X-Git-Url: https://code.delx.au/gnu-emacs/blobdiff_plain/c0f0a4a2c3418700bf892a9d07ec78d95e78397e..6a70ef0d8173b57817bcc8a013eb86c8583e74fc:/src/floatfns.c diff --git a/src/floatfns.c b/src/floatfns.c index 999d0a8639..db1c3a7231 100644 --- a/src/floatfns.c +++ b/src/floatfns.c @@ -1,5 +1,5 @@ /* Primitive operations on floating point for GNU Emacs Lisp interpreter. - Copyright (C) 1988, 1993 Free Software Foundation, Inc. + Copyright (C) 1988, 1993, 1994, 1999 Free Software Foundation, Inc. This file is part of GNU Emacs. @@ -15,7 +15,8 @@ GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU Emacs; see the file COPYING. If not, write to -the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ +the Free Software Foundation, Inc., 59 Temple Place - Suite 330, +Boston, MA 02111-1307, USA. */ /* ANSI C requires only these float functions: @@ -24,7 +25,7 @@ the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ Define HAVE_INVERSE_HYPERBOLIC if you have acosh, asinh, and atanh. Define HAVE_CBRT if you have cbrt. - Define HAVE_RINT if you have rint. + Define HAVE_RINT if you have a working rint. If you don't define these, then the appropriate routines will be simulated. Define HAVE_MATHERR if on a system supporting the SysV matherr callback. @@ -37,26 +38,47 @@ the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ (What systems actually do this? Please let us know.) Define FLOAT_CHECK_DOMAIN if the float library doesn't handle errors by - either setting errno, or signalling SIGFPE/SIGILL. Otherwise, domain and + either setting errno, or signaling SIGFPE/SIGILL. Otherwise, domain and range checking will happen before calling the float routines. This has no effect if HAVE_MATHERR is defined (since matherr will be called when a domain error occurs.) */ +#include #include - -#include "config.h" #include "lisp.h" #include "syssignal.h" -Lisp_Object Qarith_error; +#if STDC_HEADERS +#include +#endif + +/* If IEEE_FLOATING_POINT isn't defined, default it from FLT_*. */ +#ifndef IEEE_FLOATING_POINT +#if (FLT_RADIX == 2 && FLT_MANT_DIG == 24 \ + && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128) +#define IEEE_FLOATING_POINT 1 +#else +#define IEEE_FLOATING_POINT 0 +#endif +#endif -#ifdef LISP_FLOAT_TYPE +/* Work around a problem that happens because math.h on hpux 7 + defines two static variables--which, in Emacs, are not really static, + because `static' is defined as nothing. The problem is that they are + defined both here and in lread.c. + These macros prevent the name conflict. */ +#if defined (HPUX) && !defined (HPUX8) +#define _MAXLDBL floatfns_maxldbl +#define _NMAXLDBL floatfns_nmaxldbl +#endif #include -/* These declarations are omitted on some systems, like Ultrix. */ +/* This declaration is omitted on some systems, like Ultrix. */ +#if !defined (HPUX) && defined (HAVE_LOGB) && !defined (logb) extern double logb (); +#endif /* not HPUX and HAVE_LOGB and no logb macro */ #if defined(DOMAIN) && defined(SING) && defined(OVERFLOW) /* If