]> code.delx.au - gnu-emacs/blob - src/alloc.c
Merge from origin/emacs-25
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2016 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25 #include <signal.h> /* For SIGABRT, SIGDANGER. */
26
27 #ifdef HAVE_PTHREAD
28 #include <pthread.h>
29 #endif
30
31 #include "lisp.h"
32 #include "dispextern.h"
33 #include "intervals.h"
34 #include "puresize.h"
35 #include "sheap.h"
36 #include "systime.h"
37 #include "character.h"
38 #include "buffer.h"
39 #include "window.h"
40 #include "keyboard.h"
41 #include "frame.h"
42 #include "blockinput.h"
43 #include "termhooks.h" /* For struct terminal. */
44 #ifdef HAVE_WINDOW_SYSTEM
45 #include TERM_HEADER
46 #endif /* HAVE_WINDOW_SYSTEM */
47
48 #include <verify.h>
49 #include <execinfo.h> /* For backtrace. */
50
51 #ifdef HAVE_LINUX_SYSINFO
52 #include <sys/sysinfo.h>
53 #endif
54
55 #ifdef MSDOS
56 #include "dosfns.h" /* For dos_memory_info. */
57 #endif
58
59 #ifdef HAVE_MALLOC_H
60 # include <malloc.h>
61 #endif
62
63 #if (defined ENABLE_CHECKING \
64 && defined HAVE_VALGRIND_VALGRIND_H \
65 && !defined USE_VALGRIND)
66 # define USE_VALGRIND 1
67 #endif
68
69 #if USE_VALGRIND
70 #include <valgrind/valgrind.h>
71 #include <valgrind/memcheck.h>
72 static bool valgrind_p;
73 #endif
74
75 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects. */
76
77 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
78 memory. Can do this only if using gmalloc.c and if not checking
79 marked objects. */
80
81 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
82 || defined HYBRID_MALLOC || defined GC_CHECK_MARKED_OBJECTS)
83 #undef GC_MALLOC_CHECK
84 #endif
85
86 #include <unistd.h>
87 #include <fcntl.h>
88
89 #ifdef USE_GTK
90 # include "gtkutil.h"
91 #endif
92 #ifdef WINDOWSNT
93 #include "w32.h"
94 #include "w32heap.h" /* for sbrk */
95 #endif
96
97 #if defined DOUG_LEA_MALLOC || defined GNU_LINUX
98 /* The address where the heap starts. */
99 void *
100 my_heap_start (void)
101 {
102 static void *start;
103 if (! start)
104 start = sbrk (0);
105 return start;
106 }
107 #endif
108
109 #ifdef DOUG_LEA_MALLOC
110
111 /* Specify maximum number of areas to mmap. It would be nice to use a
112 value that explicitly means "no limit". */
113
114 #define MMAP_MAX_AREAS 100000000
115
116 /* A pointer to the memory allocated that copies that static data
117 inside glibc's malloc. */
118 static void *malloc_state_ptr;
119
120 /* Restore the dumped malloc state. Because malloc can be invoked
121 even before main (e.g. by the dynamic linker), the dumped malloc
122 state must be restored as early as possible using this special hook. */
123 static void
124 malloc_initialize_hook (void)
125 {
126 static bool malloc_using_checking;
127
128 if (! initialized)
129 {
130 my_heap_start ();
131 malloc_using_checking = getenv ("MALLOC_CHECK_") != NULL;
132 }
133 else
134 {
135 if (!malloc_using_checking)
136 {
137 /* Work around a bug in glibc's malloc. MALLOC_CHECK_ must be
138 ignored if the heap to be restored was constructed without
139 malloc checking. Can't use unsetenv, since that calls malloc. */
140 char **p = environ;
141 if (p)
142 for (; *p; p++)
143 if (strncmp (*p, "MALLOC_CHECK_=", 14) == 0)
144 {
145 do
146 *p = p[1];
147 while (*++p);
148
149 break;
150 }
151 }
152
153 malloc_set_state (malloc_state_ptr);
154 # ifndef XMALLOC_OVERRUN_CHECK
155 alloc_unexec_post ();
156 # endif
157 }
158 }
159
160 /* Declare the malloc initialization hook, which runs before 'main' starts.
161 EXTERNALLY_VISIBLE works around Bug#22522. */
162 # ifndef __MALLOC_HOOK_VOLATILE
163 # define __MALLOC_HOOK_VOLATILE
164 # endif
165 voidfuncptr __MALLOC_HOOK_VOLATILE __malloc_initialize_hook EXTERNALLY_VISIBLE
166 = malloc_initialize_hook;
167
168 #endif
169
170 /* Allocator-related actions to do just before and after unexec. */
171
172 void
173 alloc_unexec_pre (void)
174 {
175 #ifdef DOUG_LEA_MALLOC
176 malloc_state_ptr = malloc_get_state ();
177 #endif
178 #ifdef HYBRID_MALLOC
179 bss_sbrk_did_unexec = true;
180 #endif
181 }
182
183 void
184 alloc_unexec_post (void)
185 {
186 #ifdef DOUG_LEA_MALLOC
187 free (malloc_state_ptr);
188 #endif
189 #ifdef HYBRID_MALLOC
190 bss_sbrk_did_unexec = false;
191 #endif
192 }
193
194 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
195 to a struct Lisp_String. */
196
197 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
198 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
199 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
200
201 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
202 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
203 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
204
205 /* Default value of gc_cons_threshold (see below). */
206
207 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
208
209 /* Global variables. */
210 struct emacs_globals globals;
211
212 /* Number of bytes of consing done since the last gc. */
213
214 EMACS_INT consing_since_gc;
215
216 /* Similar minimum, computed from Vgc_cons_percentage. */
217
218 EMACS_INT gc_relative_threshold;
219
220 /* Minimum number of bytes of consing since GC before next GC,
221 when memory is full. */
222
223 EMACS_INT memory_full_cons_threshold;
224
225 /* True during GC. */
226
227 bool gc_in_progress;
228
229 /* True means abort if try to GC.
230 This is for code which is written on the assumption that
231 no GC will happen, so as to verify that assumption. */
232
233 bool abort_on_gc;
234
235 /* Number of live and free conses etc. */
236
237 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
238 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
239 static EMACS_INT total_free_floats, total_floats;
240
241 /* Points to memory space allocated as "spare", to be freed if we run
242 out of memory. We keep one large block, four cons-blocks, and
243 two string blocks. */
244
245 static char *spare_memory[7];
246
247 /* Amount of spare memory to keep in large reserve block, or to see
248 whether this much is available when malloc fails on a larger request. */
249
250 #define SPARE_MEMORY (1 << 14)
251
252 /* Initialize it to a nonzero value to force it into data space
253 (rather than bss space). That way unexec will remap it into text
254 space (pure), on some systems. We have not implemented the
255 remapping on more recent systems because this is less important
256 nowadays than in the days of small memories and timesharing. */
257
258 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
259 #define PUREBEG (char *) pure
260
261 /* Pointer to the pure area, and its size. */
262
263 static char *purebeg;
264 static ptrdiff_t pure_size;
265
266 /* Number of bytes of pure storage used before pure storage overflowed.
267 If this is non-zero, this implies that an overflow occurred. */
268
269 static ptrdiff_t pure_bytes_used_before_overflow;
270
271 /* Index in pure at which next pure Lisp object will be allocated.. */
272
273 static ptrdiff_t pure_bytes_used_lisp;
274
275 /* Number of bytes allocated for non-Lisp objects in pure storage. */
276
277 static ptrdiff_t pure_bytes_used_non_lisp;
278
279 /* If nonzero, this is a warning delivered by malloc and not yet
280 displayed. */
281
282 const char *pending_malloc_warning;
283
284 #if 0 /* Normally, pointer sanity only on request... */
285 #ifdef ENABLE_CHECKING
286 #define SUSPICIOUS_OBJECT_CHECKING 1
287 #endif
288 #endif
289
290 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
291 bug is unresolved. */
292 #define SUSPICIOUS_OBJECT_CHECKING 1
293
294 #ifdef SUSPICIOUS_OBJECT_CHECKING
295 struct suspicious_free_record
296 {
297 void *suspicious_object;
298 void *backtrace[128];
299 };
300 static void *suspicious_objects[32];
301 static int suspicious_object_index;
302 struct suspicious_free_record suspicious_free_history[64] EXTERNALLY_VISIBLE;
303 static int suspicious_free_history_index;
304 /* Find the first currently-monitored suspicious pointer in range
305 [begin,end) or NULL if no such pointer exists. */
306 static void *find_suspicious_object_in_range (void *begin, void *end);
307 static void detect_suspicious_free (void *ptr);
308 #else
309 # define find_suspicious_object_in_range(begin, end) NULL
310 # define detect_suspicious_free(ptr) (void)
311 #endif
312
313 /* Maximum amount of C stack to save when a GC happens. */
314
315 #ifndef MAX_SAVE_STACK
316 #define MAX_SAVE_STACK 16000
317 #endif
318
319 /* Buffer in which we save a copy of the C stack at each GC. */
320
321 #if MAX_SAVE_STACK > 0
322 static char *stack_copy;
323 static ptrdiff_t stack_copy_size;
324
325 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
326 avoiding any address sanitization. */
327
328 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
329 no_sanitize_memcpy (void *dest, void const *src, size_t size)
330 {
331 if (! ADDRESS_SANITIZER)
332 return memcpy (dest, src, size);
333 else
334 {
335 size_t i;
336 char *d = dest;
337 char const *s = src;
338 for (i = 0; i < size; i++)
339 d[i] = s[i];
340 return dest;
341 }
342 }
343
344 #endif /* MAX_SAVE_STACK > 0 */
345
346 static void mark_terminals (void);
347 static void gc_sweep (void);
348 static Lisp_Object make_pure_vector (ptrdiff_t);
349 static void mark_buffer (struct buffer *);
350
351 #if !defined REL_ALLOC || defined SYSTEM_MALLOC || defined HYBRID_MALLOC
352 static void refill_memory_reserve (void);
353 #endif
354 static void compact_small_strings (void);
355 static void free_large_strings (void);
356 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
357
358 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
359 what memory allocated via lisp_malloc and lisp_align_malloc is intended
360 for what purpose. This enumeration specifies the type of memory. */
361
362 enum mem_type
363 {
364 MEM_TYPE_NON_LISP,
365 MEM_TYPE_BUFFER,
366 MEM_TYPE_CONS,
367 MEM_TYPE_STRING,
368 MEM_TYPE_MISC,
369 MEM_TYPE_SYMBOL,
370 MEM_TYPE_FLOAT,
371 /* Since all non-bool pseudovectors are small enough to be
372 allocated from vector blocks, this memory type denotes
373 large regular vectors and large bool pseudovectors. */
374 MEM_TYPE_VECTORLIKE,
375 /* Special type to denote vector blocks. */
376 MEM_TYPE_VECTOR_BLOCK,
377 /* Special type to denote reserved memory. */
378 MEM_TYPE_SPARE
379 };
380
381 /* A unique object in pure space used to make some Lisp objects
382 on free lists recognizable in O(1). */
383
384 static Lisp_Object Vdead;
385 #define DEADP(x) EQ (x, Vdead)
386
387 #ifdef GC_MALLOC_CHECK
388
389 enum mem_type allocated_mem_type;
390
391 #endif /* GC_MALLOC_CHECK */
392
393 /* A node in the red-black tree describing allocated memory containing
394 Lisp data. Each such block is recorded with its start and end
395 address when it is allocated, and removed from the tree when it
396 is freed.
397
398 A red-black tree is a balanced binary tree with the following
399 properties:
400
401 1. Every node is either red or black.
402 2. Every leaf is black.
403 3. If a node is red, then both of its children are black.
404 4. Every simple path from a node to a descendant leaf contains
405 the same number of black nodes.
406 5. The root is always black.
407
408 When nodes are inserted into the tree, or deleted from the tree,
409 the tree is "fixed" so that these properties are always true.
410
411 A red-black tree with N internal nodes has height at most 2
412 log(N+1). Searches, insertions and deletions are done in O(log N).
413 Please see a text book about data structures for a detailed
414 description of red-black trees. Any book worth its salt should
415 describe them. */
416
417 struct mem_node
418 {
419 /* Children of this node. These pointers are never NULL. When there
420 is no child, the value is MEM_NIL, which points to a dummy node. */
421 struct mem_node *left, *right;
422
423 /* The parent of this node. In the root node, this is NULL. */
424 struct mem_node *parent;
425
426 /* Start and end of allocated region. */
427 void *start, *end;
428
429 /* Node color. */
430 enum {MEM_BLACK, MEM_RED} color;
431
432 /* Memory type. */
433 enum mem_type type;
434 };
435
436 /* Base address of stack. Set in main. */
437
438 Lisp_Object *stack_base;
439
440 /* Root of the tree describing allocated Lisp memory. */
441
442 static struct mem_node *mem_root;
443
444 /* Lowest and highest known address in the heap. */
445
446 static void *min_heap_address, *max_heap_address;
447
448 /* Sentinel node of the tree. */
449
450 static struct mem_node mem_z;
451 #define MEM_NIL &mem_z
452
453 static struct mem_node *mem_insert (void *, void *, enum mem_type);
454 static void mem_insert_fixup (struct mem_node *);
455 static void mem_rotate_left (struct mem_node *);
456 static void mem_rotate_right (struct mem_node *);
457 static void mem_delete (struct mem_node *);
458 static void mem_delete_fixup (struct mem_node *);
459 static struct mem_node *mem_find (void *);
460
461 #ifndef DEADP
462 # define DEADP(x) 0
463 #endif
464
465 /* Addresses of staticpro'd variables. Initialize it to a nonzero
466 value; otherwise some compilers put it into BSS. */
467
468 enum { NSTATICS = 2048 };
469 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
470
471 /* Index of next unused slot in staticvec. */
472
473 static int staticidx;
474
475 static void *pure_alloc (size_t, int);
476
477 /* Return X rounded to the next multiple of Y. Arguments should not
478 have side effects, as they are evaluated more than once. Assume X
479 + Y - 1 does not overflow. Tune for Y being a power of 2. */
480
481 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
482 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
483 : ((x) + (y) - 1) & ~ ((y) - 1))
484
485 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
486
487 static void *
488 ALIGN (void *ptr, int alignment)
489 {
490 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
491 }
492
493 /* Extract the pointer hidden within A, if A is not a symbol.
494 If A is a symbol, extract the hidden pointer's offset from lispsym,
495 converted to void *. */
496
497 #define macro_XPNTR_OR_SYMBOL_OFFSET(a) \
498 ((void *) (intptr_t) (USE_LSB_TAG ? XLI (a) - XTYPE (a) : XLI (a) & VALMASK))
499
500 /* Extract the pointer hidden within A. */
501
502 #define macro_XPNTR(a) \
503 ((void *) ((intptr_t) XPNTR_OR_SYMBOL_OFFSET (a) \
504 + (SYMBOLP (a) ? (char *) lispsym : NULL)))
505
506 /* For pointer access, define XPNTR and XPNTR_OR_SYMBOL_OFFSET as
507 functions, as functions are cleaner and can be used in debuggers.
508 Also, define them as macros if being compiled with GCC without
509 optimization, for performance in that case. The macro_* names are
510 private to this section of code. */
511
512 static ATTRIBUTE_UNUSED void *
513 XPNTR_OR_SYMBOL_OFFSET (Lisp_Object a)
514 {
515 return macro_XPNTR_OR_SYMBOL_OFFSET (a);
516 }
517 static ATTRIBUTE_UNUSED void *
518 XPNTR (Lisp_Object a)
519 {
520 return macro_XPNTR (a);
521 }
522
523 #if DEFINE_KEY_OPS_AS_MACROS
524 # define XPNTR_OR_SYMBOL_OFFSET(a) macro_XPNTR_OR_SYMBOL_OFFSET (a)
525 # define XPNTR(a) macro_XPNTR (a)
526 #endif
527
528 static void
529 XFLOAT_INIT (Lisp_Object f, double n)
530 {
531 XFLOAT (f)->u.data = n;
532 }
533
534 #ifdef DOUG_LEA_MALLOC
535 static bool
536 pointers_fit_in_lispobj_p (void)
537 {
538 return (UINTPTR_MAX <= VAL_MAX) || USE_LSB_TAG;
539 }
540
541 static bool
542 mmap_lisp_allowed_p (void)
543 {
544 /* If we can't store all memory addresses in our lisp objects, it's
545 risky to let the heap use mmap and give us addresses from all
546 over our address space. We also can't use mmap for lisp objects
547 if we might dump: unexec doesn't preserve the contents of mmapped
548 regions. */
549 return pointers_fit_in_lispobj_p () && !might_dump;
550 }
551 #endif
552
553 /* Head of a circularly-linked list of extant finalizers. */
554 static struct Lisp_Finalizer finalizers;
555
556 /* Head of a circularly-linked list of finalizers that must be invoked
557 because we deemed them unreachable. This list must be global, and
558 not a local inside garbage_collect_1, in case we GC again while
559 running finalizers. */
560 static struct Lisp_Finalizer doomed_finalizers;
561
562 \f
563 /************************************************************************
564 Malloc
565 ************************************************************************/
566
567 #if defined SIGDANGER || (!defined SYSTEM_MALLOC && !defined HYBRID_MALLOC)
568
569 /* Function malloc calls this if it finds we are near exhausting storage. */
570
571 void
572 malloc_warning (const char *str)
573 {
574 pending_malloc_warning = str;
575 }
576
577 #endif
578
579 /* Display an already-pending malloc warning. */
580
581 void
582 display_malloc_warning (void)
583 {
584 call3 (intern ("display-warning"),
585 intern ("alloc"),
586 build_string (pending_malloc_warning),
587 intern ("emergency"));
588 pending_malloc_warning = 0;
589 }
590 \f
591 /* Called if we can't allocate relocatable space for a buffer. */
592
593 void
594 buffer_memory_full (ptrdiff_t nbytes)
595 {
596 /* If buffers use the relocating allocator, no need to free
597 spare_memory, because we may have plenty of malloc space left
598 that we could get, and if we don't, the malloc that fails will
599 itself cause spare_memory to be freed. If buffers don't use the
600 relocating allocator, treat this like any other failing
601 malloc. */
602
603 #ifndef REL_ALLOC
604 memory_full (nbytes);
605 #else
606 /* This used to call error, but if we've run out of memory, we could
607 get infinite recursion trying to build the string. */
608 xsignal (Qnil, Vmemory_signal_data);
609 #endif
610 }
611
612 /* A common multiple of the positive integers A and B. Ideally this
613 would be the least common multiple, but there's no way to do that
614 as a constant expression in C, so do the best that we can easily do. */
615 #define COMMON_MULTIPLE(a, b) \
616 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
617
618 #ifndef XMALLOC_OVERRUN_CHECK
619 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
620 #else
621
622 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
623 around each block.
624
625 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
626 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
627 block size in little-endian order. The trailer consists of
628 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
629
630 The header is used to detect whether this block has been allocated
631 through these functions, as some low-level libc functions may
632 bypass the malloc hooks. */
633
634 #define XMALLOC_OVERRUN_CHECK_SIZE 16
635 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
636 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
637
638 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
639 hold a size_t value and (2) the header size is a multiple of the
640 alignment that Emacs needs for C types and for USE_LSB_TAG. */
641 #define XMALLOC_BASE_ALIGNMENT alignof (max_align_t)
642
643 #define XMALLOC_HEADER_ALIGNMENT \
644 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
645 #define XMALLOC_OVERRUN_SIZE_SIZE \
646 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
647 + XMALLOC_HEADER_ALIGNMENT - 1) \
648 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
649 - XMALLOC_OVERRUN_CHECK_SIZE)
650
651 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
652 { '\x9a', '\x9b', '\xae', '\xaf',
653 '\xbf', '\xbe', '\xce', '\xcf',
654 '\xea', '\xeb', '\xec', '\xed',
655 '\xdf', '\xde', '\x9c', '\x9d' };
656
657 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
658 { '\xaa', '\xab', '\xac', '\xad',
659 '\xba', '\xbb', '\xbc', '\xbd',
660 '\xca', '\xcb', '\xcc', '\xcd',
661 '\xda', '\xdb', '\xdc', '\xdd' };
662
663 /* Insert and extract the block size in the header. */
664
665 static void
666 xmalloc_put_size (unsigned char *ptr, size_t size)
667 {
668 int i;
669 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
670 {
671 *--ptr = size & ((1 << CHAR_BIT) - 1);
672 size >>= CHAR_BIT;
673 }
674 }
675
676 static size_t
677 xmalloc_get_size (unsigned char *ptr)
678 {
679 size_t size = 0;
680 int i;
681 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
682 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
683 {
684 size <<= CHAR_BIT;
685 size += *ptr++;
686 }
687 return size;
688 }
689
690
691 /* Like malloc, but wraps allocated block with header and trailer. */
692
693 static void *
694 overrun_check_malloc (size_t size)
695 {
696 register unsigned char *val;
697 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
698 emacs_abort ();
699
700 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
701 if (val)
702 {
703 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
704 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
705 xmalloc_put_size (val, size);
706 memcpy (val + size, xmalloc_overrun_check_trailer,
707 XMALLOC_OVERRUN_CHECK_SIZE);
708 }
709 return val;
710 }
711
712
713 /* Like realloc, but checks old block for overrun, and wraps new block
714 with header and trailer. */
715
716 static void *
717 overrun_check_realloc (void *block, size_t size)
718 {
719 register unsigned char *val = (unsigned char *) block;
720 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
721 emacs_abort ();
722
723 if (val
724 && memcmp (xmalloc_overrun_check_header,
725 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
726 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
727 {
728 size_t osize = xmalloc_get_size (val);
729 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
730 XMALLOC_OVERRUN_CHECK_SIZE))
731 emacs_abort ();
732 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
733 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
734 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
735 }
736
737 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
738
739 if (val)
740 {
741 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
742 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
743 xmalloc_put_size (val, size);
744 memcpy (val + size, xmalloc_overrun_check_trailer,
745 XMALLOC_OVERRUN_CHECK_SIZE);
746 }
747 return val;
748 }
749
750 /* Like free, but checks block for overrun. */
751
752 static void
753 overrun_check_free (void *block)
754 {
755 unsigned char *val = (unsigned char *) block;
756
757 if (val
758 && memcmp (xmalloc_overrun_check_header,
759 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
760 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
761 {
762 size_t osize = xmalloc_get_size (val);
763 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
764 XMALLOC_OVERRUN_CHECK_SIZE))
765 emacs_abort ();
766 #ifdef XMALLOC_CLEAR_FREE_MEMORY
767 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
768 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
769 #else
770 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
771 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
772 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
773 #endif
774 }
775
776 free (val);
777 }
778
779 #undef malloc
780 #undef realloc
781 #undef free
782 #define malloc overrun_check_malloc
783 #define realloc overrun_check_realloc
784 #define free overrun_check_free
785 #endif
786
787 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
788 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
789 If that variable is set, block input while in one of Emacs's memory
790 allocation functions. There should be no need for this debugging
791 option, since signal handlers do not allocate memory, but Emacs
792 formerly allocated memory in signal handlers and this compile-time
793 option remains as a way to help debug the issue should it rear its
794 ugly head again. */
795 #ifdef XMALLOC_BLOCK_INPUT_CHECK
796 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
797 static void
798 malloc_block_input (void)
799 {
800 if (block_input_in_memory_allocators)
801 block_input ();
802 }
803 static void
804 malloc_unblock_input (void)
805 {
806 if (block_input_in_memory_allocators)
807 unblock_input ();
808 }
809 # define MALLOC_BLOCK_INPUT malloc_block_input ()
810 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
811 #else
812 # define MALLOC_BLOCK_INPUT ((void) 0)
813 # define MALLOC_UNBLOCK_INPUT ((void) 0)
814 #endif
815
816 #define MALLOC_PROBE(size) \
817 do { \
818 if (profiler_memory_running) \
819 malloc_probe (size); \
820 } while (0)
821
822
823 /* Like malloc but check for no memory and block interrupt input.. */
824
825 void *
826 xmalloc (size_t size)
827 {
828 void *val;
829
830 MALLOC_BLOCK_INPUT;
831 val = malloc (size);
832 MALLOC_UNBLOCK_INPUT;
833
834 if (!val && size)
835 memory_full (size);
836 MALLOC_PROBE (size);
837 return val;
838 }
839
840 /* Like the above, but zeroes out the memory just allocated. */
841
842 void *
843 xzalloc (size_t size)
844 {
845 void *val;
846
847 MALLOC_BLOCK_INPUT;
848 val = malloc (size);
849 MALLOC_UNBLOCK_INPUT;
850
851 if (!val && size)
852 memory_full (size);
853 memset (val, 0, size);
854 MALLOC_PROBE (size);
855 return val;
856 }
857
858 /* Like realloc but check for no memory and block interrupt input.. */
859
860 void *
861 xrealloc (void *block, size_t size)
862 {
863 void *val;
864
865 MALLOC_BLOCK_INPUT;
866 /* We must call malloc explicitly when BLOCK is 0, since some
867 reallocs don't do this. */
868 if (! block)
869 val = malloc (size);
870 else
871 val = realloc (block, size);
872 MALLOC_UNBLOCK_INPUT;
873
874 if (!val && size)
875 memory_full (size);
876 MALLOC_PROBE (size);
877 return val;
878 }
879
880
881 /* Like free but block interrupt input. */
882
883 void
884 xfree (void *block)
885 {
886 if (!block)
887 return;
888 MALLOC_BLOCK_INPUT;
889 free (block);
890 MALLOC_UNBLOCK_INPUT;
891 /* We don't call refill_memory_reserve here
892 because in practice the call in r_alloc_free seems to suffice. */
893 }
894
895
896 /* Other parts of Emacs pass large int values to allocator functions
897 expecting ptrdiff_t. This is portable in practice, but check it to
898 be safe. */
899 verify (INT_MAX <= PTRDIFF_MAX);
900
901
902 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
903 Signal an error on memory exhaustion, and block interrupt input. */
904
905 void *
906 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
907 {
908 eassert (0 <= nitems && 0 < item_size);
909 ptrdiff_t nbytes;
910 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
911 memory_full (SIZE_MAX);
912 return xmalloc (nbytes);
913 }
914
915
916 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
917 Signal an error on memory exhaustion, and block interrupt input. */
918
919 void *
920 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
921 {
922 eassert (0 <= nitems && 0 < item_size);
923 ptrdiff_t nbytes;
924 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
925 memory_full (SIZE_MAX);
926 return xrealloc (pa, nbytes);
927 }
928
929
930 /* Grow PA, which points to an array of *NITEMS items, and return the
931 location of the reallocated array, updating *NITEMS to reflect its
932 new size. The new array will contain at least NITEMS_INCR_MIN more
933 items, but will not contain more than NITEMS_MAX items total.
934 ITEM_SIZE is the size of each item, in bytes.
935
936 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
937 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
938 infinity.
939
940 If PA is null, then allocate a new array instead of reallocating
941 the old one.
942
943 Block interrupt input as needed. If memory exhaustion occurs, set
944 *NITEMS to zero if PA is null, and signal an error (i.e., do not
945 return).
946
947 Thus, to grow an array A without saving its old contents, do
948 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
949 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
950 and signals an error, and later this code is reexecuted and
951 attempts to free A. */
952
953 void *
954 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
955 ptrdiff_t nitems_max, ptrdiff_t item_size)
956 {
957 ptrdiff_t n0 = *nitems;
958 eassume (0 < item_size && 0 < nitems_incr_min && 0 <= n0 && -1 <= nitems_max);
959
960 /* The approximate size to use for initial small allocation
961 requests. This is the largest "small" request for the GNU C
962 library malloc. */
963 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
964
965 /* If the array is tiny, grow it to about (but no greater than)
966 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%.
