]> code.delx.au - gnu-emacs/blob - src/fns.c
Merge from trunk.
[gnu-emacs] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985-1987, 1993-1995, 1997-2011
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21
22 #include <unistd.h>
23 #include <time.h>
24 #include <setjmp.h>
25
26 #include "lisp.h"
27 #include "commands.h"
28 #include "character.h"
29 #include "coding.h"
30 #include "buffer.h"
31 #include "keyboard.h"
32 #include "keymap.h"
33 #include "intervals.h"
34 #include "frame.h"
35 #include "window.h"
36 #include "blockinput.h"
37 #ifdef HAVE_MENUS
38 #if defined (HAVE_X_WINDOWS)
39 #include "xterm.h"
40 #endif
41 #endif /* HAVE_MENUS */
42
43 #ifndef NULL
44 #define NULL ((POINTER_TYPE *)0)
45 #endif
46
47 Lisp_Object Qstring_lessp;
48 static Lisp_Object Qprovide, Qrequire;
49 static Lisp_Object Qyes_or_no_p_history;
50 Lisp_Object Qcursor_in_echo_area;
51 static Lisp_Object Qwidget_type;
52 static Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
53
54 static int internal_equal (Lisp_Object , Lisp_Object, int, int);
55
56 #ifndef HAVE_UNISTD_H
57 extern long time ();
58 #endif
59 \f
60 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
61 doc: /* Return the argument unchanged. */)
62 (Lisp_Object arg)
63 {
64 return arg;
65 }
66
67 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
68 doc: /* Return a pseudo-random number.
69 All integers representable in Lisp are equally likely.
70 On most systems, this is 29 bits' worth.
71 With positive integer LIMIT, return random number in interval [0,LIMIT).
72 With argument t, set the random number seed from the current time and pid.
73 Other values of LIMIT are ignored. */)
74 (Lisp_Object limit)
75 {
76 EMACS_INT val;
77 Lisp_Object lispy_val;
78 EMACS_UINT denominator;
79
80 if (EQ (limit, Qt))
81 seed_random (getpid () + time (NULL));
82 if (NATNUMP (limit) && XFASTINT (limit) != 0)
83 {
84 /* Try to take our random number from the higher bits of VAL,
85 not the lower, since (says Gentzel) the low bits of `random'
86 are less random than the higher ones. We do this by using the
87 quotient rather than the remainder. At the high end of the RNG
88 it's possible to get a quotient larger than n; discarding
89 these values eliminates the bias that would otherwise appear
90 when using a large n. */
91 denominator = ((EMACS_UINT) 1 << VALBITS) / XFASTINT (limit);
92 do
93 val = get_random () / denominator;
94 while (val >= XFASTINT (limit));
95 }
96 else
97 val = get_random ();
98 XSETINT (lispy_val, val);
99 return lispy_val;
100 }
101 \f
102 /* Random data-structure functions */
103
104 DEFUN ("length", Flength, Slength, 1, 1, 0,
105 doc: /* Return the length of vector, list or string SEQUENCE.
106 A byte-code function object is also allowed.
107 If the string contains multibyte characters, this is not necessarily
108 the number of bytes in the string; it is the number of characters.
109 To get the number of bytes, use `string-bytes'. */)
110 (register Lisp_Object sequence)
111 {
112 register Lisp_Object val;
113 register int i;
114
115 if (STRINGP (sequence))
116 XSETFASTINT (val, SCHARS (sequence));
117 else if (VECTORP (sequence))
118 XSETFASTINT (val, ASIZE (sequence));
119 else if (CHAR_TABLE_P (sequence))
120 XSETFASTINT (val, MAX_CHAR);
121 else if (BOOL_VECTOR_P (sequence))
122 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
123 else if (COMPILEDP (sequence))
124 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
125 else if (CONSP (sequence))
126 {
127 i = 0;
128 while (CONSP (sequence))
129 {
130 sequence = XCDR (sequence);
131 ++i;
132
133 if (!CONSP (sequence))
134 break;
135
136 sequence = XCDR (sequence);
137 ++i;
138 QUIT;
139 }
140
141 CHECK_LIST_END (sequence, sequence);
142
143 val = make_number (i);
144 }
145 else if (NILP (sequence))
146 XSETFASTINT (val, 0);
147 else
148 wrong_type_argument (Qsequencep, sequence);
149
150 return val;
151 }
152
153 /* This does not check for quits. That is safe since it must terminate. */
154
155 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
156 doc: /* Return the length of a list, but avoid error or infinite loop.
157 This function never gets an error. If LIST is not really a list,
158 it returns 0. If LIST is circular, it returns a finite value
159 which is at least the number of distinct elements. */)
160 (Lisp_Object list)
161 {
162 Lisp_Object tail, halftail, length;
163 int len = 0;
164
165 /* halftail is used to detect circular lists. */
166 halftail = list;
167 for (tail = list; CONSP (tail); tail = XCDR (tail))
168 {
169 if (EQ (tail, halftail) && len != 0)
170 break;
171 len++;
172 if ((len & 1) == 0)
173 halftail = XCDR (halftail);
174 }
175
176 XSETINT (length, len);
177 return length;
178 }
179
180 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
181 doc: /* Return the number of bytes in STRING.
182 If STRING is multibyte, this may be greater than the length of STRING. */)
183 (Lisp_Object string)
184 {
185 CHECK_STRING (string);
186 return make_number (SBYTES (string));
187 }
188
189 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
190 doc: /* Return t if two strings have identical contents.
191 Case is significant, but text properties are ignored.
192 Symbols are also allowed; their print names are used instead. */)
193 (register Lisp_Object s1, Lisp_Object s2)
194 {
195 if (SYMBOLP (s1))
196 s1 = SYMBOL_NAME (s1);
197 if (SYMBOLP (s2))
198 s2 = SYMBOL_NAME (s2);
199 CHECK_STRING (s1);
200 CHECK_STRING (s2);
201
202 if (SCHARS (s1) != SCHARS (s2)
203 || SBYTES (s1) != SBYTES (s2)
204 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
205 return Qnil;
206 return Qt;
207 }
208
209 DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
210 doc: /* Compare the contents of two strings, converting to multibyte if needed.
211 In string STR1, skip the first START1 characters and stop at END1.
212 In string STR2, skip the first START2 characters and stop at END2.
213 END1 and END2 default to the full lengths of the respective strings.
214
215 Case is significant in this comparison if IGNORE-CASE is nil.
216 Unibyte strings are converted to multibyte for comparison.
217
218 The value is t if the strings (or specified portions) match.
219 If string STR1 is less, the value is a negative number N;
220 - 1 - N is the number of characters that match at the beginning.
221 If string STR1 is greater, the value is a positive number N;
222 N - 1 is the number of characters that match at the beginning. */)
223 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2, Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
224 {
225 register EMACS_INT end1_char, end2_char;
226 register EMACS_INT i1, i1_byte, i2, i2_byte;
227
228 CHECK_STRING (str1);
229 CHECK_STRING (str2);
230 if (NILP (start1))
231 start1 = make_number (0);
232 if (NILP (start2))
233 start2 = make_number (0);
234 CHECK_NATNUM (start1);
235 CHECK_NATNUM (start2);
236 if (! NILP (end1))
237 CHECK_NATNUM (end1);
238 if (! NILP (end2))
239 CHECK_NATNUM (end2);
240
241 i1 = XINT (start1);
242 i2 = XINT (start2);
243
244 i1_byte = string_char_to_byte (str1, i1);
245 i2_byte = string_char_to_byte (str2, i2);
246
247 end1_char = SCHARS (str1);
248 if (! NILP (end1) && end1_char > XINT (end1))
249 end1_char = XINT (end1);
250
251 end2_char = SCHARS (str2);
252 if (! NILP (end2) && end2_char > XINT (end2))
253 end2_char = XINT (end2);
254
255 while (i1 < end1_char && i2 < end2_char)
256 {
257 /* When we find a mismatch, we must compare the
258 characters, not just the bytes. */
259 int c1, c2;
260
261 if (STRING_MULTIBYTE (str1))
262 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
263 else
264 {
265 c1 = SREF (str1, i1++);
266 MAKE_CHAR_MULTIBYTE (c1);
267 }
268
269 if (STRING_MULTIBYTE (str2))
270 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
271 else
272 {
273 c2 = SREF (str2, i2++);
274 MAKE_CHAR_MULTIBYTE (c2);
275 }
276
277 if (c1 == c2)
278 continue;
279
280 if (! NILP (ignore_case))
281 {
282 Lisp_Object tem;
283
284 tem = Fupcase (make_number (c1));
285 c1 = XINT (tem);
286 tem = Fupcase (make_number (c2));
287 c2 = XINT (tem);
288 }
289
290 if (c1 == c2)
291 continue;
292
293 /* Note that I1 has already been incremented
294 past the character that we are comparing;
295 hence we don't add or subtract 1 here. */
296 if (c1 < c2)
297 return make_number (- i1 + XINT (start1));
298 else
299 return make_number (i1 - XINT (start1));
300 }
301
302 if (i1 < end1_char)
303 return make_number (i1 - XINT (start1) + 1);
304 if (i2 < end2_char)
305 return make_number (- i1 + XINT (start1) - 1);
306
307 return Qt;
308 }
309
310 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
311 doc: /* Return t if first arg string is less than second in lexicographic order.
312 Case is significant.
313 Symbols are also allowed; their print names are used instead. */)
314 (register Lisp_Object s1, Lisp_Object s2)
315 {
316 register EMACS_INT end;
317 register EMACS_INT i1, i1_byte, i2, i2_byte;
318
319 if (SYMBOLP (s1))
320 s1 = SYMBOL_NAME (s1);
321 if (SYMBOLP (s2))
322 s2 = SYMBOL_NAME (s2);
323 CHECK_STRING (s1);
324 CHECK_STRING (s2);
325
326 i1 = i1_byte = i2 = i2_byte = 0;
327
328 end = SCHARS (s1);
329 if (end > SCHARS (s2))
330 end = SCHARS (s2);
331
332 while (i1 < end)
333 {
334 /* When we find a mismatch, we must compare the
335 characters, not just the bytes. */
336 int c1, c2;
337
338 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
339 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
340
341 if (c1 != c2)
342 return c1 < c2 ? Qt : Qnil;
343 }
344 return i1 < SCHARS (s2) ? Qt : Qnil;
345 }
346 \f
347 static Lisp_Object concat (size_t nargs, Lisp_Object *args,
348 enum Lisp_Type target_type, int last_special);
349
350 /* ARGSUSED */
351 Lisp_Object
352 concat2 (Lisp_Object s1, Lisp_Object s2)
353 {
354 Lisp_Object args[2];
355 args[0] = s1;
356 args[1] = s2;
357 return concat (2, args, Lisp_String, 0);
358 }
359
360 /* ARGSUSED */
361 Lisp_Object
362 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
363 {
364 Lisp_Object args[3];
365 args[0] = s1;
366 args[1] = s2;
367 args[2] = s3;
368 return concat (3, args, Lisp_String, 0);
369 }
370
371 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
372 doc: /* Concatenate all the arguments and make the result a list.
373 The result is a list whose elements are the elements of all the arguments.
374 Each argument may be a list, vector or string.
375 The last argument is not copied, just used as the tail of the new list.
376 usage: (append &rest SEQUENCES) */)
377 (size_t nargs, Lisp_Object *args)
378 {
379 return concat (nargs, args, Lisp_Cons, 1);
380 }
381
382 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
383 doc: /* Concatenate all the arguments and make the result a string.
384 The result is a string whose elements are the elements of all the arguments.
385 Each argument may be a string or a list or vector of characters (integers).
386 usage: (concat &rest SEQUENCES) */)
387 (size_t nargs, Lisp_Object *args)
388 {
389 return concat (nargs, args, Lisp_String, 0);
390 }
391
392 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
393 doc: /* Concatenate all the arguments and make the result a vector.
394 The result is a vector whose elements are the elements of all the arguments.
395 Each argument may be a list, vector or string.
396 usage: (vconcat &rest SEQUENCES) */)
397 (size_t nargs, Lisp_Object *args)
398 {
399 return concat (nargs, args, Lisp_Vectorlike, 0);
400 }
401
402
403 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
404 doc: /* Return a copy of a list, vector, string or char-table.
405 The elements of a list or vector are not copied; they are shared
406 with the original. */)
407 (Lisp_Object arg)
408 {
409 if (NILP (arg)) return arg;
410
411 if (CHAR_TABLE_P (arg))
412 {
413 return copy_char_table (arg);
414 }
415
416 if (BOOL_VECTOR_P (arg))
417 {
418 Lisp_Object val;
419 int size_in_chars
420 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
421 / BOOL_VECTOR_BITS_PER_CHAR);
422
423 val = Fmake_bool_vector (Flength (arg), Qnil);
424 memcpy (XBOOL_VECTOR (val)->data, XBOOL_VECTOR (arg)->data,
425 size_in_chars);
426 return val;
427 }
428
429 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
430 wrong_type_argument (Qsequencep, arg);
431
432 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
433 }
434
435 /* This structure holds information of an argument of `concat' that is
436 a string and has text properties to be copied. */
437 struct textprop_rec
438 {
439 int argnum; /* refer to ARGS (arguments of `concat') */
440 EMACS_INT from; /* refer to ARGS[argnum] (argument string) */
441 EMACS_INT to; /* refer to VAL (the target string) */
442 };
443
444 static Lisp_Object
445 concat (size_t nargs, Lisp_Object *args,
446 enum Lisp_Type target_type, int last_special)
447 {
448 Lisp_Object val;
449 register Lisp_Object tail;
450 register Lisp_Object this;
451 EMACS_INT toindex;
452 EMACS_INT toindex_byte = 0;
453 register EMACS_INT result_len;
454 register EMACS_INT result_len_byte;
455 register size_t argnum;
456 Lisp_Object last_tail;
457 Lisp_Object prev;
458 int some_multibyte;
459 /* When we make a multibyte string, we can't copy text properties
460 while concatenating each string because the length of resulting
461 string can't be decided until we finish the whole concatenation.
462 So, we record strings that have text properties to be copied
463 here, and copy the text properties after the concatenation. */
464 struct textprop_rec *textprops = NULL;
465 /* Number of elements in textprops. */
466 int num_textprops = 0;
467 USE_SAFE_ALLOCA;
468
469 tail = Qnil;
470
471 /* In append, the last arg isn't treated like the others */
472 if (last_special && nargs > 0)
473 {
474 nargs--;
475 last_tail = args[nargs];
476 }
477 else
478 last_tail = Qnil;
479
480 /* Check each argument. */
481 for (argnum = 0; argnum < nargs; argnum++)
482 {
483 this = args[argnum];
484 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
485 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
486 wrong_type_argument (Qsequencep, this);
487 }
488
489 /* Compute total length in chars of arguments in RESULT_LEN.
