]> code.delx.au - gnu-emacs/blob - src/regex.c
(pcomplete): Instead of interactive-p,
[gnu-emacs] / src / regex.c
1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
3 internationalization features.)
4
5 Copyright (C) 1993,94,95,96,97,98,99,2000,04 Free Software Foundation, Inc.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
20 USA. */
21
22 /* TODO:
23 - structure the opcode space into opcode+flag.
24 - merge with glibc's regex.[ch].
25 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
26 need to modify the compiled regexp so that re_match can be reentrant.
27 - get rid of on_failure_jump_smart by doing the optimization in re_comp
28 rather than at run-time, so that re_match can be reentrant.
29 */
30
31 /* AIX requires this to be the first thing in the file. */
32 #if defined _AIX && !defined REGEX_MALLOC
33 #pragma alloca
34 #endif
35
36 #ifdef HAVE_CONFIG_H
37 # include <config.h>
38 #endif
39
40 #if defined STDC_HEADERS && !defined emacs
41 # include <stddef.h>
42 #else
43 /* We need this for `regex.h', and perhaps for the Emacs include files. */
44 # include <sys/types.h>
45 #endif
46
47 /* Whether to use ISO C Amendment 1 wide char functions.
48 Those should not be used for Emacs since it uses its own. */
49 #if defined _LIBC
50 #define WIDE_CHAR_SUPPORT 1
51 #else
52 #define WIDE_CHAR_SUPPORT \
53 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
54 #endif
55
56 /* For platform which support the ISO C amendement 1 functionality we
57 support user defined character classes. */
58 #if WIDE_CHAR_SUPPORT
59 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
60 # include <wchar.h>
61 # include <wctype.h>
62 #endif
63
64 #ifdef _LIBC
65 /* We have to keep the namespace clean. */
66 # define regfree(preg) __regfree (preg)
67 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
68 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
69 # define regerror(errcode, preg, errbuf, errbuf_size) \
70 __regerror(errcode, preg, errbuf, errbuf_size)
71 # define re_set_registers(bu, re, nu, st, en) \
72 __re_set_registers (bu, re, nu, st, en)
73 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
74 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
75 # define re_match(bufp, string, size, pos, regs) \
76 __re_match (bufp, string, size, pos, regs)
77 # define re_search(bufp, string, size, startpos, range, regs) \
78 __re_search (bufp, string, size, startpos, range, regs)
79 # define re_compile_pattern(pattern, length, bufp) \
80 __re_compile_pattern (pattern, length, bufp)
81 # define re_set_syntax(syntax) __re_set_syntax (syntax)
82 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
83 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
84 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
85
86 /* Make sure we call libc's function even if the user overrides them. */
87 # define btowc __btowc
88 # define iswctype __iswctype
89 # define wctype __wctype
90
91 # define WEAK_ALIAS(a,b) weak_alias (a, b)
92
93 /* We are also using some library internals. */
94 # include <locale/localeinfo.h>
95 # include <locale/elem-hash.h>
96 # include <langinfo.h>
97 #else
98 # define WEAK_ALIAS(a,b)
99 #endif
100
101 /* This is for other GNU distributions with internationalized messages. */
102 #if HAVE_LIBINTL_H || defined _LIBC
103 # include <libintl.h>
104 #else
105 # define gettext(msgid) (msgid)
106 #endif
107
108 #ifndef gettext_noop
109 /* This define is so xgettext can find the internationalizable
110 strings. */
111 # define gettext_noop(String) String
112 #endif
113
114 /* The `emacs' switch turns on certain matching commands
115 that make sense only in Emacs. */
116 #ifdef emacs
117
118 # include "lisp.h"
119 # include "buffer.h"
120
121 /* Make syntax table lookup grant data in gl_state. */
122 # define SYNTAX_ENTRY_VIA_PROPERTY
123
124 # include "syntax.h"
125 # include "charset.h"
126 # include "category.h"
127
128 # ifdef malloc
129 # undef malloc
130 # endif
131 # define malloc xmalloc
132 # ifdef realloc
133 # undef realloc
134 # endif
135 # define realloc xrealloc
136 # ifdef free
137 # undef free
138 # endif
139 # define free xfree
140
141 /* Converts the pointer to the char to BEG-based offset from the start. */
142 # define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
143 # define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
144
145 # define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
146 # define RE_STRING_CHAR(p, s) \
147 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
148 # define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
149 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
150
151 /* Set C a (possibly multibyte) character before P. P points into a
152 string which is the virtual concatenation of STR1 (which ends at
153 END1) or STR2 (which ends at END2). */
154 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
155 do { \
156 if (multibyte) \
157 { \
158 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
159 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
160 re_char *d0 = dtemp; \
161 PREV_CHAR_BOUNDARY (d0, dlimit); \
162 c = STRING_CHAR (d0, dtemp - d0); \
163 } \
164 else \
165 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
166 } while (0)
167
168
169 #else /* not emacs */
170
171 /* If we are not linking with Emacs proper,
172 we can't use the relocating allocator
173 even if config.h says that we can. */
174 # undef REL_ALLOC
175
176 # if defined STDC_HEADERS || defined _LIBC
177 # include <stdlib.h>
178 # else
179 char *malloc ();
180 char *realloc ();
181 # endif
182
183 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
184 If nothing else has been done, use the method below. */
185 # ifdef INHIBIT_STRING_HEADER
186 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
187 # if !defined bzero && !defined bcopy
188 # undef INHIBIT_STRING_HEADER
189 # endif
190 # endif
191 # endif
192
193 /* This is the normal way of making sure we have memcpy, memcmp and bzero.