967 Adjust the growth according to three constraints: NITEMS_INCR_MIN,
968 NITEMS_MAX, and what the C language can represent safely. */
969
970 ptrdiff_t n, nbytes;
971 if (INT_ADD_WRAPV (n0, n0 >> 1, &n))
972 n = PTRDIFF_MAX;
973 if (0 <= nitems_max && nitems_max < n)
974 n = nitems_max;
975
976 ptrdiff_t adjusted_nbytes
977 = ((INT_MULTIPLY_WRAPV (n, item_size, &nbytes) || SIZE_MAX < nbytes)
978 ? min (PTRDIFF_MAX, SIZE_MAX)
979 : nbytes < DEFAULT_MXFAST ? DEFAULT_MXFAST : 0);
980 if (adjusted_nbytes)
981 {
982 n = adjusted_nbytes / item_size;
983 nbytes = adjusted_nbytes - adjusted_nbytes % item_size;
984 }
985
986 if (! pa)
987 *nitems = 0;
988 if (n - n0 < nitems_incr_min
989 && (INT_ADD_WRAPV (n0, nitems_incr_min, &n)
990 || (0 <= nitems_max && nitems_max < n)
991 || INT_MULTIPLY_WRAPV (n, item_size, &nbytes)))
992 memory_full (SIZE_MAX);
993 pa = xrealloc (pa, nbytes);
994 *nitems = n;
995 return pa;
996 }
997
998
999 /* Like strdup, but uses xmalloc. */
1000
1001 char *
1002 xstrdup (const char *s)
1003 {
1004 ptrdiff_t size;
1005 eassert (s);
1006 size = strlen (s) + 1;
1007 return memcpy (xmalloc (size), s, size);
1008 }
1009
1010 /* Like above, but duplicates Lisp string to C string. */
1011
1012 char *
1013 xlispstrdup (Lisp_Object string)
1014 {
1015 ptrdiff_t size = SBYTES (string) + 1;
1016 return memcpy (xmalloc (size), SSDATA (string), size);
1017 }
1018
1019 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
1020 pointed to. If STRING is null, assign it without copying anything.
1021 Allocate before freeing, to avoid a dangling pointer if allocation
1022 fails. */
1023
1024 void
1025 dupstring (char **ptr, char const *string)
1026 {
1027 char *old = *ptr;
1028 *ptr = string ? xstrdup (string) : 0;
1029 xfree (old);
1030 }
1031
1032
1033 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
1034 argument is a const pointer. */
1035
1036 void
1037 xputenv (char const *string)
1038 {
1039 if (putenv ((char *) string) != 0)
1040 memory_full (0);
1041 }
1042
1043 /* Return a newly allocated memory block of SIZE bytes, remembering
1044 to free it when unwinding. */
1045 void *
1046 record_xmalloc (size_t size)
1047 {
1048 void *p = xmalloc (size);
1049 record_unwind_protect_ptr (xfree, p);
1050 return p;
1051 }
1052
1053
1054 /* Like malloc but used for allocating Lisp data. NBYTES is the
1055 number of bytes to allocate, TYPE describes the intended use of the
1056 allocated memory block (for strings, for conses, ...). */
1057
1058 #if ! USE_LSB_TAG
1059 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
1060 #endif
1061
1062 static void *
1063 lisp_malloc (size_t nbytes, enum mem_type type)
1064 {
1065 register void *val;
1066
1067 MALLOC_BLOCK_INPUT;
1068
1069 #ifdef GC_MALLOC_CHECK
1070 allocated_mem_type = type;
1071 #endif
1072
1073 val = malloc (nbytes);
1074
1075 #if ! USE_LSB_TAG
1076 /* If the memory just allocated cannot be addressed thru a Lisp
1077 object's pointer, and it needs to be,
1078 that's equivalent to running out of memory. */
1079 if (val && type != MEM_TYPE_NON_LISP)
1080 {
1081 Lisp_Object tem;
1082 XSETCONS (tem, (char *) val + nbytes - 1);
1083 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
1084 {
1085 lisp_malloc_loser = val;
1086 free (val);
1087 val = 0;
1088 }
1089 }
1090 #endif
1091
1092 #ifndef GC_MALLOC_CHECK
1093 if (val && type != MEM_TYPE_NON_LISP)
1094 mem_insert (val, (char *) val + nbytes, type);
1095 #endif
1096
1097 MALLOC_UNBLOCK_INPUT;
1098 if (!val && nbytes)
1099 memory_full (nbytes);
1100 MALLOC_PROBE (nbytes);
1101 return val;
1102 }
1103
1104 /* Free BLOCK. This must be called to free memory allocated with a
1105 call to lisp_malloc. */
1106
1107 static void
1108 lisp_free (void *block)
1109 {
1110 MALLOC_BLOCK_INPUT;
1111 free (block);
1112 #ifndef GC_MALLOC_CHECK
1113 mem_delete (mem_find (block));
1114 #endif
1115 MALLOC_UNBLOCK_INPUT;
1116 }
1117
1118 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
1119
1120 /* The entry point is lisp_align_malloc which returns blocks of at most
1121 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
1122
1123 /* Use aligned_alloc if it or a simple substitute is available.
1124 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
1125 clang 3.3 anyway. Aligned allocation is incompatible with
1126 unexmacosx.c, so don't use it on Darwin. */
1127
1128 #if ! ADDRESS_SANITIZER && !defined DARWIN_OS
1129 # if !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC && !defined HYBRID_MALLOC
1130 # define USE_ALIGNED_ALLOC 1
1131 # ifndef HAVE_ALIGNED_ALLOC
1132 /* Defined in gmalloc.c. */
1133 void *aligned_alloc (size_t, size_t);
1134 # endif
1135 # elif defined HYBRID_MALLOC
1136 # if defined HAVE_ALIGNED_ALLOC || defined HAVE_POSIX_MEMALIGN
1137 # define USE_ALIGNED_ALLOC 1
1138 # endif
1139 # elif !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC
1140 # define USE_ALIGNED_ALLOC 1
1141 # elif defined HAVE_ALIGNED_ALLOC
1142 # define USE_ALIGNED_ALLOC 1
1143 # elif defined HAVE_POSIX_MEMALIGN
1144 # define USE_ALIGNED_ALLOC 1
1145 static void *
1146 aligned_alloc (size_t alignment, size_t size)
1147 {
1148 void *p;
1149 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
1150 }
1151 # endif
1152 #endif
1153
1154 /* BLOCK_ALIGN has to be a power of 2. */
1155 #define BLOCK_ALIGN (1 << 10)
1156
1157 /* Padding to leave at the end of a malloc'd block. This is to give
1158 malloc a chance to minimize the amount of memory wasted to alignment.
1159 It should be tuned to the particular malloc library used.
1160 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1161 aligned_alloc on the other hand would ideally prefer a value of 4
1162 because otherwise, there's 1020 bytes wasted between each ablocks.
1163 In Emacs, testing shows that those 1020 can most of the time be
1164 efficiently used by malloc to place other objects, so a value of 0 can
1165 still preferable unless you have a lot of aligned blocks and virtually
1166 nothing else. */
1167 #define BLOCK_PADDING 0
1168 #define BLOCK_BYTES \
1169 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1170
1171 /* Internal data structures and constants. */
1172
1173 #define ABLOCKS_SIZE 16
1174
1175 /* An aligned block of memory. */
1176 struct ablock
1177 {
1178 union
1179 {
1180 char payload[BLOCK_BYTES];
1181 struct ablock *next_free;
1182 } x;
1183 /* `abase' is the aligned base of the ablocks. */
1184 /* It is overloaded to hold the virtual `busy' field that counts
1185 the number of used ablock in the parent ablocks.
1186 The first ablock has the `busy' field, the others have the `abase'
1187 field. To tell the difference, we assume that pointers will have
1188 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1189 is used to tell whether the real base of the parent ablocks is `abase'
1190 (if not, the word before the first ablock holds a pointer to the
1191 real base). */
1192 struct ablocks *abase;
1193 /* The padding of all but the last ablock is unused. The padding of
1194 the last ablock in an ablocks is not allocated. */
1195 #if BLOCK_PADDING
1196 char padding[BLOCK_PADDING];
1197 #endif
1198 };
1199
1200 /* A bunch of consecutive aligned blocks. */
1201 struct ablocks
1202 {
1203 struct ablock blocks[ABLOCKS_SIZE];
1204 };
1205
1206 /* Size of the block requested from malloc or aligned_alloc. */
1207 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1208
1209 #define ABLOCK_ABASE(block) \
1210 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1211 ? (struct ablocks *)(block) \
1212 : (block)->abase)
1213
1214 /* Virtual `busy' field. */
1215 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1216
1217 /* Pointer to the (not necessarily aligned) malloc block. */
1218 #ifdef USE_ALIGNED_ALLOC
1219 #define ABLOCKS_BASE(abase) (abase)
1220 #else
1221 #define ABLOCKS_BASE(abase) \
1222 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1223 #endif
1224
1225 /* The list of free ablock. */
1226 static struct ablock *free_ablock;
1227
1228 /* Allocate an aligned block of nbytes.
1229 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1230 smaller or equal to BLOCK_BYTES. */
1231 static void *
1232 lisp_align_malloc (size_t nbytes, enum mem_type type)
1233 {
1234 void *base, *val;
1235 struct ablocks *abase;
1236
1237 eassert (nbytes <= BLOCK_BYTES);
1238
1239 MALLOC_BLOCK_INPUT;
1240
1241 #ifdef GC_MALLOC_CHECK
1242 allocated_mem_type = type;
1243 #endif
1244
1245 if (!free_ablock)
1246 {
1247 int i;
1248 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1249
1250 #ifdef DOUG_LEA_MALLOC
1251 if (!mmap_lisp_allowed_p ())
1252 mallopt (M_MMAP_MAX, 0);
1253 #endif
1254
1255 #ifdef USE_ALIGNED_ALLOC
1256 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1257 #else
1258 base = malloc (ABLOCKS_BYTES);
1259 abase = ALIGN (base, BLOCK_ALIGN);
1260 #endif
1261
1262 if (base == 0)
1263 {
1264 MALLOC_UNBLOCK_INPUT;
1265 memory_full (ABLOCKS_BYTES);
1266 }
1267
1268 aligned = (base == abase);
1269 if (!aligned)
1270 ((void **) abase)[-1] = base;
1271
1272 #ifdef DOUG_LEA_MALLOC
1273 if (!mmap_lisp_allowed_p ())
1274 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1275 #endif
1276
1277 #if ! USE_LSB_TAG
1278 /* If the memory just allocated cannot be addressed thru a Lisp
1279 object's pointer, and it needs to be, that's equivalent to
1280 running out of memory. */
1281 if (type != MEM_TYPE_NON_LISP)
1282 {
1283 Lisp_Object tem;
1284 char *end = (char *) base + ABLOCKS_BYTES - 1;
1285 XSETCONS (tem, end);
1286 if ((char *) XCONS (tem) != end)
1287 {
1288 lisp_malloc_loser = base;
1289 free (base);
1290 MALLOC_UNBLOCK_INPUT;
1291 memory_full (SIZE_MAX);
1292 }
1293 }
1294 #endif
1295
1296 /* Initialize the blocks and put them on the free list.
1297 If `base' was not properly aligned, we can't use the last block. */
1298 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1299 {
1300 abase->blocks[i].abase = abase;
1301 abase->blocks[i].x.next_free = free_ablock;
1302 free_ablock = &abase->blocks[i];
1303 }
1304 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1305
1306 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1307 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1308 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1309 eassert (ABLOCKS_BASE (abase) == base);
1310 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1311 }
1312
1313 abase = ABLOCK_ABASE (free_ablock);
1314 ABLOCKS_BUSY (abase)
1315 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1316 val = free_ablock;
1317 free_ablock = free_ablock->x.next_free;
1318
1319 #ifndef GC_MALLOC_CHECK
1320 if (type != MEM_TYPE_NON_LISP)
1321 mem_insert (val, (char *) val + nbytes, type);
1322 #endif
1323
1324 MALLOC_UNBLOCK_INPUT;
1325
1326 MALLOC_PROBE (nbytes);
1327
1328 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1329 return val;
1330 }
1331
1332 static void
1333 lisp_align_free (void *block)
1334 {
1335 struct ablock *ablock = block;
1336 struct ablocks *abase = ABLOCK_ABASE (ablock);
1337
1338 MALLOC_BLOCK_INPUT;
1339 #ifndef GC_MALLOC_CHECK
1340 mem_delete (mem_find (block));
1341 #endif
1342 /* Put on free list. */
1343 ablock->x.next_free = free_ablock;
1344 free_ablock = ablock;
1345 /* Update busy count. */
1346 ABLOCKS_BUSY (abase)
1347 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1348
1349 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1350 { /* All the blocks are free. */
1351 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1352 struct ablock **tem = &free_ablock;
1353 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1354
1355 while (*tem)
1356 {
1357 if (*tem >= (struct ablock *) abase && *tem < atop)
1358 {
1359 i++;
1360 *tem = (*tem)->x.next_free;
1361 }
1362 else
1363 tem = &(*tem)->x.next_free;
1364 }
1365 eassert ((aligned & 1) == aligned);
1366 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1367 #ifdef USE_POSIX_MEMALIGN
1368 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1369 #endif
1370 free (ABLOCKS_BASE (abase));
1371 }
1372 MALLOC_UNBLOCK_INPUT;
1373 }
1374
1375 \f
1376 /***********************************************************************
1377 Interval Allocation
1378 ***********************************************************************/
1379
1380 /* Number of intervals allocated in an interval_block structure.
1381 The 1020 is 1024 minus malloc overhead. */
1382
1383 #define INTERVAL_BLOCK_SIZE \
1384 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1385
1386 /* Intervals are allocated in chunks in the form of an interval_block
1387 structure. */
1388
1389 struct interval_block
1390 {
1391 /* Place `intervals' first, to preserve alignment. */
1392 struct interval intervals[INTERVAL_BLOCK_SIZE];
1393 struct interval_block *next;
1394 };
1395
1396 /* Current interval block. Its `next' pointer points to older
1397 blocks. */
1398
1399 static struct interval_block *interval_block;
1400
1401 /* Index in interval_block above of the next unused interval
1402 structure. */
1403
1404 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1405
1406 /* Number of free and live intervals. */
1407
1408 static EMACS_INT total_free_intervals, total_intervals;
1409
1410 /* List of free intervals. */
1411
1412 static INTERVAL interval_free_list;
1413
1414 /* Return a new interval. */
1415
1416 INTERVAL
1417 make_interval (void)
1418 {
1419 INTERVAL val;
1420
1421 MALLOC_BLOCK_INPUT;
1422
1423 if (interval_free_list)
1424 {
1425 val = interval_free_list;
1426 interval_free_list = INTERVAL_PARENT (interval_free_list);
1427 }
1428 else
1429 {
1430 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1431 {
1432 struct interval_block *newi
1433 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1434
1435 newi->next = interval_block;
1436 interval_block = newi;
1437 interval_block_index = 0;
1438 total_free_intervals += INTERVAL_BLOCK_SIZE;
1439 }
1440 val = &interval_block->intervals[interval_block_index++];
1441 }
1442
1443 MALLOC_UNBLOCK_INPUT;
1444
1445 consing_since_gc += sizeof (struct interval);
1446 intervals_consed++;
1447 total_free_intervals--;
1448 RESET_INTERVAL (val);
1449 val->gcmarkbit = 0;
1450 return val;
1451 }
1452
1453
1454 /* Mark Lisp objects in interval I. */
1455
1456 static void
1457 mark_interval (register INTERVAL i, Lisp_Object dummy)
1458 {
1459 /* Intervals should never be shared. So, if extra internal checking is
1460 enabled, GC aborts if it seems to have visited an interval twice. */
1461 eassert (!i->gcmarkbit);
1462 i->gcmarkbit = 1;
1463 mark_object (i->plist);
1464 }
1465
1466 /* Mark the interval tree rooted in I. */
1467
1468 #define MARK_INTERVAL_TREE(i) \
1469 do { \
1470 if (i && !i->gcmarkbit) \
1471 traverse_intervals_noorder (i, mark_interval, Qnil); \
1472 } while (0)
1473
1474 /***********************************************************************
1475 String Allocation
1476 ***********************************************************************/
1477
1478 /* Lisp_Strings are allocated in string_block structures. When a new
1479 string_block is allocated, all the Lisp_Strings it contains are
1480 added to a free-list string_free_list. When a new Lisp_String is
1481 needed, it is taken from that list. During the sweep phase of GC,
1482 string_blocks that are entirely free are freed, except two which
1483 we keep.
1484
1485 String data is allocated from sblock structures. Strings larger
1486 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1487 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1488
1489 Sblocks consist internally of sdata structures, one for each
1490 Lisp_String. The sdata structure points to the Lisp_String it
1491 belongs to. The Lisp_String points back to the `u.data' member of
1492 its sdata structure.
1493
1494 When a Lisp_String is freed during GC, it is put back on
1495 string_free_list, and its `data' member and its sdata's `string'
1496 pointer is set to null. The size of the string is recorded in the
1497 `n.nbytes' member of the sdata. So, sdata structures that are no
1498 longer used, can be easily recognized, and it's easy to compact the
1499 sblocks of small strings which we do in compact_small_strings. */
1500
1501 /* Size in bytes of an sblock structure used for small strings. This
1502 is 8192 minus malloc overhead. */
1503
1504 #define SBLOCK_SIZE 8188
1505
1506 /* Strings larger than this are considered large strings. String data
1507 for large strings is allocated from individual sblocks. */
1508
1509 #define LARGE_STRING_BYTES 1024
1510
1511 /* The SDATA typedef is a struct or union describing string memory
1512 sub-allocated from an sblock. This is where the contents of Lisp
1513 strings are stored. */
1514
1515 struct sdata
1516 {
1517 /* Back-pointer to the string this sdata belongs to. If null, this
1518 structure is free, and NBYTES (in this structure or in the union below)
1519 contains the string's byte size (the same value that STRING_BYTES
1520 would return if STRING were non-null). If non-null, STRING_BYTES
1521 (STRING) is the size of the data, and DATA contains the string's
1522 contents. */
1523 struct Lisp_String *string;
1524
1525 #ifdef GC_CHECK_STRING_BYTES
1526 ptrdiff_t nbytes;
1527 #endif
1528
1529 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1530 };
1531
1532 #ifdef GC_CHECK_STRING_BYTES
1533
1534 typedef struct sdata sdata;
1535 #define SDATA_NBYTES(S) (S)->nbytes
1536 #define SDATA_DATA(S) (S)->data
1537
1538 #else
1539
1540 typedef union
1541 {
1542 struct Lisp_String *string;
1543
1544 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1545 which has a flexible array member. However, if implemented by
1546 giving this union a member of type 'struct sdata', the union
1547 could not be the last (flexible) member of 'struct sblock',
1548 because C99 prohibits a flexible array member from having a type
1549 that is itself a flexible array. So, comment this member out here,
1550 but remember that the option's there when using this union. */
1551 #if 0
1552 struct sdata u;
1553 #endif
1554
1555 /* When STRING is null. */
1556 struct
1557 {
1558 struct Lisp_String *string;
1559 ptrdiff_t nbytes;
1560 } n;
1561 } sdata;
1562
1563 #define SDATA_NBYTES(S) (S)->n.nbytes
1564 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1565
1566 #endif /* not GC_CHECK_STRING_BYTES */
1567
1568 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1569
1570 /* Structure describing a block of memory which is sub-allocated to
1571 obtain string data memory for strings. Blocks for small strings
1572 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1573 as large as needed. */
1574
1575 struct sblock
1576 {
1577 /* Next in list. */
1578 struct sblock *next;
1579
1580 /* Pointer to the next free sdata block. This points past the end
1581 of the sblock if there isn't any space left in this block. */
1582 sdata *next_free;
1583
1584 /* String data. */
1585 sdata data[FLEXIBLE_ARRAY_MEMBER];
1586 };
1587
1588 /* Number of Lisp strings in a string_block structure. The 1020 is
1589 1024 minus malloc overhead. */
1590
1591 #define STRING_BLOCK_SIZE \
1592 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1593
1594 /* Structure describing a block from which Lisp_String structures
1595 are allocated. */
1596
1597 struct string_block
1598 {
1599 /* Place `strings' first, to preserve alignment. */
1600 struct Lisp_String strings[STRING_BLOCK_SIZE];
1601 struct string_block *next;
1602 };
1603
1604 /* Head and tail of the list of sblock structures holding Lisp string
1605 data. We always allocate from current_sblock. The NEXT pointers
1606 in the sblock structures go from oldest_sblock to current_sblock. */
1607
1608 static struct sblock *oldest_sblock, *current_sblock;
1609
1610 /* List of sblocks for large strings. */
1611
1612 static struct sblock *large_sblocks;
1613
1614 /* List of string_block structures. */
1615
1616 static struct string_block *string_blocks;
1617
1618 /* Free-list of Lisp_Strings. */
1619
1620 static struct Lisp_String *string_free_list;
1621
1622 /* Number of live and free Lisp_Strings. */
1623
1624 static EMACS_INT total_strings, total_free_strings;
1625
1626 /* Number of bytes used by live strings. */
1627
1628 static EMACS_INT total_string_bytes;
1629
1630 /* Given a pointer to a Lisp_String S which is on the free-list
1631 string_free_list, return a pointer to its successor in the
1632 free-list. */
1633
1634 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1635
1636 /* Return a pointer to the sdata structure belonging to Lisp string S.
1637 S must be live, i.e. S->data must not be null. S->data is actually
1638 a pointer to the `u.data' member of its sdata structure; the
1639 structure starts at a constant offset in front of that. */
1640
1641 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1642
1643
1644 #ifdef GC_CHECK_STRING_OVERRUN
1645
1646 /* We check for overrun in string data blocks by appending a small
1647 "cookie" after each allocated string data block, and check for the
1648 presence of this cookie during GC. */
1649
1650 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1651 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1652 { '\xde', '\xad', '\xbe', '\xef' };
1653
1654 #else
1655 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1656 #endif
1657
1658 /* Value is the size of an sdata structure large enough to hold NBYTES
1659 bytes of string data. The value returned includes a terminating
1660 NUL byte, the size of the sdata structure, and padding. */
1661
1662 #ifdef GC_CHECK_STRING_BYTES
1663
1664 #define SDATA_SIZE(NBYTES) \
1665 ((SDATA_DATA_OFFSET \
1666 + (NBYTES) + 1 \
1667 + sizeof (ptrdiff_t) - 1) \
1668 & ~(sizeof (ptrdiff_t) - 1))
1669
1670 #else /* not GC_CHECK_STRING_BYTES */
1671
1672 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1673 less than the size of that member. The 'max' is not needed when
1674 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1675 alignment code reserves enough space. */
1676
1677 #define SDATA_SIZE(NBYTES) \
1678 ((SDATA_DATA_OFFSET \
1679 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1680 ? NBYTES \
1681 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1682 + 1 \
1683 + sizeof (ptrdiff_t) - 1) \
1684 & ~(sizeof (ptrdiff_t) - 1))
1685
1686 #endif /* not GC_CHECK_STRING_BYTES */
1687
1688 /* Extra bytes to allocate for each string. */
1689
1690 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1691
1692 /* Exact bound on the number of bytes in a string, not counting the
1693 terminating null. A string cannot contain more bytes than
1694 STRING_BYTES_BOUND, nor can it be so long that the size_t
1695 arithmetic in allocate_string_data would overflow while it is
1696 calculating a value to be passed to malloc. */
1697 static ptrdiff_t const STRING_BYTES_MAX =
1698 min (STRING_BYTES_BOUND,
1699 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1700 - GC_STRING_EXTRA
1701 - offsetof (struct sblock, data)
1702 - SDATA_DATA_OFFSET)
1703 & ~(sizeof (EMACS_INT) - 1)));
1704
1705 /* Initialize string allocation. Called from init_alloc_once. */
1706
1707 static void
1708 init_strings (void)
1709 {
1710 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1711 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1712 }
1713
1714
1715 #ifdef GC_CHECK_STRING_BYTES
1716
1717 static int check_string_bytes_count;
1718
1719 /* Like STRING_BYTES, but with debugging check. Can be
1720 called during GC, so pay attention to the mark bit. */
1721
1722 ptrdiff_t
1723 string_bytes (struct Lisp_String *s)
1724 {
1725 ptrdiff_t nbytes =
1726 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1727
1728 if (!PURE_P (s) && s->data && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1729 emacs_abort ();
1730 return nbytes;
1731 }
1732
1733 /* Check validity of Lisp strings' string_bytes member in B. */
1734
1735 static void
1736 check_sblock (struct sblock *b)
1737 {
1738 sdata *from, *end, *from_end;
1739
1740 end = b->next_free;
1741
1742 for (from = b->data; from < end; from = from_end)
1743 {
1744 /* Compute the next FROM here because copying below may
1745 overwrite data we need to compute it. */
1746 ptrdiff_t nbytes;
1747
1748 /* Check that the string size recorded in the string is the
1749 same as the one recorded in the sdata structure. */
1750 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1751 : SDATA_NBYTES (from));
1752 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1753 }
1754 }
1755
1756
1757 /* Check validity of Lisp strings' string_bytes member. ALL_P
1758 means check all strings, otherwise check only most
1759 recently allocated strings. Used for hunting a bug. */
1760
1761 static void
1762 check_string_bytes (bool all_p)
1763 {
1764 if (all_p)
1765 {
1766 struct sblock *b;
1767
1768 for (b = large_sblocks; b; b = b->next)
1769 {
1770 struct Lisp_String *s = b->data[0].string;
1771 if (s)
1772 string_bytes (s);
1773 }
1774
1775 for (b = oldest_sblock; b; b = b->next)
1776 check_sblock (b);
1777 }
1778 else if (current_sblock)
1779 check_sblock (current_sblock);
1780 }
1781
1782 #else /* not GC_CHECK_STRING_BYTES */
1783
1784 #define check_string_bytes(all) ((void) 0)
1785
1786 #endif /* GC_CHECK_STRING_BYTES */
1787
1788 #ifdef GC_CHECK_STRING_FREE_LIST
1789
1790 /* Walk through the string free list looking for bogus next pointers.