490 If desired output is a string, also compute length in bytes
491 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
492 whether the result should be a multibyte string. */
493 result_len_byte = 0;
494 result_len = 0;
495 some_multibyte = 0;
496 for (argnum = 0; argnum < nargs; argnum++)
497 {
498 EMACS_INT len;
499 this = args[argnum];
500 len = XFASTINT (Flength (this));
501 if (target_type == Lisp_String)
502 {
503 /* We must count the number of bytes needed in the string
504 as well as the number of characters. */
505 EMACS_INT i;
506 Lisp_Object ch;
507 int c;
508 EMACS_INT this_len_byte;
509
510 if (VECTORP (this) || COMPILEDP (this))
511 for (i = 0; i < len; i++)
512 {
513 ch = AREF (this, i);
514 CHECK_CHARACTER (ch);
515 c = XFASTINT (ch);
516 this_len_byte = CHAR_BYTES (c);
517 result_len_byte += this_len_byte;
518 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
519 some_multibyte = 1;
520 }
521 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
522 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
523 else if (CONSP (this))
524 for (; CONSP (this); this = XCDR (this))
525 {
526 ch = XCAR (this);
527 CHECK_CHARACTER (ch);
528 c = XFASTINT (ch);
529 this_len_byte = CHAR_BYTES (c);
530 result_len_byte += this_len_byte;
531 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
532 some_multibyte = 1;
533 }
534 else if (STRINGP (this))
535 {
536 if (STRING_MULTIBYTE (this))
537 {
538 some_multibyte = 1;
539 result_len_byte += SBYTES (this);
540 }
541 else
542 result_len_byte += count_size_as_multibyte (SDATA (this),
543 SCHARS (this));
544 }
545 }
546
547 result_len += len;
548 if (result_len < 0)
549 error ("String overflow");
550 }
551
552 if (! some_multibyte)
553 result_len_byte = result_len;
554
555 /* Create the output object. */
556 if (target_type == Lisp_Cons)
557 val = Fmake_list (make_number (result_len), Qnil);
558 else if (target_type == Lisp_Vectorlike)
559 val = Fmake_vector (make_number (result_len), Qnil);
560 else if (some_multibyte)
561 val = make_uninit_multibyte_string (result_len, result_len_byte);
562 else
563 val = make_uninit_string (result_len);
564
565 /* In `append', if all but last arg are nil, return last arg. */
566 if (target_type == Lisp_Cons && EQ (val, Qnil))
567 return last_tail;
568
569 /* Copy the contents of the args into the result. */
570 if (CONSP (val))
571 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
572 else
573 toindex = 0, toindex_byte = 0;
574
575 prev = Qnil;
576 if (STRINGP (val))
577 SAFE_ALLOCA (textprops, struct textprop_rec *, sizeof (struct textprop_rec) * nargs);
578
579 for (argnum = 0; argnum < nargs; argnum++)
580 {
581 Lisp_Object thislen;
582 EMACS_INT thisleni = 0;
583 register EMACS_INT thisindex = 0;
584 register EMACS_INT thisindex_byte = 0;
585
586 this = args[argnum];
587 if (!CONSP (this))
588 thislen = Flength (this), thisleni = XINT (thislen);
589
590 /* Between strings of the same kind, copy fast. */
591 if (STRINGP (this) && STRINGP (val)
592 && STRING_MULTIBYTE (this) == some_multibyte)
593 {
594 EMACS_INT thislen_byte = SBYTES (this);
595
596 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
597 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
598 {
599 textprops[num_textprops].argnum = argnum;
600 textprops[num_textprops].from = 0;
601 textprops[num_textprops++].to = toindex;
602 }
603 toindex_byte += thislen_byte;
604 toindex += thisleni;
605 }
606 /* Copy a single-byte string to a multibyte string. */
607 else if (STRINGP (this) && STRINGP (val))
608 {
609 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
610 {
611 textprops[num_textprops].argnum = argnum;
612 textprops[num_textprops].from = 0;
613 textprops[num_textprops++].to = toindex;
614 }
615 toindex_byte += copy_text (SDATA (this),
616 SDATA (val) + toindex_byte,
617 SCHARS (this), 0, 1);
618 toindex += thisleni;
619 }
620 else
621 /* Copy element by element. */
622 while (1)
623 {
624 register Lisp_Object elt;
625
626 /* Fetch next element of `this' arg into `elt', or break if
627 `this' is exhausted. */
628 if (NILP (this)) break;
629 if (CONSP (this))
630 elt = XCAR (this), this = XCDR (this);
631 else if (thisindex >= thisleni)
632 break;
633 else if (STRINGP (this))
634 {
635 int c;
636 if (STRING_MULTIBYTE (this))
637 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
638 thisindex,
639 thisindex_byte);
640 else
641 {
642 c = SREF (this, thisindex); thisindex++;
643 if (some_multibyte && !ASCII_CHAR_P (c))
644 c = BYTE8_TO_CHAR (c);
645 }
646 XSETFASTINT (elt, c);
647 }
648 else if (BOOL_VECTOR_P (this))
649 {
650 int byte;
651 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
652 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
653 elt = Qt;
654 else
655 elt = Qnil;
656 thisindex++;
657 }
658 else
659 {
660 elt = AREF (this, thisindex);
661 thisindex++;
662 }
663
664 /* Store this element into the result. */
665 if (toindex < 0)
666 {
667 XSETCAR (tail, elt);
668 prev = tail;
669 tail = XCDR (tail);
670 }
671 else if (VECTORP (val))
672 {
673 ASET (val, toindex, elt);
674 toindex++;
675 }
676 else
677 {
678 int c;
679 CHECK_CHARACTER (elt);
680 c = XFASTINT (elt);
681 if (some_multibyte)
682 toindex_byte += CHAR_STRING (c, SDATA (val) + toindex_byte);
683 else
684 SSET (val, toindex_byte++, c);
685 toindex++;
686 }
687 }
688 }
689 if (!NILP (prev))
690 XSETCDR (prev, last_tail);
691
692 if (num_textprops > 0)
693 {
694 Lisp_Object props;
695 EMACS_INT last_to_end = -1;
696
697 for (argnum = 0; argnum < num_textprops; argnum++)
698 {
699 this = args[textprops[argnum].argnum];
700 props = text_property_list (this,
701 make_number (0),
702 make_number (SCHARS (this)),
703 Qnil);
704 /* If successive arguments have properties, be sure that the
705 value of `composition' property be the copy. */
706 if (last_to_end == textprops[argnum].to)
707 make_composition_value_copy (props);
708 add_text_properties_from_list (val, props,
709 make_number (textprops[argnum].to));
710 last_to_end = textprops[argnum].to + SCHARS (this);
711 }
712 }
713
714 SAFE_FREE ();
715 return val;
716 }
717 \f
718 static Lisp_Object string_char_byte_cache_string;
719 static EMACS_INT string_char_byte_cache_charpos;
720 static EMACS_INT string_char_byte_cache_bytepos;
721
722 void
723 clear_string_char_byte_cache (void)
724 {
725 string_char_byte_cache_string = Qnil;
726 }
727
728 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
729
730 EMACS_INT
731 string_char_to_byte (Lisp_Object string, EMACS_INT char_index)
732 {
733 EMACS_INT i_byte;
734 EMACS_INT best_below, best_below_byte;
735 EMACS_INT best_above, best_above_byte;
736
737 best_below = best_below_byte = 0;
738 best_above = SCHARS (string);
739 best_above_byte = SBYTES (string);
740 if (best_above == best_above_byte)
741 return char_index;
742
743 if (EQ (string, string_char_byte_cache_string))
744 {
745 if (string_char_byte_cache_charpos < char_index)
746 {
747 best_below = string_char_byte_cache_charpos;
748 best_below_byte = string_char_byte_cache_bytepos;
749 }
750 else
751 {
752 best_above = string_char_byte_cache_charpos;
753 best_above_byte = string_char_byte_cache_bytepos;
754 }
755 }
756
757 if (char_index - best_below < best_above - char_index)
758 {
759 unsigned char *p = SDATA (string) + best_below_byte;
760
761 while (best_below < char_index)
762 {
763 p += BYTES_BY_CHAR_HEAD (*p);
764 best_below++;
765 }
766 i_byte = p - SDATA (string);
767 }
768 else
769 {
770 unsigned char *p = SDATA (string) + best_above_byte;
771
772 while (best_above > char_index)
773 {
774 p--;
775 while (!CHAR_HEAD_P (*p)) p--;
776 best_above--;
777 }
778 i_byte = p - SDATA (string);
779 }
780
781 string_char_byte_cache_bytepos = i_byte;
782 string_char_byte_cache_charpos = char_index;
783 string_char_byte_cache_string = string;
784
785 return i_byte;
786 }
787 \f
788 /* Return the character index corresponding to BYTE_INDEX in STRING. */
789
790 EMACS_INT
791 string_byte_to_char (Lisp_Object string, EMACS_INT byte_index)
792 {
793 EMACS_INT i, i_byte;
794 EMACS_INT best_below, best_below_byte;
795 EMACS_INT best_above, best_above_byte;
796
797 best_below = best_below_byte = 0;
798 best_above = SCHARS (string);
799 best_above_byte = SBYTES (string);
800 if (best_above == best_above_byte)
801 return byte_index;
802
803 if (EQ (string, string_char_byte_cache_string))
804 {
805 if (string_char_byte_cache_bytepos < byte_index)
806 {
807 best_below = string_char_byte_cache_charpos;
808 best_below_byte = string_char_byte_cache_bytepos;
809 }
810 else
811 {
812 best_above = string_char_byte_cache_charpos;
813 best_above_byte = string_char_byte_cache_bytepos;
814 }
815 }
816
817 if (byte_index - best_below_byte < best_above_byte - byte_index)
818 {
819 unsigned char *p = SDATA (string) + best_below_byte;
820 unsigned char *pend = SDATA (string) + byte_index;
821
822 while (p < pend)
823 {
824 p += BYTES_BY_CHAR_HEAD (*p);
825 best_below++;
826 }
827 i = best_below;
828 i_byte = p - SDATA (string);
829 }
830 else
831 {
832 unsigned char *p = SDATA (string) + best_above_byte;
833 unsigned char *pbeg = SDATA (string) + byte_index;
834
835 while (p > pbeg)
836 {
837 p--;
838 while (!CHAR_HEAD_P (*p)) p--;
839 best_above--;
840 }
841 i = best_above;
842 i_byte = p - SDATA (string);
843 }
844
845 string_char_byte_cache_bytepos = i_byte;
846 string_char_byte_cache_charpos = i;
847 string_char_byte_cache_string = string;
848
849 return i;
850 }
851 \f
852 /* Convert STRING to a multibyte string. */
853
854 static Lisp_Object
855 string_make_multibyte (Lisp_Object string)
856 {
857 unsigned char *buf;
858 EMACS_INT nbytes;
859 Lisp_Object ret;
860 USE_SAFE_ALLOCA;
861
862 if (STRING_MULTIBYTE (string))
863 return string;
864
865 nbytes = count_size_as_multibyte (SDATA (string),
866 SCHARS (string));
867 /* If all the chars are ASCII, they won't need any more bytes
868 once converted. In that case, we can return STRING itself. */
869 if (nbytes == SBYTES (string))
870 return string;
871
872 SAFE_ALLOCA (buf, unsigned char *, nbytes);
873 copy_text (SDATA (string), buf, SBYTES (string),
874 0, 1);
875
876 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
877 SAFE_FREE ();
878
879 return ret;
880 }
881
882
883 /* Convert STRING (if unibyte) to a multibyte string without changing
884 the number of characters. Characters 0200 trough 0237 are
885 converted to eight-bit characters. */
886
887 Lisp_Object
888 string_to_multibyte (Lisp_Object string)
889 {
890 unsigned char *buf;
891 EMACS_INT nbytes;
892 Lisp_Object ret;
893 USE_SAFE_ALLOCA;
894
895 if (STRING_MULTIBYTE (string))
896 return string;
897
898 nbytes = count_size_as_multibyte (SDATA (string), SBYTES (string));
899 /* If all the chars are ASCII, they won't need any more bytes once
900 converted. */
901 if (nbytes == SBYTES (string))
902 return make_multibyte_string (SSDATA (string), nbytes, nbytes);
903
904 SAFE_ALLOCA (buf, unsigned char *, nbytes);
905 memcpy (buf, SDATA (string), SBYTES (string));
906 str_to_multibyte (buf, nbytes, SBYTES (string));
907
908 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
909 SAFE_FREE ();
910
911 return ret;
912 }
913
914
915 /* Convert STRING to a single-byte string. */
916
917 Lisp_Object
918 string_make_unibyte (Lisp_Object string)
919 {
920 EMACS_INT nchars;
921 unsigned char *buf;
922 Lisp_Object ret;
923 USE_SAFE_ALLOCA;
924
925 if (! STRING_MULTIBYTE (string))
926 return string;
927
928 nchars = SCHARS (string);
929
930 SAFE_ALLOCA (buf, unsigned char *, nchars);
931 copy_text (SDATA (string), buf, SBYTES (string),
932 1, 0);
933
934 ret = make_unibyte_string ((char *) buf, nchars);
935 SAFE_FREE ();
936
937 return ret;
938 }
939
940 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
941 1, 1, 0,
942 doc: /* Return the multibyte equivalent of STRING.
943 If STRING is unibyte and contains non-ASCII characters, the function
944 `unibyte-char-to-multibyte' is used to convert each unibyte character
945 to a multibyte character. In this case, the returned string is a
946 newly created string with no text properties. If STRING is multibyte
947 or entirely ASCII, it is returned unchanged. In particular, when
948 STRING is unibyte and entirely ASCII, the returned string is unibyte.
949 \(When the characters are all ASCII, Emacs primitives will treat the
950 string the same way whether it is unibyte or multibyte.) */)
951 (Lisp_Object string)
952 {
953 CHECK_STRING (string);
954
955 return string_make_multibyte (string);
956 }
957
958 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
959 1, 1, 0,
960 doc: /* Return the unibyte equivalent of STRING.
961 Multibyte character codes are converted to unibyte according to
962 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
963 If the lookup in the translation table fails, this function takes just
964 the low 8 bits of each character. */)
965 (Lisp_Object string)
966 {
967 CHECK_STRING (string);
968
969 return string_make_unibyte (string);
970 }
971
972 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
973 1, 1, 0,
974 doc: /* Return a unibyte string with the same individual bytes as STRING.
975 If STRING is unibyte, the result is STRING itself.
976 Otherwise it is a newly created string, with no text properties.
977 If STRING is multibyte and contains a character of charset
978 `eight-bit', it is converted to the corresponding single byte. */)
979 (Lisp_Object string)
980 {
981 CHECK_STRING (string);
982
983 if (STRING_MULTIBYTE (string))
984 {
985 EMACS_INT bytes = SBYTES (string);
986 unsigned char *str = (unsigned char *) xmalloc (bytes);
987
988 memcpy (str, SDATA (string), bytes);
989 bytes = str_as_unibyte (str, bytes);
990 string = make_unibyte_string ((char *) str, bytes);
991 xfree (str);
992 }
993 return string;
994 }
995
996 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
997 1, 1, 0,
998 doc: /* Return a multibyte string with the same individual bytes as STRING.
999 If STRING is multibyte, the result is STRING itself.
1000 Otherwise it is a newly created string, with no text properties.
1001
1002 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1003 part of a correct utf-8 sequence), it is converted to the corresponding
1004 multibyte character of charset `eight-bit'.
1005 See also `string-to-multibyte'.
1006
1007 Beware, this often doesn't really do what you think it does.
1008 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1009 If you're not sure, whether to use `string-as-multibyte' or
1010 `string-to-multibyte', use `string-to-multibyte'. */)
1011 (Lisp_Object string)
1012 {
1013 CHECK_STRING (string);
1014
1015 if (! STRING_MULTIBYTE (string))
1016 {
1017 Lisp_Object new_string;
1018 EMACS_INT nchars, nbytes;
1019
1020 parse_str_as_multibyte (SDATA (string),
1021 SBYTES (string),
1022 &nchars, &nbytes);
1023 new_string = make_uninit_multibyte_string (nchars, nbytes);
1024 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1025 if (nbytes != SBYTES (string))
1026 str_as_multibyte (SDATA (new_string), nbytes,
1027 SBYTES (string), NULL);
1028 string = new_string;
1029 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1030 }
1031 return string;
1032 }
1033
1034 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1035 1, 1, 0,
1036 doc: /* Return a multibyte string with the same individual chars as STRING.
1037 If STRING is multibyte, the result is STRING itself.
1038 Otherwise it is a newly created string, with no text properties.
1039
1040 If STRING is unibyte and contains an 8-bit byte, it is converted to
1041 the corresponding multibyte character of charset `eight-bit'.
1042
1043 This differs from `string-as-multibyte' by converting each byte of a correct
1044 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1045 correct sequence. */)
1046 (Lisp_Object string)
1047 {
1048 CHECK_STRING (string);
1049
1050 return string_to_multibyte (string);
1051 }
1052
1053 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1054 1, 1, 0,
1055 doc: /* Return a unibyte string with the same individual chars as STRING.
1056 If STRING is unibyte, the result is STRING itself.
1057 Otherwise it is a newly created string, with no text properties,
1058 where each `eight-bit' character is converted to the corresponding byte.
1059 If STRING contains a non-ASCII, non-`eight-bit' character,
1060 an error is signaled. */)
1061 (Lisp_Object string)
1062 {
1063 CHECK_STRING (string);
1064
1065 if (STRING_MULTIBYTE (string))
1066 {
1067 EMACS_INT chars = SCHARS (string);
1068 unsigned char *str = (unsigned char *) xmalloc (chars);
1069 EMACS_INT converted = str_to_unibyte (SDATA (string), str, chars, 0);
1070
1071 if (converted < chars)
1072 error ("Can't convert the %"pI"dth character to unibyte", converted);
1073 string = make_unibyte_string ((char *) str, chars);
1074 xfree (str);
1075 }
1076 return string;
1077 }
1078
1079 \f
1080 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1081 doc: /* Return a copy of ALIST.
1082 This is an alist which represents the same mapping from objects to objects,
1083 but does not share the alist structure with ALIST.
1084 The objects mapped (cars and cdrs of elements of the alist)
1085 are shared, however.
1086 Elements of ALIST that are not conses are also shared. */)
1087 (Lisp_Object alist)
1088 {
1089 register Lisp_Object tem;
1090
1091 CHECK_LIST (alist);
1092 if (NILP (alist))
1093 return alist;
1094 alist = concat (1, &alist, Lisp_Cons, 0);
1095 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1096 {
1097 register Lisp_Object car;
1098 car = XCAR (tem);
1099
1100 if (CONSP (car))
1101 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1102 }
1103 return alist;
1104 }
1105
1106 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1107 doc: /* Return a new string whose contents are a substring of STRING.
1108 The returned string consists of the characters between index FROM
1109 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1110 zero-indexed: 0 means the first character of STRING. Negative values
1111 are counted from the end of STRING. If TO is nil, the substring runs
1112 to the end of STRING.
1113
1114 The STRING argument may also be a vector. In that case, the return
1115 value is a new vector that contains the elements between index FROM
1116 \(inclusive) and index TO (exclusive) of that vector argument. */)
1117 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1118 {
1119 Lisp_Object res;
1120 EMACS_INT size;
1121 EMACS_INT size_byte = 0;
1122 EMACS_INT from_char, to_char;
1123 EMACS_INT from_byte = 0, to_byte = 0;
1124
1125 CHECK_VECTOR_OR_STRING (string);
1126 CHECK_NUMBER (from);
1127
1128 if (STRINGP (string))
1129 {
1130 size = SCHARS (string);
1131 size_byte = SBYTES (string);
1132 }
1133 else
1134 size = ASIZE (string);
1135
1136 if (NILP (to))
1137 {
1138 to_char = size;
1139 to_byte = size_byte;
1140 }
1141 else
1142 {
1143 CHECK_NUMBER (to);
1144
1145 to_char = XINT (to);
1146 if (to_char < 0)
1147 to_char += size;
1148
1149 if (STRINGP (string))
1150 to_byte = string_char_to_byte (string, to_char);
1151 }
1152
1153 from_char = XINT (from);
1154 if (from_char < 0)
1155 from_char += size;
1156 if (STRINGP (string))
1157 from_byte = string_char_to_byte (string, from_char);
1158
1159 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1160 args_out_of_range_3 (string, make_number (from_char),
1161 make_number (to_char));
1162
1163 if (STRINGP (string))
1164 {
1165 res = make_specified_string (SSDATA (string) + from_byte,
1166 to_char - from_char, to_byte - from_byte,
1167 STRING_MULTIBYTE (string));
1168 copy_text_properties (make_number (from_char), make_number (to_char),
1169 string, make_number (0), res, Qnil);
1170 }
1171 else
1172 res = Fvector (to_char - from_char, &AREF (string, from_char));
1173
1174 return res;
1175 }
1176
1177
1178 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1179 doc: /* Return a substring of STRING, without text properties.
1180 It starts at index FROM and ends before TO.
1181 TO may be nil or omitted; then the substring runs to the end of STRING.
1182 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1183 If FROM or TO is negative, it counts from the end.
1184
1185 With one argument, just copy STRING without its properties. */)
1186 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1187 {
1188 EMACS_INT size, size_byte;
1189 EMACS_INT from_char, to_char;
1190 EMACS_INT from_byte, to_byte;
1191
1192 CHECK_STRING (string);
1193
1194 size = SCHARS (string);
1195 size_byte = SBYTES (string);
1196
1197 if (NILP (from))
1198 from_char = from_byte = 0;
1199 else
1200 {
1201 CHECK_NUMBER (from);
1202 from_char = XINT (from);
1203 if (from_char < 0)
1204 from_char += size;
1205
1206 from_byte = string_char_to_byte (string, from_char);
1207 }
1208
1209 if (NILP (to))
1210 {
1211 to_char = size;
1212 to_byte = size_byte;
1213 }
1214 else
1215 {
1216 CHECK_NUMBER (to);
1217
1218 to_char = XINT (to);
1219 if (to_char < 0)
1220 to_char += size;
1221
1222 to_byte = string_char_to_byte (string, to_char);
1223 }
1224
1225 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1226 args_out_of_range_3 (string, make_number (from_char),
1227 make_number (to_char));
1228
1229 return make_specified_string (SSDATA (string) + from_byte,
1230 to_char - from_char, to_byte - from_byte,
1231 STRING_MULTIBYTE (string));
1232 }
1233
1234 /* Extract a substring of STRING, giving start and end positions
1235 both in characters and in bytes. */
1236
1237 Lisp_Object
1238 substring_both (Lisp_Object string, EMACS_INT from, EMACS_INT from_byte,
1239 EMACS_INT to, EMACS_INT to_byte)
1240 {
1241 Lisp_Object res;
1242 EMACS_INT size;
1243
1244 CHECK_VECTOR_OR_STRING (string);
1245
1246 size = STRINGP (string) ? SCHARS (string) : ASIZE (string);
1247
1248 if (!(0 <= from && from <= to && to <= size))
1249 args_out_of_range_3 (string, make_number (from), make_number (to));
1250
1251 if (STRINGP (string))
1252 {
1253 res = make_specified_string (SSDATA (string) + from_byte,
1254 to - from, to_byte - from_byte,
1255 STRING_MULTIBYTE (string));
1256 copy_text_properties (make_number (from), make_number (to),
1257 string, make_number (0), res, Qnil);
1258 }
1259 else
1260 res = Fvector (to - from, &AREF (string, from));
1261
1262 return res;
1263 }
1264 \f
1265 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1266 doc: /* Take cdr N times on LIST, return the result. */)
1267 (Lisp_Object n, Lisp_Object list)
1268 {
1269 register int i, num;
1270 CHECK_NUMBER (n);
1271 num = XINT (n);
1272 for (i = 0; i < num && !NILP (list); i++)
1273 {
1274 QUIT;
1275 CHECK_LIST_CONS (list, list);
1276 list = XCDR (list);
1277 }
1278 return list;
1279 }
1280
1281 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1282 doc: /* Return the Nth element of LIST.
1283 N counts from zero. If LIST is not that long, nil is returned. */)
1284 (Lisp_Object n, Lisp_Object list)
1285 {
1286 return Fcar (Fnthcdr (n, list));
1287 }
1288
1289 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1290 doc: /* Return element of SEQUENCE at index N. */)
1291 (register Lisp_Object sequence, Lisp_Object n)
1292 {
1293 CHECK_NUMBER (n);
1294 if (CONSP (sequence) || NILP (sequence))
1295 return Fcar (Fnthcdr (n, sequence));
1296
1297 /* Faref signals a "not array" error, so check here. */
1298 CHECK_ARRAY (sequence, Qsequencep);
1299 return Faref (sequence, n);
1300 }
1301
1302 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1303 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1304 The value is actually the tail of LIST whose car is ELT. */)
1305 (register Lisp_Object elt, Lisp_Object list)
1306 {
1307 register Lisp_Object tail;
1308 for (tail = list; CONSP (tail); tail = XCDR (tail))
1309 {
1310 register Lisp_Object tem;
1311 CHECK_LIST_CONS (tail, list);
1312 tem = XCAR (tail);
1313 if (! NILP (Fequal (elt, tem)))
1314 return tail;
1315 QUIT;
1316 }
1317 return Qnil;
1318 }
1319
1320 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1321 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1322 The value is actually the tail of LIST whose car is ELT. */)
1323 (register Lisp_Object elt, Lisp_Object list)
1324 {
1325 while (1)
1326 {
1327 if (!CONSP (list) || EQ (XCAR (list), elt))
1328 break;
1329
1330 list = XCDR (list);
1331 if (!CONSP (list) || EQ (XCAR (list), elt))
1332 break;
1333
1334 list = XCDR (list);
1335 if (!CONSP (list) || EQ (XCAR (list), elt))
1336 break;
1337
1338 list = XCDR (list);
1339 QUIT;
1340 }
1341
1342 CHECK_LIST (list);
1343 return list;
1344 }
1345
1346 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1347 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1348 The value is actually the tail of LIST whose car is ELT. */)
1349 (register Lisp_Object elt, Lisp_Object list)
1350 {
1351 register Lisp_Object tail;
1352
1353 if (!FLOATP (elt))
1354 return Fmemq (elt, list);
1355
1356 for (tail = list; CONSP (tail); tail = XCDR (tail))
1357 {
1358 register Lisp_Object tem;
1359 CHECK_LIST_CONS (tail, list);
1360 tem = XCAR (tail);
1361 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1362 return tail;
1363 QUIT;
1364 }
1365 return Qnil;
1366 }
1367
1368 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1369 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1370 The value is actually the first element of LIST whose car is KEY.
1371 Elements of LIST that are not conses are ignored. */)
1372 (Lisp_Object key, Lisp_Object list)
1373 {
1374 while (1)
1375 {
1376 if (!CONSP (list)
1377 || (CONSP (XCAR (list))
1378 && EQ (XCAR (XCAR (list)), key)))
1379 break;
1380
1381 list = XCDR (list);
1382 if (!CONSP (list)
1383 || (CONSP (XCAR (list))
1384 && EQ (XCAR (XCAR (list)), key)))
1385 break;
1386
1387 list = XCDR (list);
1388 if (!CONSP (list)
1389 || (CONSP (XCAR (list))
1390 && EQ (XCAR (XCAR (list)), key)))
1391 break;
1392
1393 list = XCDR (list);
1394 QUIT;
1395 }
1396
1397 return CAR (list);
1398 }
1399
1400 /* Like Fassq but never report an error and do not allow quits.
1401 Use only on lists known never to be circular. */
1402
1403 Lisp_Object
1404 assq_no_quit (Lisp_Object key, Lisp_Object list)
1405 {
1406 while (CONSP (list)
1407 && (!CONSP (XCAR (list))
1408 || !EQ (XCAR (XCAR (list)), key)))
1409 list = XCDR (list);
1410
1411 return CAR_SAFE (list);
1412 }
1413
1414 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1415 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1416 The value is actually the first element of LIST whose car equals KEY. */)
1417 (Lisp_Object key, Lisp_Object list)
1418 {
1419 Lisp_Object car;
1420
1421 while (1)
1422 {
1423 if (!CONSP (list)
1424 || (CONSP (XCAR (list))
1425 && (car = XCAR (XCAR (list)),
1426 EQ (car, key) || !NILP (Fequal (car, key)))))
1427 break;
1428
1429 list = XCDR (list);
1430 if (!CONSP (list)
1431 || (CONSP (XCAR (list))
1432 && (car = XCAR (XCAR (list)),
1433 EQ (car, key) || !NILP (Fequal (car, key)))))
1434 break;
1435
1436 list = XCDR (list);
1437 if (!CONSP (list)
1438 || (CONSP (XCAR (list))
1439 && (car = XCAR (XCAR (list)),
1440 EQ (car, key) || !NILP (Fequal (car, key)))))
1441 break;
1442
1443 list = XCDR (list);
1444 QUIT;
1445 }
1446
1447 return CAR (list);
1448 }
1449
1450 /* Like Fassoc but never report an error and do not allow quits.
1451 Use only on lists known never to be circular. */
1452
1453 Lisp_Object
1454 assoc_no_quit (Lisp_Object key, Lisp_Object list)
1455 {
1456 while (CONSP (list)
1457 && (!CONSP (XCAR (list))
1458 || (!EQ (XCAR (XCAR (list)), key)
1459 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1460 list = XCDR (list);
1461
1462 return CONSP (list) ? XCAR (list) : Qnil;
1463 }
1464
1465 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1466 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1467 The value is actually the first element of LIST whose cdr is KEY. */)
1468 (register Lisp_Object key, Lisp_Object list)
1469 {
1470 while (1)
1471 {
1472 if (!CONSP (list)
1473 || (CONSP (XCAR (list))
1474 && EQ (XCDR (XCAR (list)), key)))
1475 break;
1476
1477 list = XCDR (list);
1478 if (!CONSP (list)
1479 || (CONSP (XCAR (list))
1480 && EQ (XCDR (XCAR (list)), key)))
1481 break;
1482
1483 list = XCDR (list);
1484 if (!CONSP (list)
1485 || (CONSP (XCAR (list))
1486 && EQ (XCDR (XCAR (list)), key)))
1487 break;
1488
1489 list = XCDR (list);
1490 QUIT;
1491 }
1492
1493 return CAR (list);
1494 }
1495
1496 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1497 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1498 The value is actually the first element of LIST whose cdr equals KEY. */)
1499 (Lisp_Object key, Lisp_Object list)
1500 {
1501 Lisp_Object cdr;
1502
1503 while (1)
1504 {
1505 if (!CONSP (list)
1506 || (CONSP (XCAR (list))
1507 && (cdr = XCDR (XCAR (list)),
1508 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1509 break;
1510
1511 list = XCDR (list);
1512 if (!CONSP (list)
1513 || (CONSP (XCAR (list))
1514 && (cdr = XCDR (XCAR (list)),
1515 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1516 break;
1517
1518 list = XCDR (list);
1519 if (!CONSP (list)
1520 || (CONSP (XCAR (list))
1521 && (cdr = XCDR (XCAR (list)),
1522 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1523 break;
1524
1525 list = XCDR (list);
1526 QUIT;
1527 }
1528
1529 return CAR (list);
1530 }
1531 \f
1532 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1533 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1534 The modified LIST is returned. Comparison is done with `eq'.
1535 If the first member of LIST is ELT, there is no way to remove it by side effect;
1536 therefore, write `(setq foo (delq element foo))'
1537 to be sure of changing the value of `foo'. */)
1538 (register Lisp_Object elt, Lisp_Object list)
1539 {
1540 register Lisp_Object tail, prev;
1541 register Lisp_Object tem;
1542
1543 tail = list;
1544 prev = Qnil;
1545 while (!NILP (tail))
1546 {
1547 CHECK_LIST_CONS (tail, list);
1548 tem = XCAR (tail);
1549 if (EQ (elt, tem))
1550 {
1551 if (NILP (prev))
1552 list = XCDR (tail);
1553 else
1554 Fsetcdr (prev, XCDR (tail));
1555 }
1556 else
1557 prev = tail;
1558 tail = XCDR (tail);
1559 QUIT;
1560 }
1561 return list;
1562 }
1563
1564 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1565 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1566 SEQ must be a list, a vector, or a string.
1567 The modified SEQ is returned. Comparison is done with `equal'.
1568 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1569 is not a side effect; it is simply using a different sequence.
1570 Therefore, write `(setq foo (delete element foo))'
1571 to be sure of changing the value of `foo'. */)
1572 (Lisp_Object elt, Lisp_Object seq)
1573 {
1574 if (VECTORP (seq))
1575 {
1576 EMACS_INT i, n;
1577
1578 for (i = n = 0; i < ASIZE (seq); ++i)
1579 if (NILP (Fequal (AREF (seq, i), elt)))
1580 ++n;
1581
1582 if (n != ASIZE (seq))
1583 {
1584 struct Lisp_Vector *p = allocate_vector (n);
1585
1586 for (i = n = 0; i < ASIZE (seq); ++i)
1587 if (NILP (Fequal (AREF (seq, i), elt)))
1588 p->contents[n++] = AREF (seq, i);
1589
1590 XSETVECTOR (seq, p);
1591 }
1592 }
1593 else if (STRINGP (seq))
1594 {
1595 EMACS_INT i, ibyte, nchars, nbytes, cbytes;
1596 int c;
1597
1598 for (i = nchars = nbytes = ibyte = 0;
1599 i < SCHARS (seq);
1600 ++i, ibyte += cbytes)
1601 {
1602 if (STRING_MULTIBYTE (seq))
1603 {
1604 c = STRING_CHAR (SDATA (seq) + ibyte);
1605 cbytes = CHAR_BYTES (c);
1606 }
1607 else
1608 {
1609 c = SREF (seq, i);
1610 cbytes = 1;
1611 }
1612
1613 if (!INTEGERP (elt) || c != XINT (elt))
1614 {
1615 ++nchars;
1616 nbytes += cbytes;
1617 }
1618 }
1619
1620 if (nchars != SCHARS (seq))
1621 {
1622 Lisp_Object tem;
1623
1624 tem = make_uninit_multibyte_string (nchars, nbytes);
1625 if (!STRING_MULTIBYTE (seq))
1626 STRING_SET_UNIBYTE (tem);
1627
1628 for (i = nchars = nbytes = ibyte = 0;
1629 i < SCHARS (seq);
1630 ++i, ibyte += cbytes)
1631 {
1632 if (STRING_MULTIBYTE (seq))
1633 {
1634 c = STRING_CHAR (SDATA (seq) + ibyte);
1635 cbytes = CHAR_BYTES (c);
1636 }
1637 else
1638 {
1639 c = SREF (seq, i);
1640 cbytes = 1;
1641 }
1642
1643 if (!INTEGERP (elt) || c != XINT (elt))
1644 {
1645 unsigned char *from = SDATA (seq) + ibyte;
1646 unsigned char *to = SDATA (tem) + nbytes;
1647 EMACS_INT n;
1648
1649 ++nchars;
1650 nbytes += cbytes;
1651
1652 for (n = cbytes; n--; )
1653 *to++ = *from++;
1654 }
1655 }
1656
1657 seq = tem;
1658 }
1659 }
1660 else
1661 {
1662 Lisp_Object tail, prev;
1663
1664 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1665 {
1666 CHECK_LIST_CONS (tail, seq);
1667
1668 if (!NILP (Fequal (elt, XCAR (tail))))
1669 {
1670 if (NILP (prev))
1671 seq = XCDR (tail);
1672 else
1673 Fsetcdr (prev, XCDR (tail));
1674 }
1675 else
1676 prev = tail;
1677 QUIT;
1678 }
1679 }
1680
1681 return seq;
1682 }
1683
1684 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1685 doc: /* Reverse LIST by modifying cdr pointers.
1686 Return the reversed list. */)
1687 (Lisp_Object list)
1688 {
1689 register Lisp_Object prev, tail, next;
1690
1691 if (NILP (list)) return list;
1692 prev = Qnil;
1693 tail = list;
1694 while (!NILP (tail))
1695 {
1696 QUIT;
1697 CHECK_LIST_CONS (tail, list);
1698 next = XCDR (tail);
1699 Fsetcdr (tail, prev);
1700 prev = tail;
1701 tail = next;
1702 }
1703 return prev;
1704 }
1705
1706 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1707 doc: /* Reverse LIST, copying. Return the reversed list.
1708 See also the function `nreverse', which is used more often. */)
1709 (Lisp_Object list)
1710 {
1711 Lisp_Object new;
1712
1713 for (new = Qnil; CONSP (list); list = XCDR (list))
1714 {
1715 QUIT;
1716 new = Fcons (XCAR (list), new);
1717 }
1718 CHECK_LIST_END (list, list);
1719 return new;
1720 }
1721 \f
1722 Lisp_Object merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred);
1723
1724 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1725 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1726 Returns the sorted list. LIST is modified by side effects.
1727 PREDICATE is called with two elements of LIST, and should return non-nil
1728 if the first element should sort before the second. */)
1729 (Lisp_Object list, Lisp_Object predicate)
1730 {
1731 Lisp_Object front, back;
1732 register Lisp_Object len, tem;
1733 struct gcpro gcpro1, gcpro2;
1734 register int length;
1735
1736 front = list;
1737 len = Flength (list);
1738 length = XINT (len);
1739 if (length < 2)
1740 return list;
1741
1742 XSETINT (len, (length / 2) - 1);
1743 tem = Fnthcdr (len, list);
1744 back = Fcdr (tem);
1745 Fsetcdr (tem, Qnil);
1746
1747 GCPRO2 (front, back);
1748 front = Fsort (front, predicate);
1749 back = Fsort (back, predicate);
1750 UNGCPRO;
1751 return merge (front, back, predicate);
1752 }
1753
1754 Lisp_Object
1755 merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
1756 {
1757 Lisp_Object value;
1758 register Lisp_Object tail;
1759 Lisp_Object tem;
1760 register Lisp_Object l1, l2;
1761 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1762
1763 l1 = org_l1;
1764 l2 = org_l2;
1765 tail = Qnil;
1766 value = Qnil;
1767
1768 /* It is sufficient to protect org_l1 and org_l2.
1769 When l1 and l2 are updated, we copy the new values
1770 back into the org_ vars. */
1771 GCPRO4 (org_l1, org_l2, pred, value);
1772
1773 while (1)
1774 {
1775 if (NILP (l1))
1776 {
1777 UNGCPRO;
1778 if (NILP (tail))
1779 return l2;
1780 Fsetcdr (tail, l2);
1781 return value;
1782 }
1783 if (NILP (l2))
1784 {
1785 UNGCPRO;
1786 if (NILP (tail))
1787 return l1;
1788 Fsetcdr (tail, l1);
1789 return value;
1790 }
1791 tem = call2 (pred, Fcar (l2), Fcar (l1));
1792 if (NILP (tem))
1793 {
1794 tem = l1;
1795 l1 = Fcdr (l1);
1796 org_l1 = l1;
1797 }
1798 else
1799 {
1800 tem = l2;
1801 l2 = Fcdr (l2);
1802 org_l2 = l2;
1803 }
1804 if (NILP (tail))
1805 value = tem;
1806 else
1807 Fsetcdr (tail, tem);
1808 tail = tem;
1809 }
1810 }
1811
1812 \f
1813 /* This does not check for quits. That is safe since it must terminate. */
1814
1815 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1816 doc: /* Extract a value from a property list.
1817 PLIST is a property list, which is a list of the form
1818 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1819 corresponding to the given PROP, or nil if PROP is not one of the
1820 properties on the list. This function never signals an error. */)
1821 (Lisp_Object plist, Lisp_Object prop)
1822 {
1823 Lisp_Object tail, halftail;
1824
1825 /* halftail is used to detect circular lists. */
1826 tail = halftail = plist;
1827 while (CONSP (tail) && CONSP (XCDR (tail)))
1828 {
1829 if (EQ (prop, XCAR (tail)))
1830 return XCAR (XCDR (tail));
1831
1832 tail = XCDR (XCDR (tail));
1833 halftail = XCDR (halftail);
1834 if (EQ (tail, halftail))
1835 break;
1836
1837 #if 0 /* Unsafe version. */
1838 /* This function can be called asynchronously
1839 (setup_coding_system). Don't QUIT in that case. */
1840 if (!interrupt_input_blocked)
1841 QUIT;
1842 #endif
1843 }
1844
1845 return Qnil;
1846 }
1847
1848 DEFUN ("get", Fget, Sget, 2, 2, 0,
1849 doc: /* Return the value of SYMBOL's PROPNAME property.
1850 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1851 (Lisp_Object symbol, Lisp_Object propname)
1852 {
1853 CHECK_SYMBOL (symbol);
1854 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1855 }
1856
1857 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1858 doc: /* Change value in PLIST of PROP to VAL.
1859 PLIST is a property list, which is a list of the form
1860 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1861 If PROP is already a property on the list, its value is set to VAL,
1862 otherwise the new PROP VAL pair is added. The new plist is returned;
1863 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1864 The PLIST is modified by side effects. */)
1865 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1866 {
1867 register Lisp_Object tail, prev;
1868 Lisp_Object newcell;
1869 prev = Qnil;
1870 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1871 tail = XCDR (XCDR (tail)))
1872 {
1873 if (EQ (prop, XCAR (tail)))
1874 {
1875 Fsetcar (XCDR (tail), val);
1876 return plist;
1877 }
1878
1879 prev = tail;
1880 QUIT;
1881 }
1882 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
1883 if (NILP (prev))
1884 return newcell;
1885 else
1886 Fsetcdr (XCDR (prev), newcell);
1887 return plist;
1888 }
1889
1890 DEFUN ("put", Fput, Sput, 3, 3, 0,
1891 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
1892 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1893 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
1894 {
1895 CHECK_SYMBOL (symbol);
1896 XSYMBOL (symbol)->plist
1897 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
1898 return value;
1899 }
1900 \f
1901 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
1902 doc: /* Extract a value from a property list, comparing with `equal'.
1903 PLIST is a property list, which is a list of the form
1904 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1905 corresponding to the given PROP, or nil if PROP is not
1906 one of the properties on the list. */)
1907 (Lisp_Object plist, Lisp_Object prop)
1908 {
1909 Lisp_Object tail;
1910
1911 for (tail = plist;
1912 CONSP (tail) && CONSP (XCDR (tail));
1913 tail = XCDR (XCDR (tail)))
1914 {
1915 if (! NILP (Fequal (prop, XCAR (tail))))
1916 return XCAR (XCDR (tail));
1917
1918 QUIT;
1919 }
1920
1921 CHECK_LIST_END (tail, prop);
1922
1923 return Qnil;
1924 }
1925
1926 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
1927 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1928 PLIST is a property list, which is a list of the form
1929 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1930 If PROP is already a property on the list, its value is set to VAL,
1931 otherwise the new PROP VAL pair is added. The new plist is returned;
1932 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1933 The PLIST is modified by side effects. */)
1934 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1935 {
1936 register Lisp_Object tail, prev;
1937 Lisp_Object newcell;
1938 prev = Qnil;
1939 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1940 tail = XCDR (XCDR (tail)))
1941 {
1942 if (! NILP (Fequal (prop, XCAR (tail))))
1943 {
1944 Fsetcar (XCDR (tail), val);
1945 return plist;
1946 }
1947
1948 prev = tail;
1949 QUIT;
1950 }
1951 newcell = Fcons (prop, Fcons (val, Qnil));
1952 if (NILP (prev))
1953 return newcell;
1954 else
1955 Fsetcdr (XCDR (prev), newcell);
1956 return plist;
1957 }
1958 \f
1959 DEFUN ("eql", Feql, Seql, 2, 2, 0,
1960 doc: /* Return t if the two args are the same Lisp object.
1961 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
1962 (Lisp_Object obj1, Lisp_Object obj2)
1963 {
1964 if (FLOATP (obj1))
1965 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
1966 else
1967 return EQ (obj1, obj2) ? Qt : Qnil;
1968 }
1969
1970 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
1971 doc: /* Return t if two Lisp objects have similar structure and contents.
1972 They must have the same data type.
1973 Conses are compared by comparing the cars and the cdrs.
1974 Vectors and strings are compared element by element.
1975 Numbers are compared by value, but integers cannot equal floats.
1976 (Use `=' if you want integers and floats to be able to be equal.)
1977 Symbols must match exactly. */)
1978 (register Lisp_Object o1, Lisp_Object o2)
1979 {
1980 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
1981 }
1982
1983 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
1984 doc: /* Return t if two Lisp objects have similar structure and contents.
1985 This is like `equal' except that it compares the text properties
1986 of strings. (`equal' ignores text properties.) */)
1987 (register Lisp_Object o1, Lisp_Object o2)
1988 {
1989 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
1990 }
1991
1992 /* DEPTH is current depth of recursion. Signal an error if it
1993 gets too deep.
1994 PROPS, if non-nil, means compare string text properties too. */
1995
1996 static int
1997 internal_equal (register Lisp_Object o1, register Lisp_Object o2, int depth, int props)
1998 {
1999 if (depth > 200)
2000 error ("Stack overflow in equal");
2001
2002 tail_recurse:
2003 QUIT;
2004 if (EQ (o1, o2))
2005 return 1;
2006 if (XTYPE (o1) != XTYPE (o2))
2007 return 0;
2008
2009 switch (XTYPE (o1))
2010 {
2011 case Lisp_Float:
2012 {
2013 double d1, d2;
2014
2015 d1 = extract_float (o1);
2016 d2 = extract_float (o2);
2017 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2018 though they are not =. */
2019 return d1 == d2 || (d1 != d1 && d2 != d2);
2020 }
2021
2022 case Lisp_Cons:
2023 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2024 return 0;
2025 o1 = XCDR (o1);
2026 o2 = XCDR (o2);
2027 goto tail_recurse;
2028
2029 case Lisp_Misc:
2030 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2031 return 0;
2032 if (OVERLAYP (o1))
2033 {
2034 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2035 depth + 1, props)
2036 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2037 depth + 1, props))
2038 return 0;
2039 o1 = XOVERLAY (o1)->plist;
2040 o2 = XOVERLAY (o2)->plist;
2041 goto tail_recurse;
2042 }
2043 if (MARKERP (o1))
2044 {
2045 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2046 && (XMARKER (o1)->buffer == 0
2047 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2048 }
2049 break;
2050
2051 case Lisp_Vectorlike:
2052 {
2053 register int i;
2054 EMACS_INT size = ASIZE (o1);
2055 /* Pseudovectors have the type encoded in the size field, so this test
2056 actually checks that the objects have the same type as well as the
2057 same size. */
2058 if (ASIZE (o2) != size)
2059 return 0;
2060 /* Boolvectors are compared much like strings. */
2061 if (BOOL_VECTOR_P (o1))
2062 {
2063 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2064 return 0;
2065 if (memcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2066 ((XBOOL_VECTOR (o1)->size
2067 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2068 / BOOL_VECTOR_BITS_PER_CHAR)))
2069 return 0;
2070 return 1;
2071 }
2072 if (WINDOW_CONFIGURATIONP (o1))
2073 return compare_window_configurations (o1, o2, 0);
2074
2075 /* Aside from them, only true vectors, char-tables, compiled
2076 functions, and fonts (font-spec, font-entity, font-object)
2077 are sensible to compare, so eliminate the others now. */
2078 if (size & PSEUDOVECTOR_FLAG)
2079 {
2080 if (!(size & (PVEC_COMPILED
2081 | PVEC_CHAR_TABLE | PVEC_SUB_CHAR_TABLE | PVEC_FONT)))
2082 return 0;
2083 size &= PSEUDOVECTOR_SIZE_MASK;
2084 }
2085 for (i = 0; i < size; i++)
2086 {
2087 Lisp_Object v1, v2;
2088 v1 = AREF (o1, i);
2089 v2 = AREF (o2, i);
2090 if (!internal_equal (v1, v2, depth + 1, props))
2091 return 0;
2092 }
2093 return 1;
2094 }
2095 break;
2096
2097 case Lisp_String:
2098 if (SCHARS (o1) != SCHARS (o2))
2099 return 0;
2100 if (SBYTES (o1) != SBYTES (o2))
2101 return 0;
2102 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2103 return 0;
2104 if (props && !compare_string_intervals (o1, o2))
2105 return 0;
2106 return 1;
2107
2108 default:
2109 break;
2110 }
2111
2112 return 0;
2113 }
2114 \f
2115
2116 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2117 doc: /* Store each element of ARRAY with ITEM.
2118 ARRAY is a vector, string, char-table, or bool-vector. */)
2119 (Lisp_Object array, Lisp_Object item)
2120 {
2121 register EMACS_INT size, idx;
2122 int charval;
2123
2124 if (VECTORP (array))
2125 {
2126 register Lisp_Object *p = XVECTOR (array)->contents;
2127 size = ASIZE (array);
2128 for (idx = 0; idx < size; idx++)
2129 p[idx] = item;
2130 }
2131 else if (CHAR_TABLE_P (array))
2132 {
2133 int i;
2134
2135 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2136 XCHAR_TABLE (array)->contents[i] = item;
2137 XCHAR_TABLE (array)->defalt = item;
2138 }
2139 else if (STRINGP (array))
2140 {
2141 register unsigned char *p = SDATA (array);
2142 CHECK_NUMBER (item);
2143 charval = XINT (item);
2144 size = SCHARS (array);
2145 if (STRING_MULTIBYTE (array))
2146 {
2147 unsigned char str[MAX_MULTIBYTE_LENGTH];
2148 int len = CHAR_STRING (charval, str);
2149 EMACS_INT size_byte = SBYTES (array);
2150 unsigned char *p1 = p, *endp = p + size_byte;
2151 int i;
2152
2153 if (size != size_byte)
2154 while (p1 < endp)
2155 {
2156 int this_len = BYTES_BY_CHAR_HEAD (*p1);
2157 if (len != this_len)
2158 error ("Attempt to change byte length of a string");
2159 p1 += this_len;
2160 }
2161 for (i = 0; i < size_byte; i++)
2162 *p++ = str[i % len];
2163 }
2164 else
2165 for (idx = 0; idx < size; idx++)
2166 p[idx] = charval;
2167 }
2168 else if (BOOL_VECTOR_P (array))
2169 {
2170 register unsigned char *p = XBOOL_VECTOR (array)->data;
2171 int size_in_chars
2172 = ((XBOOL_VECTOR (array)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2173 / BOOL_VECTOR_BITS_PER_CHAR);
2174
2175 charval = (! NILP (item) ? -1 : 0);
2176 for (idx = 0; idx < size_in_chars - 1; idx++)
2177 p[idx] = charval;
2178 if (idx < size_in_chars)
2179 {
2180 /* Mask out bits beyond the vector size. */
2181 if (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)
2182 charval &= (1 << (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2183 p[idx] = charval;
2184 }
2185 }
2186 else
2187 wrong_type_argument (Qarrayp, array);
2188 return array;
2189 }
2190
2191 DEFUN ("clear-string", Fclear_string, Sclear_string,
2192 1, 1, 0,
2193 doc: /* Clear the contents of STRING.
2194 This makes STRING unibyte and may change its length. */)
2195 (Lisp_Object string)
2196 {
2197 EMACS_INT len;
2198 CHECK_STRING (string);
2199 len = SBYTES (string);
2200 memset (SDATA (string), 0, len);
2201 STRING_SET_CHARS (string, len);
2202 STRING_SET_UNIBYTE (string);
2203 return Qnil;
2204 }
2205 \f
2206 /* ARGSUSED */
2207 Lisp_Object
2208 nconc2 (Lisp_Object s1, Lisp_Object s2)
2209 {
2210 Lisp_Object args[2];
2211 args[0] = s1;
2212 args[1] = s2;
2213 return Fnconc (2, args);
2214 }
2215
2216 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2217 doc: /* Concatenate any number of lists by altering them.
2218 Only the last argument is not altered, and need not be a list.
2219 usage: (nconc &rest LISTS) */)
2220 (size_t nargs, Lisp_Object *args)
2221 {
2222 register size_t argnum;
2223 register Lisp_Object tail, tem, val;
2224
2225 val = tail = Qnil;
2226
2227 for (argnum = 0; argnum < nargs; argnum++)
2228 {
2229 tem = args[argnum];
2230 if (NILP (tem)) continue;
2231
2232 if (NILP (val))
2233 val = tem;
2234
2235 if (argnum + 1 == nargs) break;
2236
2237 CHECK_LIST_CONS (tem, tem);
2238
2239 while (CONSP (tem))
2240 {
2241 tail = tem;
2242 tem = XCDR (tail);
2243 QUIT;
2244 }
2245
2246 tem = args[argnum + 1];
2247 Fsetcdr (tail, tem);
2248 if (NILP (tem))
2249 args[argnum + 1] = tail;
2250 }
2251
2252 return val;
2253 }
2254 \f
2255 /* This is the guts of all mapping functions.
2256 Apply FN to each element of SEQ, one by one,
2257 storing the results into elements of VALS, a C vector of Lisp_Objects.
2258 LENI is the length of VALS, which should also be the length of SEQ. */
2259
2260 static void
2261 mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2262 {
2263 register Lisp_Object tail;
2264 Lisp_Object dummy;
2265 register EMACS_INT i;
2266 struct gcpro gcpro1, gcpro2, gcpro3;
2267
2268 if (vals)
2269 {
2270 /* Don't let vals contain any garbage when GC happens. */
2271 for (i = 0; i < leni; i++)
2272 vals[i] = Qnil;
2273
2274 GCPRO3 (dummy, fn, seq);
2275 gcpro1.var = vals;
2276 gcpro1.nvars = leni;
2277 }
2278 else
2279 GCPRO2 (fn, seq);
2280 /* We need not explicitly protect `tail' because it is used only on lists, and
2281 1) lists are not relocated and 2) the list is marked via `seq' so will not
2282 be freed */
2283
2284 if (VECTORP (seq) || COMPILEDP (seq))
2285 {
2286 for (i = 0; i < leni; i++)
2287 {
2288 dummy = call1 (fn, AREF (seq, i));
2289 if (vals)
2290 vals[i] = dummy;
2291 }
2292 }
2293 else if (BOOL_VECTOR_P (seq))
2294 {
2295 for (i = 0; i < leni; i++)
2296 {
2297 int byte;
2298 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2299 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
2300 dummy = call1 (fn, dummy);
2301 if (vals)
2302 vals[i] = dummy;
2303 }
2304 }
2305 else if (STRINGP (seq))
2306 {
2307 EMACS_INT i_byte;
2308
2309 for (i = 0, i_byte = 0; i < leni;)
2310 {
2311 int c;
2312 EMACS_INT i_before = i;
2313
2314 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2315 XSETFASTINT (dummy, c);
2316 dummy = call1 (fn, dummy);
2317 if (vals)
2318 vals[i_before] = dummy;
2319 }
2320 }
2321 else /* Must be a list, since Flength did not get an error */
2322 {
2323 tail = seq;
2324 for (i = 0; i < leni && CONSP (tail); i++)
2325 {
2326 dummy = call1 (fn, XCAR (tail));
2327 if (vals)
2328 vals[i] = dummy;
2329 tail = XCDR (tail);
2330 }
2331 }
2332
2333 UNGCPRO;
2334 }
2335
2336 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2337 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2338 In between each pair of results, stick in SEPARATOR. Thus, " " as
2339 SEPARATOR results in spaces between the values returned by FUNCTION.
2340 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2341 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2342 {
2343 Lisp_Object len;
2344 register EMACS_INT leni;
2345 int nargs;
2346 register Lisp_Object *args;
2347 register EMACS_INT i;
2348 struct gcpro gcpro1;
2349 Lisp_Object ret;
2350 USE_SAFE_ALLOCA;
2351
2352 len = Flength (sequence);
2353 if (CHAR_TABLE_P (sequence))
2354 wrong_type_argument (Qlistp, sequence);
2355 leni = XINT (len);
2356 nargs = leni + leni - 1;
2357 if (nargs < 0) return empty_unibyte_string;
2358
2359 SAFE_ALLOCA_LISP (args, nargs);
2360
2361 GCPRO1 (separator);
2362 mapcar1 (leni, args, function, sequence);
2363 UNGCPRO;
2364
2365 for (i = leni - 1; i > 0; i--)
2366 args[i + i] = args[i];
2367
2368 for (i = 1; i < nargs; i += 2)
2369 args[i] = separator;
2370
2371 ret = Fconcat (nargs, args);
2372 SAFE_FREE ();
2373
2374 return ret;
2375 }
2376
2377 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2378 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2379 The result is a list just as long as SEQUENCE.
2380 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2381 (Lisp_Object function, Lisp_Object sequence)
2382 {
2383 register Lisp_Object len;
2384 register EMACS_INT leni;
2385 register Lisp_Object *args;
2386 Lisp_Object ret;
2387 USE_SAFE_ALLOCA;
2388
2389 len = Flength (sequence);
2390 if (CHAR_TABLE_P (sequence))
2391 wrong_type_argument (Qlistp, sequence);
2392 leni = XFASTINT (len);
2393
2394 SAFE_ALLOCA_LISP (args, leni);
2395
2396 mapcar1 (leni, args, function, sequence);
2397
2398 ret = Flist (leni, args);
2399 SAFE_FREE ();
2400
2401 return ret;
2402 }
2403
2404 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2405 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2406 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2407 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2408 (Lisp_Object function, Lisp_Object sequence)
2409 {
2410 register EMACS_INT leni;
2411
2412 leni = XFASTINT (Flength (sequence));
2413 if (CHAR_TABLE_P (sequence))
2414 wrong_type_argument (Qlistp, sequence);
2415 mapcar1 (leni, 0, function, sequence);
2416
2417 return sequence;
2418 }
2419 \f
2420 /* This is how C code calls `yes-or-no-p' and allows the user
2421 to redefined it.
2422
2423 Anything that calls this function must protect from GC! */
2424
2425 Lisp_Object
2426 do_yes_or_no_p (Lisp_Object prompt)
2427 {
2428 return call1 (intern ("yes-or-no-p"), prompt);
2429 }
2430
2431 /* Anything that calls this function must protect from GC! */
2432
2433 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2434 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2435 PROMPT is the string to display to ask the question. It should end in
2436 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2437
2438 The user must confirm the answer with RET, and can edit it until it
2439 has been confirmed.
2440
2441 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2442 is nil, and `use-dialog-box' is non-nil. */)
2443 (Lisp_Object prompt)
2444 {
2445 register Lisp_Object ans;
2446 Lisp_Object args[2];
2447 struct gcpro gcpro1;
2448
2449 CHECK_STRING (prompt);
2450
2451 #ifdef HAVE_MENUS
2452 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2453 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2454 && use_dialog_box
2455 && have_menus_p ())
2456 {
2457 Lisp_Object pane, menu, obj;
2458 redisplay_preserve_echo_area (4);
2459 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2460 Fcons (Fcons (build_string ("No"), Qnil),
2461 Qnil));
2462 GCPRO1 (pane);
2463 menu = Fcons (prompt, pane);
2464 obj = Fx_popup_dialog (Qt, menu, Qnil);
2465 UNGCPRO;
2466 return obj;
2467 }
2468 #endif /* HAVE_MENUS */
2469
2470 args[0] = prompt;
2471 args[1] = build_string ("(yes or no) ");
2472 prompt = Fconcat (2, args);
2473
2474 GCPRO1 (prompt);
2475
2476 while (1)
2477 {
2478 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2479 Qyes_or_no_p_history, Qnil,
2480 Qnil));
2481 if (SCHARS (ans) == 3 && !strcmp (SSDATA (ans), "yes"))
2482 {
2483 UNGCPRO;
2484 return Qt;
2485 }
2486 if (SCHARS (ans) == 2 && !strcmp (SSDATA (ans), "no"))
2487 {
2488 UNGCPRO;
2489 return Qnil;
2490 }
2491
2492 Fding (Qnil);
2493 Fdiscard_input ();
2494 message ("Please answer yes or no.");
2495 Fsleep_for (make_number (2), Qnil);
2496 }
2497 }
2498 \f
2499 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2500 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2501
2502 Each of the three load averages is multiplied by 100, then converted
2503 to integer.
2504
2505 When USE-FLOATS is non-nil, floats will be used instead of integers.
2506 These floats are not multiplied by 100.
2507
2508 If the 5-minute or 15-minute load averages are not available, return a
2509 shortened list, containing only those averages which are available.
2510
2511 An error is thrown if the load average can't be obtained. In some
2512 cases making it work would require Emacs being installed setuid or
2513 setgid so that it can read kernel information, and that usually isn't
2514 advisable. */)
2515 (Lisp_Object use_floats)
2516 {
2517 double load_ave[3];
2518 int loads = getloadavg (load_ave, 3);
2519 Lisp_Object ret = Qnil;
2520
2521 if (loads < 0)
2522 error ("load-average not implemented for this operating system");
2523
2524 while (loads-- > 0)
2525 {
2526 Lisp_Object load = (NILP (use_floats) ?
2527 make_number ((int) (100.0 * load_ave[loads]))
2528 : make_float (load_ave[loads]));
2529 ret = Fcons (load, ret);
2530 }
2531
2532 return ret;
2533 }
2534 \f
2535 static Lisp_Object Qsubfeatures;
2536
2537 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2538 doc: /* Return t if FEATURE is present in this Emacs.
2539
2540 Use this to conditionalize execution of lisp code based on the
2541 presence or absence of Emacs or environment extensions.
2542 Use `provide' to declare that a feature is available. This function
2543 looks at the value of the variable `features'. The optional argument
2544 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2545 (Lisp_Object feature, Lisp_Object subfeature)
2546 {
2547 register Lisp_Object tem;
2548 CHECK_SYMBOL (feature);
2549 tem = Fmemq (feature, Vfeatures);
2550 if (!NILP (tem) && !NILP (subfeature))
2551 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2552 return (NILP (tem)) ? Qnil : Qt;
2553 }
2554
2555 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2556 doc: /* Announce that FEATURE is a feature of the current Emacs.
2557 The optional argument SUBFEATURES should be a list of symbols listing
2558 particular subfeatures supported in this version of FEATURE. */)
2559 (Lisp_Object feature, Lisp_Object subfeatures)
2560 {
2561 register Lisp_Object tem;
2562 CHECK_SYMBOL (feature);
2563 CHECK_LIST (subfeatures);
2564 if (!NILP (Vautoload_queue))
2565 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2566 Vautoload_queue);
2567 tem = Fmemq (feature, Vfeatures);
2568 if (NILP (tem))
2569 Vfeatures = Fcons (feature, Vfeatures);
2570 if (!NILP (subfeatures))
2571 Fput (feature, Qsubfeatures, subfeatures);
2572 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2573
2574 /* Run any load-hooks for this file. */
2575 tem = Fassq (feature, Vafter_load_alist);
2576 if (CONSP (tem))
2577 Fprogn (XCDR (tem));
2578
2579 return feature;
2580 }
2581 \f
2582 /* `require' and its subroutines. */
2583
2584 /* List of features currently being require'd, innermost first. */
2585
2586 static Lisp_Object require_nesting_list;
2587
2588 static Lisp_Object
2589 require_unwind (Lisp_Object old_value)
2590 {
2591 return require_nesting_list = old_value;
2592 }
2593
2594 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2595 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2596 If FEATURE is not a member of the list `features', then the feature
2597 is not loaded; so load the file FILENAME.
2598 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2599 and `load' will try to load this name appended with the suffix `.elc' or
2600 `.el', in that order. The name without appended suffix will not be used.
2601 If the optional third argument NOERROR is non-nil,
2602 then return nil if the file is not found instead of signaling an error.
2603 Normally the return value is FEATURE.
2604 The normal messages at start and end of loading FILENAME are suppressed. */)
2605 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2606 {
2607 register Lisp_Object tem;
2608 struct gcpro gcpro1, gcpro2;
2609 int from_file = load_in_progress;
2610
2611 CHECK_SYMBOL (feature);
2612
2613 /* Record the presence of `require' in this file
2614 even if the feature specified is already loaded.
2615 But not more than once in any file,
2616 and not when we aren't loading or reading from a file. */
2617 if (!from_file)
2618 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2619 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2620 from_file = 1;
2621
2622 if (from_file)
2623 {
2624 tem = Fcons (Qrequire, feature);
2625 if (NILP (Fmember (tem, Vcurrent_load_list)))
2626 LOADHIST_ATTACH (tem);
2627 }
2628 tem = Fmemq (feature, Vfeatures);
2629
2630 if (NILP (tem))
2631 {
2632 int count = SPECPDL_INDEX ();
2633 int nesting = 0;
2634
2635 /* This is to make sure that loadup.el gives a clear picture
2636 of what files are preloaded and when. */
2637 if (! NILP (Vpurify_flag))
2638 error ("(require %s) while preparing to dump",
2639 SDATA (SYMBOL_NAME (feature)));
2640
2641 /* A certain amount of recursive `require' is legitimate,
2642 but if we require the same feature recursively 3 times,
2643 signal an error. */
2644 tem = require_nesting_list;
2645 while (! NILP (tem))
2646 {
2647 if (! NILP (Fequal (feature, XCAR (tem))))
2648 nesting++;
2649 tem = XCDR (tem);
2650 }
2651 if (nesting > 3)
2652 error ("Recursive `require' for feature `%s'",
2653 SDATA (SYMBOL_NAME (feature)));
2654
2655 /* Update the list for any nested `require's that occur. */
2656 record_unwind_protect (require_unwind, require_nesting_list);
2657 require_nesting_list = Fcons (feature, require_nesting_list);
2658
2659 /* Value saved here is to be restored into Vautoload_queue */
2660 record_unwind_protect (un_autoload, Vautoload_queue);
2661 Vautoload_queue = Qt;
2662
2663 /* Load the file. */
2664 GCPRO2 (feature, filename);
2665 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2666 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2667 UNGCPRO;
2668
2669 /* If load failed entirely, return nil. */
2670 if (NILP (tem))
2671 return unbind_to (count, Qnil);
2672
2673 tem = Fmemq (feature, Vfeatures);
2674 if (NILP (tem))
2675 error ("Required feature `%s' was not provided",
2676 SDATA (SYMBOL_NAME (feature)));
2677
2678 /* Once loading finishes, don't undo it. */
2679 Vautoload_queue = Qt;
2680 feature = unbind_to (count, feature);
2681 }
2682
2683 return feature;
2684 }
2685 \f
2686 /* Primitives for work of the "widget" library.
2687 In an ideal world, this section would not have been necessary.
2688 However, lisp function calls being as slow as they are, it turns
2689 out that some functions in the widget library (wid-edit.el) are the
2690 bottleneck of Widget operation. Here is their translation to C,
2691 for the sole reason of efficiency. */
2692
2693 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2694 doc: /* Return non-nil if PLIST has the property PROP.
2695 PLIST is a property list, which is a list of the form
2696 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2697 Unlike `plist-get', this allows you to distinguish between a missing
2698 property and a property with the value nil.
2699 The value is actually the tail of PLIST whose car is PROP. */)
2700 (Lisp_Object plist, Lisp_Object prop)
2701 {
2702 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2703 {
2704 QUIT;
2705 plist = XCDR (plist);
2706 plist = CDR (plist);
2707 }
2708 return plist;
2709 }
2710
2711 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2712 doc: /* In WIDGET, set PROPERTY to VALUE.
2713 The value can later be retrieved with `widget-get'. */)
2714 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2715 {
2716 CHECK_CONS (widget);
2717 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2718 return value;
2719 }
2720
2721 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2722 doc: /* In WIDGET, get the value of PROPERTY.
2723 The value could either be specified when the widget was created, or
2724 later with `widget-put'. */)
2725 (Lisp_Object widget, Lisp_Object property)
2726 {
2727 Lisp_Object tmp;
2728
2729 while (1)
2730 {
2731 if (NILP (widget))
2732 return Qnil;
2733 CHECK_CONS (widget);
2734 tmp = Fplist_member (XCDR (widget), property);
2735 if (CONSP (tmp))
2736 {
2737 tmp = XCDR (tmp);
2738 return CAR (tmp);
2739 }
2740 tmp = XCAR (widget);
2741 if (NILP (tmp))
2742 return Qnil;
2743 widget = Fget (tmp, Qwidget_type);
2744 }
2745 }
2746
2747 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2748 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2749 ARGS are passed as extra arguments to the function.
2750 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2751 (size_t nargs, Lisp_Object *args)
2752 {
2753 /* This function can GC. */
2754 Lisp_Object newargs[3];
2755 struct gcpro gcpro1, gcpro2;
2756 Lisp_Object result;
2757
2758 newargs[0] = Fwidget_get (args[0], args[1]);
2759 newargs[1] = args[0];
2760 newargs[2] = Flist (nargs - 2, args + 2);
2761 GCPRO2 (newargs[0], newargs[2]);
2762 result = Fapply (3, newargs);
2763 UNGCPRO;
2764 return result;
2765 }
2766
2767 #ifdef HAVE_LANGINFO_CODESET
2768 #include <langinfo.h>
2769 #endif
2770
2771 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2772 doc: /* Access locale data ITEM for the current C locale, if available.
2773 ITEM should be one of the following:
2774
2775 `codeset', returning the character set as a string (locale item CODESET);
2776
2777 `days', returning a 7-element vector of day names (locale items DAY_n);
2778
2779 `months', returning a 12-element vector of month names (locale items MON_n);
2780
2781 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2782 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2783
2784 If the system can't provide such information through a call to
2785 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2786
2787 See also Info node `(libc)Locales'.
2788
2789 The data read from the system are decoded using `locale-coding-system'. */)
2790 (Lisp_Object item)
2791 {
2792 char *str = NULL;
2793 #ifdef HAVE_LANGINFO_CODESET
2794 Lisp_Object val;
2795 if (EQ (item, Qcodeset))
2796 {
2797 str = nl_langinfo (CODESET);
2798 return build_string (str);
2799 }
2800 #ifdef DAY_1
2801 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
2802 {
2803 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
2804 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
2805 int i;
2806 struct gcpro gcpro1;
2807 GCPRO1 (v);
2808 synchronize_system_time_locale ();
2809 for (i = 0; i < 7; i++)
2810 {
2811 str = nl_langinfo (days[i]);
2812 val = make_unibyte_string (str, strlen (str));
2813 /* Fixme: Is this coding system necessarily right, even if
2814 it is consistent with CODESET? If not, what to do? */
2815 Faset (v, make_number (i),
2816 code_convert_string_norecord (val, Vlocale_coding_system,
2817 0));
2818 }
2819 UNGCPRO;
2820 return v;
2821 }
2822 #endif /* DAY_1 */
2823 #ifdef MON_1
2824 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
2825 {
2826 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
2827 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
2828 MON_8, MON_9, MON_10, MON_11, MON_12};
2829 int i;
2830 struct gcpro gcpro1;
2831 GCPRO1 (v);
2832 synchronize_system_time_locale ();
2833 for (i = 0; i < 12; i++)
2834 {
2835 str = nl_langinfo (months[i]);
2836 val = make_unibyte_string (str, strlen (str));
2837 Faset (v, make_number (i),
2838 code_convert_string_norecord (val, Vlocale_coding_system, 0));
2839 }
2840 UNGCPRO;
2841 return v;
2842 }
2843 #endif /* MON_1 */
2844 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2845 but is in the locale files. This could be used by ps-print. */
2846 #ifdef PAPER_WIDTH
2847 else if (EQ (item, Qpaper))
2848 {
2849 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
2850 make_number (nl_langinfo (PAPER_HEIGHT)));
2851 }
2852 #endif /* PAPER_WIDTH */
2853 #endif /* HAVE_LANGINFO_CODESET*/
2854 return Qnil;
2855 }
2856 \f
2857 /* base64 encode/decode functions (RFC 2045).
2858 Based on code from GNU recode. */
2859
2860 #define MIME_LINE_LENGTH 76
2861
2862 #define IS_ASCII(Character) \
2863 ((Character) < 128)
2864 #define IS_BASE64(Character) \
2865 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2866 #define IS_BASE64_IGNORABLE(Character) \
2867 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2868 || (Character) == '\f' || (Character) == '\r')
2869
2870 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2871 character or return retval if there are no characters left to
2872 process. */
2873 #define READ_QUADRUPLET_BYTE(retval) \
2874 do \
2875 { \
2876 if (i == length) \
2877 { \
2878 if (nchars_return) \
2879 *nchars_return = nchars; \
2880 return (retval); \
2881 } \
2882 c = from[i++]; \
2883 } \
2884 while (IS_BASE64_IGNORABLE (c))
2885
2886 /* Table of characters coding the 64 values. */
2887 static const char base64_value_to_char[64] =
2888 {
2889 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2890 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2891 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2892 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2893 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2894 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2895 '8', '9', '+', '/' /* 60-63 */
2896 };
2897
2898 /* Table of base64 values for first 128 characters. */
2899 static const short base64_char_to_value[128] =
2900 {
2901 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2902 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2903 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2904 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2905 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2906 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2907 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2908 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2909 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2910 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2911 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2912 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2913 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2914 };
2915
2916 /* The following diagram shows the logical steps by which three octets
2917 get transformed into four base64 characters.
2918
2919 .--------. .--------. .--------.
2920 |aaaaaabb| |bbbbcccc| |ccdddddd|
2921 `--------' `--------' `--------'
2922 6 2 4 4 2 6
2923 .--------+--------+--------+--------.
2924 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2925 `--------+--------+--------+--------'
2926
2927 .--------+--------+--------+--------.
2928 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2929 `--------+--------+--------+--------'
2930
2931 The octets are divided into 6 bit chunks, which are then encoded into
2932 base64 characters. */
2933
2934
2935 static EMACS_INT base64_encode_1 (const char *, char *, EMACS_INT, int, int);
2936 static EMACS_INT base64_decode_1 (const char *, char *, EMACS_INT, int,
2937 EMACS_INT *);
2938
2939 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
2940 2, 3, "r",
2941 doc: /* Base64-encode the region between BEG and END.
2942 Return the length of the encoded text.
2943 Optional third argument NO-LINE-BREAK means do not break long lines
2944 into shorter lines. */)
2945 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
2946 {
2947 char *encoded;
2948 EMACS_INT allength, length;
2949 EMACS_INT ibeg, iend, encoded_length;
2950 EMACS_INT old_pos = PT;
2951 USE_SAFE_ALLOCA;
2952
2953 validate_region (&beg, &end);
2954
2955 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
2956 iend = CHAR_TO_BYTE (XFASTINT (end));
2957 move_gap_both (XFASTINT (beg), ibeg);
2958
2959 /* We need to allocate enough room for encoding the text.
2960 We need 33 1/3% more space, plus a newline every 76
2961 characters, and then we round up. */
2962 length = iend - ibeg;
2963 allength = length + length/3 + 1;
2964 allength += allength / MIME_LINE_LENGTH + 1 + 6;
2965
2966 SAFE_ALLOCA (encoded, char *, allength);
2967 encoded_length = base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg),
2968 encoded, length, NILP (no_line_break),
2969 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
2970 if (encoded_length > allength)
2971 abort ();
2972
2973 if (encoded_length < 0)
2974 {
2975 /* The encoding wasn't possible. */
2976 SAFE_FREE ();
2977 error ("Multibyte character in data for base64 encoding");
2978 }
2979
2980 /* Now we have encoded the region, so we insert the new contents
2981 and delete the old. (Insert first in order to preserve markers.) */
2982 SET_PT_BOTH (XFASTINT (beg), ibeg);
2983 insert (encoded, encoded_length);
2984 SAFE_FREE ();
2985 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
2986
2987 /* If point was outside of the region, restore it exactly; else just
2988 move to the beginning of the region. */
2989 if (old_pos >= XFASTINT (end))
2990 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
2991 else if (old_pos > XFASTINT (beg))
2992 old_pos = XFASTINT (beg);
2993 SET_PT (old_pos);
2994
2995 /* We return the length of the encoded text. */
2996 return make_number (encoded_length);
2997 }
2998
2999 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3000 1, 2, 0,
3001 doc: /* Base64-encode STRING and return the result.
3002 Optional second argument NO-LINE-BREAK means do not break long lines
3003 into shorter lines. */)
3004 (Lisp_Object string, Lisp_Object no_line_break)
3005 {
3006 EMACS_INT allength, length, encoded_length;
3007 char *encoded;
3008 Lisp_Object encoded_string;
3009 USE_SAFE_ALLOCA;
3010
3011 CHECK_STRING (string);
3012
3013 /* We need to allocate enough room for encoding the text.
3014 We need 33 1/3% more space, plus a newline every 76
3015 characters, and then we round up. */
3016 length = SBYTES (string);
3017 allength = length + length/3 + 1;
3018 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3019
3020 /* We need to allocate enough room for decoding the text. */
3021 SAFE_ALLOCA (encoded, char *, allength);
3022
3023 encoded_length = base64_encode_1 (SSDATA (string),
3024 encoded, length, NILP (no_line_break),
3025 STRING_MULTIBYTE (string));
3026 if (encoded_length > allength)
3027 abort ();
3028
3029 if (encoded_length < 0)
3030 {
3031 /* The encoding wasn't possible. */
3032 SAFE_FREE ();
3033 error ("Multibyte character in data for base64 encoding");
3034 }
3035
3036 encoded_string = make_unibyte_string (encoded, encoded_length);
3037 SAFE_FREE ();
3038
3039 return encoded_string;
3040 }
3041
3042 static EMACS_INT
3043 base64_encode_1 (const char *from, char *to, EMACS_INT length,
3044 int line_break, int multibyte)
3045 {
3046 int counter = 0;
3047 EMACS_INT i = 0;
3048 char *e = to;
3049 int c;
3050 unsigned int value;
3051 int bytes;
3052
3053 while (i < length)
3054 {
3055 if (multibyte)
3056 {
3057 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3058 if (CHAR_BYTE8_P (c))
3059 c = CHAR_TO_BYTE8 (c);
3060 else if (c >= 256)
3061 return -1;
3062 i += bytes;
3063 }
3064 else
3065 c = from[i++];
3066
3067 /* Wrap line every 76 characters. */
3068
3069 if (line_break)
3070 {
3071 if (counter < MIME_LINE_LENGTH / 4)
3072 counter++;
3073 else
3074 {
3075 *e++ = '\n';
3076 counter = 1;
3077 }
3078 }
3079
3080 /* Process first byte of a triplet. */
3081
3082 *e++ = base64_value_to_char[0x3f & c >> 2];
3083 value = (0x03 & c) << 4;
3084
3085 /* Process second byte of a triplet. */
3086
3087 if (i == length)
3088 {
3089 *e++ = base64_value_to_char[value];
3090 *e++ = '=';
3091 *e++ = '=';
3092 break;
3093 }
3094
3095 if (multibyte)
3096 {
3097 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3098 if (CHAR_BYTE8_P (c))
3099 c = CHAR_TO_BYTE8 (c);
3100 else if (c >= 256)
3101 return -1;
3102 i += bytes;
3103 }
3104 else
3105 c = from[i++];
3106
3107 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3108 value = (0x0f & c) << 2;
3109
3110 /* Process third byte of a triplet. */
3111
3112 if (i == length)
3113 {
3114 *e++ = base64_value_to_char[value];
3115 *e++ = '=';
3116 break;
3117 }
3118
3119 if (multibyte)
3120 {
3121 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3122 if (CHAR_BYTE8_P (c))
3123 c = CHAR_TO_BYTE8 (c);
3124 else if (c >= 256)
3125 return -1;
3126 i += bytes;
3127 }
3128 else
3129 c = from[i++];
3130
3131 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3132 *e++ = base64_value_to_char[0x3f & c];
3133 }
3134
3135 return e - to;
3136 }
3137
3138
3139 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3140 2, 2, "r",
3141 doc: /* Base64-decode the region between BEG and END.
3142 Return the length of the decoded text.
3143 If the region can't be decoded, signal an error and don't modify the buffer. */)
3144 (Lisp_Object beg, Lisp_Object end)
3145 {
3146 EMACS_INT ibeg, iend, length, allength;
3147 char *decoded;
3148 EMACS_INT old_pos = PT;
3149 EMACS_INT decoded_length;
3150 EMACS_INT inserted_chars;
3151 int multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3152 USE_SAFE_ALLOCA;
3153
3154 validate_region (&beg, &end);
3155
3156 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3157 iend = CHAR_TO_BYTE (XFASTINT (end));
3158
3159 length = iend - ibeg;
3160
3161 /* We need to allocate enough room for decoding the text. If we are
3162 working on a multibyte buffer, each decoded code may occupy at
3163 most two bytes. */
3164 allength = multibyte ? length * 2 : length;
3165 SAFE_ALLOCA (decoded, char *, allength);
3166
3167 move_gap_both (XFASTINT (beg), ibeg);
3168 decoded_length = base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg),
3169 decoded, length,
3170 multibyte, &inserted_chars);
3171 if (decoded_length > allength)
3172 abort ();
3173
3174 if (decoded_length < 0)
3175 {
3176 /* The decoding wasn't possible. */
3177 SAFE_FREE ();
3178 error ("Invalid base64 data");
3179 }
3180
3181 /* Now we have decoded the region, so we insert the new contents
3182 and delete the old. (Insert first in order to preserve markers.) */
3183 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3184 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3185 SAFE_FREE ();
3186
3187 /* Delete the original text. */
3188 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3189 iend + decoded_length, 1);
3190
3191 /* If point was outside of the region, restore it exactly; else just
3192 move to the beginning of the region. */
3193 if (old_pos >= XFASTINT (end))
3194 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3195 else if (old_pos > XFASTINT (beg))
3196 old_pos = XFASTINT (beg);
3197 SET_PT (old_pos > ZV ? ZV : old_pos);
3198
3199 return make_number (inserted_chars);
3200 }
3201
3202 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3203 1, 1, 0,
3204 doc: /* Base64-decode STRING and return the result. */)
3205 (Lisp_Object string)
3206 {
3207 char *decoded;
3208 EMACS_INT length, decoded_length;
3209 Lisp_Object decoded_string;
3210 USE_SAFE_ALLOCA;
3211
3212 CHECK_STRING (string);
3213
3214 length = SBYTES (string);
3215 /* We need to allocate enough room for decoding the text. */
3216 SAFE_ALLOCA (decoded, char *, length);
3217
3218 /* The decoded result should be unibyte. */
3219 decoded_length = base64_decode_1 (SSDATA (string), decoded, length,
3220 0, NULL);
3221 if (decoded_length > length)
3222 abort ();
3223 else if (decoded_length >= 0)
3224 decoded_string = make_unibyte_string (decoded, decoded_length);
3225 else
3226 decoded_string = Qnil;
3227
3228 SAFE_FREE ();
3229 if (!STRINGP (decoded_string))
3230 error ("Invalid base64 data");
3231
3232 return decoded_string;
3233 }
3234
3235 /* Base64-decode the data at FROM of LENGHT bytes into TO. If
3236 MULTIBYTE is nonzero, the decoded result should be in multibyte
3237 form. If NCHARS_RETRUN is not NULL, store the number of produced
3238 characters in *NCHARS_RETURN. */
3239
3240 static EMACS_INT
3241 base64_decode_1 (const char *from, char *to, EMACS_INT length,
3242 int multibyte, EMACS_INT *nchars_return)
3243 {
3244 EMACS_INT i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3245 char *e = to;
3246 unsigned char c;
3247 unsigned long value;
3248 EMACS_INT nchars = 0;
3249
3250 while (1)
3251 {
3252 /* Process first byte of a quadruplet. */
3253
3254 READ_QUADRUPLET_BYTE (e-to);
3255
3256 if (!IS_BASE64 (c))
3257 return -1;
3258 value = base64_char_to_value[c] << 18;
3259
3260 /* Process second byte of a quadruplet. */
3261
3262 READ_QUADRUPLET_BYTE (-1);
3263
3264 if (!IS_BASE64 (c))
3265 return -1;
3266 value |= base64_char_to_value[c] << 12;
3267
3268 c = (unsigned char) (value >> 16);
3269 if (multibyte && c >= 128)
3270 e += BYTE8_STRING (c, e);
3271 else
3272 *e++ = c;
3273 nchars++;
3274
3275 /* Process third byte of a quadruplet. */
3276
3277 READ_QUADRUPLET_BYTE (-1);
3278
3279 if (c == '=')
3280 {
3281 READ_QUADRUPLET_BYTE (-1);
3282
3283 if (c != '=')
3284 return -1;
3285 continue;
3286 }
3287
3288 if (!IS_BASE64 (c))
3289 return -1;
3290 value |= base64_char_to_value[c] << 6;
3291
3292 c = (unsigned char) (0xff & value >> 8);
3293 if (multibyte && c >= 128)
3294 e += BYTE8_STRING (c, e);
3295 else
3296 *e++ = c;
3297 nchars++;
3298
3299 /* Process fourth byte of a quadruplet. */
3300
3301 READ_QUADRUPLET_BYTE (-1);
3302
3303 if (c == '=')
3304 continue;
3305
3306 if (!IS_BASE64 (c))
3307 return -1;
3308 value |= base64_char_to_value[c];
3309
3310 c = (unsigned char) (0xff & value);
3311 if (multibyte && c >= 128)
3312 e += BYTE8_STRING (c, e);
3313 else
3314 *e++ = c;
3315 nchars++;
3316 }
3317 }
3318
3319
3320 \f
3321 /***********************************************************************
3322 ***** *****
3323 ***** Hash Tables *****
3324 ***** *****
3325 ***********************************************************************/
3326
3327 /* Implemented by gerd@gnu.org. This hash table implementation was
3328 inspired by CMUCL hash tables. */
3329
3330 /* Ideas:
3331
3332 1. For small tables, association lists are probably faster than
3333 hash tables because they have lower overhead.
3334
3335 For uses of hash tables where the O(1) behavior of table
3336 operations is not a requirement, it might therefore be a good idea
3337 not to hash. Instead, we could just do a linear search in the
3338 key_and_value vector of the hash table. This could be done
3339 if a `:linear-search t' argument is given to make-hash-table. */
3340
3341
3342 /* The list of all weak hash tables. Don't staticpro this one. */
3343
3344 static struct Lisp_Hash_Table *weak_hash_tables;
3345
3346 /* Various symbols. */
3347
3348 static Lisp_Object Qhash_table_p, Qkey, Qvalue;
3349 Lisp_Object Qeq, Qeql, Qequal;
3350 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3351 static Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3352
3353 /* Function prototypes. */
3354
3355 static struct Lisp_Hash_Table *check_hash_table (Lisp_Object);
3356 static size_t get_key_arg (Lisp_Object, size_t, Lisp_Object *, char *);
3357 static void maybe_resize_hash_table (struct Lisp_Hash_Table *);
3358 static int sweep_weak_table (struct Lisp_Hash_Table *, int);
3359
3360
3361 \f
3362 /***********************************************************************
3363 Utilities
3364 ***********************************************************************/
3365
3366 /* If OBJ is a Lisp hash table, return a pointer to its struct
3367 Lisp_Hash_Table. Otherwise, signal an error. */
3368
3369 static struct Lisp_Hash_Table *
3370 check_hash_table (Lisp_Object obj)
3371 {
3372 CHECK_HASH_TABLE (obj);
3373 return XHASH_TABLE (obj);
3374 }
3375
3376
3377 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3378 number. */
3379
3380 EMACS_INT
3381 next_almost_prime (EMACS_INT n)
3382 {
3383 if (n % 2 == 0)
3384 n += 1;
3385 if (n % 3 == 0)
3386 n += 2;
3387 if (n % 7 == 0)
3388 n += 4;
3389 return n;
3390 }
3391
3392
3393 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3394 which USED[I] is non-zero. If found at index I in ARGS, set
3395 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3396 0. This function is used to extract a keyword/argument pair from
3397 a DEFUN parameter list. */
3398
3399 static size_t
3400 get_key_arg (Lisp_Object key, size_t nargs, Lisp_Object *args, char *used)
3401 {
3402 size_t i;
3403
3404 for (i = 1; i < nargs; i++)
3405 if (!used[i - 1] && EQ (args[i - 1], key))
3406 {
3407 used[i - 1] = 1;
3408 used[i] = 1;
3409 return i;
3410 }
3411
3412 return 0;
3413 }
3414
3415
3416 /* Return a Lisp vector which has the same contents as VEC but has
3417 size NEW_SIZE, NEW_SIZE >= VEC->size. Entries in the resulting
3418 vector that are not copied from VEC are set to INIT. */
3419
3420 Lisp_Object
3421 larger_vector (Lisp_Object vec, EMACS_INT new_size, Lisp_Object init)
3422 {
3423 struct Lisp_Vector *v;
3424 EMACS_INT i, old_size;
3425
3426 xassert (VECTORP (vec));
3427 old_size = ASIZE (vec);
3428 xassert (new_size >= old_size);
3429
3430 v = allocate_vector (new_size);
3431 memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
3432 for (i = old_size; i < new_size; ++i)
3433 v->contents[i] = init;
3434 XSETVECTOR (vec, v);
3435 return vec;
3436 }
3437
3438
3439 /***********************************************************************
3440 Low-level Functions
3441 ***********************************************************************/
3442
3443 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3444 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
3445 KEY2 are the same. */
3446
3447 static int
3448 cmpfn_eql (struct Lisp_Hash_Table *h,
3449 Lisp_Object key1, EMACS_UINT hash1,
3450 Lisp_Object key2, EMACS_UINT hash2)
3451 {
3452 return (FLOATP (key1)
3453 && FLOATP (key2)
3454 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3455 }
3456
3457
3458 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3459 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
3460 KEY2 are the same. */
3461
3462 static int
3463 cmpfn_equal (struct Lisp_Hash_Table *h,
3464 Lisp_Object key1, EMACS_UINT hash1,
3465 Lisp_Object key2, EMACS_UINT hash2)
3466 {
3467 return hash1 == hash2 && !NILP (Fequal (key1, key2));
3468 }
3469
3470
3471 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3472 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
3473 if KEY1 and KEY2 are the same. */
3474
3475 static int
3476 cmpfn_user_defined (struct Lisp_Hash_Table *h,
3477 Lisp_Object key1, EMACS_UINT hash1,
3478 Lisp_Object key2, EMACS_UINT hash2)
3479 {
3480 if (hash1 == hash2)
3481 {
3482 Lisp_Object args[3];
3483
3484 args[0] = h->user_cmp_function;
3485 args[1] = key1;
3486 args[2] = key2;
3487 return !NILP (Ffuncall (3, args));
3488 }
3489 else
3490 return 0;
3491 }
3492
3493
3494 /* Value is a hash code for KEY for use in hash table H which uses
3495 `eq' to compare keys. The hash code returned is guaranteed to fit
3496 in a Lisp integer. */
3497
3498 static EMACS_UINT
3499 hashfn_eq (struct Lisp_Hash_Table *h, Lisp_Object key)
3500 {
3501 EMACS_UINT hash = XUINT (key) ^ XTYPE (key);
3502 xassert ((hash & ~INTMASK) == 0);
3503 return hash;
3504 }
3505
3506
3507 /* Value is a hash code for KEY for use in hash table H which uses
3508 `eql' to compare keys. The hash code returned is guaranteed to fit
3509 in a Lisp integer. */
3510
3511 static EMACS_UINT
3512 hashfn_eql (struct Lisp_Hash_Table *h, Lisp_Object key)
3513 {
3514 EMACS_UINT hash;
3515 if (FLOATP (key))
3516 hash = sxhash (key, 0);
3517 else
3518 hash = XUINT (key) ^ XTYPE (key);
3519 xassert ((hash & ~INTMASK) == 0);
3520 return hash;
3521 }
3522
3523
3524 /* Value is a hash code for KEY for use in hash table H which uses
3525 `equal' to compare keys. The hash code returned is guaranteed to fit
3526 in a Lisp integer. */
3527
3528 static EMACS_UINT
3529 hashfn_equal (struct Lisp_Hash_Table *h, Lisp_Object key)
3530 {
3531 EMACS_UINT hash = sxhash (key, 0);
3532 xassert ((hash & ~INTMASK) == 0);
3533 return hash;
3534 }
3535
3536
3537 /* Value is a hash code for KEY for use in hash table H which uses as
3538 user-defined function to compare keys. The hash code returned is
3539 guaranteed to fit in a Lisp integer. */
3540
3541 static EMACS_UINT
3542 hashfn_user_defined (struct Lisp_Hash_Table *h, Lisp_Object key)
3543 {
3544 Lisp_Object args[2], hash;
3545
3546 args[0] = h->user_hash_function;
3547 args[1] = key;
3548 hash = Ffuncall (2, args);
3549 if (!INTEGERP (hash))
3550 signal_error ("Invalid hash code returned from user-supplied hash function", hash);
3551 return XUINT (hash);
3552 }
3553
3554
3555 /* Create and initialize a new hash table.
3556
3557 TEST specifies the test the hash table will use to compare keys.
3558 It must be either one of the predefined tests `eq', `eql' or
3559 `equal' or a symbol denoting a user-defined test named TEST with
3560 test and hash functions USER_TEST and USER_HASH.
3561
3562 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3563
3564 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3565 new size when it becomes full is computed by adding REHASH_SIZE to
3566 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3567 table's new size is computed by multiplying its old size with
3568 REHASH_SIZE.
3569
3570 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3571 be resized when the ratio of (number of entries in the table) /
3572 (table size) is >= REHASH_THRESHOLD.
3573
3574 WEAK specifies the weakness of the table. If non-nil, it must be
3575 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3576
3577 Lisp_Object
3578 make_hash_table (Lisp_Object test, Lisp_Object size, Lisp_Object rehash_size,
3579 Lisp_Object rehash_threshold, Lisp_Object weak,
3580 Lisp_Object user_test, Lisp_Object user_hash)
3581 {
3582 struct Lisp_Hash_Table *h;
3583 Lisp_Object table;
3584 EMACS_INT index_size, i, sz;
3585 double index_float;
3586
3587 /* Preconditions. */
3588 xassert (SYMBOLP (test));
3589 xassert (INTEGERP (size) && XINT (size) >= 0);
3590 xassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3591 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size)));
3592 xassert (FLOATP (rehash_threshold)
3593 && 0 < XFLOAT_DATA (rehash_threshold)
3594 && XFLOAT_DATA (rehash_threshold) <= 1.0);
3595
3596 if (XFASTINT (size) == 0)
3597 size = make_number (1);
3598
3599 sz = XFASTINT (size);
3600 index_float = sz / XFLOAT_DATA (rehash_threshold);
3601 index_size = (index_float < MOST_POSITIVE_FIXNUM + 1
3602 ? next_almost_prime (index_float)
3603 : MOST_POSITIVE_FIXNUM + 1);
3604 if (MOST_POSITIVE_FIXNUM < max (index_size, 2 * sz))
3605 error ("Hash table too large");
3606
3607 /* Allocate a table and initialize it. */
3608 h = allocate_hash_table ();
3609
3610 /* Initialize hash table slots. */
3611 h->test = test;
3612 if (EQ (test, Qeql))
3613 {
3614 h->cmpfn = cmpfn_eql;
3615 h->hashfn = hashfn_eql;
3616 }
3617 else if (EQ (test, Qeq))
3618 {
3619 h->cmpfn = NULL;
3620 h->hashfn = hashfn_eq;
3621 }
3622 else if (EQ (test, Qequal))
3623 {
3624 h->cmpfn = cmpfn_equal;
3625 h->hashfn = hashfn_equal;
3626 }
3627 else
3628 {
3629 h->user_cmp_function = user_test;
3630 h->user_hash_function = user_hash;
3631 h->cmpfn = cmpfn_user_defined;
3632 h->hashfn = hashfn_user_defined;
3633 }
3634
3635 h->weak = weak;
3636 h->rehash_threshold = rehash_threshold;
3637 h->rehash_size = rehash_size;
3638 h->count = 0;
3639 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3640 h->hash = Fmake_vector (size, Qnil);
3641 h->next = Fmake_vector (size, Qnil);
3642 h->index = Fmake_vector (make_number (index_size), Qnil);
3643
3644 /* Set up the free list. */
3645 for (i = 0; i < sz - 1; ++i)
3646 HASH_NEXT (h, i) = make_number (i + 1);
3647 h->next_free = make_number (0);
3648
3649 XSET_HASH_TABLE (table, h);
3650 xassert (HASH_TABLE_P (table));
3651 xassert (XHASH_TABLE (table) == h);
3652
3653 /* Maybe add this hash table to the list of all weak hash tables. */
3654 if (NILP (h->weak))
3655 h->next_weak = NULL;
3656 else
3657 {
3658 h->next_weak = weak_hash_tables;
3659 weak_hash_tables = h;
3660 }
3661
3662 return table;
3663 }
3664
3665
3666 /* Return a copy of hash table H1. Keys and values are not copied,
3667 only the table itself is. */
3668
3669 static Lisp_Object
3670 copy_hash_table (struct Lisp_Hash_Table *h1)
3671 {
3672 Lisp_Object table;
3673 struct Lisp_Hash_Table *h2;
3674 struct Lisp_Vector *next;
3675
3676 h2 = allocate_hash_table ();
3677 next = h2->header.next.vector;
3678 memcpy (h2, h1, sizeof *h2);
3679 h2->header.next.vector = next;
3680 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3681 h2->hash = Fcopy_sequence (h1->hash);
3682 h2->next = Fcopy_sequence (h1->next);
3683 h2->index = Fcopy_sequence (h1->index);
3684 XSET_HASH_TABLE (table, h2);
3685
3686 /* Maybe add this hash table to the list of all weak hash tables. */
3687 if (!NILP (h2->weak))
3688 {
3689 h2->next_weak = weak_hash_tables;
3690 weak_hash_tables = h2;
3691 }
3692
3693 return table;
3694 }
3695
3696
3697 /* Resize hash table H if it's too full. If H cannot be resized
3698 because it's already too large, throw an error. */
3699
3700 static inline void
3701 maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3702 {
3703 if (NILP (h->next_free))
3704 {
3705 EMACS_INT old_size = HASH_TABLE_SIZE (h);
3706 EMACS_INT i, new_size, index_size;
3707 EMACS_INT nsize;
3708 double index_float;
3709
3710 if (INTEGERP (h->rehash_size))
3711 new_size = old_size + XFASTINT (h->rehash_size);
3712 else
3713 {
3714 double float_new_size = old_size * XFLOAT_DATA (h->rehash_size);
3715 if (float_new_size < MOST_POSITIVE_FIXNUM + 1)
3716 {
3717 new_size = float_new_size;
3718 if (new_size <= old_size)
3719 new_size = old_size + 1;
3720 }
3721 else
3722 new_size = MOST_POSITIVE_FIXNUM + 1;
3723 }
3724 index_float = new_size / XFLOAT_DATA (h->rehash_threshold);
3725 index_size = (index_float < MOST_POSITIVE_FIXNUM + 1
3726 ? next_almost_prime (index_float)
3727 : MOST_POSITIVE_FIXNUM + 1);
3728 nsize = max (index_size, 2 * new_size);
3729 if (nsize > MOST_POSITIVE_FIXNUM)
3730 error ("Hash table too large to resize");
3731
3732 h->key_and_value = larger_vector (h->key_and_value, 2 * new_size, Qnil);
3733 h->next = larger_vector (h->next, new_size, Qnil);
3734 h->hash = larger_vector (h->hash, new_size, Qnil);
3735 h->index = Fmake_vector (make_number (index_size), Qnil);
3736
3737 /* Update the free list. Do it so that new entries are added at
3738 the end of the free list. This makes some operations like
3739 maphash faster. */
3740 for (i = old_size; i < new_size - 1; ++i)
3741 HASH_NEXT (h, i) = make_number (i + 1);
3742
3743 if (!NILP (h->next_free))
3744 {
3745 Lisp_Object last, next;
3746
3747 last = h->next_free;
3748 while (next = HASH_NEXT (h, XFASTINT (last)),
3749 !NILP (next))
3750 last = next;
3751
3752 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
3753 }
3754 else
3755 XSETFASTINT (h->next_free, old_size);
3756
3757 /* Rehash. */
3758 for (i = 0; i < old_size; ++i)
3759 if (!NILP (HASH_HASH (h, i)))
3760 {
3761 EMACS_UINT hash_code = XUINT (HASH_HASH (h, i));
3762 EMACS_INT start_of_bucket = hash_code % ASIZE (h->index);
3763 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
3764 HASH_INDEX (h, start_of_bucket) = make_number (i);
3765 }
3766 }
3767 }
3768
3769
3770 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3771 the hash code of KEY. Value is the index of the entry in H
3772 matching KEY, or -1 if not found. */
3773
3774 EMACS_INT
3775 hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, EMACS_UINT *hash)
3776 {
3777 EMACS_UINT hash_code;
3778 EMACS_INT start_of_bucket;
3779 Lisp_Object idx;
3780
3781 hash_code = h->hashfn (h, key);
3782 if (hash)
3783 *hash = hash_code;
3784
3785 start_of_bucket = hash_code % ASIZE (h->index);
3786 idx = HASH_INDEX (h, start_of_bucket);
3787
3788 /* We need not gcpro idx since it's either an integer or nil. */
3789 while (!NILP (idx))
3790 {
3791 EMACS_INT i = XFASTINT (idx);
3792 if (EQ (key, HASH_KEY (h, i))
3793 || (h->cmpfn
3794 && h->cmpfn (h, key, hash_code,
3795 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3796 break;
3797 idx = HASH_NEXT (h, i);
3798 }
3799
3800 return NILP (idx) ? -1 : XFASTINT (idx);
3801 }
3802
3803
3804 /* Put an entry into hash table H that associates KEY with VALUE.
3805 HASH is a previously computed hash code of KEY.
3806 Value is the index of the entry in H matching KEY. */
3807
3808 EMACS_INT
3809 hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value,
3810 EMACS_UINT hash)
3811 {
3812 EMACS_INT start_of_bucket, i;
3813
3814 xassert ((hash & ~INTMASK) == 0);
3815
3816 /* Increment count after resizing because resizing may fail. */
3817 maybe_resize_hash_table (h);
3818 h->count++;
3819
3820 /* Store key/value in the key_and_value vector. */
3821 i = XFASTINT (h->next_free);
3822 h->next_free = HASH_NEXT (h, i);
3823 HASH_KEY (h, i) = key;
3824 HASH_VALUE (h, i) = value;
3825
3826 /* Remember its hash code. */
3827 HASH_HASH (h, i) = make_number (hash);
3828
3829 /* Add new entry to its collision chain. */
3830 start_of_bucket = hash % ASIZE (h->index);
3831 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
3832 HASH_INDEX (h, start_of_bucket) = make_number (i);
3833 return i;
3834 }
3835
3836
3837 /* Remove the entry matching KEY from hash table H, if there is one. */
3838
3839 static void
3840 hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
3841 {
3842 EMACS_UINT hash_code;
3843 EMACS_INT start_of_bucket;
3844 Lisp_Object idx, prev;
3845
3846 hash_code = h->hashfn (h, key);
3847 start_of_bucket = hash_code % ASIZE (h->index);
3848 idx = HASH_INDEX (h, start_of_bucket);
3849 prev = Qnil;
3850
3851 /* We need not gcpro idx, prev since they're either integers or nil. */
3852 while (!NILP (idx))
3853 {
3854 EMACS_INT i = XFASTINT (idx);
3855
3856 if (EQ (key, HASH_KEY (h, i))
3857 || (h->cmpfn
3858 && h->cmpfn (h, key, hash_code,
3859 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3860 {
3861 /* Take entry out of collision chain. */
3862 if (NILP (prev))
3863 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
3864 else
3865 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
3866
3867 /* Clear slots in key_and_value and add the slots to
3868 the free list. */
3869 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
3870 HASH_NEXT (h, i) = h->next_free;
3871 h->next_free = make_number (i);
3872 h->count--;
3873 xassert (h->count >= 0);
3874 break;
3875 }
3876 else
3877 {
3878 prev = idx;
3879 idx = HASH_NEXT (h, i);
3880 }
3881 }
3882 }
3883
3884
3885 /* Clear hash table H. */
3886
3887 static void
3888 hash_clear (struct Lisp_Hash_Table *h)
3889 {
3890 if (h->count > 0)
3891 {
3892 EMACS_INT i, size = HASH_TABLE_SIZE (h);
3893
3894 for (i = 0; i < size; ++i)
3895 {
3896 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
3897 HASH_KEY (h, i) = Qnil;
3898 HASH_VALUE (h, i) = Qnil;
3899 HASH_HASH (h, i) = Qnil;
3900 }
3901
3902 for (i = 0; i < ASIZE (h->index); ++i)
3903 ASET (h->index, i, Qnil);
3904
3905 h->next_free = make_number (0);
3906 h->count = 0;
3907 }
3908 }
3909
3910
3911 \f
3912 /************************************************************************
3913 Weak Hash Tables
3914 ************************************************************************/
3915
3916 void
3917 init_weak_hash_tables (void)
3918 {
3919 weak_hash_tables = NULL;
3920 }
3921
3922 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
3923 entries from the table that don't survive the current GC.
3924 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
3925 non-zero if anything was marked. */
3926
3927 static int
3928 sweep_weak_table (struct Lisp_Hash_Table *h, int remove_entries_p)
3929 {
3930 EMACS_INT bucket, n;
3931 int marked;
3932
3933 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
3934 marked = 0;
3935
3936 for (bucket = 0; bucket < n; ++bucket)
3937 {
3938 Lisp_Object idx, next, prev;
3939
3940 /* Follow collision chain, removing entries that
3941 don't survive this garbage collection. */
3942 prev = Qnil;
3943 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
3944 {
3945 EMACS_INT i = XFASTINT (idx);
3946 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
3947 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
3948 int remove_p;
3949
3950 if (EQ (h->weak, Qkey))
3951 remove_p = !key_known_to_survive_p;
3952 else if (EQ (h->weak, Qvalue))
3953 remove_p = !value_known_to_survive_p;
3954 else if (EQ (h->weak, Qkey_or_value))
3955 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
3956 else if (EQ (h->weak, Qkey_and_value))
3957 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
3958 else
3959 abort ();
3960
3961 next = HASH_NEXT (h, i);
3962
3963 if (remove_entries_p)
3964 {
3965 if (remove_p)
3966 {
3967 /* Take out of collision chain. */
3968 if (NILP (prev))
3969 HASH_INDEX (h, bucket) = next;
3970 else
3971 HASH_NEXT (h, XFASTINT (prev)) = next;
3972
3973 /* Add to free list. */
3974 HASH_NEXT (h, i) = h->next_free;
3975 h->next_free = idx;
3976
3977 /* Clear key, value, and hash. */
3978 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
3979 HASH_HASH (h, i) = Qnil;
3980
3981 h->count--;
3982 }
3983 else
3984 {
3985 prev = idx;
3986 }
3987 }
3988 else
3989 {
3990 if (!remove_p)
3991 {
3992 /* Make sure key and value survive. */
3993 if (!key_known_to_survive_p)
3994 {
3995 mark_object (HASH_KEY (h, i));
3996 marked = 1;
3997 }
3998
3999 if (!value_known_to_survive_p)
4000 {
4001 mark_object (HASH_VALUE (h, i));
4002 marked = 1;
4003 }
4004 }
4005 }
4006 }
4007 }
4008
4009 return marked;
4010 }
4011
4012 /* Remove elements from weak hash tables that don't survive the
4013 current garbage collection. Remove weak tables that don't survive
4014 from Vweak_hash_tables. Called from gc_sweep. */
4015
4016 void
4017 sweep_weak_hash_tables (void)
4018 {
4019 struct Lisp_Hash_Table *h, *used, *next;
4020 int marked;
4021
4022 /* Mark all keys and values that are in use. Keep on marking until
4023 there is no more change. This is necessary for cases like
4024 value-weak table A containing an entry X -> Y, where Y is used in a
4025 key-weak table B, Z -> Y. If B comes after A in the list of weak
4026 tables, X -> Y might be removed from A, although when looking at B
4027 one finds that it shouldn't. */
4028 do
4029 {
4030 marked = 0;
4031 for (h = weak_hash_tables; h; h = h->next_weak)
4032 {
4033 if (h->header.size & ARRAY_MARK_FLAG)
4034 marked |= sweep_weak_table (h, 0);
4035 }
4036 }
4037 while (marked);
4038
4039 /* Remove tables and entries that aren't used. */
4040 for (h = weak_hash_tables, used = NULL; h; h = next)
4041 {
4042 next = h->next_weak;
4043
4044 if (h->header.size & ARRAY_MARK_FLAG)
4045 {
4046 /* TABLE is marked as used. Sweep its contents. */
4047 if (h->count > 0)
4048 sweep_weak_table (h, 1);
4049
4050 /* Add table to the list of used weak hash tables. */
4051 h->next_weak = used;
4052 used = h;
4053 }
4054 }
4055
4056 weak_hash_tables = used;
4057 }
4058
4059
4060 \f
4061 /***********************************************************************
4062 Hash Code Computation
4063 ***********************************************************************/
4064
4065 /* Maximum depth up to which to dive into Lisp structures. */
4066
4067 #define SXHASH_MAX_DEPTH 3
4068
4069 /* Maximum length up to which to take list and vector elements into
4070 account. */
4071
4072 #define SXHASH_MAX_LEN 7
4073
4074 /* Combine two integers X and Y for hashing. The result might not fit
4075 into a Lisp integer. */
4076
4077 #define SXHASH_COMBINE(X, Y) \
4078 ((((EMACS_UINT) (X) << 4) + ((EMACS_UINT) (X) >> (BITS_PER_EMACS_INT - 4))) \
4079 + (EMACS_UINT) (Y))
4080
4081 /* Hash X, returning a value that fits into a Lisp integer. */
4082 #define SXHASH_REDUCE(X) \
4083 ((((X) ^ (X) >> (BITS_PER_EMACS_INT - FIXNUM_BITS))) & INTMASK)
4084
4085 /* Return a hash for string PTR which has length LEN. The hash
4086 code returned is guaranteed to fit in a Lisp integer. */
4087
4088 static EMACS_UINT
4089 sxhash_string (unsigned char *ptr, EMACS_INT len)
4090 {
4091 unsigned char *p = ptr;
4092 unsigned char *end = p + len;
4093 unsigned char c;
4094 EMACS_UINT hash = 0;
4095
4096 while (p != end)
4097 {
4098 c = *p++;
4099 if (c >= 0140)
4100 c -= 40;
4101 hash = SXHASH_COMBINE (hash, c);
4102 }
4103
4104 return SXHASH_REDUCE (hash);
4105 }
4106
4107 /* Return a hash for the floating point value VAL. */
4108
4109 static EMACS_INT
4110 sxhash_float (double val)
4111 {
4112 EMACS_UINT hash = 0;
4113 enum {
4114 WORDS_PER_DOUBLE = (sizeof val / sizeof hash
4115 + (sizeof val % sizeof hash != 0))
4116 };
4117 union {
4118 double val;
4119 EMACS_UINT word[WORDS_PER_DOUBLE];
4120 } u;
4121 int i;
4122 u.val = val;
4123 memset (&u.val + 1, 0, sizeof u - sizeof u.val);
4124 for (i = 0; i < WORDS_PER_DOUBLE; i++)
4125 hash = SXHASH_COMBINE (hash, u.word[i]);
4126 return SXHASH_REDUCE (hash);
4127 }
4128
4129 /* Return a hash for list LIST. DEPTH is the current depth in the
4130 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4131
4132 static EMACS_UINT
4133 sxhash_list (Lisp_Object list, int depth)
4134 {
4135 EMACS_UINT hash = 0;
4136 int i;
4137
4138 if (depth < SXHASH_MAX_DEPTH)
4139 for (i = 0;
4140 CONSP (list) && i < SXHASH_MAX_LEN;
4141 list = XCDR (list), ++i)
4142 {
4143 EMACS_UINT hash2 = sxhash (XCAR (list), depth + 1);
4144 hash = SXHASH_COMBINE (hash, hash2);
4145 }
4146
4147 if (!NILP (list))
4148 {
4149 EMACS_UINT hash2 = sxhash (list, depth + 1);
4150 hash = SXHASH_COMBINE (hash, hash2);
4151 }
4152
4153 return SXHASH_REDUCE (hash);
4154 }
4155
4156
4157 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4158 the Lisp structure. */
4159
4160 static EMACS_UINT
4161 sxhash_vector (Lisp_Object vec, int depth)
4162 {
4163 EMACS_UINT hash = ASIZE (vec);
4164 int i, n;
4165
4166 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4167 for (i = 0; i < n; ++i)
4168 {
4169 EMACS_UINT hash2 = sxhash (AREF (vec, i), depth + 1);
4170 hash = SXHASH_COMBINE (hash, hash2);
4171 }
4172
4173 return SXHASH_REDUCE (hash);
4174 }
4175
4176 /* Return a hash for bool-vector VECTOR. */
4177
4178 static EMACS_UINT
4179 sxhash_bool_vector (Lisp_Object vec)
4180 {
4181 EMACS_UINT hash = XBOOL_VECTOR (vec)->size;
4182 int i, n;
4183
4184 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->header.size);
4185 for (i = 0; i < n; ++i)
4186 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4187
4188 return SXHASH_REDUCE (hash);
4189 }
4190
4191
4192 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4193 structure. Value is an unsigned integer clipped to INTMASK. */
4194
4195 EMACS_UINT
4196 sxhash (Lisp_Object obj, int depth)
4197 {
4198 EMACS_UINT hash;
4199
4200 if (depth > SXHASH_MAX_DEPTH)
4201 return 0;
4202
4203 switch (XTYPE (obj))
4204 {
4205 case_Lisp_Int:
4206 hash = XUINT (obj);
4207 break;
4208
4209 case Lisp_Misc:
4210 hash = XUINT (obj);
4211 break;
4212
4213 case Lisp_Symbol:
4214 obj = SYMBOL_NAME (obj);
4215 /* Fall through. */
4216
4217 case Lisp_String:
4218 hash = sxhash_string (SDATA (obj), SCHARS (obj));
4219 break;
4220
4221 /* This can be everything from a vector to an overlay. */
4222 case Lisp_Vectorlike:
4223 if (VECTORP (obj))
4224 /* According to the CL HyperSpec, two arrays are equal only if
4225 they are `eq', except for strings and bit-vectors. In
4226 Emacs, this works differently. We have to compare element
4227 by element. */
4228 hash = sxhash_vector (obj, depth);
4229 else if (BOOL_VECTOR_P (obj))
4230 hash = sxhash_bool_vector (obj);
4231 else
4232 /* Others are `equal' if they are `eq', so let's take their
4233 address as hash. */
4234 hash = XUINT (obj);
4235 break;
4236
4237 case Lisp_Cons:
4238 hash = sxhash_list (obj, depth);
4239 break;
4240
4241 case Lisp_Float:
4242 hash = sxhash_float (XFLOAT_DATA (obj));
4243 break;
4244
4245 default:
4246 abort ();
4247 }
4248
4249 return hash;
4250 }
4251
4252
4253 \f
4254 /***********************************************************************
4255 Lisp Interface
4256 ***********************************************************************/
4257
4258
4259 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4260 doc: /* Compute a hash code for OBJ and return it as integer. */)
4261 (Lisp_Object obj)
4262 {
4263 EMACS_UINT hash = sxhash (obj, 0);
4264 return make_number (hash);
4265 }
4266
4267
4268 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4269 doc: /* Create and return a new hash table.
4270
4271 Arguments are specified as keyword/argument pairs. The following
4272 arguments are defined:
4273
4274 :test TEST -- TEST must be a symbol that specifies how to compare
4275 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4276 `equal'. User-supplied test and hash functions can be specified via
4277 `define-hash-table-test'.
4278
4279 :size SIZE -- A hint as to how many elements will be put in the table.
4280 Default is 65.
4281
4282 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4283 fills up. If REHASH-SIZE is an integer, increase the size by that
4284 amount. If it is a float, it must be > 1.0, and the new size is the
4285 old size multiplied by that factor. Default is 1.5.
4286
4287 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4288 Resize the hash table when the ratio (number of entries / table size)
4289 is greater than or equal to THRESHOLD. Default is 0.8.
4290
4291 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4292 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4293 returned is a weak table. Key/value pairs are removed from a weak
4294 hash table when there are no non-weak references pointing to their
4295 key, value, one of key or value, or both key and value, depending on
4296 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4297 is nil.
4298
4299 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4300 (size_t nargs, Lisp_Object *args)
4301 {
4302 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4303 Lisp_Object user_test, user_hash;
4304 char *used;
4305 size_t i;
4306
4307 /* The vector `used' is used to keep track of arguments that
4308 have been consumed. */
4309 used = (char *) alloca (nargs * sizeof *used);
4310 memset (used, 0, nargs * sizeof *used);
4311
4312 /* See if there's a `:test TEST' among the arguments. */
4313 i = get_key_arg (QCtest, nargs, args, used);
4314 test = i ? args[i] : Qeql;
4315 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
4316 {
4317 /* See if it is a user-defined test. */
4318 Lisp_Object prop;
4319
4320 prop = Fget (test, Qhash_table_test);
4321 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4322 signal_error ("Invalid hash table test", test);
4323 user_test = XCAR (prop);
4324 user_hash = XCAR (XCDR (prop));
4325 }
4326 else
4327 user_test = user_hash = Qnil;
4328
4329 /* See if there's a `:size SIZE' argument. */
4330 i = get_key_arg (QCsize, nargs, args, used);
4331 size = i ? args[i] : Qnil;
4332 if (NILP (size))
4333 size = make_number (DEFAULT_HASH_SIZE);
4334 else if (!INTEGERP (size) || XINT (size) < 0)
4335 signal_error ("Invalid hash table size", size);
4336
4337 /* Look for `:rehash-size SIZE'. */
4338 i = get_key_arg (QCrehash_size, nargs, args, used);
4339 rehash_size = i ? args[i] : make_float (DEFAULT_REHASH_SIZE);
4340 if (! ((INTEGERP (rehash_size) && 0 < XINT (rehash_size))
4341 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size))))
4342 signal_error ("Invalid hash table rehash size", rehash_size);
4343
4344 /* Look for `:rehash-threshold THRESHOLD'. */
4345 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4346 rehash_threshold = i ? args[i] : make_float (DEFAULT_REHASH_THRESHOLD);
4347 if (! (FLOATP (rehash_threshold)
4348 && 0 < XFLOAT_DATA (rehash_threshold)
4349 && XFLOAT_DATA (rehash_threshold) <= 1))
4350 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4351
4352 /* Look for `:weakness WEAK'. */
4353 i = get_key_arg (QCweakness, nargs, args, used);
4354 weak = i ? args[i] : Qnil;
4355 if (EQ (weak, Qt))
4356 weak = Qkey_and_value;
4357 if (!NILP (weak)
4358 && !EQ (weak, Qkey)
4359 && !EQ (weak, Qvalue)
4360 && !EQ (weak, Qkey_or_value)
4361 && !EQ (weak, Qkey_and_value))
4362 signal_error ("Invalid hash table weakness", weak);
4363
4364 /* Now, all args should have been used up, or there's a problem. */
4365 for (i = 0; i < nargs; ++i)
4366 if (!used[i])
4367 signal_error ("Invalid argument list", args[i]);
4368
4369 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4370 user_test, user_hash);
4371 }
4372
4373
4374 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4375 doc: /* Return a copy of hash table TABLE. */)
4376 (Lisp_Object table)
4377 {
4378 return copy_hash_table (check_hash_table (table));
4379 }
4380
4381
4382 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4383 doc: /* Return the number of elements in TABLE. */)
4384 (Lisp_Object table)
4385 {
4386 return make_number (check_hash_table (table)->count);
4387 }
4388
4389
4390 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4391 Shash_table_rehash_size, 1, 1, 0,
4392 doc: /* Return the current rehash size of TABLE. */)
4393 (Lisp_Object table)
4394 {
4395 return check_hash_table (table)->rehash_size;
4396 }
4397
4398
4399 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4400 Shash_table_rehash_threshold, 1, 1, 0,
4401 doc: /* Return the current rehash threshold of TABLE. */)
4402 (Lisp_Object table)
4403 {
4404 return check_hash_table (table)->rehash_threshold;
4405 }
4406
4407
4408 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4409 doc: /* Return the size of TABLE.
4410 The size can be used as an argument to `make-hash-table' to create
4411 a hash table than can hold as many elements as TABLE holds
4412 without need for resizing. */)
4413 (Lisp_Object table)
4414 {
4415 struct Lisp_Hash_Table *h = check_hash_table (table);
4416 return make_number (HASH_TABLE_SIZE (h));
4417 }
4418
4419
4420 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4421 doc: /* Return the test TABLE uses. */)
4422 (Lisp_Object table)
4423 {
4424 return check_hash_table (table)->test;
4425 }
4426
4427
4428 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4429 1, 1, 0,
4430 doc: /* Return the weakness of TABLE. */)
4431 (Lisp_Object table)
4432 {
4433 return check_hash_table (table)->weak;
4434 }
4435
4436
4437 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4438 doc: /* Return t if OBJ is a Lisp hash table object. */)
4439 (Lisp_Object obj)
4440 {
4441 return HASH_TABLE_P (obj) ? Qt : Qnil;
4442 }
4443
4444
4445 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4446 doc: /* Clear hash table TABLE and return it. */)
4447 (Lisp_Object table)
4448 {
4449 hash_clear (check_hash_table (table));
4450 /* Be compatible with XEmacs. */
4451 return table;
4452 }
4453
4454
4455 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4456 doc: /* Look up KEY in TABLE and return its associated value.
4457 If KEY is not found, return DFLT which defaults to nil. */)
4458 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4459 {
4460 struct Lisp_Hash_Table *h = check_hash_table (table);
4461 EMACS_INT i = hash_lookup (h, key, NULL);
4462 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4463 }
4464
4465
4466 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4467 doc: /* Associate KEY with VALUE in hash table TABLE.
4468 If KEY is already present in table, replace its current value with
4469 VALUE. In any case, return VALUE. */)
4470 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4471 {
4472 struct Lisp_Hash_Table *h = check_hash_table (table);
4473 EMACS_INT i;
4474 EMACS_UINT hash;
4475
4476 i = hash_lookup (h, key, &hash);
4477 if (i >= 0)
4478 HASH_VALUE (h, i) = value;
4479 else
4480 hash_put (h, key, value, hash);
4481
4482 return value;
4483 }
4484
4485
4486 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4487 doc: /* Remove KEY from TABLE. */)
4488 (Lisp_Object key, Lisp_Object table)
4489 {
4490 struct Lisp_Hash_Table *h = check_hash_table (table);
4491 hash_remove_from_table (h, key);
4492 return Qnil;
4493 }
4494
4495
4496 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4497 doc: /* Call FUNCTION for all entries in hash table TABLE.
4498 FUNCTION is called with two arguments, KEY and VALUE. */)
4499 (Lisp_Object function, Lisp_Object table)
4500 {
4501 struct Lisp_Hash_Table *h = check_hash_table (table);
4502 Lisp_Object args[3];
4503 EMACS_INT i;
4504
4505 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4506 if (!NILP (HASH_HASH (h, i)))
4507 {
4508 args[0] = function;
4509 args[1] = HASH_KEY (h, i);
4510 args[2] = HASH_VALUE (h, i);
4511 Ffuncall (3, args);
4512 }
4513
4514 return Qnil;
4515 }
4516
4517
4518 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4519 Sdefine_hash_table_test, 3, 3, 0,
4520 doc: /* Define a new hash table test with name NAME, a symbol.
4521
4522 In hash tables created with NAME specified as test, use TEST to
4523 compare keys, and HASH for computing hash codes of keys.
4524
4525 TEST must be a function taking two arguments and returning non-nil if
4526 both arguments are the same. HASH must be a function taking one
4527 argument and return an integer that is the hash code of the argument.
4528 Hash code computation should use the whole value range of integers,
4529 including negative integers. */)
4530 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4531 {
4532 return Fput (name, Qhash_table_test, list2 (test, hash));
4533 }
4534
4535
4536 \f
4537 /************************************************************************
4538 MD5 and SHA1
4539 ************************************************************************/
4540
4541 #include "md5.h"
4542 #include "sha1.h"
4543
4544 /* Convert a possibly-signed character to an unsigned character. This is
4545 a bit safer than casting to unsigned char, since it catches some type
4546 errors that the cast doesn't. */
4547 static inline unsigned char to_uchar (char ch) { return ch; }
4548
4549 /* TYPE: 0 for md5, 1 for sha1. */
4550
4551 static Lisp_Object
4552 crypto_hash_function (int type, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror, Lisp_Object binary)
4553 {
4554 int i;
4555 EMACS_INT size;
4556 EMACS_INT size_byte = 0;
4557 EMACS_INT start_char = 0, end_char = 0;
4558 EMACS_INT start_byte = 0, end_byte = 0;
4559 register EMACS_INT b, e;
4560 register struct buffer *bp;
4561 EMACS_INT temp;
4562 Lisp_Object res=Qnil;
4563
4564 if (STRINGP (object))
4565 {
4566 if (NILP (coding_system))
4567 {
4568 /* Decide the coding-system to encode the data with. */
4569
4570 if (STRING_MULTIBYTE (object))
4571 /* use default, we can't guess correct value */
4572 coding_system = preferred_coding_system ();
4573 else
4574 coding_system = Qraw_text;
4575 }
4576
4577 if (NILP (Fcoding_system_p (coding_system)))
4578 {
4579 /* Invalid coding system. */
4580
4581 if (!NILP (noerror))
4582 coding_system = Qraw_text;
4583 else
4584 xsignal1 (Qcoding_system_error, coding_system);
4585 }
4586
4587 if (STRING_MULTIBYTE (object))
4588 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4589
4590 size = SCHARS (object);
4591 size_byte = SBYTES (object);
4592
4593 if (!NILP (start))
4594 {
4595 CHECK_NUMBER (start);
4596
4597 start_char = XINT (start);
4598
4599 if (start_char < 0)
4600 start_char += size;
4601
4602 start_byte = string_char_to_byte (object, start_char);
4603 }
4604
4605 if (NILP (end))
4606 {
4607 end_char = size;
4608 end_byte = size_byte;
4609 }
4610 else
4611 {
4612 CHECK_NUMBER (end);
4613
4614 end_char = XINT (end);
4615
4616 if (end_char < 0)
4617 end_char += size;
4618
4619 end_byte = string_char_to_byte (object, end_char);
4620 }
4621
4622 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
4623 args_out_of_range_3 (object, make_number (start_char),
4624 make_number (end_char));
4625 }
4626 else
4627 {
4628 struct buffer *prev = current_buffer;
4629
4630 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
4631
4632 CHECK_BUFFER (object);
4633
4634 bp = XBUFFER (object);
4635 if (bp != current_buffer)
4636 set_buffer_internal (bp);
4637
4638 if (NILP (start))
4639 b = BEGV;
4640 else
4641 {
4642 CHECK_NUMBER_COERCE_MARKER (start);
4643 b = XINT (start);
4644 }
4645
4646 if (NILP (end))
4647 e = ZV;
4648 else
4649 {
4650 CHECK_NUMBER_COERCE_MARKER (end);
4651 e = XINT (end);
4652 }
4653
4654 if (b > e)
4655 temp = b, b = e, e = temp;
4656
4657 if (!(BEGV <= b && e <= ZV))
4658 args_out_of_range (start, end);
4659
4660 if (NILP (coding_system))
4661 {
4662 /* Decide the coding-system to encode the data with.
4663 See fileio.c:Fwrite-region */
4664
4665 if (!NILP (Vcoding_system_for_write))
4666 coding_system = Vcoding_system_for_write;
4667 else
4668 {
4669 int force_raw_text = 0;
4670
4671 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4672 if (NILP (coding_system)
4673 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4674 {
4675 coding_system = Qnil;
4676 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4677 force_raw_text = 1;
4678 }
4679
4680 if (NILP (coding_system) && !NILP (Fbuffer_file_name(object)))
4681 {
4682 /* Check file-coding-system-alist. */
4683 Lisp_Object args[4], val;
4684
4685 args[0] = Qwrite_region; args[1] = start; args[2] = end;
4686 args[3] = Fbuffer_file_name(object);
4687 val = Ffind_operation_coding_system (4, args);
4688 if (CONSP (val) && !NILP (XCDR (val)))
4689 coding_system = XCDR (val);
4690 }
4691
4692 if (NILP (coding_system)
4693 && !NILP (BVAR (XBUFFER (object), buffer_file_coding_system)))
4694 {
4695 /* If we still have not decided a coding system, use the
4696 default value of buffer-file-coding-system. */
4697 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4698 }
4699
4700 if (!force_raw_text
4701 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4702 /* Confirm that VAL can surely encode the current region. */
4703 coding_system = call4 (Vselect_safe_coding_system_function,
4704 make_number (b), make_number (e),
4705 coding_system, Qnil);
4706
4707 if (force_raw_text)
4708 coding_system = Qraw_text;
4709 }
4710
4711 if (NILP (Fcoding_system_p (coding_system)))
4712 {
4713 /* Invalid coding system. */
4714
4715 if (!NILP (noerror))
4716 coding_system = Qraw_text;
4717 else
4718 xsignal1 (Qcoding_system_error, coding_system);
4719 }
4720 }
4721
4722 object = make_buffer_string (b, e, 0);
4723 if (prev != current_buffer)
4724 set_buffer_internal (prev);
4725 /* Discard the unwind protect for recovering the current
4726 buffer. */
4727 specpdl_ptr--;
4728
4729 if (STRING_MULTIBYTE (object))
4730 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4731 }
4732
4733 switch (type)
4734 {
4735 case 0: /* MD5 */
4736 {
4737 char digest[16];
4738 md5_buffer (SSDATA (object) + start_byte,
4739 SBYTES (object) - (size_byte - end_byte),
4740 digest);
4741
4742 if (NILP (binary))
4743 {
4744 char value[33];
4745 for (i = 0; i < 16; i++)
4746 sprintf (&value[2 * i], "%02x", to_uchar (digest[i]));
4747 res = make_string (value, 32);
4748 }
4749 else
4750 res = make_string (digest, 16);
4751 break;
4752 }
4753
4754 case 1: /* SHA1 */
4755 {
4756 char digest[20];
4757 sha1_buffer (SSDATA (object) + start_byte,
4758 SBYTES (object) - (size_byte - end_byte),
4759 digest);
4760 if (NILP (binary))
4761 {
4762 char value[41];
4763 for (i = 0; i < 20; i++)
4764 sprintf (&value[2 * i], "%02x", to_uchar (digest[i]));
4765 res = make_string (value, 40);
4766 }
4767 else
4768 res = make_string (digest, 20);
4769 break;
4770 }
4771 }
4772
4773 return res;
4774 }
4775
4776 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4777 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4778
4779 A message digest is a cryptographic checksum of a document, and the
4780 algorithm to calculate it is defined in RFC 1321.
4781
4782 The two optional arguments START and END are character positions
4783 specifying for which part of OBJECT the message digest should be
4784 computed. If nil or omitted, the digest is computed for the whole
4785 OBJECT.
4786
4787 The MD5 message digest is computed from the result of encoding the
4788 text in a coding system, not directly from the internal Emacs form of
4789 the text. The optional fourth argument CODING-SYSTEM specifies which
4790 coding system to encode the text with. It should be the same coding
4791 system that you used or will use when actually writing the text into a
4792 file.
4793
4794 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4795 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4796 system would be chosen by default for writing this text into a file.
4797
4798 If OBJECT is a string, the most preferred coding system (see the
4799 command `prefer-coding-system') is used.
4800
4801 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4802 guesswork fails. Normally, an error is signaled in such case. */)
4803 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
4804 {
4805 return crypto_hash_function (0, object, start, end, coding_system, noerror, Qnil);
4806 }
4807
4808 DEFUN ("sha1", Fsha1, Ssha1, 1, 4, 0,
4809 doc: /* Return the SHA-1 (Secure Hash Algorithm) of an OBJECT.
4810
4811 OBJECT is either a string or a buffer. Optional arguments START and
4812 END are character positions specifying which portion of OBJECT for
4813 computing the hash. If BINARY is non-nil, return a string in binary
4814 form. */)
4815 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object binary)
4816 {
4817 return crypto_hash_function (1, object, start, end, Qnil, Qnil, binary);
4818 }
4819
4820 \f
4821 void
4822 syms_of_fns (void)
4823 {
4824 /* Hash table stuff. */
4825 Qhash_table_p = intern_c_string ("hash-table-p");
4826 staticpro (&Qhash_table_p);
4827 Qeq = intern_c_string ("eq");
4828 staticpro (&Qeq);
4829 Qeql = intern_c_string ("eql");
4830 staticpro (&Qeql);
4831 Qequal = intern_c_string ("equal");
4832 staticpro (&Qequal);
4833 QCtest = intern_c_string (":test");
4834 staticpro (&QCtest);
4835 QCsize = intern_c_string (":size");
4836 staticpro (&QCsize);
4837 QCrehash_size = intern_c_string (":rehash-size");
4838 staticpro (&QCrehash_size);
4839 QCrehash_threshold = intern_c_string (":rehash-threshold");
4840 staticpro (&QCrehash_threshold);
4841 QCweakness = intern_c_string (":weakness");
4842 staticpro (&QCweakness);
4843 Qkey = intern_c_string ("key");
4844 staticpro (&Qkey);
4845 Qvalue = intern_c_string ("value");
4846 staticpro (&Qvalue);
4847 Qhash_table_test = intern_c_string ("hash-table-test");
4848 staticpro (&Qhash_table_test);
4849 Qkey_or_value = intern_c_string ("key-or-value");
4850 staticpro (&Qkey_or_value);
4851 Qkey_and_value = intern_c_string ("key-and-value");
4852 staticpro (&Qkey_and_value);
4853
4854 defsubr (&Ssxhash);
4855 defsubr (&Smake_hash_table);
4856 defsubr (&Scopy_hash_table);
4857 defsubr (&Shash_table_count);
4858 defsubr (&Shash_table_rehash_size);
4859 defsubr (&Shash_table_rehash_threshold);
4860 defsubr (&Shash_table_size);
4861 defsubr (&Shash_table_test);
4862 defsubr (&Shash_table_weakness);
4863 defsubr (&Shash_table_p);
4864 defsubr (&Sclrhash);
4865 defsubr (&Sgethash);
4866 defsubr (&Sputhash);
4867 defsubr (&Sremhash);
4868 defsubr (&Smaphash);
4869 defsubr (&Sdefine_hash_table_test);
4870
4871 Qstring_lessp = intern_c_string ("string-lessp");
4872 staticpro (&Qstring_lessp);
4873 Qprovide = intern_c_string ("provide");
4874 staticpro (&Qprovide);
4875 Qrequire = intern_c_string ("require");
4876 staticpro (&Qrequire);
4877 Qyes_or_no_p_history = intern_c_string ("yes-or-no-p-history");
4878 staticpro (&Qyes_or_no_p_history);
4879 Qcursor_in_echo_area = intern_c_string ("cursor-in-echo-area");
4880 staticpro (&Qcursor_in_echo_area);
4881 Qwidget_type = intern_c_string ("widget-type");
4882 staticpro (&Qwidget_type);
4883
4884 staticpro (&string_char_byte_cache_string);
4885 string_char_byte_cache_string = Qnil;
4886
4887 require_nesting_list = Qnil;
4888 staticpro (&require_nesting_list);
4889
4890 Fset (Qyes_or_no_p_history, Qnil);
4891
4892 DEFVAR_LISP ("features", Vfeatures,
4893 doc: /* A list of symbols which are the features of the executing Emacs.
4894 Used by `featurep' and `require', and altered by `provide'. */);
4895 Vfeatures = Fcons (intern_c_string ("emacs"), Qnil);
4896 Qsubfeatures = intern_c_string ("subfeatures");
4897 staticpro (&Qsubfeatures);
4898
4899 #ifdef HAVE_LANGINFO_CODESET
4900 Qcodeset = intern_c_string ("codeset");
4901 staticpro (&Qcodeset);
4902 Qdays = intern_c_string ("days");
4903 staticpro (&Qdays);
4904 Qmonths = intern_c_string ("months");
4905 staticpro (&Qmonths);
4906 Qpaper = intern_c_string ("paper");
4907 staticpro (&Qpaper);
4908 #endif /* HAVE_LANGINFO_CODESET */
4909
4910 DEFVAR_BOOL ("use-dialog-box", use_dialog_box,
4911 doc: /* *Non-nil means mouse commands use dialog boxes to ask questions.
4912 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4913 invoked by mouse clicks and mouse menu items.
4914
4915 On some platforms, file selection dialogs are also enabled if this is
4916 non-nil. */);
4917 use_dialog_box = 1;
4918
4919 DEFVAR_BOOL ("use-file-dialog", use_file_dialog,
4920 doc: /* *Non-nil means mouse commands use a file dialog to ask for files.
4921 This applies to commands from menus and tool bar buttons even when
4922 they are initiated from the keyboard. If `use-dialog-box' is nil,
4923 that disables the use of a file dialog, regardless of the value of
4924 this variable. */);
4925 use_file_dialog = 1;
4926
4927 defsubr (&Sidentity);
4928 defsubr (&Srandom);
4929 defsubr (&Slength);
4930 defsubr (&Ssafe_length);
4931 defsubr (&Sstring_bytes);
4932 defsubr (&Sstring_equal);
4933 defsubr (&Scompare_strings);
4934 defsubr (&Sstring_lessp);
4935 defsubr (&Sappend);
4936 defsubr (&Sconcat);
4937 defsubr (&Svconcat);
4938 defsubr (&Scopy_sequence);
4939 defsubr (&Sstring_make_multibyte);
4940 defsubr (&Sstring_make_unibyte);
4941 defsubr (&Sstring_as_multibyte);
4942 defsubr (&Sstring_as_unibyte);
4943 defsubr (&Sstring_to_multibyte);
4944 defsubr (&Sstring_to_unibyte);
4945 defsubr (&Scopy_alist);
4946 defsubr (&Ssubstring);
4947 defsubr (&Ssubstring_no_properties);
4948 defsubr (&Snthcdr);
4949 defsubr (&Snth);
4950 defsubr (&Selt);
4951 defsubr (&Smember);
4952 defsubr (&Smemq);
4953 defsubr (&Smemql);
4954 defsubr (&Sassq);
4955 defsubr (&Sassoc);
4956 defsubr (&Srassq);
4957 defsubr (&Srassoc);
4958 defsubr (&Sdelq);
4959 defsubr (&Sdelete);
4960 defsubr (&Snreverse);
4961 defsubr (&Sreverse);
4962 defsubr (&Ssort);
4963 defsubr (&Splist_get);
4964 defsubr (&Sget);
4965 defsubr (&Splist_put);
4966 defsubr (&Sput);
4967 defsubr (&Slax_plist_get);
4968 defsubr (&Slax_plist_put);
4969 defsubr (&Seql);
4970 defsubr (&Sequal);
4971 defsubr (&Sequal_including_properties);
4972 defsubr (&Sfillarray);
4973 defsubr (&Sclear_string);
4974 defsubr (&Snconc);
4975 defsubr (&Smapcar);
4976 defsubr (&Smapc);
4977 defsubr (&Smapconcat);
4978 defsubr (&Syes_or_no_p);
4979 defsubr (&Sload_average);
4980 defsubr (&Sfeaturep);
4981 defsubr (&Srequire);
4982 defsubr (&Sprovide);
4983 defsubr (&Splist_member);
4984 defsubr (&Swidget_put);
4985 defsubr (&Swidget_get);
4986 defsubr (&Swidget_apply);
4987 defsubr (&Sbase64_encode_region);
4988 defsubr (&Sbase64_decode_region);
4989 defsubr (&Sbase64_encode_string);
4990 defsubr (&Sbase64_decode_string);
4991 defsubr (&Smd5);
4992 defsubr (&Ssha1);
4993 defsubr (&Slocale_info);
4994 }
4995
4996
4997 void
4998 init_fns (void)
4999 {
5000 }