X-Git-Url: https://code.delx.au/gnu-emacs/blobdiff_plain/1cee2045653f1a3c01dfad523ea66bdca7f82a12..3dfed6538787f747b1f76a90cae5e2ddce7352f5:/src/floatfns.c diff --git a/src/floatfns.c b/src/floatfns.c index b6bb404475..d5ca50f916 100644 --- a/src/floatfns.c +++ b/src/floatfns.c @@ -1,5 +1,6 @@ /* Primitive operations on floating point for GNU Emacs Lisp interpreter. - Copyright (C) 1988, 1992 Free Software Foundation, Inc. + Copyright (C) 1988, 1993, 1994, 1999, 2002, 2003, 2004, + 2005, 2006 Free Software Foundation, Inc. This file is part of GNU Emacs. @@ -15,23 +16,102 @@ GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU Emacs; see the file COPYING. If not, write to -the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ +the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, +Boston, MA 02110-1301, USA. */ -#include +/* ANSI C requires only these float functions: + acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod, + frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh. + + Define HAVE_INVERSE_HYPERBOLIC if you have acosh, asinh, and atanh. + Define HAVE_CBRT if you have cbrt. + Define HAVE_RINT if you have a working rint. + If you don't define these, then the appropriate routines will be simulated. + + Define HAVE_MATHERR if on a system supporting the SysV matherr callback. + (This should happen automatically.) + + Define FLOAT_CHECK_ERRNO if the float library routines set errno. + This has no effect if HAVE_MATHERR is defined. + + Define FLOAT_CATCH_SIGILL if the float library routines signal SIGILL. + (What systems actually do this? Please let us know.) -#include "config.h" + Define FLOAT_CHECK_DOMAIN if the float library doesn't handle errors by + either setting errno, or signaling SIGFPE/SIGILL. Otherwise, domain and + range checking will happen before calling the float routines. This has + no effect if HAVE_MATHERR is defined (since matherr will be called when + a domain error occurs.) + */ + +#include +#include #include "lisp.h" #include "syssignal.h" -Lisp_Object Qarith_error; +#if STDC_HEADERS +#include +#endif -#ifdef LISP_FLOAT_TYPE +/* If IEEE_FLOATING_POINT isn't defined, default it from FLT_*. */ +#ifndef IEEE_FLOATING_POINT +#if (FLT_RADIX == 2 && FLT_MANT_DIG == 24 \ + && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128) +#define IEEE_FLOATING_POINT 1 +#else +#define IEEE_FLOATING_POINT 0 +#endif +#endif + +/* Work around a problem that happens because math.h on hpux 7 + defines two static variables--which, in Emacs, are not really static, + because `static' is defined as nothing. The problem is that they are + defined both here and in lread.c. + These macros prevent the name conflict. */ +#if defined (HPUX) && !defined (HPUX8) +#define _MAXLDBL floatfns_maxldbl +#define _NMAXLDBL floatfns_nmaxldbl +#endif #include -#include +/* This declaration is omitted on some systems, like Ultrix. */ +#if !defined (HPUX) && defined (HAVE_LOGB) && !defined (logb) +extern double logb (); +#endif /* not HPUX and HAVE_LOGB and no logb macro */ + +#if defined(DOMAIN) && defined(SING) && defined(OVERFLOW) + /* If those are defined, then this is probably a `matherr' machine. */ +# ifndef HAVE_MATHERR +# define HAVE_MATHERR +# endif +#endif + +#ifdef NO_MATHERR +#undef HAVE_MATHERR +#endif + +#ifdef HAVE_MATHERR +# ifdef FLOAT_CHECK_ERRNO +# undef FLOAT_CHECK_ERRNO +# endif +# ifdef FLOAT_CHECK_DOMAIN +# undef FLOAT_CHECK_DOMAIN +# endif +#endif + +#ifndef NO_FLOAT_CHECK_ERRNO +#define FLOAT_CHECK_ERRNO +#endif + +#ifdef FLOAT_CHECK_ERRNO +# include + +#ifndef USE_CRT_DLL extern int errno; +#endif +#endif /* Avoid traps on VMS from sinh and cosh. All the other functions set errno instead. */ @@ -43,7 +123,9 @@ extern int errno; #define sinh(x) ((exp(x)-exp(-x))*0.5) #endif /* VMS */ +#ifdef FLOAT_CATCH_SIGILL static SIGTYPE float_error (); +#endif /* Nonzero while executing in floating point. This tells float_error what to do. */ @@ -51,19 +133,85 @@ static SIGTYPE float_error (); static int in_float; /* If an argument is out of range for a mathematical function, - here is the actual argument value to use in the error message. */ + here is the actual argument value to use in the error message. + These variables are used only across the