1791 This may catch buffer overrun from a previous string. */
1792
1793 static void
1794 check_string_free_list (void)
1795 {
1796 struct Lisp_String *s;
1797
1798 /* Pop a Lisp_String off the free-list. */
1799 s = string_free_list;
1800 while (s != NULL)
1801 {
1802 if ((uintptr_t) s < 1024)
1803 emacs_abort ();
1804 s = NEXT_FREE_LISP_STRING (s);
1805 }
1806 }
1807 #else
1808 #define check_string_free_list()
1809 #endif
1810
1811 /* Return a new Lisp_String. */
1812
1813 static struct Lisp_String *
1814 allocate_string (void)
1815 {
1816 struct Lisp_String *s;
1817
1818 MALLOC_BLOCK_INPUT;
1819
1820 /* If the free-list is empty, allocate a new string_block, and
1821 add all the Lisp_Strings in it to the free-list. */
1822 if (string_free_list == NULL)
1823 {
1824 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1825 int i;
1826
1827 b->next = string_blocks;
1828 string_blocks = b;
1829
1830 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1831 {
1832 s = b->strings + i;
1833 /* Every string on a free list should have NULL data pointer. */
1834 s->data = NULL;
1835 NEXT_FREE_LISP_STRING (s) = string_free_list;
1836 string_free_list = s;
1837 }
1838
1839 total_free_strings += STRING_BLOCK_SIZE;
1840 }
1841
1842 check_string_free_list ();
1843
1844 /* Pop a Lisp_String off the free-list. */
1845 s = string_free_list;
1846 string_free_list = NEXT_FREE_LISP_STRING (s);
1847
1848 MALLOC_UNBLOCK_INPUT;
1849
1850 --total_free_strings;
1851 ++total_strings;
1852 ++strings_consed;
1853 consing_since_gc += sizeof *s;
1854
1855 #ifdef GC_CHECK_STRING_BYTES
1856 if (!noninteractive)
1857 {
1858 if (++check_string_bytes_count == 200)
1859 {
1860 check_string_bytes_count = 0;
1861 check_string_bytes (1);
1862 }
1863 else
1864 check_string_bytes (0);
1865 }
1866 #endif /* GC_CHECK_STRING_BYTES */
1867
1868 return s;
1869 }
1870
1871
1872 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1873 plus a NUL byte at the end. Allocate an sdata structure for S, and
1874 set S->data to its `u.data' member. Store a NUL byte at the end of
1875 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1876 S->data if it was initially non-null. */
1877
1878 void
1879 allocate_string_data (struct Lisp_String *s,
1880 EMACS_INT nchars, EMACS_INT nbytes)
1881 {
1882 sdata *data, *old_data;
1883 struct sblock *b;
1884 ptrdiff_t needed, old_nbytes;
1885
1886 if (STRING_BYTES_MAX < nbytes)
1887 string_overflow ();
1888
1889 /* Determine the number of bytes needed to store NBYTES bytes
1890 of string data. */
1891 needed = SDATA_SIZE (nbytes);
1892 if (s->data)
1893 {
1894 old_data = SDATA_OF_STRING (s);
1895 old_nbytes = STRING_BYTES (s);
1896 }
1897 else
1898 old_data = NULL;
1899
1900 MALLOC_BLOCK_INPUT;
1901
1902 if (nbytes > LARGE_STRING_BYTES)
1903 {
1904 size_t size = offsetof (struct sblock, data) + needed;
1905
1906 #ifdef DOUG_LEA_MALLOC
1907 if (!mmap_lisp_allowed_p ())
1908 mallopt (M_MMAP_MAX, 0);
1909 #endif
1910
1911 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1912
1913 #ifdef DOUG_LEA_MALLOC
1914 if (!mmap_lisp_allowed_p ())
1915 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1916 #endif
1917
1918 b->next_free = b->data;
1919 b->data[0].string = NULL;
1920 b->next = large_sblocks;
1921 large_sblocks = b;
1922 }
1923 else if (current_sblock == NULL
1924 || (((char *) current_sblock + SBLOCK_SIZE
1925 - (char *) current_sblock->next_free)
1926 < (needed + GC_STRING_EXTRA)))
1927 {
1928 /* Not enough room in the current sblock. */
1929 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1930 b->next_free = b->data;
1931 b->data[0].string = NULL;
1932 b->next = NULL;
1933
1934 if (current_sblock)
1935 current_sblock->next = b;
1936 else
1937 oldest_sblock = b;
1938 current_sblock = b;
1939 }
1940 else
1941 b = current_sblock;
1942
1943 data = b->next_free;
1944 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1945
1946 MALLOC_UNBLOCK_INPUT;
1947
1948 data->string = s;
1949 s->data = SDATA_DATA (data);
1950 #ifdef GC_CHECK_STRING_BYTES
1951 SDATA_NBYTES (data) = nbytes;
1952 #endif
1953 s->size = nchars;
1954 s->size_byte = nbytes;
1955 s->data[nbytes] = '\0';
1956 #ifdef GC_CHECK_STRING_OVERRUN
1957 memcpy ((char *) data + needed, string_overrun_cookie,
1958 GC_STRING_OVERRUN_COOKIE_SIZE);
1959 #endif
1960
1961 /* Note that Faset may call to this function when S has already data
1962 assigned. In this case, mark data as free by setting it's string
1963 back-pointer to null, and record the size of the data in it. */
1964 if (old_data)
1965 {
1966 SDATA_NBYTES (old_data) = old_nbytes;
1967 old_data->string = NULL;
1968 }
1969
1970 consing_since_gc += needed;
1971 }
1972
1973
1974 /* Sweep and compact strings. */
1975
1976 NO_INLINE /* For better stack traces */
1977 static void
1978 sweep_strings (void)
1979 {
1980 struct string_block *b, *next;
1981 struct string_block *live_blocks = NULL;
1982
1983 string_free_list = NULL;
1984 total_strings = total_free_strings = 0;
1985 total_string_bytes = 0;
1986
1987 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1988 for (b = string_blocks; b; b = next)
1989 {
1990 int i, nfree = 0;
1991 struct Lisp_String *free_list_before = string_free_list;
1992
1993 next = b->next;
1994
1995 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1996 {
1997 struct Lisp_String *s = b->strings + i;
1998
1999 if (s->data)
2000 {
2001 /* String was not on free-list before. */
2002 if (STRING_MARKED_P (s))
2003 {
2004 /* String is live; unmark it and its intervals. */
2005 UNMARK_STRING (s);
2006
2007 /* Do not use string_(set|get)_intervals here. */
2008 s->intervals = balance_intervals (s->intervals);
2009
2010 ++total_strings;
2011 total_string_bytes += STRING_BYTES (s);
2012 }
2013 else
2014 {
2015 /* String is dead. Put it on the free-list. */
2016 sdata *data = SDATA_OF_STRING (s);
2017
2018 /* Save the size of S in its sdata so that we know
2019 how large that is. Reset the sdata's string
2020 back-pointer so that we know it's free. */
2021 #ifdef GC_CHECK_STRING_BYTES
2022 if (string_bytes (s) != SDATA_NBYTES (data))
2023 emacs_abort ();
2024 #else
2025 data->n.nbytes = STRING_BYTES (s);
2026 #endif
2027 data->string = NULL;
2028
2029 /* Reset the strings's `data' member so that we
2030 know it's free. */
2031 s->data = NULL;
2032
2033 /* Put the string on the free-list. */
2034 NEXT_FREE_LISP_STRING (s) = string_free_list;
2035 string_free_list = s;
2036 ++nfree;
2037 }
2038 }
2039 else
2040 {
2041 /* S was on the free-list before. Put it there again. */
2042 NEXT_FREE_LISP_STRING (s) = string_free_list;
2043 string_free_list = s;
2044 ++nfree;
2045 }
2046 }
2047
2048 /* Free blocks that contain free Lisp_Strings only, except
2049 the first two of them. */
2050 if (nfree == STRING_BLOCK_SIZE
2051 && total_free_strings > STRING_BLOCK_SIZE)
2052 {
2053 lisp_free (b);
2054 string_free_list = free_list_before;
2055 }
2056 else
2057 {
2058 total_free_strings += nfree;
2059 b->next = live_blocks;
2060 live_blocks = b;
2061 }
2062 }
2063
2064 check_string_free_list ();
2065
2066 string_blocks = live_blocks;
2067 free_large_strings ();
2068 compact_small_strings ();
2069
2070 check_string_free_list ();
2071 }
2072
2073
2074 /* Free dead large strings. */
2075
2076 static void
2077 free_large_strings (void)
2078 {
2079 struct sblock *b, *next;
2080 struct sblock *live_blocks = NULL;
2081
2082 for (b = large_sblocks; b; b = next)
2083 {
2084 next = b->next;
2085
2086 if (b->data[0].string == NULL)
2087 lisp_free (b);
2088 else
2089 {
2090 b->next = live_blocks;
2091 live_blocks = b;
2092 }
2093 }
2094
2095 large_sblocks = live_blocks;
2096 }
2097
2098
2099 /* Compact data of small strings. Free sblocks that don't contain
2100 data of live strings after compaction. */
2101
2102 static void
2103 compact_small_strings (void)
2104 {
2105 struct sblock *b, *tb, *next;
2106 sdata *from, *to, *end, *tb_end;
2107 sdata *to_end, *from_end;
2108
2109 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2110 to, and TB_END is the end of TB. */
2111 tb = oldest_sblock;
2112 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2113 to = tb->data;
2114
2115 /* Step through the blocks from the oldest to the youngest. We
2116 expect that old blocks will stabilize over time, so that less
2117 copying will happen this way. */
2118 for (b = oldest_sblock; b; b = b->next)
2119 {
2120 end = b->next_free;
2121 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2122
2123 for (from = b->data; from < end; from = from_end)
2124 {
2125 /* Compute the next FROM here because copying below may
2126 overwrite data we need to compute it. */
2127 ptrdiff_t nbytes;
2128 struct Lisp_String *s = from->string;
2129
2130 #ifdef GC_CHECK_STRING_BYTES
2131 /* Check that the string size recorded in the string is the
2132 same as the one recorded in the sdata structure. */
2133 if (s && string_bytes (s) != SDATA_NBYTES (from))
2134 emacs_abort ();
2135 #endif /* GC_CHECK_STRING_BYTES */
2136
2137 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2138 eassert (nbytes <= LARGE_STRING_BYTES);
2139
2140 nbytes = SDATA_SIZE (nbytes);
2141 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2142
2143 #ifdef GC_CHECK_STRING_OVERRUN
2144 if (memcmp (string_overrun_cookie,
2145 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2146 GC_STRING_OVERRUN_COOKIE_SIZE))
2147 emacs_abort ();
2148 #endif
2149
2150 /* Non-NULL S means it's alive. Copy its data. */
2151 if (s)
2152 {
2153 /* If TB is full, proceed with the next sblock. */
2154 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2155 if (to_end > tb_end)
2156 {
2157 tb->next_free = to;
2158 tb = tb->next;
2159 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2160 to = tb->data;
2161 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2162 }
2163
2164 /* Copy, and update the string's `data' pointer. */
2165 if (from != to)
2166 {
2167 eassert (tb != b || to < from);
2168 memmove (to, from, nbytes + GC_STRING_EXTRA);
2169 to->string->data = SDATA_DATA (to);
2170 }
2171
2172 /* Advance past the sdata we copied to. */
2173 to = to_end;
2174 }
2175 }
2176 }
2177
2178 /* The rest of the sblocks following TB don't contain live data, so
2179 we can free them. */
2180 for (b = tb->next; b; b = next)
2181 {
2182 next = b->next;
2183 lisp_free (b);
2184 }
2185
2186 tb->next_free = to;
2187 tb->next = NULL;
2188 current_sblock = tb;
2189 }
2190
2191 void
2192 string_overflow (void)
2193 {
2194 error ("Maximum string size exceeded");
2195 }
2196
2197 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2198 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2199 LENGTH must be an integer.
2200 INIT must be an integer that represents a character. */)
2201 (Lisp_Object length, Lisp_Object init)
2202 {
2203 register Lisp_Object val;
2204 int c;
2205 EMACS_INT nbytes;
2206
2207 CHECK_NATNUM (length);
2208 CHECK_CHARACTER (init);
2209
2210 c = XFASTINT (init);
2211 if (ASCII_CHAR_P (c))
2212 {
2213 nbytes = XINT (length);
2214 val = make_uninit_string (nbytes);
2215 if (nbytes)
2216 {
2217 memset (SDATA (val), c, nbytes);
2218 SDATA (val)[nbytes] = 0;
2219 }
2220 }
2221 else
2222 {
2223 unsigned char str[MAX_MULTIBYTE_LENGTH];
2224 ptrdiff_t len = CHAR_STRING (c, str);
2225 EMACS_INT string_len = XINT (length);
2226 unsigned char *p, *beg, *end;
2227
2228 if (INT_MULTIPLY_WRAPV (len, string_len, &nbytes))
2229 string_overflow ();
2230 val = make_uninit_multibyte_string (string_len, nbytes);
2231 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2232 {
2233 /* First time we just copy `str' to the data of `val'. */
2234 if (p == beg)
2235 memcpy (p, str, len);
2236 else
2237 {
2238 /* Next time we copy largest possible chunk from
2239 initialized to uninitialized part of `val'. */
2240 len = min (p - beg, end - p);
2241 memcpy (p, beg, len);
2242 }
2243 }
2244 if (nbytes)
2245 *p = 0;
2246 }
2247
2248 return val;
2249 }
2250
2251 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2252 Return A. */
2253
2254 Lisp_Object
2255 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2256 {
2257 EMACS_INT nbits = bool_vector_size (a);
2258 if (0 < nbits)
2259 {
2260 unsigned char *data = bool_vector_uchar_data (a);
2261 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2262 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2263 int last_mask = ~ (~0u << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2264 memset (data, pattern, nbytes - 1);
2265 data[nbytes - 1] = pattern & last_mask;
2266 }
2267 return a;
2268 }
2269
2270 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2271
2272 Lisp_Object
2273 make_uninit_bool_vector (EMACS_INT nbits)
2274 {
2275 Lisp_Object val;
2276 EMACS_INT words = bool_vector_words (nbits);
2277 EMACS_INT word_bytes = words * sizeof (bits_word);
2278 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2279 + word_size - 1)
2280 / word_size);
2281 struct Lisp_Bool_Vector *p
2282 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2283 XSETVECTOR (val, p);
2284 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2285 p->size = nbits;
2286
2287 /* Clear padding at the end. */
2288 if (words)
2289 p->data[words - 1] = 0;
2290
2291 return val;
2292 }
2293
2294 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2295 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2296 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2297 (Lisp_Object length, Lisp_Object init)
2298 {
2299 Lisp_Object val;
2300
2301 CHECK_NATNUM (length);
2302 val = make_uninit_bool_vector (XFASTINT (length));
2303 return bool_vector_fill (val, init);
2304 }
2305
2306 DEFUN ("bool-vector", Fbool_vector, Sbool_vector, 0, MANY, 0,
2307 doc: /* Return a new bool-vector with specified arguments as elements.
2308 Any number of arguments, even zero arguments, are allowed.
2309 usage: (bool-vector &rest OBJECTS) */)
2310 (ptrdiff_t nargs, Lisp_Object *args)
2311 {
2312 ptrdiff_t i;
2313 Lisp_Object vector;
2314
2315 vector = make_uninit_bool_vector (nargs);
2316 for (i = 0; i < nargs; i++)
2317 bool_vector_set (vector, i, !NILP (args[i]));
2318
2319 return vector;
2320 }
2321
2322 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2323 of characters from the contents. This string may be unibyte or
2324 multibyte, depending on the contents. */
2325
2326 Lisp_Object
2327 make_string (const char *contents, ptrdiff_t nbytes)
2328 {
2329 register Lisp_Object val;
2330 ptrdiff_t nchars, multibyte_nbytes;
2331
2332 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2333 &nchars, &multibyte_nbytes);
2334 if (nbytes == nchars || nbytes != multibyte_nbytes)
2335 /* CONTENTS contains no multibyte sequences or contains an invalid
2336 multibyte sequence. We must make unibyte string. */
2337 val = make_unibyte_string (contents, nbytes);
2338 else
2339 val = make_multibyte_string (contents, nchars, nbytes);
2340 return val;
2341 }
2342
2343 /* Make a unibyte string from LENGTH bytes at CONTENTS. */
2344
2345 Lisp_Object
2346 make_unibyte_string (const char *contents, ptrdiff_t length)
2347 {
2348 register Lisp_Object val;
2349 val = make_uninit_string (length);
2350 memcpy (SDATA (val), contents, length);
2351 return val;
2352 }
2353
2354
2355 /* Make a multibyte string from NCHARS characters occupying NBYTES
2356 bytes at CONTENTS. */
2357
2358 Lisp_Object
2359 make_multibyte_string (const char *contents,
2360 ptrdiff_t nchars, ptrdiff_t nbytes)
2361 {
2362 register Lisp_Object val;
2363 val = make_uninit_multibyte_string (nchars, nbytes);
2364 memcpy (SDATA (val), contents, nbytes);
2365 return val;
2366 }
2367
2368
2369 /* Make a string from NCHARS characters occupying NBYTES bytes at
2370 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2371
2372 Lisp_Object
2373 make_string_from_bytes (const char *contents,
2374 ptrdiff_t nchars, ptrdiff_t nbytes)
2375 {
2376 register Lisp_Object val;
2377 val = make_uninit_multibyte_string (nchars, nbytes);
2378 memcpy (SDATA (val), contents, nbytes);
2379 if (SBYTES (val) == SCHARS (val))
2380 STRING_SET_UNIBYTE (val);
2381 return val;
2382 }
2383
2384
2385 /* Make a string from NCHARS characters occupying NBYTES bytes at
2386 CONTENTS. The argument MULTIBYTE controls whether to label the
2387 string as multibyte. If NCHARS is negative, it counts the number of
2388 characters by itself. */
2389
2390 Lisp_Object
2391 make_specified_string (const char *contents,
2392 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2393 {
2394 Lisp_Object val;
2395
2396 if (nchars < 0)
2397 {
2398 if (multibyte)
2399 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2400 nbytes);
2401 else
2402 nchars = nbytes;
2403 }
2404 val = make_uninit_multibyte_string (nchars, nbytes);
2405 memcpy (SDATA (val), contents, nbytes);
2406 if (!multibyte)
2407 STRING_SET_UNIBYTE (val);
2408 return val;
2409 }
2410
2411
2412 /* Return a unibyte Lisp_String set up to hold LENGTH characters
2413 occupying LENGTH bytes. */
2414
2415 Lisp_Object
2416 make_uninit_string (EMACS_INT length)
2417 {
2418 Lisp_Object val;
2419
2420 if (!length)
2421 return empty_unibyte_string;
2422 val = make_uninit_multibyte_string (length, length);
2423 STRING_SET_UNIBYTE (val);
2424 return val;
2425 }
2426
2427
2428 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2429 which occupy NBYTES bytes. */
2430
2431 Lisp_Object
2432 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2433 {
2434 Lisp_Object string;
2435 struct Lisp_String *s;
2436
2437 if (nchars < 0)
2438 emacs_abort ();
2439 if (!nbytes)
2440 return empty_multibyte_string;
2441
2442 s = allocate_string ();
2443 s->intervals = NULL;
2444 allocate_string_data (s, nchars, nbytes);
2445 XSETSTRING (string, s);
2446 string_chars_consed += nbytes;
2447 return string;
2448 }
2449
2450 /* Print arguments to BUF according to a FORMAT, then return
2451 a Lisp_String initialized with the data from BUF. */
2452
2453 Lisp_Object
2454 make_formatted_string (char *buf, const char *format, ...)
2455 {
2456 va_list ap;
2457 int length;
2458
2459 va_start (ap, format);
2460 length = vsprintf (buf, format, ap);
2461 va_end (ap);
2462 return make_string (buf, length);
2463 }
2464
2465 \f
2466 /***********************************************************************
2467 Float Allocation
2468 ***********************************************************************/
2469
2470 /* We store float cells inside of float_blocks, allocating a new
2471 float_block with malloc whenever necessary. Float cells reclaimed
2472 by GC are put on a free list to be reallocated before allocating
2473 any new float cells from the latest float_block. */
2474
2475 #define FLOAT_BLOCK_SIZE \
2476 (((BLOCK_BYTES - sizeof (struct float_block *) \
2477 /* The compiler might add padding at the end. */ \
2478 - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
2479 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2480
2481 #define GETMARKBIT(block,n) \
2482 (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2483 >> ((n) % BITS_PER_BITS_WORD)) \
2484 & 1)
2485
2486 #define SETMARKBIT(block,n) \
2487 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2488 |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))
2489
2490 #define UNSETMARKBIT(block,n) \
2491 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2492 &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))
2493
2494 #define FLOAT_BLOCK(fptr) \
2495 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2496
2497 #define FLOAT_INDEX(fptr) \
2498 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2499
2500 struct float_block
2501 {
2502 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2503 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2504 bits_word gcmarkbits[1 + FLOAT_BLOCK_SIZE / BITS_PER_BITS_WORD];
2505 struct float_block *next;
2506 };
2507
2508 #define FLOAT_MARKED_P(fptr) \
2509 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2510
2511 #define FLOAT_MARK(fptr) \
2512 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2513
2514 #define FLOAT_UNMARK(fptr) \
2515 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2516
2517 /* Current float_block. */
2518
2519 static struct float_block *float_block;
2520
2521 /* Index of first unused Lisp_Float in the current float_block. */
2522
2523 static int float_block_index = FLOAT_BLOCK_SIZE;
2524
2525 /* Free-list of Lisp_Floats. */
2526
2527 static struct Lisp_Float *float_free_list;
2528
2529 /* Return a new float object with value FLOAT_VALUE. */
2530
2531 Lisp_Object
2532 make_float (double float_value)
2533 {
2534 register Lisp_Object val;
2535
2536 MALLOC_BLOCK_INPUT;
2537
2538 if (float_free_list)
2539 {
2540 /* We use the data field for chaining the free list
2541 so that we won't use the same field that has the mark bit. */
2542 XSETFLOAT (val, float_free_list);
2543 float_free_list = float_free_list->u.chain;
2544 }
2545 else
2546 {
2547 if (float_block_index == FLOAT_BLOCK_SIZE)
2548 {
2549 struct float_block *new
2550 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2551 new->next = float_block;
2552 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2553 float_block = new;
2554 float_block_index = 0;
2555 total_free_floats += FLOAT_BLOCK_SIZE;
2556 }
2557 XSETFLOAT (val, &float_block->floats[float_block_index]);
2558 float_block_index++;
2559 }
2560
2561 MALLOC_UNBLOCK_INPUT;
2562
2563 XFLOAT_INIT (val, float_value);
2564 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2565 consing_since_gc += sizeof (struct Lisp_Float);
2566 floats_consed++;
2567 total_free_floats--;
2568 return val;
2569 }
2570
2571
2572 \f
2573 /***********************************************************************
2574 Cons Allocation
2575 ***********************************************************************/
2576
2577 /* We store cons cells inside of cons_blocks, allocating a new
2578 cons_block with malloc whenever necessary. Cons cells reclaimed by
2579 GC are put on a free list to be reallocated before allocating
2580 any new cons cells from the latest cons_block. */
2581
2582 #define CONS_BLOCK_SIZE \
2583 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2584 /* The compiler might add padding at the end. */ \
2585 - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT) \
2586 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2587
2588 #define CONS_BLOCK(fptr) \
2589 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2590
2591 #define CONS_INDEX(fptr) \
2592 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2593
2594 struct cons_block
2595 {
2596 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2597 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2598 bits_word gcmarkbits[1 + CONS_BLOCK_SIZE / BITS_PER_BITS_WORD];
2599 struct cons_block *next;
2600 };
2601
2602 #define CONS_MARKED_P(fptr) \
2603 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2604
2605 #define CONS_MARK(fptr) \
2606 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2607
2608 #define CONS_UNMARK(fptr) \
2609 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2610
2611 /* Current cons_block. */
2612
2613 static struct cons_block *cons_block;
2614
2615 /* Index of first unused Lisp_Cons in the current block. */
2616
2617 static int cons_block_index = CONS_BLOCK_SIZE;
2618
2619 /* Free-list of Lisp_Cons structures. */
2620
2621 static struct Lisp_Cons *cons_free_list;
2622
2623 /* Explicitly free a cons cell by putting it on the free-list. */
2624
2625 void
2626 free_cons (struct Lisp_Cons *ptr)
2627 {
2628 ptr->u.chain = cons_free_list;
2629 ptr->car = Vdead;
2630 cons_free_list = ptr;
2631 consing_since_gc -= sizeof *ptr;
2632 total_free_conses++;
2633 }
2634
2635 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2636 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2637 (Lisp_Object car, Lisp_Object cdr)
2638 {
2639 register Lisp_Object val;
2640
2641 MALLOC_BLOCK_INPUT;
2642
2643 if (cons_free_list)
2644 {
2645 /* We use the cdr for chaining the free list
2646 so that we won't use the same field that has the mark bit. */
2647 XSETCONS (val, cons_free_list);
2648 cons_free_list = cons_free_list->u.chain;
2649 }
2650 else
2651 {
2652 if (cons_block_index == CONS_BLOCK_SIZE)
2653 {
2654 struct cons_block *new
2655 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2656 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2657 new->next = cons_block;
2658 cons_block = new;
2659 cons_block_index = 0;
2660 total_free_conses += CONS_BLOCK_SIZE;
2661 }
2662 XSETCONS (val, &cons_block->conses[cons_block_index]);
2663 cons_block_index++;
2664 }
2665
2666 MALLOC_UNBLOCK_INPUT;
2667
2668 XSETCAR (val, car);
2669 XSETCDR (val, cdr);
2670 eassert (!CONS_MARKED_P (XCONS (val)));
2671 consing_since_gc += sizeof (struct Lisp_Cons);
2672 total_free_conses--;
2673 cons_cells_consed++;
2674 return val;
2675 }
2676
2677 #ifdef GC_CHECK_CONS_LIST
2678 /* Get an error now if there's any junk in the cons free list. */
2679 void
2680 check_cons_list (void)
2681 {
2682 struct Lisp_Cons *tail = cons_free_list;
2683
2684 while (tail)
2685 tail = tail->u.chain;
2686 }
2687 #endif
2688
2689 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2690
2691 Lisp_Object
2692 list1 (Lisp_Object arg1)
2693 {
2694 return Fcons (arg1, Qnil);
2695 }
2696
2697 Lisp_Object
2698 list2 (Lisp_Object arg1, Lisp_Object arg2)
2699 {
2700 return Fcons (arg1, Fcons (arg2, Qnil));
2701 }
2702
2703
2704 Lisp_Object
2705 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2706 {
2707 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2708 }
2709
2710
2711 Lisp_Object
2712 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2713 {
2714 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2715 }
2716
2717
2718 Lisp_Object
2719 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2720 {
2721 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2722 Fcons (arg5, Qnil)))));
2723 }
2724
2725 /* Make a list of COUNT Lisp_Objects, where ARG is the
2726 first one. Allocate conses from pure space if TYPE
2727 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2728
2729 Lisp_Object
2730 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2731 {
2732 Lisp_Object (*cons) (Lisp_Object, Lisp_Object);
2733 switch (type)
2734 {
2735 case CONSTYPE_PURE: cons = pure_cons; break;
2736 case CONSTYPE_HEAP: cons = Fcons; break;
2737 default: emacs_abort ();
2738 }
2739
2740 eassume (0 < count);
2741 Lisp_Object val = cons (arg, Qnil);
2742 Lisp_Object tail = val;
2743
2744 va_list ap;
2745 va_start (ap, arg);
2746 for (ptrdiff_t i = 1; i < count; i++)
2747 {
2748 Lisp_Object elem = cons (va_arg (ap, Lisp_Object), Qnil);
2749 XSETCDR (tail, elem);
2750 tail = elem;
2751 }
2752 va_end (ap);
2753
2754 return val;
2755 }
2756
2757 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2758 doc: /* Return a newly created list with specified arguments as elements.
2759 Any number of arguments, even zero arguments, are allowed.
2760 usage: (list &rest OBJECTS) */)
2761 (ptrdiff_t nargs, Lisp_Object *args)
2762 {
2763 register Lisp_Object val;
2764 val = Qnil;
2765
2766 while (nargs > 0)
2767 {
2768 nargs--;
2769 val = Fcons (args[nargs], val);
2770 }
2771 return val;
2772 }
2773
2774
2775 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2776 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2777 (register Lisp_Object length, Lisp_Object init)
2778 {
2779 register Lisp_Object val;
2780 register EMACS_INT size;
2781
2782 CHECK_NATNUM (length);
2783 size = XFASTINT (length);
2784
2785 val = Qnil;
2786 while (size > 0)
2787 {
2788 val = Fcons (init, val);
2789 --size;
2790
2791 if (size > 0)
2792 {
2793 val = Fcons (init, val);
2794 --size;
2795
2796 if (size > 0)
2797 {
2798 val = Fcons (init, val);
2799 --size;
2800
2801 if (size > 0)
2802 {
2803 val = Fcons (init, val);
2804 --size;
2805
2806 if (size > 0)
2807 {
2808 val = Fcons (init, val);
2809 --size;
2810 }
2811 }
2812 }
2813 }
2814
2815 QUIT;
2816 }
2817
2818 return val;
2819 }
2820
2821
2822 \f
2823 /***********************************************************************
2824 Vector Allocation
2825 ***********************************************************************/
2826
2827 /* Sometimes a vector's contents are merely a pointer internally used
2828 in vector allocation code. On the rare platforms where a null
2829 pointer cannot be tagged, represent it with a Lisp 0.
