X-Git-Url: https://code.delx.au/gnu-emacs/blobdiff_plain/35cf62d95cdcd5323dcea4a5385942c342ff1d9c..36a305a723c63fd345be65c536c52fe9765c14be:/lisp/emacs-lisp/cl-seq.el diff --git a/lisp/emacs-lisp/cl-seq.el b/lisp/emacs-lisp/cl-seq.el index f1890fbccf..1fa562e328 100644 --- a/lisp/emacs-lisp/cl-seq.el +++ b/lisp/emacs-lisp/cl-seq.el @@ -1,4 +1,4 @@ -;;; cl-seq.el --- Common Lisp features, part 3 +;;; cl-seq.el --- Common Lisp features, part 3 -*- lexical-binding: t -*- ;; Copyright (C) 1993, 2001-2012 Free Software Foundation, Inc. @@ -41,109 +41,101 @@ ;;; Code: -(require 'cl) +(require 'cl-lib) -;;; Keyword parsing. This is special-cased here so that we can compile -;;; this file independent from cl-macs. +;; Keyword parsing. +;; This is special-cased here so that we can compile +;; this file independent from cl-macs. -(defmacro cl-parsing-keywords (kwords other-keys &rest body) +(defmacro cl--parsing-keywords (kwords other-keys &rest body) (declare (indent 2) (debug (sexp sexp &rest form))) - (cons - 'let* - (cons (mapcar - (function - (lambda (x) - (let* ((var (if (consp x) (car x) x)) - (mem (list 'car (list 'cdr (list 'memq (list 'quote var) - 'cl-keys))))) - (if (eq var :test-not) - (setq mem (list 'and mem (list 'setq 'cl-test mem) t))) - (if (eq var :if-not) - (setq mem (list 'and mem (list 'setq 'cl-if mem) t))) - (list (intern - (format "cl-%s" (substring (symbol-name var) 1))) - (if (consp x) (list 'or mem (car (cdr x))) mem))))) - kwords) - (append - (and (not (eq other-keys t)) - (list - (list 'let '((cl-keys-temp cl-keys)) - (list 'while 'cl-keys-temp - (list 'or (list 'memq '(car cl-keys-temp) - (list 'quote - (mapcar - (function - (lambda (x) - (if (consp x) - (car x) x))) - (append kwords - other-keys)))) - '(car (cdr (memq (quote :allow-other-keys) - cl-keys))) - '(error "Bad keyword argument %s" - (car cl-keys-temp))) - '(setq cl-keys-temp (cdr (cdr cl-keys-temp))))))) - body)))) - -(defmacro cl-check-key (x) + `(let* ,(mapcar + (lambda (x) + (let* ((var (if (consp x) (car x) x)) + (mem `(car (cdr (memq ',var cl-keys))))) + (if (eq var :test-not) + (setq mem `(and ,mem (setq cl-test ,mem) t))) + (if (eq var :if-not) + (setq mem `(and ,mem (setq cl-if ,mem) t))) + (list (intern + (format "cl-%s" (substring (symbol-name var) 1))) + (if (consp x) `(or ,mem ,(car (cdr x))) mem)))) + kwords) + ,@(append + (and (not (eq other-keys t)) + (list + (list 'let '((cl-keys-temp cl-keys)) + (list 'while 'cl-keys-temp + (list 'or (list 'memq '(car cl-keys-temp) + (list 'quote + (mapcar + (function + (lambda (x) + (if (consp x) + (car x) x))) + (append kwords + other-keys)))) + '(car (cdr (memq (quote :allow-other-keys) + cl-keys))) + '(error "Bad keyword argument %s" + (car cl-keys-temp))) + '(setq cl-keys-temp (cdr (cdr cl-keys-temp))))))) + body))) + +(defmacro cl--check-key (x) ;Expects `cl-key' in context of generated code. (declare (debug edebug-forms)) - (list 'if 'cl-key (list 'funcall 'cl-key x) x)) + `(if cl-key (funcall cl-key ,x) ,x)) -(defmacro cl-check-test-nokey (item x) +(defmacro cl--check-test-nokey (item x) ;cl-test cl-if cl-test-not cl-if-not. (declare (debug edebug-forms)) - (list 'cond - (list 'cl-test - (list 'eq (list 'not (list 'funcall 'cl-test item x)) - 'cl-test-not)) - (list 'cl-if - (list 'eq (list 'not (list 'funcall 'cl-if x)) 'cl-if-not)) - (list 't (list 'if (list 'numberp item) - (list 'equal item x) (list 'eq item x))))) - -(defmacro cl-check-test (item x) + `(cond + (cl-test (eq (not (funcall cl-test ,item ,x)) + cl-test-not)) + (cl-if (eq (not (funcall cl-if ,x)) cl-if-not)) + (t (eql ,item ,x)))) + +(defmacro cl--check-test (item x) ;all of the above. (declare (debug edebug-forms)) - (list 'cl-check-test-nokey item (list 'cl-check-key x))) + `(cl--check-test-nokey ,item (cl--check-key ,x))) -(defmacro cl-check-match (x y) +(defmacro cl--check-match (x y) ;cl-key cl-test cl-test-not (declare (debug edebug-forms)) - (setq x (list 'cl-check-key x) y (list 'cl-check-key y)) - (list 'if 'cl-test - (list 'eq (list 'not (list 'funcall 'cl-test x y)) 'cl-test-not) - (list 'if (list 'numberp x) - (list 'equal x y) (list 'eq x y)))) + (setq x `(cl--check-key ,x) y `(cl--check-key ,y)) + `(if cl-test + (eq (not (funcall cl-test ,x ,y)) cl-test-not) + (eql ,x ,y))) (defvar cl-test) (defvar cl-test-not) (defvar cl-if) (defvar cl-if-not) (defvar cl-key) - ;;;###autoload -(defun reduce (cl-func cl-seq &rest cl-keys) +(defun cl-reduce (cl-func cl-seq &rest cl-keys) "Reduce two-argument FUNCTION across SEQ. \nKeywords supported: :start :end :from-end :initial-value :key \n(fn FUNCTION SEQ [KEYWORD VALUE]...)" - (cl-parsing-keywords (:from-end (:start 0) :end :initial-value :key) () + (cl--parsing-keywords (:from-end (:start 0) :end :initial-value :key) () (or (listp cl-seq) (setq cl-seq (append cl-seq nil))) - (setq cl-seq (subseq cl-seq cl-start cl-end)) + (setq cl-seq (cl-subseq cl-seq cl-start cl-end)) (if cl-from-end (setq cl-seq (nreverse cl-seq))) (let ((cl-accum (cond ((memq :initial-value cl-keys) cl-initial-value) - (cl-seq (cl-check-key (pop cl-seq))) + (cl-seq (cl--check-key (pop cl-seq))) (t (funcall cl-func))))) (if cl-from-end (while cl-seq - (setq cl-accum (funcall cl-func (cl-check-key (pop cl-seq)) + (setq cl-accum (funcall cl-func (cl--check-key (pop cl-seq)) cl-accum))) (while cl-seq (setq cl-accum (funcall cl-func cl-accum - (cl-check-key (pop cl-seq)))))) + (cl--check-key (pop cl-seq)))))) cl-accum))) ;;;###autoload -(defun fill (seq item &rest cl-keys) +(defun cl-fill (seq item &rest cl-keys) "Fill the elements of SEQ with ITEM. \nKeywords supported: :start :end \n(fn SEQ ITEM [KEYWORD VALUE]...)" - (cl-parsing-keywords ((:start 0) :end) () + (cl--parsing-keywords ((:start 0) :end) () (if (listp seq) (let ((p (nthcdr cl-start seq)) (n (if cl-end (- cl-end cl-start) 8000000))) @@ -159,19 +151,19 @@ seq)) ;;;###autoload -(defun replace (cl-seq1 cl-seq2 &rest cl-keys) +(defun cl-replace (cl-seq1 cl-seq2 &rest cl-keys) "Replace the elements of SEQ1 with the elements of SEQ2. SEQ1 is destructively modified, then returned. \nKeywords supported: :start1 :end1 :start2 :end2 \n(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" - (cl-parsing-keywords ((:start1 0) :end1 (:start2 0) :end2) () + (cl--parsing-keywords ((:start1 0) :end1 (:start2 0) :end2) () (if (and (eq cl-seq1 cl-seq2) (<= cl-start2 cl-start1)) (or (= cl-start1 cl-start2) (let* ((cl-len (length cl-seq1)) (cl-n (min (- (or cl-end1 cl-len) cl-start1) (- (or cl-end2 cl-len) cl-start2)))) (while (>= (setq cl-n (1- cl-n)) 0) - (cl-set-elt cl-seq1 (+ cl-start1 cl-n) + (cl--set-elt cl-seq1 (+ cl-start1 cl-n) (elt cl-seq2 (+ cl-start2 cl-n)))))) (if (listp cl-seq1) (let ((cl-p1 (nthcdr cl-start1 cl-seq1)) @@ -202,21 +194,21 @@ SEQ1 is destructively modified, then returned. cl-seq1)) ;;;###autoload -(defun remove* (cl-item cl-seq &rest cl-keys) +(defun cl-remove (cl-item cl-seq &rest cl-keys) "Remove all occurrences of ITEM in SEQ. This is a non-destructive function; it makes a copy of SEQ if necessary to avoid corrupting the original SEQ. \nKeywords supported: :test :test-not :key :count :start :end :from-end \n(fn ITEM SEQ [KEYWORD VALUE]...)" - (cl-parsing-keywords (:test :test-not :key :if :if-not :count :from-end + (cl--parsing-keywords (:test :test-not :key :if :if-not :count :from-end (:start 0) :end) () (if (<= (or cl-count (setq cl-count 8000000)) 0) cl-seq (if (or (nlistp cl-seq) (and cl-from-end (< cl-count 4000000))) - (let ((cl-i (cl-position cl-item cl-seq cl-start cl-end - cl-from-end))) + (let ((cl-i (cl--position cl-item cl-seq cl-start cl-end + cl-from-end))) (if cl-i - (let ((cl-res (apply 'delete* cl-item (append cl-seq nil) + (let ((cl-res (apply 'cl-delete cl-item (append cl-seq nil) (append (if cl-from-end (list :end (1+ cl-i)) (list :start cl-i)) @@ -227,20 +219,20 @@ to avoid corrupting the original SEQ. (setq cl-end (- (or cl-end 8000000) cl-start)) (if (= cl-start 0) (while (and cl-seq (> cl-end 0) - (cl-check-test cl-item (car cl-seq)) + (cl--check-test cl-item (car cl-seq)) (setq cl-end (1- cl-end) cl-seq (cdr cl-seq)) (> (setq cl-count (1- cl-count)) 0)))) (if (and (> cl-count 0) (> cl-end 0)) (let ((cl-p (if (> cl-start 0) (nthcdr cl-start cl-seq) (setq cl-end (1- cl-end)) (cdr cl-seq)))) (while (and cl-p (> cl-end 0) - (not (cl-check-test cl-item (car cl-p)))) + (not (cl--check-test cl-item (car cl-p)))) (setq cl-p (cdr cl-p) cl-end (1- cl-end))) (if (and cl-p (> cl-end 0)) - (nconc (ldiff cl-seq cl-p) + (nconc (cl-ldiff cl-seq cl-p) (if (= cl-count 1) (cdr cl-p) (and (cdr cl-p) - (apply 'delete* cl-item + (apply 'cl-delete cl-item (copy-sequence (cdr cl-p)) :start 0 :end (1- cl-end) :count (1- cl-count) cl-keys)))) @@ -248,30 +240,30 @@ to avoid corrupting the original SEQ. cl-seq))))) ;;;###autoload -(defun remove-if (cl-pred cl-list &rest cl-keys) +(defun cl-remove-if (cl-pred cl-list &rest cl-keys) "Remove all items satisfying PREDICATE in SEQ. This is a non-destructive function; it makes a copy of SEQ if necessary to avoid corrupting the original SEQ. \nKeywords supported: :key :count :start :end :from-end \n(fn PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'remove* nil cl-list :if cl-pred cl-keys)) + (apply 'cl-remove nil cl-list :if cl-pred cl-keys)) ;;;###autoload -(defun remove-if-not (cl-pred cl-list &rest cl-keys) +(defun cl-remove-if-not (cl-pred cl-list &rest cl-keys) "Remove all items not satisfying PREDICATE in SEQ. This is a non-destructive function; it makes a copy of SEQ if necessary to avoid corrupting the original SEQ. \nKeywords supported: :key :count :start :end :from-end \n(fn PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'remove* nil cl-list :if-not cl-pred cl-keys)) + (apply 'cl-remove nil cl-list :if-not cl-pred cl-keys)) ;;;###autoload -(defun delete* (cl-item cl-seq &rest cl-keys) +(defun cl-delete (cl-item cl-seq &rest cl-keys) "Remove all occurrences of ITEM in SEQ. This is a destructive function; it reuses the storage of SEQ whenever possible. \nKeywords supported: :test :test-not :key :count :start :end :from-end \n(fn ITEM SEQ [KEYWORD VALUE]...)" - (cl-parsing-keywords (:test :test-not :key :if :if-not :count :from-end + (cl--parsing-keywords (:test :test-not :key :if :if-not :count :from-end (:start 0) :end) () (if (<= (or cl-count (setq cl-count 8000000)) 0) cl-seq @@ -279,8 +271,8 @@ This is a destructive function; it reuses the storage of SEQ whenever possible. (if (and cl-from-end (< cl-count 4000000)) (let (cl-i) (while (and (>= (setq cl-count (1- cl-count)) 0) - (setq cl-i (cl-position cl-item cl-seq cl-start - cl-end cl-from-end))) + (setq cl-i (cl--position cl-item cl-seq cl-start + cl-end cl-from-end))) (if (= cl-i 0) (setq cl-seq (cdr cl-seq)) (let ((cl-tail (nthcdr (1- cl-i) cl-seq))) (setcdr cl-tail (cdr (cdr cl-tail))))) @@ -291,7 +283,7 @@ This is a destructive function; it reuses the storage of SEQ whenever possible. (progn (while (and cl-seq (> cl-end 0) - (cl-check-test cl-item (car cl-seq)) + (cl--check-test cl-item (car cl-seq)) (setq cl-end (1- cl-end) cl-seq (cdr cl-seq)) (> (setq cl-count (1- cl-count)) 0))) (setq cl-end (1- cl-end))) @@ -299,7 +291,7 @@ This is a destructive function; it reuses the storage of SEQ whenever possible. (if (and (> cl-count 0) (> cl-end 0)) (let ((cl-p (nthcdr cl-start cl-seq))) (while (and (cdr cl-p) (> cl-end 0)) - (if (cl-check-test cl-item (car (cdr cl-p))) + (if (cl--check-test cl-item (car (cdr cl-p))) (progn (setcdr cl-p (cdr (cdr cl-p))) (if (= (setq cl-count (1- cl-count)) 0) @@ -307,49 +299,49 @@ This is a destructive function; it reuses the storage of SEQ whenever possible. (setq cl-p (cdr cl-p))) (setq cl-end (1- cl-end))))) cl-seq) - (apply 'remove* cl-item cl-seq cl-keys))))) + (apply 'cl-remove cl-item cl-seq cl-keys))))) ;;;###autoload -(defun delete-if (cl-pred cl-list &rest cl-keys) +(defun cl-delete-if (cl-pred cl-list &rest cl-keys) "Remove all items satisfying PREDICATE in SEQ. This is a destructive function; it reuses the storage of SEQ whenever possible. \nKeywords supported: :key :count :start :end :from-end \n(fn PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'delete* nil cl-list :if cl-pred cl-keys)) + (apply 'cl-delete nil cl-list :if cl-pred cl-keys)) ;;;###autoload -(defun