floating point library call + so there is no need to staticpro them. */ + +static Lisp_Object float_error_arg, float_error_arg2; -static Lisp_Object float_error_arg; +static char *float_error_fn_name; /* Evaluate the floating point expression D, recording NUM as the original argument for error messages. D is normally an assignment expression. - Handle errors which may result in signals or may set errno. */ + Handle errors which may result in signals or may set errno. + + Note that float_error may be declared to return void, so you can't + just cast the zero after the colon to (SIGTYPE) to make the types + check properly. */ + +#ifdef FLOAT_CHECK_ERRNO +#define IN_FLOAT(d, name, num) \ + do { \ + float_error_arg = num; \ + float_error_fn_name = name; \ + in_float = 1; errno = 0; (d); in_float = 0; \ + switch (errno) { \ + case 0: break; \ + case EDOM: domain_error (float_error_fn_name, float_error_arg); \ + case ERANGE: range_error (float_error_fn_name, float_error_arg); \ + default: arith_error (float_error_fn_name, float_error_arg); \ + } \ + } while (0) +#define IN_FLOAT2(d, name, num, num2) \ + do { \ + float_error_arg = num; \ + float_error_arg2 = num2; \ + float_error_fn_name = name; \ + in_float = 1; errno = 0; (d); in_float = 0; \ + switch (errno) { \ + case 0: break; \ + case EDOM: domain_error (float_error_fn_name, float_error_arg); \ + case ERANGE: range_error (float_error_fn_name, float_error_arg); \ + default: arith_error (float_error_fn_name, float_error_arg); \ + } \ + } while (0) +#else +#define IN_FLOAT(d, name, num) (in_float = 1, (d), in_float = 0) +#define IN_FLOAT2(d, name, num, num2) (in_float = 1, (d), in_float = 0) +#endif -#define IN_FLOAT(D, NUM) \ -(in_float = 1, errno = 0, float_error_arg = NUM, (D), \ - (errno == ERANGE || errno == EDOM ? float_error () : (SIGTYPE) 0), \ - in_float = 0) +/* Convert float to Lisp_Int if it fits, else signal a range error + using the given arguments. */ +#define FLOAT_TO_INT(x, i, name, num) \ + do \ + { \ + if (FIXNUM_OVERFLOW_P (x)) \ + range_error (name, num); \ + XSETINT (i, (EMACS_INT)(x)); \ + } \ + while (0) +#define FLOAT_TO_INT2(x, i, name, num1, num2) \ + do \ + { \ + if (FIXNUM_OVERFLOW_P (x)) \ + range_error2 (name, num1, num2); \ + XSETINT (i, (EMACS_INT)(x)); \ + } \ + while (0) + +#define arith_error(op,arg) \ + Fsignal (Qarith_error, Fcons (build_string ((op)), Fcons ((arg), Qnil))) +#define range_error(op,arg) \ + Fsignal (Qrange_error, Fcons (build_string ((op)), Fcons ((arg), Qnil))) +#define range_error2(op,a1,a2) \ + Fsignal (Qrange_error, Fcons (build_string ((op)), \ + Fcons ((a1), Fcons ((a2), Qnil)))) +#define domain_error(op,arg) \ + Fsignal (Qdomain_error, Fcons (build_string ((op)), Fcons ((arg), Qnil))) +#define domain_error2(op,a1,a2) \ + Fsignal (Qdomain_error, Fcons (build_string ((op)), \ + Fcons ((a1), Fcons ((a2), Qnil)))) /* Extract a Lisp number as a `double', or signal an error. */ @@ -71,140 +219,165 @@ double extract_float (num) Lisp_Object num; { - CHECK_NUMBER_OR_FLOAT (num, 0); + CHECK_NUMBER_OR_FLOAT (num); - if (XTYPE (num) == Lisp_Float) - return XFLOAT (num)->data; + if (FLOATP (num)) + return XFLOAT_DATA (num); return (double) XINT (num); } /* Trig functions. */ DEFUN ("acos", Facos, Sacos, 1, 1, 0, - "Return the inverse cosine of ARG.") - (num) - register Lisp_Object num; + doc: /* Return the inverse cosine of ARG. */) + (arg) + register Lisp_Object arg; { - double d = extract_float (num); - IN_FLOAT (d = acos (d), num); + double d = extract_float (arg); +#ifdef FLOAT_CHECK_DOMAIN + if (d > 1.0 || d < -1.0) + domain_error ("acos", arg); +#endif + IN_FLOAT (d = acos (d), "acos", arg); return make_float (d); } DEFUN ("asin", Fasin, Sasin, 1, 1, 0, - "Return the inverse sine of ARG.") - (num) - register Lisp_Object num; + doc: /* Return the inverse sine of ARG. */) + (arg) + register Lisp_Object arg; { - double d = extract_float (num); - IN_FLOAT (d = asin (d), num); + double d = extract_float (arg); +#ifdef FLOAT_CHECK_DOMAIN + if (d > 1.0 || d < -1.0) + domain_error ("asin", arg); +#endif + IN_FLOAT (d = asin (d), "asin", arg); return make_float (d); } -DEFUN ("atan", Fatan, Satan, 1, 1, 0, - "Return the inverse tangent of ARG.") - (num) - register Lisp_Object