2830 Usually you don't want to touch this. */
2831
2832 static struct Lisp_Vector *
2833 next_vector (struct Lisp_Vector *v)
2834 {
2835 return XUNTAG (v->contents[0], Lisp_Int0);
2836 }
2837
2838 static void
2839 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2840 {
2841 v->contents[0] = make_lisp_ptr (p, Lisp_Int0);
2842 }
2843
2844 /* This value is balanced well enough to avoid too much internal overhead
2845 for the most common cases; it's not required to be a power of two, but
2846 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2847
2848 #define VECTOR_BLOCK_SIZE 4096
2849
2850 enum
2851 {
2852 /* Alignment of struct Lisp_Vector objects. */
2853 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2854 GCALIGNMENT),
2855
2856 /* Vector size requests are a multiple of this. */
2857 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2858 };
2859
2860 /* Verify assumptions described above. */
2861 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2862 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2863
2864 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2865 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2866 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2867 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2868
2869 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2870
2871 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2872
2873 /* Size of the minimal vector allocated from block. */
2874
2875 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2876
2877 /* Size of the largest vector allocated from block. */
2878
2879 #define VBLOCK_BYTES_MAX \
2880 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2881
2882 /* We maintain one free list for each possible block-allocated
2883 vector size, and this is the number of free lists we have. */
2884
2885 #define VECTOR_MAX_FREE_LIST_INDEX \
2886 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2887
2888 /* Common shortcut to advance vector pointer over a block data. */
2889
2890 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2891
2892 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2893
2894 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2895
2896 /* Common shortcut to setup vector on a free list. */
2897
2898 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2899 do { \
2900 (tmp) = ((nbytes - header_size) / word_size); \
2901 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2902 eassert ((nbytes) % roundup_size == 0); \
2903 (tmp) = VINDEX (nbytes); \
2904 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2905 set_next_vector (v, vector_free_lists[tmp]); \
2906 vector_free_lists[tmp] = (v); \
2907 total_free_vector_slots += (nbytes) / word_size; \
2908 } while (0)
2909
2910 /* This internal type is used to maintain the list of large vectors
2911 which are allocated at their own, e.g. outside of vector blocks.
2912
2913 struct large_vector itself cannot contain a struct Lisp_Vector, as
2914 the latter contains a flexible array member and C99 does not allow
2915 such structs to be nested. Instead, each struct large_vector
2916 object LV is followed by a struct Lisp_Vector, which is at offset
2917 large_vector_offset from LV, and whose address is therefore
2918 large_vector_vec (&LV). */
2919
2920 struct large_vector
2921 {
2922 struct large_vector *next;
2923 };
2924
2925 enum
2926 {
2927 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2928 };
2929
2930 static struct Lisp_Vector *
2931 large_vector_vec (struct large_vector *p)
2932 {
2933 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
2934 }
2935
2936 /* This internal type is used to maintain an underlying storage
2937 for small vectors. */
2938
2939 struct vector_block
2940 {
2941 char data[VECTOR_BLOCK_BYTES];
2942 struct vector_block *next;
2943 };
2944
2945 /* Chain of vector blocks. */
2946
2947 static struct vector_block *vector_blocks;
2948
2949 /* Vector free lists, where NTH item points to a chain of free
2950 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2951
2952 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2953
2954 /* Singly-linked list of large vectors. */
2955
2956 static struct large_vector *large_vectors;
2957
2958 /* The only vector with 0 slots, allocated from pure space. */
2959
2960 Lisp_Object zero_vector;
2961
2962 /* Number of live vectors. */
2963
2964 static EMACS_INT total_vectors;
2965
2966 /* Total size of live and free vectors, in Lisp_Object units. */
2967
2968 static EMACS_INT total_vector_slots, total_free_vector_slots;
2969
2970 /* Get a new vector block. */
2971
2972 static struct vector_block *
2973 allocate_vector_block (void)
2974 {
2975 struct vector_block *block = xmalloc (sizeof *block);
2976
2977 #ifndef GC_MALLOC_CHECK
2978 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2979 MEM_TYPE_VECTOR_BLOCK);
2980 #endif
2981
2982 block->next = vector_blocks;
2983 vector_blocks = block;
2984 return block;
2985 }
2986
2987 /* Called once to initialize vector allocation. */
2988
2989 static void
2990 init_vectors (void)
2991 {
2992 zero_vector = make_pure_vector (0);
2993 }
2994
2995 /* Allocate vector from a vector block. */
2996
2997 static struct Lisp_Vector *
2998 allocate_vector_from_block (size_t nbytes)
2999 {
3000 struct Lisp_Vector *vector;
3001 struct vector_block *block;
3002 size_t index, restbytes;
3003
3004 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3005 eassert (nbytes % roundup_size == 0);
3006
3007 /* First, try to allocate from a free list
3008 containing vectors of the requested size. */
3009 index = VINDEX (nbytes);
3010 if (vector_free_lists[index])
3011 {
3012 vector = vector_free_lists[index];
3013 vector_free_lists[index] = next_vector (vector);
3014 total_free_vector_slots -= nbytes / word_size;
3015 return vector;
3016 }
3017
3018 /* Next, check free lists containing larger vectors. Since
3019 we will split the result, we should have remaining space
3020 large enough to use for one-slot vector at least. */
3021 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3022 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3023 if (vector_free_lists[index])
3024 {
3025 /* This vector is larger than requested. */
3026 vector = vector_free_lists[index];
3027 vector_free_lists[index] = next_vector (vector);
3028 total_free_vector_slots -= nbytes / word_size;
3029
3030 /* Excess bytes are used for the smaller vector,
3031 which should be set on an appropriate free list. */
3032 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3033 eassert (restbytes % roundup_size == 0);
3034 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
3035 return vector;
3036 }
3037
3038 /* Finally, need a new vector block. */
3039 block = allocate_vector_block ();
3040
3041 /* New vector will be at the beginning of this block. */
3042 vector = (struct Lisp_Vector *) block->data;
3043
3044 /* If the rest of space from this block is large enough
3045 for one-slot vector at least, set up it on a free list. */
3046 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3047 if (restbytes >= VBLOCK_BYTES_MIN)
3048 {
3049 eassert (restbytes % roundup_size == 0);
3050 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
3051 }
3052 return vector;
3053 }
3054
3055 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3056
3057 #define VECTOR_IN_BLOCK(vector, block) \
3058 ((char *) (vector) <= (block)->data \
3059 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3060
3061 /* Return the memory footprint of V in bytes. */
3062
3063 static ptrdiff_t
3064 vector_nbytes (struct Lisp_Vector *v)
3065 {
3066 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
3067 ptrdiff_t nwords;
3068
3069 if (size & PSEUDOVECTOR_FLAG)
3070 {
3071 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
3072 {
3073 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
3074 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
3075 * sizeof (bits_word));
3076 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
3077 verify (header_size <= bool_header_size);
3078 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
3079 }
3080 else
3081 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
3082 + ((size & PSEUDOVECTOR_REST_MASK)
3083 >> PSEUDOVECTOR_SIZE_BITS));
3084 }
3085 else
3086 nwords = size;
3087 return vroundup (header_size + word_size * nwords);
3088 }
3089
3090 /* Release extra resources still in use by VECTOR, which may be any
3091 vector-like object. For now, this is used just to free data in
3092 font objects. */
3093
3094 static void
3095 cleanup_vector (struct Lisp_Vector *vector)
3096 {
3097 detect_suspicious_free (vector);
3098 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
3099 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
3100 == FONT_OBJECT_MAX))
3101 {
3102 struct font_driver *drv = ((struct font *) vector)->driver;
3103
3104 /* The font driver might sometimes be NULL, e.g. if Emacs was
3105 interrupted before it had time to set it up. */
3106 if (drv)
3107 {
3108 /* Attempt to catch subtle bugs like Bug#16140. */
3109 eassert (valid_font_driver (drv));
3110 drv->close ((struct font *) vector);
3111 }
3112 }
3113 }
3114
3115 /* Reclaim space used by unmarked vectors. */
3116
3117 NO_INLINE /* For better stack traces */
3118 static void
3119 sweep_vectors (void)
3120 {
3121 struct vector_block *block, **bprev = &vector_blocks;
3122 struct large_vector *lv, **lvprev = &large_vectors;
3123 struct Lisp_Vector *vector, *next;
3124
3125 total_vectors = total_vector_slots = total_free_vector_slots = 0;
3126 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3127
3128 /* Looking through vector blocks. */
3129
3130 for (block = vector_blocks; block; block = *bprev)
3131 {
3132 bool free_this_block = 0;
3133 ptrdiff_t nbytes;
3134
3135 for (vector = (struct Lisp_Vector *) block->data;
3136 VECTOR_IN_BLOCK (vector, block); vector = next)
3137 {
3138 if (VECTOR_MARKED_P (vector))
3139 {
3140 VECTOR_UNMARK (vector);
3141 total_vectors++;
3142 nbytes = vector_nbytes (vector);
3143 total_vector_slots += nbytes / word_size;
3144 next = ADVANCE (vector, nbytes);
3145 }
3146 else
3147 {
3148 ptrdiff_t total_bytes;
3149
3150 cleanup_vector (vector);
3151 nbytes = vector_nbytes (vector);
3152 total_bytes = nbytes;
3153 next = ADVANCE (vector, nbytes);
3154
3155 /* While NEXT is not marked, try to coalesce with VECTOR,
3156 thus making VECTOR of the largest possible size. */
3157
3158 while (VECTOR_IN_BLOCK (next, block))
3159 {
3160 if (VECTOR_MARKED_P (next))
3161 break;
3162 cleanup_vector (next);
3163 nbytes = vector_nbytes (next);
3164 total_bytes += nbytes;
3165 next = ADVANCE (next, nbytes);
3166 }
3167
3168 eassert (total_bytes % roundup_size == 0);
3169
3170 if (vector == (struct Lisp_Vector *) block->data
3171 && !VECTOR_IN_BLOCK (next, block))
3172 /* This block should be freed because all of its
3173 space was coalesced into the only free vector. */
3174 free_this_block = 1;
3175 else
3176 {
3177 size_t tmp;
3178 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3179 }
3180 }
3181 }
3182
3183 if (free_this_block)
3184 {
3185 *bprev = block->next;
3186 #ifndef GC_MALLOC_CHECK
3187 mem_delete (mem_find (block->data));
3188 #endif
3189 xfree (block);
3190 }
3191 else
3192 bprev = &block->next;
3193 }
3194
3195 /* Sweep large vectors. */
3196
3197 for (lv = large_vectors; lv; lv = *lvprev)
3198 {
3199 vector = large_vector_vec (lv);
3200 if (VECTOR_MARKED_P (vector))
3201 {
3202 VECTOR_UNMARK (vector);
3203 total_vectors++;
3204 if (vector->header.size & PSEUDOVECTOR_FLAG)
3205 {
3206 /* All non-bool pseudovectors are small enough to be allocated
3207 from vector blocks. This code should be redesigned if some
3208 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3209 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3210 total_vector_slots += vector_nbytes (vector) / word_size;
3211 }
3212 else
3213 total_vector_slots
3214 += header_size / word_size + vector->header.size;
3215 lvprev = &lv->next;
3216 }
3217 else
3218 {
3219 *lvprev = lv->next;
3220 lisp_free (lv);
3221 }
3222 }
3223 }
3224
3225 /* Value is a pointer to a newly allocated Lisp_Vector structure
3226 with room for LEN Lisp_Objects. */
3227
3228 static struct Lisp_Vector *
3229 allocate_vectorlike (ptrdiff_t len)
3230 {
3231 struct Lisp_Vector *p;
3232
3233 MALLOC_BLOCK_INPUT;
3234
3235 if (len == 0)
3236 p = XVECTOR (zero_vector);
3237 else
3238 {
3239 size_t nbytes = header_size + len * word_size;
3240
3241 #ifdef DOUG_LEA_MALLOC
3242 if (!mmap_lisp_allowed_p ())
3243 mallopt (M_MMAP_MAX, 0);
3244 #endif
3245
3246 if (nbytes <= VBLOCK_BYTES_MAX)
3247 p = allocate_vector_from_block (vroundup (nbytes));
3248 else
3249 {
3250 struct large_vector *lv
3251 = lisp_malloc ((large_vector_offset + header_size
3252 + len * word_size),
3253 MEM_TYPE_VECTORLIKE);
3254 lv->next = large_vectors;
3255 large_vectors = lv;
3256 p = large_vector_vec (lv);
3257 }
3258
3259 #ifdef DOUG_LEA_MALLOC
3260 if (!mmap_lisp_allowed_p ())
3261 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3262 #endif
3263
3264 if (find_suspicious_object_in_range (p, (char *) p + nbytes))
3265 emacs_abort ();
3266
3267 consing_since_gc += nbytes;
3268 vector_cells_consed += len;
3269 }
3270
3271 MALLOC_UNBLOCK_INPUT;
3272
3273 return p;
3274 }
3275
3276
3277 /* Allocate a vector with LEN slots. */
3278
3279 struct Lisp_Vector *
3280 allocate_vector (EMACS_INT len)
3281 {
3282 struct Lisp_Vector *v;
3283 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3284
3285 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3286 memory_full (SIZE_MAX);
3287 v = allocate_vectorlike (len);
3288 if (len)
3289 v->header.size = len;
3290 return v;
3291 }
3292
3293
3294 /* Allocate other vector-like structures. */
3295
3296 struct Lisp_Vector *
3297 allocate_pseudovector (int memlen, int lisplen,
3298 int zerolen, enum pvec_type tag)
3299 {
3300 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3301
3302 /* Catch bogus values. */
3303 eassert (0 <= tag && tag <= PVEC_FONT);
3304 eassert (0 <= lisplen && lisplen <= zerolen && zerolen <= memlen);
3305 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3306 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3307
3308 /* Only the first LISPLEN slots will be traced normally by the GC. */
3309 memclear (v->contents, zerolen * word_size);
3310 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3311 return v;
3312 }
3313
3314 struct buffer *
3315 allocate_buffer (void)
3316 {
3317 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3318
3319 BUFFER_PVEC_INIT (b);
3320 /* Put B on the chain of all buffers including killed ones. */
3321 b->next = all_buffers;
3322 all_buffers = b;
3323 /* Note that the rest fields of B are not initialized. */
3324 return b;
3325 }
3326
3327 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3328 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3329 See also the function `vector'. */)
3330 (register Lisp_Object length, Lisp_Object init)
3331 {
3332 Lisp_Object vector;
3333 register ptrdiff_t sizei;
3334 register ptrdiff_t i;
3335 register struct Lisp_Vector *p;
3336
3337 CHECK_NATNUM (length);
3338
3339 p = allocate_vector (XFASTINT (length));
3340 sizei = XFASTINT (length);
3341 for (i = 0; i < sizei; i++)
3342 p->contents[i] = init;
3343
3344 XSETVECTOR (vector, p);
3345 return vector;
3346 }
3347
3348 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3349 doc: /* Return a newly created vector with specified arguments as elements.
3350 Any number of arguments, even zero arguments, are allowed.
3351 usage: (vector &rest OBJECTS) */)
3352 (ptrdiff_t nargs, Lisp_Object *args)
3353 {
3354 ptrdiff_t i;
3355 register Lisp_Object val = make_uninit_vector (nargs);
3356 register struct Lisp_Vector *p = XVECTOR (val);
3357
3358 for (i = 0; i < nargs; i++)
3359 p->contents[i] = args[i];
3360 return val;
3361 }
3362
3363 void
3364 make_byte_code (struct Lisp_Vector *v)
3365 {
3366 /* Don't allow the global zero_vector to become a byte code object. */
3367 eassert (0 < v->header.size);
3368
3369 if (v->header.size > 1 && STRINGP (v->contents[1])
3370 && STRING_MULTIBYTE (v->contents[1]))
3371 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3372 earlier because they produced a raw 8-bit string for byte-code
3373 and now such a byte-code string is loaded as multibyte while
3374 raw 8-bit characters converted to multibyte form. Thus, now we
3375 must convert them back to the original unibyte form. */
3376 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3377 XSETPVECTYPE (v, PVEC_COMPILED);
3378 }
3379
3380 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3381 doc: /* Create a byte-code object with specified arguments as elements.
3382 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3383 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3384 and (optional) INTERACTIVE-SPEC.
3385 The first four arguments are required; at most six have any
3386 significance.
3387 The ARGLIST can be either like the one of `lambda', in which case the arguments
3388 will be dynamically bound before executing the byte code, or it can be an
3389 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3390 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3391 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3392 argument to catch the left-over arguments. If such an integer is used, the
3393 arguments will not be dynamically bound but will be instead pushed on the
3394 stack before executing the byte-code.
3395 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3396 (ptrdiff_t nargs, Lisp_Object *args)
3397 {
3398 ptrdiff_t i;
3399 register Lisp_Object val = make_uninit_vector (nargs);
3400 register struct Lisp_Vector *p = XVECTOR (val);
3401
3402 /* We used to purecopy everything here, if purify-flag was set. This worked
3403 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3404 dangerous, since make-byte-code is used during execution to build
3405 closures, so any closure built during the preload phase would end up
3406 copied into pure space, including its free variables, which is sometimes
3407 just wasteful and other times plainly wrong (e.g. those free vars may want
3408 to be setcar'd). */
3409
3410 for (i = 0; i < nargs; i++)
3411 p->contents[i] = args[i];
3412 make_byte_code (p);
3413 XSETCOMPILED (val, p);
3414 return val;
3415 }
3416
3417
3418 \f
3419 /***********************************************************************
3420 Symbol Allocation
3421 ***********************************************************************/
3422
3423 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3424 of the required alignment. */
3425
3426 union aligned_Lisp_Symbol
3427 {
3428 struct Lisp_Symbol s;
3429 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3430 & -GCALIGNMENT];
3431 };
3432
3433 /* Each symbol_block is just under 1020 bytes long, since malloc
3434 really allocates in units of powers of two and uses 4 bytes for its
3435 own overhead. */
3436
3437 #define SYMBOL_BLOCK_SIZE \
3438 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3439
3440 struct symbol_block
3441 {
3442 /* Place `symbols' first, to preserve alignment. */
3443 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3444 struct symbol_block *next;
3445 };
3446
3447 /* Current symbol block and index of first unused Lisp_Symbol
3448 structure in it. */
3449
3450 static struct symbol_block *symbol_block;
3451 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3452 /* Pointer to the first symbol_block that contains pinned symbols.
3453 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3454 10K of which are pinned (and all but 250 of them are interned in obarray),
3455 whereas a "typical session" has in the order of 30K symbols.
3456 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3457 than 30K to find the 10K symbols we need to mark. */
3458 static struct symbol_block *symbol_block_pinned;
3459
3460 /* List of free symbols. */
3461
3462 static struct Lisp_Symbol *symbol_free_list;
3463
3464 static void
3465 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3466 {
3467 XSYMBOL (sym)->name = name;
3468 }
3469
3470 void
3471 init_symbol (Lisp_Object val, Lisp_Object name)
3472 {
3473 struct Lisp_Symbol *p = XSYMBOL (val);
3474 set_symbol_name (val, name);
3475 set_symbol_plist (val, Qnil);
3476 p->redirect = SYMBOL_PLAINVAL;
3477 SET_SYMBOL_VAL (p, Qunbound);
3478 set_symbol_function (val, Qnil);
3479 set_symbol_next (val, NULL);
3480 p->gcmarkbit = false;
3481 p->interned = SYMBOL_UNINTERNED;
3482 p->constant = 0;
3483 p->declared_special = false;
3484 p->pinned = false;
3485 }
3486
3487 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3488 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3489 Its value is void, and its function definition and property list are nil. */)
3490 (Lisp_Object name)
3491 {
3492 Lisp_Object val;
3493
3494 CHECK_STRING (name);
3495
3496 MALLOC_BLOCK_INPUT;
3497
3498 if (symbol_free_list)
3499 {
3500 XSETSYMBOL (val, symbol_free_list);
3501 symbol_free_list = symbol_free_list->next;
3502 }
3503 else
3504 {
3505 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3506 {
3507 struct symbol_block *new
3508 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3509 new->next = symbol_block;
3510 symbol_block = new;
3511 symbol_block_index = 0;
3512 total_free_symbols += SYMBOL_BLOCK_SIZE;
3513 }
3514 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3515 symbol_block_index++;
3516 }
3517
3518 MALLOC_UNBLOCK_INPUT;
3519
3520 init_symbol (val, name);
3521 consing_since_gc += sizeof (struct Lisp_Symbol);
3522 symbols_consed++;
3523 total_free_symbols--;
3524 return val;
3525 }
3526
3527
3528 \f
3529 /***********************************************************************
3530 Marker (Misc) Allocation
3531 ***********************************************************************/
3532
3533 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3534 the required alignment. */
3535
3536 union aligned_Lisp_Misc
3537 {
3538 union Lisp_Misc m;
3539 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3540 & -GCALIGNMENT];
3541 };
3542
3543 /* Allocation of markers and other objects that share that structure.
3544 Works like allocation of conses. */
3545
3546 #define MARKER_BLOCK_SIZE \
3547 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3548
3549 struct marker_block
3550 {
3551 /* Place `markers' first, to preserve alignment. */
3552 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3553 struct marker_block *next;
3554 };
3555
3556 static struct marker_block *marker_block;
3557 static int marker_block_index = MARKER_BLOCK_SIZE;
3558
3559 static union Lisp_Misc *marker_free_list;
3560
3561 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3562
3563 static Lisp_Object
3564 allocate_misc (enum Lisp_Misc_Type type)
3565 {
3566 Lisp_Object val;
3567
3568 MALLOC_BLOCK_INPUT;
3569
3570 if (marker_free_list)
3571 {
3572 XSETMISC (val, marker_free_list);
3573 marker_free_list = marker_free_list->u_free.chain;
3574 }
3575 else
3576 {
3577 if (marker_block_index == MARKER_BLOCK_SIZE)
3578 {
3579 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3580 new->next = marker_block;
3581 marker_block = new;
3582 marker_block_index = 0;
3583 total_free_markers += MARKER_BLOCK_SIZE;
3584 }
3585 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3586 marker_block_index++;
3587 }
3588
3589 MALLOC_UNBLOCK_INPUT;
3590
3591 --total_free_markers;
3592 consing_since_gc += sizeof (union Lisp_Misc);
3593 misc_objects_consed++;
3594 XMISCANY (val)->type = type;
3595 XMISCANY (val)->gcmarkbit = 0;
3596 return val;
3597 }
3598
3599 /* Free a Lisp_Misc object. */
3600
3601 void
3602 free_misc (Lisp_Object misc)
3603 {
3604 XMISCANY (misc)->type = Lisp_Misc_Free;
3605 XMISC (misc)->u_free.chain = marker_free_list;
3606 marker_free_list = XMISC (misc);
3607 consing_since_gc -= sizeof (union Lisp_Misc);
3608 total_free_markers++;
3609 }
3610
3611 /* Verify properties of Lisp_Save_Value's representation
3612 that are assumed here and elsewhere. */
3613
3614 verify (SAVE_UNUSED == 0);
3615 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3616 >> SAVE_SLOT_BITS)
3617 == 0);
3618
3619 /* Return Lisp_Save_Value objects for the various combinations
3620 that callers need. */
3621
3622 Lisp_Object
3623 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3624 {
3625 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3626 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3627 p->save_type = SAVE_TYPE_INT_INT_INT;
3628 p->data[0].integer = a;
3629 p->data[1].integer = b;
3630 p->data[2].integer = c;
3631 return val;
3632 }
3633
3634 Lisp_Object
3635 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3636 Lisp_Object d)
3637 {
3638 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3639 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3640 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3641 p->data[0].object = a;
3642 p->data[1].object = b;
3643 p->data[2].object = c;
3644 p->data[3].object = d;
3645 return val;
3646 }
3647
3648 Lisp_Object
3649 make_save_ptr (void *a)
3650 {
3651 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3652 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3653 p->save_type = SAVE_POINTER;
3654 p->data[0].pointer = a;
3655 return val;
3656 }
3657
3658 Lisp_Object
3659 make_save_ptr_int (void *a, ptrdiff_t b)
3660 {
3661 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3662 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3663 p->save_type = SAVE_TYPE_PTR_INT;
3664 p->data[0].pointer = a;
3665 p->data[1].integer = b;
3666 return val;
3667 }
3668
3669 #if ! (defined USE_X_TOOLKIT || defined USE_GTK)
3670 Lisp_Object
3671 make_save_ptr_ptr (void *a, void *b)
3672 {
3673 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3674 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3675 p->save_type = SAVE_TYPE_PTR_PTR;
3676 p->data[0].pointer = a;
3677 p->data[1].pointer = b;
3678 return val;
3679 }
3680 #endif
3681
3682 Lisp_Object
3683 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3684 {
3685 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3686 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3687 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3688 p->data[0].funcpointer = a;
3689 p->data[1].pointer = b;
3690 p->data[2].object = c;
3691 return val;
3692 }
3693
3694 /* Return a Lisp_Save_Value object that represents an array A
3695 of N Lisp objects. */
3696
3697 Lisp_Object
3698 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3699 {
3700 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3701 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3702 p->save_type = SAVE_TYPE_MEMORY;
3703 p->data[0].pointer = a;
3704 p->data[1].integer = n;
3705 return val;
3706 }
3707
3708 /* Free a Lisp_Save_Value object. Do not use this function
3709 if SAVE contains pointer other than returned by xmalloc. */
3710
3711 void
3712 free_save_value (Lisp_Object save)
3713 {
3714 xfree (XSAVE_POINTER (save, 0));
3715 free_misc (save);
3716 }
3717
3718 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3719
3720 Lisp_Object
3721 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3722 {
3723 register Lisp_Object overlay;
3724
3725 overlay = allocate_misc (Lisp_Misc_Overlay);
3726 OVERLAY_START (overlay) = start;
3727 OVERLAY_END (overlay) = end;
3728 set_overlay_plist (overlay, plist);
3729 XOVERLAY (overlay)->next = NULL;
3730 return overlay;
3731 }
3732
3733 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3734 doc: /* Return a newly allocated marker which does not point at any place. */)
3735 (void)
3736 {
3737 register Lisp_Object val;
3738 register struct Lisp_Marker *p;
3739
3740 val = allocate_misc (Lisp_Misc_Marker);
3741 p = XMARKER (val);
3742 p->buffer = 0;
3743 p->bytepos = 0;
3744 p->charpos = 0;
3745 p->next = NULL;
3746 p->insertion_type = 0;
3747 p->need_adjustment = 0;
3748 return val;
3749 }
3750
3751 /* Return a newly allocated marker which points into BUF
3752 at character position CHARPOS and byte position BYTEPOS. */
3753
3754 Lisp_Object
3755 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3756 {
3757 Lisp_Object obj;
3758 struct Lisp_Marker *m;
3759
3760 /* No dead buffers here. */
3761 eassert (BUFFER_LIVE_P (buf));
3762
3763 /* Every character is at least one byte. */
3764 eassert (charpos <= bytepos);
3765
3766 obj = allocate_misc (Lisp_Misc_Marker);
3767 m = XMARKER (obj);
3768 m->buffer = buf;
3769 m->charpos = charpos;
3770 m->bytepos = bytepos;
3771 m->insertion_type = 0;
3772 m->need_adjustment = 0;
3773 m->next = BUF_MARKERS (buf);
3774 BUF_MARKERS (buf) = m;
3775 return obj;
3776 }
3777
3778 /* Put MARKER back on the free list after using it temporarily. */
3779
3780 void
3781 free_marker (Lisp_Object marker)
3782 {
3783 unchain_marker (XMARKER (marker));
3784 free_misc (marker);
3785 }
3786
3787 \f
3788 /* Return a newly created vector or string with specified arguments as
3789 elements. If all the arguments are characters that can fit
3790 in a string of events, make a string; otherwise, make a vector.
3791
3792 Any number of arguments, even zero arguments, are allowed. */
3793
3794 Lisp_Object
3795 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3796 {
3797 ptrdiff_t i;
3798
3799 for (i = 0; i < nargs; i++)
3800 /* The things that fit in a string
3801 are characters that are in 0...127,
3802 after discarding the meta bit and all the bits above it. */
3803 if (!INTEGERP (args[i])
3804 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3805 return Fvector (nargs, args);
3806
3807 /* Since the loop exited, we know that all the things in it are
3808 characters, so we can make a string. */
3809 {
3810 Lisp_Object result;
3811
3812 result = Fmake_string (make_number (nargs), make_number (0));
3813 for (i = 0; i < nargs; i++)
3814 {
3815 SSET (result, i, XINT (args[i]));
3816 /* Move the meta bit to the right place for a string char. */
3817 if (XINT (args[i]) & CHAR_META)
3818 SSET (result, i, SREF (result, i) | 0x80);
3819 }
3820
3821 return result;
3822 }
3823 }
3824
3825 #ifdef HAVE_MODULES
3826 /* Create a new module user ptr object. */
3827 Lisp_Object
3828 make_user_ptr (void (*finalizer) (void *), void *p)
3829 {
3830 Lisp_Object obj;
3831 struct Lisp_User_Ptr *uptr;
3832
3833 obj = allocate_misc (Lisp_Misc_User_Ptr);
3834 uptr = XUSER_PTR (obj);
3835 uptr->finalizer = finalizer;
3836 uptr->p = p;
3837 return obj;
3838 }
3839
3840 #endif
3841
3842 static void
3843 init_finalizer_list (struct Lisp_Finalizer *head)
3844 {
3845 head->prev = head->next = head;
3846 }
3847
3848 /* Insert FINALIZER before ELEMENT. */
3849
3850 static void
3851 finalizer_insert (struct Lisp_Finalizer *element,
3852 struct Lisp_Finalizer *finalizer)
3853 {
3854 eassert (finalizer->prev == NULL);
3855 eassert (finalizer->next == NULL);
3856 finalizer->next = element;
3857 finalizer->prev = element->prev;
3858 finalizer->prev->next = finalizer;
3859 element->prev = finalizer;
3860 }
3861
3862 static void
3863 unchain_finalizer (struct Lisp_Finalizer *finalizer)
3864 {
3865 if (finalizer->prev != NULL)
3866 {
3867 eassert (finalizer->next != NULL);
3868 finalizer->prev->next = finalizer->next;
3869 finalizer->next->prev = finalizer->prev;
3870 finalizer->prev = finalizer->next = NULL;
3871 }
3872 }
3873
3874 static void
3875 mark_finalizer_list (struct Lisp_Finalizer *head)
3876 {
3877 for (struct Lisp_Finalizer *finalizer = head->next;
3878 finalizer != head;
3879 finalizer = finalizer->next)
3880 {
3881 finalizer->base.gcmarkbit = true;
3882 mark_object (finalizer->function);
3883 }
3884 }
3885
3886 /* Move doomed finalizers to list DEST from list SRC. A doomed
3887 finalizer is one that is not GC-reachable and whose
3888 finalizer->function is non-nil. */
3889
3890 static void
3891 queue_doomed_finalizers (struct Lisp_Finalizer *dest,
3892 struct Lisp_Finalizer *src)
3893 {
3894 struct Lisp_Finalizer *finalizer = src->next;
3895 while (finalizer != src)
3896 {
3897 struct Lisp_Finalizer *next = finalizer->next;
3898 if (!finalizer->base.gcmarkbit && !NILP (finalizer->function))
3899 {
3900 unchain_finalizer (finalizer);
3901 finalizer_insert (dest, finalizer);
3902 }
3903
3904 finalizer = next;
3905 }
3906 }
3907
3908 static Lisp_Object
3909 run_finalizer_handler (Lisp_Object args)
3910 {
3911 add_to_log ("finalizer failed: %S", args);
3912 return Qnil;
3913 }
3914
3915 static void
3916 run_finalizer_function (Lisp_Object function)
3917 {
3918 ptrdiff_t count = SPECPDL_INDEX ();
3919
3920 specbind (Qinhibit_quit, Qt);
3921 internal_condition_case_1 (call0, function, Qt, run_finalizer_handler);
3922 unbind_to (count, Qnil);
3923 }
3924
3925 static void
3926 run_finalizers (struct Lisp_Finalizer *finalizers)
3927 {
3928 struct Lisp_Finalizer *finalizer;
3929 Lisp_Object function;
3930
3931 while (finalizers->next != finalizers)
3932 {
3933 finalizer = finalizers->next;
3934 eassert (finalizer->base.type == Lisp_Misc_Finalizer);
3935 unchain_finalizer (finalizer);
3936 function = finalizer->function;
3937 if (!NILP (function))
3938 {
3939 finalizer->function = Qnil;
3940 run_finalizer_function (function);
3941 }
3942 }
3943 }
3944
3945 DEFUN ("make-finalizer", Fmake_finalizer, Smake_finalizer, 1, 1, 0,
3946 doc: /* Make a finalizer that will run FUNCTION.
3947 FUNCTION will be called after garbage collection when the returned
3948 finalizer object becomes unreachable. If the finalizer object is
3949 reachable only through references from finalizer objects, it does not
3950 count as reachable for the purpose of deciding whether to run
3951 FUNCTION. FUNCTION will be run once per finalizer object. */)
3952 (Lisp_Object function)
3953 {
3954 Lisp_Object val = allocate_misc (Lisp_Misc_Finalizer);
3955 struct Lisp_Finalizer *finalizer = XFINALIZER (val);
3956 finalizer->function = function;
3957 finalizer->prev = finalizer->next = NULL;
3958 finalizer_insert (&finalizers, finalizer);
3959 return val;
3960 }
3961
3962 \f
3963 /************************************************************************
3964 Memory Full Handling
3965 ************************************************************************/
3966
3967
3968 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3969 there may have been size_t overflow so that malloc was never
3970 called, or perhaps malloc was invoked successfully but the
3971 resulting pointer had problems fitting into a tagged EMACS_INT. In
3972 either case this counts as memory being full even though malloc did
3973 not fail. */
3974
3975 void
3976 memory_full (size_t nbytes)
3977 {
3978 /* Do not go into hysterics merely because a large request failed. */
3979 bool enough_free_memory = 0;
3980 if (SPARE_MEMORY < nbytes)
3981 {
3982 void *p;
3983
3984 MALLOC_BLOCK_INPUT;
3985 p = malloc (SPARE_MEMORY);
3986 if (p)
3987 {
3988 free (p);
3989 enough_free_memory = 1;
3990 }
3991 MALLOC_UNBLOCK_INPUT;
3992 }
3993
3994 if (! enough_free_memory)
3995 {
3996 int i;
3997
3998 Vmemory_full = Qt;
3999
4000 memory_full_cons_threshold = sizeof (struct cons_block);
4001
4002 /* The first time we get here, free the spare memory. */
4003 for (i = 0; i < ARRAYELTS (spare_memory); i++)
4004 if (spare_memory[i])
4005 {
4006 if (i == 0)
4007 free (spare_memory[i]);
4008 else if (i >= 1 && i <= 4)
4009 lisp_align_free (spare_memory[i]);
4010 else
4011 lisp_free (spare_memory[i]);
4012 spare_memory[i] = 0;
4013 }
4014 }
4015
4016 /* This used to call error, but if we've run out of memory, we could
4017 get infinite recursion trying to build the string. */
4018 xsignal (Qnil, Vmemory_signal_data);
4019 }
4020
4021 /* If we released our reserve (due to running out of memory),
4022 and we have a fair amount free once again,
4023 try to set aside another reserve in case we run out once more.
4024
4025 This is called when a relocatable block is freed in ralloc.c,
4026 and also directly from this file, in case we're not using ralloc.c. */
4027
4028 void
4029 refill_memory_reserve (void)
4030 {
4031 #if !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
4032 if (spare_memory[0] == 0)
4033 spare_memory[0] = malloc (SPARE_MEMORY);
4034 if (spare_memory[1] == 0)
4035 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
4036 MEM_TYPE_SPARE);
4037 if (spare_memory[2] == 0)
4038 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
4039 MEM_TYPE_SPARE);
4040 if (spare_memory[3] == 0)
4041 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
4042 MEM_TYPE_SPARE);
4043 if (spare_memory[4] == 0)
4044 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
4045 MEM_TYPE_SPARE);
4046 if (spare_memory[5] == 0)
4047 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
4048 MEM_TYPE_SPARE);
4049 if (spare_memory[6] == 0)
4050 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
4051 MEM_TYPE_SPARE);
4052 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
4053 Vmemory_full = Qnil;
4054 #endif
4055 }
4056 \f
4057 /************************************************************************
4058 C Stack Marking
4059 ************************************************************************/
4060
4061 /* Conservative C stack marking requires a method to identify possibly
4062 live Lisp objects given a pointer value. We do this by keeping
4063 track of blocks of Lisp data that are allocated in a red-black tree
4064 (see also the comment of mem_node which is the type of nodes in
4065 that tree). Function lisp_malloc adds information for an allocated
4066 block to the red-black tree with calls to mem_insert, and function
4067 lisp_free removes it with mem_delete. Functions live_string_p etc
4068 call mem_find to lookup information about a given pointer in the
4069 tree, and use that to determine if the pointer points to a Lisp
4070 object or not. */
4071
4072 /* Initialize this part of alloc.c. */
4073
4074 static void
4075 mem_init (void)
4076 {
4077 mem_z.left = mem_z.right = MEM_NIL;
4078 mem_z.parent = NULL;
4079 mem_z.color = MEM_BLACK;
4080 mem_z.start = mem_z.end = NULL;
4081 mem_root = MEM_NIL;
4082 }
4083
4084
4085 /* Value is a pointer to the mem_node containing START. Value is
4086 MEM_NIL if there is no node in the tree containing START. */
4087
4088 static struct mem_node *
4089 mem_find (void *start)
4090 {
4091 struct mem_node *p;
4092
4093 if (start < min_heap_address || start > max_heap_address)
4094 return MEM_NIL;
4095
4096 /* Make the search always successful to speed up the loop below. */
4097 mem_z.start = start;
4098 mem_z.end = (char *) start + 1;
4099
4100 p = mem_root;
4101 while (start < p->start || start >= p->end)
4102 p = start < p->start ? p->left : p->right;
4103 return p;
4104 }
4105
4106
4107 /* Insert a new node into the tree for a block of memory with start
4108 address START, end address END, and type TYPE. Value is a
4109 pointer to the node that was inserted. */
4110
4111 static struct mem_node *
4112 mem_insert (void *start, void *end, enum mem_type type)
4113 {
4114 struct mem_node *c, *parent, *x;
4115
4116 if (min_heap_address == NULL || start < min_heap_address)
4117 min_heap_address = start;
4118 if (max_heap_address == NULL || end > max_heap_address)
4119 max_heap_address = end;
4120
4121 /* See where in the tree a node for START belongs. In this
4122 particular application, it shouldn't happen that a node is already
4123 present. For debugging purposes, let's check that. */
4124 c = mem_root;
4125 parent = NULL;
4126
4127 while (c != MEM_NIL)
4128 {
4129 parent = c;
4130 c = start < c->start ? c->left : c->right;
4131 }
4132
4133 /* Create a new node. */
4134 #ifdef GC_MALLOC_CHECK
4135 x = malloc (sizeof *x);
4136 if (x == NULL)
4137 emacs_abort ();
4138 #else
4139 x = xmalloc (sizeof *x);
4140 #endif
4141 x->start = start;
4142 x->end = end;
4143 x->type = type;
4144 x->parent = parent;
4145 x->left = x->right = MEM_NIL;
4146 x->color = MEM_RED;
4147
4148 /* Insert it as child of PARENT or install it as root. */
4149 if (parent)
4150 {
4151 if (start < parent->start)
4152 parent->left = x;
4153 else
4154 parent->right = x;
4155 }
4156 else
4157 mem_root = x;
4158
4159 /* Re-establish red-black tree properties. */
4160 mem_insert_fixup (x);
4161
4162 return x;
4163 }
4164
4165
4166 /* Re-establish the red-black properties of the tree, and thereby
4167 balance the tree, after node X has been inserted; X is always red. */
4168
4169 static void
4170 mem_insert_fixup (struct mem_node *x)
4171 {
4172 while (x != mem_root && x->parent->color == MEM_RED)
4173 {
4174 /* X is red and its parent is red. This is a violation of
4175 red-black tree property #3. */
4176
4177 if (x->parent == x->parent->parent->left)
4178 {
4179 /* We're on the left side of our grandparent, and Y is our
4180 "uncle". */
4181 struct mem_node *y = x->parent->parent->right;
4182
4183 if (y->color == MEM_RED)
4184 {
4185 /* Uncle and parent are red but should be black because
4186 X is red. Change the colors accordingly and proceed
4187 with the grandparent. */
4188 x->parent->color = MEM_BLACK;
4189 y->color = MEM_BLACK;
4190 x->parent->parent->color = MEM_RED;
4191 x = x->parent->parent;
4192 }
4193 else
4194 {
4195 /* Parent and uncle have different colors; parent is
4196 red, uncle is black. */
4197 if (x == x->parent->right)
4198 {
4199 x = x->parent;
4200 mem_rotate_left (x);
4201 }
4202
4203 x->parent->color = MEM_BLACK;
4204 x->parent->parent->color = MEM_RED;
4205 mem_rotate_right (x->parent->parent);
4206 }
4207 }
4208 else
4209 {
4210 /* This is the symmetrical case of above. */
4211 struct mem_node *y = x->parent->parent->left;
4212
4213 if (y->color == MEM_RED)
4214 {
4215 x->parent->color = MEM_BLACK;
4216 y->color = MEM_BLACK;
4217 x->parent->parent->color = MEM_RED;
4218 x = x->parent->parent;
4219 }
4220 else
4221 {
4222 if (x == x->parent->left)
4223 {
4224 x = x->parent;
4225 mem_rotate_right (x);
4226 }
4227
4228 x->parent->color = MEM_BLACK;
4229 x->parent->parent->color = MEM_RED;
4230 mem_rotate_left (x->parent->parent);
4231 }
4232 }
4233 }
4234
4235 /* The root may have been changed to red due to the algorithm. Set
4236 it to black so that property #5 is satisfied. */
4237 mem_root->color = MEM_BLACK;
4238 }
4239
4240
4241 /* (x) (y)
4242 / \ / \
4243 a (y) ===> (x) c
4244 / \ / \
4245 b c a b */
4246
4247 static void
4248 mem_rotate_left (struct mem_node *x)
4249 {
4250 struct mem_node *y;
4251
4252 /* Turn y's left sub-tree into x's right sub-tree. */
4253 y = x->right;
4254 x->right = y->left;
4255 if (y->left != MEM_NIL)
4256 y->left->parent = x;
4257
4258 /* Y's parent was x's parent. */
4259 if (y != MEM_NIL)
4260 y->parent = x->parent;
4261
4262 /* Get the parent to point to y instead of x. */
4263 if (x->parent)
4264 {
4265 if (x == x->parent->left)
4266 x->parent->left = y;
4267 else
4268 x->parent->right = y;
4269 }
4270 else
4271 mem_root = y;
4272
4273 /* Put x on y's left. */
4274 y->left = x;
4275 if (x != MEM_NIL)
4276 x->parent = y;
4277 }
4278
4279
4280 /* (x) (Y)
4281 / \ / \
4282 (y) c ===> a (x)
4283 / \ / \
4284 a b b c */
4285
4286 static void
4287 mem_rotate_right (struct mem_node *x)
4288 {
4289 struct mem_node *y = x->left;
4290
4291 x->left = y->right;
4292 if (y->right != MEM_NIL)
4293 y->right->parent = x;
4294
4295 if (y != MEM_NIL)
4296 y->parent = x->parent;
4297 if (x->parent)
4298 {
4299 if (x == x->parent->right)
4300 x->parent->right = y;
4301 else
4302 x->parent->left = y;
4303 }
4304 else
4305 mem_root = y;
4306
4307 y->right = x;
4308 if (x != MEM_NIL)
4309 x->parent = y;
4310 }
4311
4312
4313 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4314
4315 static void
4316 mem_delete (struct mem_node *z)
4317 {
4318 struct mem_node *x, *y;
4319
4320 if (!z || z == MEM_NIL)
4321 return;
4322
4323 if (z->left == MEM_NIL || z->right == MEM_NIL)
4324 y = z;
4325 else
4326 {
4327 y = z->right;
4328 while (y->left != MEM_NIL)
4329 y = y->left;
4330 }
4331
4332 if (y->left != MEM_NIL)
4333 x = y->left;
4334 else
4335 x = y->right;
4336
4337 x->parent = y->parent;
4338 if (y->parent)
4339 {
4340 if (y == y->parent->left)
4341 y->parent->left = x;
4342 else
4343 y->parent->right = x;
4344 }
4345 else
4346 mem_root = x;
4347
4348 if (y != z)
4349 {
4350 z->start = y->start;
4351 z->end = y->end;
4352 z->type = y->type;
4353 }
4354
4355 if (y->color == MEM_BLACK)
4356 mem_delete_fixup (x);
4357
4358 #ifdef GC_MALLOC_CHECK
4359 free (y);
4360 #else
4361 xfree (y);
4362 #endif
4363 }
4364
4365
4366 /* Re-establish the red-black properties of the tree, after a
4367 deletion. */
4368
4369 static void
4370 mem_delete_fixup (struct mem_node *x)
4371 {
4372 while (x != mem_root && x->color == MEM_BLACK)
4373 {
4374 if (x == x->parent->left)
4375 {
4376 struct mem_node *w = x->parent->right;
4377
4378 if (w->color == MEM_RED)
4379 {
4380 w->color = MEM_BLACK;
4381 x->parent->color = MEM_RED;
4382 mem_rotate_left (x->parent);
4383 w = x->parent->right;
4384 }
4385
4386 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4387 {
4388 w->color = MEM_RED;
4389 x = x->parent;
4390 }
4391 else
4392 {
4393 if (w->right->color == MEM_BLACK)
4394 {
4395 w->left->color = MEM_BLACK;
4396 w->color = MEM_RED;
4397 mem_rotate_right (w);
4398 w = x->parent->right;
4399 }
4400 w->color = x->parent->color;
4401 x->parent->color = MEM_BLACK;
4402 w->right->color = MEM_BLACK;
4403 mem_rotate_left (x->parent);
4404 x = mem_root;
4405 }
4406 }
4407 else
4408 {
4409 struct mem_node *w = x->parent->left;
4410
4411 if (w->color == MEM_RED)
4412 {
4413 w->color = MEM_BLACK;
4414 x->parent->color = MEM_RED;
4415 mem_rotate_right (x->parent);
4416 w = x->parent->left;
4417 }
4418
4419 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4420 {
4421 w->color = MEM_RED;
4422 x = x->parent;
4423 }
4424 else
4425 {
4426 if (w->left->color == MEM_BLACK)
4427 {
4428 w->right->color = MEM_BLACK;
4429 w->color = MEM_RED;
4430 mem_rotate_left (w);
4431 w = x->parent->left;
4432 }
4433
4434 w->color = x->parent->color;
4435 x->parent->color = MEM_BLACK;
4436 w->left->color = MEM_BLACK;
4437 mem_rotate_right (x->parent);
4438 x = mem_root;
4439 }
4440 }
4441 }
4442
4443 x->color = MEM_BLACK;
4444 }
4445
4446
4447 /* Value is non-zero if P is a pointer to a live Lisp string on
4448 the heap. M is a pointer to the mem_block for P. */
4449
4450 static bool
4451 live_string_p (struct mem_node *m, void *p)
4452 {
4453 if (m->type == MEM_TYPE_STRING)
4454 {
4455 struct string_block *b = m->start;
4456 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4457
4458 /* P must point to the start of a Lisp_String structure, and it
4459 must not be on the free-list. */
4460 return (offset >= 0
4461 && offset % sizeof b->strings[0] == 0
4462 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4463 && ((struct Lisp_String *) p)->data != NULL);
4464 }
4465 else
4466 return 0;
4467 }
4468
4469
4470 /* Value is non-zero if P is a pointer to a live Lisp cons on
4471 the heap. M is a pointer to the mem_block for P. */
4472
4473 static bool
4474 live_cons_p (struct mem_node *m, void *p)
4475 {
4476 if (m->type == MEM_TYPE_CONS)
4477 {
4478 struct cons_block *b = m->start;
4479 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4480
4481 /* P must point to the start of a Lisp_Cons, not be
4482 one of the unused cells in the current cons block,
4483 and not be on the free-list. */
4484 return (offset >= 0
4485 && offset % sizeof b->conses[0] == 0
4486 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4487 && (b != cons_block
4488 || offset / sizeof b->conses[0] < cons_block_index)
4489 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4490 }
4491 else
4492 return 0;
4493 }
4494
4495
4496 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4497 the heap. M is a pointer to the mem_block for P. */
4498
4499 static bool
4500 live_symbol_p (struct mem_node *m, void *p)
4501 {
4502 if (m->type == MEM_TYPE_SYMBOL)
4503 {
4504 struct symbol_block *b = m->start;
4505 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4506
4507 /* P must point to the start of a Lisp_Symbol, not be
4508 one of the unused cells in the current symbol block,
4509 and not be on the free-list. */
4510 return (offset >= 0
4511 && offset % sizeof b->symbols[0] == 0
4512 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4513 && (b != symbol_block
4514 || offset / sizeof b->symbols[0] < symbol_block_index)
4515 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4516 }
4517 else
4518 return 0;
4519 }
4520
4521
4522 /* Value is non-zero if P is a pointer to a live Lisp float on
4523 the heap. M is a pointer to the mem_block for P. */
4524
4525 static bool
4526 live_float_p (struct mem_node *m, void *p)
4527 {
4528 if (m->type == MEM_TYPE_FLOAT)
4529 {
4530 struct float_block *b = m->start;
4531 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4532
4533 /* P must point to the start of a Lisp_Float and not be
4534 one of the unused cells in the current float block. */
4535 return (offset >= 0
4536 && offset % sizeof b->floats[0] == 0
4537 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4538 && (b != float_block
4539 || offset / sizeof b->floats[0] < float_block_index));
4540 }
4541 else
4542 return 0;
4543 }
4544
4545
4546 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4547 the heap. M is a pointer to the mem_block for P. */
4548
4549 static bool
4550 live_misc_p (struct mem_node *m, void *p)
4551 {
4552 if (m->type == MEM_TYPE_MISC)
4553 {
4554 struct marker_block *b = m->start;
4555 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4556
4557 /* P must point to the start of a Lisp_Misc, not be
4558 one of the unused cells in the current misc block,
4559 and not be on the free-list. */
4560 return (offset >= 0
4561 && offset % sizeof b->markers[0] == 0
4562 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4563 && (b != marker_block
4564 || offset / sizeof b->markers[0] < marker_block_index)
4565 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4566 }
4567 else
4568 return 0;
4569 }
4570
4571
4572 /* Value is non-zero if P is a pointer to a live vector-like object.
4573 M is a pointer to the mem_block for P. */
4574
4575 static bool
4576 live_vector_p (struct mem_node *m, void *p)
4577 {
4578 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4579 {
4580 /* This memory node corresponds to a vector block. */
4581 struct vector_block *block = m->start;
4582 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4583
4584 /* P is in the block's allocation range. Scan the block
4585 up to P and see whether P points to the start of some
4586 vector which is not on a free list. FIXME: check whether
4587 some allocation patterns (probably a lot of short vectors)
4588 may cause a substantial overhead of this loop. */
4589 while (VECTOR_IN_BLOCK (vector, block)
4590 && vector <= (struct Lisp_Vector *) p)
4591 {
4592 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4593 return 1;
4594 else
4595 vector = ADVANCE (vector, vector_nbytes (vector));
4596 }
4597 }
4598 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4599 /* This memory node corresponds to a large vector. */
4600 return 1;
4601 return 0;
4602 }
4603
4604
4605 /* Value is non-zero if P is a pointer to a live buffer. M is a
4606 pointer to the mem_block for P. */
4607
4608 static bool
4609 live_buffer_p (struct mem_node *m, void *p)
4610 {
4611 /* P must point to the start of the block, and the buffer
4612 must not have been killed. */
4613 return (m->type == MEM_TYPE_BUFFER
4614 && p == m->start
4615 && !NILP (((struct buffer *) p)->name_));
4616 }
4617
4618 /* Mark OBJ if we can prove it's a Lisp_Object. */
4619
4620 static void
4621 mark_maybe_object (Lisp_Object obj)
4622 {
4623 #if USE_VALGRIND
4624 if (valgrind_p)
4625 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4626 #endif
4627
4628 if (INTEGERP (obj))
4629 return;
4630
4631 void *po = XPNTR (obj);
4632 struct mem_node *m = mem_find (po);
4633
4634 if (m != MEM_NIL)
4635 {
4636 bool mark_p = false;
4637
4638 switch (XTYPE (obj))
4639 {
4640 case Lisp_String:
4641 mark_p = (live_string_p (m, po)
4642 && !STRING_MARKED_P ((struct Lisp_String *) po));
4643 break;
4644
4645 case Lisp_Cons:
4646 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4647 break;
4648
4649 case Lisp_Symbol:
4650 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4651 break;
4652
4653 case Lisp_Float:
4654 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4655 break;
4656
4657 case Lisp_Vectorlike:
4658 /* Note: can't check BUFFERP before we know it's a
4659 buffer because checking that dereferences the pointer
4660 PO which might point anywhere. */
4661 if (live_vector_p (m, po))
4662 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4663 else if (live_buffer_p (m, po))
4664 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4665 break;
4666
4667 case Lisp_Misc:
4668 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4669 break;
4670
4671 default:
4672 break;
4673 }
4674
4675 if (mark_p)
4676 mark_object (obj);
4677 }
4678 }
4679
4680 /* Return true if P can point to Lisp data, and false otherwise.
4681 Symbols are implemented via offsets not pointers, but the offsets
4682 are also multiples of GCALIGNMENT. */
4683
4684 static bool
4685 maybe_lisp_pointer (void *p)
4686 {
4687 return (uintptr_t) p % GCALIGNMENT == 0;
4688 }
4689
4690 #ifndef HAVE_MODULES
4691 enum { HAVE_MODULES = false };
4692 #endif
4693
4694 /* If P points to Lisp data, mark that as live if it isn't already
4695 marked. */
4696
4697 static void
4698 mark_maybe_pointer (void *p)
4699 {
4700 struct mem_node *m;
4701
4702 #if USE_VALGRIND
4703 if (valgrind_p)
4704 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4705 #endif
4706
4707 if (sizeof (Lisp_Object) == sizeof (void *) || !HAVE_MODULES)
4708 {
4709 if (!maybe_lisp_pointer (p))
4710 return;
4711 }
4712 else
4713 {
4714 /* For the wide-int case, also mark emacs_value tagged pointers,
4715 which can be generated by emacs-module.c's value_to_lisp. */
4716 p = (void *) ((uintptr_t) p & ~(GCALIGNMENT - 1));
4717 }
4718
4719 m = mem_find (p);
4720 if (m != MEM_NIL)
4721 {
4722 Lisp_Object obj = Qnil;
4723
4724 switch (m->type)
4725 {
4726 case MEM_TYPE_NON_LISP:
4727 case MEM_TYPE_SPARE:
4728 /* Nothing to do; not a pointer to Lisp memory. */
4729 break;
4730
4731 case MEM_TYPE_BUFFER:
4732 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4733 XSETVECTOR (obj, p);
4734 break;
4735
4736 case MEM_TYPE_CONS:
4737 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4738 XSETCONS (obj, p);
4739 break;
4740
4741 case MEM_TYPE_STRING:
4742 if (live_string_p (m, p)
4743 && !STRING_MARKED_P ((struct Lisp_String *) p))
4744 XSETSTRING (obj, p);
4745 break;
4746
4747 case MEM_TYPE_MISC:
4748 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4749 XSETMISC (obj, p);
4750 break;
4751
4752 case MEM_TYPE_SYMBOL:
4753 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4754 XSETSYMBOL (obj, p);
4755 break;
4756
4757 case MEM_TYPE_FLOAT:
4758 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4759 XSETFLOAT (obj, p);
4760 break;
4761
4762 case MEM_TYPE_VECTORLIKE:
4763 case MEM_TYPE_VECTOR_BLOCK:
4764 if (live_vector_p (m, p))
4765 {
4766 Lisp_Object tem;
4767 XSETVECTOR (tem, p);
4768 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4769 obj = tem;
4770 }
4771 break;
4772
4773 default:
4774 emacs_abort ();
4775 }
4776
4777 if (!NILP (obj))
4778 mark_object (obj);
4779 }
4780 }
4781
4782
4783 /* Alignment of pointer values. Use alignof, as it sometimes returns
4784 a smaller alignment than GCC's __alignof__ and mark_memory might
4785 miss objects if __alignof__ were used. */
4786 #define GC_POINTER_ALIGNMENT alignof (void *)
4787
4788 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4789 or END+OFFSET..START. */
4790
4791 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4792 mark_memory (void *start, void *end)
4793 {
4794 char *pp;
4795
4796 /* Make START the pointer to the start of the memory region,
4797 if it isn't already. */
4798 if (end < start)
4799 {
4800 void *tem = start;
4801 start = end;
4802 end = tem;
4803 }
4804
4805 eassert (((uintptr_t) start) % GC_POINTER_ALIGNMENT == 0);
4806
4807 /* Mark Lisp data pointed to. This is necessary because, in some
4808 situations, the C compiler optimizes Lisp objects away, so that
4809 only a pointer to them remains. Example:
4810
4811 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4812 ()
4813 {
4814 Lisp_Object obj = build_string ("test");
4815 struct Lisp_String *s = XSTRING (obj);
4816 Fgarbage_collect ();
4817 fprintf (stderr, "test '%s'\n", s->data);
4818 return Qnil;
4819 }
4820
4821 Here, `obj' isn't really used, and the compiler optimizes it
4822 away. The only reference to the life string is through the
4823 pointer `s'. */
4824
4825 for (pp = start; (void *) pp < end; pp += GC_POINTER_ALIGNMENT)
4826 {
4827 mark_maybe_pointer (*(void **) pp);
4828 mark_maybe_object (*(Lisp_Object *) pp);
4829 }
4830 }
4831
4832 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4833
4834 static bool setjmp_tested_p;
4835 static int longjmps_done;
4836
4837 #define SETJMP_WILL_LIKELY_WORK "\
4838 \n\
4839 Emacs garbage collector has been changed to use conservative stack\n\
4840 marking. Emacs has determined that the method it uses to do the\n\
4841 marking will likely work on your system, but this isn't sure.\n\
4842 \n\
4843 If you are a system-programmer, or can get the help of a local wizard\n\
4844 who is, please take a look at the function mark_stack in alloc.c, and\n\
4845 verify that the methods used are appropriate for your system.\n\
4846 \n\
4847 Please mail the result to <emacs-devel@gnu.org>.\n\
4848 "
4849
4850 #define SETJMP_WILL_NOT_WORK "\
4851 \n\
4852 Emacs garbage collector has been changed to use conservative stack\n\
4853 marking. Emacs has determined that the default method it uses to do the\n\
4854 marking will not work on your system. We will need a system-dependent\n\
4855 solution for your system.\n\
4856 \n\
4857 Please take a look at the function mark_stack in alloc.c, and\n\
4858 try to find a way to make it work on your system.\n\
4859 \n\
4860 Note that you may get false negatives, depending on the compiler.\n\
4861 In particular, you need to use -O with GCC for this test.\n\
4862 \n\
4863 Please mail the result to <emacs-devel@gnu.org>.\n\
4864 "
4865
4866
4867 /* Perform a quick check if it looks like setjmp saves registers in a
4868 jmp_buf. Print a message to stderr saying so. When this test
4869 succeeds, this is _not_ a proof that setjmp is sufficient for
4870 conservative stack marking. Only the sources or a disassembly
4871 can prove that. */
4872
4873 static void
4874 test_setjmp (void)
4875 {
4876 char buf[10];
4877 register int x;
4878 sys_jmp_buf jbuf;
4879
4880 /* Arrange for X to be put in a register. */
4881 sprintf (buf, "1");
4882 x = strlen (buf);
4883 x = 2 * x - 1;
4884
4885 sys_setjmp (jbuf);
4886 if (longjmps_done == 1)
4887 {
4888 /* Came here after the longjmp at the end of the function.
4889
4890 If x == 1, the longjmp has restored the register to its
4891 value before the setjmp, and we can hope that setjmp
4892 saves all such registers in the jmp_buf, although that
4893 isn't sure.
4894
4895 For other values of X, either something really strange is
4896 taking place, or the setjmp just didn't save the register. */
4897
4898 if (x == 1)
4899 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4900 else
4901 {
4902 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4903 exit (1);
4904 }
4905 }
4906
4907 ++longjmps_done;
4908 x = 2;
4909 if (longjmps_done == 1)
4910 sys_longjmp (jbuf, 1);
4911 }
4912
4913 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4914
4915
4916 /* Mark live Lisp objects on the C stack.
4917
4918 There are several system-dependent problems to consider when
4919 porting this to new architectures:
4920
4921 Processor Registers
4922
4923 We have to mark Lisp objects in CPU registers that can hold local
4924 variables or are used to pass parameters.
4925
4926 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4927 something that either saves relevant registers on the stack, or
4928 calls mark_maybe_object passing it each register's contents.
4929
4930 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4931 implementation assumes that calling setjmp saves registers we need
4932 to see in a jmp_buf which itself lies on the stack. This doesn't
4933 have to be true! It must be verified for each system, possibly
4934 by taking a look at the source code of setjmp.
4935
4936 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4937 can use it as a machine independent method to store all registers
4938 to the stack. In this case the macros described in the previous
4939 two paragraphs are not used.
4940
4941 Stack Layout
4942
4943 Architectures differ in the way their processor stack is organized.
4944 For example, the stack might look like this
4945
4946 +----------------+
4947 | Lisp_Object | size = 4
4948 +----------------+
4949 | something else | size = 2
4950 +----------------+
4951 | Lisp_Object | size = 4
4952 +----------------+
4953 | ... |
4954
4955 In such a case, not every Lisp_Object will be aligned equally. To
4956 find all Lisp_Object on the stack it won't be sufficient to walk
4957 the stack in steps of 4 bytes. Instead, two passes will be
4958 necessary, one starting at the start of the stack, and a second
4959 pass starting at the start of the stack + 2. Likewise, if the
4960 minimal alignment of Lisp_Objects on the stack is 1, four passes
4961 would be necessary, each one starting with one byte more offset
4962 from the stack start. */
4963
4964 static void
4965 mark_stack (void *end)
4966 {
4967
4968 /* This assumes that the stack is a contiguous region in memory. If
4969 that's not the case, something has to be done here to iterate
4970 over the stack segments. */
4971 mark_memory (stack_base, end);
4972
4973 /* Allow for marking a secondary stack, like the register stack on the
4974 ia64. */
4975 #ifdef GC_MARK_SECONDARY_STACK
4976 GC_MARK_SECONDARY_STACK ();
4977 #endif
4978 }
4979
4980 static bool
4981 c_symbol_p (struct Lisp_Symbol *sym)
4982 {
4983 char *lispsym_ptr = (char *) lispsym;
4984 char *sym_ptr = (char *) sym;
4985 ptrdiff_t lispsym_offset = sym_ptr - lispsym_ptr;
4986 return 0 <= lispsym_offset && lispsym_offset < sizeof lispsym;
4987 }
4988
4989 /* Determine whether it is safe to access memory at address P. */
4990 static int
4991 valid_pointer_p (void *p)
4992 {
4993 #ifdef WINDOWSNT
4994 return w32_valid_pointer_p (p, 16);
4995 #else
4996
4997 if (ADDRESS_SANITIZER)
4998 return p ? -1 : 0;
4999
5000 int fd[2];
5001
5002 /* Obviously, we cannot just access it (we would SEGV trying), so we
5003 trick the o/s to tell us whether p is a valid pointer.
5004 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
5005 not validate p in that case. */
5006
5007 if (emacs_pipe (fd) == 0)
5008 {
5009 bool valid = emacs_write (fd[1], p, 16) == 16;
5010 emacs_close (fd[1]);
5011 emacs_close (fd[0]);
5012 return valid;
5013 }
5014
5015 return -1;
5016 #endif
5017 }
5018
5019 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
5020 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
5021 cannot validate OBJ. This function can be quite slow, so its primary
5022 use is the manual debugging. The only exception is print_object, where
5023 we use it to check whether the memory referenced by the pointer of
5024 Lisp_Save_Value object contains valid objects. */
5025
5026 int
5027 valid_lisp_object_p (Lisp_Object obj)
5028 {
5029 if (INTEGERP (obj))
5030 return 1;
5031
5032 void *p = XPNTR (obj);
5033 if (PURE_P (p))
5034 return 1;
5035
5036 if (SYMBOLP (obj) && c_symbol_p (p))
5037 return ((char *) p - (char *) lispsym) % sizeof lispsym[0] == 0;
5038
5039 if (p == &buffer_defaults || p == &buffer_local_symbols)
5040 return 2;
5041
5042 struct mem_node *m = mem_find (p);
5043
5044 if (m == MEM_NIL)
5045 {
5046 int valid = valid_pointer_p (p);
5047 if (valid <= 0)
5048 return valid;
5049
5050 if (SUBRP (obj))
5051 return 1;
5052
5053 return 0;
5054 }
5055
5056 switch (m->type)
5057 {
5058 case MEM_TYPE_NON_LISP:
5059 case MEM_TYPE_SPARE:
5060 return 0;
5061
5062 case MEM_TYPE_BUFFER:
5063 return live_buffer_p (m, p) ? 1 : 2;
5064
5065 case MEM_TYPE_CONS:
5066 return live_cons_p (m, p);
5067
5068 case MEM_TYPE_STRING:
5069 return live_string_p (m, p);
5070
5071 case MEM_TYPE_MISC:
5072 return live_misc_p (m, p);
5073
5074 case MEM_TYPE_SYMBOL:
5075 return live_symbol_p (m, p);
5076
5077 case MEM_TYPE_FLOAT:
5078 return live_float_p (m, p);
5079
5080 case MEM_TYPE_VECTORLIKE:
5081 case MEM_TYPE_VECTOR_BLOCK:
5082 return live_vector_p (m, p);
5083
5084 default:
5085 break;
5086 }
5087
5088 return 0;
5089 }
5090
5091 /***********************************************************************
5092 Pure Storage Management
5093 ***********************************************************************/
5094
5095 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5096 pointer to it. TYPE is the Lisp type for which the memory is
5097 allocated. TYPE < 0 means it's not used for a Lisp object. */
5098
5099 static void *
5100 pure_alloc (size_t size, int type)
5101 {
5102 void *result;
5103
5104 again:
5105 if (type >= 0)
5106 {
5107 /* Allocate space for a Lisp object from the beginning of the free
5108 space with taking account of alignment. */
5109 result = ALIGN (purebeg + pure_bytes_used_lisp, GCALIGNMENT);
5110 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5111 }
5112 else
5113 {
5114 /* Allocate space for a non-Lisp object from the end of the free
5115 space. */
5116 pure_bytes_used_non_lisp += size;
5117 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5118 }
5119 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5120
5121 if (pure_bytes_used <= pure_size)
5122 return result;
5123
5124 /* Don't allocate a large amount here,
5125 because it might get mmap'd and then its address
5126 might not be usable. */
5127 purebeg = xmalloc (10000);
5128 pure_size = 10000;
5129 pure_bytes_used_before_overflow += pure_bytes_used - size;
5130 pure_bytes_used = 0;
5131 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5132 goto again;
5133 }
5134
5135
5136 /* Print a warning if PURESIZE is too small. */
5137
5138 void
5139 check_pure_size (void)
5140 {
5141 if (pure_bytes_used_before_overflow)
5142 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5143 " bytes needed)"),
5144 pure_bytes_used + pure_bytes_used_before_overflow);
5145 }
5146
5147
5148 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5149 the non-Lisp data pool of the pure storage, and return its start
5150 address. Return NULL if not found. */
5151
5152 static char *
5153 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5154 {
5155 int i;
5156 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5157 const unsigned char *p;
5158 char *non_lisp_beg;
5159
5160 if (pure_bytes_used_non_lisp <= nbytes)
5161 return NULL;
5162
5163 /* Set up the Boyer-Moore table. */
5164 skip = nbytes + 1;
5165 for (i = 0; i < 256; i++)
5166 bm_skip[i] = skip;
5167
5168 p = (const unsigned char *) data;
5169 while (--skip > 0)
5170 bm_skip[*p++] = skip;
5171
5172 last_char_skip = bm_skip['\0'];
5173
5174 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5175 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5176
5177 /* See the comments in the function `boyer_moore' (search.c) for the
5178 use of `infinity'. */
5179 infinity = pure_bytes_used_non_lisp + 1;
5180 bm_skip['\0'] = infinity;
5181
5182 p = (const unsigned char *) non_lisp_beg + nbytes;
5183 start = 0;
5184 do
5185 {
5186 /* Check the last character (== '\0'). */
5187 do
5188 {
5189 start += bm_skip[*(p + start)];
5190 }
5191 while (start <= start_max);
5192
5193 if (start < infinity)
5194 /* Couldn't find the last character. */
5195 return NULL;
5196
5197 /* No less than `infinity' means we could find the last
5198 character at `p[start - infinity]'. */
5199 start -= infinity;
5200
5201 /* Check the remaining characters. */
5202 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5203 /* Found. */
5204 return non_lisp_beg + start;
5205
5206 start += last_char_skip;
5207 }
5208 while (start <= start_max);
5209
5210 return NULL;
5211 }
5212
5213
5214 /* Return a string allocated in pure space. DATA is a buffer holding
5215 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5216 means make the result string multibyte.
5217
5218 Must get an error if pure storage is full, since if it cannot hold
5219 a large string it may be able to hold conses that point to that
5220 string; then the string is not protected from gc. */
5221
5222 Lisp_Object
5223 make_pure_string (const char *data,
5224 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5225 {
5226 Lisp_Object string;
5227 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5228 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5229 if (s->data == NULL)
5230 {
5231 s->data = pure_alloc (nbytes + 1, -1);
5232 memcpy (s->data, data, nbytes);
5233 s->data[nbytes] = '\0';
5234 }
5235 s->size = nchars;
5236 s->size_byte = multibyte ? nbytes : -1;
5237 s->intervals = NULL;
5238 XSETSTRING (string, s);
5239 return string;
5240 }
5241
5242 /* Return a string allocated in pure space. Do not
5243 allocate the string data, just point to DATA. */
5244
5245 Lisp_Object
5246 make_pure_c_string (const char *data, ptrdiff_t nchars)
5247 {
5248 Lisp_Object string;
5249 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5250 s->size = nchars;
5251 s->size_byte = -1;
5252 s->data = (unsigned char *) data;
5253 s->intervals = NULL;
5254 XSETSTRING (string, s);
5255 return string;
5256 }
5257
5258 static Lisp_Object purecopy (Lisp_Object obj);
5259
5260 /* Return a cons allocated from pure space. Give it pure copies
5261 of CAR as car and CDR as cdr. */
5262
5263 Lisp_Object
5264 pure_cons (Lisp_Object car, Lisp_Object cdr)
5265 {
5266 Lisp_Object new;
5267 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5268 XSETCONS (new, p);
5269 XSETCAR (new, purecopy (car));
5270 XSETCDR (new, purecopy (cdr));
5271 return new;
5272 }
5273
5274
5275 /* Value is a float object with value NUM allocated from pure space. */
5276
5277 static Lisp_Object
5278 make_pure_float (double num)
5279 {
5280 Lisp_Object new;
5281 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5282 XSETFLOAT (new, p);
5283 XFLOAT_INIT (new, num);
5284 return new;
5285 }
5286
5287
5288 /* Return a vector with room for LEN Lisp_Objects allocated from
5289 pure space. */
5290
5291 static Lisp_Object
5292 make_pure_vector (ptrdiff_t len)
5293 {
5294 Lisp_Object new;
5295 size_t size = header_size + len * word_size;
5296 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5297 XSETVECTOR (new, p);
5298 XVECTOR (new)->header.size = len;
5299 return new;
5300 }
5301
5302 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5303 doc: /* Make a copy of object OBJ in pure storage.
5304 Recursively copies contents of vectors and cons cells.
5305 Does not copy symbols. Copies strings without text properties. */)
5306 (register Lisp_Object obj)
5307 {
5308 if (NILP (Vpurify_flag))
5309 return obj;
5310 else if (MARKERP (obj) || OVERLAYP (obj)
5311 || HASH_TABLE_P (obj) || SYMBOLP (obj))
5312 /* Can't purify those. */
5313 return obj;
5314 else
5315 return purecopy (obj);
5316 }
5317
5318 static Lisp_Object
5319 purecopy (Lisp_Object obj)
5320 {
5321 if (INTEGERP (obj)
5322 || (! SYMBOLP (obj) && PURE_P (XPNTR_OR_SYMBOL_OFFSET (obj)))
5323 || SUBRP (obj))
5324 return obj; /* Already pure. */
5325
5326 if (STRINGP (obj) && XSTRING (obj)->intervals)
5327 message_with_string ("Dropping text-properties while making string `%s' pure",
5328 obj, true);
5329
5330 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5331 {
5332 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5333 if (!NILP (tmp))
5334 return tmp;
5335 }
5336
5337 if (CONSP (obj))
5338 obj = pure_cons (XCAR (obj), XCDR (obj));
5339 else if (FLOATP (obj))
5340 obj = make_pure_float (XFLOAT_DATA (obj));
5341 else if (STRINGP (obj))
5342 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5343 SBYTES (obj),
5344 STRING_MULTIBYTE (obj));
5345 else if (COMPILEDP (obj) || VECTORP (obj) || HASH_TABLE_P (obj))
5346 {
5347 struct Lisp_Vector *objp = XVECTOR (obj);
5348 ptrdiff_t nbytes = vector_nbytes (objp);
5349 struct Lisp_Vector *vec = pure_alloc (nbytes, Lisp_Vectorlike);
5350 register ptrdiff_t i;
5351 ptrdiff_t size = ASIZE (obj);
5352 if (size & PSEUDOVECTOR_FLAG)
5353 size &= PSEUDOVECTOR_SIZE_MASK;
5354 memcpy (vec, objp, nbytes);
5355 for (i = 0; i < size; i++)
5356 vec->contents[i] = purecopy (vec->contents[i]);
5357 XSETVECTOR (obj, vec);
5358 }
5359 else if (SYMBOLP (obj))
5360 {
5361 if (!XSYMBOL (obj)->pinned && !c_symbol_p (XSYMBOL (obj)))
5362 { /* We can't purify them, but they appear in many pure objects.
5363 Mark them as `pinned' so we know to mark them at every GC cycle. */
5364 XSYMBOL (obj)->pinned = true;
5365 symbol_block_pinned = symbol_block;
5366 }
5367 /* Don't hash-cons it. */
5368 return obj;
5369 }
5370 else
5371 {
5372 Lisp_Object fmt = build_pure_c_string ("Don't know how to purify: %S");
5373 Fsignal (Qerror, list1 (CALLN (Fformat, fmt, obj)));
5374 }
5375
5376 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5377 Fputhash (obj, obj, Vpurify_flag);
5378
5379 return obj;
5380 }
5381
5382
5383 \f
5384 /***********************************************************************
5385 Protection from GC
5386 ***********************************************************************/
5387
5388 /* Put an entry in staticvec, pointing at the variable with address
5389 VARADDRESS. */
5390
5391 void
5392 staticpro (Lisp_Object *varaddress)
5393 {
5394 if (staticidx >= NSTATICS)
5395 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5396 staticvec[staticidx++] = varaddress;
5397 }
5398
5399 \f
5400 /***********************************************************************
5401 Protection from GC
5402 ***********************************************************************/
5403
5404 /* Temporarily prevent garbage collection. */
5405
5406 ptrdiff_t
5407 inhibit_garbage_collection (void)
5408 {
5409 ptrdiff_t count = SPECPDL_INDEX ();
5410
5411 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5412 return count;
5413 }
5414
5415 /* Used to avoid possible overflows when
5416 converting from C to Lisp integers. */
5417
5418 static Lisp_Object
5419 bounded_number (EMACS_INT number)
5420 {
5421 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5422 }
5423
5424 /* Calculate total bytes of live objects. */
5425
5426 static size_t
5427 total_bytes_of_live_objects (void)
5428 {
5429 size_t tot = 0;
5430 tot += total_conses * sizeof (struct Lisp_Cons);
5431 tot += total_symbols * sizeof (struct Lisp_Symbol);
5432 tot += total_markers * sizeof (union Lisp_Misc);
5433 tot += total_string_bytes;
5434 tot += total_vector_slots * word_size;
5435 tot += total_floats * sizeof (struct Lisp_Float);
5436 tot += total_intervals * sizeof (struct interval);
5437 tot += total_strings * sizeof (struct Lisp_String);
5438 return tot;
5439 }
5440
5441 #ifdef HAVE_WINDOW_SYSTEM
5442
5443 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5444 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5445
5446 static Lisp_Object
5447 compact_font_cache_entry (Lisp_Object entry)
5448 {
5449 Lisp_Object tail, *prev = &entry;
5450
5451 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5452 {
5453 bool drop = 0;
5454 Lisp_Object obj = XCAR (tail);
5455
5456 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5457 if (CONSP (obj) && GC_FONT_SPEC_P (XCAR (obj))
5458 && !VECTOR_MARKED_P (GC_XFONT_SPEC (XCAR (obj)))
5459 /* Don't use VECTORP here, as that calls ASIZE, which could
5460 hit assertion violation during GC. */
5461 && (VECTORLIKEP (XCDR (obj))
5462 && ! (gc_asize (XCDR (obj)) & PSEUDOVECTOR_FLAG)))
5463 {
5464 ptrdiff_t i, size = gc_asize (XCDR (obj));
5465 Lisp_Object obj_cdr = XCDR (obj);
5466
5467 /* If font-spec is not marked, most likely all font-entities
5468 are not marked too. But we must be sure that nothing is
5469 marked within OBJ before we really drop it. */
5470 for (i = 0; i < size; i++)
5471 {
5472 Lisp_Object objlist;
5473
5474 if (VECTOR_MARKED_P (GC_XFONT_ENTITY (AREF (obj_cdr, i))))
5475 break;
5476
5477 objlist = AREF (AREF (obj_cdr, i), FONT_OBJLIST_INDEX);
5478 for (; CONSP (objlist); objlist = XCDR (objlist))
5479 {
5480 Lisp_Object val = XCAR (objlist);
5481 struct font *font = GC_XFONT_OBJECT (val);
5482
5483 if (!NILP (AREF (val, FONT_TYPE_INDEX))
5484 && VECTOR_MARKED_P(font))
5485 break;
5486 }
5487 if (CONSP (objlist))
5488 {
5489 /* Found a marked font, bail out. */
5490 break;
5491 }
5492 }
5493
5494 if (i == size)
5495 {
5496 /* No marked fonts were found, so this entire font
5497 entity can be dropped. */
5498 drop = 1;
5499 }
5500 }
5501 if (drop)
5502 *prev = XCDR (tail);
5503 else
5504 prev = xcdr_addr (tail);
5505 }
5506 return entry;
5507 }
5508
5509 /* Compact font caches on all terminals and mark
5510 everything which is still here after compaction. */
5511
5512 static void
5513 compact_font_caches (void)
5514 {
5515 struct terminal *t;
5516
5517 for (t = terminal_list; t; t = t->next_terminal)
5518 {
5519 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5520 if (CONSP (cache))
5521 {
5522 Lisp_Object entry;
5523
5524 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5525 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5526 }
5527 mark_object (cache);
5528 }
5529 }
5530
5531 #else /* not HAVE_WINDOW_SYSTEM */
5532
5533 #define compact_font_caches() (void)(0)
5534
5535 #endif /* HAVE_WINDOW_SYSTEM */
5536
5537 /* Remove (MARKER . DATA) entries with unmarked MARKER
5538 from buffer undo LIST and return changed list. */
5539
5540 static Lisp_Object
5541 compact_undo_list (Lisp_Object list)
5542 {
5543 Lisp_Object tail, *prev = &list;
5544
5545 for (tail = list; CONSP (tail); tail = XCDR (tail))
5546 {
5547 if (CONSP (XCAR (tail))
5548 && MARKERP (XCAR (XCAR (tail)))
5549 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5550 *prev = XCDR (tail);
5551 else
5552 prev = xcdr_addr (tail);
5553 }
5554 return list;
5555 }
5556
5557 static void
5558 mark_pinned_symbols (void)
5559 {
5560 struct symbol_block *sblk;
5561 int lim = (symbol_block_pinned == symbol_block
5562 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5563
5564 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5565 {
5566 union aligned_Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5567 for (; sym < end; ++sym)
5568 if (sym->s.pinned)
5569 mark_object (make_lisp_symbol (&sym->s));
5570
5571 lim = SYMBOL_BLOCK_SIZE;
5572 }
5573 }
5574
5575 /* Subroutine of Fgarbage_collect that does most of the work. It is a
5576 separate function so that we could limit mark_stack in searching
5577 the stack frames below this function, thus avoiding the rare cases
5578 where mark_stack finds values that look like live Lisp objects on
5579 portions of stack that couldn't possibly contain such live objects.
5580 For more details of this, see the discussion at
5581 http://lists.gnu.org/archive/html/emacs-devel/2014-05/msg00270.html. */
5582 static Lisp_Object
5583 garbage_collect_1 (void *end)
5584 {
5585 struct buffer *nextb;
5586 char stack_top_variable;
5587 ptrdiff_t i;
5588 bool message_p;
5589 ptrdiff_t count = SPECPDL_INDEX ();
5590 struct timespec start;
5591 Lisp_Object retval = Qnil;
5592 size_t tot_before = 0;
5593
5594 if (abort_on_gc)
5595 emacs_abort ();
5596
5597 /* Can't GC if pure storage overflowed because we can't determine
5598 if something is a pure object or not. */
5599 if (pure_bytes_used_before_overflow)
5600 return Qnil;
5601
5602 /* Record this function, so it appears on the profiler's backtraces. */
5603 record_in_backtrace (Qautomatic_gc, 0, 0);
5604
5605 check_cons_list ();
5606
5607 /* Don't keep undo information around forever.
5608 Do this early on, so it is no problem if the user quits. */
5609 FOR_EACH_BUFFER (nextb)
5610 compact_buffer (nextb);
5611
5612 if (profiler_memory_running)
5613 tot_before = total_bytes_of_live_objects ();
5614
5615 start = current_timespec ();
5616
5617 /* In case user calls debug_print during GC,
5618 don't let that cause a recursive GC. */
5619 consing_since_gc = 0;
5620
5621 /* Save what's currently displayed in the echo area. Don't do that
5622 if we are GC'ing because we've run out of memory, since
5623 push_message will cons, and we might have no memory for that. */
5624 if (NILP (Vmemory_full))
5625 {
5626 message_p = push_message ();
5627 record_unwind_protect_void (pop_message_unwind);
5628 }
5629 else
5630 message_p = false;
5631
5632 /* Save a copy of the contents of the stack, for debugging. */
5633 #if MAX_SAVE_STACK > 0
5634 if (NILP (Vpurify_flag))
5635 {
5636 char *stack;
5637 ptrdiff_t stack_size;
5638 if (&stack_top_variable < stack_bottom)
5639 {
5640 stack = &stack_top_variable;
5641 stack_size = stack_bottom - &stack_top_variable;
5642 }
5643 else
5644 {
5645 stack = stack_bottom;
5646 stack_size = &stack_top_variable - stack_bottom;
5647 }
5648 if (stack_size <= MAX_SAVE_STACK)
5649 {
5650 if (stack_copy_size < stack_size)
5651 {
5652 stack_copy = xrealloc (stack_copy, stack_size);
5653 stack_copy_size = stack_size;
5654 }
5655 no_sanitize_memcpy (stack_copy, stack, stack_size);
5656 }
5657 }
5658 #endif /* MAX_SAVE_STACK > 0 */
5659
5660 if (garbage_collection_messages)
5661 message1_nolog ("Garbage collecting...");
5662
5663 block_input ();
5664
5665 shrink_regexp_cache ();
5666
5667 gc_in_progress = 1;
5668
5669 /* Mark all the special slots that serve as the roots of accessibility. */
5670
5671 mark_buffer (&buffer_defaults);
5672 mark_buffer (&buffer_local_symbols);
5673
5674 for (i = 0; i < ARRAYELTS (lispsym); i++)
5675 mark_object (builtin_lisp_symbol (i));
5676
5677 for (i = 0; i < staticidx; i++)
5678 mark_object (*staticvec[i]);
5679
5680 mark_pinned_symbols ();
5681 mark_specpdl ();
5682 mark_terminals ();
5683 mark_kboards ();
5684
5685 #ifdef USE_GTK
5686 xg_mark_data ();
5687 #endif
5688
5689 mark_stack (end);
5690
5691 {
5692 struct handler *handler;
5693 for (handler = handlerlist; handler; handler = handler->next)
5694 {
5695 mark_object (handler->tag_or_ch);
5696 mark_object (handler->val);
5697 }
5698 }
5699 #ifdef HAVE_WINDOW_SYSTEM
5700 mark_fringe_data ();
5701 #endif
5702
5703 /* Everything is now marked, except for the data in font caches,
5704 undo lists, and finalizers. The first two are compacted by
5705 removing an items which aren't reachable otherwise. */
5706
5707 compact_font_caches ();
5708
5709 FOR_EACH_BUFFER (nextb)
5710 {
5711 if (!EQ (BVAR (nextb, undo_list), Qt))
5712 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5713 /* Now that we have stripped the elements that need not be
5714 in the undo_list any more, we can finally mark the list. */
5715 mark_object (BVAR (nextb, undo_list));
5716 }
5717
5718 /* Now pre-sweep finalizers. Here, we add any unmarked finalizers
5719 to doomed_finalizers so we can run their associated functions
5720 after GC. It's important to scan finalizers at this stage so
5721 that we can be sure that unmarked finalizers are really
5722 unreachable except for references from their associated functions
5723 and from other finalizers. */
5724
5725 queue_doomed_finalizers (&doomed_finalizers, &finalizers);
5726 mark_finalizer_list (&doomed_finalizers);
5727
5728 gc_sweep ();
5729
5730 relocate_byte_stack ();
5731
5732 /* Clear the mark bits that we set in certain root slots. */
5733 VECTOR_UNMARK (&buffer_defaults);
5734 VECTOR_UNMARK (&buffer_local_symbols);
5735
5736 check_cons_list ();
5737
5738 gc_in_progress = 0;
5739
5740 unblock_input ();
5741
5742 consing_since_gc = 0;
5743 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5744 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5745
5746 gc_relative_threshold = 0;
5747 if (FLOATP (Vgc_cons_percentage))
5748 { /* Set gc_cons_combined_threshold. */
5749 double tot = total_bytes_of_live_objects ();
5750
5751 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5752 if (0 < tot)
5753 {
5754 if (tot < TYPE_MAXIMUM (EMACS_INT))
5755 gc_relative_threshold = tot;
5756 else
5757 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5758 }
5759 }
5760
5761 if (garbage_collection_messages && NILP (Vmemory_full))
5762 {
5763 if (message_p || minibuf_level > 0)
5764 restore_message ();
5765 else
5766 message1_nolog ("Garbage collecting...done");
5767 }
5768
5769 unbind_to (count, Qnil);
5770
5771 Lisp_Object total[] = {
5772 list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5773 bounded_number (total_conses),
5774 bounded_number (total_free_conses)),
5775 list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5776 bounded_number (total_symbols),
5777 bounded_number (total_free_symbols)),
5778 list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5779 bounded_number (total_markers),
5780 bounded_number (total_free_markers)),
5781 list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5782 bounded_number (total_strings),
5783 bounded_number (total_free_strings)),
5784 list3 (Qstring_bytes, make_number (1),
5785 bounded_number (total_string_bytes)),
5786 list3 (Qvectors,
5787 make_number (header_size + sizeof (Lisp_Object)),
5788 bounded_number (total_vectors)),
5789 list4 (Qvector_slots, make_number (word_size),
5790 bounded_number (total_vector_slots),
5791 bounded_number (total_free_vector_slots)),
5792 list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5793 bounded_number (total_floats),
5794 bounded_number (total_free_floats)),
5795 list4 (Qintervals, make_number (sizeof (struct interval)),
5796 bounded_number (total_intervals),
5797 bounded_number (total_free_intervals)),
5798 list3 (Qbuffers, make_number (sizeof (struct buffer)),
5799 bounded_number (total_buffers)),
5800
5801 #ifdef DOUG_LEA_MALLOC
5802 list4 (Qheap, make_number (1024),
5803 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5804 bounded_number ((mallinfo ().fordblks + 1023) >> 10)),
5805 #endif
5806 };
5807 retval = CALLMANY (Flist, total);
5808
5809 /* GC is complete: now we can run our finalizer callbacks. */
5810 run_finalizers (&doomed_finalizers);
5811
5812 if (!NILP (Vpost_gc_hook))
5813 {
5814 ptrdiff_t gc_count = inhibit_garbage_collection ();
5815 safe_run_hooks (Qpost_gc_hook);
5816 unbind_to (gc_count, Qnil);
5817 }
5818
5819 /* Accumulate statistics. */
5820 if (FLOATP (Vgc_elapsed))
5821 {
5822 struct timespec since_start = timespec_sub (current_timespec (), start);
5823 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5824 + timespectod (since_start));
5825 }
5826
5827 gcs_done++;
5828
5829 /* Collect profiling data. */
5830 if (profiler_memory_running)
5831 {
5832 size_t swept = 0;
5833 size_t tot_after = total_bytes_of_live_objects ();
5834 if (tot_before > tot_after)
5835 swept = tot_before - tot_after;
5836 malloc_probe (swept);
5837 }
5838
5839 return retval;
5840 }
5841
5842 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5843 doc: /* Reclaim storage for Lisp objects no longer needed.
5844 Garbage collection happens automatically if you cons more than
5845 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5846 `garbage-collect' normally returns a list with info on amount of space in use,
5847 where each entry has the form (NAME SIZE USED FREE), where:
5848 - NAME is a symbol describing the kind of objects this entry represents,
5849 - SIZE is the number of bytes used by each one,
5850 - USED is the number of those objects that were found live in the heap,
5851 - FREE is the number of those objects that are not live but that Emacs
5852 keeps around for future allocations (maybe because it does not know how
5853 to return them to the OS).
5854 However, if there was overflow in pure space, `garbage-collect'
5855 returns nil, because real GC can't be done.
5856 See Info node `(elisp)Garbage Collection'. */)
5857 (void)
5858 {
5859 void *end;
5860
5861 #ifdef HAVE___BUILTIN_UNWIND_INIT
5862 /* Force callee-saved registers and register windows onto the stack.
5863 This is the preferred method if available, obviating the need for
5864 machine dependent methods. */
5865 __builtin_unwind_init ();
5866 end = &end;
5867 #else /* not HAVE___BUILTIN_UNWIND_INIT */
5868 #ifndef GC_SAVE_REGISTERS_ON_STACK
5869 /* jmp_buf may not be aligned enough on darwin-ppc64 */
5870 union aligned_jmpbuf {
5871 Lisp_Object o;
5872 sys_jmp_buf j;
5873 } j;
5874 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
5875 #endif
5876 /* This trick flushes the register windows so that all the state of
5877 the process is contained in the stack. */
5878 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
5879 needed on ia64 too. See mach_dep.c, where it also says inline
5880 assembler doesn't work with relevant proprietary compilers. */
5881 #ifdef __sparc__
5882 #if defined (__sparc64__) && defined (__FreeBSD__)
5883 /* FreeBSD does not have a ta 3 handler. */
5884 asm ("flushw");
5885 #else
5886 asm ("ta 3");
5887 #endif
5888 #endif
5889
5890 /* Save registers that we need to see on the stack. We need to see
5891 registers used to hold register variables and registers used to
5892 pass parameters. */
5893 #ifdef GC_SAVE_REGISTERS_ON_STACK
5894 GC_SAVE_REGISTERS_ON_STACK (end);
5895 #else /* not GC_SAVE_REGISTERS_ON_STACK */
5896
5897 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
5898 setjmp will definitely work, test it
5899 and print a message with the result
5900 of the test. */
5901 if (!setjmp_tested_p)
5902 {
5903 setjmp_tested_p = 1;
5904 test_setjmp ();
5905 }
5906 #endif /* GC_SETJMP_WORKS */
5907
5908 sys_setjmp (j.j);
5909 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
5910 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
5911 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
5912 return garbage_collect_1 (end);
5913 }
5914
5915 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5916 only interesting objects referenced from glyphs are strings. */
5917
5918 static void
5919 mark_glyph_matrix (struct glyph_matrix *matrix)
5920 {
5921 struct glyph_row *row = matrix->rows;
5922 struct glyph_row *end = row + matrix->nrows;
5923
5924 for (; row < end; ++row)
5925 if (row->enabled_p)
5926 {
5927 int area;
5928 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5929 {
5930 struct glyph *glyph = row->glyphs[area];
5931 struct glyph *end_glyph = glyph + row->used[area];
5932
5933 for (; glyph < end_glyph; ++glyph)
5934 if (STRINGP (glyph->object)
5935 && !STRING_MARKED_P (XSTRING (glyph->object)))
5936 mark_object (glyph->object);
5937 }
5938 }
5939 }
5940
5941 /* Mark reference to a Lisp_Object.
5942 If the object referred to has not been seen yet, recursively mark
5943 all the references contained in it. */
5944
5945 #define LAST_MARKED_SIZE 500
5946 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5947 static int last_marked_index;
5948
5949 /* For debugging--call abort when we cdr down this many
5950 links of a list, in mark_object. In debugging,
5951 the call to abort will hit a breakpoint.
5952 Normally this is zero and the check never goes off. */
5953 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5954
5955 static void
5956 mark_vectorlike (struct Lisp_Vector *ptr)
5957 {
5958 ptrdiff_t size = ptr->header.size;
5959 ptrdiff_t i;
5960
5961 eassert (!VECTOR_MARKED_P (ptr));
5962 VECTOR_MARK (ptr); /* Else mark it. */
5963 if (size & PSEUDOVECTOR_FLAG)
5964 size &= PSEUDOVECTOR_SIZE_MASK;
5965
5966 /* Note that this size is not the memory-footprint size, but only
5967 the number of Lisp_Object fields that we should trace.
5968 The distinction is used e.g. by Lisp_Process which places extra
5969 non-Lisp_Object fields at the end of the structure... */
5970 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5971 mark_object (ptr->contents[i]);
5972 }
5973
5974 /* Like mark_vectorlike but optimized for char-tables (and
5975 sub-char-tables) assuming that the contents are mostly integers or
5976 symbols. */
5977
5978 static void
5979 mark_char_table (struct Lisp_Vector *ptr, enum pvec_type pvectype)
5980 {
5981 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5982 /* Consult the Lisp_Sub_Char_Table layout before changing this. */
5983 int i, idx = (pvectype == PVEC_SUB_CHAR_TABLE ? SUB_CHAR_TABLE_OFFSET : 0);
5984
5985 eassert (!VECTOR_MARKED_P (ptr));
5986 VECTOR_MARK (ptr);
5987 for (i = idx; i < size; i++)
5988 {
5989 Lisp_Object val = ptr->contents[i];
5990
5991 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5992 continue;
5993 if (SUB_CHAR_TABLE_P (val))
5994 {
5995 if (! VECTOR_MARKED_P (XVECTOR (val)))
5996 mark_char_table (XVECTOR (val), PVEC_SUB_CHAR_TABLE);
5997 }
5998 else
5999 mark_object (val);
6000 }
6001 }
6002
6003 NO_INLINE /* To reduce stack depth in mark_object. */
6004 static Lisp_Object
6005 mark_compiled (struct Lisp_Vector *ptr)
6006 {
6007 int i, size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6008
6009 VECTOR_MARK (ptr);
6010 for (i = 0; i < size; i++)
6011 if (i != COMPILED_CONSTANTS)
6012 mark_object (ptr->contents[i]);
6013 return size > COMPILED_CONSTANTS ? ptr->contents[COMPILED_CONSTANTS] : Qnil;
6014 }
6015
6016 /* Mark the chain of overlays starting at PTR. */
6017
6018 static void
6019 mark_overlay (struct Lisp_Overlay *ptr)
6020 {
6021 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
6022 {
6023 ptr->gcmarkbit = 1;
6024 /* These two are always markers and can be marked fast. */
6025 XMARKER (ptr->start)->gcmarkbit = 1;
6026 XMARKER (ptr->end)->gcmarkbit = 1;
6027 mark_object (ptr->plist);
6028 }
6029 }
6030
6031 /* Mark Lisp_Objects and special pointers in BUFFER. */
6032
6033 static void
6034 mark_buffer (struct buffer *buffer)
6035 {
6036 /* This is handled much like other pseudovectors... */
6037 mark_vectorlike ((struct Lisp_Vector *) buffer);
6038
6039 /* ...but there are some buffer-specific things. */
6040
6041 MARK_INTERVAL_TREE (buffer_intervals (buffer));
6042
6043 /* For now, we just don't mark the undo_list. It's done later in
6044 a special way just before the sweep phase, and after stripping
6045 some of its elements that are not needed any more. */
6046
6047 mark_overlay (buffer->overlays_before);
6048 mark_overlay (buffer->overlays_after);
6049
6050 /* If this is an indirect buffer, mark its base buffer. */
6051 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
6052 mark_buffer (buffer->base_buffer);
6053 }
6054
6055 /* Mark Lisp faces in the face cache C. */
6056
6057 NO_INLINE /* To reduce stack depth in mark_object. */
6058 static void
6059 mark_face_cache (struct face_cache *c)
6060 {
6061 if (c)
6062 {
6063 int i, j;
6064 for (i = 0; i < c->used; ++i)
6065 {
6066 struct face *face = FACE_FROM_ID (c->f, i);
6067
6068 if (face)
6069 {
6070 if (face->font && !VECTOR_MARKED_P (face->font))
6071 mark_vectorlike ((struct Lisp_Vector *) face->font);
6072
6073 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
6074 mark_object (face->lface[j]);
6075 }
6076 }
6077 }
6078 }
6079
6080 NO_INLINE /* To reduce stack depth in mark_object. */
6081 static void
6082 mark_localized_symbol (struct Lisp_Symbol *ptr)
6083 {
6084 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6085 Lisp_Object where = blv->where;
6086 /* If the value is set up for a killed buffer or deleted
6087 frame, restore its global binding. If the value is
6088 forwarded to a C variable, either it's not a Lisp_Object
6089 var, or it's staticpro'd already. */
6090 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6091 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6092 swap_in_global_binding (ptr);
6093 mark_object (blv->where);
6094 mark_object (blv->valcell);
6095 mark_object (blv->defcell);
6096 }
6097
6098 NO_INLINE /* To reduce stack depth in mark_object. */
6099 static void
6100 mark_save_value (struct Lisp_Save_Value *ptr)
6101 {
6102 /* If `save_type' is zero, `data[0].pointer' is the address
6103 of a memory area containing `data[1].integer' potential
6104 Lisp_Objects. */
6105 if (ptr->save_type == SAVE_TYPE_MEMORY)
6106 {
6107 Lisp_Object *p = ptr->data[0].pointer;
6108 ptrdiff_t nelt;
6109 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6110 mark_maybe_object (*p);
6111 }
6112 else
6113 {
6114 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6115 int i;
6116 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6117 if (save_type (ptr, i) == SAVE_OBJECT)
6118 mark_object (ptr->data[i].object);
6119 }
6120 }
6121
6122 /* Remove killed buffers or items whose car is a killed buffer from
6123 LIST, and mark other items. Return changed LIST, which is marked. */
6124
6125 static Lisp_Object
6126 mark_discard_killed_buffers (Lisp_Object list)
6127 {
6128 Lisp_Object tail, *prev = &list;
6129
6130 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
6131 tail = XCDR (tail))
6132 {
6133 Lisp_Object tem = XCAR (tail);
6134 if (CONSP (tem))
6135 tem = XCAR (tem);
6136 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
6137 *prev = XCDR (tail);
6138 else
6139 {
6140 CONS_MARK (XCONS (tail));
6141 mark_object (XCAR (tail));
6142 prev = xcdr_addr (tail);
6143 }
6144 }
6145 mark_object (tail);
6146 return list;
6147 }
6148
6149 /* Determine type of generic Lisp_Object and mark it accordingly.
6150
6151 This function implements a straightforward depth-first marking
6152 algorithm and so the recursion depth may be very high (a few
6153 tens of thousands is not uncommon). To minimize stack usage,
6154 a few cold paths are moved out to NO_INLINE functions above.
6155 In general, inlining them doesn't help you to gain more speed. */
6156
6157 void
6158 mark_object (Lisp_Object arg)
6159 {
6160 register Lisp_Object obj;
6161 void *po;
6162 #ifdef GC_CHECK_MARKED_OBJECTS
6163 struct mem_node *m;
6164 #endif
6165 ptrdiff_t cdr_count = 0;
6166
6167 obj = arg;
6168 loop:
6169
6170 po = XPNTR (obj);
6171 if (PURE_P (po))
6172 return;
6173
6174 last_marked[last_marked_index++] = obj;
6175 if (last_marked_index == LAST_MARKED_SIZE)
6176 last_marked_index = 0;
6177
6178 /* Perform some sanity checks on the objects marked here. Abort if
6179 we encounter an object we know is bogus. This increases GC time
6180 by ~80%. */
6181 #ifdef GC_CHECK_MARKED_OBJECTS
6182
6183 /* Check that the object pointed to by PO is known to be a Lisp
6184 structure allocated from the heap. */
6185 #define CHECK_ALLOCATED() \
6186 do { \
6187 m = mem_find (po); \
6188 if (m == MEM_NIL) \
6189 emacs_abort (); \
6190 } while (0)
6191
6192 /* Check that the object pointed to by PO is live, using predicate
6193 function LIVEP. */
6194 #define CHECK_LIVE(LIVEP) \
6195 do { \
6196 if (!LIVEP (m, po)) \
6197 emacs_abort (); \
6198 } while (0)
6199
6200 /* Check both of the above conditions, for non-symbols. */
6201 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6202 do { \
6203 CHECK_ALLOCATED (); \
6204 CHECK_LIVE (LIVEP); \
6205 } while (0) \
6206
6207 /* Check both of the above conditions, for symbols. */
6208 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() \
6209 do { \
6210 if (!c_symbol_p (ptr)) \
6211 { \
6212 CHECK_ALLOCATED (); \
6213 CHECK_LIVE (live_symbol_p); \
6214 } \
6215 } while (0) \
6216
6217 #else /* not GC_CHECK_MARKED_OBJECTS */
6218
6219 #define CHECK_LIVE(LIVEP) ((void) 0)
6220 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) ((void) 0)
6221 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() ((void) 0)
6222
6223 #endif /* not GC_CHECK_MARKED_OBJECTS */
6224
6225 switch (XTYPE (obj))
6226 {
6227 case Lisp_String:
6228 {
6229 register struct Lisp_String *ptr = XSTRING (obj);
6230 if (STRING_MARKED_P (ptr))
6231 break;
6232 CHECK_ALLOCATED_AND_LIVE (live_string_p);
6233 MARK_STRING (ptr);
6234 MARK_INTERVAL_TREE (ptr->intervals);
6235 #ifdef GC_CHECK_STRING_BYTES
6236 /* Check that the string size recorded in the string is the
6237 same as the one recorded in the sdata structure. */
6238 string_bytes (ptr);
6239 #endif /* GC_CHECK_STRING_BYTES */
6240 }
6241 break;
6242
6243 case Lisp_Vectorlike:
6244 {
6245 register struct Lisp_Vector *ptr = XVECTOR (obj);
6246 register ptrdiff_t pvectype;
6247
6248 if (VECTOR_MARKED_P (ptr))
6249 break;
6250
6251 #ifdef GC_CHECK_MARKED_OBJECTS
6252 m = mem_find (po);
6253 if (m == MEM_NIL && !SUBRP (obj))
6254 emacs_abort ();
6255 #endif /* GC_CHECK_MARKED_OBJECTS */
6256
6257 if (ptr->header.size & PSEUDOVECTOR_FLAG)
6258 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
6259 >> PSEUDOVECTOR_AREA_BITS);
6260 else
6261 pvectype = PVEC_NORMAL_VECTOR;
6262
6263 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
6264 CHECK_LIVE (live_vector_p);
6265
6266 switch (pvectype)
6267 {
6268 case PVEC_BUFFER:
6269 #ifdef GC_CHECK_MARKED_OBJECTS
6270 {
6271 struct buffer *b;
6272 FOR_EACH_BUFFER (b)
6273 if (b == po)
6274 break;
6275 if (b == NULL)
6276 emacs_abort ();
6277 }
6278 #endif /* GC_CHECK_MARKED_OBJECTS */
6279 mark_buffer ((struct buffer *) ptr);
6280 break;
6281
6282 case PVEC_COMPILED:
6283 /* Although we could treat this just like a vector, mark_compiled
6284 returns the COMPILED_CONSTANTS element, which is marked at the
6285 next iteration of goto-loop here. This is done to avoid a few
6286 recursive calls to mark_object. */
6287 obj = mark_compiled (ptr);
6288 if (!NILP (obj))
6289 goto loop;
6290 break;
6291
6292 case PVEC_FRAME:
6293 {
6294 struct frame *f = (struct frame *) ptr;
6295
6296 mark_vectorlike (ptr);
6297 mark_face_cache (f->face_cache);
6298 #ifdef HAVE_WINDOW_SYSTEM
6299 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6300 {
6301 struct font *font = FRAME_FONT (f);
6302
6303 if (font && !VECTOR_MARKED_P (font))
6304 mark_vectorlike ((struct Lisp_Vector *) font);
6305 }
6306 #endif
6307 }
6308 break;
6309
6310 case PVEC_WINDOW:
6311 {
6312 struct window *w = (struct window *) ptr;
6313
6314 mark_vectorlike (ptr);
6315
6316 /* Mark glyph matrices, if any. Marking window
6317 matrices is sufficient because frame matrices
6318 use the same glyph memory. */
6319 if (w->current_matrix)
6320 {
6321 mark_glyph_matrix (w->current_matrix);
6322 mark_glyph_matrix (w->desired_matrix);
6323 }
6324
6325 /* Filter out killed buffers from both buffer lists
6326 in attempt to help GC to reclaim killed buffers faster.
6327 We can do it elsewhere for live windows, but this is the
6328 best place to do it for dead windows. */
6329 wset_prev_buffers
6330 (w, mark_discard_killed_buffers (w->prev_buffers));
6331 wset_next_buffers
6332 (w, mark_discard_killed_buffers (w->next_buffers));
6333 }
6334 break;
6335
6336 case PVEC_HASH_TABLE:
6337 {
6338 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6339
6340 mark_vectorlike (ptr);
6341 mark_object (h->test.name);
6342 mark_object (h->test.user_hash_function);
6343 mark_object (h->test.user_cmp_function);
6344 /* If hash table is not weak, mark all keys and values.
6345 For weak tables, mark only the vector. */
6346 if (NILP (h->weak))
6347 mark_object (h->key_and_value);
6348 else
6349 VECTOR_MARK (XVECTOR (h->key_and_value));
6350 }
6351 break;
6352
6353 case PVEC_CHAR_TABLE:
6354 case PVEC_SUB_CHAR_TABLE:
6355 mark_char_table (ptr, (enum pvec_type) pvectype);
6356 break;
6357
6358 case PVEC_BOOL_VECTOR:
6359 /* No Lisp_Objects to mark in a bool vector. */
6360 VECTOR_MARK (ptr);
6361 break;
6362
6363 case PVEC_SUBR:
6364 break;
6365
6366 case PVEC_FREE:
6367 emacs_abort ();
6368
6369 default:
6370 mark_vectorlike (ptr);
6371 }
6372 }
6373 break;
6374
6375 case Lisp_Symbol:
6376 {
6377 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6378 nextsym:
6379 if (ptr->gcmarkbit)
6380 break;
6381 CHECK_ALLOCATED_AND_LIVE_SYMBOL ();
6382 ptr->gcmarkbit = 1;
6383 /* Attempt to catch bogus objects. */
6384 eassert (valid_lisp_object_p (ptr->function));
6385 mark_object (ptr->function);
6386 mark_object (ptr->plist);
6387 switch (ptr->redirect)
6388 {
6389 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6390 case SYMBOL_VARALIAS:
6391 {
6392 Lisp_Object tem;
6393 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6394 mark_object (tem);
6395 break;
6396 }
6397 case SYMBOL_LOCALIZED:
6398 mark_localized_symbol (ptr);
6399 break;
6400 case SYMBOL_FORWARDED:
6401 /* If the value is forwarded to a buffer or keyboard field,
6402 these are marked when we see the corresponding object.
6403 And if it's forwarded to a C variable, either it's not
6404 a Lisp_Object var, or it's staticpro'd already. */
6405 break;
6406 default: emacs_abort ();
6407 }
6408 if (!PURE_P (XSTRING (ptr->name)))
6409 MARK_STRING (XSTRING (ptr->name));
6410 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6411 /* Inner loop to mark next symbol in this bucket, if any. */
6412 po = ptr = ptr->next;
6413 if (ptr)
6414 goto nextsym;
6415 }
6416 break;
6417
6418 case Lisp_Misc:
6419 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6420
6421 if (XMISCANY (obj)->gcmarkbit)
6422 break;
6423
6424 switch (XMISCTYPE (obj))
6425 {
6426 case Lisp_Misc_Marker:
6427 /* DO NOT mark thru the marker's chain.
6428 The buffer's markers chain does not preserve markers from gc;
6429 instead, markers are removed from the chain when freed by gc. */
6430 XMISCANY (obj)->gcmarkbit = 1;
6431 break;
6432
6433 case Lisp_Misc_Save_Value:
6434 XMISCANY (obj)->gcmarkbit = 1;
6435 mark_save_value (XSAVE_VALUE (obj));
6436 break;
6437
6438 case Lisp_Misc_Overlay:
6439 mark_overlay (XOVERLAY (obj));
6440 break;
6441
6442 case Lisp_Misc_Finalizer:
6443 XMISCANY (obj)->gcmarkbit = true;
6444 mark_object (XFINALIZER (obj)->function);
6445 break;
6446
6447 #ifdef HAVE_MODULES
6448 case Lisp_Misc_User_Ptr:
6449 XMISCANY (obj)->gcmarkbit = true;
6450 break;
6451 #endif
6452
6453 default:
6454 emacs_abort ();
6455 }
6456 break;
6457
6458 case Lisp_Cons:
6459 {
6460 register struct Lisp_Cons *ptr = XCONS (obj);
6461 if (CONS_MARKED_P (ptr))
6462 break;
6463 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6464 CONS_MARK (ptr);
6465 /* If the cdr is nil, avoid recursion for the car. */
6466 if (EQ (ptr->u.cdr, Qnil))
6467 {
6468 obj = ptr->car;
6469 cdr_count = 0;
6470 goto loop;
6471 }
6472 mark_object (ptr->car);
6473 obj = ptr->u.cdr;
6474 cdr_count++;
6475 if (cdr_count == mark_object_loop_halt)
6476 emacs_abort ();
6477 goto loop;
6478 }
6479
6480 case Lisp_Float:
6481 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6482 FLOAT_MARK (XFLOAT (obj));
6483 break;
6484
6485 case_Lisp_Int:
6486 break;
6487
6488 default:
6489 emacs_abort ();
6490 }
6491
6492 #undef CHECK_LIVE
6493 #undef CHECK_ALLOCATED
6494 #undef CHECK_ALLOCATED_AND_LIVE
6495 }
6496 /* Mark the Lisp pointers in the terminal objects.