delete-if-not (cl-pred cl-list &rest cl-keys) +(defun cl-delete-if-not (cl-pred cl-list &rest cl-keys) "Remove all items not satisfying PREDICATE in SEQ. This is a destructive function; it reuses the storage of SEQ whenever possible. \nKeywords supported: :key :count :start :end :from-end \n(fn PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'delete* nil cl-list :if-not cl-pred cl-keys)) + (apply 'cl-delete nil cl-list :if-not cl-pred cl-keys)) ;;;###autoload -(defun remove-duplicates (cl-seq &rest cl-keys) +(defun cl-remove-duplicates (cl-seq &rest cl-keys) "Return a copy of SEQ with all duplicate elements removed. \nKeywords supported: :test :test-not :key :start :end :from-end \n(fn SEQ [KEYWORD VALUE]...)" - (cl-delete-duplicates cl-seq cl-keys t)) + (cl--delete-duplicates cl-seq cl-keys t)) ;;;###autoload -(defun delete-duplicates (cl-seq &rest cl-keys) +(defun cl-delete-duplicates (cl-seq &rest cl-keys) "Remove all duplicate elements from SEQ (destructively). \nKeywords supported: :test :test-not :key :start :end :from-end \n(fn SEQ [KEYWORD VALUE]...)" - (cl-delete-duplicates cl-seq cl-keys nil)) + (cl--delete-duplicates cl-seq cl-keys nil)) -(defun cl-delete-duplicates (cl-seq cl-keys cl-copy) +(defun cl--delete-duplicates (cl-seq cl-keys cl-copy) (if (listp cl-seq) - (cl-parsing-keywords (:test :test-not :key (:start 0) :end :from-end :if) + (cl--parsing-keywords (:test :test-not :key (:start 0) :end :from-end :if) () (if cl-from-end (let ((cl-p (nthcdr cl-start cl-seq)) cl-i) (setq cl-end (- (or cl-end (length cl-seq)) cl-start)) (while (> cl-end 1) (setq cl-i 0) - (while (setq cl-i (cl-position (cl-check-key (car cl-p)) - (cdr cl-p) cl-i (1- cl-end))) + (while (setq cl-i (cl--position (cl--check-key (car cl-p)) + (cdr cl-p) cl-i (1- cl-end))) (if cl-copy (setq cl-seq (copy-sequence cl-seq) cl-p (nthcdr cl-start cl-seq) cl-copy nil)) (let ((cl-tail (nthcdr cl-i cl-p))) @@ -360,14 +352,14 @@ This is a destructive function; it reuses the storage of SEQ whenever possible. cl-seq) (setq cl-end (- (or cl-end (length cl-seq)) cl-start)) (while (and (cdr cl-seq) (= cl-start 0) (> cl-end 1) - (cl-position (cl-check-key (car cl-seq)) - (cdr cl-seq) 0 (1- cl-end))) + (cl--position (cl--check-key (car cl-seq)) + (cdr cl-seq) 0 (1- cl-end))) (setq cl-seq (cdr cl-seq) cl-end (1- cl-end))) (let ((cl-p (if (> cl-start 0) (nthcdr (1- cl-start) cl-seq) (setq cl-end (1- cl-end) cl-start 1) cl-seq))) (while (and (cdr (cdr cl-p)) (> cl-end 1)) - (if (cl-position (cl-check-key (car (cdr cl-p))) - (cdr (cdr cl-p)) 0 (1- cl-end)) + (if (cl--position (cl--check-key (car (cdr cl-p))) + (cdr (cdr cl-p)) 0 (1- cl-end)) (progn (if cl-copy (setq cl-seq (copy-sequence cl-seq) cl-p (nthcdr (1- cl-start) cl-seq) @@ -376,63 +368,63 @@ This is a destructive function; it reuses the storage of SEQ whenever possible. (setq cl-p (cdr cl-p))) (setq cl-end (1- cl-end) cl-start (1+ cl-start))) cl-seq))) - (let ((cl-res (cl-delete-duplicates (append cl-seq nil) cl-keys nil))) + (let ((cl-res (cl--delete-duplicates (append cl-seq nil) cl-keys nil))) (if (stringp cl-seq) (concat cl-res) (vconcat cl-res))))) ;;;###autoload -(defun substitute (cl-new cl-old cl-seq &rest cl-keys) +(defun cl-substitute (cl-new cl-old cl-seq &rest cl-keys) "Substitute NEW for OLD in SEQ. This is a non-destructive function; it makes a copy of SEQ if necessary to avoid corrupting the original SEQ. \nKeywords supported: :test :test-not :key :count :start :end :from-end \n(fn NEW OLD SEQ [KEYWORD VALUE]...)" - (cl-parsing-keywords (:test :test-not :key :if :if-not :count + (cl--parsing-keywords (:test :test-not :key :if :if-not :count (:start 0) :end :from-end) () (if (or (eq cl-old cl-new) (<= (or cl-count (setq cl-from-end nil cl-count 8000000)) 0)) cl-seq - (let ((cl-i (cl-position cl-old cl-seq cl-start cl-end))) + (let ((cl-i (cl--position cl-old cl-seq cl-start cl-end))) (if (not cl-i) cl-seq (setq cl-seq (copy-sequence cl-seq)) (or cl-from-end - (progn (cl-set-elt cl-seq cl-i cl-new) + (progn (cl--set-elt cl-seq cl-i cl-new) (setq cl-i (1+ cl-i) cl-count (1- cl-count)))) - (apply 'nsubstitute cl-new cl-old cl-seq :count cl-count + (apply 'cl-nsubstitute cl-new cl-old cl-seq :count cl-count :start cl-i cl-keys)))))) ;;;###autoload -(defun substitute-if (cl-new cl-pred cl-list &rest cl-keys) +(defun cl-substitute-if (cl-new cl-pred cl-list &rest cl-keys) "Substitute NEW for all items satisfying PREDICATE in SEQ. This is a non-destructive function; it makes a copy of SEQ if necessary to avoid corrupting the original SEQ. \nKeywords supported: :key :count :start :end :from-end \n(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'substitute cl-new nil cl-list :if cl-pred cl-keys)) + (apply 'cl-substitute cl-new nil cl-list :if cl-pred cl-keys)) ;;;###autoload -(defun substitute-if-not (cl-new cl-pred cl-list &rest cl-keys) +(defun cl-substitute-if-not (cl-new cl-pred cl-list &rest cl-keys) "Substitute NEW for all items not satisfying PREDICATE in SEQ. This is a non-destructive function; it makes a copy of SEQ if necessary to avoid corrupting the original SEQ. \nKeywords supported: :key :count :start :end :from-end \n(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'substitute cl-new nil cl-list :if-not cl-pred cl-keys)) + (apply 'cl-substitute cl-new nil cl-list :if-not cl-pred cl-keys)) ;;;###autoload -(defun nsubstitute (cl-new cl-old cl-seq &rest cl-keys) +(defun cl-nsubstitute (cl-new cl-old cl-seq &rest cl-keys) "Substitute NEW for OLD in SEQ. This is a destructive function; it reuses the storage of SEQ whenever possible. \nKeywords supported: :test :test-not :key :count :start :end :from-end \n(fn NEW OLD SEQ [KEYWORD VALUE]...)" - (cl-parsing-keywords (:test :test-not :key :if :if-not :count + (cl--parsing-keywords (:test :test-not :key :if :if-not :count (:start 0) :end :from-end) () (or (eq cl-old cl-new) (<= (or cl-count (setq cl-count 8000000)) 0) (if (and (listp cl-seq) (or (not cl-from-end) (> cl-count 4000000))) (let ((cl-p (nthcdr cl-start cl-seq))) (setq cl-end (- (or cl-end 8000000) cl-start)) (while (and cl-p (> cl-end 0) (> cl-count 0)) - (if (cl-check-test