num; +DEFUN ("atan", Fatan, Satan, 1, 2, 0, + doc: /* Return the inverse tangent of the arguments. +If only one argument Y is given, return the inverse tangent of Y. +If two arguments Y and X are given, return the inverse tangent of Y +divided by X, i.e. the angle in radians between the vector (X, Y) +and the x-axis. */) + (y, x) + register Lisp_Object y, x; { - double d = extract_float (num); - IN_FLOAT (d = atan (d), num); + double d = extract_float (y); + + if (NILP (x)) + IN_FLOAT (d = atan (d), "atan", y); + else + { + double d2 = extract_float (x); + + IN_FLOAT2 (d = atan2 (d, d2), "atan", y, x); + } return make_float (d); } DEFUN ("cos", Fcos, Scos, 1, 1, 0, - "Return the cosine of ARG.") - (num) - register Lisp_Object num; + doc: /* Return the cosine of ARG. */) + (arg) + register Lisp_Object arg; { - double d = extract_float (num); - IN_FLOAT (d = cos (d), num); + double d = extract_float (arg); + IN_FLOAT (d = cos (d), "cos", arg); return make_float (d); } DEFUN ("sin", Fsin, Ssin, 1, 1, 0, - "Return the sine of ARG.") - (num) - register Lisp_Object num; + doc: /* Return the sine of ARG. */) + (arg) + register Lisp_Object arg; { - double d = extract_float (num); - IN_FLOAT (d = sin (d), num); + double d = extract_float (arg); + IN_FLOAT (d = sin (d), "sin", arg); return make_float (d); } DEFUN ("tan", Ftan, Stan, 1, 1, 0, - "Return the tangent of ARG.") - (num) - register Lisp_Object num; + doc: /* Return the tangent of ARG. */) + (arg) + register Lisp_Object arg; { - double d = extract_float (num); - IN_FLOAT (d = tan (d), num); + double d = extract_float (arg); + double c = cos (d); +#ifdef FLOAT_CHECK_DOMAIN + if (c == 0.0) + domain_error ("tan", arg); +#endif + IN_FLOAT (d = sin (d) / c, "tan", arg); return make_float (d); } #if 0 /* Leave these out unless we find there's a reason for them. */ DEFUN ("bessel-j0", Fbessel_j0, Sbessel_j0, 1, 1, 0, - "Return the bessel function j0 of ARG.") - (num) - register Lisp_Object num; + doc: /* Return the bessel function j0 of ARG. */) + (arg) + register Lisp_Object arg; { - double d = extract_float (num); - IN_FLOAT (d = j0 (d), num); + double d = extract_float (arg); + IN_FLOAT (d = j0 (d), "bessel-j0", arg); return make_float (d); } DEFUN ("bessel-j1", Fbessel_j1, Sbessel_j1, 1, 1, 0, - "Return the bessel function j1 of ARG.") - (num) - register Lisp_Object num; + doc: /* Return the bessel function j1 of ARG. */) + (arg) + register Lisp_Object arg; { - double d = extract_float (num); - IN_FLOAT (d = j1 (d), num); + double d = extract_float (arg); + IN_FLOAT (d = j1 (d), "bessel-j1", arg); return make_float (d); } DEFUN ("bessel-jn", Fbessel_jn, Sbessel_jn, 2, 2, 0, - "Return the order N bessel function output jn of ARG.\n\ -The first arg (the order) is truncated to an integer.") - (num1, num2) - register Lisp_Object num1, num2; + doc: /* Return the order N bessel function output jn of ARG. +The first arg (the order) is truncated to an integer. */) + (n, arg) + register Lisp_Object n, arg; { - int i1 = extract_float (num1); - double f2 = extract_float (num2); + int i1 = extract_float (n); + double f2 = extract_float (arg); - IN_FLOAT (f2 = jn (i1, f2), num1); + IN_FLOAT (f2 = jn (i1, f2), "bessel-jn", n); return make_float (f2); } DEFUN ("bessel-y0", Fbessel_y0, Sbessel_y0, 1, 1, 0, - "Return the bessel function y0 of ARG.") - (num) - register Lisp_Object num; + doc: /* Return the bessel function y0 of ARG. */) + (arg) + register Lisp_Object arg; { - double d = extract_float (num); - IN_FLOAT (d = y0 (d), num); + double d = extract_float (arg); + IN_FLOAT (d = y0 (d), "bessel-y0", arg); return make_float (d); } DEFUN ("bessel-y1", Fbessel_y1, Sbessel_y1, 1, 1, 0, - "Return the bessel function y1 of ARG.") - (num) - register Lisp_Object num; + doc: /* Return the bessel function y1 of ARG. */) + (arg) + register Lisp_Object arg; { - double d = extract_float (num); - IN_FLOAT (d = y1 (d), num); + double d = extract_float (arg); + IN_FLOAT (d = y1 (d), "bessel-y0", arg); return make_float (d); } DEFUN ("bessel-yn", Fbessel_yn, Sbessel_yn, 2, 2, 0, - "Return the order N bessel function output yn of ARG.