6497 Called by Fgarbage_collect. */
6498
6499 static void
6500 mark_terminals (void)
6501 {
6502 struct terminal *t;
6503 for (t = terminal_list; t; t = t->next_terminal)
6504 {
6505 eassert (t->name != NULL);
6506 #ifdef HAVE_WINDOW_SYSTEM
6507 /* If a terminal object is reachable from a stacpro'ed object,
6508 it might have been marked already. Make sure the image cache
6509 gets marked. */
6510 mark_image_cache (t->image_cache);
6511 #endif /* HAVE_WINDOW_SYSTEM */
6512 if (!VECTOR_MARKED_P (t))
6513 mark_vectorlike ((struct Lisp_Vector *)t);
6514 }
6515 }
6516
6517
6518
6519 /* Value is non-zero if OBJ will survive the current GC because it's
6520 either marked or does not need to be marked to survive. */
6521
6522 bool
6523 survives_gc_p (Lisp_Object obj)
6524 {
6525 bool survives_p;
6526
6527 switch (XTYPE (obj))
6528 {
6529 case_Lisp_Int:
6530 survives_p = 1;
6531 break;
6532
6533 case Lisp_Symbol:
6534 survives_p = XSYMBOL (obj)->gcmarkbit;
6535 break;
6536
6537 case Lisp_Misc:
6538 survives_p = XMISCANY (obj)->gcmarkbit;
6539 break;
6540
6541 case Lisp_String:
6542 survives_p = STRING_MARKED_P (XSTRING (obj));
6543 break;
6544
6545 case Lisp_Vectorlike:
6546 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6547 break;
6548
6549 case Lisp_Cons:
6550 survives_p = CONS_MARKED_P (XCONS (obj));
6551 break;
6552
6553 case Lisp_Float:
6554 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6555 break;
6556
6557 default:
6558 emacs_abort ();
6559 }
6560
6561 return survives_p || PURE_P (XPNTR (obj));
6562 }
6563
6564
6565 \f
6566
6567 NO_INLINE /* For better stack traces */
6568 static void
6569 sweep_conses (void)
6570 {
6571 struct cons_block *cblk;
6572 struct cons_block **cprev = &cons_block;
6573 int lim = cons_block_index;
6574 EMACS_INT num_free = 0, num_used = 0;
6575
6576 cons_free_list = 0;
6577
6578 for (cblk = cons_block; cblk; cblk = *cprev)
6579 {
6580 int i = 0;
6581 int this_free = 0;
6582 int ilim = (lim + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
6583
6584 /* Scan the mark bits an int at a time. */
6585 for (i = 0; i < ilim; i++)
6586 {
6587 if (cblk->gcmarkbits[i] == BITS_WORD_MAX)
6588 {
6589 /* Fast path - all cons cells for this int are marked. */
6590 cblk->gcmarkbits[i] = 0;
6591 num_used += BITS_PER_BITS_WORD;
6592 }
6593 else
6594 {
6595 /* Some cons cells for this int are not marked.
6596 Find which ones, and free them. */
6597 int start, pos, stop;
6598
6599 start = i * BITS_PER_BITS_WORD;
6600 stop = lim - start;
6601 if (stop > BITS_PER_BITS_WORD)
6602 stop = BITS_PER_BITS_WORD;
6603 stop += start;
6604
6605 for (pos = start; pos < stop; pos++)
6606 {
6607 if (!CONS_MARKED_P (&cblk->conses[pos]))
6608 {
6609 this_free++;
6610 cblk->conses[pos].u.chain = cons_free_list;
6611 cons_free_list = &cblk->conses[pos];
6612 cons_free_list->car = Vdead;
6613 }
6614 else
6615 {
6616 num_used++;
6617 CONS_UNMARK (&cblk->conses[pos]);
6618 }
6619 }
6620 }
6621 }
6622
6623 lim = CONS_BLOCK_SIZE;
6624 /* If this block contains only free conses and we have already
6625 seen more than two blocks worth of free conses then deallocate
6626 this block. */
6627 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6628 {
6629 *cprev = cblk->next;
6630 /* Unhook from the free list. */
6631 cons_free_list = cblk->conses[0].u.chain;
6632 lisp_align_free (cblk);
6633 }
6634 else
6635 {
6636 num_free += this_free;
6637 cprev = &cblk->next;
6638 }
6639 }
6640 total_conses = num_used;
6641 total_free_conses = num_free;
6642 }
6643
6644 NO_INLINE /* For better stack traces */
6645 static void
6646 sweep_floats (void)
6647 {
6648 register struct float_block *fblk;
6649 struct float_block **fprev = &float_block;
6650 register int lim = float_block_index;
6651 EMACS_INT num_free = 0, num_used = 0;
6652
6653 float_free_list = 0;
6654
6655 for (fblk = float_block; fblk; fblk = *fprev)
6656 {
6657 register int i;
6658 int this_free = 0;
6659 for (i = 0; i < lim; i++)
6660 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6661 {
6662 this_free++;
6663 fblk->floats[i].u.chain = float_free_list;
6664 float_free_list = &fblk->floats[i];
6665 }
6666 else
6667 {
6668 num_used++;
6669 FLOAT_UNMARK (&fblk->floats[i]);
6670 }
6671 lim = FLOAT_BLOCK_SIZE;
6672 /* If this block contains only free floats and we have already
6673 seen more than two blocks worth of free floats then deallocate
6674 this block. */
6675 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6676 {
6677 *fprev = fblk->next;
6678 /* Unhook from the free list. */
6679 float_free_list = fblk->floats[0].u.chain;
6680 lisp_align_free (fblk);
6681 }
6682 else
6683 {
6684 num_free += this_free;
6685 fprev = &fblk->next;
6686 }
6687 }
6688 total_floats = num_used;
6689 total_free_floats = num_free;
6690 }
6691
6692 NO_INLINE /* For better stack traces */
6693 static void
6694 sweep_intervals (void)
6695 {
6696 register struct interval_block *iblk;
6697 struct interval_block **iprev = &interval_block;
6698 register int lim = interval_block_index;
6699 EMACS_INT num_free = 0, num_used = 0;
6700
6701 interval_free_list = 0;
6702
6703 for (iblk = interval_block; iblk; iblk = *iprev)
6704 {
6705 register int i;
6706 int this_free = 0;
6707
6708 for (i = 0; i < lim; i++)
6709 {
6710 if (!iblk->intervals[i].gcmarkbit)
6711 {
6712 set_interval_parent (&iblk->intervals[i], interval_free_list);
6713 interval_free_list = &iblk->intervals[i];
6714 this_free++;
6715 }
6716 else
6717 {
6718 num_used++;
6719 iblk->intervals[i].gcmarkbit = 0;
6720 }
6721 }
6722 lim = INTERVAL_BLOCK_SIZE;
6723 /* If this block contains only free intervals and we have already
6724 seen more than two blocks worth of free intervals then
6725 deallocate this block. */
6726 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6727 {
6728 *iprev = iblk->next;
6729 /* Unhook from the free list. */
6730 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6731 lisp_free (iblk);
6732 }
6733 else
6734 {
6735 num_free += this_free;
6736 iprev = &iblk->next;
6737 }
6738 }
6739 total_intervals = num_used;
6740 total_free_intervals = num_free;
6741 }
6742
6743 NO_INLINE /* For better stack traces */
6744 static void
6745 sweep_symbols (void)
6746 {
6747 struct symbol_block *sblk;
6748 struct symbol_block **sprev = &symbol_block;
6749 int lim = symbol_block_index;
6750 EMACS_INT num_free = 0, num_used = ARRAYELTS (lispsym);
6751
6752 symbol_free_list = NULL;
6753
6754 for (int i = 0; i < ARRAYELTS (lispsym); i++)
6755 lispsym[i].gcmarkbit = 0;
6756
6757 for (sblk = symbol_block; sblk; sblk = *sprev)
6758 {
6759 int this_free = 0;
6760 union aligned_Lisp_Symbol *sym = sblk->symbols;
6761 union aligned_Lisp_Symbol *end = sym + lim;
6762
6763 for (; sym < end; ++sym)
6764 {
6765 if (!sym->s.gcmarkbit)
6766 {
6767 if (sym->s.redirect == SYMBOL_LOCALIZED)
6768 xfree (SYMBOL_BLV (&sym->s));
6769 sym->s.next = symbol_free_list;
6770 symbol_free_list = &sym->s;
6771 symbol_free_list->function = Vdead;
6772 ++this_free;
6773 }
6774 else
6775 {
6776 ++num_used;
6777 sym->s.gcmarkbit = 0;
6778 /* Attempt to catch bogus objects. */
6779 eassert (valid_lisp_object_p (sym->s.function));
6780 }
6781 }
6782
6783 lim = SYMBOL_BLOCK_SIZE;
6784 /* If this block contains only free symbols and we have already
6785 seen more than two blocks worth of free symbols then deallocate
6786 this block. */
6787 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6788 {
6789 *sprev = sblk->next;
6790 /* Unhook from the free list. */
6791 symbol_free_list = sblk->symbols[0].s.next;
6792 lisp_free (sblk);
6793 }
6794 else
6795 {
6796 num_free += this_free;
6797 sprev = &sblk->next;
6798 }
6799 }
6800 total_symbols = num_used;
6801 total_free_symbols = num_free;
6802 }
6803
6804 NO_INLINE /* For better stack traces. */
6805 static void
6806 sweep_misc (void)
6807 {
6808 register struct marker_block *mblk;
6809 struct marker_block **mprev = &marker_block;
6810 register int lim = marker_block_index;
6811 EMACS_INT num_free = 0, num_used = 0;
6812
6813 /* Put all unmarked misc's on free list. For a marker, first
6814 unchain it from the buffer it points into. */
6815
6816 marker_free_list = 0;
6817
6818 for (mblk = marker_block; mblk; mblk = *mprev)
6819 {
6820 register int i;
6821 int this_free = 0;
6822
6823 for (i = 0; i < lim; i++)
6824 {
6825 if (!mblk->markers[i].m.u_any.gcmarkbit)
6826 {
6827 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6828 unchain_marker (&mblk->markers[i].m.u_marker);
6829 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_Finalizer)
6830 unchain_finalizer (&mblk->markers[i].m.u_finalizer);
6831 #ifdef HAVE_MODULES
6832 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_User_Ptr)
6833 {
6834 struct Lisp_User_Ptr *uptr = &mblk->markers[i].m.u_user_ptr;
6835 uptr->finalizer (uptr->p);
6836 }
6837 #endif
6838 /* Set the type of the freed object to Lisp_Misc_Free.
6839 We could leave the type alone, since nobody checks it,
6840 but this might catch bugs faster. */
6841 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6842 mblk->markers[i].m.u_free.chain = marker_free_list;
6843 marker_free_list = &mblk->markers[i].m;
6844 this_free++;
6845 }
6846 else
6847 {
6848 num_used++;
6849 mblk->markers[i].m.u_any.gcmarkbit = 0;
6850 }
6851 }
6852 lim = MARKER_BLOCK_SIZE;
6853 /* If this block contains only free markers and we have already
6854 seen more than two blocks worth of free markers then deallocate
6855 this block. */
6856 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6857 {
6858 *mprev = mblk->next;
6859 /* Unhook from the free list. */
6860 marker_free_list = mblk->markers[0].m.u_free.chain;
6861 lisp_free (mblk);
6862 }
6863 else
6864 {
6865 num_free += this_free;
6866 mprev = &mblk->next;
6867 }
6868 }
6869
6870 total_markers = num_used;
6871 total_free_markers = num_free;
6872 }
6873
6874 NO_INLINE /* For better stack traces */
6875 static void
6876 sweep_buffers (void)
6877 {
6878 register struct buffer *buffer, **bprev = &all_buffers;
6879
6880 total_buffers = 0;
6881 for (buffer = all_buffers; buffer; buffer = *bprev)
6882 if (!VECTOR_MARKED_P (buffer))
6883 {
6884 *bprev = buffer->next;
6885 lisp_free (buffer);
6886 }
6887 else
6888 {
6889 VECTOR_UNMARK (buffer);
6890 /* Do not use buffer_(set|get)_intervals here. */
6891 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6892 total_buffers++;
6893 bprev = &buffer->next;
6894 }
6895 }
6896
6897 /* Sweep: find all structures not marked, and free them. */
6898 static void
6899 gc_sweep (void)
6900 {
6901 /* Remove or mark entries in weak hash tables.
6902 This must be done before any object is unmarked. */
6903 sweep_weak_hash_tables ();
6904
6905 sweep_strings ();
6906 check_string_bytes (!noninteractive);
6907 sweep_conses ();
6908 sweep_floats ();
6909 sweep_intervals ();
6910 sweep_symbols ();
6911 sweep_misc ();
6912 sweep_buffers ();
6913 sweep_vectors ();
6914 check_string_bytes (!noninteractive);
6915 }
6916
6917 DEFUN ("memory-info", Fmemory_info, Smemory_info, 0, 0, 0,
6918 doc: /* Return a list of (TOTAL-RAM FREE-RAM TOTAL-SWAP FREE-SWAP).
6919 All values are in Kbytes. If there is no swap space,
6920 last two values are zero. If the system is not supported
6921 or memory information can't be obtained, return nil. */)
6922 (void)
6923 {
6924 #if defined HAVE_LINUX_SYSINFO
6925 struct sysinfo si;
6926 uintmax_t units;
6927
6928 if (sysinfo (&si))
6929 return Qnil;
6930 #ifdef LINUX_SYSINFO_UNIT
6931 units = si.mem_unit;
6932 #else
6933 units = 1;
6934 #endif
6935 return list4i ((uintmax_t) si.totalram * units / 1024,
6936 (uintmax_t) si.freeram * units / 1024,
6937 (uintmax_t) si.totalswap * units / 1024,
6938 (uintmax_t) si.freeswap * units / 1024);
6939 #elif defined WINDOWSNT
6940 unsigned long long totalram, freeram, totalswap, freeswap;
6941
6942 if (w32_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
6943 return list4i ((uintmax_t) totalram / 1024,
6944 (uintmax_t) freeram / 1024,
6945 (uintmax_t) totalswap / 1024,
6946 (uintmax_t) freeswap / 1024);
6947 else
6948 return Qnil;
6949 #elif defined MSDOS
6950 unsigned long totalram, freeram, totalswap, freeswap;
6951
6952 if (dos_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
6953 return list4i ((uintmax_t) totalram / 1024,
6954 (uintmax_t) freeram / 1024,
6955 (uintmax_t) totalswap / 1024,
6956 (uintmax_t) freeswap / 1024);
6957 else
6958 return Qnil;
6959 #else /* not HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
6960 /* FIXME: add more systems. */
6961 return Qnil;
6962 #endif /* HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
6963 }
6964
6965 /* Debugging aids. */
6966
6967 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6968 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6969 This may be helpful in debugging Emacs's memory usage.
6970 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6971 (void)
6972 {
6973 Lisp_Object end;
6974
6975 #ifdef HAVE_NS
6976 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
6977 XSETINT (end, 0);
6978 #else
6979 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6980 #endif
6981
6982 return end;
6983 }
6984
6985 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6986 doc: /* Return a list of counters that measure how much consing there has been.
6987 Each of these counters increments for a certain kind of object.
6988 The counters wrap around from the largest positive integer to zero.
6989 Garbage collection does not decrease them.
6990 The elements of the value are as follows:
6991 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6992 All are in units of 1 = one object consed
6993 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6994 objects consed.
6995 MISCS include overlays, markers, and some internal types.
6996 Frames, windows, buffers, and subprocesses count as vectors
6997 (but the contents of a buffer's text do not count here). */)
6998 (void)
6999 {
7000 return listn (CONSTYPE_HEAP, 8,
7001 bounded_number (cons_cells_consed),
7002 bounded_number (floats_consed),
7003 bounded_number (vector_cells_consed),
7004 bounded_number (symbols_consed),
7005 bounded_number (string_chars_consed),
7006 bounded_number (misc_objects_consed),
7007 bounded_number (intervals_consed),
7008 bounded_number (strings_consed));
7009 }
7010
7011 static bool
7012 symbol_uses_obj (Lisp_Object symbol, Lisp_Object obj)
7013 {
7014 struct Lisp_Symbol *sym = XSYMBOL (symbol);
7015 Lisp_Object val = find_symbol_value (symbol);
7016 return (EQ (val, obj)
7017 || EQ (sym->function, obj)
7018 || (!NILP (sym->function)
7019 && COMPILEDP (sym->function)
7020 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
7021 || (!NILP (val)
7022 && COMPILEDP (val)
7023 && EQ (AREF (val, COMPILED_BYTECODE), obj)));
7024 }
7025
7026 /* Find at most FIND_MAX symbols which have OBJ as their value or
7027 function. This is used in gdbinit's `xwhichsymbols' command. */
7028
7029 Lisp_Object
7030 which_symbols (Lisp_Object obj, EMACS_INT find_max)
7031 {
7032 struct symbol_block *sblk;
7033 ptrdiff_t gc_count = inhibit_garbage_collection ();
7034 Lisp_Object found = Qnil;
7035
7036 if (! DEADP (obj))
7037 {
7038 for (int i = 0; i < ARRAYELTS (lispsym); i++)
7039 {
7040 Lisp_Object sym = builtin_lisp_symbol (i);
7041 if (symbol_uses_obj (sym, obj))
7042 {
7043 found = Fcons (sym, found);
7044 if (--find_max == 0)
7045 goto out;
7046 }
7047 }
7048
7049 for (sblk = symbol_block; sblk; sblk = sblk->next)
7050 {
7051 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
7052 int bn;
7053
7054 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
7055 {
7056 if (sblk == symbol_block && bn >= symbol_block_index)
7057 break;
7058
7059 Lisp_Object sym = make_lisp_symbol (&aligned_sym->s);
7060 if (symbol_uses_obj (sym, obj))
7061 {
7062 found = Fcons (sym, found);
7063 if (--find_max == 0)
7064 goto out;
7065 }
7066 }
7067 }
7068 }
7069
7070 out:
7071 unbind_to (gc_count, Qnil);
7072 return found;
7073 }
7074
7075 #ifdef SUSPICIOUS_OBJECT_CHECKING
7076
7077 static void *
7078 find_suspicious_object_in_range (void *begin, void *end)
7079 {
7080 char *begin_a = begin;
7081 char *end_a = end;
7082 int i;
7083
7084 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7085 {
7086 char *suspicious_object = suspicious_objects[i];
7087 if (begin_a <= suspicious_object && suspicious_object < end_a)
7088 return suspicious_object;
7089 }
7090
7091 return NULL;
7092 }
7093
7094 static void
7095 note_suspicious_free (void* ptr)
7096 {
7097 struct suspicious_free_record* rec;
7098
7099 rec = &suspicious_free_history[suspicious_free_history_index++];
7100 if (suspicious_free_history_index ==
7101 ARRAYELTS (suspicious_free_history))
7102 {
7103 suspicious_free_history_index = 0;
7104 }
7105
7106 memset (rec, 0, sizeof (*rec));
7107 rec->suspicious_object = ptr;
7108 backtrace (&rec->backtrace[0], ARRAYELTS (rec->backtrace));
7109 }
7110
7111 static void
7112 detect_suspicious_free (void* ptr)
7113 {
7114 int i;
7115
7116 eassert (ptr != NULL);
7117
7118 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7119 if (suspicious_objects[i] == ptr)
7120 {
7121 note_suspicious_free (ptr);
7122 suspicious_objects[i] = NULL;
7123 }
7124 }
7125
7126 #endif /* SUSPICIOUS_OBJECT_CHECKING */
7127
7128 DEFUN ("suspicious-object", Fsuspicious_object, Ssuspicious_object, 1, 1, 0,
7129 doc: /* Return OBJ, maybe marking it for extra scrutiny.
7130 If Emacs is compiled with suspicious object checking, capture
7131 a stack trace when OBJ is freed in order to help track down
7132 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
7133 (Lisp_Object obj)
7134 {
7135 #ifdef SUSPICIOUS_OBJECT_CHECKING
7136 /* Right now, we care only about vectors. */
7137 if (VECTORLIKEP (obj))
7138 {
7139 suspicious_objects[suspicious_object_index++] = XVECTOR (obj);
7140 if (suspicious_object_index == ARRAYELTS (suspicious_objects))
7141 suspicious_object_index = 0;
7142 }
7143 #endif
7144 return obj;
7145 }
7146
7147 #ifdef ENABLE_CHECKING
7148
7149 bool suppress_checking;
7150
7151 void
7152 die (const char *msg, const char *file, int line)
7153 {
7154 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
7155 file, line, msg);
7156 terminate_due_to_signal (SIGABRT, INT_MAX);
7157 }
7158
7159 #endif /* ENABLE_CHECKING */
7160
7161 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
7162
7163 /* Debugging check whether STR is ASCII-only. */
7164
7165 const char *
7166 verify_ascii (const char *str)
7167 {
7168 const unsigned char *ptr = (unsigned char *) str, *end = ptr + strlen (str);
7169 while (ptr < end)
7170 {
7171 int c = STRING_CHAR_ADVANCE (ptr);
7172 if (!ASCII_CHAR_P (c))
7173 emacs_abort ();
7174 }
7175 return str;
7176 }
7177
7178 /* Stress alloca with inconveniently sized requests and check
7179 whether all allocated areas may be used for Lisp_Object. */
7180
7181 NO_INLINE static void
7182 verify_alloca (void)
7183 {
7184 int i;
7185 enum { ALLOCA_CHECK_MAX = 256 };
7186 /* Start from size of the smallest Lisp object. */
7187 for (i = sizeof (struct Lisp_Cons); i <= ALLOCA_CHECK_MAX; i++)
7188 {
7189 void *ptr = alloca (i);
7190 make_lisp_ptr (ptr, Lisp_Cons);
7191 }
7192 }
7193
7194 #else /* not ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7195
7196 #define verify_alloca() ((void) 0)
7197
7198 #endif /* ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7199
7200 /* Initialization. */
7201
7202 void
7203 init_alloc_once (void)
7204 {
7205 /* Even though Qt's contents are not set up, its address is known. */
7206 Vpurify_flag = Qt;
7207
7208 purebeg = PUREBEG;
7209 pure_size = PURESIZE;
7210
7211 verify_alloca ();
7212 init_finalizer_list (&finalizers);
7213 init_finalizer_list (&doomed_finalizers);
7214
7215 mem_init ();
7216 Vdead = make_pure_string ("DEAD", 4, 4, 0);
7217
7218 #ifdef DOUG_LEA_MALLOC
7219 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
7220 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
7221 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
7222 #endif
7223 init_strings ();
7224 init_vectors ();
7225
7226 refill_memory_reserve ();
7227 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
7228 }
7229
7230 void
7231 init_alloc (void)
7232 {
7233 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
7234 setjmp_tested_p = longjmps_done = 0;
7235 #endif
7236 Vgc_elapsed = make_float (0.0);
7237 gcs_done = 0;
7238
7239 #if USE_VALGRIND
7240 valgrind_p = RUNNING_ON_VALGRIND != 0;
7241 #endif
7242 }
7243
7244 void
7245 syms_of_alloc (void)
7246 {
7247 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
7248 doc: /* Number of bytes of consing between garbage collections.
7249 Garbage collection can happen automatically once this many bytes have been
7250 allocated since the last garbage collection. All data types count.
7251
7252 Garbage collection happens automatically only when `eval' is called.
7253
7254 By binding this temporarily to a large number, you can effectively
7255 prevent garbage collection during a part of the program.
7256 See also `gc-cons-percentage'. */);
7257
7258 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
7259 doc: /* Portion of the heap used for allocation.
7260 Garbage collection can happen automatically once this portion of the heap
7261 has been allocated since the last garbage collection.
7262 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7263 Vgc_cons_percentage = make_float (0.1);
7264
7265 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
7266 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
7267
7268 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
7269 doc: /* Number of cons cells that have been consed so far. */);
7270
7271 DEFVAR_INT ("floats-consed", floats_consed,
7272 doc: /* Number of floats that have been consed so far. */);
7273
7274 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
7275 doc: /* Number of vector cells that have been consed so far. */);
7276
7277 DEFVAR_INT ("symbols-consed", symbols_consed,
7278 doc: /* Number of symbols that have been consed so far. */);
7279 symbols_consed += ARRAYELTS (lispsym);
7280
7281 DEFVAR_INT ("string-chars-consed", string_chars_consed,
7282 doc: /* Number of string characters that have been consed so far. */);
7283
7284 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
7285 doc: /* Number of miscellaneous objects that have been consed so far.
7286 These include markers and overlays, plus certain objects not visible
7287 to users. */);
7288
7289 DEFVAR_INT ("intervals-consed", intervals_consed,
7290 doc: /* Number of intervals that have been consed so far. */);
7291
7292 DEFVAR_INT ("strings-consed", strings_consed,
7293 doc: /* Number of strings that have been consed so far. */);
7294
7295 DEFVAR_LISP ("purify-flag", Vpurify_flag,
7296 doc: /* Non-nil means loading Lisp code in order to dump an executable.
7297 This means that certain objects should be allocated in shared (pure) space.
7298 It can also be set to a hash-table, in which case this table is used to
7299 do hash-consing of the objects allocated to pure space. */);
7300
7301 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
7302 doc: /* Non-nil means display messages at start and end of garbage collection. */);
7303 garbage_collection_messages = 0;
7304
7305 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
7306 doc: /* Hook run after garbage collection has finished. */);
7307 Vpost_gc_hook = Qnil;
7308 DEFSYM (Qpost_gc_hook, "post-gc-hook");
7309
7310 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
7311 doc: /* Precomputed `signal' argument for memory-full error. */);
7312 /* We build this in advance because if we wait until we need it, we might
7313 not be able to allocate the memory to hold it. */
7314 Vmemory_signal_data
7315 = listn (CONSTYPE_PURE, 2, Qerror,
7316 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7317
7318 DEFVAR_LISP ("memory-full", Vmemory_full,
7319 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7320 Vmemory_full = Qnil;
7321
7322 DEFSYM (Qconses, "conses");
7323 DEFSYM (Qsymbols, "symbols");
7324 DEFSYM (Qmiscs, "miscs");
7325 DEFSYM (Qstrings, "strings");
7326 DEFSYM (Qvectors, "vectors");
7327 DEFSYM (Qfloats, "floats");
7328 DEFSYM (Qintervals, "intervals");
7329 DEFSYM (Qbuffers, "buffers");
7330 DEFSYM (Qstring_bytes, "string-bytes");
7331 DEFSYM (Qvector_slots, "vector-slots");
7332 DEFSYM (Qheap, "heap");
7333 DEFSYM (Qautomatic_gc, "Automatic GC");
7334
7335 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
7336 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
7337
7338 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
7339 doc: /* Accumulated time elapsed in garbage collections.
7340 The time is in seconds as a floating point value. */);
7341 DEFVAR_INT ("gcs-done", gcs_done,
7342 doc: /* Accumulated number of garbage collections done. */);
7343
7344 defsubr (&Scons);
7345 defsubr (&Slist);
7346 defsubr (&Svector);
7347 defsubr (&Sbool_vector);
7348 defsubr (&Smake_byte_code);
7349 defsubr (&Smake_list);
7350 defsubr (&Smake_vector);
7351 defsubr (&Smake_string);
7352 defsubr (&Smake_bool_vector);
7353 defsubr (&Smake_symbol);
7354 defsubr (&Smake_marker);
7355 defsubr (&Smake_finalizer);
7356 defsubr (&Spurecopy);
7357 defsubr (&Sgarbage_collect);
7358 defsubr (&Smemory_limit);
7359 defsubr (&Smemory_info);
7360 defsubr (&Smemory_use_counts);
7361 defsubr (&Ssuspicious_object);
7362 }
7363
7364 /* When compiled with GCC, GDB might say "No enum type named
7365 pvec_type" if we don't have at least one symbol with that type, and
7366 then xbacktrace could fail. Similarly for the other enums and
7367 their values. Some non-GCC compilers don't like these constructs. */
7368 #ifdef __GNUC__
7369 union
7370 {
7371 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7372 enum char_table_specials char_table_specials;
7373 enum char_bits char_bits;
7374 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
7375 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
7376 enum Lisp_Bits Lisp_Bits;
7377 enum Lisp_Compiled Lisp_Compiled;
7378 enum maxargs maxargs;
7379 enum MAX_ALLOCA MAX_ALLOCA;
7380 enum More_Lisp_Bits More_Lisp_Bits;
7381 enum pvec_type pvec_type;
7382 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
7383 #endif /* __GNUC__ */