194 This is used in most programs--a few other programs avoid this
195 by defining INHIBIT_STRING_HEADER. */
196 # ifndef INHIBIT_STRING_HEADER
197 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
198 # include <string.h>
199 # ifndef bzero
200 # ifndef _LIBC
201 # define bzero(s, n) (memset (s, '\0', n), (s))
202 # else
203 # define bzero(s, n) __bzero (s, n)
204 # endif
205 # endif
206 # else
207 # include <strings.h>
208 # ifndef memcmp
209 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
210 # endif
211 # ifndef memcpy
212 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
213 # endif
214 # endif
215 # endif
216
217 /* Define the syntax stuff for \<, \>, etc. */
218
219 /* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
220 enum syntaxcode { Swhitespace = 0, Sword = 1, Ssymbol = 2 };
221
222 # ifdef SWITCH_ENUM_BUG
223 # define SWITCH_ENUM_CAST(x) ((int)(x))
224 # else
225 # define SWITCH_ENUM_CAST(x) (x)
226 # endif
227
228 /* Dummy macros for non-Emacs environments. */
229 # define BASE_LEADING_CODE_P(c) (0)
230 # define CHAR_CHARSET(c) 0
231 # define CHARSET_LEADING_CODE_BASE(c) 0
232 # define MAX_MULTIBYTE_LENGTH 1
233 # define RE_MULTIBYTE_P(x) 0
234 # define WORD_BOUNDARY_P(c1, c2) (0)
235 # define CHAR_HEAD_P(p) (1)
236 # define SINGLE_BYTE_CHAR_P(c) (1)
237 # define SAME_CHARSET_P(c1, c2) (1)
238 # define MULTIBYTE_FORM_LENGTH(p, s) (1)
239 # define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
240 # define STRING_CHAR(p, s) (*(p))
241 # define RE_STRING_CHAR STRING_CHAR
242 # define CHAR_STRING(c, s) (*(s) = (c), 1)
243 # define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
244 # define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
245 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
246 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
247 # define MAKE_CHAR(charset, c1, c2) (c1)
248 #endif /* not emacs */
249
250 #ifndef RE_TRANSLATE
251 # define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
252 # define RE_TRANSLATE_P(TBL) (TBL)
253 #endif
254 \f
255 /* Get the interface, including the syntax bits. */
256 #include "regex.h"
257
258 /* isalpha etc. are used for the character classes. */
259 #include <ctype.h>
260
261 #ifdef emacs
262
263 /* 1 if C is an ASCII character. */
264 # define IS_REAL_ASCII(c) ((c) < 0200)
265
266 /* 1 if C is a unibyte character. */
267 # define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
268
269 /* The Emacs definitions should not be directly affected by locales. */
270
271 /* In Emacs, these are only used for single-byte characters. */
272 # define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
273 # define ISCNTRL(c) ((c) < ' ')
274 # define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
275 || ((c) >= 'a' && (c) <= 'f') \
276 || ((c) >= 'A' && (c) <= 'F'))
277
278 /* This is only used for single-byte characters. */
279 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
280
281 /* The rest must handle multibyte characters. */
282
283 # define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
284 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
285 : 1)
286
287 # define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
288 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
289 : 1)
290
291 # define ISALNUM(c) (IS_REAL_ASCII (c) \
292 ? (((c) >= 'a' && (c) <= 'z') \
293 || ((c) >= 'A' && (c) <= 'Z') \
294 || ((c) >= '0' && (c) <= '9')) \
295 : SYNTAX (c) == Sword)
296
297 # define ISALPHA(c) (IS_REAL_ASCII (c) \
