mapc (lambda (x) (put x 'side-effect-free t)) '(cl-oddp cl-evenp cl-signum last butlast cl-ldiff cl-pairlis cl-gcd cl-lcm cl-isqrt cl-floor cl-ceiling cl-truncate cl-round cl-mod cl-rem cl-subseq cl-list-length cl-get cl-getf)) ;;; Things that are side-effect-and-error-free. (mapc (lambda (x) (put x 'side-effect-free 'error-free)) '(eql cl-floatp-safe cl-list* cl-subst cl-acons cl-equalp cl-random-state-p copy-tree cl-sublis)) (run-hooks 'cl-macs-load-hook) ;; Local variables: ;; byte-compile-dynamic: t ;; byte-compile-warnings: (not cl-functions) ;; generated-autoload-file: "cl-loaddefs.el" ;; End: ;;; cl-macs.el ends here