those are defined, then this is probably a `matherr' machine. */ @@ -85,8 +107,10 @@ extern double logb (); #ifdef FLOAT_CHECK_ERRNO # include +#ifndef USE_CRT_DLL extern int errno; #endif +#endif /* Avoid traps on VMS from sinh and cosh. All the other functions set errno instead. */ @@ -98,10 +122,6 @@ extern int errno; #define sinh(x) ((exp(x)-exp(-x))*0.5) #endif /* VMS */ -#ifndef HAVE_RINT -#define rint(x) (floor((x)+0.5)) -#endif - static SIGTYPE float_error (); /* Nonzero while executing in floating point. @@ -110,7 +130,9 @@ static SIGTYPE float_error (); static int in_float; /* If an argument is out of range for a mathematical function, - here is the actual argument value to use in the error message. */ + here is the actual argument value to use in the error message. + These variables are used only across the floating point library call + so there is no need to staticpro them. */ static Lisp_Object float_error_arg, float_error_arg2; @@ -152,17 +174,43 @@ static char *float_error_fn_name; } \ } while (0) #else +#define IN_FLOAT(d, name, num) (in_float = 1, (d), in_float = 0) #define IN_FLOAT2(d, name, num, num2) (in_float = 1, (d), in_float = 0) #endif +/* Convert float to Lisp_Int if it fits, else signal a range error + using the given arguments. */ +#define FLOAT_TO_INT(x, i, name, num) \ + do \ + { \ + if ((x) >= (((EMACS_INT) 1) << (VALBITS-1)) || \ + (x) <= - (((EMACS_INT) 1) << (VALBITS-1)) - 1) \ + range_error (name, num); \ + XSETINT (i, (EMACS_INT)(x)); \ + } \ + while (0) +#define FLOAT_TO_INT2(x, i, name, num1, num2) \ + do \ + { \ + if ((x) >= (((EMACS_INT) 1) << (VALBITS-1)) || \ + (x) <= - (((EMACS_INT) 1) << (VALBITS-1)) - 1) \ + range_error2 (name, num1, num2); \ + XSETINT (i, (EMACS_INT)(x)); \ + } \ + while (0) + #define arith_error(op,arg) \ Fsignal (Qarith_error, Fcons (build_string ((op)), Fcons ((arg), Qnil))) #define range_error(op,arg) \ Fsignal (Qrange_error, Fcons (build_string ((op)), Fcons ((arg), Qnil))) +#define range_error2(op,a1,a2) \ + Fsignal (Qrange_error, Fcons (build_string ((op)), \ + Fcons ((a1), Fcons ((a2), Qnil)))) #define domain_error(op,arg) \ Fsignal (Qdomain_error, Fcons (build_string ((op)), Fcons ((arg), Qnil))) #define domain_error2(op,a1,a2) \ - Fsignal (Qdomain_error, Fcons (build_string ((op)), Fcons ((a1), Fcons ((a2), Qnil)))) + Fsignal (Qdomain_error, Fcons (build_string ((op)), \ + Fcons ((a1), Fcons ((a2), Qnil)))) /* Extract a Lisp number as a `double', or signal an error. */ @@ -172,8 +220,8 @@ extract_float (num) { CHECK_NUMBER_OR_FLOAT (num, 0); - if (XTYPE (num) == Lisp_Float) - return XFLOAT (num)->data; + if (FLOATP (num)) + return XFLOAT_DATA (num); return (double) XINT (num); } @@ -277,13 +325,13 @@ DEFUN ("bessel-j1", Fbessel_j1, Sbessel_j1, 1, 1, 0, DEFUN ("bessel-jn", Fbessel_jn, Sbessel_jn, 2, 2, 0, "Return the order N bessel function output jn of ARG.\n\ The first arg (the order) is truncated to an integer.") - (arg1, arg2) - register Lisp_Object arg1, arg2; + (n, arg) + register Lisp_Object n, arg; { - int i1 = extract_float (arg1); - double f2 = extract_float (arg2); + int i1 = extract_float (n); + double f2 = extract_float (arg); - IN_FLOAT (f2 = jn (i1, f2), "bessel-jn", arg1); + IN_FLOAT (f2 = jn (i1, f2), "bessel-jn", n); return make_float (f2); } @@ -310,13 +358,13 @@ DEFUN ("bessel-y1", Fbessel_y1, Sbessel_y1, 1, 1, 0, DEFUN ("bessel-yn", Fbessel_yn, Sbessel_yn, 2, 2, 0, "Return the order N bessel function output yn of ARG.\n\ The first arg (the order) is truncated to an integer.") - (arg1, arg2) - register Lisp_Object arg1, arg2; + (n, arg) + register Lisp_Object n, arg; { - int i1 = extract_float (arg1); - double f2 = extract_float (arg2); + int i1 = extract_float (n); + double f2 = extract_float (arg); - IN_FLOAT (f2 = yn (i1, f2), "bessel-yn", arg1); + IN_FLOAT (f2 = yn (i1, f2), "bessel-yn", n); return make_float (f2); } @@ -391,7 +439,7 @@ DEFUN ("exp", Fexp, Sexp, 1, 1, 0, } DEFUN ("expt", Fexpt, Sexpt, 2, 2, 0, - "Return the exponential X ** Y.") + "Return the exponential ARG1 ** ARG2.") (arg1, arg2) register Lisp_Object arg1, arg2; { @@ -399,11 +447,12 @@ DEFUN ("expt", Fexpt, Sexpt, 2, 2, 0, CHECK_NUMBER_OR_FLOAT (arg1, 0); CHECK_NUMBER_OR_FLOAT (arg2, 0); - if ((XTYPE (arg1) == Lisp_Int) && /* common lisp spec */ - (XTYPE (arg2) == Lisp_Int)) /* don't promote, if both are ints */ + if (INTEGERP (arg1) /* common lisp spec */ + && INTEGERP (arg2)) /* don't promote, if both are ints */ { /* this can be improved by pre-calculating */ - int acc, x, y; /* some binary powers of x then acumulating */ - /* these, therby saving some time. -wsr */ + EMACS_INT acc, x, y; /* some binary powers of x then accumulating */ + Lisp_Object val; + x = XINT (arg1); y = XINT (arg2); acc = 1; @@ -419,7 +468,6 @@ DEFUN ("expt", Fexpt, Sexpt, 2, 2, 0, } else { - for (; y > 0; y--) while (y > 0) { if (y & 1) @@ -428,11 +476,11 @@ DEFUN ("expt", Fexpt, Sexpt, 2, 2, 0, y = (unsigned)y >> 1; } } - XSET (x, Lisp_Int, acc); - return x; + XSETINT (val, acc); + return val; } - f1 = (XTYPE (arg1) == Lisp_Float) ? XFLOAT (arg1)->data : XINT (arg1); - f2 = (XTYPE (arg2) == Lisp_Float) ? XFLOAT (arg2)->data : XINT (arg2); + f1 = FLOATP (arg1) ? XFLOAT_DATA (arg1) : XINT (arg1); + f2 = FLOATP (arg2) ? XFLOAT_DATA (arg2) : XINT (arg2); /* Really should check for overflow, too */ if (f1 == 0.0 && f2 == 0.0) f1 = 1.0; @@ -440,7 +488,7 @@ DEFUN ("expt", Fexpt, Sexpt, 2, 2, 0, else if ((f1 == 0.0 && f2 < 0.0) || (f1 < 0 && f2 != floor(f2))) domain_error2 ("expt", arg1, arg2); #endif - IN_FLOAT (f1 = pow (f1, f2), "expt", arg1); + IN_FLOAT2 (f1 = pow (f1, f2), "expt", arg1, arg2); return make_float (f1); } @@ -469,7 +517,7 @@ If second optional argument BASE is given, return log ARG using that base.") if (b == 10.0) IN_FLOAT2 (d = log10 (d), "log", arg, base); else - IN_FLOAT2 (d = log (arg) / log (b), "log", arg, base); + IN_FLOAT2 (d = log (d) / log (b), "log", arg, base); } return make_float (d); } @@ -600,10 +648,10 @@ DEFUN ("abs", Fabs, Sabs, 1, 1, 0, { CHECK_NUMBER_OR_FLOAT (arg, 0); - if (XTYPE (arg) == Lisp_Float) - IN_FLOAT (arg = make_float (fabs (XFLOAT (arg)->data)), "abs", arg); + if (FLOATP (arg)) + IN_FLOAT (arg = make_float (fabs (XFLOAT_DATA (arg))), "abs", arg); else if (XINT (arg) < 0) - XSETINT (arg, - XFASTINT (arg)); + XSETINT (arg, - XINT (arg)); return arg; } @@ -615,94 +663,238 @@ DEFUN ("float", Ffloat, Sfloat, 1, 1, 0, { CHECK_NUMBER_OR_FLOAT (arg, 0); - if (XTYPE (arg) == Lisp_Int) + if (INTEGERP (arg)) return make_float ((double) XINT (arg)); else /* give 'em the same float back */ return arg; } DEFUN ("logb", Flogb, Slogb, 1, 1, 0, - "Returns the integer not greater than the base 2 log of the magnitude of ARG.\n\ + "Returns largest integer <= the base 2 log of the magnitude of ARG.\n\ This is the same as the exponent of a float.") (arg) Lisp_Object arg; { Lisp_Object val; - int value; + EMACS_INT value; double f = extract_float (arg); -#ifdef USG - { - int exp; - - IN_FLOAT (frexp (f, &exp), "logb", arg); - XSET (val, Lisp_Int, exp-1); - } + if (f == 0.0) + value = -(VALMASK >> 1); + else + { +#ifdef HAVE_LOGB + IN_FLOAT (value = logb (f), "logb", arg); +#else +#ifdef HAVE_FREXP + int ivalue; + IN_FLOAT (frexp (f, &ivalue), "logb", arg); + value = ivalue - 1; #else - IN_FLOAT (value = logb (f), "logb", arg); - XSET (val, Lisp_Int, value); + int i; + double d; + if (f < 0.0) + f = -f; + value = -1; + while (f < 0.5) + { + for (i = 1, d = 0.5; d * d >= f; i += i) + d *= d; + f /= d; + value -= i; + } + while (f >= 1.0) + { + for (i = 1, d = 2.0; d * d <= f; i += i) + d *= d; + f /= d; + value += i; + } #endif - +#endif + } + XSETINT (val, value); return val; } + /* the rounding functions */ -DEFUN ("ceiling", Fceiling, Sceiling, 1, 1, 0, - "Return the smallest integer no less than ARG. (Round toward +inf.)") - (arg) - register Lisp_Object arg; +static Lisp_Object +rounding_driver (arg, divisor, double_round, int_round2, name) + register Lisp_Object arg, divisor; + double (*double_round) (); + EMACS_INT (*int_round2) (); + char *name; { CHECK_NUMBER_OR_FLOAT (arg, 0); - if (XTYPE (arg) == Lisp_Float) - IN_FLOAT (XSET (arg, Lisp_Int, ceil (XFLOAT (arg)->data)), "celing", arg); + if (! NILP (divisor)) + { + EMACS_INT i1, i2; + + CHECK_NUMBER_OR_FLOAT (divisor, 1); + + if (FLOATP (arg) || FLOATP (divisor)) + { + double f1, f2; + + f1 = FLOATP (arg) ? XFLOAT_DATA (arg) : XINT (arg); + f2 = (FLOATP (divisor) ? XFLOAT_DATA (divisor) : XINT (divisor)); + if (! IEEE_FLOATING_POINT && f2 == 0) + Fsignal (Qarith_error, Qnil); + + IN_FLOAT2 (f1 = (*double_round) (f1 / f2), name, arg, divisor); + FLOAT_TO_INT2 (f1, arg, name, arg, divisor); + return arg; + } + + i1 = XINT (arg); + i2 = XINT (divisor); + + if (i2 == 0) + Fsignal (Qarith_error, Qnil); + + XSETINT (arg, (*int_round2) (i1, i2)); + return arg; + } + + if (FLOATP (arg)) + { + double d; + + IN_FLOAT (d = (*double_round) (XFLOAT_DATA (arg)), name, arg); + FLOAT_TO_INT (d, arg, name, arg); + } return arg; } -DEFUN ("floor", Ffloor, Sfloor, 1, 1, 0, - "Return the largest integer no greater than ARG. (Round towards -inf.)") - (arg) - register Lisp_Object arg; +/* With C's /, the result is implementation-defined if either operand + is negative, so take care with negative operands in the following + integer functions. */ + +static EMACS_INT +ceiling2 (i1, i2) + EMACS_INT i1, i2; { - CHECK_NUMBER_OR_FLOAT (arg, 0); + return (i2 < 0 + ? (i1 < 0 ? ((-1 - i1) / -i2) + 1 : - (i1 / -i2)) + : (i1 <= 0 ? - (-i1 / i2) : ((i1 - 1) / i2) + 1)); +} - if (XTYPE (arg) == Lisp_Float) - IN_FLOAT (XSET (arg, Lisp_Int, floor (XFLOAT (arg)->data)), "floor", arg); +static EMACS_INT +floor2 (i1, i2) + EMACS_INT i1, i2; +{ + return (i2 < 0 + ? (i1 <= 0 ? -i1 / -i2 : -1 - ((i1 - 1) / -i2)) + : (i1 < 0 ? -1 - ((-1 - i1) / i2) : i1 / i2)); +} - return arg; +static EMACS_INT +truncate2 (i1, i2) + EMACS_INT i1, i2; +{ + return (i2 < 0 + ? (i1 < 0 ? -i1 / -i2 : - (i1 / -i2)) + : (i1 < 0 ? - (-i1 / i2) : i1 / i2)); } -DEFUN ("round", Fround, Sround, 1, 1, 0, - "Return the nearest integer to ARG.") - (arg) - register Lisp_Object arg; +static EMACS_INT +round2 (i1, i2) + EMACS_INT i1, i2; { - CHECK_NUMBER_OR_FLOAT (arg, 0); + /* The C language's division operator gives us one remainder R, but + we want the remainder R1 on the other side of 0 if R1 is closer + to 0 than R is; because we want to round to even, we also want R1 + if R and R1 are the same distance from 0 and if C's quotient is + odd. */ + EMACS_INT q = i1 / i2; + EMACS_INT r = i1 % i2; + EMACS_INT abs_r = r < 0 ? -r : r; + EMACS_INT abs_r1 = (i2 < 0 ? -i2 : i2) - abs_r; + return q + (abs_r + (q & 1) <= abs_r1 ? 0 : (i2 ^ r) < 0 ? -1 : 1); +} + +/* The code uses emacs_rint, so that it works to undefine HAVE_RINT + if `rint' exists but does not work right. */ +#ifdef HAVE_RINT +#define emacs_rint rint +#else +static double +emacs_rint (d) + double d; +{ + return floor (d + 0.5); +} +#endif - if (XTYPE (arg) == Lisp_Float) - /* Screw the prevailing rounding mode. */ - IN_FLOAT (XSET (arg, Lisp_Int, rint (XFLOAT (arg)->data)), "round", arg); +static double +double_identity (d) + double d; +{ + return d; +} - return arg; +DEFUN ("ceiling", Fceiling, Sceiling, 1, 2, 0, + "Return the smallest integer no less than ARG. (Round toward +inf.)\n\ +With optional DIVISOR, return the smallest integer no less than ARG/DIVISOR.") + (arg, divisor) + Lisp_Object arg, divisor; +{ + return rounding_driver (arg, divisor, ceil, ceiling2, "ceiling"); +} + +DEFUN ("floor", Ffloor, Sfloor, 1, 2, 0, + "Return the largest integer no greater than ARG. (Round towards -inf.)\n\ +With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR.") + (arg, divisor) + Lisp_Object arg, divisor; +{ + return rounding_driver (arg, divisor, floor, floor2, "floor"); } -DEFUN ("truncate", Ftruncate, Struncate, 1, 1, 0, +DEFUN ("round", Fround, Sround, 1, 2, 0, + "Return the nearest integer to ARG.