298 ? (((c) >= 'a' && (c) <= 'z') \
299 || ((c) >= 'A' && (c) <= 'Z')) \
300 : SYNTAX (c) == Sword)
301
302 # define ISLOWER(c) (LOWERCASEP (c))
303
304 # define ISPUNCT(c) (IS_REAL_ASCII (c) \
305 ? ((c) > ' ' && (c) < 0177 \
306 && !(((c) >= 'a' && (c) <= 'z') \
307 || ((c) >= 'A' && (c) <= 'Z') \
308 || ((c) >= '0' && (c) <= '9'))) \
309 : SYNTAX (c) != Sword)
310
311 # define ISSPACE(c) (SYNTAX (c) == Swhitespace)
312
313 # define ISUPPER(c) (UPPERCASEP (c))
314
315 # define ISWORD(c) (SYNTAX (c) == Sword)
316
317 #else /* not emacs */
318
319 /* Jim Meyering writes:
320
321 "... Some ctype macros are valid only for character codes that
322 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
323 using /bin/cc or gcc but without giving an ansi option). So, all
324 ctype uses should be through macros like ISPRINT... If
325 STDC_HEADERS is defined, then autoconf has verified that the ctype
326 macros don't need to be guarded with references to isascii. ...
327 Defining isascii to 1 should let any compiler worth its salt
328 eliminate the && through constant folding."
329 Solaris defines some of these symbols so we must undefine them first. */
330
331 # undef ISASCII
332 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
333 # define ISASCII(c) 1
334 # else
335 # define ISASCII(c) isascii(c)
336 # endif
337
338 /* 1 if C is an ASCII character. */
339 # define IS_REAL_ASCII(c) ((c) < 0200)
340
341 /* This distinction is not meaningful, except in Emacs. */
342 # define ISUNIBYTE(c) 1
343
344 # ifdef isblank
345 # define ISBLANK(c) (ISASCII (c) && isblank (c))
346 # else
347 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
348 # endif
349 # ifdef isgraph
350 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
351 # else
352 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
353 # endif
354
355 # undef ISPRINT
356 # define ISPRINT(c) (ISASCII (c) && isprint (c))
357 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
358 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
359 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
360 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
361 # define ISLOWER(c) (ISASCII (c) && islower (c))
362 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
363 # define ISSPACE(c) (ISASCII (c) && isspace (c))
364 # define ISUPPER(c) (ISASCII (c) && isupper (c))
365 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
366
367 # define ISWORD(c) ISALPHA(c)
368
369 # ifdef _tolower
370 # define TOLOWER(c) _tolower(c)
371 # else
372 # define TOLOWER(c) tolower(c)
373 # endif
374
375 /* How many characters in the character set. */
376 # define CHAR_SET_SIZE 256
377
378 # ifdef SYNTAX_TABLE
379
380 extern char *re_syntax_table;
381
382 # else /* not SYNTAX_TABLE */
383
384 static char re_syntax_table[CHAR_SET_SIZE];
385
386 static void
387 init_syntax_once ()
388 {
389 register int c;
390 static int done = 0;
391
392 if (done)
393 return;
394
395 bzero (re_syntax_table, sizeof re_syntax_table);
396
397 for (c = 0; c < CHAR_SET_SIZE; ++c)
398 if (ISALNUM (c))
399 re_syntax_table[c] = Sword;
400
401 re_syntax_table['_'] = Ssymbol;
402
403 done = 1;
404 }
405
406 # endif /* not SYNTAX_TABLE */
407
408 # define SYNTAX(c) re_syntax_table[(c)]
409
410 #endif /* not emacs */
411 \f
412 #ifndef NULL
413 # define NULL (void *)0
414 #endif
415
416 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
417 since ours (we hope) works properly with all combinations of
418 machines, compilers, `char' and `unsigned char' argument types.