\n\ -The first arg (the order) is truncated to an integer.") - (num1, num2) - register Lisp_Object num1, num2; + doc: /* Return the order N bessel function output yn of ARG. +The first arg (the order) is truncated to an integer. */) + (n, arg) + register Lisp_Object n, arg; { - int i1 = extract_float (num1); - double f2 = extract_float (num2); + int i1 = extract_float (n); + double f2 = extract_float (arg); - IN_FLOAT (f2 = yn (i1, f2), num1); + IN_FLOAT (f2 = yn (i1, f2), "bessel-yn", n); return make_float (f2); } @@ -213,305 +386,585 @@ The first arg (the order) is truncated to an integer.") #if 0 /* Leave these out unless we see they are worth having. */ DEFUN ("erf", Ferf, Serf, 1, 1, 0, - "Return the mathematical error function of ARG.") - (num) - register Lisp_Object num; + doc: /* Return the mathematical error function of ARG. */) + (arg) + register Lisp_Object arg; { - double d = extract_float (num); - IN_FLOAT (d = erf (d), num); + double d = extract_float (arg); + IN_FLOAT (d = erf (d), "erf", arg); return make_float (d); } DEFUN ("erfc", Ferfc, Serfc, 1, 1, 0, - "Return the complementary error function of ARG.") - (num) - register Lisp_Object num; + doc: /* Return the complementary error function of ARG. */) + (arg) + register Lisp_Object arg; { - double d = extract_float (num); - IN_FLOAT (d = erfc (d), num); + double d = extract_float (arg); + IN_FLOAT (d = erfc (d), "erfc", arg); return make_float (d); } DEFUN ("log-gamma", Flog_gamma, Slog_gamma, 1, 1, 0, - "Return the log gamma of ARG.") - (num) - register Lisp_Object num; + doc: /* Return the log gamma of ARG. */) + (arg) + register Lisp_Object arg; { - double d = extract_float (num); - IN_FLOAT (d = lgamma (d), num); + double d = extract_float (arg); + IN_FLOAT (d = lgamma (d), "log-gamma", arg); return make_float (d); } -DEFUN ("cbrt", Fcbrt, Scbrt, 1, 1, 0, - "Return the cube root of ARG.") - (num) - register Lisp_Object num; +DEFUN ("cube-root", Fcube_root, Scube_root, 1, 1, 0, + doc: /* Return the cube root of ARG. */) + (arg) + register Lisp_Object arg; { - double d = extract_float (num); - IN_FLOAT (d = cbrt (d), num); + double d = extract_float (arg); +#ifdef HAVE_CBRT + IN_FLOAT (d = cbrt (d), "cube-root", arg); +#else + if (d >= 0.0) + IN_FLOAT (d = pow (d, 1.0/3.0), "cube-root", arg); + else + IN_FLOAT (d = -pow (-d, 1.0/3.0), "cube-root", arg); +#endif return make_float (d); } #endif DEFUN ("exp", Fexp, Sexp, 1, 1, 0, - "Return the exponential base e of ARG.") - (num) - register Lisp_Object num; + doc: /* Return the exponential base e of ARG. */) + (arg) + register Lisp_Object arg; { - double d = extract_float (num); - IN_FLOAT (d = exp (d), num); + double d = extract_float (arg); +#ifdef FLOAT_CHECK_DOMAIN + if (d > 709.7827) /* Assume IEEE doubles here */ + range_error ("exp", arg); + else if (d < -709.0) + return make_float (0.0); + else +#endif + IN_FLOAT (d = exp (d), "exp", arg); return make_float (d); } DEFUN ("expt", Fexpt, Sexpt, 2, 2, 0, - "Return the exponential X ** Y.") - (num1, num2) - register Lisp_Object num1, num2; + doc: /* Return the exponential ARG1 ** ARG2. */) + (arg1, arg2) + register Lisp_Object arg1, arg2; { double f1, f2; - CHECK_NUMBER_OR_FLOAT (num1, 0); - CHECK_NUMBER_OR_FLOAT (num2, 0); - if ((XTYPE (num1) == Lisp_Int) && /* common lisp spec */ - (XTYPE (num2) == Lisp_Int)) /* don't promote, if both are ints */ + CHECK_NUMBER_OR_FLOAT (arg1); + CHECK_NUMBER_OR_FLOAT (arg2); + if (INTEGERP (arg1) /* common lisp spec */ + && INTEGERP (arg2) /* don't promote, if both are ints, and */ + && 0 <= XINT (arg2)) /* we are sure the result is not fractional */ { /* this can be improved by pre-calculating */ - int acc, x, y; /* some binary powers of x then acumulating */ - /* these, therby saving some time. -wsr */ - x = XINT (num1); - y = XINT (num2); + EMACS_INT acc, x, y; /* some binary powers of x then accumulating */ + Lisp_Object val; + + x = XINT (arg1); + y = XINT (arg2); acc = 1; - + if (y < 0) { - for (; y < 0; y++) - acc /= x; + if (x == 1) + acc = 1; + else if (x == -1) + acc = (y & 1) ? -1 : 1; + else + acc = 0; } else { - for (; y > 0; y--) - acc *= x; + while (y > 0) + { + if (y & 1) + acc *= x; + x *= x; + y = (unsigned)y >> 1; + } } - XFASTINT (x) = acc; - return x; + XSETINT (val, acc); + return val; } - f1 = (XTYPE (num1) == Lisp_Float) ? XFLOAT (num1)->data : XINT (num1); - f2 = (XTYPE (num2) == Lisp_Float) ? XFLOAT (num2)->data : XINT (num2); - IN_FLOAT (f1 = pow (f1, f2), num1); + f1 = FLOATP (arg1) ? XFLOAT_DATA (arg1) : XINT (arg1); + f2 = FLOATP (arg2) ? XFLOAT_DATA (arg2) : XINT (arg2); + /* Really should check for overflow, too */ + if (f1 == 0.0 && f2 == 0.0) + f1 = 1.0; +#ifdef FLOAT_CHECK_DOMAIN + else if ((f1 == 0.0 && f2 < 0.0) || (f1 < 0 && f2 != floor(f2))) + domain_error2 ("expt", arg1, arg2); +#endif + IN_FLOAT2 (f1 = pow (f1, f2), "expt", arg1, arg2); return make_float (f1); } DEFUN ("log", Flog, Slog, 1, 2, 0, - "Return the natural logarithm of NUM. -If second optional argument BASE is given, return log NUM using that base.") - (num, base) - register Lisp_Object num, base; + doc: /* Return the natural logarithm of ARG. +If the optional argument BASE is given, return log ARG using that base. */) + (arg, base) + register Lisp_Object arg, base; { - double d = extract_float (num); + double d = extract_float (arg); +#ifdef FLOAT_CHECK_DOMAIN + if (d <= 0.0) + domain_error2 ("log", arg, base); +#endif if (NILP (base)) - IN_FLOAT (d = log (d), num); + IN_FLOAT (d = log (d), "log", arg); else { double b = extract_float (base); - IN_FLOAT (d = log (num) / log (b), num); +#ifdef FLOAT_CHECK_DOMAIN + if (b <= 0.0 || b == 1.0) + domain_error2 ("log", arg, base); +#endif + if (b == 10.0) + IN_FLOAT2 (d = log10 (d), "log", arg, base); + else + IN_FLOAT2 (d = log (d) / log (b), "log", arg, base); } return make_float (d); } DEFUN ("log10", Flog10, Slog10, 1, 1, 0, - "Return the logarithm base 10 of ARG.") - (num) - register Lisp_Object num; + doc: /* Return the logarithm base 10 of ARG. */) + (arg) + register Lisp_Object arg; { - double d = extract_float (num); - IN_FLOAT (d = log10 (d), num); + double d = extract_float (arg); +#ifdef FLOAT_CHECK_DOMAIN + if (d <= 0.0) + domain_error ("log10", arg); +#endif + IN_FLOAT (d = log10 (d), "log10", arg); return make_float (d); } DEFUN ("sqrt", Fsqrt, Ssqrt, 1, 1, 0, - "Return the square root of ARG.") - (num) - register Lisp_Object num; + doc: /* Return the square root of ARG. */) + (arg) + register Lisp_Object arg; { - double d = extract_float (num); - IN_FLOAT (d = sqrt (d), num); + double d = extract_float (arg); +#ifdef FLOAT_CHECK_DOMAIN + if (d < 0.0) + domain_error ("sqrt", arg); +#endif + IN_FLOAT (d = sqrt (d), "sqrt", arg); return make_float (d); } #if 0 /* Not clearly worth adding. */ DEFUN ("acosh", Facosh, Sacosh, 1, 1, 0, - "Return the inverse hyperbolic cosine of ARG.") - (num) - register Lisp_Object num; + doc: /* Return the inverse hyperbolic cosine of ARG. */) + (arg) + register Lisp_Object arg; { - double d = extract_float (num); - IN_FLOAT (d = acosh (d), num); + double d = extract_float (arg); +#ifdef FLOAT_CHECK_DOMAIN + if (d < 1.0) + domain_error ("acosh", arg); +#endif +#ifdef HAVE_INVERSE_HYPERBOLIC + IN_FLOAT (d = acosh (d), "acosh", arg); +#else + IN_FLOAT (d = log (d + sqrt (d*d - 1.0)), "acosh", arg); +#endif return make_float (d); } DEFUN ("asinh", Fasinh, Sasinh, 1, 1, 0, - "Return the inverse hyperbolic sine of ARG.") - (num) - register Lisp_Object num; + doc: /* Return the inverse hyperbolic sine of ARG. */) + (arg) + register Lisp_Object arg; { - double d = extract_float (num); - IN_FLOAT (d = asinh (d), num); + double d = extract_float (arg); +#ifdef HAVE_INVERSE_HYPERBOLIC + IN_FLOAT (d = asinh (d), "asinh", arg); +#else + IN_FLOAT (d = log (d + sqrt (d*d + 1.0)), "asinh", arg); +#endif return make_float (d); } DEFUN ("atanh", Fatanh, Satanh, 1, 1, 0, - "Return the inverse hyperbolic tangent of ARG.") - (num) - register Lisp_Object num; + doc: /* Return the inverse hyperbolic tangent of ARG. */) + (arg) + register Lisp_Object arg; { - double d = extract_float (num); - IN_FLOAT (d = atanh (d), num); + double d = extract_float (arg); +#ifdef FLOAT_CHECK_DOMAIN + if (d >= 1.0 || d <= -1.0) + domain_error ("atanh", arg); +#endif +#ifdef HAVE_INVERSE_HYPERBOLIC + IN_FLOAT (d = atanh (d), "atanh", arg); +#else + IN_FLOAT (d = 0.5 * log ((1.0 + d) / (1.0 - d)), "atanh", arg); +#endif return make_float (d); } DEFUN ("cosh", Fcosh, Scosh, 1, 1, 0, - "Return the hyperbolic cosine of ARG.") - (num) - register Lisp_Object num; + doc: /* Return the hyperbolic