X-Git-Url: https://code.delx.au/refind/blobdiff_plain/7b006609c81e23ca1c7597776b7ea485932bbe0c..e623f368c6089696dc99c507834a668fee159fed:/docs/refind/secureboot.html diff --git a/docs/refind/secureboot.html b/docs/refind/secureboot.html index d723758..3e00001 100644 --- a/docs/refind/secureboot.html +++ b/docs/refind/secureboot.html @@ -15,7 +15,7 @@ href="mailto:rodsmith@rodsbooks.com">rodsmith@rodsbooks.com

Originally written: 11/13/2012; last Web page update: -12/6/2012, referencing rEFInd 0.5.0

+1/26/2013, referencing rEFInd 0.6.6

I'm a technical writer and consultant specializing in Linux technologies. This Web page is provided free of charge and with no annoying outside ads; however, I did take time to prepare it, and Web hosting does cost money. If you find this Web page useful, please consider making a small donation to help keep this site up and running. Thanks!

@@ -92,29 +92,74 @@ href="mailto:rodsmith@rodsbooks.com">rodsmith@rodsbooks.com

+ +

If you're using a computer that supports Secure Boot, you may run into extra complications. This feature is intended to make it difficult for malware to insert itself early into the computer's boot process. Unfortunately, it also complicates multi-boot configurations such as those that rEFInd is intended to manage. This page describes some secure boot basics and two specific aspects of rEFInd and its interactions with Secure Boot: installation issues and MOK management. It concludes with a look at known bugs and limitations in rEFInd's Secure Boot features.

Basic Issues

- +

Through 2012, it became obvious that Secure Boot would be a feature that was controlled, to a large extent, by Microsoft. This is because Microsoft requires that non-server computers that display Windows 8 logos ship with Secure Boot enabled. As a practical matter, this also means that such computers ship with Microsoft's keys in their firmware. In the absence of an industry-standard body to manage the signing of Secure Boot keys, this means that Microsoft's key is the only one that's more-or-less guaranteed to be installed on the computer, thus blocking the ability to boot any OS that lacks a boot path through Microsoft's signing key.

-

Fortunately, Microsoft will sign third-party binaries with their key. A payment of $99 to Verisign enables a software distributor to sign as many binaries as desired. Red Hat (Fedora), Novell (SUSE), and Canonical (Ubuntu) have all announced plans to take advantage of this system. Unfortunately, using a third-party signing service is an awkward solution for open source software. In fact, for this very reason Red Hat has developed a program that it calls shim that essentially shifts the Secure Boot "train" from Microsoft's proprietary "track" to one that's more friendly to open source authors. Shim is signed by Microsoft and redirects the boot process to another boot loader that can be signed with keys that the distribution maintains and that are built into shim. Fedora 18 is expected to use this system. SUSE has announced that it will use the same system, as does Ubuntu with version 12.10 and later. SUSE has contributed to the shim approach by providing expansions to shim that support a set of keys that users can maintain themselves. These keys are known as Machine Owner Keys (MOKs), and managing them is described later, in Managing MOKs. To reiterate, then, there are potentially three ways to sign a binary that will get it launched on a system that uses shim:

+

Fortunately, Microsoft will sign third-party binaries with their key—or more precisely, with a key that Microsoft uses to sign third-party binaries. (Microsoft uses another key to sign its own binaries, and some devices, such as the Microsoft Surface tablet, lack the third-party Microsoft key.) A payment of $99 to Verisign enables a software distributor to sign as many binaries as desired. Red Hat (Fedora), Novell (SUSE), and Canonical (Ubuntu) have all announced plans to take advantage of this system. Unfortunately, using a third-party signing service is an awkward solution for open source software. In fact, for this very reason Red Hat has developed a program that it calls shim that essentially shifts the Secure Boot "train" from Microsoft's proprietary "track" to one that's more friendly to open source authors. Shim is signed by Microsoft and redirects the boot process to another boot loader that can be signed with keys that the distribution maintains and that are built into shim. Fedora 18 also uses this system. SUSE has announced that it will use the same system, as does Ubuntu with version 12.10 and later. SUSE has contributed to the shim approach by providing expansions to shim that support a set of keys that users can maintain themselves. These keys are known as Machine Owner Keys (MOKs), and managing them is described later, in Managing MOKs. To reiterate, then, there are potentially three ways to sign a binary that will get it launched on a computer that uses shim:

-

All three key types are the same in form—shim's built-in keys and MOKs are both generated using the same tools used to generate Secure Boot keys. Unfortunately, the tools used to generate these keys are still rather crude and are rarely installed on Linux systems, which is one of the reasons that rEFInd's installation script doesn't yet support setting up a Secure Boot configuration. Although it's theoretically possible to use rEFInd without signing your own binaries, this is not yet practical, because distributions don't yet provide their own signed binaries or the public MOK files you must have to enroll their keys. With any luck this will change in 2013. At the very least, many distributions will begin supporting Secure Boot in the near future, and with any luck they'll include their public MOKs for use with other distributions' versions of shim.

+

All three key types are the same in form—shim's built-in keys and MOKs are both generated using the same tools used to generate Secure Boot keys. The keys can be generated with the common openssl program, but signing EFI binaries requires a rarer program called sbsign or pesign. Although it's theoretically possible to use rEFInd without signing your own binaries, this is not yet practical, because distributions don't yet provide their own signed binaries or the public MOK files you must have to enroll their keys. With any luck this will change in 2013. At the very least, many distributions will begin supporting Secure Boot in the near future, and with any luck they'll include their public MOKs for use with other distributions' versions of shim.

Because shim and MOK are being supported by several of the major players in the Linux world, I've decided to do the same with rEFInd. Beginning with version 0.5.0, rEFInd can communicate with the shim system to authenticate boot loaders. If a boot loader has been signed by a valid UEFI Secure Boot key, a valid shim key, or a valid MOK key, rEFInd will launch it. rEFInd will also launch unsigned boot loaders or those with invalid signatures if Secure Boot is disabled in or unsupported by the firmware. (If that's your situation, you needn't bother reading this page.)

@@ -128,11 +173,11 @@ href="mailto:rodsmith@rodsbooks.com">rodsmith@rodsbooks.com