419 (Per Bothner suggested the basic approach.) */
420 #undef SIGN_EXTEND_CHAR
421 #if __STDC__
422 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
423 #else /* not __STDC__ */
424 /* As in Harbison and Steele. */
425 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
426 #endif
427 \f
428 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
429 use `alloca' instead of `malloc'. This is because using malloc in
430 re_search* or re_match* could cause memory leaks when C-g is used in
431 Emacs; also, malloc is slower and causes storage fragmentation. On
432 the other hand, malloc is more portable, and easier to debug.
433
434 Because we sometimes use alloca, some routines have to be macros,
435 not functions -- `alloca'-allocated space disappears at the end of the
436 function it is called in. */
437
438 #ifdef REGEX_MALLOC
439
440 # define REGEX_ALLOCATE malloc
441 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
442 # define REGEX_FREE free
443
444 #else /* not REGEX_MALLOC */
445
446 /* Emacs already defines alloca, sometimes. */
447 # ifndef alloca
448
449 /* Make alloca work the best possible way. */
450 # ifdef __GNUC__
451 # define alloca __builtin_alloca
452 # else /* not __GNUC__ */
453 # if HAVE_ALLOCA_H
454 # include <alloca.h>
455 # endif /* HAVE_ALLOCA_H */
456 # endif /* not __GNUC__ */
457
458 # endif /* not alloca */
459
460 # define REGEX_ALLOCATE alloca
461
462 /* Assumes a `char *destination' variable. */
463 # define REGEX_REALLOCATE(source, osize, nsize) \
464 (destination = (char *) alloca (nsize), \
465 memcpy (destination, source, osize))
466
467 /* No need to do anything to free, after alloca. */
468 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
469
470 #endif /* not REGEX_MALLOC */
471
472 /* Define how to allocate the failure stack. */
473
474 #if defined REL_ALLOC && defined REGEX_MALLOC
475
476 # define REGEX_ALLOCATE_STACK(size) \
477 r_alloc (&failure_stack_ptr, (size))
478 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
479 r_re_alloc (&failure_stack_ptr, (nsize))
480 # define REGEX_FREE_STACK(ptr) \
481 r_alloc_free (&failure_stack_ptr)
482
483 #else /* not using relocating allocator */
484
485 # ifdef REGEX_MALLOC
486
487 # define REGEX_ALLOCATE_STACK malloc
488 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
489 # define REGEX_FREE_STACK free
490
491 # else /* not REGEX_MALLOC */
492
493 # define REGEX_ALLOCATE_STACK alloca
494
495 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
496 REGEX_REALLOCATE (source, osize, nsize)
497 /* No need to explicitly free anything. */
498 # define REGEX_FREE_STACK(arg) ((void)0)
499
500 # endif /* not REGEX_MALLOC */
501 #endif /* not using relocating allocator */
502
503
504 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
505 `string1' or just past its end. This works if PTR is NULL, which is
506 a good thing. */
507 #define FIRST_STRING_P(ptr) \
508 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
509
510 /* (Re)Allocate N items of type T using malloc, or fail. */
511 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
512 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
513 #define RETALLOC_IF(addr, n, t) \
514 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
515 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
516
517 #define BYTEWIDTH 8 /* In bits. */
518
519 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
520
521 #undef MAX
522 #undef MIN
523 #define MAX(a, b) ((a) > (b) ? (a) : (b))
524 #define MIN(a, b) ((a) < (b) ? (a) : (b))
525
526 /* Type of source-pattern and string chars. */
527 typedef const unsigned char re_char;
528
529 typedef char boolean;
530 #define false 0
531 #define true 1
532
533 static int re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
534 re_char *string1, int size1,
535 re_char *string2, int size2,
536 int pos,
537 struct re_registers *regs,
538 int stop));
539 \f
540 /* These are the command codes that appear in compiled regular
541 expressions. Some opcodes are followed by argument bytes. A
542 command code can specify any interpretation whatsoever for its
543 arguments. Zero bytes may appear in the compiled regular expression. */
544
545 typedef enum
546 {
547 no_op = 0,
548
549 /* Succeed right away--no more backtracking. */
550 succeed,
551
552 /* Followed by one byte giving n, then by n literal bytes. */
553 exactn,
554
555 /* Matches any (more or less) character. */
556 anychar,
557
558 /* Matches any one char belonging to specified set. First
559 following byte is number of bitmap bytes. Then come bytes
560 for a bitmap saying which chars are in. Bits in each byte
561 are ordered low-bit-first. A character is in the set if its
562 bit is 1. A character too large to have a bit in the map is
563 automatically not in the set.