cl-old (car cl-p)) + (if (cl--check-test cl-old (car cl-p)) (progn (setcar cl-p cl-new) (setq cl-count (1- cl-count)))) @@ -441,12 +433,12 @@ This is a destructive function; it reuses the storage of SEQ whenever possible. (if cl-from-end (while (and (< cl-start cl-end) (> cl-count 0)) (setq cl-end (1- cl-end)) - (if (cl-check-test cl-old (elt cl-seq cl-end)) + (if (cl--check-test cl-old (elt cl-seq cl-end)) (progn - (cl-set-elt cl-seq cl-end cl-new) + (cl--set-elt cl-seq cl-end cl-new) (setq cl-count (1- cl-count))))) (while (and (< cl-start cl-end) (> cl-count 0)) - (if (cl-check-test cl-old (aref cl-seq cl-start)) + (if (cl--check-test cl-old (aref cl-seq cl-start)) (progn (aset cl-seq cl-start cl-new) (setq cl-count (1- cl-count)))) @@ -454,63 +446,63 @@ This is a destructive function; it reuses the storage of SEQ whenever possible. cl-seq)) ;;;###autoload -(defun nsubstitute-if (cl-new cl-pred cl-list &rest cl-keys) +(defun cl-nsubstitute-if (cl-new cl-pred cl-list &rest cl-keys) "Substitute NEW for all items satisfying PREDICATE in SEQ. This is a destructive function; it reuses the storage of SEQ whenever possible. \nKeywords supported: :key :count :start :end :from-end \n(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'nsubstitute cl-new nil cl-list :if cl-pred cl-keys)) + (apply 'cl-nsubstitute cl-new nil cl-list :if cl-pred cl-keys)) ;;;###autoload -(defun nsubstitute-if-not (cl-new cl-pred cl-list &rest cl-keys) +(defun cl-nsubstitute-if-not (cl-new cl-pred cl-list &rest cl-keys) "Substitute NEW for all items not satisfying PREDICATE in SEQ. This is a destructive function; it reuses the storage of SEQ whenever possible. \nKeywords supported: :key :count :start :end :from-end \n(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'nsubstitute cl-new nil cl-list :if-not cl-pred cl-keys)) + (apply 'cl-nsubstitute cl-new nil cl-list :if-not cl-pred cl-keys)) ;;;###autoload -(defun find (cl-item cl-seq &rest cl-keys) +(defun cl-find (cl-item cl-seq &rest cl-keys) "Find the first occurrence of ITEM in SEQ. Return the matching ITEM, or nil if not found. \nKeywords supported: :test :test-not :key :start :end :from-end \n(fn ITEM SEQ [KEYWORD VALUE]...)" - (let ((cl-pos (apply 'position cl-item cl-seq cl-keys))) + (let ((cl-pos (apply 'cl-position cl-item cl-seq cl-keys))) (and cl-pos (elt cl-seq cl-pos)))) ;;;###autoload -(defun find-if (cl-pred cl-list &rest cl-keys) +(defun cl-find-if (cl-pred cl-list &rest cl-keys) "Find the first item satisfying PREDICATE in SEQ. Return the matching item, or nil if not found. \nKeywords supported: :key :start :end :from-end \n(fn PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'find nil cl-list :if cl-pred cl-keys)) + (apply 'cl-find nil cl-list :if cl-pred cl-keys)) ;;;###autoload -(defun find-if-not (cl-pred cl-list &rest cl-keys) +(defun cl-find-if-not (cl-pred cl-list &rest cl-keys) "Find the first item not satisfying PREDICATE in SEQ. Return the matching item, or nil if not found. \nKeywords supported: :key :start :end :from-end \n(fn PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'find nil cl-list :if-not cl-pred cl-keys)) + (apply 'cl-find nil cl-list :if-not cl-pred cl-keys)) ;;;###autoload -(defun position (cl-item cl-seq &rest cl-keys) +(defun cl-position (cl-item cl-seq &rest cl-keys) "Find the first occurrence of ITEM in SEQ. Return the index of the matching item, or nil if not found. \nKeywords supported: :test :test-not :key :start :end :from-end \n(fn ITEM SEQ [KEYWORD VALUE]...)" - (cl-parsing-keywords (:test :test-not :key :if :if-not + (cl--parsing-keywords (:test :test-not :key :if :if-not (:start 0) :end :from-end) () - (cl-position cl-item cl-seq cl-start cl-end cl-from-end))) + (cl--position cl-item cl-seq cl-start cl-end cl-from-end))) -(defun cl-position (cl-item cl-seq cl-start &optional cl-end cl-from-end) +(defun cl--position (cl-item cl-seq cl-start &optional cl-end cl-from-end) (if (listp cl-seq) (let ((cl-p (nthcdr cl-start cl-seq))) (or cl-end (setq cl-end 8000000)) (let ((cl-res nil)) (while (and cl-p (< cl-start cl-end) (or (not cl-res) cl-from-end)) - (if (cl-check-test cl-item (car cl-p)) + (if (cl--check-test cl-item (car cl-p)) (setq cl-res cl-start)) (setq cl-p (cdr cl-p) cl-start (1+ cl-start))) cl-res)) @@ -518,73 +510,73 @@ Return the index of the matching item, or nil if not found. (if cl-from-end (progn (while (and (>= (setq cl-end (1- cl-end)) cl-start) - (not (cl-check-test cl-item (aref cl-seq cl-end))))) + (not (cl--check-test cl-item (aref cl-seq cl-end))))) (and (>= cl-end cl-start) cl-end)) (while (and (< cl-start cl-end) - (not (cl-check-test cl-item (aref cl-seq cl-start)))) + (not (cl--check-test cl-item (aref cl-seq cl-start)))) (setq cl-start (1+ cl-start))) (and (< cl-start cl-end) cl-start)))) ;;;###autoload -(defun position-if (cl-pred cl-list &rest cl-keys) +(defun cl-position-if (cl-pred cl-list &rest cl-keys) "Find the first item satisfying PREDICATE in SEQ. Return the index of the matching item, or nil if not found. \nKeywords supported: :key :start :end :from-end \n(fn PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'position nil cl-list :if cl-pred cl-keys)) + (apply 'cl-position nil cl-list :if cl-pred cl-keys)) ;;;###autoload -(defun position-if-not (cl-pred cl-list &rest cl-keys) +(defun cl-position-if-not (cl-pred cl-list &rest cl-keys) "Find the first item not satisfying PREDICATE in SEQ. Return the index of the matching item, or nil if not found. \nKeywords supported: :key :start :end :from-end \n(fn PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'position nil cl-list :if-not cl-pred cl-keys)) + (apply 'cl-position nil cl-list :if-not cl-pred cl-keys)) ;;;###autoload -(defun count (cl-item cl-seq &rest cl-keys) +(defun cl-count (cl-item cl-seq &rest cl-keys) "Count the number of occurrences of ITEM in SEQ. \nKeywords supported: :test :test-not :key :start :end \n(fn ITEM SEQ [KEYWORD VALUE]...)" - (cl-parsing-keywords (:test :test-not :key :if :if-not (:start 0) :end) () + (cl--parsing-keywords (:test :test-not :key :if :if-not (:start 0) :end) () (let ((cl-count 0) cl-x) (or cl-end (setq cl-end (length cl-seq))) (if (consp cl-seq) (setq cl-seq (nthcdr cl-start cl-seq))) (while (< cl-start cl-end) (setq cl-x (if (consp cl-seq) (pop cl-seq) (aref cl-seq cl-start))) - (if (cl-check-test cl-item cl-x) (setq cl-count (1+ cl-count))) + (if (cl--check-test cl-item cl-x) (setq cl-count (1+ cl-count))) (setq cl-start (1+ cl-start))) cl-count))) ;;;###autoload -(defun count-if (cl-pred cl-list &rest cl-keys) +(defun cl-count-if (cl-pred cl-list &rest cl-keys) "Count the number of items satisfying PREDICATE in SEQ. \nKeywords supported: :key :start :end \n(fn PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'count nil cl-list :if cl-pred cl-keys)) + (apply 'cl-count nil cl-list :if cl-pred cl-keys)) ;;;###autoload -(defun count-if-not (cl-pred cl-list &rest cl-keys) +(defun cl-count-if-not (cl-pred cl-list &rest cl-keys) "Count the number of items not satisfying PREDICATE in SEQ. \nKeywords supported: :key :start :end \n(fn PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'count nil cl-list :if-not cl-pred cl-keys)) + (apply 'cl-count nil cl-list :if-not cl-pred cl-keys)) ;;;###autoload -(defun mismatch (cl-seq1 cl-seq2 &rest cl-keys) +(defun cl-mismatch (cl-seq1 cl-seq2 &rest cl-keys) "Compare SEQ1 with SEQ2, return index of first mismatching element. Return nil if the sequences match. If one sequence is a prefix of the other, the return value indicates the end of the shorter sequence. \nKeywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end \n(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" - (cl-parsing-keywords (:test :test-not :key :from-end + (cl--parsing-keywords (:test :test-not :key :from-end (:start1 0) :end1 (:start2 0) :end2) () (or cl-end1 (setq cl-end1 (length cl-seq1))) (or cl-end2 (setq cl-end2 (length cl-seq2))) (if cl-from-end (progn (while (and (< cl-start1 cl-end1) (< cl-start2 cl-end2) - (cl-check-match (elt cl-seq1 (1- cl-end1)) + (cl--check-match (elt cl-seq1 (1- cl-end1)) (elt cl-seq2 (1- cl-end2)))) (setq cl-end1 (1- cl-end1) cl-end2 (1- cl-end2))) (and (or (< cl-start1 cl-end1) (< cl-start2 cl-end2)) @@ -592,7 +584,7 @@ other, the return value indicates the end of the shorter sequence. (let ((cl-p1 (and (listp cl-seq1) (nthcdr cl-start1 cl-seq1))) (cl-p2 (and (listp cl-seq2) (nthcdr cl-start2 cl-seq2)))) (while (and (< cl-start1 cl-end1) (< cl-start2 cl-end2) - (cl-check-match (if cl-p1 (car cl-p1) + (cl--check-match (if cl-p1 (car cl-p1) (aref cl-seq1 cl-start1)) (if cl-p2 (car cl-p2) (aref cl-seq2 cl-start2)))) @@ -602,26 +594,26 @@ other, the return value indicates the end of the shorter sequence. cl-start1))))) ;;;###autoload -(defun search (cl-seq1 cl-seq2 &rest cl-keys) +(defun cl-search (cl-seq1 cl-seq2 &rest cl-keys) "Search for SEQ1 as a subsequence of SEQ2. Return the index of the leftmost element of the first match found; return nil if there are no matches. \nKeywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end \n(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" - (cl-parsing-keywords (:test :test-not :key :from-end + (cl--parsing-keywords (:test :test-not :key :from-end (:start1 0) :end1 (:start2 0) :end2) () (or cl-end1 (setq cl-end1 (length cl-seq1))) (or cl-end2 (setq cl-end2 (length cl-seq2))) (if (>= cl-start1 cl-end1) (if cl-from-end cl-end2 cl-start2) (let* ((cl-len (- cl-end1 cl-start1)) - (cl-first (cl-check-key (elt cl-seq1 cl-start1))) + (cl-first (cl--check-key (elt cl-seq1 cl-start1))) (cl-if nil) cl-pos) (setq cl-end2 (- cl-end2 (1- cl-len))) (while (and (< cl-start2 cl-end2) - (setq cl-pos (cl-position cl-first cl-seq2 - cl-start2 cl-end2 cl-from-end)) - (apply 'mismatch cl-seq1 cl-seq2 + (setq cl-pos (cl--position cl-first cl-seq2 + cl-start2 cl-end2 cl-from-end)) + (apply 'cl-mismatch cl-seq1 cl-seq2 :start1 (1+ cl-start1) :end1 cl-end1 :start2 (1+ cl-pos) :end2 (+ cl-pos cl-len) :from-end nil cl-keys)) @@ -629,14 +621,14 @@ return nil if there are no matches. (and (< cl-start2 cl-end2) cl-pos))))) ;;;###autoload -(defun sort* (cl-seq cl-pred &rest cl-keys) +(defun cl-sort (cl-seq cl-pred &rest cl-keys) "Sort the argument SEQ according to PREDICATE. This is a destructive function; it reuses the storage of SEQ if possible. \nKeywords supported: :key \n(fn SEQ PREDICATE [KEYWORD VALUE]...)" (if (nlistp cl-seq) - (replace cl-seq (apply 'sort* (append cl-seq nil) cl-pred cl-keys)) - (cl-parsing-keywords (:key) () + (cl-replace cl-seq (apply 'cl-sort (append cl-seq nil) cl-pred cl-keys)) + (cl--parsing-keywords (:key) () (if (memq cl-key '(nil identity)) (sort cl-seq cl-pred) (sort cl-seq (function (lambda (cl-x cl-y) @@ -644,15 +636,15 @@ This is a destructive function; it reuses the storage of SEQ if possible. (funcall cl-key cl-y))))))))) ;;;###autoload -(defun stable-sort (cl-seq cl-pred &rest cl-keys) +(defun cl-stable-sort (cl-seq cl-pred &rest cl-keys) "Sort the argument SEQ stably according to PREDICATE. This is a destructive function; it reuses the storage of SEQ if possible. \nKeywords supported: :key \n(fn SEQ PREDICATE [KEYWORD VALUE]...)" - (apply 'sort* cl-seq cl-pred cl-keys)) + (apply 'cl-sort cl-seq cl-pred cl-keys)) ;;;###autoload -(defun merge (cl-type cl-seq1 cl-seq2 cl-pred &rest cl-keys) +(defun cl-merge (cl-type cl-seq1 cl-seq2 cl-pred &rest cl-keys) "Destructively merge the two sequences to produce a new sequence. TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument sequences, and PREDICATE is a `less-than' predicate on the elements. @@ -660,115 +652,117 @@ sequences, and PREDICATE is a `less-than' predicate on the elements. \n(fn TYPE SEQ1 SEQ2 PREDICATE [KEYWORD VALUE]...)" (or (listp cl-seq1) (setq cl-seq1 (append cl-seq1 nil))) (or (listp cl-seq2) (setq cl-seq2 (append cl-seq2 nil))) - (cl-parsing-keywords (:key) () + (cl--parsing-keywords (:key) () (let ((cl-res nil)) (while (and cl-seq1 cl-seq2) - (if (funcall cl-pred (cl-check-key (car cl-seq2)) - (cl-check-key (car cl-seq1))) + (if (funcall cl-pred (cl--check-key (car cl-seq2)) + (cl--check-key (car cl-seq1))) (push (pop cl-seq2) cl-res) (push (pop cl-seq1) cl-res))) - (coerce (nconc (nreverse cl-res) cl-seq1 cl-seq2) cl-type)))) + (cl-coerce (nconc (nreverse cl-res) cl-seq1 cl-seq2) cl-type)))) -;;; See compiler macro in cl-macs.el ;;;###autoload -(defun member* (cl-item cl-list &rest cl-keys) +(defun cl-member (cl-item cl-list &rest cl-keys) "Find the first occurrence of ITEM in LIST. Return the sublist of LIST whose car is ITEM. \nKeywords supported: :test :test-not :key \n(fn ITEM LIST [KEYWORD VALUE]...)" + (declare (compiler-macro cl--compiler-macro-member)) (if cl-keys - (cl-parsing-keywords (:test :test-not :key :if :if-not) () - (while (and cl-list (not (cl-check-test cl-item (car cl-list)))) + (cl--parsing-keywords (:test :test-not :key :if :if-not) () + (while (and cl-list (not (cl--check-test cl-item (car cl-list)))) (setq cl-list (cdr cl-list))) cl-list) (if (and (numberp cl-item) (not (integerp cl-item))) (member cl-item cl-list) (memq cl-item cl-list)))) +(autoload 'cl--compiler-macro-member "cl-macs") ;;;###autoload -(defun member-if (cl-pred cl-list &rest cl-keys) +(defun cl-member-if (cl-pred cl-list &rest cl-keys) "Find the first item satisfying PREDICATE in LIST. Return the sublist of LIST whose car matches. \nKeywords supported: :key \n(fn PREDICATE LIST [KEYWORD VALUE]...)" - (apply 'member* nil cl-list :if cl-pred cl-keys)) + (apply 'cl-member nil cl-list :if cl-pred cl-keys)) ;;;###autoload -(defun member-if-not (cl-pred cl-list &rest cl-keys) +(defun cl-member-if-not (cl-pred cl-list &rest cl-keys) "Find the first item not satisfying PREDICATE in LIST. Return the sublist of LIST whose car matches. \nKeywords supported: :key \n(fn PREDICATE LIST [KEYWORD VALUE]...)" - (apply 'member* nil cl-list :if-not cl-pred cl-keys)) + (apply 'cl-member nil cl-list :if-not cl-pred cl-keys)) ;;;###autoload -(defun cl-adjoin (cl-item cl-list &rest cl-keys) - (if (cl-parsing-keywords (:key) t - (apply 'member* (cl-check-key cl-item) cl-list cl-keys)) +(defun cl--adjoin (cl-item cl-list &rest cl-keys) + (if (cl--parsing-keywords (:key) t + (apply 'cl-member (cl--check-key cl-item) cl-list cl-keys)) cl-list (cons cl-item cl-list))) -;;; See compiler macro in cl-macs.el ;;;###autoload -(defun assoc* (cl-item cl-alist &rest cl-keys) +(defun cl-assoc (cl-item cl-alist &rest cl-keys) "Find the first item whose car matches ITEM in LIST. \nKeywords supported: :test :test-not :key \n(fn ITEM LIST [KEYWORD VALUE]...)" + (declare (compiler-macro cl--compiler-macro-assoc)) (if cl-keys - (cl-parsing-keywords (:test :test-not :key :if :if-not) () + (cl--parsing-keywords (:test :test-not :key :if :if-not) () (while (and cl-alist (or (not (consp (car cl-alist))) - (not (cl-check-test cl-item (car (car cl-alist)))))) + (not (cl--check-test cl-item (car (car cl-alist)))))) (setq cl-alist (cdr cl-alist))) (and cl-alist (car cl-alist))) (if (and (numberp cl-item) (not (integerp cl-item))) (assoc cl-item cl-alist) (assq cl-item cl-alist)))) +(autoload 'cl--compiler-macro-assoc "cl-macs") ;;;###autoload -(defun assoc-if (cl-pred cl-list &rest cl-keys) +(defun cl-assoc-if (cl-pred cl-list &rest cl-keys) "Find the first item whose car satisfies PREDICATE in LIST. \nKeywords supported: :key \n(fn PREDICATE LIST [KEYWORD VALUE]...)" - (apply 'assoc* nil cl-list :if cl-pred cl-keys)) + (apply 'cl-assoc nil cl-list :if cl-pred cl-keys)) ;;;###autoload -(defun assoc-if-not (cl-pred cl-list &rest cl-keys) +(defun cl-assoc-if-not (cl-pred cl-list &rest cl-keys) "Find the first item whose car does not satisfy PREDICATE in LIST. \nKeywords supported: :key \n(fn PREDICATE LIST [KEYWORD VALUE]...)" - (apply 'assoc* nil cl-list :if-not cl-pred cl-keys)) + (apply 'cl-assoc nil cl-list :if-not cl-pred cl-keys)) ;;;###autoload -(defun rassoc* (cl-item cl-alist &rest cl-keys) +(defun cl-rassoc (cl-item cl-alist &rest cl-keys) "Find the first item whose cdr matches ITEM in LIST. \nKeywords supported: :test :test-not :key \n(fn ITEM LIST [KEYWORD VALUE]...)" (if (or cl-keys (numberp cl-item)) - (cl-parsing-keywords (:test :test-not :key :if :if-not) () + (cl--parsing-keywords (:test :test-not :key :if :if-not) () (while (and cl-alist (or (not (consp (car cl-alist))) - (not (cl-check-test cl-item (cdr (car cl-alist)))))) + (not (cl--check-test cl-item (cdr (car cl-alist)))))) (setq cl-alist (cdr cl-alist))) (and cl-alist (car cl-alist))) (rassq cl-item cl-alist))) ;;;###autoload -(defun rassoc-if (cl-pred cl-list &rest cl-keys) +(defun cl-rassoc-if (cl-pred cl-list &rest cl-keys) "Find the first item whose cdr satisfies PREDICATE in LIST. \nKeywords supported: :key \n(fn PREDICATE LIST [KEYWORD VALUE]...)" - (apply 'rassoc* nil cl-list :if cl-pred cl-keys)) + (apply 'cl-rassoc nil cl-list :if cl-pred cl-keys)) ;;;###autoload -(defun rassoc-if-not (cl-pred cl-list &rest cl-keys) +(defun cl-rassoc-if-not (cl-pred cl-list &rest cl-keys) "Find the first item whose cdr does not satisfy PREDICATE in LIST. \nKeywords supported: :key \n(fn PREDICATE LIST [KEYWORD VALUE]...)" - (apply 'rassoc* nil cl-list :if-not cl-pred cl-keys)) + (apply 'cl-rassoc nil cl-list :if-not cl-pred cl-keys)) ;;;###autoload -(defun union (cl-list1 cl-list2 &rest cl-keys) +(defun cl-union (cl-list1 cl-list2 &rest cl-keys) "Combine LIST1 and LIST2 using a set-union operation. The resulting list contains all items that appear in either LIST1 or LIST2. This is a non-destructive function; it makes a copy of the data if necessary @@ -782,14 +776,14 @@ to avoid corrupting the original LIST1 and LIST2. (setq cl-list1 (prog1 cl-list2 (setq cl-list2 cl-list1)))) (while cl-list2 (if (or cl-keys (numberp (car cl-list2))) - (setq cl-list1 (apply 'adjoin (car cl-list2) cl-list1 cl-keys)) + (setq cl-list1 (apply 'cl-adjoin (car cl-list2) cl-list1 cl-keys)) (or (memq (car cl-list2) cl-list1) (push (car cl-list2) cl-list1))) (pop cl-list2)) cl-list1))) ;;;###autoload -(defun nunion (cl-list1 cl-list2 &rest cl-keys) +(defun cl-nunion (cl-list1 cl-list2 &rest cl-keys) "Combine LIST1 and LIST2 using a set-union operation. The resulting list contains all items that appear in either LIST1 or LIST2. This is a destructive function; it reuses the storage of LIST1 and LIST2 @@ -797,10 +791,10 @@ whenever possible. \nKeywords supported: :test :test-not :key \n(fn LIST1 LIST2 [KEYWORD VALUE]...)" (cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1) - (t (apply 'union cl-list1 cl-list2 cl-keys)))) + (t (apply 'cl-union cl-list1 cl-list2 cl-keys)))) ;;;###autoload -(defun intersection (cl-list1 cl-list2 &rest cl-keys) +(defun cl-intersection (cl-list1 cl-list2 &rest cl-keys) "Combine LIST1 and LIST2 using a set-intersection operation. The resulting list contains all items that appear in both LIST1 and LIST2. This is a non-destructive function; it makes a copy of the data if necessary @@ -809,13 +803,13 @@ to avoid corrupting the original LIST1 and LIST2. \n(fn LIST1 LIST2 [KEYWORD VALUE]...)" (and cl-list1 cl-list2 (if (equal cl-list1 cl-list2) cl-list1 - (cl-parsing-keywords (:key) (:test :test-not) + (cl--parsing-keywords (:key) (:test :test-not) (let ((cl-res nil)) (or (>= (length cl-list1) (length cl-list2)) (setq cl-list1 (prog1 cl-list2 (setq cl-list2 cl-list1)))) (while cl-list2 (if (if (or cl-keys (numberp (car cl-list2))) - (apply 'member* (cl-check-key (car cl-list2)) + (apply 'cl-member (cl--check-key (car cl-list2)) cl-list1 cl-keys) (memq (car cl-list2) cl-list1)) (push (car cl-list2) cl-res)) @@ -823,17 +817,17 @@ to avoid corrupting the original LIST1 and LIST2. cl-res))))) ;;;###autoload -(defun nintersection (cl-list1 cl-list2 &rest cl-keys) +(defun cl-nintersection (cl-list1 cl-list2 &rest cl-keys) "Combine LIST1 and LIST2 using a set-intersection operation. The resulting list contains all items that appear in both LIST1 and LIST2. This is a destructive function; it reuses the storage of LIST1 and LIST2 whenever possible. \nKeywords supported: :test :test-not :key \n(fn LIST1 LIST2 [KEYWORD VALUE]...)" - (and cl-list1 cl-list2 (apply 'intersection cl-list1 cl-list2 cl-keys))) + (and cl-list1 cl-list2 (apply 'cl-intersection cl-list1 cl-list2 cl-keys))) ;;;###autoload -(defun set-difference (cl-list1 cl-list2 &rest cl-keys) +(defun cl-set-difference (cl-list1 cl-list2 &rest cl-keys) "Combine LIST1 and LIST2 using a set-difference operation. The resulting list contains all items that appear in LIST1 but not LIST2. This is a non-destructive function; it makes a copy of the data if necessary @@ -841,11 +835,11 @@ to avoid corrupting the original LIST1 and LIST2. \nKeywords supported: :test :test-not :key \n(fn LIST1 LIST2 [KEYWORD VALUE]...)" (if (or (null cl-list1) (null cl-list2)) cl-list1 - (cl-parsing-keywords (:key) (:test :test-not) + (cl--parsing-keywords (:key) (:test :test-not) (let ((cl-res nil)) (while cl-list1 (or (if (or cl-keys (numberp (car cl-list1))) - (apply 'member* (cl-check-key (car cl-list1)) + (apply 'cl-member (cl--check-key (car cl-list1)) cl-list2 cl-keys) (memq (car cl-list1) cl-list2)) (push (car cl-list1) cl-res)) @@ -853,7 +847,7 @@ to avoid corrupting the original LIST1 and LIST2. cl-res)))) ;;;###autoload -(defun nset-difference (cl-list1 cl-list2 &rest cl-keys) +(defun cl-nset-difference (cl-list1 cl-list2 &rest cl-keys) "Combine LIST1 and LIST2 using a set-difference operation. The resulting list contains all items that appear in LIST1 but not LIST2. This is a destructive function; it reuses the storage of LIST1 and LIST2 @@ -861,10 +855,10 @@ whenever possible. \nKeywords supported: :test :test-not :key \n(fn LIST1 LIST2 [KEYWORD VALUE]...)" (if (or (null cl-list1) (null cl-list2)) cl-list1 - (apply 'set-difference cl-list1 cl-list2 cl-keys))) + (apply 'cl-set-difference cl-list1 cl-list2 cl-keys))) ;;;###autoload -(defun set-exclusive-or (cl-list1 cl-list2 &rest cl-keys) +(defun cl-set-exclusive-or (cl-list1 cl-list2 &rest cl-keys) "Combine LIST1 and LIST2 using a set-exclusive-or operation. The resulting list contains all items appearing in exactly one of LIST1, LIST2. This is a non-destructive function; it makes a copy of the data if necessary @@ -873,11 +867,11 @@ to avoid corrupting the original LIST1 and LIST2. \n(fn LIST1 LIST2 [KEYWORD VALUE]...)" (cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1) ((equal cl-list1 cl-list2) nil) - (t (append (apply 'set-difference cl-list1 cl-list2 cl-keys) - (apply 'set-difference cl-list2 cl-list1 cl-keys))))) + (t (append (apply 'cl-set-difference cl-list1 cl-list2 cl-keys) + (apply 'cl-set-difference cl-list2 cl-list1 cl-keys))))) ;;;###autoload -(defun nset-exclusive-or (cl-list1 cl-list2 &rest cl-keys) +(defun cl-nset-exclusive-or (cl-list1 cl-list2 &rest cl-keys) "Combine LIST1 and LIST2 using a set-exclusive-or operation. The resulting list contains all items appearing in exactly one of LIST1, LIST2. This is a destructive function; it reuses the storage of LIST1 and LIST2 @@ -886,134 +880,136 @@ whenever possible. \n(fn LIST1 LIST2 [KEYWORD VALUE]...)" (cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1) ((equal cl-list1 cl-list2) nil) - (t (nconc (apply 'nset-difference cl-list1 cl-list2 cl-keys) - (apply 'nset-difference cl-list2 cl-list1 cl-keys))))) + (t (nconc (apply 'cl-nset-difference cl-list1 cl-list2 cl-keys) + (apply 'cl-nset-difference cl-list2 cl-list1 cl-keys))))) ;;;###autoload -(defun subsetp (cl-list1 cl-list2 &rest cl-keys) +(defun cl-subsetp (cl-list1 cl-list2 &rest cl-keys) "Return true if LIST1 is a subset of LIST2. I.e., if every element of LIST1 also appears in LIST2. \nKeywords supported: :test :test-not :key \n(fn LIST1 LIST2 [KEYWORD VALUE]...)" (cond ((null cl-list1) t) ((null cl-list2) nil) ((equal cl-list1 cl-list2) t) - (t (cl-parsing-keywords (:key) (:test :test-not) + (t (cl--parsing-keywords (:key) (:test :test-not) (while (and cl-list1 - (apply 'member* (cl-check-key (car cl-list1)) + (apply 'cl-member (cl--check-key (car cl-list1)) cl-list2 cl-keys)) (pop cl-list1)) (null cl-list1))))) ;;;###autoload -(defun subst-if (cl-new cl-pred cl-tree &rest cl-keys) +(defun cl-subst-if (cl-new cl-pred cl-tree &rest cl-keys) "Substitute NEW for elements matching PREDICATE in TREE (non-destructively). Return a copy of TREE with all matching elements replaced by NEW. \nKeywords supported: :key \n(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" - (apply 'sublis (list (cons nil cl-new)) cl-tree :if cl-pred cl-keys)) + (apply 