\n\ +With optional DIVISOR, return the nearest integer to ARG/DIVISOR.") + (arg, divisor) + Lisp_Object arg, divisor; +{ + return rounding_driver (arg, divisor, emacs_rint, round2, "round"); +} + +DEFUN ("truncate", Ftruncate, Struncate, 1, 2, 0, "Truncate a floating point number to an int.\n\ -Rounds the value toward zero.") - (arg) - register Lisp_Object arg; +Rounds ARG toward zero.\n\ +With optional DIVISOR, truncate ARG/DIVISOR.") + (arg, divisor) + Lisp_Object arg, divisor; { - CHECK_NUMBER_OR_FLOAT (arg, 0); + return rounding_driver (arg, divisor, double_identity, truncate2, + "truncate"); +} - if (XTYPE (arg) == Lisp_Float) - XSET (arg, Lisp_Int, (int) XFLOAT (arg)->data); - return arg; +Lisp_Object +fmod_float (x, y) + register Lisp_Object x, y; +{ + double f1, f2; + + f1 = FLOATP (x) ? XFLOAT_DATA (x) : XINT (x); + f2 = FLOATP (y) ? XFLOAT_DATA (y) : XINT (y); + + if (! IEEE_FLOATING_POINT && f2 == 0) + Fsignal (Qarith_error, Qnil); + + /* If the "remainder" comes out with the wrong sign, fix it. */ + IN_FLOAT2 ((f1 = fmod (f1, f2), + f1 = (f2 < 0 ? f1 > 0 : f1 < 0) ? f1 + f2 : f1), + "mod", x, y); + return make_float (f1); } -#if 0 /* It's not clear these are worth adding. */ DEFUN ("fceiling", Ffceiling, Sfceiling, 1, 1, 0, @@ -733,12 +925,12 @@ DEFUN ("fround", Ffround, Sfround, 1, 1, 0, register Lisp_Object arg; { double d = extract_float (arg); - IN_FLOAT (d = rint (XFLOAT (arg)->data), "fround", arg); + IN_FLOAT (d = emacs_rint (d), "fround", arg); return make_float (d); } DEFUN ("ftruncate", Fftruncate, Sftruncate, 1, 1, 0, - "Truncate a floating point number to an integral float value.\n\ + "Truncate a floating point number to an integral float value.\n\ Rounds the value toward zero.") (arg) register Lisp_Object arg; @@ -747,10 +939,9 @@ Rounds the value toward zero.") if (d >= 0.0) IN_FLOAT (d = floor (d), "ftruncate", arg); else - IN_FLOAT (d = ceil (d), arg); + IN_FLOAT (d = ceil (d), "ftruncate", arg); return make_float (d); } -#endif #ifdef FLOAT_CATCH_SIGILL static SIGTYPE @@ -760,7 +951,7 @@ float_error (signo) if (! in_float) fatal_error_signal (signo); -#ifdef BSD +#ifdef BSD_SYSTEM #ifdef BSD4_1 sigrelse (SIGILL); #else /* not BSD4_1 */ @@ -769,7 +960,7 @@ float_error (signo) #else /* Must reestablish handler each time it is called. */ signal (SIGILL, float_error); -#endif /* BSD */ +#endif /* BSD_SYSTEM */ in_float = 0; @@ -811,6 +1002,7 @@ matherr (x) } #endif /* HAVE_MATHERR */ +void init_floatfns () { #ifdef FLOAT_CATCH_SIGILL @@ -819,6 +1011,7 @@ init_floatfns () in_float = 0; } +void syms_of_floatfns () { defsubr (&Sacos); @@ -844,11 +1037,11 @@ syms_of_floatfns () defsubr (&Serfc); defsubr (&Slog_gamma); defsubr (&Scube_root); +#endif defsubr (&Sfceiling); defsubr (&Sffloor); defsubr (&Sfround); defsubr (&Sftruncate); -#endif defsubr (&Sexp); defsubr (&Sexpt); defsubr (&Slog); @@ -863,13 +1056,3 @@ syms_of_floatfns () defsubr (&Sround); defsubr (&Struncate); } - -#else /* not LISP_FLOAT_TYPE */ - -init_floatfns () -{} - -syms_of_floatfns () -{} - -#endif /* not LISP_FLOAT_TYPE */