cosine of ARG. */) + (arg) + register Lisp_Object arg; { - double d = extract_float (num); - IN_FLOAT (d = cosh (d), num); + double d = extract_float (arg); +#ifdef FLOAT_CHECK_DOMAIN + if (d > 710.0 || d < -710.0) + range_error ("cosh", arg); +#endif + IN_FLOAT (d = cosh (d), "cosh", arg); return make_float (d); } DEFUN ("sinh", Fsinh, Ssinh, 1, 1, 0, - "Return the hyperbolic sine of ARG.") - (num) - register Lisp_Object num; + doc: /* Return the hyperbolic sine of ARG. */) + (arg) + register Lisp_Object arg; { - double d = extract_float (num); - IN_FLOAT (d = sinh (d), num); + double d = extract_float (arg); +#ifdef FLOAT_CHECK_DOMAIN + if (d > 710.0 || d < -710.0) + range_error ("sinh", arg); +#endif + IN_FLOAT (d = sinh (d), "sinh", arg); return make_float (d); } DEFUN ("tanh", Ftanh, Stanh, 1, 1, 0, - "Return the hyperbolic tangent of ARG.") - (num) - register Lisp_Object num; + doc: /* Return the hyperbolic tangent of ARG. */) + (arg) + register Lisp_Object arg; { - double d = extract_float (num); - IN_FLOAT (d = tanh (d), num); + double d = extract_float (arg); + IN_FLOAT (d = tanh (d), "tanh", arg); return make_float (d); } #endif DEFUN ("abs", Fabs, Sabs, 1, 1, 0, - "Return the absolute value of ARG.") - (num) - register Lisp_Object num; + doc: /* Return the absolute value of ARG. */) + (arg) + register Lisp_Object arg; { - CHECK_NUMBER_OR_FLOAT (num, 0); + CHECK_NUMBER_OR_FLOAT (arg); - if (XTYPE (num) == Lisp_Float) - IN_FLOAT (num = make_float (fabs (XFLOAT (num)->data)), num); - else if (XINT (num) < 0) - XSETINT (num, - XFASTINT (num)); + if (FLOATP (arg)) + IN_FLOAT (arg = make_float (fabs (XFLOAT_DATA (arg))), "abs", arg); + else if (XINT (arg) < 0) + XSETINT (arg, - XINT (arg)); - return num; + return arg; } DEFUN ("float", Ffloat, Sfloat, 1, 1, 0, - "Return the floating point number equal to ARG.") - (num) - register Lisp_Object num; + doc: /* Return the floating point number equal to ARG. */) + (arg) + register Lisp_Object arg; { - CHECK_NUMBER_OR_FLOAT (num, 0); + CHECK_NUMBER_OR_FLOAT (arg); - if (XTYPE (num) == Lisp_Int) - return make_float ((double) XINT (num)); + if (INTEGERP (arg)) + return make_float ((double) XINT (arg)); else /* give 'em the same float back */ - return num; + return arg; } DEFUN ("logb", Flogb, Slogb, 1, 1, 0, - "Returns the integer that is the base 2 log of ARG.\n\ -This is the same as the exponent of a float.") - (num) -Lisp_Object num; -{ -#ifdef USG - /* System V apparently doesn't have a `logb' function. */ - return Flog (num, make_number (2)); -#else + doc: /* Returns largest integer <= the base 2 log of the magnitude of ARG. +This is the same as the exponent of a float. */) + (arg) + Lisp_Object arg; +{ Lisp_Object val; - double f = extract_float (num); + EMACS_INT value; + double f = extract_float (arg); - IN_FLOAT (val = logb (f), num); - XSET (val, Lisp_Int, val); - return val; + if (f == 0.0) + value = MOST_NEGATIVE_FIXNUM; + else + { +#ifdef HAVE_LOGB + IN_FLOAT (value = logb (f), "logb", arg); +#else +#ifdef HAVE_FREXP + int ivalue; + IN_FLOAT (frexp (f, &ivalue), "logb", arg); + value = ivalue - 1; +#else + int i; + double d; + if (f < 0.0) + f = -f; + value = -1; + while (f < 0.5) + { + for (i = 1, d = 0.5; d * d >= f; i += i) + d *= d; + f /= d; + value -= i; + } + while (f >= 1.0) + { + for (i = 1, d = 2.0; d * d <= f; i += i) + d *= d; + f /= d; + value += i; + } #endif +#endif + } + XSETINT (val, value); + return val; } + /* the rounding functions */ -DEFUN ("ceiling", Fceiling, Sceiling, 1, 1, 0, - "Return the smallest integer no less than ARG. (Round toward +inf.)") - (num) - register Lisp_Object num; +static Lisp_Object +rounding_driver (arg, divisor, double_round, int_round2, name) + register Lisp_Object arg, divisor; + double (*double_round) (); + EMACS_INT (*int_round2) (); + char *name; { - CHECK_NUMBER_OR_FLOAT (num, 0); + CHECK_NUMBER_OR_FLOAT (arg); - if (XTYPE (num) == Lisp_Float) - IN_FLOAT (XSET (num, Lisp_Int, ceil (XFLOAT (num)->data)), num); + if (! NILP (divisor)) + { + EMACS_INT i1, i2; + + CHECK_NUMBER_OR_FLOAT (divisor); + + if (FLOATP (arg) || FLOATP (divisor)) + { + double f1, f2; + + f1 = FLOATP (arg) ? XFLOAT_DATA (arg) : XINT (arg); + f2 = (FLOATP (divisor) ? XFLOAT_DATA (divisor) : XINT (divisor)); + if (! IEEE_FLOATING_POINT && f2 == 0) + Fsignal (Qarith_error, Qnil); - return num; + IN_FLOAT2 (f1 = (*double_round) (f1 / f2), name, arg, divisor); + FLOAT_TO_INT2 (f1, arg, name, arg, divisor); + return arg; + } + + i1 = XINT (arg); + i2 = XINT (divisor); + + if (i2 == 0) + Fsignal (Qarith_error, Qnil); + + XSETINT (arg, (*int_round2) (i1, i2)); + return arg; + } + + if (FLOATP (arg)) + { + double d; + + IN_FLOAT (d = (*double_round) (XFLOAT_DATA (arg)), name, arg); + FLOAT_TO_INT (d, arg, name, arg); + } + + return arg; } -DEFUN ("floor", Ffloor, Sfloor, 1, 1, 0, - "Return the largest integer no greater than ARG. (Round towards -inf.)") - (num) - register Lisp_Object num; +/* With C's /, the result is implementation-defined if either operand + is negative, so take care with negative operands in the following + integer functions. */ + +static EMACS_INT +ceiling2 (i1, i2) + EMACS_INT i1, i2; { - CHECK_NUMBER_OR_FLOAT (num, 0); + return (i2 < 0 + ? (i1 < 0 ? ((-1 - i1) / -i2) + 1 : - (i1 / -i2)) + : (i1 <= 0 ? - (-i1 / i2) : ((i1 - 1) / i2) + 1)); +} - if (XTYPE (num) == Lisp_Float) - IN_FLOAT (XSET (num, Lisp_Int, floor (XFLOAT (num)->data)), num); +static EMACS_INT +floor2 (i1, i2) + EMACS_INT i1, i2; +{ + return (i2 < 0 + ? (i1 <= 0 ? -i1 / -i2 : -1 - ((i1 - 1) / -i2)) + : (i1 < 0 ? -1 - ((-1 - i1) / i2) : i1 / i2)); +} - return num; +static EMACS_INT +truncate2 (i1, i2) + EMACS_INT i1, i2; +{ + return (i2 < 0 + ? (i1 < 0 ? -i1 / -i2 : - (i1 / -i2)) + : (i1 < 0 ? - (-i1 / i2) : i1 / i2)); } -DEFUN ("round", Fround, Sround, 1, 1, 0, - "Return the nearest integer to ARG.") - (num) - register Lisp_Object num; +static EMACS_INT +round2 (i1, i2) + EMACS_INT i1, i2; { - CHECK_NUMBER_OR_FLOAT (num, 0); + /* The C language's division operator gives us one remainder R, but + we want the remainder R1 on the other side of 0 if R1 is closer + to 0 than R is; because we want to round to even, we also want R1 + if R and R1 are the same distance from 0 and if C's quotient is + odd. */ + EMACS_INT q = i1 / i2; + EMACS_INT r = i1 % i2; + EMACS_INT abs_r = r < 0 ? -r : r; + EMACS_INT abs_r1 = (i2 < 0 ? -i2 : i2) - abs_r; + return q + (abs_r + (q & 1) <= abs_r1 ? 0 : (i2 ^ r) < 0 ? -1 : 1); +} - if (XTYPE (num) == Lisp_Float) - { -#ifdef USG - /* Screw the prevailing rounding mode. */ - IN_FLOAT (XSET (num, Lisp_Int, floor (XFLOAT (num)->data + 0.5)), num); +/* The code uses emacs_rint, so that it works to undefine HAVE_RINT + if `rint' exists but does not work right. */ +#ifdef HAVE_RINT +#define emacs_rint rint #else - IN_FLOAT (XSET (num, Lisp_Int, rint (XFLOAT (num)->data)), num); +static double +emacs_rint (d) + double d; +{ + return floor (d + 0.5); +} #endif - } - return num; +static double +double_identity (d) + double d; +{ + return d; } -DEFUN ("truncate", Ftruncate, Struncate, 1, 1, 0, - "Truncate a floating point number to an int.\n\ -Rounds the value toward zero.") - (num) - register Lisp_Object num; +DEFUN ("ceiling", Fceiling, Sceiling, 1, 2, 0, + doc: /* Return the smallest integer no less than ARG. +This rounds the value towards +inf. +With optional DIVISOR, return the smallest integer no less than ARG/DIVISOR. */) + (arg, divisor) + Lisp_Object arg, divisor; { - CHECK_NUMBER_OR_FLOAT (num, 0); + return rounding_driver (arg, divisor, ceil, ceiling2, "ceiling"); +} - if (XTYPE (num) == Lisp_Float) - XSET (num, Lisp_Int, (int) XFLOAT (num)->data); +DEFUN ("floor", Ffloor, Sfloor, 1, 2, 0, + doc: /* Return the largest integer no greater than ARG. +This rounds the value towards -inf. +With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR. */) + (arg, divisor) + Lisp_Object arg, divisor; +{ + return rounding_driver (arg, divisor, floor, floor2, "floor"); +} - return num; +DEFUN ("round", Fround, Sround, 1, 2, 0, + doc: /* Return the nearest integer to ARG. +With optional DIVISOR, return the nearest integer to ARG/DIVISOR. + +Rounding a value equidistant between two integers may choose the +integer closer to zero, or it may prefer an even integer, depending on +your machine. For example, \(round 2.5\) can return 3 on some +systems, but 2 on others. */) + (arg, divisor) + Lisp_Object arg, divisor; +{ + return rounding_driver (arg, divisor, emacs_rint, round2, "round"); +} + +DEFUN ("truncate", Ftruncate, Struncate, 1, 2, 0, + doc: /* Truncate a floating point number to an int. +Rounds ARG toward zero. +With optional DIVISOR, truncate ARG/DIVISOR. */) + (arg, divisor) + Lisp_Object arg, divisor; +{ + return rounding_driver (arg, divisor, double_identity, truncate2, + "truncate"); +} + + +Lisp_Object +fmod_float (x, y) + register Lisp_Object x, y; +{ + double f1, f2; + + f1 = FLOATP (x) ? XFLOAT_DATA (x) : XINT (x); + f2 = FLOATP (y) ? XFLOAT_DATA (y) : XINT (y); + + if (! IEEE_FLOATING_POINT && f2 == 0) + Fsignal (Qarith_error, Qnil); + + /* If the "remainder" comes out with the wrong sign, fix it. */ + IN_FLOAT2 ((f1 = fmod (f1, f2), + f1 = (f2 < 0 ? f1 > 0 : f1 < 0) ? f1 + f2 : f1), + "mod", x, y); + return make_float (f1); } +/* It's not clear these are worth adding. */ + +DEFUN ("fceiling", Ffceiling, Sfceiling, 1, 1, 0, + doc: /* Return the smallest integer no less than ARG, as a float. +\(Round toward +inf.\) */) + (arg) + register Lisp_Object arg; +{ + double d = extract_float (arg); + IN_FLOAT (d = ceil (d), "fceiling", arg); + return make_float (d); +} + +DEFUN ("ffloor", Fffloor, Sffloor, 1, 1, 0, + doc: /* Return the largest integer no greater than ARG, as a float. +\(Round towards -inf.\) */) + (arg) + register Lisp_Object arg; +{ + double d = extract_float (arg); + IN_FLOAT (d = floor (d), "ffloor", arg); + return make_float (d); +} + +DEFUN ("fround", Ffround, Sfround, 1, 1, 0, + doc: /* Return the nearest integer to ARG, as a float. */) + (arg) + register Lisp_Object arg; +{ + double d = extract_float (arg); + IN_FLOAT (d = emacs_rint (d), "fround", arg); + return make_float (d); +} + +DEFUN ("ftruncate", Fftruncate, Sftruncate, 1, 1, 0, + doc: /* Truncate a floating point number to an integral float value. +Rounds the value toward zero. */) + (arg) + register Lisp_Object arg; +{ + double d = extract_float (arg); + if (d >= 0.0) + IN_FLOAT (d = floor (d), "ftruncate", arg); + else + IN_FLOAT (d = ceil (d), "ftruncate", arg); + return make_float (d); +} + +#ifdef FLOAT_CATCH_SIGILL static SIGTYPE float_error (signo) int signo; @@ -519,7 +972,7 @@ float_error (signo) if (! in_float) fatal_error_signal (signo); -#ifdef BSD +#ifdef BSD_SYSTEM #ifdef BSD4_1 sigrelse (SIGILL); #else /* not BSD4_1 */ @@ -528,19 +981,59 @@ float_error (signo) #else /* Must reestablish handler each time it is called. */ signal (SIGILL, float_error); -#endif /* BSD */ +#endif /* BSD_SYSTEM */ + SIGNAL_THREAD_CHECK (signo); in_float = 0; Fsignal (Qarith_error, Fcons (float_error_arg, Qnil)); } +/* Another idea was to replace the library function `infnan' + where SIGILL is signaled. */ + +#endif /* FLOAT_CATCH_SIGILL */ + +#ifdef HAVE_MATHERR +int +matherr (x) + struct exception *x; +{ + Lisp_Object args; + if (! in_float) + /* Not called from emacs-lisp float routines; do the default thing. */ + return 0; + if (!strcmp (x->name, "pow")) + x->name = "expt"; + + args + = Fcons (build_string (x->name), + Fcons (make_float (x->arg1), + ((!strcmp (x->name, "log") || !strcmp (x->name, "pow")) + ? Fcons (make_float (x->arg2), Qnil) + : Qnil))); + switch (x->type) + { + case DOMAIN: Fsignal (Qdomain_error, args); break; + case SING: Fsignal (Qsingularity_error, args); break; + case OVERFLOW: Fsignal (Qoverflow_error, args); break; + case UNDERFLOW: Fsignal (Qunderflow_error, args); break; + default: Fsignal (Qarith_error, args); break; + } + return (1); /* don't set errno or print a message */ +} +#endif /* HAVE_MATHERR */ + +void init_floatfns () { +#ifdef FLOAT_CATCH_SIGILL signal (SIGILL, float_error); +#endif in_float = 0; } +void syms_of_floatfns () { defsubr (&Sacos); @@ -565,8 +1058,12 @@ syms_of_floatfns () defsubr (&Serf); defsubr (&Serfc); defsubr (&Slog_gamma); - defsubr (&Scbrt); + defsubr (&Scube_root); #endif + defsubr (&Sfceiling); + defsubr (&Sffloor); + defsubr (&Sfround); + defsubr (&Sftruncate); defsubr (&Sexp); defsubr (&Sexpt); defsubr (&Slog); @@ -582,12 +1079,5 @@ syms_of_floatfns () defsubr (&Struncate); } -#else /* not LISP_FLOAT_TYPE */ - -init_floatfns () -{} - -syms_of_floatfns () -{} - -#endif /* not LISP_FLOAT_TYPE */ +/* arch-tag: be05bf9d-049e-4e31-91b9-e6153d483ae7 + (do not change this comment) */