'cl-sublis (list (cons nil cl-new)) cl-tree :if cl-pred cl-keys)) ;;;###autoload -(defun subst-if-not (cl-new cl-pred cl-tree &rest cl-keys) +(defun cl-subst-if-not (cl-new cl-pred cl-tree &rest cl-keys) "Substitute NEW for elts not matching PREDICATE in TREE (non-destructively). Return a copy of TREE with all non-matching elements replaced by NEW. \nKeywords supported: :key \n(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" - (apply 'sublis (list (cons nil cl-new)) cl-tree :if-not cl-pred cl-keys)) + (apply 'cl-sublis (list (cons nil cl-new)) cl-tree :if-not cl-pred cl-keys)) ;;;###autoload -(defun nsubst (cl-new cl-old cl-tree &rest cl-keys) +(defun cl-nsubst (cl-new cl-old cl-tree &rest cl-keys) "Substitute NEW for OLD everywhere in TREE (destructively). Any element of TREE which is `eql' to OLD is changed to NEW (via a call to `setcar'). \nKeywords supported: :test :test-not :key \n(fn NEW OLD TREE [KEYWORD VALUE]...)" - (apply 'nsublis (list (cons cl-old cl-new)) cl-tree cl-keys)) + (apply 'cl-nsublis (list (cons cl-old cl-new)) cl-tree cl-keys)) ;;;###autoload -(defun nsubst-if (cl-new cl-pred cl-tree &rest cl-keys) +(defun cl-nsubst-if (cl-new cl-pred cl-tree &rest cl-keys) "Substitute NEW for elements matching PREDICATE in TREE (destructively). Any element of TREE which matches is changed to NEW (via a call to `setcar'). \nKeywords supported: :key \n(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" - (apply 'nsublis (list (cons nil cl-new)) cl-tree :if cl-pred cl-keys)) + (apply 'cl-nsublis (list (cons nil cl-new)) cl-tree :if cl-pred cl-keys)) ;;;###autoload -(defun nsubst-if-not (cl-new cl-pred cl-tree &rest cl-keys) +(defun cl-nsubst-if-not (cl-new cl-pred cl-tree &rest cl-keys) "Substitute NEW for elements not matching PREDICATE in TREE (destructively). Any element of TREE which matches is changed to NEW (via a call to `setcar'). \nKeywords supported: :key \n(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" - (apply 'nsublis (list (cons nil cl-new)) cl-tree :if-not cl-pred cl-keys)) + (apply 'cl-nsublis (list (cons nil cl-new)) cl-tree :if-not cl-pred cl-keys)) + +(defvar cl--alist) ;;;###autoload -(defun sublis (cl-alist cl-tree &rest cl-keys) +(defun cl-sublis (cl-alist cl-tree &rest cl-keys) "Perform substitutions indicated by ALIST in TREE (non-destructively). Return a copy of TREE with all matching elements replaced. \nKeywords supported: :test :test-not :key \n(fn ALIST TREE [KEYWORD VALUE]...)" - (cl-parsing-keywords (:test :test-not :key :if :if-not) () - (cl-sublis-rec cl-tree))) + (cl--parsing-keywords (:test :test-not :key :if :if-not) () + (let ((cl--alist cl-alist)) + (cl--sublis-rec cl-tree)))) -(defvar cl-alist) -(defun cl-sublis-rec (cl-tree) ; uses cl-alist/key/test*/if* - (let ((cl-temp (cl-check-key cl-tree)) (cl-p cl-alist)) - (while (and cl-p (not (cl-check-test-nokey (car (car cl-p)) cl-temp))) +(defun cl--sublis-rec (cl-tree) ;Uses cl--alist cl-key/test*/if*. + (let ((cl-temp (cl--check-key cl-tree)) (cl-p cl--alist)) + (while (and cl-p (not (cl--check-test-nokey (car (car cl-p)) cl-temp))) (setq cl-p (cdr cl-p))) (if cl-p (cdr (car cl-p)) (if (consp cl-tree) - (let ((cl-a (cl-sublis-rec (car cl-tree))) - (cl-d (cl-sublis-rec (cdr cl-tree)))) + (let ((cl-a (cl--sublis-rec (car cl-tree))) + (cl-d (cl--sublis-rec (cdr cl-tree)))) (if (and (eq cl-a (car cl-tree)) (eq cl-d (cdr cl-tree))) cl-tree (cons cl-a cl-d))) cl-tree)))) ;;;###autoload -(defun nsublis (cl-alist cl-tree &rest cl-keys) +(defun cl-nsublis (cl-alist cl-tree &rest cl-keys) "Perform substitutions indicated by ALIST in TREE (destructively). Any matching element of TREE is changed via a call to `setcar'. \nKeywords supported: :test :test-not :key \n(fn ALIST TREE [KEYWORD VALUE]...)" - (cl-parsing-keywords (:test :test-not :key :if :if-not) () - (let ((cl-hold (list cl-tree))) - (cl-nsublis-rec cl-hold) + (cl--parsing-keywords (:test :test-not :key :if :if-not) () + (let ((cl-hold (list cl-tree)) + (cl--alist cl-alist)) + (cl--nsublis-rec cl-hold) (car cl-hold)))) -(defun cl-nsublis-rec (cl-tree) ; uses cl-alist/temp/p/key/test*/if* +(defun cl--nsublis-rec (cl-tree) ;Uses cl--alist cl-key/test*/if*. (while (consp cl-tree) - (let ((cl-temp (cl-check-key (car cl-tree))) (cl-p cl-alist)) - (while (and cl-p (not (cl-check-test-nokey (car (car cl-p)) cl-temp))) + (let ((cl-temp (cl--check-key (car cl-tree))) (cl-p cl--alist)) + (while (and cl-p (not (cl--check-test-nokey (car (car cl-p)) cl-temp))) (setq cl-p (cdr cl-p))) (if cl-p (setcar cl-tree (cdr (car cl-p))) - (if (consp (car cl-tree)) (cl-nsublis-rec (car cl-tree)))) - (setq cl-temp (cl-check-key (cdr cl-tree)) cl-p cl-alist) - (while (and cl-p (not (cl-check-test-nokey (car (car cl-p)) cl-temp))) + (if (consp (car cl-tree)) (cl--nsublis-rec (car cl-tree)))) + (setq cl-temp (cl--check-key (cdr cl-tree)) cl-p cl--alist) + (while (and cl-p (not (cl--check-test-nokey (car (car cl-p)) cl-temp))) (setq cl-p (cdr cl-p))) (if cl-p (progn (setcdr cl-tree (cdr (car cl-p))) (setq cl-tree nil)) (setq cl-tree (cdr cl-tree)))))) ;;;###autoload -(defun tree-equal (cl-x cl-y &rest cl-keys) +(defun cl-tree-equal (cl-x cl-y &rest cl-keys) "Return t if trees TREE1 and TREE2 have `eql' leaves. Atoms are compared by `eql'; cons cells are compared recursively. \nKeywords supported: :test :test-not :key \n(fn TREE1 TREE2 [KEYWORD VALUE]...)" - (cl-parsing-keywords (:test :test-not :key) () - (cl-tree-equal-rec cl-x cl-y))) + (cl--parsing-keywords (:test :test-not :key) () + (cl--tree-equal-rec cl-x cl-y))) -(defun cl-tree-equal-rec (cl-x cl-y) +(defun cl--tree-equal-rec (cl-x cl-y) ;Uses cl-key/test*. (while (and (consp cl-x) (consp cl-y) - (cl-tree-equal-rec (car cl-x) (car cl-y))) + (cl--tree-equal-rec (car cl-x) (car cl-y))) (setq cl-x (cdr cl-x) cl-y (cdr cl-y))) - (and (not (consp cl-x)) (not (consp cl-y)) (cl-check-match cl-x cl-y))) + (and (not (consp cl-x)) (not (consp cl-y)) (cl--check-match cl-x cl-y))) (run-hooks 'cl-seq-load-hook) ;; Local variables: ;; byte-compile-dynamic: t -;; byte-compile-warnings: (not cl-functions) ;; generated-autoload-file: "cl-loaddefs.el" ;; End: