]> code.delx.au - gnu-emacs/blob - src/lisp.h
merge master
[gnu-emacs] / src / lisp.h
1 /* Fundamental definitions for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2015 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #ifndef EMACS_LISP_H
22 #define EMACS_LISP_H
23
24 #include <setjmp.h>
25 #include <stdalign.h>
26 #include <stdarg.h>
27 #include <stddef.h>
28 #include <float.h>
29 #include <inttypes.h>
30 #include <limits.h>
31
32 #include <intprops.h>
33 #include <verify.h>
34
35 INLINE_HEADER_BEGIN
36
37 /* Define a TYPE constant ID as an externally visible name. Use like this:
38
39 DEFINE_GDB_SYMBOL_BEGIN (TYPE, ID)
40 # define ID (some integer preprocessor expression of type TYPE)
41 DEFINE_GDB_SYMBOL_END (ID)
42
43 This hack is for the benefit of compilers that do not make macro
44 definitions or enums visible to the debugger. It's used for symbols
45 that .gdbinit needs. */
46
47 #define DECLARE_GDB_SYM(type, id) type const id EXTERNALLY_VISIBLE
48 #ifdef MAIN_PROGRAM
49 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) DECLARE_GDB_SYM (type, id)
50 # define DEFINE_GDB_SYMBOL_END(id) = id;
51 #else
52 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) extern DECLARE_GDB_SYM (type, id)
53 # define DEFINE_GDB_SYMBOL_END(val) ;
54 #endif
55
56 /* The ubiquitous max and min macros. */
57 #undef min
58 #undef max
59 #define max(a, b) ((a) > (b) ? (a) : (b))
60 #define min(a, b) ((a) < (b) ? (a) : (b))
61
62 /* Number of elements in an array. */
63 #define ARRAYELTS(arr) (sizeof (arr) / sizeof (arr)[0])
64
65 /* Number of bits in a Lisp_Object tag. */
66 DEFINE_GDB_SYMBOL_BEGIN (int, GCTYPEBITS)
67 #define GCTYPEBITS 3
68 DEFINE_GDB_SYMBOL_END (GCTYPEBITS)
69
70 /* The number of bits needed in an EMACS_INT over and above the number
71 of bits in a pointer. This is 0 on systems where:
72 1. We can specify multiple-of-8 alignment on static variables.
73 2. We know malloc returns a multiple of 8. */
74 #if (defined alignas \
75 && (defined GNU_MALLOC || defined DOUG_LEA_MALLOC || defined __GLIBC__ \
76 || defined DARWIN_OS || defined __sun || defined __MINGW32__ \
77 || defined CYGWIN))
78 # define NONPOINTER_BITS 0
79 #else
80 # define NONPOINTER_BITS GCTYPEBITS
81 #endif
82
83 /* EMACS_INT - signed integer wide enough to hold an Emacs value
84 EMACS_INT_MAX - maximum value of EMACS_INT; can be used in #if
85 pI - printf length modifier for EMACS_INT
86 EMACS_UINT - unsigned variant of EMACS_INT */
87 #ifndef EMACS_INT_MAX
88 # if INTPTR_MAX <= 0
89 # error "INTPTR_MAX misconfigured"
90 # elif INTPTR_MAX <= INT_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
91 typedef int EMACS_INT;
92 typedef unsigned int EMACS_UINT;
93 # define EMACS_INT_MAX INT_MAX
94 # define pI ""
95 # elif INTPTR_MAX <= LONG_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
96 typedef long int EMACS_INT;
97 typedef unsigned long EMACS_UINT;
98 # define EMACS_INT_MAX LONG_MAX
99 # define pI "l"
100 /* Check versus LLONG_MAX, not LLONG_MAX >> NONPOINTER_BITS.
101 In theory this is not safe, but in practice it seems to be OK. */
102 # elif INTPTR_MAX <= LLONG_MAX
103 typedef long long int EMACS_INT;
104 typedef unsigned long long int EMACS_UINT;
105 # define EMACS_INT_MAX LLONG_MAX
106 # define pI "ll"
107 # else
108 # error "INTPTR_MAX too large"
109 # endif
110 #endif
111
112 /* Number of bits to put in each character in the internal representation
113 of bool vectors. This should not vary across implementations. */
114 enum { BOOL_VECTOR_BITS_PER_CHAR =
115 #define BOOL_VECTOR_BITS_PER_CHAR 8
116 BOOL_VECTOR_BITS_PER_CHAR
117 };
118
119 /* An unsigned integer type representing a fixed-length bit sequence,
120 suitable for bool vector words, GC mark bits, etc. Normally it is size_t
121 for speed, but it is unsigned char on weird platforms. */
122 #if BOOL_VECTOR_BITS_PER_CHAR == CHAR_BIT
123 typedef size_t bits_word;
124 # define BITS_WORD_MAX SIZE_MAX
125 enum { BITS_PER_BITS_WORD = CHAR_BIT * sizeof (bits_word) };
126 #else
127 typedef unsigned char bits_word;
128 # define BITS_WORD_MAX ((1u << BOOL_VECTOR_BITS_PER_CHAR) - 1)
129 enum { BITS_PER_BITS_WORD = BOOL_VECTOR_BITS_PER_CHAR };
130 #endif
131 verify (BITS_WORD_MAX >> (BITS_PER_BITS_WORD - 1) == 1);
132
133 /* Number of bits in some machine integer types. */
134 enum
135 {
136 BITS_PER_CHAR = CHAR_BIT,
137 BITS_PER_SHORT = CHAR_BIT * sizeof (short),
138 BITS_PER_LONG = CHAR_BIT * sizeof (long int),
139 BITS_PER_EMACS_INT = CHAR_BIT * sizeof (EMACS_INT)
140 };
141
142 /* printmax_t and uprintmax_t are types for printing large integers.
143 These are the widest integers that are supported for printing.
144 pMd etc. are conversions for printing them.
145 On C99 hosts, there's no problem, as even the widest integers work.
146 Fall back on EMACS_INT on pre-C99 hosts. */
147 #ifdef PRIdMAX
148 typedef intmax_t printmax_t;
149 typedef uintmax_t uprintmax_t;
150 # define pMd PRIdMAX
151 # define pMu PRIuMAX
152 #else
153 typedef EMACS_INT printmax_t;
154 typedef EMACS_UINT uprintmax_t;
155 # define pMd pI"d"
156 # define pMu pI"u"
157 #endif
158
159 /* Use pD to format ptrdiff_t values, which suffice for indexes into
160 buffers and strings. Emacs never allocates objects larger than
161 PTRDIFF_MAX bytes, as they cause problems with pointer subtraction.
162 In C99, pD can always be "t"; configure it here for the sake of
163 pre-C99 libraries such as glibc 2.0 and Solaris 8. */
164 #if PTRDIFF_MAX == INT_MAX
165 # define pD ""
166 #elif PTRDIFF_MAX == LONG_MAX
167 # define pD "l"
168 #elif PTRDIFF_MAX == LLONG_MAX
169 # define pD "ll"
170 #else
171 # define pD "t"
172 #endif
173
174 /* Extra internal type checking? */
175
176 /* Define Emacs versions of <assert.h>'s 'assert (COND)' and <verify.h>'s
177 'assume (COND)'. COND should be free of side effects, as it may or
178 may not be evaluated.
179
180 'eassert (COND)' checks COND at runtime if ENABLE_CHECKING is
181 defined and suppress_checking is false, and does nothing otherwise.
182 Emacs dies if COND is checked and is false. The suppress_checking
183 variable is initialized to 0 in alloc.c. Set it to 1 using a
184 debugger to temporarily disable aborting on detected internal
185 inconsistencies or error conditions.
186
187 In some cases, a good compiler may be able to optimize away the
188 eassert macro even if ENABLE_CHECKING is true, e.g., if XSTRING (x)
189 uses eassert to test STRINGP (x), but a particular use of XSTRING
190 is invoked only after testing that STRINGP (x) is true, making the
191 test redundant.
192
193 eassume is like eassert except that it also causes the compiler to
194 assume that COND is true afterwards, regardless of whether runtime
195 checking is enabled. This can improve performance in some cases,
196 though it can degrade performance in others. It's often suboptimal
197 for COND to call external functions or access volatile storage. */
198
199 #ifndef ENABLE_CHECKING
200 # define eassert(cond) ((void) (false && (cond))) /* Check COND compiles. */
201 # define eassume(cond) assume (cond)
202 #else /* ENABLE_CHECKING */
203
204 extern _Noreturn void die (const char *, const char *, int);
205
206 extern bool suppress_checking EXTERNALLY_VISIBLE;
207
208 # define eassert(cond) \
209 (suppress_checking || (cond) \
210 ? (void) 0 \
211 : die (# cond, __FILE__, __LINE__))
212 # define eassume(cond) \
213 (suppress_checking \
214 ? assume (cond) \
215 : (cond) \
216 ? (void) 0 \
217 : die (# cond, __FILE__, __LINE__))
218 #endif /* ENABLE_CHECKING */
219
220 \f
221 /* Use the configure flag --enable-check-lisp-object-type to make
222 Lisp_Object use a struct type instead of the default int. The flag
223 causes CHECK_LISP_OBJECT_TYPE to be defined. */
224
225 /***** Select the tagging scheme. *****/
226 /* The following option controls the tagging scheme:
227 - USE_LSB_TAG means that we can assume the least 3 bits of pointers are
228 always 0, and we can thus use them to hold tag bits, without
229 restricting our addressing space.
230
231 If ! USE_LSB_TAG, then use the top 3 bits for tagging, thus
232 restricting our possible address range.
233
234 USE_LSB_TAG not only requires the least 3 bits of pointers returned by
235 malloc to be 0 but also needs to be able to impose a mult-of-8 alignment
236 on the few static Lisp_Objects used: lispsym, all the defsubr, and
237 the two special buffers buffer_defaults and buffer_local_symbols. */
238
239 enum Lisp_Bits
240 {
241 /* 2**GCTYPEBITS. This must be a macro that expands to a literal
242 integer constant, for MSVC. */
243 #define GCALIGNMENT 8
244
245 /* Number of bits in a Lisp_Object value, not counting the tag. */
246 VALBITS = BITS_PER_EMACS_INT - GCTYPEBITS,
247
248 /* Number of bits in a Lisp fixnum tag. */
249 INTTYPEBITS = GCTYPEBITS - 1,
250
251 /* Number of bits in a Lisp fixnum value, not counting the tag. */
252 FIXNUM_BITS = VALBITS + 1
253 };
254
255 #if GCALIGNMENT != 1 << GCTYPEBITS
256 # error "GCALIGNMENT and GCTYPEBITS are inconsistent"
257 #endif
258
259 /* The maximum value that can be stored in a EMACS_INT, assuming all
260 bits other than the type bits contribute to a nonnegative signed value.
261 This can be used in #if, e.g., '#if USB_TAG' below expands to an
262 expression involving VAL_MAX. */
263 #define VAL_MAX (EMACS_INT_MAX >> (GCTYPEBITS - 1))
264
265 /* Whether the least-significant bits of an EMACS_INT contain the tag.
266 On hosts where pointers-as-ints do not exceed VAL_MAX / 2, USE_LSB_TAG is:
267 a. unnecessary, because the top bits of an EMACS_INT are unused, and
268 b. slower, because it typically requires extra masking.
269 So, USE_LSB_TAG is true only on hosts where it might be useful. */
270 DEFINE_GDB_SYMBOL_BEGIN (bool, USE_LSB_TAG)
271 #define USE_LSB_TAG (VAL_MAX / 2 < INTPTR_MAX)
272 DEFINE_GDB_SYMBOL_END (USE_LSB_TAG)
273
274 #if !USE_LSB_TAG && !defined WIDE_EMACS_INT
275 # error "USE_LSB_TAG not supported on this platform; please report this." \
276 "Try 'configure --with-wide-int' to work around the problem."
277 error !;
278 #endif
279
280 #ifndef alignas
281 # define alignas(alignment) /* empty */
282 # if USE_LSB_TAG
283 # error "USE_LSB_TAG requires alignas"
284 # endif
285 #endif
286
287 #ifdef HAVE_STRUCT_ATTRIBUTE_ALIGNED
288 # define GCALIGNED __attribute__ ((aligned (GCALIGNMENT)))
289 #else
290 # define GCALIGNED /* empty */
291 #endif
292
293 /* Some operations are so commonly executed that they are implemented
294 as macros, not functions, because otherwise runtime performance would
295 suffer too much when compiling with GCC without optimization.
296 There's no need to inline everything, just the operations that
297 would otherwise cause a serious performance problem.
298
299 For each such operation OP, define a macro lisp_h_OP that contains
300 the operation's implementation. That way, OP can be implemented
301 via a macro definition like this:
302
303 #define OP(x) lisp_h_OP (x)
304
305 and/or via a function definition like this:
306
307 LISP_MACRO_DEFUN (OP, Lisp_Object, (Lisp_Object x), (x))
308
309 which macro-expands to this:
310
311 Lisp_Object (OP) (Lisp_Object x) { return lisp_h_OP (x); }
312
313 without worrying about the implementations diverging, since
314 lisp_h_OP defines the actual implementation. The lisp_h_OP macros
315 are intended to be private to this include file, and should not be
316 used elsewhere.
317
318 FIXME: Remove the lisp_h_OP macros, and define just the inline OP
319 functions, once most developers have access to GCC 4.8 or later and
320 can use "gcc -Og" to debug. Maybe in the year 2016. See
321 Bug#11935.
322
323 Commentary for these macros can be found near their corresponding
324 functions, below. */
325
326 #if CHECK_LISP_OBJECT_TYPE
327 # define lisp_h_XLI(o) ((o).i)
328 # define lisp_h_XIL(i) ((Lisp_Object) { i })
329 #else
330 # define lisp_h_XLI(o) (o)
331 # define lisp_h_XIL(i) (i)
332 #endif
333 #define lisp_h_CHECK_LIST_CONS(x, y) CHECK_TYPE (CONSP (x), Qlistp, y)
334 #define lisp_h_CHECK_NUMBER(x) CHECK_TYPE (INTEGERP (x), Qintegerp, x)
335 #define lisp_h_CHECK_SYMBOL(x) CHECK_TYPE (SYMBOLP (x), Qsymbolp, x)
336 #define lisp_h_CHECK_TYPE(ok, predicate, x) \
337 ((ok) ? (void) 0 : (void) wrong_type_argument (predicate, x))
338 #define lisp_h_CONSP(x) (XTYPE (x) == Lisp_Cons)
339 #define lisp_h_EQ(x, y) (XLI (x) == XLI (y))
340 #define lisp_h_FLOATP(x) (XTYPE (x) == Lisp_Float)
341 #define lisp_h_INTEGERP(x) ((XTYPE (x) & (Lisp_Int0 | ~Lisp_Int1)) == Lisp_Int0)
342 #define lisp_h_MARKERP(x) (MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Marker)
343 #define lisp_h_MISCP(x) (XTYPE (x) == Lisp_Misc)
344 #define lisp_h_NILP(x) EQ (x, Qnil)
345 #define lisp_h_SET_SYMBOL_VAL(sym, v) \
346 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value = (v))
347 #define lisp_h_SYMBOL_CONSTANT_P(sym) (XSYMBOL (sym)->constant)
348 #define lisp_h_SYMBOL_VAL(sym) \
349 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value)
350 #define lisp_h_SYMBOLP(x) (XTYPE (x) == Lisp_Symbol)
351 #define lisp_h_VECTORLIKEP(x) (XTYPE (x) == Lisp_Vectorlike)
352 #define lisp_h_XCAR(c) XCONS (c)->car
353 #define lisp_h_XCDR(c) XCONS (c)->u.cdr
354 #define lisp_h_XCONS(a) \
355 (eassert (CONSP (a)), (struct Lisp_Cons *) XUNTAG (a, Lisp_Cons))
356 #define lisp_h_XHASH(a) XUINT (a)
357 #define lisp_h_XPNTR(a) \
358 (SYMBOLP (a) ? XSYMBOL (a) : (void *) ((intptr_t) (XLI (a) & VALMASK)))
359 #ifndef GC_CHECK_CONS_LIST
360 # define lisp_h_check_cons_list() ((void) 0)
361 #endif
362 #if USE_LSB_TAG
363 # define lisp_h_make_number(n) \
364 XIL ((EMACS_INT) (((EMACS_UINT) (n) << INTTYPEBITS) + Lisp_Int0))
365 # define lisp_h_XFASTINT(a) XINT (a)
366 # define lisp_h_XINT(a) (XLI (a) >> INTTYPEBITS)
367 # define lisp_h_XSYMBOL(a) \
368 (eassert (SYMBOLP (a)), \
369 (struct Lisp_Symbol *) ((uintptr_t) XLI (a) - Lisp_Symbol \
370 + (char *) lispsym))
371 # define lisp_h_XTYPE(a) ((enum Lisp_Type) (XLI (a) & ~VALMASK))
372 # define lisp_h_XUNTAG(a, type) ((void *) (intptr_t) (XLI (a) - (type)))
373 #endif
374
375 /* When compiling via gcc -O0, define the key operations as macros, as
376 Emacs is too slow otherwise. To disable this optimization, compile
377 with -DINLINING=false. */
378 #if (defined __NO_INLINE__ \
379 && ! defined __OPTIMIZE__ && ! defined __OPTIMIZE_SIZE__ \
380 && ! (defined INLINING && ! INLINING))
381 # define XLI(o) lisp_h_XLI (o)
382 # define XIL(i) lisp_h_XIL (i)
383 # define CHECK_LIST_CONS(x, y) lisp_h_CHECK_LIST_CONS (x, y)
384 # define CHECK_NUMBER(x) lisp_h_CHECK_NUMBER (x)
385 # define CHECK_SYMBOL(x) lisp_h_CHECK_SYMBOL (x)
386 # define CHECK_TYPE(ok, predicate, x) lisp_h_CHECK_TYPE (ok, predicate, x)
387 # define CONSP(x) lisp_h_CONSP (x)
388 # define EQ(x, y) lisp_h_EQ (x, y)
389 # define FLOATP(x) lisp_h_FLOATP (x)
390 # define INTEGERP(x) lisp_h_INTEGERP (x)
391 # define MARKERP(x) lisp_h_MARKERP (x)
392 # define MISCP(x) lisp_h_MISCP (x)
393 # define NILP(x) lisp_h_NILP (x)
394 # define SET_SYMBOL_VAL(sym, v) lisp_h_SET_SYMBOL_VAL (sym, v)
395 # define SYMBOL_CONSTANT_P(sym) lisp_h_SYMBOL_CONSTANT_P (sym)
396 # define SYMBOL_VAL(sym) lisp_h_SYMBOL_VAL (sym)
397 # define SYMBOLP(x) lisp_h_SYMBOLP (x)
398 # define VECTORLIKEP(x) lisp_h_VECTORLIKEP (x)
399 # define XCAR(c) lisp_h_XCAR (c)
400 # define XCDR(c) lisp_h_XCDR (c)
401 # define XCONS(a) lisp_h_XCONS (a)
402 # define XHASH(a) lisp_h_XHASH (a)
403 # define XPNTR(a) lisp_h_XPNTR (a)
404 # ifndef GC_CHECK_CONS_LIST
405 # define check_cons_list() lisp_h_check_cons_list ()
406 # endif
407 # if USE_LSB_TAG
408 # define make_number(n) lisp_h_make_number (n)
409 # define XFASTINT(a) lisp_h_XFASTINT (a)
410 # define XINT(a) lisp_h_XINT (a)
411 # define XSYMBOL(a) lisp_h_XSYMBOL (a)
412 # define XTYPE(a) lisp_h_XTYPE (a)
413 # define XUNTAG(a, type) lisp_h_XUNTAG (a, type)
414 # endif
415 #endif
416
417 /* Define NAME as a lisp.h inline function that returns TYPE and has
418 arguments declared as ARGDECLS and passed as ARGS. ARGDECLS and
419 ARGS should be parenthesized. Implement the function by calling
420 lisp_h_NAME ARGS. */
421 #define LISP_MACRO_DEFUN(name, type, argdecls, args) \
422 INLINE type (name) argdecls { return lisp_h_##name args; }
423
424 /* like LISP_MACRO_DEFUN, except NAME returns void. */
425 #define LISP_MACRO_DEFUN_VOID(name, argdecls, args) \
426 INLINE void (name) argdecls { lisp_h_##name args; }
427
428
429 /* Define the fundamental Lisp data structures. */
430
431 /* This is the set of Lisp data types. If you want to define a new
432 data type, read the comments after Lisp_Fwd_Type definition
433 below. */
434
435 /* Lisp integers use 2 tags, to give them one extra bit, thus
436 extending their range from, e.g., -2^28..2^28-1 to -2^29..2^29-1. */
437 #define INTMASK (EMACS_INT_MAX >> (INTTYPEBITS - 1))
438 #define case_Lisp_Int case Lisp_Int0: case Lisp_Int1
439
440 /* Idea stolen from GDB. Pedantic GCC complains about enum bitfields,
441 MSVC doesn't support them, and xlc and Oracle Studio c99 complain
442 vociferously about them. */
443 #if (defined __STRICT_ANSI__ || defined _MSC_VER || defined __IBMC__ \
444 || (defined __SUNPRO_C && __STDC__))
445 #define ENUM_BF(TYPE) unsigned int
446 #else
447 #define ENUM_BF(TYPE) enum TYPE
448 #endif
449
450
451 enum Lisp_Type
452 {
453 /* Symbol. XSYMBOL (object) points to a struct Lisp_Symbol. */
454 Lisp_Symbol = 0,
455
456 /* Miscellaneous. XMISC (object) points to a union Lisp_Misc,
457 whose first member indicates the subtype. */
458 Lisp_Misc = 1,
459
460 /* Integer. XINT (obj) is the integer value. */
461 Lisp_Int0 = 2,
462 Lisp_Int1 = USE_LSB_TAG ? 6 : 3,
463
464 /* String. XSTRING (object) points to a struct Lisp_String.
465 The length of the string, and its contents, are stored therein. */
466 Lisp_String = 4,
467
468 /* Vector of Lisp objects, or something resembling it.
469 XVECTOR (object) points to a struct Lisp_Vector, which contains
470 the size and contents. The size field also contains the type
471 information, if it's not a real vector object. */
472 Lisp_Vectorlike = 5,
473
474 /* Cons. XCONS (object) points to a struct Lisp_Cons. */
475 Lisp_Cons = USE_LSB_TAG ? 3 : 6,
476
477 Lisp_Float = 7
478 };
479
480 /* This is the set of data types that share a common structure.
481 The first member of the structure is a type code from this set.
482 The enum values are arbitrary, but we'll use large numbers to make it
483 more likely that we'll spot the error if a random word in memory is
484 mistakenly interpreted as a Lisp_Misc. */
485 enum Lisp_Misc_Type
486 {
487 Lisp_Misc_Free = 0x5eab,
488 Lisp_Misc_Marker,
489 Lisp_Misc_Overlay,
490 Lisp_Misc_Save_Value,
491 /* Currently floats are not a misc type,
492 but let's define this in case we want to change that. */
493 Lisp_Misc_Float,
494 /* This is not a type code. It is for range checking. */
495 Lisp_Misc_Limit
496 };
497
498 /* These are the types of forwarding objects used in the value slot
499 of symbols for special built-in variables whose value is stored in
500 C variables. */
501 enum Lisp_Fwd_Type
502 {
503 Lisp_Fwd_Int, /* Fwd to a C `int' variable. */
504 Lisp_Fwd_Bool, /* Fwd to a C boolean var. */
505 Lisp_Fwd_Obj, /* Fwd to a C Lisp_Object variable. */
506 Lisp_Fwd_Buffer_Obj, /* Fwd to a Lisp_Object field of buffers. */
507 Lisp_Fwd_Kboard_Obj /* Fwd to a Lisp_Object field of kboards. */
508 };
509
510 /* If you want to define a new Lisp data type, here are some
511 instructions. See the thread at
512 http://lists.gnu.org/archive/html/emacs-devel/2012-10/msg00561.html
513 for more info.
514
515 First, there are already a couple of Lisp types that can be used if
516 your new type does not need to be exposed to Lisp programs nor
517 displayed to users. These are Lisp_Save_Value, a Lisp_Misc
518 subtype; and PVEC_OTHER, a kind of vectorlike object. The former
519 is suitable for temporarily stashing away pointers and integers in
520 a Lisp object. The latter is useful for vector-like Lisp objects
521 that need to be used as part of other objects, but which are never
522 shown to users or Lisp code (search for PVEC_OTHER in xterm.c for
523 an example).
524
525 These two types don't look pretty when printed, so they are
526 unsuitable for Lisp objects that can be exposed to users.
527
528 To define a new data type, add one more Lisp_Misc subtype or one
529 more pseudovector subtype. Pseudovectors are more suitable for
530 objects with several slots that need to support fast random access,
531 while Lisp_Misc types are for everything else. A pseudovector object
532 provides one or more slots for Lisp objects, followed by struct
533 members that are accessible only from C. A Lisp_Misc object is a
534 wrapper for a C struct that can contain anything you like.
535
536 Explicit freeing is discouraged for Lisp objects in general. But if
537 you really need to exploit this, use Lisp_Misc (check free_misc in
538 alloc.c to see why). There is no way to free a vectorlike object.
539
540 To add a new pseudovector type, extend the pvec_type enumeration;
541 to add a new Lisp_Misc, extend the Lisp_Misc_Type enumeration.
542
543 For a Lisp_Misc, you will also need to add your entry to union
544 Lisp_Misc (but make sure the first word has the same structure as
545 the others, starting with a 16-bit member of the Lisp_Misc_Type
546 enumeration and a 1-bit GC markbit) and make sure the overall size
547 of the union is not increased by your addition.
548
549 For a new pseudovector, it's highly desirable to limit the size
550 of your data type by VBLOCK_BYTES_MAX bytes (defined in alloc.c).
551 Otherwise you will need to change sweep_vectors (also in alloc.c).
552
553 Then you will need to add switch branches in print.c (in
554 print_object, to print your object, and possibly also in
555 print_preprocess) and to alloc.c, to mark your object (in
556 mark_object) and to free it (in gc_sweep). The latter is also the
557 right place to call any code specific to your data type that needs
558 to run when the object is recycled -- e.g., free any additional
559 resources allocated for it that are not Lisp objects. You can even
560 make a pointer to the function that frees the resources a slot in
561 your object -- this way, the same object could be used to represent
562 several disparate C structures. */
563
564 #ifdef CHECK_LISP_OBJECT_TYPE
565
566 typedef struct { EMACS_INT i; } Lisp_Object;
567
568 #define LISP_INITIALLY(i) {i}
569
570 #undef CHECK_LISP_OBJECT_TYPE
571 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = true };
572 #else /* CHECK_LISP_OBJECT_TYPE */
573
574 /* If a struct type is not wanted, define Lisp_Object as just a number. */
575
576 typedef EMACS_INT Lisp_Object;
577 #define LISP_INITIALLY(i) (i)
578 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = false };
579 #endif /* CHECK_LISP_OBJECT_TYPE */
580
581 #define LISP_INITIALLY_ZERO LISP_INITIALLY (0)
582 \f
583 /* Forward declarations. */
584
585 /* Defined in this file. */
586 union Lisp_Fwd;
587 INLINE bool BOOL_VECTOR_P (Lisp_Object);
588 INLINE bool BUFFER_OBJFWDP (union Lisp_Fwd *);
589 INLINE bool BUFFERP (Lisp_Object);
590 INLINE bool CHAR_TABLE_P (Lisp_Object);
591 INLINE Lisp_Object CHAR_TABLE_REF_ASCII (Lisp_Object, ptrdiff_t);
592 INLINE bool (CONSP) (Lisp_Object);
593 INLINE bool (FLOATP) (Lisp_Object);
594 INLINE bool functionp (Lisp_Object);
595 INLINE bool (INTEGERP) (Lisp_Object);
596 INLINE bool (MARKERP) (Lisp_Object);
597 INLINE bool (MISCP) (Lisp_Object);
598 INLINE bool (NILP) (Lisp_Object);
599 INLINE bool OVERLAYP (Lisp_Object);
600 INLINE bool PROCESSP (Lisp_Object);
601 INLINE bool PSEUDOVECTORP (Lisp_Object, int);
602 INLINE bool SAVE_VALUEP (Lisp_Object);
603 INLINE void set_sub_char_table_contents (Lisp_Object, ptrdiff_t,
604 Lisp_Object);
605 INLINE bool STRINGP (Lisp_Object);
606 INLINE bool SUB_CHAR_TABLE_P (Lisp_Object);
607 INLINE bool SUBRP (Lisp_Object);
608 INLINE bool (SYMBOLP) (Lisp_Object);
609 INLINE bool (VECTORLIKEP) (Lisp_Object);
610 INLINE bool WINDOWP (Lisp_Object);
611 INLINE struct Lisp_Save_Value *XSAVE_VALUE (Lisp_Object);
612 INLINE struct Lisp_Symbol *(XSYMBOL) (Lisp_Object);
613 INLINE void *(XUNTAG) (Lisp_Object, int);
614
615 /* Defined in chartab.c. */
616 extern Lisp_Object char_table_ref (Lisp_Object, int);
617 extern void char_table_set (Lisp_Object, int, Lisp_Object);
618
619 /* Defined in data.c. */
620 extern _Noreturn Lisp_Object wrong_type_argument (Lisp_Object, Lisp_Object);
621 extern _Noreturn void wrong_choice (Lisp_Object, Lisp_Object);
622
623 /* Defined in emacs.c. */
624 extern bool might_dump;
625 /* True means Emacs has already been initialized.
626 Used during startup to detect startup of dumped Emacs. */
627 extern bool initialized;
628
629 /* Defined in floatfns.c. */
630 extern double extract_float (Lisp_Object);
631
632 \f
633 /* Interned state of a symbol. */
634
635 enum symbol_interned
636 {
637 SYMBOL_UNINTERNED = 0,
638 SYMBOL_INTERNED = 1,
639 SYMBOL_INTERNED_IN_INITIAL_OBARRAY = 2
640 };
641
642 enum symbol_redirect
643 {
644 SYMBOL_PLAINVAL = 4,
645 SYMBOL_VARALIAS = 1,
646 SYMBOL_LOCALIZED = 2,
647 SYMBOL_FORWARDED = 3
648 };
649
650 struct Lisp_Symbol
651 {
652 bool_bf gcmarkbit : 1;
653
654 /* Indicates where the value can be found:
655 0 : it's a plain var, the value is in the `value' field.
656 1 : it's a varalias, the value is really in the `alias' symbol.
657 2 : it's a localized var, the value is in the `blv' object.
658 3 : it's a forwarding variable, the value is in `forward'. */
659 ENUM_BF (symbol_redirect) redirect : 3;
660
661 /* Non-zero means symbol is constant, i.e. changing its value
662 should signal an error. If the value is 3, then the var
663 can be changed, but only by `defconst'. */
664 unsigned constant : 2;
665
666 /* Interned state of the symbol. This is an enumerator from
667 enum symbol_interned. */
668 unsigned interned : 2;
669
670 /* True means that this variable has been explicitly declared
671 special (with `defvar' etc), and shouldn't be lexically bound. */
672 bool_bf declared_special : 1;
673
674 /* True if pointed to from purespace and hence can't be GC'd. */
675 bool_bf pinned : 1;
676
677 /* The symbol's name, as a Lisp string. */
678 Lisp_Object name;
679
680 /* Value of the symbol or Qunbound if unbound. Which alternative of the
681 union is used depends on the `redirect' field above. */
682 union {
683 Lisp_Object value;
684 struct Lisp_Symbol *alias;
685 struct Lisp_Buffer_Local_Value *blv;
686 union Lisp_Fwd *fwd;
687 } val;
688
689 /* Function value of the symbol or Qnil if not fboundp. */
690 Lisp_Object function;
691
692 /* The symbol's property list. */
693 Lisp_Object plist;
694
695 /* Next symbol in obarray bucket, if the symbol is interned. */
696 struct Lisp_Symbol *next;
697 };
698
699 /* Declare a Lisp-callable function. The MAXARGS parameter has the same
700 meaning as in the DEFUN macro, and is used to construct a prototype. */
701 /* We can use the same trick as in the DEFUN macro to generate the
702 appropriate prototype. */
703 #define EXFUN(fnname, maxargs) \
704 extern Lisp_Object fnname DEFUN_ARGS_ ## maxargs
705
706 /* Note that the weird token-substitution semantics of ANSI C makes
707 this work for MANY and UNEVALLED. */
708 #define DEFUN_ARGS_MANY (ptrdiff_t, Lisp_Object *)
709 #define DEFUN_ARGS_UNEVALLED (Lisp_Object)
710 #define DEFUN_ARGS_0 (void)
711 #define DEFUN_ARGS_1 (Lisp_Object)
712 #define DEFUN_ARGS_2 (Lisp_Object, Lisp_Object)
713 #define DEFUN_ARGS_3 (Lisp_Object, Lisp_Object, Lisp_Object)
714 #define DEFUN_ARGS_4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
715 #define DEFUN_ARGS_5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
716 Lisp_Object)
717 #define DEFUN_ARGS_6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
718 Lisp_Object, Lisp_Object)
719 #define DEFUN_ARGS_7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
720 Lisp_Object, Lisp_Object, Lisp_Object)
721 #define DEFUN_ARGS_8 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
722 Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
723
724 /* Yield an integer that contains TAG along with PTR. */
725 #define TAG_PTR(tag, ptr) \
726 ((USE_LSB_TAG ? (tag) : (EMACS_UINT) (tag) << VALBITS) + (uintptr_t) (ptr))
727
728 /* Yield an integer that contains a symbol tag along with OFFSET.
729 OFFSET should be the offset in bytes from 'lispsym' to the symbol. */
730 #define TAG_SYMOFFSET(offset) \
731 TAG_PTR (Lisp_Symbol, \
732 ((uintptr_t) (offset) >> (USE_LSB_TAG ? 0 : GCTYPEBITS)))
733
734 /* Declare extern constants for Lisp symbols. These can be helpful
735 when using a debugger like GDB, on older platforms where the debug
736 format does not represent C macros. */
737 #define DEFINE_LISP_SYMBOL_BEGIN(name) \
738 DEFINE_GDB_SYMBOL_BEGIN (Lisp_Object, name)
739 #define DEFINE_LISP_SYMBOL_END(name) \
740 DEFINE_GDB_SYMBOL_END (LISP_INITIALLY (TAG_SYMOFFSET (i##name \
741 * sizeof *lispsym)))
742
743 #include "globals.h"
744
745 /* Convert a Lisp_Object to the corresponding EMACS_INT and vice versa.
746 At the machine level, these operations are no-ops. */
747 LISP_MACRO_DEFUN (XLI, EMACS_INT, (Lisp_Object o), (o))
748 LISP_MACRO_DEFUN (XIL, Lisp_Object, (EMACS_INT i), (i))
749
750 /* In the size word of a vector, this bit means the vector has been marked. */
751
752 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, ARRAY_MARK_FLAG)
753 # define ARRAY_MARK_FLAG PTRDIFF_MIN
754 DEFINE_GDB_SYMBOL_END (ARRAY_MARK_FLAG)
755
756 /* In the size word of a struct Lisp_Vector, this bit means it's really
757 some other vector-like object. */
758 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, PSEUDOVECTOR_FLAG)
759 # define PSEUDOVECTOR_FLAG (PTRDIFF_MAX - PTRDIFF_MAX / 2)
760 DEFINE_GDB_SYMBOL_END (PSEUDOVECTOR_FLAG)
761
762 /* In a pseudovector, the size field actually contains a word with one
763 PSEUDOVECTOR_FLAG bit set, and one of the following values extracted
764 with PVEC_TYPE_MASK to indicate the actual type. */
765 enum pvec_type
766 {
767 PVEC_NORMAL_VECTOR,
768 PVEC_FREE,
769 PVEC_PROCESS,
770 PVEC_FRAME,
771 PVEC_WINDOW,
772 PVEC_BOOL_VECTOR,
773 PVEC_BUFFER,
774 PVEC_HASH_TABLE,
775 PVEC_TERMINAL,
776 PVEC_WINDOW_CONFIGURATION,
777 PVEC_SUBR,
778 PVEC_OTHER,
779 #ifdef HAVE_XWIDGETS
780 PVEC_XWIDGET,
781 PVEC_XWIDGET_VIEW,
782 #endif
783
784 /* These should be last, check internal_equal to see why. */
785 PVEC_COMPILED,
786 PVEC_CHAR_TABLE,
787 PVEC_SUB_CHAR_TABLE,
788 PVEC_FONT /* Should be last because it's used for range checking. */
789 };
790
791 enum More_Lisp_Bits
792 {
793 /* For convenience, we also store the number of elements in these bits.
794 Note that this size is not necessarily the memory-footprint size, but
795 only the number of Lisp_Object fields (that need to be traced by GC).
796 The distinction is used, e.g., by Lisp_Process, which places extra
797 non-Lisp_Object fields at the end of the structure. */
798 PSEUDOVECTOR_SIZE_BITS = 12,
799 PSEUDOVECTOR_SIZE_MASK = (1 << PSEUDOVECTOR_SIZE_BITS) - 1,
800
801 /* To calculate the memory footprint of the pseudovector, it's useful
802 to store the size of non-Lisp area in word_size units here. */
803 PSEUDOVECTOR_REST_BITS = 12,
804 PSEUDOVECTOR_REST_MASK = (((1 << PSEUDOVECTOR_REST_BITS) - 1)
805 << PSEUDOVECTOR_SIZE_BITS),
806
807 /* Used to extract pseudovector subtype information. */
808 PSEUDOVECTOR_AREA_BITS = PSEUDOVECTOR_SIZE_BITS + PSEUDOVECTOR_REST_BITS,
809 PVEC_TYPE_MASK = 0x3f << PSEUDOVECTOR_AREA_BITS
810 };
811 \f
812 /* These functions extract various sorts of values from a Lisp_Object.
813 For example, if tem is a Lisp_Object whose type is Lisp_Cons,
814 XCONS (tem) is the struct Lisp_Cons * pointing to the memory for
815 that cons. */
816
817 /* Mask for the value (as opposed to the type bits) of a Lisp object. */
818 DEFINE_GDB_SYMBOL_BEGIN (EMACS_INT, VALMASK)
819 # define VALMASK (USE_LSB_TAG ? - (1 << GCTYPEBITS) : VAL_MAX)
820 DEFINE_GDB_SYMBOL_END (VALMASK)
821
822 /* Largest and smallest representable fixnum values. These are the C
823 values. They are macros for use in static initializers. */
824 #define MOST_POSITIVE_FIXNUM (EMACS_INT_MAX >> INTTYPEBITS)
825 #define MOST_NEGATIVE_FIXNUM (-1 - MOST_POSITIVE_FIXNUM)
826
827 #if USE_LSB_TAG
828
829 LISP_MACRO_DEFUN (make_number, Lisp_Object, (EMACS_INT n), (n))
830 LISP_MACRO_DEFUN (XINT, EMACS_INT, (Lisp_Object a), (a))
831 LISP_MACRO_DEFUN (XFASTINT, EMACS_INT, (Lisp_Object a), (a))
832 LISP_MACRO_DEFUN (XSYMBOL, struct Lisp_Symbol *, (Lisp_Object a), (a))
833 LISP_MACRO_DEFUN (XTYPE, enum Lisp_Type, (Lisp_Object a), (a))
834 LISP_MACRO_DEFUN (XUNTAG, void *, (Lisp_Object a, int type), (a, type))
835
836 #else /* ! USE_LSB_TAG */
837
838 /* Although compiled only if ! USE_LSB_TAG, the following functions
839 also work when USE_LSB_TAG; this is to aid future maintenance when
840 the lisp_h_* macros are eventually removed. */
841
842 /* Make a Lisp integer representing the value of the low order
843 bits of N. */
844 INLINE Lisp_Object
845 make_number (EMACS_INT n)
846 {
847 EMACS_INT int0 = Lisp_Int0;
848 if (USE_LSB_TAG)
849 {
850 EMACS_UINT u = n;
851 n = u << INTTYPEBITS;
852 n += int0;
853 }
854 else
855 {
856 n &= INTMASK;
857 n += (int0 << VALBITS);
858 }
859 return XIL (n);
860 }
861
862 /* Extract A's value as a signed integer. */
863 INLINE EMACS_INT
864 XINT (Lisp_Object a)
865 {
866 EMACS_INT i = XLI (a);
867 if (! USE_LSB_TAG)
868 {
869 EMACS_UINT u = i;
870 i = u << INTTYPEBITS;
871 }
872 return i >> INTTYPEBITS;
873 }
874
875 /* Like XINT (A), but may be faster. A must be nonnegative.
876 If ! USE_LSB_TAG, this takes advantage of the fact that Lisp
877 integers have zero-bits in their tags. */
878 INLINE EMACS_INT
879 XFASTINT (Lisp_Object a)
880 {
881 EMACS_INT int0 = Lisp_Int0;
882 EMACS_INT n = USE_LSB_TAG ? XINT (a) : XLI (a) - (int0 << VALBITS);
883 eassert (0 <= n);
884 return n;
885 }
886
887 /* Extract A's value as a symbol. */
888 INLINE struct Lisp_Symbol *
889 XSYMBOL (Lisp_Object a)
890 {
891 uintptr_t i = (uintptr_t) XUNTAG (a, Lisp_Symbol);
892 if (! USE_LSB_TAG)
893 i <<= GCTYPEBITS;
894 void *p = (char *) lispsym + i;
895 return p;
896 }
897
898 /* Extract A's type. */
899 INLINE enum Lisp_Type
900 XTYPE (Lisp_Object a)
901 {
902 EMACS_UINT i = XLI (a);
903 return USE_LSB_TAG ? i & ~VALMASK : i >> VALBITS;
904 }
905
906 /* Extract A's pointer value, assuming A's type is TYPE. */
907 INLINE void *
908 XUNTAG (Lisp_Object a, int type)
909 {
910 intptr_t i = USE_LSB_TAG ? XLI (a) - type : XLI (a) & VALMASK;
911 return (void *) i;
912 }
913
914 #endif /* ! USE_LSB_TAG */
915
916 /* Extract the pointer hidden within A. */
917 LISP_MACRO_DEFUN (XPNTR, void *, (Lisp_Object a), (a))
918
919 /* Extract A's value as an unsigned integer. */
920 INLINE EMACS_UINT
921 XUINT (Lisp_Object a)
922 {
923 EMACS_UINT i = XLI (a);
924 return USE_LSB_TAG ? i >> INTTYPEBITS : i & INTMASK;
925 }
926
927 /* Return A's (Lisp-integer sized) hash. Happens to be like XUINT
928 right now, but XUINT should only be applied to objects we know are
929 integers. */
930 LISP_MACRO_DEFUN (XHASH, EMACS_INT, (Lisp_Object a), (a))
931
932 /* Like make_number (N), but may be faster. N must be in nonnegative range. */
933 INLINE Lisp_Object
934 make_natnum (EMACS_INT n)
935 {
936 eassert (0 <= n && n <= MOST_POSITIVE_FIXNUM);
937 EMACS_INT int0 = Lisp_Int0;
938 return USE_LSB_TAG ? make_number (n) : XIL (n + (int0 << VALBITS));
939 }
940
941 /* Return true if X and Y are the same object. */
942 LISP_MACRO_DEFUN (EQ, bool, (Lisp_Object x, Lisp_Object y), (x, y))
943
944 /* Value is true if I doesn't fit into a Lisp fixnum. It is
945 written this way so that it also works if I is of unsigned
946 type or if I is a NaN. */
947
948 #define FIXNUM_OVERFLOW_P(i) \
949 (! ((0 <= (i) || MOST_NEGATIVE_FIXNUM <= (i)) && (i) <= MOST_POSITIVE_FIXNUM))
950
951 INLINE ptrdiff_t
952 clip_to_bounds (ptrdiff_t lower, EMACS_INT num, ptrdiff_t upper)
953 {
954 return num < lower ? lower : num <= upper ? num : upper;
955 }
956 \f
957
958 /* Extract a value or address from a Lisp_Object. */
959
960 LISP_MACRO_DEFUN (XCONS, struct Lisp_Cons *, (Lisp_Object a), (a))
961
962 INLINE struct Lisp_Vector *
963 XVECTOR (Lisp_Object a)
964 {
965 eassert (VECTORLIKEP (a));
966 return XUNTAG (a, Lisp_Vectorlike);
967 }
968
969 INLINE struct Lisp_String *
970 XSTRING (Lisp_Object a)
971 {
972 eassert (STRINGP (a));
973 return XUNTAG (a, Lisp_String);
974 }
975
976 /* The index of the C-defined Lisp symbol SYM.
977 This can be used in a static initializer. */
978 #define SYMBOL_INDEX(sym) i##sym
979
980 INLINE struct Lisp_Float *
981 XFLOAT (Lisp_Object a)
982 {
983 eassert (FLOATP (a));
984 return XUNTAG (a, Lisp_Float);
985 }
986
987 /* Pseudovector types. */
988
989 INLINE struct Lisp_Process *
990 XPROCESS (Lisp_Object a)
991 {
992 eassert (PROCESSP (a));
993 return XUNTAG (a, Lisp_Vectorlike);
994 }
995
996 INLINE struct window *
997 XWINDOW (Lisp_Object a)
998 {
999 eassert (WINDOWP (a));
1000 return XUNTAG (a, Lisp_Vectorlike);
1001 }
1002
1003 INLINE struct terminal *
1004 XTERMINAL (Lisp_Object a)
1005 {
1006 return XUNTAG (a, Lisp_Vectorlike);
1007 }
1008
1009 INLINE struct Lisp_Subr *
1010 XSUBR (Lisp_Object a)
1011 {
1012 eassert (SUBRP (a));
1013 return XUNTAG (a, Lisp_Vectorlike);
1014 }
1015
1016 INLINE struct buffer *
1017 XBUFFER (Lisp_Object a)
1018 {
1019 eassert (BUFFERP (a));
1020 return XUNTAG (a, Lisp_Vectorlike);
1021 }
1022
1023 INLINE struct Lisp_Char_Table *
1024 XCHAR_TABLE (Lisp_Object a)
1025 {
1026 eassert (CHAR_TABLE_P (a));
1027 return XUNTAG (a, Lisp_Vectorlike);
1028 }
1029
1030 INLINE struct Lisp_Sub_Char_Table *
1031 XSUB_CHAR_TABLE (Lisp_Object a)
1032 {
1033 eassert (SUB_CHAR_TABLE_P (a));
1034 return XUNTAG (a, Lisp_Vectorlike);
1035 }
1036
1037 INLINE struct Lisp_Bool_Vector *
1038 XBOOL_VECTOR (Lisp_Object a)
1039 {
1040 eassert (BOOL_VECTOR_P (a));
1041 return XUNTAG (a, Lisp_Vectorlike);
1042 }
1043
1044 /* Construct a Lisp_Object from a value or address. */
1045
1046 INLINE Lisp_Object
1047 make_lisp_ptr (void *ptr, enum Lisp_Type type)
1048 {
1049 Lisp_Object a = XIL (TAG_PTR (type, ptr));
1050 eassert (XTYPE (a) == type && XUNTAG (a, type) == ptr);
1051 return a;
1052 }
1053
1054 INLINE Lisp_Object
1055 make_lisp_symbol (struct Lisp_Symbol *sym)
1056 {
1057 Lisp_Object a = XIL (TAG_SYMOFFSET ((char *) sym - (char *) lispsym));
1058 eassert (XSYMBOL (a) == sym);
1059 return a;
1060 }
1061
1062 INLINE Lisp_Object
1063 builtin_lisp_symbol (int index)
1064 {
1065 return make_lisp_symbol (lispsym + index);
1066 }
1067
1068 INLINE Lisp_Object
1069 make_lisp_proc (struct Lisp_Process *p)
1070 {
1071 return make_lisp_ptr (p, Lisp_Vectorlike);
1072 }
1073
1074 #define XSETINT(a, b) ((a) = make_number (b))
1075 #define XSETFASTINT(a, b) ((a) = make_natnum (b))
1076 #define XSETCONS(a, b) ((a) = make_lisp_ptr (b, Lisp_Cons))
1077 #define XSETVECTOR(a, b) ((a) = make_lisp_ptr (b, Lisp_Vectorlike))
1078 #define XSETSTRING(a, b) ((a) = make_lisp_ptr (b, Lisp_String))
1079 #define XSETSYMBOL(a, b) ((a) = make_lisp_symbol (b))
1080 #define XSETFLOAT(a, b) ((a) = make_lisp_ptr (b, Lisp_Float))
1081 #define XSETMISC(a, b) ((a) = make_lisp_ptr (b, Lisp_Misc))
1082
1083 /* Pseudovector types. */
1084
1085 #define XSETPVECTYPE(v, code) \
1086 ((v)->header.size |= PSEUDOVECTOR_FLAG | ((code) << PSEUDOVECTOR_AREA_BITS))
1087 #define XSETPVECTYPESIZE(v, code, lispsize, restsize) \
1088 ((v)->header.size = (PSEUDOVECTOR_FLAG \
1089 | ((code) << PSEUDOVECTOR_AREA_BITS) \
1090 | ((restsize) << PSEUDOVECTOR_SIZE_BITS) \
1091 | (lispsize)))
1092
1093 /* The cast to struct vectorlike_header * avoids aliasing issues. */
1094 #define XSETPSEUDOVECTOR(a, b, code) \
1095 XSETTYPED_PSEUDOVECTOR (a, b, \
1096 (((struct vectorlike_header *) \
1097 XUNTAG (a, Lisp_Vectorlike)) \
1098 ->size), \
1099 code)
1100 #define XSETTYPED_PSEUDOVECTOR(a, b, size, code) \
1101 (XSETVECTOR (a, b), \
1102 eassert ((size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK)) \
1103 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS))))
1104
1105 #define XSETWINDOW_CONFIGURATION(a, b) \
1106 (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW_CONFIGURATION))
1107 #define XSETPROCESS(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_PROCESS))
1108 #define XSETWINDOW(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW))
1109 #define XSETTERMINAL(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_TERMINAL))
1110 #define XSETSUBR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUBR))
1111 #define XSETCOMPILED(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_COMPILED))
1112 #define XSETBUFFER(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BUFFER))
1113 #define XSETCHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_CHAR_TABLE))
1114 #define XSETBOOL_VECTOR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BOOL_VECTOR))
1115 #define XSETSUB_CHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUB_CHAR_TABLE))
1116
1117 /* Efficiently convert a pointer to a Lisp object and back. The
1118 pointer is represented as a Lisp integer, so the garbage collector
1119 does not know about it. The pointer should not have both Lisp_Int1
1120 bits set, which makes this conversion inherently unportable. */
1121
1122 INLINE void *
1123 XINTPTR (Lisp_Object a)
1124 {
1125 return XUNTAG (a, Lisp_Int0);
1126 }
1127
1128 INLINE Lisp_Object
1129 make_pointer_integer (void *p)
1130 {
1131 Lisp_Object a = XIL (TAG_PTR (Lisp_Int0, p));
1132 eassert (INTEGERP (a) && XINTPTR (a) == p);
1133 return a;
1134 }
1135
1136 /* Type checking. */
1137
1138 LISP_MACRO_DEFUN_VOID (CHECK_TYPE,
1139 (int ok, Lisp_Object predicate, Lisp_Object x),
1140 (ok, predicate, x))
1141
1142 /* Deprecated and will be removed soon. */
1143
1144 #define INTERNAL_FIELD(field) field ## _
1145
1146 /* See the macros in intervals.h. */
1147
1148 typedef struct interval *INTERVAL;
1149
1150 struct GCALIGNED Lisp_Cons
1151 {
1152 /* Car of this cons cell. */
1153 Lisp_Object car;
1154
1155 union
1156 {
1157 /* Cdr of this cons cell. */
1158 Lisp_Object cdr;
1159
1160 /* Used to chain conses on a free list. */
1161 struct Lisp_Cons *chain;
1162 } u;
1163 };
1164
1165 /* Take the car or cdr of something known to be a cons cell. */
1166 /* The _addr functions shouldn't be used outside of the minimal set
1167 of code that has to know what a cons cell looks like. Other code not
1168 part of the basic lisp implementation should assume that the car and cdr
1169 fields are not accessible. (What if we want to switch to
1170 a copying collector someday? Cached cons cell field addresses may be
1171 invalidated at arbitrary points.) */
1172 INLINE Lisp_Object *
1173 xcar_addr (Lisp_Object c)
1174 {
1175 return &XCONS (c)->car;
1176 }
1177 INLINE Lisp_Object *
1178 xcdr_addr (Lisp_Object c)
1179 {
1180 return &XCONS (c)->u.cdr;
1181 }
1182
1183 /* Use these from normal code. */
1184 LISP_MACRO_DEFUN (XCAR, Lisp_Object, (Lisp_Object c), (c))
1185 LISP_MACRO_DEFUN (XCDR, Lisp_Object, (Lisp_Object c), (c))
1186
1187 /* Use these to set the fields of a cons cell.
1188
1189 Note that both arguments may refer to the same object, so 'n'
1190 should not be read after 'c' is first modified. */
1191 INLINE void
1192 XSETCAR (Lisp_Object c, Lisp_Object n)
1193 {
1194 *xcar_addr (c) = n;
1195 }
1196 INLINE void
1197 XSETCDR (Lisp_Object c, Lisp_Object n)
1198 {
1199 *xcdr_addr (c) = n;
1200 }
1201
1202 /* Take the car or cdr of something whose type is not known. */
1203 INLINE Lisp_Object
1204 CAR (Lisp_Object c)
1205 {
1206 return (CONSP (c) ? XCAR (c)
1207 : NILP (c) ? Qnil
1208 : wrong_type_argument (Qlistp, c));
1209 }
1210 INLINE Lisp_Object
1211 CDR (Lisp_Object c)
1212 {
1213 return (CONSP (c) ? XCDR (c)
1214 : NILP (c) ? Qnil
1215 : wrong_type_argument (Qlistp, c));
1216 }
1217
1218 /* Take the car or cdr of something whose type is not known. */
1219 INLINE Lisp_Object
1220 CAR_SAFE (Lisp_Object c)
1221 {
1222 return CONSP (c) ? XCAR (c) : Qnil;
1223 }
1224 INLINE Lisp_Object
1225 CDR_SAFE (Lisp_Object c)
1226 {
1227 return CONSP (c) ? XCDR (c) : Qnil;
1228 }
1229
1230 /* In a string or vector, the sign bit of the `size' is the gc mark bit. */
1231
1232 struct GCALIGNED Lisp_String
1233 {
1234 ptrdiff_t size;
1235 ptrdiff_t size_byte;
1236 INTERVAL intervals; /* Text properties in this string. */
1237 unsigned char *data;
1238 };
1239
1240 /* True if STR is a multibyte string. */
1241 INLINE bool
1242 STRING_MULTIBYTE (Lisp_Object str)
1243 {
1244 return 0 <= XSTRING (str)->size_byte;
1245 }
1246
1247 /* An upper bound on the number of bytes in a Lisp string, not
1248 counting the terminating null. This a tight enough bound to
1249 prevent integer overflow errors that would otherwise occur during
1250 string size calculations. A string cannot contain more bytes than
1251 a fixnum can represent, nor can it be so long that C pointer
1252 arithmetic stops working on the string plus its terminating null.
1253 Although the actual size limit (see STRING_BYTES_MAX in alloc.c)
1254 may be a bit smaller than STRING_BYTES_BOUND, calculating it here
1255 would expose alloc.c internal details that we'd rather keep
1256 private.
1257
1258 This is a macro for use in static initializers. The cast to
1259 ptrdiff_t ensures that the macro is signed. */
1260 #define STRING_BYTES_BOUND \
1261 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, min (SIZE_MAX, PTRDIFF_MAX) - 1))
1262
1263 /* Mark STR as a unibyte string. */
1264 #define STRING_SET_UNIBYTE(STR) \
1265 do { \
1266 if (EQ (STR, empty_multibyte_string)) \
1267 (STR) = empty_unibyte_string; \
1268 else \
1269 XSTRING (STR)->size_byte = -1; \
1270 } while (false)
1271
1272 /* Mark STR as a multibyte string. Assure that STR contains only
1273 ASCII characters in advance. */
1274 #define STRING_SET_MULTIBYTE(STR) \
1275 do { \
1276 if (EQ (STR, empty_unibyte_string)) \
1277 (STR) = empty_multibyte_string; \
1278 else \
1279 XSTRING (STR)->size_byte = XSTRING (STR)->size; \
1280 } while (false)
1281
1282 /* Convenience functions for dealing with Lisp strings. */
1283
1284 INLINE unsigned char *
1285 SDATA (Lisp_Object string)
1286 {
1287 return XSTRING (string)->data;
1288 }
1289 INLINE char *
1290 SSDATA (Lisp_Object string)
1291 {
1292 /* Avoid "differ in sign" warnings. */
1293 return (char *) SDATA (string);
1294 }
1295 INLINE unsigned char
1296 SREF (Lisp_Object string, ptrdiff_t index)
1297 {
1298 return SDATA (string)[index];
1299 }
1300 INLINE void
1301 SSET (Lisp_Object string, ptrdiff_t index, unsigned char new)
1302 {
1303 SDATA (string)[index] = new;
1304 }
1305 INLINE ptrdiff_t
1306 SCHARS (Lisp_Object string)
1307 {
1308 return XSTRING (string)->size;
1309 }
1310
1311 #ifdef GC_CHECK_STRING_BYTES
1312 extern ptrdiff_t string_bytes (struct Lisp_String *);
1313 #endif
1314 INLINE ptrdiff_t
1315 STRING_BYTES (struct Lisp_String *s)
1316 {
1317 #ifdef GC_CHECK_STRING_BYTES
1318 return string_bytes (s);
1319 #else
1320 return s->size_byte < 0 ? s->size : s->size_byte;
1321 #endif
1322 }
1323
1324 INLINE ptrdiff_t
1325 SBYTES (Lisp_Object string)
1326 {
1327 return STRING_BYTES (XSTRING (string));
1328 }
1329 INLINE void
1330 STRING_SET_CHARS (Lisp_Object string, ptrdiff_t newsize)
1331 {
1332 XSTRING (string)->size = newsize;
1333 }
1334
1335 /* Header of vector-like objects. This documents the layout constraints on
1336 vectors and pseudovectors (objects of PVEC_xxx subtype). It also prevents
1337 compilers from being fooled by Emacs's type punning: XSETPSEUDOVECTOR
1338 and PSEUDOVECTORP cast their pointers to struct vectorlike_header *,
1339 because when two such pointers potentially alias, a compiler won't
1340 incorrectly reorder loads and stores to their size fields. See
1341 Bug#8546. */
1342 struct vectorlike_header
1343 {
1344 /* The only field contains various pieces of information:
1345 - The MSB (ARRAY_MARK_FLAG) holds the gcmarkbit.
1346 - The next bit (PSEUDOVECTOR_FLAG) indicates whether this is a plain
1347 vector (0) or a pseudovector (1).
1348 - If PSEUDOVECTOR_FLAG is 0, the rest holds the size (number
1349 of slots) of the vector.
1350 - If PSEUDOVECTOR_FLAG is 1, the rest is subdivided into three fields:
1351 - a) pseudovector subtype held in PVEC_TYPE_MASK field;
1352 - b) number of Lisp_Objects slots at the beginning of the object
1353 held in PSEUDOVECTOR_SIZE_MASK field. These objects are always
1354 traced by the GC;
1355 - c) size of the rest fields held in PSEUDOVECTOR_REST_MASK and
1356 measured in word_size units. Rest fields may also include
1357 Lisp_Objects, but these objects usually needs some special treatment
1358 during GC.
1359 There are some exceptions. For PVEC_FREE, b) is always zero. For
1360 PVEC_BOOL_VECTOR and PVEC_SUBR, both b) and c) are always zero.
1361 Current layout limits the pseudovectors to 63 PVEC_xxx subtypes,
1362 4095 Lisp_Objects in GC-ed area and 4095 word-sized other slots. */
1363 ptrdiff_t size;
1364 };
1365
1366 /* A regular vector is just a header plus an array of Lisp_Objects. */
1367
1368 struct Lisp_Vector
1369 {
1370 struct vectorlike_header header;
1371 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1372 };
1373
1374 /* C11 prohibits alignof (struct Lisp_Vector), so compute it manually. */
1375 enum
1376 {
1377 ALIGNOF_STRUCT_LISP_VECTOR
1378 = alignof (union { struct vectorlike_header a; Lisp_Object b; })
1379 };
1380
1381 /* A boolvector is a kind of vectorlike, with contents like a string. */
1382
1383 struct Lisp_Bool_Vector
1384 {
1385 /* HEADER.SIZE is the vector's size field. It doesn't have the real size,
1386 just the subtype information. */
1387 struct vectorlike_header header;
1388 /* This is the size in bits. */
1389 EMACS_INT size;
1390 /* The actual bits, packed into bytes.
1391 Zeros fill out the last word if needed.
1392 The bits are in little-endian order in the bytes, and
1393 the bytes are in little-endian order in the words. */
1394 bits_word data[FLEXIBLE_ARRAY_MEMBER];
1395 };
1396
1397 INLINE EMACS_INT
1398 bool_vector_size (Lisp_Object a)
1399 {
1400 EMACS_INT size = XBOOL_VECTOR (a)->size;
1401 eassume (0 <= size);
1402 return size;
1403 }
1404
1405 INLINE bits_word *
1406 bool_vector_data (Lisp_Object a)
1407 {
1408 return XBOOL_VECTOR (a)->data;
1409 }
1410
1411 INLINE unsigned char *
1412 bool_vector_uchar_data (Lisp_Object a)
1413 {
1414 return (unsigned char *) bool_vector_data (a);
1415 }
1416
1417 /* The number of data words and bytes in a bool vector with SIZE bits. */
1418
1419 INLINE EMACS_INT
1420 bool_vector_words (EMACS_INT size)
1421 {
1422 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1423 return (size + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
1424 }
1425
1426 INLINE EMACS_INT
1427 bool_vector_bytes (EMACS_INT size)
1428 {
1429 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1430 return (size + BOOL_VECTOR_BITS_PER_CHAR - 1) / BOOL_VECTOR_BITS_PER_CHAR;
1431 }
1432
1433 /* True if A's Ith bit is set. */
1434
1435 INLINE bool
1436 bool_vector_bitref (Lisp_Object a, EMACS_INT i)
1437 {
1438 eassume (0 <= i && i < bool_vector_size (a));
1439 return !! (bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR]
1440 & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR)));
1441 }
1442
1443 INLINE Lisp_Object
1444 bool_vector_ref (Lisp_Object a, EMACS_INT i)
1445 {
1446 return bool_vector_bitref (a, i) ? Qt : Qnil;
1447 }
1448
1449 /* Set A's Ith bit to B. */
1450
1451 INLINE void
1452 bool_vector_set (Lisp_Object a, EMACS_INT i, bool b)
1453 {
1454 unsigned char *addr;
1455
1456 eassume (0 <= i && i < bool_vector_size (a));
1457 addr = &bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR];
1458
1459 if (b)
1460 *addr |= 1 << (i % BOOL_VECTOR_BITS_PER_CHAR);
1461 else
1462 *addr &= ~ (1 << (i % BOOL_VECTOR_BITS_PER_CHAR));
1463 }
1464
1465 /* Some handy constants for calculating sizes
1466 and offsets, mostly of vectorlike objects. */
1467
1468 enum
1469 {
1470 header_size = offsetof (struct Lisp_Vector, contents),
1471 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
1472 word_size = sizeof (Lisp_Object)
1473 };
1474
1475 /* Conveniences for dealing with Lisp arrays. */
1476
1477 INLINE Lisp_Object
1478 AREF (Lisp_Object array, ptrdiff_t idx)
1479 {
1480 return XVECTOR (array)->contents[idx];
1481 }
1482
1483 INLINE Lisp_Object *
1484 aref_addr (Lisp_Object array, ptrdiff_t idx)
1485 {
1486 return & XVECTOR (array)->contents[idx];
1487 }
1488
1489 INLINE ptrdiff_t
1490 ASIZE (Lisp_Object array)
1491 {
1492 return XVECTOR (array)->header.size;
1493 }
1494
1495 INLINE void
1496 ASET (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1497 {
1498 eassert (0 <= idx && idx < ASIZE (array));
1499 XVECTOR (array)->contents[idx] = val;
1500 }
1501
1502 INLINE void
1503 gc_aset (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1504 {
1505 /* Like ASET, but also can be used in the garbage collector:
1506 sweep_weak_table calls set_hash_key etc. while the table is marked. */
1507 eassert (0 <= idx && idx < (ASIZE (array) & ~ARRAY_MARK_FLAG));
1508 XVECTOR (array)->contents[idx] = val;
1509 }
1510
1511 /* If a struct is made to look like a vector, this macro returns the length
1512 of the shortest vector that would hold that struct. */
1513
1514 #define VECSIZE(type) \
1515 ((sizeof (type) - header_size + word_size - 1) / word_size)
1516
1517 /* Like VECSIZE, but used when the pseudo-vector has non-Lisp_Object fields
1518 at the end and we need to compute the number of Lisp_Object fields (the
1519 ones that the GC needs to trace). */
1520
1521 #define PSEUDOVECSIZE(type, nonlispfield) \
1522 ((offsetof (type, nonlispfield) - header_size) / word_size)
1523
1524 /* Compute A OP B, using the unsigned comparison operator OP. A and B
1525 should be integer expressions. This is not the same as
1526 mathematical comparison; for example, UNSIGNED_CMP (0, <, -1)
1527 returns true. For efficiency, prefer plain unsigned comparison if A
1528 and B's sizes both fit (after integer promotion). */
1529 #define UNSIGNED_CMP(a, op, b) \
1530 (max (sizeof ((a) + 0), sizeof ((b) + 0)) <= sizeof (unsigned) \
1531 ? ((a) + (unsigned) 0) op ((b) + (unsigned) 0) \
1532 : ((a) + (uintmax_t) 0) op ((b) + (uintmax_t) 0))
1533
1534 /* True iff C is an ASCII character. */
1535 #define ASCII_CHAR_P(c) UNSIGNED_CMP (c, <, 0x80)
1536
1537 /* A char-table is a kind of vectorlike, with contents are like a
1538 vector but with a few other slots. For some purposes, it makes
1539 sense to handle a char-table with type struct Lisp_Vector. An
1540 element of a char table can be any Lisp objects, but if it is a sub
1541 char-table, we treat it a table that contains information of a
1542 specific range of characters. A sub char-table is like a vector but
1543 with two integer fields between the header and Lisp data, which means
1544 that it has to be marked with some precautions (see mark_char_table
1545 in alloc.c). A sub char-table appears only in an element of a char-table,
1546 and there's no way to access it directly from Emacs Lisp program. */
1547
1548 enum CHARTAB_SIZE_BITS
1549 {
1550 CHARTAB_SIZE_BITS_0 = 6,
1551 CHARTAB_SIZE_BITS_1 = 4,
1552 CHARTAB_SIZE_BITS_2 = 5,
1553 CHARTAB_SIZE_BITS_3 = 7
1554 };
1555
1556 extern const int chartab_size[4];
1557
1558 struct Lisp_Char_Table
1559 {
1560 /* HEADER.SIZE is the vector's size field, which also holds the
1561 pseudovector type information. It holds the size, too.
1562 The size counts the defalt, parent, purpose, ascii,
1563 contents, and extras slots. */
1564 struct vectorlike_header header;
1565
1566 /* This holds a default value,
1567 which is used whenever the value for a specific character is nil. */
1568 Lisp_Object defalt;
1569
1570 /* This points to another char table, which we inherit from when the
1571 value for a specific character is nil. The `defalt' slot takes
1572 precedence over this. */
1573 Lisp_Object parent;
1574
1575 /* This is a symbol which says what kind of use this char-table is
1576 meant for. */
1577 Lisp_Object purpose;
1578
1579 /* The bottom sub char-table for characters of the range 0..127. It
1580 is nil if none of ASCII character has a specific value. */
1581 Lisp_Object ascii;
1582
1583 Lisp_Object contents[(1 << CHARTAB_SIZE_BITS_0)];
1584
1585 /* These hold additional data. It is a vector. */
1586 Lisp_Object extras[FLEXIBLE_ARRAY_MEMBER];
1587 };
1588
1589 struct Lisp_Sub_Char_Table
1590 {
1591 /* HEADER.SIZE is the vector's size field, which also holds the
1592 pseudovector type information. It holds the size, too. */
1593 struct vectorlike_header header;
1594
1595 /* Depth of this sub char-table. It should be 1, 2, or 3. A sub
1596 char-table of depth 1 contains 16 elements, and each element
1597 covers 4096 (128*32) characters. A sub char-table of depth 2
1598 contains 32 elements, and each element covers 128 characters. A
1599 sub char-table of depth 3 contains 128 elements, and each element
1600 is for one character. */
1601 int depth;
1602
1603 /* Minimum character covered by the sub char-table. */
1604 int min_char;
1605
1606 /* Use set_sub_char_table_contents to set this. */
1607 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1608 };
1609
1610 INLINE Lisp_Object
1611 CHAR_TABLE_REF_ASCII (Lisp_Object ct, ptrdiff_t idx)
1612 {
1613 struct Lisp_Char_Table *tbl = NULL;
1614 Lisp_Object val;
1615 do
1616 {
1617 tbl = tbl ? XCHAR_TABLE (tbl->parent) : XCHAR_TABLE (ct);
1618 val = (! SUB_CHAR_TABLE_P (tbl->ascii) ? tbl->ascii
1619 : XSUB_CHAR_TABLE (tbl->ascii)->contents[idx]);
1620 if (NILP (val))
1621 val = tbl->defalt;
1622 }
1623 while (NILP (val) && ! NILP (tbl->parent));
1624
1625 return val;
1626 }
1627
1628 /* Almost equivalent to Faref (CT, IDX) with optimization for ASCII
1629 characters. Do not check validity of CT. */
1630 INLINE Lisp_Object
1631 CHAR_TABLE_REF (Lisp_Object ct, int idx)
1632 {
1633 return (ASCII_CHAR_P (idx)
1634 ? CHAR_TABLE_REF_ASCII (ct, idx)
1635 : char_table_ref (ct, idx));
1636 }
1637
1638 /* Equivalent to Faset (CT, IDX, VAL) with optimization for ASCII and
1639 8-bit European characters. Do not check validity of CT. */
1640 INLINE void
1641 CHAR_TABLE_SET (Lisp_Object ct, int idx, Lisp_Object val)
1642 {
1643 if (ASCII_CHAR_P (idx) && SUB_CHAR_TABLE_P (XCHAR_TABLE (ct)->ascii))
1644 set_sub_char_table_contents (XCHAR_TABLE (ct)->ascii, idx, val);
1645 else
1646 char_table_set (ct, idx, val);
1647 }
1648
1649 /* This structure describes a built-in function.
1650 It is generated by the DEFUN macro only.
1651 defsubr makes it into a Lisp object. */
1652
1653 struct Lisp_Subr
1654 {
1655 struct vectorlike_header header;
1656 union {
1657 Lisp_Object (*a0) (void);
1658 Lisp_Object (*a1) (Lisp_Object);
1659 Lisp_Object (*a2) (Lisp_Object, Lisp_Object);
1660 Lisp_Object (*a3) (Lisp_Object, Lisp_Object, Lisp_Object);
1661 Lisp_Object (*a4) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1662 Lisp_Object (*a5) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1663 Lisp_Object (*a6) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1664 Lisp_Object (*a7) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1665 Lisp_Object (*a8) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1666 Lisp_Object (*aUNEVALLED) (Lisp_Object args);
1667 Lisp_Object (*aMANY) (ptrdiff_t, Lisp_Object *);
1668 } function;
1669 short min_args, max_args;
1670 const char *symbol_name;
1671 const char *intspec;
1672 const char *doc;
1673 };
1674
1675 enum char_table_specials
1676 {
1677 /* This is the number of slots that every char table must have. This
1678 counts the ordinary slots and the top, defalt, parent, and purpose
1679 slots. */
1680 CHAR_TABLE_STANDARD_SLOTS = PSEUDOVECSIZE (struct Lisp_Char_Table, extras),
1681
1682 /* This is an index of first Lisp_Object field in Lisp_Sub_Char_Table
1683 when the latter is treated as an ordinary Lisp_Vector. */
1684 SUB_CHAR_TABLE_OFFSET = PSEUDOVECSIZE (struct Lisp_Sub_Char_Table, contents)
1685 };
1686
1687 /* Return the number of "extra" slots in the char table CT. */
1688
1689 INLINE int
1690 CHAR_TABLE_EXTRA_SLOTS (struct Lisp_Char_Table *ct)
1691 {
1692 return ((ct->header.size & PSEUDOVECTOR_SIZE_MASK)
1693 - CHAR_TABLE_STANDARD_SLOTS);
1694 }
1695
1696 /* Make sure that sub char-table contents slot is where we think it is. */
1697 verify (offsetof (struct Lisp_Sub_Char_Table, contents)
1698 == offsetof (struct Lisp_Vector, contents[SUB_CHAR_TABLE_OFFSET]));
1699
1700 /***********************************************************************
1701 Symbols
1702 ***********************************************************************/
1703
1704 /* Value is name of symbol. */
1705
1706 LISP_MACRO_DEFUN (SYMBOL_VAL, Lisp_Object, (struct Lisp_Symbol *sym), (sym))
1707
1708 INLINE struct Lisp_Symbol *
1709 SYMBOL_ALIAS (struct Lisp_Symbol *sym)
1710 {
1711 eassert (sym->redirect == SYMBOL_VARALIAS);
1712 return sym->val.alias;
1713 }
1714 INLINE struct Lisp_Buffer_Local_Value *
1715 SYMBOL_BLV (struct Lisp_Symbol *sym)
1716 {
1717 eassert (sym->redirect == SYMBOL_LOCALIZED);
1718 return sym->val.blv;
1719 }
1720 INLINE union Lisp_Fwd *
1721 SYMBOL_FWD (struct Lisp_Symbol *sym)
1722 {
1723 eassert (sym->redirect == SYMBOL_FORWARDED);
1724 return sym->val.fwd;
1725 }
1726
1727 LISP_MACRO_DEFUN_VOID (SET_SYMBOL_VAL,
1728 (struct Lisp_Symbol *sym, Lisp_Object v), (sym, v))
1729
1730 INLINE void
1731 SET_SYMBOL_ALIAS (struct Lisp_Symbol *sym, struct Lisp_Symbol *v)
1732 {
1733 eassert (sym->redirect == SYMBOL_VARALIAS);
1734 sym->val.alias = v;
1735 }
1736 INLINE void
1737 SET_SYMBOL_BLV (struct Lisp_Symbol *sym, struct Lisp_Buffer_Local_Value *v)
1738 {
1739 eassert (sym->redirect == SYMBOL_LOCALIZED);
1740 sym->val.blv = v;
1741 }
1742 INLINE void
1743 SET_SYMBOL_FWD (struct Lisp_Symbol *sym, union Lisp_Fwd *v)
1744 {
1745 eassert (sym->redirect == SYMBOL_FORWARDED);
1746 sym->val.fwd = v;
1747 }
1748
1749 INLINE Lisp_Object
1750 SYMBOL_NAME (Lisp_Object sym)
1751 {
1752 return XSYMBOL (sym)->name;
1753 }
1754
1755 /* Value is true if SYM is an interned symbol. */
1756
1757 INLINE bool
1758 SYMBOL_INTERNED_P (Lisp_Object sym)
1759 {
1760 return XSYMBOL (sym)->interned != SYMBOL_UNINTERNED;
1761 }
1762
1763 /* Value is true if SYM is interned in initial_obarray. */
1764
1765 INLINE bool
1766 SYMBOL_INTERNED_IN_INITIAL_OBARRAY_P (Lisp_Object sym)
1767 {
1768 return XSYMBOL (sym)->interned == SYMBOL_INTERNED_IN_INITIAL_OBARRAY;
1769 }
1770
1771 /* Value is non-zero if symbol is considered a constant, i.e. its
1772 value cannot be changed (there is an exception for keyword symbols,
1773 whose value can be set to the keyword symbol itself). */
1774
1775 LISP_MACRO_DEFUN (SYMBOL_CONSTANT_P, int, (Lisp_Object sym), (sym))
1776
1777 /* Placeholder for make-docfile to process. The actual symbol
1778 definition is done by lread.c's defsym. */
1779 #define DEFSYM(sym, name) /* empty */
1780
1781 \f
1782 /***********************************************************************
1783 Hash Tables
1784 ***********************************************************************/
1785
1786 /* The structure of a Lisp hash table. */
1787
1788 struct hash_table_test
1789 {
1790 /* Name of the function used to compare keys. */
1791 Lisp_Object name;
1792
1793 /* User-supplied hash function, or nil. */
1794 Lisp_Object user_hash_function;
1795
1796 /* User-supplied key comparison function, or nil. */
1797 Lisp_Object user_cmp_function;
1798
1799 /* C function to compare two keys. */
1800 bool (*cmpfn) (struct hash_table_test *t, Lisp_Object, Lisp_Object);
1801
1802 /* C function to compute hash code. */
1803 EMACS_UINT (*hashfn) (struct hash_table_test *t, Lisp_Object);
1804 };
1805
1806 struct Lisp_Hash_Table
1807 {
1808 /* This is for Lisp; the hash table code does not refer to it. */
1809 struct vectorlike_header header;
1810
1811 /* Nil if table is non-weak. Otherwise a symbol describing the
1812 weakness of the table. */
1813 Lisp_Object weak;
1814
1815 /* When the table is resized, and this is an integer, compute the
1816 new size by adding this to the old size. If a float, compute the
1817 new size by multiplying the old size with this factor. */
1818 Lisp_Object rehash_size;
1819
1820 /* Resize hash table when number of entries/ table size is >= this
1821 ratio, a float. */
1822 Lisp_Object rehash_threshold;
1823
1824 /* Vector of hash codes. If hash[I] is nil, this means that the
1825 I-th entry is unused. */
1826 Lisp_Object hash;
1827
1828 /* Vector used to chain entries. If entry I is free, next[I] is the
1829 entry number of the next free item. If entry I is non-free,
1830 next[I] is the index of the next entry in the collision chain. */
1831 Lisp_Object next;
1832
1833 /* Index of first free entry in free list. */
1834 Lisp_Object next_free;
1835
1836 /* Bucket vector. A non-nil entry is the index of the first item in
1837 a collision chain. This vector's size can be larger than the
1838 hash table size to reduce collisions. */
1839 Lisp_Object index;
1840
1841 /* Only the fields above are traced normally by the GC. The ones below
1842 `count' are special and are either ignored by the GC or traced in
1843 a special way (e.g. because of weakness). */
1844
1845 /* Number of key/value entries in the table. */
1846 ptrdiff_t count;
1847
1848 /* Vector of keys and values. The key of item I is found at index
1849 2 * I, the value is found at index 2 * I + 1.
1850 This is gc_marked specially if the table is weak. */
1851 Lisp_Object key_and_value;
1852
1853 /* The comparison and hash functions. */
1854 struct hash_table_test test;
1855
1856 /* Next weak hash table if this is a weak hash table. The head
1857 of the list is in weak_hash_tables. */
1858 struct Lisp_Hash_Table *next_weak;
1859 };
1860
1861
1862 INLINE struct Lisp_Hash_Table *
1863 XHASH_TABLE (Lisp_Object a)
1864 {
1865 return XUNTAG (a, Lisp_Vectorlike);
1866 }
1867
1868 #define XSET_HASH_TABLE(VAR, PTR) \
1869 (XSETPSEUDOVECTOR (VAR, PTR, PVEC_HASH_TABLE))
1870
1871 INLINE bool
1872 HASH_TABLE_P (Lisp_Object a)
1873 {
1874 return PSEUDOVECTORP (a, PVEC_HASH_TABLE);
1875 }
1876
1877 /* Value is the key part of entry IDX in hash table H. */
1878 INLINE Lisp_Object
1879 HASH_KEY (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1880 {
1881 return AREF (h->key_and_value, 2 * idx);
1882 }
1883
1884 /* Value is the value part of entry IDX in hash table H. */
1885 INLINE Lisp_Object
1886 HASH_VALUE (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1887 {
1888 return AREF (h->key_and_value, 2 * idx + 1);
1889 }
1890
1891 /* Value is the index of the next entry following the one at IDX
1892 in hash table H. */
1893 INLINE Lisp_Object
1894 HASH_NEXT (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1895 {
1896 return AREF (h->next, idx);
1897 }
1898
1899 /* Value is the hash code computed for entry IDX in hash table H. */
1900 INLINE Lisp_Object
1901 HASH_HASH (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1902 {
1903 return AREF (h->hash, idx);
1904 }
1905
1906 /* Value is the index of the element in hash table H that is the
1907 start of the collision list at index IDX in the index vector of H. */
1908 INLINE Lisp_Object
1909 HASH_INDEX (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1910 {
1911 return AREF (h->index, idx);
1912 }
1913
1914 /* Value is the size of hash table H. */
1915 INLINE ptrdiff_t
1916 HASH_TABLE_SIZE (struct Lisp_Hash_Table *h)
1917 {
1918 return ASIZE (h->next);
1919 }
1920
1921 /* Default size for hash tables if not specified. */
1922
1923 enum DEFAULT_HASH_SIZE { DEFAULT_HASH_SIZE = 65 };
1924
1925 /* Default threshold specifying when to resize a hash table. The
1926 value gives the ratio of current entries in the hash table and the
1927 size of the hash table. */
1928
1929 static double const DEFAULT_REHASH_THRESHOLD = 0.8;
1930
1931 /* Default factor by which to increase the size of a hash table. */
1932
1933 static double const DEFAULT_REHASH_SIZE = 1.5;
1934
1935 /* Combine two integers X and Y for hashing. The result might not fit
1936 into a Lisp integer. */
1937
1938 INLINE EMACS_UINT
1939 sxhash_combine (EMACS_UINT x, EMACS_UINT y)
1940 {
1941 return (x << 4) + (x >> (BITS_PER_EMACS_INT - 4)) + y;
1942 }
1943
1944 /* Hash X, returning a value that fits into a fixnum. */
1945
1946 INLINE EMACS_UINT
1947 SXHASH_REDUCE (EMACS_UINT x)
1948 {
1949 return (x ^ x >> (BITS_PER_EMACS_INT - FIXNUM_BITS)) & INTMASK;
1950 }
1951
1952 /* These structures are used for various misc types. */
1953
1954 struct Lisp_Misc_Any /* Supertype of all Misc types. */
1955 {
1956 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_??? */
1957 bool_bf gcmarkbit : 1;
1958 unsigned spacer : 15;
1959 };
1960
1961 struct Lisp_Marker
1962 {
1963 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Marker */
1964 bool_bf gcmarkbit : 1;
1965 unsigned spacer : 13;
1966 /* This flag is temporarily used in the functions
1967 decode/encode_coding_object to record that the marker position
1968 must be adjusted after the conversion. */
1969 bool_bf need_adjustment : 1;
1970 /* True means normal insertion at the marker's position
1971 leaves the marker after the inserted text. */
1972 bool_bf insertion_type : 1;
1973 /* This is the buffer that the marker points into, or 0 if it points nowhere.
1974 Note: a chain of markers can contain markers pointing into different
1975 buffers (the chain is per buffer_text rather than per buffer, so it's
1976 shared between indirect buffers). */
1977 /* This is used for (other than NULL-checking):
1978 - Fmarker_buffer
1979 - Fset_marker: check eq(oldbuf, newbuf) to avoid unchain+rechain.
1980 - unchain_marker: to find the list from which to unchain.
1981 - Fkill_buffer: to only unchain the markers of current indirect buffer.
1982 */
1983 struct buffer *buffer;
1984
1985 /* The remaining fields are meaningless in a marker that
1986 does not point anywhere. */
1987
1988 /* For markers that point somewhere,
1989 this is used to chain of all the markers in a given buffer. */
1990 /* We could remove it and use an array in buffer_text instead.
1991 That would also allow to preserve it ordered. */
1992 struct Lisp_Marker *next;
1993 /* This is the char position where the marker points. */
1994 ptrdiff_t charpos;
1995 /* This is the byte position.
1996 It's mostly used as a charpos<->bytepos cache (i.e. it's not directly
1997 used to implement the functionality of markers, but rather to (ab)use
1998 markers as a cache for char<->byte mappings). */
1999 ptrdiff_t bytepos;
2000 };
2001
2002 /* START and END are markers in the overlay's buffer, and
2003 PLIST is the overlay's property list. */
2004 struct Lisp_Overlay
2005 /* An overlay's real data content is:
2006 - plist
2007 - buffer (really there are two buffer pointers, one per marker,
2008 and both points to the same buffer)
2009 - insertion type of both ends (per-marker fields)
2010 - start & start byte (of start marker)
2011 - end & end byte (of end marker)
2012 - next (singly linked list of overlays)
2013 - next fields of start and end markers (singly linked list of markers).
2014 I.e. 9words plus 2 bits, 3words of which are for external linked lists.
2015 */
2016 {
2017 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Overlay */
2018 bool_bf gcmarkbit : 1;
2019 unsigned spacer : 15;
2020 struct Lisp_Overlay *next;
2021 Lisp_Object start;
2022 Lisp_Object end;
2023 Lisp_Object plist;
2024 };
2025
2026 /* Types of data which may be saved in a Lisp_Save_Value. */
2027
2028 enum
2029 {
2030 SAVE_UNUSED,
2031 SAVE_INTEGER,
2032 SAVE_FUNCPOINTER,
2033 SAVE_POINTER,
2034 SAVE_OBJECT
2035 };
2036
2037 /* Number of bits needed to store one of the above values. */
2038 enum { SAVE_SLOT_BITS = 3 };
2039
2040 /* Number of slots in a save value where save_type is nonzero. */
2041 enum { SAVE_VALUE_SLOTS = 4 };
2042
2043 /* Bit-width and values for struct Lisp_Save_Value's save_type member. */
2044
2045 enum { SAVE_TYPE_BITS = SAVE_VALUE_SLOTS * SAVE_SLOT_BITS + 1 };
2046
2047 enum Lisp_Save_Type
2048 {
2049 SAVE_TYPE_INT_INT = SAVE_INTEGER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2050 SAVE_TYPE_INT_INT_INT
2051 = (SAVE_INTEGER + (SAVE_TYPE_INT_INT << SAVE_SLOT_BITS)),
2052 SAVE_TYPE_OBJ_OBJ = SAVE_OBJECT + (SAVE_OBJECT << SAVE_SLOT_BITS),
2053 SAVE_TYPE_OBJ_OBJ_OBJ = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ << SAVE_SLOT_BITS),
2054 SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
2055 = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ_OBJ << SAVE_SLOT_BITS),
2056 SAVE_TYPE_PTR_INT = SAVE_POINTER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2057 SAVE_TYPE_PTR_OBJ = SAVE_POINTER + (SAVE_OBJECT << SAVE_SLOT_BITS),
2058 SAVE_TYPE_PTR_PTR = SAVE_POINTER + (SAVE_POINTER << SAVE_SLOT_BITS),
2059 SAVE_TYPE_FUNCPTR_PTR_OBJ
2060 = SAVE_FUNCPOINTER + (SAVE_TYPE_PTR_OBJ << SAVE_SLOT_BITS),
2061
2062 /* This has an extra bit indicating it's raw memory. */
2063 SAVE_TYPE_MEMORY = SAVE_TYPE_PTR_INT + (1 << (SAVE_TYPE_BITS - 1))
2064 };
2065
2066 /* Special object used to hold a different values for later use.
2067
2068 This is mostly used to package C integers and pointers to call
2069 record_unwind_protect when two or more values need to be saved.
2070 For example:
2071
2072 ...
2073 struct my_data *md = get_my_data ();
2074 ptrdiff_t mi = get_my_integer ();
2075 record_unwind_protect (my_unwind, make_save_ptr_int (md, mi));
2076 ...
2077
2078 Lisp_Object my_unwind (Lisp_Object arg)
2079 {
2080 struct my_data *md = XSAVE_POINTER (arg, 0);
2081 ptrdiff_t mi = XSAVE_INTEGER (arg, 1);
2082 ...
2083 }
2084
2085 If ENABLE_CHECKING is in effect, XSAVE_xxx macros do type checking of the
2086 saved objects and raise eassert if type of the saved object doesn't match
2087 the type which is extracted. In the example above, XSAVE_INTEGER (arg, 2)
2088 and XSAVE_OBJECT (arg, 0) are wrong because nothing was saved in slot 2 and
2089 slot 0 is a pointer. */
2090
2091 typedef void (*voidfuncptr) (void);
2092
2093 struct Lisp_Save_Value
2094 {
2095 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Save_Value */
2096 bool_bf gcmarkbit : 1;
2097 unsigned spacer : 32 - (16 + 1 + SAVE_TYPE_BITS);
2098
2099 /* V->data may hold up to SAVE_VALUE_SLOTS entries. The type of
2100 V's data entries are determined by V->save_type. E.g., if
2101 V->save_type == SAVE_TYPE_PTR_OBJ, V->data[0] is a pointer,
2102 V->data[1] is an integer, and V's other data entries are unused.
2103
2104 If V->save_type == SAVE_TYPE_MEMORY, V->data[0].pointer is the address of
2105 a memory area containing V->data[1].integer potential Lisp_Objects. */
2106 ENUM_BF (Lisp_Save_Type) save_type : SAVE_TYPE_BITS;
2107 union {
2108 void *pointer;
2109 voidfuncptr funcpointer;
2110 ptrdiff_t integer;
2111 Lisp_Object object;
2112 } data[SAVE_VALUE_SLOTS];
2113 };
2114
2115 /* Return the type of V's Nth saved value. */
2116 INLINE int
2117 save_type (struct Lisp_Save_Value *v, int n)
2118 {
2119 eassert (0 <= n && n < SAVE_VALUE_SLOTS);
2120 return (v->save_type >> (SAVE_SLOT_BITS * n) & ((1 << SAVE_SLOT_BITS) - 1));
2121 }
2122
2123 /* Get and set the Nth saved pointer. */
2124
2125 INLINE void *
2126 XSAVE_POINTER (Lisp_Object obj, int n)
2127 {
2128 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2129 return XSAVE_VALUE (obj)->data[n].pointer;
2130 }
2131 INLINE void
2132 set_save_pointer (Lisp_Object obj, int n, void *val)
2133 {
2134 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2135 XSAVE_VALUE (obj)->data[n].pointer = val;
2136 }
2137 INLINE voidfuncptr
2138 XSAVE_FUNCPOINTER (Lisp_Object obj, int n)
2139 {
2140 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_FUNCPOINTER);
2141 return XSAVE_VALUE (obj)->data[n].funcpointer;
2142 }
2143
2144 /* Likewise for the saved integer. */
2145
2146 INLINE ptrdiff_t
2147 XSAVE_INTEGER (Lisp_Object obj, int n)
2148 {
2149 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2150 return XSAVE_VALUE (obj)->data[n].integer;
2151 }
2152 INLINE void
2153 set_save_integer (Lisp_Object obj, int n, ptrdiff_t val)
2154 {
2155 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2156 XSAVE_VALUE (obj)->data[n].integer = val;
2157 }
2158
2159 /* Extract Nth saved object. */
2160
2161 INLINE Lisp_Object
2162 XSAVE_OBJECT (Lisp_Object obj, int n)
2163 {
2164 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_OBJECT);
2165 return XSAVE_VALUE (obj)->data[n].object;
2166 }
2167
2168 /* A miscellaneous object, when it's on the free list. */
2169 struct Lisp_Free
2170 {
2171 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Free */
2172 bool_bf gcmarkbit : 1;
2173 unsigned spacer : 15;
2174 union Lisp_Misc *chain;
2175 };
2176
2177 /* To get the type field of a union Lisp_Misc, use XMISCTYPE.
2178 It uses one of these struct subtypes to get the type field. */
2179
2180 union Lisp_Misc
2181 {
2182 struct Lisp_Misc_Any u_any; /* Supertype of all Misc types. */
2183 struct Lisp_Free u_free;
2184 struct Lisp_Marker u_marker;
2185 struct Lisp_Overlay u_overlay;
2186 struct Lisp_Save_Value u_save_value;
2187 };
2188
2189 INLINE union Lisp_Misc *
2190 XMISC (Lisp_Object a)
2191 {
2192 return XUNTAG (a, Lisp_Misc);
2193 }
2194
2195 INLINE struct Lisp_Misc_Any *
2196 XMISCANY (Lisp_Object a)
2197 {
2198 eassert (MISCP (a));
2199 return & XMISC (a)->u_any;
2200 }
2201
2202 INLINE enum Lisp_Misc_Type
2203 XMISCTYPE (Lisp_Object a)
2204 {
2205 return XMISCANY (a)->type;
2206 }
2207
2208 INLINE struct Lisp_Marker *
2209 XMARKER (Lisp_Object a)
2210 {
2211 eassert (MARKERP (a));
2212 return & XMISC (a)->u_marker;
2213 }
2214
2215 INLINE struct Lisp_Overlay *
2216 XOVERLAY (Lisp_Object a)
2217 {
2218 eassert (OVERLAYP (a));
2219 return & XMISC (a)->u_overlay;
2220 }
2221
2222 INLINE struct Lisp_Save_Value *
2223 XSAVE_VALUE (Lisp_Object a)
2224 {
2225 eassert (SAVE_VALUEP (a));
2226 return & XMISC (a)->u_save_value;
2227 }
2228 \f
2229 /* Forwarding pointer to an int variable.
2230 This is allowed only in the value cell of a symbol,
2231 and it means that the symbol's value really lives in the
2232 specified int variable. */
2233 struct Lisp_Intfwd
2234 {
2235 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Int */
2236 EMACS_INT *intvar;
2237 };
2238
2239 /* Boolean forwarding pointer to an int variable.
2240 This is like Lisp_Intfwd except that the ostensible
2241 "value" of the symbol is t if the bool variable is true,
2242 nil if it is false. */
2243 struct Lisp_Boolfwd
2244 {
2245 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Bool */
2246 bool *boolvar;
2247 };
2248
2249 /* Forwarding pointer to a Lisp_Object variable.
2250 This is allowed only in the value cell of a symbol,
2251 and it means that the symbol's value really lives in the
2252 specified variable. */
2253 struct Lisp_Objfwd
2254 {
2255 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Obj */
2256 Lisp_Object *objvar;
2257 };
2258
2259 /* Like Lisp_Objfwd except that value lives in a slot in the
2260 current buffer. Value is byte index of slot within buffer. */
2261 struct Lisp_Buffer_Objfwd
2262 {
2263 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Buffer_Obj */
2264 int offset;
2265 /* One of Qnil, Qintegerp, Qsymbolp, Qstringp, Qfloatp or Qnumberp. */
2266 Lisp_Object predicate;
2267 };
2268
2269 /* struct Lisp_Buffer_Local_Value is used in a symbol value cell when
2270 the symbol has buffer-local or frame-local bindings. (Exception:
2271 some buffer-local variables are built-in, with their values stored
2272 in the buffer structure itself. They are handled differently,
2273 using struct Lisp_Buffer_Objfwd.)
2274
2275 The `realvalue' slot holds the variable's current value, or a
2276 forwarding pointer to where that value is kept. This value is the
2277 one that corresponds to the loaded binding. To read or set the
2278 variable, you must first make sure the right binding is loaded;
2279 then you can access the value in (or through) `realvalue'.
2280
2281 `buffer' and `frame' are the buffer and frame for which the loaded
2282 binding was found. If those have changed, to make sure the right
2283 binding is loaded it is necessary to find which binding goes with
2284 the current buffer and selected frame, then load it. To load it,
2285 first unload the previous binding, then copy the value of the new
2286 binding into `realvalue' (or through it). Also update
2287 LOADED-BINDING to point to the newly loaded binding.
2288
2289 `local_if_set' indicates that merely setting the variable creates a
2290 local binding for the current buffer. Otherwise the latter, setting
2291 the variable does not do that; only make-local-variable does that. */
2292
2293 struct Lisp_Buffer_Local_Value
2294 {
2295 /* True means that merely setting the variable creates a local
2296 binding for the current buffer. */
2297 bool_bf local_if_set : 1;
2298 /* True means this variable can have frame-local bindings, otherwise, it is
2299 can have buffer-local bindings. The two cannot be combined. */
2300 bool_bf frame_local : 1;
2301 /* True means that the binding now loaded was found.
2302 Presumably equivalent to (defcell!=valcell). */
2303 bool_bf found : 1;
2304 /* If non-NULL, a forwarding to the C var where it should also be set. */
2305 union Lisp_Fwd *fwd; /* Should never be (Buffer|Kboard)_Objfwd. */
2306 /* The buffer or frame for which the loaded binding was found. */
2307 Lisp_Object where;
2308 /* A cons cell that holds the default value. It has the form
2309 (SYMBOL . DEFAULT-VALUE). */
2310 Lisp_Object defcell;
2311 /* The cons cell from `where's parameter alist.
2312 It always has the form (SYMBOL . VALUE)
2313 Note that if `forward' is non-nil, VALUE may be out of date.
2314 Also if the currently loaded binding is the default binding, then
2315 this is `eq'ual to defcell. */
2316 Lisp_Object valcell;
2317 };
2318
2319 /* Like Lisp_Objfwd except that value lives in a slot in the
2320 current kboard. */
2321 struct Lisp_Kboard_Objfwd
2322 {
2323 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Kboard_Obj */
2324 int offset;
2325 };
2326
2327 union Lisp_Fwd
2328 {
2329 struct Lisp_Intfwd u_intfwd;
2330 struct Lisp_Boolfwd u_boolfwd;
2331 struct Lisp_Objfwd u_objfwd;
2332 struct Lisp_Buffer_Objfwd u_buffer_objfwd;
2333 struct Lisp_Kboard_Objfwd u_kboard_objfwd;
2334 };
2335
2336 INLINE enum Lisp_Fwd_Type
2337 XFWDTYPE (union Lisp_Fwd *a)
2338 {
2339 return a->u_intfwd.type;
2340 }
2341
2342 INLINE struct Lisp_Buffer_Objfwd *
2343 XBUFFER_OBJFWD (union Lisp_Fwd *a)
2344 {
2345 eassert (BUFFER_OBJFWDP (a));
2346 return &a->u_buffer_objfwd;
2347 }
2348 \f
2349 /* Lisp floating point type. */
2350 struct Lisp_Float
2351 {
2352 union
2353 {
2354 double data;
2355 struct Lisp_Float *chain;
2356 } u;
2357 };
2358
2359 INLINE double
2360 XFLOAT_DATA (Lisp_Object f)
2361 {
2362 return XFLOAT (f)->u.data;
2363 }
2364
2365 /* Most hosts nowadays use IEEE floating point, so they use IEC 60559
2366 representations, have infinities and NaNs, and do not trap on
2367 exceptions. Define IEEE_FLOATING_POINT if this host is one of the
2368 typical ones. The C11 macro __STDC_IEC_559__ is close to what is
2369 wanted here, but is not quite right because Emacs does not require
2370 all the features of C11 Annex F (and does not require C11 at all,
2371 for that matter). */
2372 enum
2373 {
2374 IEEE_FLOATING_POINT
2375 = (FLT_RADIX == 2 && FLT_MANT_DIG == 24
2376 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
2377 };
2378
2379 /* A character, declared with the following typedef, is a member
2380 of some character set associated with the current buffer. */
2381 #ifndef _UCHAR_T /* Protect against something in ctab.h on AIX. */
2382 #define _UCHAR_T
2383 typedef unsigned char UCHAR;
2384 #endif
2385
2386 /* Meanings of slots in a Lisp_Compiled: */
2387
2388 enum Lisp_Compiled
2389 {
2390 COMPILED_ARGLIST = 0,
2391 COMPILED_BYTECODE = 1,
2392 COMPILED_CONSTANTS = 2,
2393 COMPILED_STACK_DEPTH = 3,
2394 COMPILED_DOC_STRING = 4,
2395 COMPILED_INTERACTIVE = 5
2396 };
2397
2398 /* Flag bits in a character. These also get used in termhooks.h.
2399 Richard Stallman <rms@gnu.ai.mit.edu> thinks that MULE
2400 (MUlti-Lingual Emacs) might need 22 bits for the character value
2401 itself, so we probably shouldn't use any bits lower than 0x0400000. */
2402 enum char_bits
2403 {
2404 CHAR_ALT = 0x0400000,
2405 CHAR_SUPER = 0x0800000,
2406 CHAR_HYPER = 0x1000000,
2407 CHAR_SHIFT = 0x2000000,
2408 CHAR_CTL = 0x4000000,
2409 CHAR_META = 0x8000000,
2410
2411 CHAR_MODIFIER_MASK =
2412 CHAR_ALT | CHAR_SUPER | CHAR_HYPER | CHAR_SHIFT | CHAR_CTL | CHAR_META,
2413
2414 /* Actually, the current Emacs uses 22 bits for the character value
2415 itself. */
2416 CHARACTERBITS = 22
2417 };
2418 \f
2419 /* Data type checking. */
2420
2421 LISP_MACRO_DEFUN (NILP, bool, (Lisp_Object x), (x))
2422
2423 INLINE bool
2424 NUMBERP (Lisp_Object x)
2425 {
2426 return INTEGERP (x) || FLOATP (x);
2427 }
2428 INLINE bool
2429 NATNUMP (Lisp_Object x)
2430 {
2431 return INTEGERP (x) && 0 <= XINT (x);
2432 }
2433
2434 INLINE bool
2435 RANGED_INTEGERP (intmax_t lo, Lisp_Object x, intmax_t hi)
2436 {
2437 return INTEGERP (x) && lo <= XINT (x) && XINT (x) <= hi;
2438 }
2439
2440 #define TYPE_RANGED_INTEGERP(type, x) \
2441 (INTEGERP (x) \
2442 && (TYPE_SIGNED (type) ? TYPE_MINIMUM (type) <= XINT (x) : 0 <= XINT (x)) \
2443 && XINT (x) <= TYPE_MAXIMUM (type))
2444
2445 LISP_MACRO_DEFUN (CONSP, bool, (Lisp_Object x), (x))
2446 LISP_MACRO_DEFUN (FLOATP, bool, (Lisp_Object x), (x))
2447 LISP_MACRO_DEFUN (MISCP, bool, (Lisp_Object x), (x))
2448 LISP_MACRO_DEFUN (SYMBOLP, bool, (Lisp_Object x), (x))
2449 LISP_MACRO_DEFUN (INTEGERP, bool, (Lisp_Object x), (x))
2450 LISP_MACRO_DEFUN (VECTORLIKEP, bool, (Lisp_Object x), (x))
2451 LISP_MACRO_DEFUN (MARKERP, bool, (Lisp_Object x), (x))
2452
2453 INLINE bool
2454 STRINGP (Lisp_Object x)
2455 {
2456 return XTYPE (x) == Lisp_String;
2457 }
2458 INLINE bool
2459 VECTORP (Lisp_Object x)
2460 {
2461 return VECTORLIKEP (x) && ! (ASIZE (x) & PSEUDOVECTOR_FLAG);
2462 }
2463 INLINE bool
2464 OVERLAYP (Lisp_Object x)
2465 {
2466 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Overlay;
2467 }
2468 INLINE bool
2469 SAVE_VALUEP (Lisp_Object x)
2470 {
2471 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Save_Value;
2472 }
2473
2474 INLINE bool
2475 AUTOLOADP (Lisp_Object x)
2476 {
2477 return CONSP (x) && EQ (Qautoload, XCAR (x));
2478 }
2479
2480 INLINE bool
2481 BUFFER_OBJFWDP (union Lisp_Fwd *a)
2482 {
2483 return XFWDTYPE (a) == Lisp_Fwd_Buffer_Obj;
2484 }
2485
2486 INLINE bool
2487 PSEUDOVECTOR_TYPEP (struct vectorlike_header *a, int code)
2488 {
2489 return ((a->size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK))
2490 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS)));
2491 }
2492
2493 /* True if A is a pseudovector whose code is CODE. */
2494 INLINE bool
2495 PSEUDOVECTORP (Lisp_Object a, int code)
2496 {
2497 if (! VECTORLIKEP (a))
2498 return false;
2499 else
2500 {
2501 /* Converting to struct vectorlike_header * avoids aliasing issues. */
2502 struct vectorlike_header *h = XUNTAG (a, Lisp_Vectorlike);
2503 return PSEUDOVECTOR_TYPEP (h, code);
2504 }
2505 }
2506
2507
2508 /* Test for specific pseudovector types. */
2509
2510 INLINE bool
2511 WINDOW_CONFIGURATIONP (Lisp_Object a)
2512 {
2513 return PSEUDOVECTORP (a, PVEC_WINDOW_CONFIGURATION);
2514 }
2515
2516 INLINE bool
2517 PROCESSP (Lisp_Object a)
2518 {
2519 return PSEUDOVECTORP (a, PVEC_PROCESS);
2520 }
2521
2522 INLINE bool
2523 WINDOWP (Lisp_Object a)
2524 {
2525 return PSEUDOVECTORP (a, PVEC_WINDOW);
2526 }
2527
2528 INLINE bool
2529 TERMINALP (Lisp_Object a)
2530 {
2531 return PSEUDOVECTORP (a, PVEC_TERMINAL);
2532 }
2533
2534 INLINE bool
2535 SUBRP (Lisp_Object a)
2536 {
2537 return PSEUDOVECTORP (a, PVEC_SUBR);
2538 }
2539
2540 INLINE bool
2541 COMPILEDP (Lisp_Object a)
2542 {
2543 return PSEUDOVECTORP (a, PVEC_COMPILED);
2544 }
2545
2546 INLINE bool
2547 BUFFERP (Lisp_Object a)
2548 {
2549 return PSEUDOVECTORP (a, PVEC_BUFFER);
2550 }
2551
2552 INLINE bool
2553 CHAR_TABLE_P (Lisp_Object a)
2554 {
2555 return PSEUDOVECTORP (a, PVEC_CHAR_TABLE);
2556 }
2557
2558 INLINE bool
2559 SUB_CHAR_TABLE_P (Lisp_Object a)
2560 {
2561 return PSEUDOVECTORP (a, PVEC_SUB_CHAR_TABLE);
2562 }
2563
2564 INLINE bool
2565 BOOL_VECTOR_P (Lisp_Object a)
2566 {
2567 return PSEUDOVECTORP (a, PVEC_BOOL_VECTOR);
2568 }
2569
2570 INLINE bool
2571 FRAMEP (Lisp_Object a)
2572 {
2573 return PSEUDOVECTORP (a, PVEC_FRAME);
2574 }
2575
2576 /* Test for image (image . spec) */
2577 INLINE bool
2578 IMAGEP (Lisp_Object x)
2579 {
2580 return CONSP (x) && EQ (XCAR (x), Qimage);
2581 }
2582
2583 /* Array types. */
2584 INLINE bool
2585 ARRAYP (Lisp_Object x)
2586 {
2587 return VECTORP (x) || STRINGP (x) || CHAR_TABLE_P (x) || BOOL_VECTOR_P (x);
2588 }
2589 \f
2590 INLINE void
2591 CHECK_LIST (Lisp_Object x)
2592 {
2593 CHECK_TYPE (CONSP (x) || NILP (x), Qlistp, x);
2594 }
2595
2596 LISP_MACRO_DEFUN_VOID (CHECK_LIST_CONS, (Lisp_Object x, Lisp_Object y), (x, y))
2597 LISP_MACRO_DEFUN_VOID (CHECK_SYMBOL, (Lisp_Object x), (x))
2598 LISP_MACRO_DEFUN_VOID (CHECK_NUMBER, (Lisp_Object x), (x))
2599
2600 INLINE void
2601 CHECK_STRING (Lisp_Object x)
2602 {
2603 CHECK_TYPE (STRINGP (x), Qstringp, x);
2604 }
2605 INLINE void
2606 CHECK_STRING_CAR (Lisp_Object x)
2607 {
2608 CHECK_TYPE (STRINGP (XCAR (x)), Qstringp, XCAR (x));
2609 }
2610 INLINE void
2611 CHECK_CONS (Lisp_Object x)
2612 {
2613 CHECK_TYPE (CONSP (x), Qconsp, x);
2614 }
2615 INLINE void
2616 CHECK_VECTOR (Lisp_Object x)
2617 {
2618 CHECK_TYPE (VECTORP (x), Qvectorp, x);
2619 }
2620 INLINE void
2621 CHECK_BOOL_VECTOR (Lisp_Object x)
2622 {
2623 CHECK_TYPE (BOOL_VECTOR_P (x), Qbool_vector_p, x);
2624 }
2625 /* This is a bit special because we always need size afterwards. */
2626 INLINE ptrdiff_t
2627 CHECK_VECTOR_OR_STRING (Lisp_Object x)
2628 {
2629 if (VECTORP (x))
2630 return ASIZE (x);
2631 if (STRINGP (x))
2632 return SCHARS (x);
2633 wrong_type_argument (Qarrayp, x);
2634 }
2635 INLINE void
2636 CHECK_ARRAY (Lisp_Object x, Lisp_Object predicate)
2637 {
2638 CHECK_TYPE (ARRAYP (x), predicate, x);
2639 }
2640 INLINE void
2641 CHECK_BUFFER (Lisp_Object x)
2642 {
2643 CHECK_TYPE (BUFFERP (x), Qbufferp, x);
2644 }
2645 INLINE void
2646 CHECK_WINDOW (Lisp_Object x)
2647 {
2648 CHECK_TYPE (WINDOWP (x), Qwindowp, x);
2649 }
2650 #ifdef subprocesses
2651 INLINE void
2652 CHECK_PROCESS (Lisp_Object x)
2653 {
2654 CHECK_TYPE (PROCESSP (x), Qprocessp, x);
2655 }
2656 #endif
2657 INLINE void
2658 CHECK_NATNUM (Lisp_Object x)
2659 {
2660 CHECK_TYPE (NATNUMP (x), Qwholenump, x);
2661 }
2662
2663 #define CHECK_RANGED_INTEGER(x, lo, hi) \
2664 do { \
2665 CHECK_NUMBER (x); \
2666 if (! ((lo) <= XINT (x) && XINT (x) <= (hi))) \
2667 args_out_of_range_3 \
2668 (x, \
2669 make_number ((lo) < 0 && (lo) < MOST_NEGATIVE_FIXNUM \
2670 ? MOST_NEGATIVE_FIXNUM \
2671 : (lo)), \
2672 make_number (min (hi, MOST_POSITIVE_FIXNUM))); \
2673 } while (false)
2674 #define CHECK_TYPE_RANGED_INTEGER(type, x) \
2675 do { \
2676 if (TYPE_SIGNED (type)) \
2677 CHECK_RANGED_INTEGER (x, TYPE_MINIMUM (type), TYPE_MAXIMUM (type)); \
2678 else \
2679 CHECK_RANGED_INTEGER (x, 0, TYPE_MAXIMUM (type)); \
2680 } while (false)
2681
2682 #define CHECK_NUMBER_COERCE_MARKER(x) \
2683 do { \
2684 if (MARKERP ((x))) \
2685 XSETFASTINT (x, marker_position (x)); \
2686 else \
2687 CHECK_TYPE (INTEGERP (x), Qinteger_or_marker_p, x); \
2688 } while (false)
2689
2690 INLINE double
2691 XFLOATINT (Lisp_Object n)
2692 {
2693 return extract_float (n);
2694 }
2695
2696 INLINE void
2697 CHECK_NUMBER_OR_FLOAT (Lisp_Object x)
2698 {
2699 CHECK_TYPE (FLOATP (x) || INTEGERP (x), Qnumberp, x);
2700 }
2701
2702 #define CHECK_NUMBER_OR_FLOAT_COERCE_MARKER(x) \
2703 do { \
2704 if (MARKERP (x)) \
2705 XSETFASTINT (x, marker_position (x)); \
2706 else \
2707 CHECK_TYPE (INTEGERP (x) || FLOATP (x), Qnumber_or_marker_p, x); \
2708 } while (false)
2709
2710 /* Since we can't assign directly to the CAR or CDR fields of a cons
2711 cell, use these when checking that those fields contain numbers. */
2712 INLINE void
2713 CHECK_NUMBER_CAR (Lisp_Object x)
2714 {
2715 Lisp_Object tmp = XCAR (x);
2716 CHECK_NUMBER (tmp);
2717 XSETCAR (x, tmp);
2718 }
2719
2720 INLINE void
2721 CHECK_NUMBER_CDR (Lisp_Object x)
2722 {
2723 Lisp_Object tmp = XCDR (x);
2724 CHECK_NUMBER (tmp);
2725 XSETCDR (x, tmp);
2726 }
2727 \f
2728 /* Define a built-in function for calling from Lisp.
2729 `lname' should be the name to give the function in Lisp,
2730 as a null-terminated C string.
2731 `fnname' should be the name of the function in C.
2732 By convention, it starts with F.
2733 `sname' should be the name for the C constant structure
2734 that records information on this function for internal use.
2735 By convention, it should be the same as `fnname' but with S instead of F.
2736 It's too bad that C macros can't compute this from `fnname'.
2737 `minargs' should be a number, the minimum number of arguments allowed.
2738 `maxargs' should be a number, the maximum number of arguments allowed,
2739 or else MANY or UNEVALLED.
2740 MANY means pass a vector of evaluated arguments,
2741 in the form of an integer number-of-arguments
2742 followed by the address of a vector of Lisp_Objects
2743 which contains the argument values.
2744 UNEVALLED means pass the list of unevaluated arguments
2745 `intspec' says how interactive arguments are to be fetched.
2746 If the string starts with a `(', `intspec' is evaluated and the resulting
2747 list is the list of arguments.
2748 If it's a string that doesn't start with `(', the value should follow
2749 the one of the doc string for `interactive'.
2750 A null string means call interactively with no arguments.
2751 `doc' is documentation for the user. */
2752
2753 /* This version of DEFUN declares a function prototype with the right
2754 arguments, so we can catch errors with maxargs at compile-time. */
2755 #ifdef _MSC_VER
2756 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2757 Lisp_Object fnname DEFUN_ARGS_ ## maxargs ; \
2758 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2759 { { (PVEC_SUBR << PSEUDOVECTOR_AREA_BITS) \
2760 | (sizeof (struct Lisp_Subr) / sizeof (EMACS_INT)) }, \
2761 { (Lisp_Object (__cdecl *)(void))fnname }, \
2762 minargs, maxargs, lname, intspec, 0}; \
2763 Lisp_Object fnname
2764 #else /* not _MSC_VER */
2765 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2766 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2767 { { PVEC_SUBR << PSEUDOVECTOR_AREA_BITS }, \
2768 { .a ## maxargs = fnname }, \
2769 minargs, maxargs, lname, intspec, 0}; \
2770 Lisp_Object fnname
2771 #endif
2772
2773 /* True if OBJ is a Lisp function. */
2774 INLINE bool
2775 FUNCTIONP (Lisp_Object obj)
2776 {
2777 return functionp (obj);
2778 }
2779
2780 /* defsubr (Sname);
2781 is how we define the symbol for function `name' at start-up time. */
2782 extern void defsubr (struct Lisp_Subr *);
2783
2784 enum maxargs
2785 {
2786 MANY = -2,
2787 UNEVALLED = -1
2788 };
2789
2790 extern void defvar_lisp (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2791 extern void defvar_lisp_nopro (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2792 extern void defvar_bool (struct Lisp_Boolfwd *, const char *, bool *);
2793 extern void defvar_int (struct Lisp_Intfwd *, const char *, EMACS_INT *);
2794 extern void defvar_kboard (struct Lisp_Kboard_Objfwd *, const char *, int);
2795
2796 /* Macros we use to define forwarded Lisp variables.
2797 These are used in the syms_of_FILENAME functions.
2798
2799 An ordinary (not in buffer_defaults, per-buffer, or per-keyboard)
2800 lisp variable is actually a field in `struct emacs_globals'. The
2801 field's name begins with "f_", which is a convention enforced by
2802 these macros. Each such global has a corresponding #define in
2803 globals.h; the plain name should be used in the code.
2804
2805 E.g., the global "cons_cells_consed" is declared as "int
2806 f_cons_cells_consed" in globals.h, but there is a define:
2807
2808 #define cons_cells_consed globals.f_cons_cells_consed
2809
2810 All C code uses the `cons_cells_consed' name. This is all done
2811 this way to support indirection for multi-threaded Emacs. */
2812
2813 #define DEFVAR_LISP(lname, vname, doc) \
2814 do { \
2815 static struct Lisp_Objfwd o_fwd; \
2816 defvar_lisp (&o_fwd, lname, &globals.f_ ## vname); \
2817 } while (false)
2818 #define DEFVAR_LISP_NOPRO(lname, vname, doc) \
2819 do { \
2820 static struct Lisp_Objfwd o_fwd; \
2821 defvar_lisp_nopro (&o_fwd, lname, &globals.f_ ## vname); \
2822 } while (false)
2823 #define DEFVAR_BOOL(lname, vname, doc) \
2824 do { \
2825 static struct Lisp_Boolfwd b_fwd; \
2826 defvar_bool (&b_fwd, lname, &globals.f_ ## vname); \
2827 } while (false)
2828 #define DEFVAR_INT(lname, vname, doc) \
2829 do { \
2830 static struct Lisp_Intfwd i_fwd; \
2831 defvar_int (&i_fwd, lname, &globals.f_ ## vname); \
2832 } while (false)
2833
2834 #define DEFVAR_BUFFER_DEFAULTS(lname, vname, doc) \
2835 do { \
2836 static struct Lisp_Objfwd o_fwd; \
2837 defvar_lisp_nopro (&o_fwd, lname, &BVAR (&buffer_defaults, vname)); \
2838 } while (false)
2839
2840 #define DEFVAR_KBOARD(lname, vname, doc) \
2841 do { \
2842 static struct Lisp_Kboard_Objfwd ko_fwd; \
2843 defvar_kboard (&ko_fwd, lname, offsetof (KBOARD, vname ## _)); \
2844 } while (false)
2845 \f
2846 /* Save and restore the instruction and environment pointers,
2847 without affecting the signal mask. */
2848
2849 #ifdef HAVE__SETJMP
2850 typedef jmp_buf sys_jmp_buf;
2851 # define sys_setjmp(j) _setjmp (j)
2852 # define sys_longjmp(j, v) _longjmp (j, v)
2853 #elif defined HAVE_SIGSETJMP
2854 typedef sigjmp_buf sys_jmp_buf;
2855 # define sys_setjmp(j) sigsetjmp (j, 0)
2856 # define sys_longjmp(j, v) siglongjmp (j, v)
2857 #else
2858 /* A platform that uses neither _longjmp nor siglongjmp; assume
2859 longjmp does not affect the sigmask. */
2860 typedef jmp_buf sys_jmp_buf;
2861 # define sys_setjmp(j) setjmp (j)
2862 # define sys_longjmp(j, v) longjmp (j, v)
2863 #endif
2864
2865 \f
2866 /* Elisp uses several stacks:
2867 - the C stack.
2868 - the bytecode stack: used internally by the bytecode interpreter.
2869 Allocated from the C stack.
2870 - The specpdl stack: keeps track of active unwind-protect and
2871 dynamic-let-bindings. Allocated from the `specpdl' array, a manually
2872 managed stack.
2873 - The handler stack: keeps track of active catch tags and condition-case
2874 handlers. Allocated in a manually managed stack implemented by a
2875 doubly-linked list allocated via xmalloc and never freed. */
2876
2877 /* Structure for recording Lisp call stack for backtrace purposes. */
2878
2879 /* The special binding stack holds the outer values of variables while
2880 they are bound by a function application or a let form, stores the
2881 code to be executed for unwind-protect forms.
2882
2883 NOTE: The specbinding union is defined here, because SPECPDL_INDEX is
2884 used all over the place, needs to be fast, and needs to know the size of
2885 union specbinding. But only eval.c should access it. */
2886
2887 enum specbind_tag {
2888 SPECPDL_UNWIND, /* An unwind_protect function on Lisp_Object. */
2889 SPECPDL_UNWIND_PTR, /* Likewise, on void *. */
2890 SPECPDL_UNWIND_INT, /* Likewise, on int. */
2891 SPECPDL_UNWIND_VOID, /* Likewise, with no arg. */
2892 SPECPDL_BACKTRACE, /* An element of the backtrace. */
2893 SPECPDL_LET, /* A plain and simple dynamic let-binding. */
2894 /* Tags greater than SPECPDL_LET must be "subkinds" of LET. */
2895 SPECPDL_LET_LOCAL, /* A buffer-local let-binding. */
2896 SPECPDL_LET_DEFAULT /* A global binding for a localized var. */
2897 };
2898
2899 union specbinding
2900 {
2901 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2902 struct {
2903 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2904 void (*func) (Lisp_Object);
2905 Lisp_Object arg;
2906 } unwind;
2907 struct {
2908 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2909 void (*func) (void *);
2910 void *arg;
2911 } unwind_ptr;
2912 struct {
2913 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2914 void (*func) (int);
2915 int arg;
2916 } unwind_int;
2917 struct {
2918 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2919 void (*func) (void);
2920 } unwind_void;
2921 struct {
2922 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2923 /* `where' is not used in the case of SPECPDL_LET. */
2924 Lisp_Object symbol, old_value, where;
2925 } let;
2926 struct {
2927 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2928 bool_bf debug_on_exit : 1;
2929 Lisp_Object function;
2930 Lisp_Object *args;
2931 ptrdiff_t nargs;
2932 } bt;
2933 };
2934
2935 extern union specbinding *specpdl;
2936 extern union specbinding *specpdl_ptr;
2937 extern ptrdiff_t specpdl_size;
2938
2939 INLINE ptrdiff_t
2940 SPECPDL_INDEX (void)
2941 {
2942 return specpdl_ptr - specpdl;
2943 }
2944
2945 /* This structure helps implement the `catch/throw' and `condition-case/signal'
2946 control structures. A struct handler contains all the information needed to
2947 restore the state of the interpreter after a non-local jump.
2948
2949 handler structures are chained together in a doubly linked list; the `next'
2950 member points to the next outer catchtag and the `nextfree' member points in
2951 the other direction to the next inner element (which is typically the next
2952 free element since we mostly use it on the deepest handler).
2953
2954 A call like (throw TAG VAL) searches for a catchtag whose `tag_or_ch'
2955 member is TAG, and then unbinds to it. The `val' member is used to
2956 hold VAL while the stack is unwound; `val' is returned as the value
2957 of the catch form.
2958
2959 All the other members are concerned with restoring the interpreter
2960 state.
2961
2962 Members are volatile if their values need to survive _longjmp when
2963 a 'struct handler' is a local variable. */
2964
2965 enum handlertype { CATCHER, CONDITION_CASE };
2966
2967 struct handler
2968 {
2969 enum handlertype type;
2970 Lisp_Object tag_or_ch;
2971 Lisp_Object val;
2972 struct handler *next;
2973 struct handler *nextfree;
2974
2975 /* The bytecode interpreter can have several handlers active at the same
2976 time, so when we longjmp to one of them, it needs to know which handler
2977 this was and what was the corresponding internal state. This is stored
2978 here, and when we longjmp we make sure that handlerlist points to the
2979 proper handler. */
2980 Lisp_Object *bytecode_top;
2981 int bytecode_dest;
2982
2983 /* Most global vars are reset to their value via the specpdl mechanism,
2984 but a few others are handled by storing their value here. */
2985 #if true /* GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS, but defined later. */
2986 struct gcpro *gcpro;
2987 #endif
2988 sys_jmp_buf jmp;
2989 EMACS_INT lisp_eval_depth;
2990 ptrdiff_t pdlcount;
2991 int poll_suppress_count;
2992 int interrupt_input_blocked;
2993 struct byte_stack *byte_stack;
2994 };
2995
2996 /* Fill in the components of c, and put it on the list. */
2997 #define PUSH_HANDLER(c, tag_ch_val, handlertype) \
2998 if (handlerlist->nextfree) \
2999 (c) = handlerlist->nextfree; \
3000 else \
3001 { \
3002 (c) = xmalloc (sizeof (struct handler)); \
3003 (c)->nextfree = NULL; \
3004 handlerlist->nextfree = (c); \
3005 } \
3006 (c)->type = (handlertype); \
3007 (c)->tag_or_ch = (tag_ch_val); \
3008 (c)->val = Qnil; \
3009 (c)->next = handlerlist; \
3010 (c)->lisp_eval_depth = lisp_eval_depth; \
3011 (c)->pdlcount = SPECPDL_INDEX (); \
3012 (c)->poll_suppress_count = poll_suppress_count; \
3013 (c)->interrupt_input_blocked = interrupt_input_blocked;\
3014 (c)->gcpro = gcprolist; \
3015 (c)->byte_stack = byte_stack_list; \
3016 handlerlist = (c);
3017
3018
3019 extern Lisp_Object memory_signal_data;
3020
3021 /* An address near the bottom of the stack.
3022 Tells GC how to save a copy of the stack. */
3023 extern char *stack_bottom;
3024
3025 /* Check quit-flag and quit if it is non-nil.
3026 Typing C-g does not directly cause a quit; it only sets Vquit_flag.
3027 So the program needs to do QUIT at times when it is safe to quit.
3028 Every loop that might run for a long time or might not exit
3029 ought to do QUIT at least once, at a safe place.
3030 Unless that is impossible, of course.
3031 But it is very desirable to avoid creating loops where QUIT is impossible.
3032
3033 Exception: if you set immediate_quit to true,
3034 then the handler that responds to the C-g does the quit itself.
3035 This is a good thing to do around a loop that has no side effects
3036 and (in particular) cannot call arbitrary Lisp code.
3037
3038 If quit-flag is set to `kill-emacs' the SIGINT handler has received
3039 a request to exit Emacs when it is safe to do. */
3040
3041 extern void process_pending_signals (void);
3042 extern bool volatile pending_signals;
3043
3044 extern void process_quit_flag (void);
3045 #define QUIT \
3046 do { \
3047 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
3048 process_quit_flag (); \
3049 else if (pending_signals) \
3050 process_pending_signals (); \
3051 } while (false)
3052
3053
3054 /* True if ought to quit now. */
3055
3056 #define QUITP (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
3057 \f
3058 extern Lisp_Object Vascii_downcase_table;
3059 extern Lisp_Object Vascii_canon_table;
3060 \f
3061 /* Structure for recording stack slots that need marking. */
3062
3063 /* This is a chain of structures, each of which points at a Lisp_Object
3064 variable whose value should be marked in garbage collection.
3065 Normally every link of the chain is an automatic variable of a function,
3066 and its `val' points to some argument or local variable of the function.
3067 On exit to the function, the chain is set back to the value it had on entry.
3068 This way, no link remains in the chain when the stack frame containing the
3069 link disappears.
3070
3071 Every function that can call Feval must protect in this fashion all
3072 Lisp_Object variables whose contents will be used again. */
3073
3074 extern struct gcpro *gcprolist;
3075
3076 struct gcpro
3077 {
3078 struct gcpro *next;
3079
3080 /* Address of first protected variable. */
3081 volatile Lisp_Object *var;
3082
3083 /* Number of consecutive protected variables. */
3084 ptrdiff_t nvars;
3085
3086 #ifdef DEBUG_GCPRO
3087 /* File name where this record is used. */
3088 const char *name;
3089
3090 /* Line number in this file. */
3091 int lineno;
3092
3093 /* Index in the local chain of records. */
3094 int idx;
3095
3096 /* Nesting level. */
3097 int level;
3098 #endif
3099 };
3100
3101 /* Values of GC_MARK_STACK during compilation:
3102
3103 0 Use GCPRO as before
3104 1 Do the real thing, make GCPROs and UNGCPRO no-ops.
3105 2 Mark the stack, and check that everything GCPRO'd is
3106 marked.
3107 3 Mark using GCPRO's, mark stack last, and count how many
3108 dead objects are kept alive.
3109
3110 Formerly, method 0 was used. Currently, method 1 is used unless
3111 otherwise specified by hand when building, e.g.,
3112 "make CPPFLAGS='-DGC_MARK_STACK=GC_USE_GCPROS_AS_BEFORE'".
3113 Methods 2 and 3 are present mainly to debug the transition from 0 to 1. */
3114
3115 #define GC_USE_GCPROS_AS_BEFORE 0
3116 #define GC_MAKE_GCPROS_NOOPS 1
3117 #define GC_MARK_STACK_CHECK_GCPROS 2
3118 #define GC_USE_GCPROS_CHECK_ZOMBIES 3
3119
3120 #ifndef GC_MARK_STACK
3121 #define GC_MARK_STACK GC_MAKE_GCPROS_NOOPS
3122 #endif
3123
3124 /* Whether we do the stack marking manually. */
3125 #define BYTE_MARK_STACK !(GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
3126 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
3127
3128
3129 #if GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS
3130
3131 /* Do something silly with gcproN vars just so gcc shuts up. */
3132 /* You get warnings from MIPSPro... */
3133
3134 #define GCPRO1(varname) ((void) gcpro1)
3135 #define GCPRO2(varname1, varname2) ((void) gcpro2, (void) gcpro1)
3136 #define GCPRO3(varname1, varname2, varname3) \
3137 ((void) gcpro3, (void) gcpro2, (void) gcpro1)
3138 #define GCPRO4(varname1, varname2, varname3, varname4) \
3139 ((void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3140 #define GCPRO5(varname1, varname2, varname3, varname4, varname5) \
3141 ((void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3142 #define GCPRO6(varname1, varname2, varname3, varname4, varname5, varname6) \
3143 ((void) gcpro6, (void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, \
3144 (void) gcpro1)
3145 #define GCPRO7(a, b, c, d, e, f, g) (GCPRO6 (a, b, c, d, e, f), (void) gcpro7)
3146 #define UNGCPRO ((void) 0)
3147
3148 #else /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3149
3150 #ifndef DEBUG_GCPRO
3151
3152 #define GCPRO1(a) \
3153 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3154 gcprolist = &gcpro1; }
3155
3156 #define GCPRO2(a, b) \
3157 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3158 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3159 gcprolist = &gcpro2; }
3160
3161 #define GCPRO3(a, b, c) \
3162 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3163 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3164 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3165 gcprolist = &gcpro3; }
3166
3167 #define GCPRO4(a, b, c, d) \
3168 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3169 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3170 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3171 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3172 gcprolist = &gcpro4; }
3173
3174 #define GCPRO5(a, b, c, d, e) \
3175 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3176 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3177 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3178 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3179 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3180 gcprolist = &gcpro5; }
3181
3182 #define GCPRO6(a, b, c, d, e, f) \
3183 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3184 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3185 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3186 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3187 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3188 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3189 gcprolist = &gcpro6; }
3190
3191 #define GCPRO7(a, b, c, d, e, f, g) \
3192 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3193 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3194 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3195 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3196 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3197 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3198 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3199 gcprolist = &gcpro7; }
3200
3201 #define UNGCPRO (gcprolist = gcpro1.next)
3202
3203 #else /* !DEBUG_GCPRO */
3204
3205 extern int gcpro_level;
3206
3207 #define GCPRO1(a) \
3208 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3209 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3210 gcpro1.level = gcpro_level++; \
3211 gcprolist = &gcpro1; }
3212
3213 #define GCPRO2(a, b) \
3214 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3215 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3216 gcpro1.level = gcpro_level; \
3217 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3218 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3219 gcpro2.level = gcpro_level++; \
3220 gcprolist = &gcpro2; }
3221
3222 #define GCPRO3(a, b, c) \
3223 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3224 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3225 gcpro1.level = gcpro_level; \
3226 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3227 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3228 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3229 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3230 gcpro3.level = gcpro_level++; \
3231 gcprolist = &gcpro3; }
3232
3233 #define GCPRO4(a, b, c, d) \
3234 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3235 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3236 gcpro1.level = gcpro_level; \
3237 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3238 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3239 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3240 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3241 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3242 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3243 gcpro4.level = gcpro_level++; \
3244 gcprolist = &gcpro4; }
3245
3246 #define GCPRO5(a, b, c, d, e) \
3247 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3248 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3249 gcpro1.level = gcpro_level; \
3250 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3251 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3252 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3253 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3254 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3255 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3256 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3257 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3258 gcpro5.level = gcpro_level++; \
3259 gcprolist = &gcpro5; }
3260
3261 #define GCPRO6(a, b, c, d, e, f) \
3262 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3263 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3264 gcpro1.level = gcpro_level; \
3265 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3266 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3267 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3268 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3269 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3270 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3271 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3272 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3273 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3274 gcpro6.name = __FILE__; gcpro6.lineno = __LINE__; gcpro6.idx = 6; \
3275 gcpro6.level = gcpro_level++; \
3276 gcprolist = &gcpro6; }
3277
3278 #define GCPRO7(a, b, c, d, e, f, g) \
3279 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3280 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3281 gcpro1.level = gcpro_level; \
3282 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3283 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3284 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3285 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3286 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3287 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3288 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3289 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3290 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3291 gcpro6.name = __FILE__; gcpro6.lineno = __LINE__; gcpro6.idx = 6; \
3292 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3293 gcpro7.name = __FILE__; gcpro7.lineno = __LINE__; gcpro7.idx = 7; \
3294 gcpro7.level = gcpro_level++; \
3295 gcprolist = &gcpro7; }
3296
3297 #define UNGCPRO \
3298 (--gcpro_level != gcpro1.level \
3299 ? emacs_abort () \
3300 : (void) (gcprolist = gcpro1.next))
3301
3302 #endif /* DEBUG_GCPRO */
3303 #endif /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3304
3305
3306 /* Evaluate expr, UNGCPRO, and then return the value of expr. */
3307 #define RETURN_UNGCPRO(expr) \
3308 do \
3309 { \
3310 Lisp_Object ret_ungc_val; \
3311 ret_ungc_val = (expr); \
3312 UNGCPRO; \
3313 return ret_ungc_val; \
3314 } \
3315 while (false)
3316
3317 /* Call staticpro (&var) to protect static variable `var'. */
3318
3319 void staticpro (Lisp_Object *);
3320 \f
3321 /* Forward declarations for prototypes. */
3322 struct window;
3323 struct frame;
3324
3325 /* Copy COUNT Lisp_Objects from ARGS to contents of V starting from OFFSET. */
3326
3327 INLINE void
3328 vcopy (Lisp_Object v, ptrdiff_t offset, Lisp_Object *args, ptrdiff_t count)
3329 {
3330 eassert (0 <= offset && 0 <= count && offset + count <= ASIZE (v));
3331 memcpy (XVECTOR (v)->contents + offset, args, count * sizeof *args);
3332 }
3333
3334 /* Functions to modify hash tables. */
3335
3336 INLINE void
3337 set_hash_key_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3338 {
3339 gc_aset (h->key_and_value, 2 * idx, val);
3340 }
3341
3342 INLINE void
3343 set_hash_value_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3344 {
3345 gc_aset (h->key_and_value, 2 * idx + 1, val);
3346 }
3347
3348 /* Use these functions to set Lisp_Object
3349 or pointer slots of struct Lisp_Symbol. */
3350
3351 INLINE void
3352 set_symbol_function (Lisp_Object sym, Lisp_Object function)
3353 {
3354 XSYMBOL (sym)->function = function;
3355 }
3356
3357 INLINE void
3358 set_symbol_plist (Lisp_Object sym, Lisp_Object plist)
3359 {
3360 XSYMBOL (sym)->plist = plist;
3361 }
3362
3363 INLINE void
3364 set_symbol_next (Lisp_Object sym, struct Lisp_Symbol *next)
3365 {
3366 XSYMBOL (sym)->next = next;
3367 }
3368
3369 /* Buffer-local (also frame-local) variable access functions. */
3370
3371 INLINE int
3372 blv_found (struct Lisp_Buffer_Local_Value *blv)
3373 {
3374 eassert (blv->found == !EQ (blv->defcell, blv->valcell));
3375 return blv->found;
3376 }
3377
3378 /* Set overlay's property list. */
3379
3380 INLINE void
3381 set_overlay_plist (Lisp_Object overlay, Lisp_Object plist)
3382 {
3383 XOVERLAY (overlay)->plist = plist;
3384 }
3385
3386 /* Get text properties of S. */
3387
3388 INLINE INTERVAL
3389 string_intervals (Lisp_Object s)
3390 {
3391 return XSTRING (s)->intervals;
3392 }
3393
3394 /* Set text properties of S to I. */
3395
3396 INLINE void
3397 set_string_intervals (Lisp_Object s, INTERVAL i)
3398 {
3399 XSTRING (s)->intervals = i;
3400 }
3401
3402 /* Set a Lisp slot in TABLE to VAL. Most code should use this instead
3403 of setting slots directly. */
3404
3405 INLINE void
3406 set_char_table_defalt (Lisp_Object table, Lisp_Object val)
3407 {
3408 XCHAR_TABLE (table)->defalt = val;
3409 }
3410 INLINE void
3411 set_char_table_purpose (Lisp_Object table, Lisp_Object val)
3412 {
3413 XCHAR_TABLE (table)->purpose = val;
3414 }
3415
3416 /* Set different slots in (sub)character tables. */
3417
3418 INLINE void
3419 set_char_table_extras (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3420 {
3421 eassert (0 <= idx && idx < CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (table)));
3422 XCHAR_TABLE (table)->extras[idx] = val;
3423 }
3424
3425 INLINE void
3426 set_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3427 {
3428 eassert (0 <= idx && idx < (1 << CHARTAB_SIZE_BITS_0));
3429 XCHAR_TABLE (table)->contents[idx] = val;
3430 }
3431
3432 INLINE void
3433 set_sub_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3434 {
3435 XSUB_CHAR_TABLE (table)->contents[idx] = val;
3436 }
3437
3438 /* Defined in data.c. */
3439 extern Lisp_Object indirect_function (Lisp_Object);
3440 extern Lisp_Object find_symbol_value (Lisp_Object);
3441 enum Arith_Comparison {
3442 ARITH_EQUAL,
3443 ARITH_NOTEQUAL,
3444 ARITH_LESS,
3445 ARITH_GRTR,
3446 ARITH_LESS_OR_EQUAL,
3447 ARITH_GRTR_OR_EQUAL
3448 };
3449 extern Lisp_Object arithcompare (Lisp_Object num1, Lisp_Object num2,
3450 enum Arith_Comparison comparison);
3451
3452 /* Convert the integer I to an Emacs representation, either the integer
3453 itself, or a cons of two or three integers, or if all else fails a float.
3454 I should not have side effects. */
3455 #define INTEGER_TO_CONS(i) \
3456 (! FIXNUM_OVERFLOW_P (i) \
3457 ? make_number (i) \
3458 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16) \
3459 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16)) \
3460 && FIXNUM_OVERFLOW_P ((i) >> 16)) \
3461 ? Fcons (make_number ((i) >> 16), make_number ((i) & 0xffff)) \
3462 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16 >> 24) \
3463 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16 >> 24)) \
3464 && FIXNUM_OVERFLOW_P ((i) >> 16 >> 24)) \
3465 ? Fcons (make_number ((i) >> 16 >> 24), \
3466 Fcons (make_number ((i) >> 16 & 0xffffff), \
3467 make_number ((i) & 0xffff))) \
3468 : make_float (i))
3469
3470 /* Convert the Emacs representation CONS back to an integer of type
3471 TYPE, storing the result the variable VAR. Signal an error if CONS
3472 is not a valid representation or is out of range for TYPE. */
3473 #define CONS_TO_INTEGER(cons, type, var) \
3474 (TYPE_SIGNED (type) \
3475 ? ((var) = cons_to_signed (cons, TYPE_MINIMUM (type), TYPE_MAXIMUM (type))) \
3476 : ((var) = cons_to_unsigned (cons, TYPE_MAXIMUM (type))))
3477 extern intmax_t cons_to_signed (Lisp_Object, intmax_t, intmax_t);
3478 extern uintmax_t cons_to_unsigned (Lisp_Object, uintmax_t);
3479
3480 extern struct Lisp_Symbol *indirect_variable (struct Lisp_Symbol *);
3481 extern _Noreturn void args_out_of_range (Lisp_Object, Lisp_Object);
3482 extern _Noreturn void args_out_of_range_3 (Lisp_Object, Lisp_Object,
3483 Lisp_Object);
3484 extern Lisp_Object do_symval_forwarding (union Lisp_Fwd *);
3485 extern void set_internal (Lisp_Object, Lisp_Object, Lisp_Object, bool);
3486 extern void syms_of_data (void);
3487 extern void swap_in_global_binding (struct Lisp_Symbol *);
3488
3489 /* Defined in cmds.c */
3490 extern void syms_of_cmds (void);
3491 extern void keys_of_cmds (void);
3492
3493 /* Defined in coding.c. */
3494 extern Lisp_Object detect_coding_system (const unsigned char *, ptrdiff_t,
3495 ptrdiff_t, bool, bool, Lisp_Object);
3496 extern void init_coding (void);
3497 extern void init_coding_once (void);
3498 extern void syms_of_coding (void);
3499
3500 /* Defined in character.c. */
3501 extern ptrdiff_t chars_in_text (const unsigned char *, ptrdiff_t);
3502 extern ptrdiff_t multibyte_chars_in_text (const unsigned char *, ptrdiff_t);
3503 extern void syms_of_character (void);
3504
3505 /* Defined in charset.c. */
3506 extern void init_charset (void);
3507 extern void init_charset_once (void);
3508 extern void syms_of_charset (void);
3509 /* Structure forward declarations. */
3510 struct charset;
3511
3512 /* Defined in syntax.c. */
3513 extern void init_syntax_once (void);
3514 extern void syms_of_syntax (void);
3515
3516 /* Defined in fns.c. */
3517 enum { NEXT_ALMOST_PRIME_LIMIT = 11 };
3518 extern EMACS_INT next_almost_prime (EMACS_INT) ATTRIBUTE_CONST;
3519 extern Lisp_Object larger_vector (Lisp_Object, ptrdiff_t, ptrdiff_t);
3520 extern void sweep_weak_hash_tables (void);
3521 EMACS_UINT hash_string (char const *, ptrdiff_t);
3522 EMACS_UINT sxhash (Lisp_Object, int);
3523 Lisp_Object make_hash_table (struct hash_table_test, Lisp_Object, Lisp_Object,
3524 Lisp_Object, Lisp_Object);
3525 ptrdiff_t hash_lookup (struct Lisp_Hash_Table *, Lisp_Object, EMACS_UINT *);
3526 ptrdiff_t hash_put (struct Lisp_Hash_Table *, Lisp_Object, Lisp_Object,
3527 EMACS_UINT);
3528 extern struct hash_table_test hashtest_eql, hashtest_equal;
3529 extern void validate_subarray (Lisp_Object, Lisp_Object, Lisp_Object,
3530 ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
3531 extern Lisp_Object substring_both (Lisp_Object, ptrdiff_t, ptrdiff_t,
3532 ptrdiff_t, ptrdiff_t);
3533 extern Lisp_Object merge (Lisp_Object, Lisp_Object, Lisp_Object);
3534 extern Lisp_Object do_yes_or_no_p (Lisp_Object);
3535 extern Lisp_Object concat2 (Lisp_Object, Lisp_Object);
3536 extern Lisp_Object concat3 (Lisp_Object, Lisp_Object, Lisp_Object);
3537 extern Lisp_Object nconc2 (Lisp_Object, Lisp_Object);
3538 extern Lisp_Object assq_no_quit (Lisp_Object, Lisp_Object);
3539 extern Lisp_Object assoc_no_quit (Lisp_Object, Lisp_Object);
3540 extern void clear_string_char_byte_cache (void);
3541 extern ptrdiff_t string_char_to_byte (Lisp_Object, ptrdiff_t);
3542 extern ptrdiff_t string_byte_to_char (Lisp_Object, ptrdiff_t);
3543 extern Lisp_Object string_to_multibyte (Lisp_Object);
3544 extern Lisp_Object string_make_unibyte (Lisp_Object);
3545 extern void syms_of_fns (void);
3546
3547 /* Defined in floatfns.c. */
3548 extern void syms_of_floatfns (void);
3549 extern Lisp_Object fmod_float (Lisp_Object x, Lisp_Object y);
3550
3551 /* Defined in fringe.c. */
3552 extern void syms_of_fringe (void);
3553 extern void init_fringe (void);
3554 #ifdef HAVE_WINDOW_SYSTEM
3555 extern void mark_fringe_data (void);
3556 extern void init_fringe_once (void);
3557 #endif /* HAVE_WINDOW_SYSTEM */
3558
3559 /* Defined in image.c. */
3560 extern int x_bitmap_mask (struct frame *, ptrdiff_t);
3561 extern void reset_image_types (void);
3562 extern void syms_of_image (void);
3563
3564 /* Defined in insdel.c. */
3565 extern void move_gap_both (ptrdiff_t, ptrdiff_t);
3566 extern _Noreturn void buffer_overflow (void);
3567 extern void make_gap (ptrdiff_t);
3568 extern void make_gap_1 (struct buffer *, ptrdiff_t);
3569 extern ptrdiff_t copy_text (const unsigned char *, unsigned char *,
3570 ptrdiff_t, bool, bool);
3571 extern int count_combining_before (const unsigned char *,
3572 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3573 extern int count_combining_after (const unsigned char *,
3574 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3575 extern void insert (const char *, ptrdiff_t);
3576 extern void insert_and_inherit (const char *, ptrdiff_t);
3577 extern void insert_1_both (const char *, ptrdiff_t, ptrdiff_t,
3578 bool, bool, bool);
3579 extern void insert_from_gap (ptrdiff_t, ptrdiff_t, bool text_at_gap_tail);
3580 extern void insert_from_string (Lisp_Object, ptrdiff_t, ptrdiff_t,
3581 ptrdiff_t, ptrdiff_t, bool);
3582 extern void insert_from_buffer (struct buffer *, ptrdiff_t, ptrdiff_t, bool);
3583 extern void insert_char (int);
3584 extern void insert_string (const char *);
3585 extern void insert_before_markers (const char *, ptrdiff_t);
3586 extern void insert_before_markers_and_inherit (const char *, ptrdiff_t);
3587 extern void insert_from_string_before_markers (Lisp_Object, ptrdiff_t,
3588 ptrdiff_t, ptrdiff_t,
3589 ptrdiff_t, bool);
3590 extern void del_range (ptrdiff_t, ptrdiff_t);
3591 extern Lisp_Object del_range_1 (ptrdiff_t, ptrdiff_t, bool, bool);
3592 extern void del_range_byte (ptrdiff_t, ptrdiff_t, bool);
3593 extern void del_range_both (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t, bool);
3594 extern Lisp_Object del_range_2 (ptrdiff_t, ptrdiff_t,
3595 ptrdiff_t, ptrdiff_t, bool);
3596 extern void modify_text (ptrdiff_t, ptrdiff_t);
3597 extern void prepare_to_modify_buffer (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3598 extern void prepare_to_modify_buffer_1 (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3599 extern void invalidate_buffer_caches (struct buffer *, ptrdiff_t, ptrdiff_t);
3600 extern void signal_after_change (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3601 extern void adjust_after_insert (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3602 ptrdiff_t, ptrdiff_t);
3603 extern void adjust_markers_for_delete (ptrdiff_t, ptrdiff_t,
3604 ptrdiff_t, ptrdiff_t);
3605 extern void replace_range (ptrdiff_t, ptrdiff_t, Lisp_Object, bool, bool, bool);
3606 extern void replace_range_2 (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3607 const char *, ptrdiff_t, ptrdiff_t, bool);
3608 extern void syms_of_insdel (void);
3609
3610 /* Defined in dispnew.c. */
3611 #if (defined PROFILING \
3612 && (defined __FreeBSD__ || defined GNU_LINUX || defined __MINGW32__))
3613 _Noreturn void __executable_start (void);
3614 #endif
3615 extern Lisp_Object Vwindow_system;
3616 extern Lisp_Object sit_for (Lisp_Object, bool, int);
3617
3618 /* Defined in xdisp.c. */
3619 extern bool noninteractive_need_newline;
3620 extern Lisp_Object echo_area_buffer[2];
3621 extern void add_to_log (const char *, Lisp_Object, Lisp_Object);
3622 extern void check_message_stack (void);
3623 extern void setup_echo_area_for_printing (int);
3624 extern bool push_message (void);
3625 extern void pop_message_unwind (void);
3626 extern Lisp_Object restore_message_unwind (Lisp_Object);
3627 extern void restore_message (void);
3628 extern Lisp_Object current_message (void);
3629 extern void clear_message (bool, bool);
3630 extern void message (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3631 extern void message1 (const char *);
3632 extern void message1_nolog (const char *);
3633 extern void message3 (Lisp_Object);
3634 extern void message3_nolog (Lisp_Object);
3635 extern void message_dolog (const char *, ptrdiff_t, bool, bool);
3636 extern void message_with_string (const char *, Lisp_Object, int);
3637 extern void message_log_maybe_newline (void);
3638 extern void update_echo_area (void);
3639 extern void truncate_echo_area (ptrdiff_t);
3640 extern void redisplay (void);
3641
3642 void set_frame_cursor_types (struct frame *, Lisp_Object);
3643 extern void syms_of_xdisp (void);
3644 extern void init_xdisp (void);
3645 extern Lisp_Object safe_eval (Lisp_Object);
3646 extern int pos_visible_p (struct window *, ptrdiff_t, int *,
3647 int *, int *, int *, int *, int *);
3648
3649 /* Defined in xsettings.c. */
3650 extern void syms_of_xsettings (void);
3651
3652 /* Defined in vm-limit.c. */
3653 extern void memory_warnings (void *, void (*warnfun) (const char *));
3654
3655 /* Defined in character.c. */
3656 extern void parse_str_as_multibyte (const unsigned char *, ptrdiff_t,
3657 ptrdiff_t *, ptrdiff_t *);
3658
3659 /* Defined in alloc.c. */
3660 extern void check_pure_size (void);
3661 extern void free_misc (Lisp_Object);
3662 extern void allocate_string_data (struct Lisp_String *, EMACS_INT, EMACS_INT);
3663 extern void malloc_warning (const char *);
3664 extern _Noreturn void memory_full (size_t);
3665 extern _Noreturn void buffer_memory_full (ptrdiff_t);
3666 extern bool survives_gc_p (Lisp_Object);
3667 extern void mark_object (Lisp_Object);
3668 #if defined REL_ALLOC && !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3669 extern void refill_memory_reserve (void);
3670 #endif
3671 extern const char *pending_malloc_warning;
3672 extern Lisp_Object zero_vector;
3673 extern Lisp_Object *stack_base;
3674 extern EMACS_INT consing_since_gc;
3675 extern EMACS_INT gc_relative_threshold;
3676 extern EMACS_INT memory_full_cons_threshold;
3677 extern Lisp_Object list1 (Lisp_Object);
3678 extern Lisp_Object list2 (Lisp_Object, Lisp_Object);
3679 extern Lisp_Object list3 (Lisp_Object, Lisp_Object, Lisp_Object);
3680 extern Lisp_Object list4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3681 extern Lisp_Object list5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object,
3682 Lisp_Object);
3683 enum constype {CONSTYPE_HEAP, CONSTYPE_PURE};
3684 extern Lisp_Object listn (enum constype, ptrdiff_t, Lisp_Object, ...);
3685
3686 /* Build a frequently used 2/3/4-integer lists. */
3687
3688 INLINE Lisp_Object
3689 list2i (EMACS_INT x, EMACS_INT y)
3690 {
3691 return list2 (make_number (x), make_number (y));
3692 }
3693
3694 INLINE Lisp_Object
3695 list3i (EMACS_INT x, EMACS_INT y, EMACS_INT w)
3696 {
3697 return list3 (make_number (x), make_number (y), make_number (w));
3698 }
3699
3700 INLINE Lisp_Object
3701 list4i (EMACS_INT x, EMACS_INT y, EMACS_INT w, EMACS_INT h)
3702 {
3703 return list4 (make_number (x), make_number (y),
3704 make_number (w), make_number (h));
3705 }
3706
3707 extern Lisp_Object make_uninit_bool_vector (EMACS_INT);
3708 extern Lisp_Object bool_vector_fill (Lisp_Object, Lisp_Object);
3709 extern _Noreturn void string_overflow (void);
3710 extern Lisp_Object make_string (const char *, ptrdiff_t);
3711 extern Lisp_Object make_formatted_string (char *, const char *, ...)
3712 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3713 extern Lisp_Object make_unibyte_string (const char *, ptrdiff_t);
3714
3715 /* Make unibyte string from C string when the length isn't known. */
3716
3717 INLINE Lisp_Object
3718 build_unibyte_string (const char *str)
3719 {
3720 return make_unibyte_string (str, strlen (str));
3721 }
3722
3723 extern Lisp_Object make_multibyte_string (const char *, ptrdiff_t, ptrdiff_t);
3724 extern Lisp_Object make_event_array (ptrdiff_t, Lisp_Object *);
3725 extern Lisp_Object make_uninit_string (EMACS_INT);
3726 extern Lisp_Object make_uninit_multibyte_string (EMACS_INT, EMACS_INT);
3727 extern Lisp_Object make_string_from_bytes (const char *, ptrdiff_t, ptrdiff_t);
3728 extern Lisp_Object make_specified_string (const char *,
3729 ptrdiff_t, ptrdiff_t, bool);
3730 extern Lisp_Object make_pure_string (const char *, ptrdiff_t, ptrdiff_t, bool);
3731 extern Lisp_Object make_pure_c_string (const char *, ptrdiff_t);
3732
3733 /* Make a string allocated in pure space, use STR as string data. */
3734
3735 INLINE Lisp_Object
3736 build_pure_c_string (const char *str)
3737 {
3738 return make_pure_c_string (str, strlen (str));
3739 }
3740
3741 /* Make a string from the data at STR, treating it as multibyte if the
3742 data warrants. */
3743
3744 INLINE Lisp_Object
3745 build_string (const char *str)
3746 {
3747 return make_string (str, strlen (str));
3748 }
3749
3750 extern Lisp_Object pure_cons (Lisp_Object, Lisp_Object);
3751 extern void make_byte_code (struct Lisp_Vector *);
3752 extern struct Lisp_Vector *allocate_vector (EMACS_INT);
3753
3754 /* Make an uninitialized vector for SIZE objects. NOTE: you must
3755 be sure that GC cannot happen until the vector is completely
3756 initialized. E.g. the following code is likely to crash:
3757
3758 v = make_uninit_vector (3);
3759 ASET (v, 0, obj0);
3760 ASET (v, 1, Ffunction_can_gc ());
3761 ASET (v, 2, obj1); */
3762
3763 INLINE Lisp_Object
3764 make_uninit_vector (ptrdiff_t size)
3765 {
3766 Lisp_Object v;
3767 struct Lisp_Vector *p;
3768
3769 p = allocate_vector (size);
3770 XSETVECTOR (v, p);
3771 return v;
3772 }
3773
3774 /* Like above, but special for sub char-tables. */
3775
3776 INLINE Lisp_Object
3777 make_uninit_sub_char_table (int depth, int min_char)
3778 {
3779 int slots = SUB_CHAR_TABLE_OFFSET + chartab_size[depth];
3780 Lisp_Object v = make_uninit_vector (slots);
3781
3782 XSETPVECTYPE (XVECTOR (v), PVEC_SUB_CHAR_TABLE);
3783 XSUB_CHAR_TABLE (v)->depth = depth;
3784 XSUB_CHAR_TABLE (v)->min_char = min_char;
3785 return v;
3786 }
3787
3788 extern struct Lisp_Vector *allocate_pseudovector (int, int, enum pvec_type);
3789 #define ALLOCATE_PSEUDOVECTOR(typ,field,tag) \
3790 ((typ*) \
3791 allocate_pseudovector \
3792 (VECSIZE (typ), PSEUDOVECSIZE (typ, field), tag))
3793 extern struct Lisp_Hash_Table *allocate_hash_table (void);
3794 extern struct window *allocate_window (void);
3795 extern struct frame *allocate_frame (void);
3796 extern struct Lisp_Process *allocate_process (void);
3797 extern struct terminal *allocate_terminal (void);
3798 extern bool gc_in_progress;
3799 extern bool abort_on_gc;
3800 extern Lisp_Object make_float (double);
3801 extern void display_malloc_warning (void);
3802 extern ptrdiff_t inhibit_garbage_collection (void);
3803 extern Lisp_Object make_save_int_int_int (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3804 extern Lisp_Object make_save_obj_obj_obj_obj (Lisp_Object, Lisp_Object,
3805 Lisp_Object, Lisp_Object);
3806 extern Lisp_Object make_save_ptr (void *);
3807 extern Lisp_Object make_save_ptr_int (void *, ptrdiff_t);
3808 extern Lisp_Object make_save_ptr_ptr (void *, void *);
3809 extern Lisp_Object make_save_funcptr_ptr_obj (void (*) (void), void *,
3810 Lisp_Object);
3811 extern Lisp_Object make_save_memory (Lisp_Object *, ptrdiff_t);
3812 extern void free_save_value (Lisp_Object);
3813 extern Lisp_Object build_overlay (Lisp_Object, Lisp_Object, Lisp_Object);
3814 extern void free_marker (Lisp_Object);
3815 extern void free_cons (struct Lisp_Cons *);
3816 extern void init_alloc_once (void);
3817 extern void init_alloc (void);
3818 extern void syms_of_alloc (void);
3819 extern struct buffer * allocate_buffer (void);
3820 extern int valid_lisp_object_p (Lisp_Object);
3821 extern int relocatable_string_data_p (const char *);
3822 #ifdef GC_CHECK_CONS_LIST
3823 extern void check_cons_list (void);
3824 #else
3825 INLINE void (check_cons_list) (void) { lisp_h_check_cons_list (); }
3826 #endif
3827
3828 #ifdef REL_ALLOC
3829 /* Defined in ralloc.c. */
3830 extern void *r_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3831 extern void r_alloc_free (void **);
3832 extern void *r_re_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3833 extern void r_alloc_reset_variable (void **, void **);
3834 extern void r_alloc_inhibit_buffer_relocation (int);
3835 #endif
3836
3837 /* Defined in chartab.c. */
3838 extern Lisp_Object copy_char_table (Lisp_Object);
3839 extern Lisp_Object char_table_ref_and_range (Lisp_Object, int,
3840 int *, int *);
3841 extern void char_table_set_range (Lisp_Object, int, int, Lisp_Object);
3842 extern void map_char_table (void (*) (Lisp_Object, Lisp_Object,
3843 Lisp_Object),
3844 Lisp_Object, Lisp_Object, Lisp_Object);
3845 extern void map_char_table_for_charset (void (*c_function) (Lisp_Object, Lisp_Object),
3846 Lisp_Object, Lisp_Object,
3847 Lisp_Object, struct charset *,
3848 unsigned, unsigned);
3849 extern Lisp_Object uniprop_table (Lisp_Object);
3850 extern void syms_of_chartab (void);
3851
3852 /* Defined in print.c. */
3853 extern Lisp_Object Vprin1_to_string_buffer;
3854 extern void debug_print (Lisp_Object) EXTERNALLY_VISIBLE;
3855 extern void temp_output_buffer_setup (const char *);
3856 extern int print_level;
3857 extern void write_string (const char *, int);
3858 extern void print_error_message (Lisp_Object, Lisp_Object, const char *,
3859 Lisp_Object);
3860 extern Lisp_Object internal_with_output_to_temp_buffer
3861 (const char *, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3862 #define FLOAT_TO_STRING_BUFSIZE 350
3863 extern int float_to_string (char *, double);
3864 extern void init_print_once (void);
3865 extern void syms_of_print (void);
3866
3867 /* Defined in doprnt.c. */
3868 extern ptrdiff_t doprnt (char *, ptrdiff_t, const char *, const char *,
3869 va_list);
3870 extern ptrdiff_t esprintf (char *, char const *, ...)
3871 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3872 extern ptrdiff_t exprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3873 char const *, ...)
3874 ATTRIBUTE_FORMAT_PRINTF (5, 6);
3875 extern ptrdiff_t evxprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3876 char const *, va_list)
3877 ATTRIBUTE_FORMAT_PRINTF (5, 0);
3878
3879 /* Defined in lread.c. */
3880 extern Lisp_Object check_obarray (Lisp_Object);
3881 extern Lisp_Object intern_1 (const char *, ptrdiff_t);
3882 extern Lisp_Object intern_c_string_1 (const char *, ptrdiff_t);
3883 extern Lisp_Object intern_driver (Lisp_Object, Lisp_Object, Lisp_Object);
3884 extern void init_symbol (Lisp_Object, Lisp_Object);
3885 extern Lisp_Object oblookup (Lisp_Object, const char *, ptrdiff_t, ptrdiff_t);
3886 INLINE void
3887 LOADHIST_ATTACH (Lisp_Object x)
3888 {
3889 if (initialized)
3890 Vcurrent_load_list = Fcons (x, Vcurrent_load_list);
3891 }
3892 extern int openp (Lisp_Object, Lisp_Object, Lisp_Object,
3893 Lisp_Object *, Lisp_Object, bool);
3894 extern Lisp_Object string_to_number (char const *, int, bool);
3895 extern void map_obarray (Lisp_Object, void (*) (Lisp_Object, Lisp_Object),
3896 Lisp_Object);
3897 extern void dir_warning (const char *, Lisp_Object);
3898 extern void init_obarray (void);
3899 extern void init_lread (void);
3900 extern void syms_of_lread (void);
3901
3902 INLINE Lisp_Object
3903 intern (const char *str)
3904 {
3905 return intern_1 (str, strlen (str));
3906 }
3907
3908 INLINE Lisp_Object
3909 intern_c_string (const char *str)
3910 {
3911 return intern_c_string_1 (str, strlen (str));
3912 }
3913
3914 /* Defined in eval.c. */
3915 extern EMACS_INT lisp_eval_depth;
3916 extern Lisp_Object Vautoload_queue;
3917 extern Lisp_Object Vrun_hooks;
3918 extern Lisp_Object Vsignaling_function;
3919 extern Lisp_Object inhibit_lisp_code;
3920 extern struct handler *handlerlist;
3921
3922 /* To run a normal hook, use the appropriate function from the list below.
3923 The calling convention:
3924
3925 if (!NILP (Vrun_hooks))
3926 call1 (Vrun_hooks, Qmy_funny_hook);
3927
3928 should no longer be used. */
3929 extern void run_hook (Lisp_Object);
3930 extern void run_hook_with_args_2 (Lisp_Object, Lisp_Object, Lisp_Object);
3931 extern Lisp_Object run_hook_with_args (ptrdiff_t nargs, Lisp_Object *args,
3932 Lisp_Object (*funcall)
3933 (ptrdiff_t nargs, Lisp_Object *args));
3934 extern _Noreturn void xsignal (Lisp_Object, Lisp_Object);
3935 extern _Noreturn void xsignal0 (Lisp_Object);
3936 extern _Noreturn void xsignal1 (Lisp_Object, Lisp_Object);
3937 extern _Noreturn void xsignal2 (Lisp_Object, Lisp_Object, Lisp_Object);
3938 extern _Noreturn void xsignal3 (Lisp_Object, Lisp_Object, Lisp_Object,
3939 Lisp_Object);
3940 extern _Noreturn void signal_error (const char *, Lisp_Object);
3941 extern Lisp_Object eval_sub (Lisp_Object form);
3942 extern Lisp_Object apply1 (Lisp_Object, Lisp_Object);
3943 extern Lisp_Object call0 (Lisp_Object);
3944 extern Lisp_Object call1 (Lisp_Object, Lisp_Object);
3945 extern Lisp_Object call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3946 extern Lisp_Object call3 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3947 extern Lisp_Object call4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3948 extern Lisp_Object call5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3949 extern Lisp_Object call6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3950 extern Lisp_Object call7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3951 extern Lisp_Object internal_catch (Lisp_Object, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3952 extern Lisp_Object internal_lisp_condition_case (Lisp_Object, Lisp_Object, Lisp_Object);
3953 extern Lisp_Object internal_condition_case (Lisp_Object (*) (void), Lisp_Object, Lisp_Object (*) (Lisp_Object));
3954 extern Lisp_Object internal_condition_case_1 (Lisp_Object (*) (Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3955 extern Lisp_Object internal_condition_case_2 (Lisp_Object (*) (Lisp_Object, Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3956 extern Lisp_Object internal_condition_case_n
3957 (Lisp_Object (*) (ptrdiff_t, Lisp_Object *), ptrdiff_t, Lisp_Object *,
3958 Lisp_Object, Lisp_Object (*) (Lisp_Object, ptrdiff_t, Lisp_Object *));
3959 extern void specbind (Lisp_Object, Lisp_Object);
3960 extern void record_unwind_protect (void (*) (Lisp_Object), Lisp_Object);
3961 extern void record_unwind_protect_ptr (void (*) (void *), void *);
3962 extern void record_unwind_protect_int (void (*) (int), int);
3963 extern void record_unwind_protect_void (void (*) (void));
3964 extern void record_unwind_protect_nothing (void);
3965 extern void clear_unwind_protect (ptrdiff_t);
3966 extern void set_unwind_protect (ptrdiff_t, void (*) (Lisp_Object), Lisp_Object);
3967 extern void set_unwind_protect_ptr (ptrdiff_t, void (*) (void *), void *);
3968 extern Lisp_Object unbind_to (ptrdiff_t, Lisp_Object);
3969 extern _Noreturn void error (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3970 extern _Noreturn void verror (const char *, va_list)
3971 ATTRIBUTE_FORMAT_PRINTF (1, 0);
3972 extern void un_autoload (Lisp_Object);
3973 extern Lisp_Object call_debugger (Lisp_Object arg);
3974 extern void init_eval_once (void);
3975 extern Lisp_Object safe_call (ptrdiff_t, Lisp_Object, ...);
3976 extern Lisp_Object safe_call1 (Lisp_Object, Lisp_Object);
3977 extern Lisp_Object safe_call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3978 extern void init_eval (void);
3979 extern void syms_of_eval (void);
3980 extern void unwind_body (Lisp_Object);
3981 extern ptrdiff_t record_in_backtrace (Lisp_Object, Lisp_Object *, ptrdiff_t);
3982 extern void mark_specpdl (void);
3983 extern void get_backtrace (Lisp_Object array);
3984 Lisp_Object backtrace_top_function (void);
3985 extern bool let_shadows_buffer_binding_p (struct Lisp_Symbol *symbol);
3986 extern bool let_shadows_global_binding_p (Lisp_Object symbol);
3987
3988
3989 /* Defined in editfns.c. */
3990 extern void insert1 (Lisp_Object);
3991 extern Lisp_Object format2 (const char *, Lisp_Object, Lisp_Object);
3992 extern Lisp_Object save_excursion_save (void);
3993 extern Lisp_Object save_restriction_save (void);
3994 extern void save_excursion_restore (Lisp_Object);
3995 extern void save_restriction_restore (Lisp_Object);
3996 extern _Noreturn void time_overflow (void);
3997 extern Lisp_Object make_buffer_string (ptrdiff_t, ptrdiff_t, bool);
3998 extern Lisp_Object make_buffer_string_both (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3999 ptrdiff_t, bool);
4000 extern void init_editfns (void);
4001 extern void syms_of_editfns (void);
4002
4003 /* Defined in buffer.c. */
4004 extern bool mouse_face_overlay_overlaps (Lisp_Object);
4005 extern _Noreturn void nsberror (Lisp_Object);
4006 extern void adjust_overlays_for_insert (ptrdiff_t, ptrdiff_t);
4007 extern void adjust_overlays_for_delete (ptrdiff_t, ptrdiff_t);
4008 extern void fix_start_end_in_overlays (ptrdiff_t, ptrdiff_t);
4009 extern void report_overlay_modification (Lisp_Object, Lisp_Object, bool,
4010 Lisp_Object, Lisp_Object, Lisp_Object);
4011 extern bool overlay_touches_p (ptrdiff_t);
4012 extern Lisp_Object other_buffer_safely (Lisp_Object);
4013 extern Lisp_Object get_truename_buffer (Lisp_Object);
4014 extern void init_buffer_once (void);
4015 extern void init_buffer (int);
4016 extern void syms_of_buffer (void);
4017 extern void keys_of_buffer (void);
4018
4019 /* Defined in marker.c. */
4020
4021 extern ptrdiff_t marker_position (Lisp_Object);
4022 extern ptrdiff_t marker_byte_position (Lisp_Object);
4023 extern void clear_charpos_cache (struct buffer *);
4024 extern ptrdiff_t buf_charpos_to_bytepos (struct buffer *, ptrdiff_t);
4025 extern ptrdiff_t buf_bytepos_to_charpos (struct buffer *, ptrdiff_t);
4026 extern void unchain_marker (struct Lisp_Marker *marker);
4027 extern Lisp_Object set_marker_restricted (Lisp_Object, Lisp_Object, Lisp_Object);
4028 extern Lisp_Object set_marker_both (Lisp_Object, Lisp_Object, ptrdiff_t, ptrdiff_t);
4029 extern Lisp_Object set_marker_restricted_both (Lisp_Object, Lisp_Object,
4030 ptrdiff_t, ptrdiff_t);
4031 extern Lisp_Object build_marker (struct buffer *, ptrdiff_t, ptrdiff_t);
4032 extern void syms_of_marker (void);
4033
4034 /* Defined in fileio.c. */
4035
4036 extern Lisp_Object expand_and_dir_to_file (Lisp_Object, Lisp_Object);
4037 extern Lisp_Object write_region (Lisp_Object, Lisp_Object, Lisp_Object,
4038 Lisp_Object, Lisp_Object, Lisp_Object,
4039 Lisp_Object, int);
4040 extern void close_file_unwind (int);
4041 extern void fclose_unwind (void *);
4042 extern void restore_point_unwind (Lisp_Object);
4043 extern _Noreturn void report_file_errno (const char *, Lisp_Object, int);
4044 extern _Noreturn void report_file_error (const char *, Lisp_Object);
4045 extern bool internal_delete_file (Lisp_Object);
4046 extern Lisp_Object emacs_readlinkat (int, const char *);
4047 extern bool file_directory_p (const char *);
4048 extern bool file_accessible_directory_p (Lisp_Object);
4049 extern void init_fileio (void);
4050 extern void syms_of_fileio (void);
4051 extern Lisp_Object make_temp_name (Lisp_Object, bool);
4052
4053 /* Defined in search.c. */
4054 extern void shrink_regexp_cache (void);
4055 extern void restore_search_regs (void);
4056 extern void record_unwind_save_match_data (void);
4057 struct re_registers;
4058 extern struct re_pattern_buffer *compile_pattern (Lisp_Object,
4059 struct re_registers *,
4060 Lisp_Object, bool, bool);
4061 extern ptrdiff_t fast_string_match_internal (Lisp_Object, Lisp_Object,
4062 Lisp_Object);
4063
4064 INLINE ptrdiff_t
4065 fast_string_match (Lisp_Object regexp, Lisp_Object string)
4066 {
4067 return fast_string_match_internal (regexp, string, Qnil);
4068 }
4069
4070 INLINE ptrdiff_t
4071 fast_string_match_ignore_case (Lisp_Object regexp, Lisp_Object string)
4072 {
4073 return fast_string_match_internal (regexp, string, Vascii_canon_table);
4074 }
4075
4076 extern ptrdiff_t fast_c_string_match_ignore_case (Lisp_Object, const char *,
4077 ptrdiff_t);
4078 extern ptrdiff_t fast_looking_at (Lisp_Object, ptrdiff_t, ptrdiff_t,
4079 ptrdiff_t, ptrdiff_t, Lisp_Object);
4080 extern ptrdiff_t find_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4081 ptrdiff_t, ptrdiff_t *, ptrdiff_t *, bool);
4082 extern ptrdiff_t scan_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4083 ptrdiff_t, bool);
4084 extern ptrdiff_t scan_newline_from_point (ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
4085 extern ptrdiff_t find_newline_no_quit (ptrdiff_t, ptrdiff_t,
4086 ptrdiff_t, ptrdiff_t *);
4087 extern ptrdiff_t find_before_next_newline (ptrdiff_t, ptrdiff_t,
4088 ptrdiff_t, ptrdiff_t *);
4089 extern void syms_of_search (void);
4090 extern void clear_regexp_cache (void);
4091
4092 /* Defined in minibuf.c. */
4093
4094 extern Lisp_Object Vminibuffer_list;
4095 extern Lisp_Object last_minibuf_string;
4096 extern Lisp_Object get_minibuffer (EMACS_INT);
4097 extern void init_minibuf_once (void);
4098 extern void syms_of_minibuf (void);
4099
4100 /* Defined in callint.c. */
4101
4102 extern void syms_of_callint (void);
4103
4104 /* Defined in casefiddle.c. */
4105
4106 extern void syms_of_casefiddle (void);
4107 extern void keys_of_casefiddle (void);
4108
4109 /* Defined in casetab.c. */
4110
4111 extern void init_casetab_once (void);
4112 extern void syms_of_casetab (void);
4113
4114 /* Defined in keyboard.c. */
4115
4116 extern Lisp_Object echo_message_buffer;
4117 extern struct kboard *echo_kboard;
4118 extern void cancel_echoing (void);
4119 extern Lisp_Object last_undo_boundary;
4120 extern bool input_pending;
4121 #ifdef HAVE_STACK_OVERFLOW_HANDLING
4122 extern sigjmp_buf return_to_command_loop;
4123 #endif
4124 extern Lisp_Object menu_bar_items (Lisp_Object);
4125 extern Lisp_Object tool_bar_items (Lisp_Object, int *);
4126 extern void discard_mouse_events (void);
4127 #ifdef USABLE_SIGIO
4128 void handle_input_available_signal (int);
4129 #endif
4130 extern Lisp_Object pending_funcalls;
4131 extern bool detect_input_pending (void);
4132 extern bool detect_input_pending_ignore_squeezables (void);
4133 extern bool detect_input_pending_run_timers (bool);
4134 extern void safe_run_hooks (Lisp_Object);
4135 extern void cmd_error_internal (Lisp_Object, const char *);
4136 extern Lisp_Object command_loop_1 (void);
4137 extern Lisp_Object read_menu_command (void);
4138 extern Lisp_Object recursive_edit_1 (void);
4139 extern void record_auto_save (void);
4140 extern void force_auto_save_soon (void);
4141 extern void init_keyboard (void);
4142 extern void syms_of_keyboard (void);
4143 extern void keys_of_keyboard (void);
4144
4145 /* Defined in indent.c. */
4146 extern ptrdiff_t current_column (void);
4147 extern void invalidate_current_column (void);
4148 extern bool indented_beyond_p (ptrdiff_t, ptrdiff_t, EMACS_INT);
4149 extern void syms_of_indent (void);
4150
4151 /* Defined in frame.c. */
4152 extern void store_frame_param (struct frame *, Lisp_Object, Lisp_Object);
4153 extern void store_in_alist (Lisp_Object *, Lisp_Object, Lisp_Object);
4154 extern Lisp_Object do_switch_frame (Lisp_Object, int, int, Lisp_Object);
4155 extern Lisp_Object get_frame_param (struct frame *, Lisp_Object);
4156 extern void frames_discard_buffer (Lisp_Object);
4157 extern void syms_of_frame (void);
4158
4159 /* Defined in emacs.c. */
4160 extern char **initial_argv;
4161 extern int initial_argc;
4162 #if defined (HAVE_X_WINDOWS) || defined (HAVE_NS)
4163 extern bool display_arg;
4164 #endif
4165 extern Lisp_Object decode_env_path (const char *, const char *, bool);
4166 extern Lisp_Object empty_unibyte_string, empty_multibyte_string;
4167 extern _Noreturn void terminate_due_to_signal (int, int);
4168 #ifdef WINDOWSNT
4169 extern Lisp_Object Vlibrary_cache;
4170 #endif
4171 #if HAVE_SETLOCALE
4172 void fixup_locale (void);
4173 void synchronize_system_messages_locale (void);
4174 void synchronize_system_time_locale (void);
4175 #else
4176 INLINE void fixup_locale (void) {}
4177 INLINE void synchronize_system_messages_locale (void) {}
4178 INLINE void synchronize_system_time_locale (void) {}
4179 #endif
4180 extern void shut_down_emacs (int, Lisp_Object);
4181
4182 /* True means don't do interactive redisplay and don't change tty modes. */
4183 extern bool noninteractive;
4184
4185 /* True means remove site-lisp directories from load-path. */
4186 extern bool no_site_lisp;
4187
4188 /* Pipe used to send exit notification to the daemon parent at
4189 startup. */
4190 extern int daemon_pipe[2];
4191 #define IS_DAEMON (daemon_pipe[1] != 0)
4192
4193 /* True if handling a fatal error already. */
4194 extern bool fatal_error_in_progress;
4195
4196 /* True means don't do use window-system-specific display code. */
4197 extern bool inhibit_window_system;
4198 /* True means that a filter or a sentinel is running. */
4199 extern bool running_asynch_code;
4200
4201 /* Defined in process.c. */
4202 extern void kill_buffer_processes (Lisp_Object);
4203 extern int wait_reading_process_output (intmax_t, int, int, bool, Lisp_Object,
4204 struct Lisp_Process *, int);
4205 /* Max value for the first argument of wait_reading_process_output. */
4206 #if __GNUC__ == 3 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 5)
4207 /* Work around a bug in GCC 3.4.2, known to be fixed in GCC 4.6.3.
4208 The bug merely causes a bogus warning, but the warning is annoying. */
4209 # define WAIT_READING_MAX min (TYPE_MAXIMUM (time_t), INTMAX_MAX)
4210 #else
4211 # define WAIT_READING_MAX INTMAX_MAX
4212 #endif
4213 #ifdef HAVE_TIMERFD
4214 extern void add_timer_wait_descriptor (int);
4215 #endif
4216 extern void add_keyboard_wait_descriptor (int);
4217 extern void delete_keyboard_wait_descriptor (int);
4218 #ifdef HAVE_GPM
4219 extern void add_gpm_wait_descriptor (int);
4220 extern void delete_gpm_wait_descriptor (int);
4221 #endif
4222 extern void init_process_emacs (void);
4223 extern void syms_of_process (void);
4224 extern void setup_process_coding_systems (Lisp_Object);
4225
4226 /* Defined in callproc.c. */
4227 #ifndef DOS_NT
4228 _Noreturn
4229 #endif
4230 extern int child_setup (int, int, int, char **, bool, Lisp_Object);
4231 extern void init_callproc_1 (void);
4232 extern void init_callproc (void);
4233 extern void set_initial_environment (void);
4234 extern void syms_of_callproc (void);
4235
4236 /* Defined in doc.c. */
4237 extern Lisp_Object read_doc_string (Lisp_Object);
4238 extern Lisp_Object get_doc_string (Lisp_Object, bool, bool);
4239 extern void syms_of_doc (void);
4240 extern int read_bytecode_char (bool);
4241
4242 /* Defined in bytecode.c. */
4243 extern void syms_of_bytecode (void);
4244 extern struct byte_stack *byte_stack_list;
4245 #if BYTE_MARK_STACK
4246 extern void mark_byte_stack (void);
4247 #endif
4248 extern void unmark_byte_stack (void);
4249 extern Lisp_Object exec_byte_code (Lisp_Object, Lisp_Object, Lisp_Object,
4250 Lisp_Object, ptrdiff_t, Lisp_Object *);
4251
4252 /* Defined in macros.c. */
4253 extern void init_macros (void);
4254 extern void syms_of_macros (void);
4255
4256 /* Defined in undo.c. */
4257 extern void truncate_undo_list (struct buffer *);
4258 extern void record_insert (ptrdiff_t, ptrdiff_t);
4259 extern void record_delete (ptrdiff_t, Lisp_Object, bool);
4260 extern void record_first_change (void);
4261 extern void record_change (ptrdiff_t, ptrdiff_t);
4262 extern void record_property_change (ptrdiff_t, ptrdiff_t,
4263 Lisp_Object, Lisp_Object,
4264 Lisp_Object);
4265 extern void syms_of_undo (void);
4266
4267 /* Defined in textprop.c. */
4268 extern void report_interval_modification (Lisp_Object, Lisp_Object);
4269
4270 /* Defined in menu.c. */
4271 extern void syms_of_menu (void);
4272
4273 /* Defined in xmenu.c. */
4274 extern void syms_of_xmenu (void);
4275
4276 /* Defined in termchar.h. */
4277 struct tty_display_info;
4278
4279 /* Defined in termhooks.h. */
4280 struct terminal;
4281
4282 /* Defined in sysdep.c. */
4283 #ifndef HAVE_GET_CURRENT_DIR_NAME
4284 extern char *get_current_dir_name (void);
4285 #endif
4286 extern void stuff_char (char c);
4287 extern void init_foreground_group (void);
4288 extern void sys_subshell (void);
4289 extern void sys_suspend (void);
4290 extern void discard_tty_input (void);
4291 extern void init_sys_modes (struct tty_display_info *);
4292 extern void reset_sys_modes (struct tty_display_info *);
4293 extern void init_all_sys_modes (void);
4294 extern void reset_all_sys_modes (void);
4295 extern void child_setup_tty (int);
4296 extern void setup_pty (int);
4297 extern int set_window_size (int, int, int);
4298 extern EMACS_INT get_random (void);
4299 extern void seed_random (void *, ptrdiff_t);
4300 extern void init_random (void);
4301 extern void emacs_backtrace (int);
4302 extern _Noreturn void emacs_abort (void) NO_INLINE;
4303 extern int emacs_open (const char *, int, int);
4304 extern int emacs_pipe (int[2]);
4305 extern int emacs_close (int);
4306 extern ptrdiff_t emacs_read (int, void *, ptrdiff_t);
4307 extern ptrdiff_t emacs_write (int, void const *, ptrdiff_t);
4308 extern ptrdiff_t emacs_write_sig (int, void const *, ptrdiff_t);
4309 extern void emacs_perror (char const *);
4310
4311 extern void unlock_all_files (void);
4312 extern void lock_file (Lisp_Object);
4313 extern void unlock_file (Lisp_Object);
4314 extern void unlock_buffer (struct buffer *);
4315 extern void syms_of_filelock (void);
4316 extern int str_collate (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4317
4318 /* Defined in sound.c. */
4319 extern void syms_of_sound (void);
4320
4321 /* Defined in category.c. */
4322 extern void init_category_once (void);
4323 extern Lisp_Object char_category_set (int);
4324 extern void syms_of_category (void);
4325
4326 /* Defined in ccl.c. */
4327 extern void syms_of_ccl (void);
4328
4329 /* Defined in dired.c. */
4330 extern void syms_of_dired (void);
4331 extern Lisp_Object directory_files_internal (Lisp_Object, Lisp_Object,
4332 Lisp_Object, Lisp_Object,
4333 bool, Lisp_Object);
4334
4335 /* Defined in term.c. */
4336 extern int *char_ins_del_vector;
4337 extern void syms_of_term (void);
4338 extern _Noreturn void fatal (const char *msgid, ...)
4339 ATTRIBUTE_FORMAT_PRINTF (1, 2);
4340
4341 /* Defined in terminal.c. */
4342 extern void syms_of_terminal (void);
4343
4344 /* Defined in font.c. */
4345 extern void syms_of_font (void);
4346 extern void init_font (void);
4347
4348 #ifdef HAVE_WINDOW_SYSTEM
4349 /* Defined in fontset.c. */
4350 extern void syms_of_fontset (void);
4351 #endif
4352
4353 /* Defined in gfilenotify.c */
4354 #ifdef HAVE_GFILENOTIFY
4355 extern void globals_of_gfilenotify (void);
4356 extern void syms_of_gfilenotify (void);
4357 #endif
4358
4359 /* Defined in inotify.c */
4360 #ifdef HAVE_INOTIFY
4361 extern void syms_of_inotify (void);
4362 #endif
4363
4364 #ifdef HAVE_W32NOTIFY
4365 /* Defined on w32notify.c. */
4366 extern void syms_of_w32notify (void);
4367 #endif
4368
4369 /* Defined in xfaces.c. */
4370 extern Lisp_Object Vface_alternative_font_family_alist;
4371 extern Lisp_Object Vface_alternative_font_registry_alist;
4372 extern void syms_of_xfaces (void);
4373
4374 #ifdef HAVE_X_WINDOWS
4375 /* Defined in xfns.c. */
4376 extern void syms_of_xfns (void);
4377
4378 /* Defined in xsmfns.c. */
4379 extern void syms_of_xsmfns (void);
4380
4381 /* Defined in xselect.c. */
4382 extern void syms_of_xselect (void);
4383
4384 /* Defined in xterm.c. */
4385 extern void init_xterm (void);
4386 extern void syms_of_xterm (void);
4387 #endif /* HAVE_X_WINDOWS */
4388
4389 #ifdef HAVE_WINDOW_SYSTEM
4390 /* Defined in xterm.c, nsterm.m, w32term.c. */
4391 extern char *x_get_keysym_name (int);
4392 #endif /* HAVE_WINDOW_SYSTEM */
4393
4394 #ifdef HAVE_LIBXML2
4395 /* Defined in xml.c. */
4396 extern void syms_of_xml (void);
4397 extern void xml_cleanup_parser (void);
4398 #endif
4399
4400 #ifdef HAVE_ZLIB
4401 /* Defined in decompress.c. */
4402 extern void syms_of_decompress (void);
4403 #endif
4404
4405 #ifdef HAVE_DBUS
4406 /* Defined in dbusbind.c. */
4407 void init_dbusbind (void);
4408 void syms_of_dbusbind (void);
4409 #endif
4410
4411
4412 /* Defined in profiler.c. */
4413 extern bool profiler_memory_running;
4414 extern void malloc_probe (size_t);
4415 extern void syms_of_profiler (void);
4416
4417
4418 #ifdef DOS_NT
4419 /* Defined in msdos.c, w32.c. */
4420 extern char *emacs_root_dir (void);
4421 #endif /* DOS_NT */
4422
4423 /* Defined in lastfile.c. */
4424 extern char my_edata[];
4425 extern char my_endbss[];
4426 extern char *my_endbss_static;
4427
4428 /* True means ^G can quit instantly. */
4429 extern bool immediate_quit;
4430
4431 extern void *xmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4432 extern void *xzalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4433 extern void *xrealloc (void *, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
4434 extern void xfree (void *);
4435 extern void *xnmalloc (ptrdiff_t, ptrdiff_t) ATTRIBUTE_MALLOC_SIZE ((1,2));
4436 extern void *xnrealloc (void *, ptrdiff_t, ptrdiff_t)
4437 ATTRIBUTE_ALLOC_SIZE ((2,3));
4438 extern void *xpalloc (void *, ptrdiff_t *, ptrdiff_t, ptrdiff_t, ptrdiff_t);
4439
4440 extern char *xstrdup (const char *) ATTRIBUTE_MALLOC;
4441 extern char *xlispstrdup (Lisp_Object) ATTRIBUTE_MALLOC;
4442 extern void dupstring (char **, char const *);
4443
4444 /* Make DEST a copy of STRING's data. Return a pointer to DEST's terminating
4445 null byte. This is like stpcpy, except the source is a Lisp string. */
4446
4447 INLINE char *
4448 lispstpcpy (char *dest, Lisp_Object string)
4449 {
4450 ptrdiff_t len = SBYTES (string);
4451 memcpy (dest, SDATA (string), len + 1);
4452 return dest + len;
4453 }
4454
4455 extern void xputenv (const char *);
4456
4457 extern char *egetenv_internal (const char *, ptrdiff_t);
4458
4459 INLINE char *
4460 egetenv (const char *var)
4461 {
4462 /* When VAR is a string literal, strlen can be optimized away. */
4463 return egetenv_internal (var, strlen (var));
4464 }
4465
4466 /* Set up the name of the machine we're running on. */
4467 extern void init_system_name (void);
4468
4469 /* Return the absolute value of X. X should be a signed integer
4470 expression without side effects, and X's absolute value should not
4471 exceed the maximum for its promoted type. This is called 'eabs'
4472 because 'abs' is reserved by the C standard. */
4473 #define eabs(x) ((x) < 0 ? -(x) : (x))
4474
4475 /* Return a fixnum or float, depending on whether VAL fits in a Lisp
4476 fixnum. */
4477
4478 #define make_fixnum_or_float(val) \
4479 (FIXNUM_OVERFLOW_P (val) ? make_float (val) : make_number (val))
4480
4481 /* SAFE_ALLOCA normally allocates memory on the stack, but if size is
4482 larger than MAX_ALLOCA, use xmalloc to avoid overflowing the stack. */
4483
4484 enum MAX_ALLOCA { MAX_ALLOCA = 16 * 1024 };
4485
4486 extern void *record_xmalloc (size_t) ATTRIBUTE_ALLOC_SIZE ((1));
4487
4488 #define USE_SAFE_ALLOCA \
4489 ptrdiff_t sa_avail = MAX_ALLOCA; \
4490 ptrdiff_t sa_count = SPECPDL_INDEX (); bool sa_must_free = false
4491
4492 #define AVAIL_ALLOCA(size) (sa_avail -= (size), alloca (size))
4493
4494 /* SAFE_ALLOCA allocates a simple buffer. */
4495
4496 #define SAFE_ALLOCA(size) ((size) <= sa_avail \
4497 ? AVAIL_ALLOCA (size) \
4498 : (sa_must_free = true, record_xmalloc (size)))
4499
4500 /* SAFE_NALLOCA sets BUF to a newly allocated array of MULTIPLIER *
4501 NITEMS items, each of the same type as *BUF. MULTIPLIER must
4502 positive. The code is tuned for MULTIPLIER being a constant. */
4503
4504 #define SAFE_NALLOCA(buf, multiplier, nitems) \
4505 do { \
4506 if ((nitems) <= sa_avail / sizeof *(buf) / (multiplier)) \
4507 (buf) = AVAIL_ALLOCA (sizeof *(buf) * (multiplier) * (nitems)); \
4508 else \
4509 { \
4510 (buf) = xnmalloc (nitems, sizeof *(buf) * (multiplier)); \
4511 sa_must_free = true; \
4512 record_unwind_protect_ptr (xfree, buf); \
4513 } \
4514 } while (false)
4515
4516 /* SAFE_ALLOCA_STRING allocates a C copy of a Lisp string. */
4517
4518 #define SAFE_ALLOCA_STRING(ptr, string) \
4519 do { \
4520 (ptr) = SAFE_ALLOCA (SBYTES (string) + 1); \
4521 memcpy (ptr, SDATA (string), SBYTES (string) + 1); \
4522 } while (false)
4523
4524 /* SAFE_FREE frees xmalloced memory and enables GC as needed. */
4525
4526 #define SAFE_FREE() \
4527 do { \
4528 if (sa_must_free) { \
4529 sa_must_free = false; \
4530 unbind_to (sa_count, Qnil); \
4531 } \
4532 } while (false)
4533
4534
4535 /* Return floor (NBYTES / WORD_SIZE). */
4536
4537 INLINE ptrdiff_t
4538 lisp_word_count (ptrdiff_t nbytes)
4539 {
4540 if (-1 >> 1 == -1)
4541 switch (word_size)
4542 {
4543 case 2: return nbytes >> 1;
4544 case 4: return nbytes >> 2;
4545 case 8: return nbytes >> 3;
4546 case 16: return nbytes >> 4;
4547 }
4548 return nbytes / word_size - (nbytes % word_size < 0);
4549 }
4550
4551 /* SAFE_ALLOCA_LISP allocates an array of Lisp_Objects. */
4552
4553 #define SAFE_ALLOCA_LISP(buf, nelt) \
4554 do { \
4555 if ((nelt) <= lisp_word_count (sa_avail)) \
4556 (buf) = AVAIL_ALLOCA ((nelt) * word_size); \
4557 else if ((nelt) <= min (PTRDIFF_MAX, SIZE_MAX) / word_size) \
4558 { \
4559 Lisp_Object arg_; \
4560 (buf) = xmalloc ((nelt) * word_size); \
4561 arg_ = make_save_memory (buf, nelt); \
4562 sa_must_free = true; \
4563 record_unwind_protect (free_save_value, arg_); \
4564 } \
4565 else \
4566 memory_full (SIZE_MAX); \
4567 } while (false)
4568
4569
4570 /* If USE_STACK_LISP_OBJECTS, define macros that and functions that allocate
4571 block-scoped conses and strings. These objects are not
4572 managed by the garbage collector, so they are dangerous: passing them
4573 out of their scope (e.g., to user code) results in undefined behavior.
4574 Conversely, they have better performance because GC is not involved.
4575
4576 This feature is experimental and requires careful debugging.
4577 Build with CPPFLAGS='-DUSE_STACK_LISP_OBJECTS=0' to disable it. */
4578
4579 #ifndef USE_STACK_LISP_OBJECTS
4580 # define USE_STACK_LISP_OBJECTS true
4581 #endif
4582
4583 /* USE_STACK_LISP_OBJECTS requires GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS. */
4584
4585 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
4586 # undef USE_STACK_LISP_OBJECTS
4587 # define USE_STACK_LISP_OBJECTS false
4588 #endif
4589
4590 #ifdef GC_CHECK_STRING_BYTES
4591 enum { defined_GC_CHECK_STRING_BYTES = true };
4592 #else
4593 enum { defined_GC_CHECK_STRING_BYTES = false };
4594 #endif
4595
4596 /* Struct inside unions that are typically no larger and aligned enough. */
4597
4598 union Aligned_Cons
4599 {
4600 struct Lisp_Cons s;
4601 double d; intmax_t i; void *p;
4602 };
4603
4604 union Aligned_String
4605 {
4606 struct Lisp_String s;
4607 double d; intmax_t i; void *p;
4608 };
4609
4610 /* True for stack-based cons and string implementations, respectively.
4611 Use stack-based strings only if stack-based cons also works.
4612 Otherwise, STACK_CONS would create heap-based cons cells that
4613 could point to stack-based strings, which is a no-no. */
4614
4615 enum
4616 {
4617 USE_STACK_CONS = (USE_STACK_LISP_OBJECTS
4618 && alignof (union Aligned_Cons) % GCALIGNMENT == 0),
4619 USE_STACK_STRING = (USE_STACK_CONS
4620 && !defined_GC_CHECK_STRING_BYTES
4621 && alignof (union Aligned_String) % GCALIGNMENT == 0)
4622 };
4623
4624 /* Auxiliary macros used for auto allocation of Lisp objects. Please
4625 use these only in macros like AUTO_CONS that declare a local
4626 variable whose lifetime will be clear to the programmer. */
4627 #define STACK_CONS(a, b) \
4628 make_lisp_ptr (&(union Aligned_Cons) { { a, { b } } }.s, Lisp_Cons)
4629 #define AUTO_CONS_EXPR(a, b) \
4630 (USE_STACK_CONS ? STACK_CONS (a, b) : Fcons (a, b))
4631
4632 /* Declare NAME as an auto Lisp cons or short list if possible, a
4633 GC-based one otherwise. This is in the sense of the C keyword
4634 'auto'; i.e., the object has the lifetime of the containing block.
4635 The resulting object should not be made visible to user Lisp code. */
4636
4637 #define AUTO_CONS(name, a, b) Lisp_Object name = AUTO_CONS_EXPR (a, b)
4638 #define AUTO_LIST1(name, a) \
4639 Lisp_Object name = (USE_STACK_CONS ? STACK_CONS (a, Qnil) : list1 (a))
4640 #define AUTO_LIST2(name, a, b) \
4641 Lisp_Object name = (USE_STACK_CONS \
4642 ? STACK_CONS (a, STACK_CONS (b, Qnil)) \
4643 : list2 (a, b))
4644 #define AUTO_LIST3(name, a, b, c) \
4645 Lisp_Object name = (USE_STACK_CONS \
4646 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, Qnil))) \
4647 : list3 (a, b, c))
4648 #define AUTO_LIST4(name, a, b, c, d) \
4649 Lisp_Object name \
4650 = (USE_STACK_CONS \
4651 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, \
4652 STACK_CONS (d, Qnil)))) \
4653 : list4 (a, b, c, d))
4654
4655 /* Check whether stack-allocated strings are ASCII-only. */
4656
4657 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
4658 extern const char *verify_ascii (const char *);
4659 #else
4660 # define verify_ascii(str) (str)
4661 #endif
4662
4663 /* Declare NAME as an auto Lisp string if possible, a GC-based one if not.
4664 Take its value from STR. STR is not necessarily copied and should
4665 contain only ASCII characters. The resulting Lisp string should
4666 not be modified or made visible to user code. */
4667
4668 #define AUTO_STRING(name, str) \
4669 Lisp_Object name = \
4670 (USE_STACK_STRING \
4671 ? (make_lisp_ptr \
4672 ((&(union Aligned_String) \
4673 {{strlen (str), -1, 0, (unsigned char *) verify_ascii (str)}}.s), \
4674 Lisp_String)) \
4675 : build_string (verify_ascii (str)))
4676
4677 /* Loop over all tails of a list, checking for cycles.
4678 FIXME: Make tortoise and n internal declarations.
4679 FIXME: Unroll the loop body so we don't need `n'. */
4680 #define FOR_EACH_TAIL(hare, list, tortoise, n) \
4681 for ((tortoise) = (hare) = (list), (n) = true; \
4682 CONSP (hare); \
4683 (hare = XCDR (hare), (n) = !(n), \
4684 ((n) \
4685 ? (EQ (hare, tortoise) \
4686 ? xsignal1 (Qcircular_list, list) \
4687 : (void) 0) \
4688 /* Move tortoise before the next iteration, in case */ \
4689 /* the next iteration does an Fsetcdr. */ \
4690 : (void) ((tortoise) = XCDR (tortoise)))))
4691
4692 /* Do a `for' loop over alist values. */
4693
4694 #define FOR_EACH_ALIST_VALUE(head_var, list_var, value_var) \
4695 for ((list_var) = (head_var); \
4696 (CONSP (list_var) && ((value_var) = XCDR (XCAR (list_var)), true)); \
4697 (list_var) = XCDR (list_var))
4698
4699 /* Check whether it's time for GC, and run it if so. */
4700
4701 INLINE void
4702 maybe_gc (void)
4703 {
4704 if ((consing_since_gc > gc_cons_threshold
4705 && consing_since_gc > gc_relative_threshold)
4706 || (!NILP (Vmemory_full)
4707 && consing_since_gc > memory_full_cons_threshold))
4708 Fgarbage_collect ();
4709 }
4710
4711 INLINE bool
4712 functionp (Lisp_Object object)
4713 {
4714 if (SYMBOLP (object) && !NILP (Ffboundp (object)))
4715 {
4716 object = Findirect_function (object, Qt);
4717
4718 if (CONSP (object) && EQ (XCAR (object), Qautoload))
4719 {
4720 /* Autoloaded symbols are functions, except if they load
4721 macros or keymaps. */
4722 int i;
4723 for (i = 0; i < 4 && CONSP (object); i++)
4724 object = XCDR (object);
4725
4726 return ! (CONSP (object) && !NILP (XCAR (object)));
4727 }
4728 }
4729
4730 if (SUBRP (object))
4731 return XSUBR (object)->max_args != UNEVALLED;
4732 else if (COMPILEDP (object))
4733 return true;
4734 else if (CONSP (object))
4735 {
4736 Lisp_Object car = XCAR (object);
4737 return EQ (car, Qlambda) || EQ (car, Qclosure);
4738 }
4739 else
4740 return false;
4741 }
4742
4743 INLINE_HEADER_END
4744
4745 #endif /* EMACS_LISP_H */