564
565 If the length byte has the 0x80 bit set, then that stuff
566 is followed by a range table:
567 2 bytes of flags for character sets (low 8 bits, high 8 bits)
568 See RANGE_TABLE_WORK_BITS below.
569 2 bytes, the number of pairs that follow (upto 32767)
570 pairs, each 2 multibyte characters,
571 each multibyte character represented as 3 bytes. */
572 charset,
573
574 /* Same parameters as charset, but match any character that is
575 not one of those specified. */
576 charset_not,
577
578 /* Start remembering the text that is matched, for storing in a
579 register. Followed by one byte with the register number, in
580 the range 0 to one less than the pattern buffer's re_nsub
581 field. */
582 start_memory,
583
584 /* Stop remembering the text that is matched and store it in a
585 memory register. Followed by one byte with the register
586 number, in the range 0 to one less than `re_nsub' in the
587 pattern buffer. */
588 stop_memory,
589
590 /* Match a duplicate of something remembered. Followed by one
591 byte containing the register number. */
592 duplicate,
593
594 /* Fail unless at beginning of line. */
595 begline,
596
597 /* Fail unless at end of line. */
598 endline,
599
600 /* Succeeds if at beginning of buffer (if emacs) or at beginning
601 of string to be matched (if not). */
602 begbuf,
603
604 /* Analogously, for end of buffer/string. */
605 endbuf,
606
607 /* Followed by two byte relative address to which to jump. */
608 jump,
609
610 /* Followed by two-byte relative address of place to resume at
611 in case of failure. */
612 on_failure_jump,
613
614 /* Like on_failure_jump, but pushes a placeholder instead of the
615 current string position when executed. */
616 on_failure_keep_string_jump,
617
618 /* Just like `on_failure_jump', except that it checks that we
619 don't get stuck in an infinite loop (matching an empty string
620 indefinitely). */
621 on_failure_jump_loop,
622
623 /* Just like `on_failure_jump_loop', except that it checks for
624 a different kind of loop (the kind that shows up with non-greedy
625 operators). This operation has to be immediately preceded
626 by a `no_op'. */
627 on_failure_jump_nastyloop,
628
629 /* A smart `on_failure_jump' used for greedy * and + operators.
630 It analyses the loop before which it is put and if the
631 loop does not require backtracking, it changes itself to
632 `on_failure_keep_string_jump' and short-circuits the loop,
633 else it just defaults to changing itself into `on_failure_jump'.
634 It assumes that it is pointing to just past a `jump'. */
635 on_failure_jump_smart,
636
637 /* Followed by two-byte relative address and two-byte number n.
638 After matching N times, jump to the address upon failure.
639 Does not work if N starts at 0: use on_failure_jump_loop
640 instead. */
641 succeed_n,
642
643 /* Followed by two-byte relative address, and two-byte number n.
644 Jump to the address N times, then fail. */
645 jump_n,
646
647 /* Set the following two-byte relative address to the
648 subsequent two-byte number. The address *includes* the two
649 bytes of number. */
650 set_number_at,
651
652 wordbeg, /* Succeeds if at word beginning. */
653 wordend, /* Succeeds if at word end. */
654
655 wordbound, /* Succeeds if at a word boundary. */
656 notwordbound, /* Succeeds if not at a word boundary. */
657
658 symbeg, /* Succeeds if at symbol beginning. */
659 symend, /* Succeeds if at symbol end. */
660
661 /* Matches any character whose syntax is specified. Followed by
662 a byte which contains a syntax code, e.g., Sword. */
663 syntaxspec,
664
665 /* Matches any character whose syntax is not that specified. */
666 notsyntaxspec
667
668 #ifdef emacs
669 ,before_dot, /* Succeeds if before point. */
670 at_dot, /* Succeeds if at point. */
671 after_dot, /* Succeeds if after point. */
672
673 /* Matches any character whose category-set contains the specified
674 category. The operator is followed by a byte which contains a
675 category code (mnemonic ASCII character). */
676 categoryspec,
677
678 /* Matches any character whose category-set does not contain the
679 specified category. The operator is followed by a byte which
680 contains the category code (mnemonic ASCII character). */
681 notcategoryspec
682 #endif /* emacs */
683 } re_opcode_t;
684 \f
685 /* Common operations on the compiled pattern. */
686
687 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
688
689 #define STORE_NUMBER(destination, number) \
690 do { \
691 (destination)[0] = (number) & 0377; \
692 (destination)[1] = (number) >> 8; \
693 } while (0)
694
695 /* Same as STORE_NUMBER, except increment DESTINATION to
696 the byte after where the number is stored. Therefore, DESTINATION
697 must be an lvalue. */
698
699 #define STORE_NUMBER_AND_INCR(destination, number) \
700 do { \
701 STORE_NUMBER (destination, number); \
702 (destination) += 2; \
703 } while (0)
704
705 /* Put into DESTINATION a number stored in two contiguous bytes starting
706 at SOURCE. */
707
708 #define EXTRACT_NUMBER(destination, source) \
709 do { \
710 (destination) = *(source) & 0377; \
711 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
712 } while (0)
713
714 #ifdef DEBUG
715 static void extract_number _RE_ARGS ((int *dest, re_char *source));
716 static void
717 extract_number (dest, source)
718 int *dest;
719 re_char *source;
720 {
721 int temp = SIGN_EXTEND_CHAR (*(source + 1));
722 *dest = *source & 0377;
723 *dest += temp << 8;
724 }
725
726 # ifndef EXTRACT_MACROS /* To debug the macros. */
727 # undef EXTRACT_NUMBER
728 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
729 # endif /* not EXTRACT_MACROS */
730
731 #endif /* DEBUG */
732
733 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
734 SOURCE must be an lvalue. */
735
736 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
737 do { \
738 EXTRACT_NUMBER (destination, source); \
739 (source) += 2; \
740 } while (0)
741
742 #ifdef DEBUG
743 static void extract_number_and_incr _RE_ARGS ((int *destination,
744 re_char **source));
745 static void
746 extract_number_and_incr (destination, source)
747 int *destination;
748 re_char **source;
749 {
750 extract_number (destination, *source);
751 *source += 2;
752 }
753
754 # ifndef EXTRACT_MACROS
755 # undef EXTRACT_NUMBER_AND_INCR
756 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
757 extract_number_and_incr (&dest, &src)
758 # endif /* not EXTRACT_MACROS */
759
760 #endif /* DEBUG */
761 \f
762 /* Store a multibyte character in three contiguous bytes starting
763 DESTINATION, and increment DESTINATION to the byte after where the
764 character is stored. Therefore, DESTINATION must be an lvalue. */
765
766 #define STORE_CHARACTER_AND_INCR(destination, character) \
767 do { \
768 (destination)[0] = (character) & 0377; \
769 (destination)[1] = ((character) >> 8) & 0377; \
770 (destination)[2] = (character) >> 16; \
771 (destination) += 3; \
772 } while (0)
773
774 /* Put into DESTINATION a character stored in three contiguous bytes
775 starting at SOURCE. */
776
777 #define EXTRACT_CHARACTER(destination, source) \
778 do { \
779 (destination) = ((source)[0] \
780 | ((source)[1] << 8) \
781 | ((source)[2] << 16)); \
782 } while (0)
783
784
785 /* Macros for charset. */
786
787 /* Size of bitmap of charset P in bytes. P is a start of charset,
788 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
789 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
790
791 /* Nonzero if charset P has range table. */
792 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
793
794 /* Return the address of range table of charset P. But not the start
795 of table itself, but the before where the number of ranges is
796 stored. `2 +' means to skip re_opcode_t and size of bitmap,
797 and the 2 bytes of flags at the start of the range table. */
798 #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
799
800 /* Extract the bit flags that start a range table. */
801 #define CHARSET_RANGE_TABLE_BITS(p) \
802 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
803 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
804
805 /* Test if C is listed in the bitmap of charset P. */
806 #define CHARSET_LOOKUP_BITMAP(p, c) \
807 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
808 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
809
810 /* Return the address of end of RANGE_TABLE. COUNT is number of
811 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
812 is start of range and end of range. `* 3' is size of each start
813 and end. */
814 #define CHARSET_RANGE_TABLE_END(range_table, count) \
815 ((range_table) + (count) * 2 * 3)
816
817 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
818 COUNT is number of ranges in RANGE_TABLE. */
819 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
820 do \
821 { \
822 re_wchar_t range_start, range_end; \
823 re_char *p; \
824 re_char *range_table_end \
825 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
826 \
827 for (p = (range_table); p < range_table_end; p += 2 * 3) \
828 { \
829 EXTRACT_CHARACTER (range_start, p); \
830 EXTRACT_CHARACTER (range_end, p + 3); \
831 \
832 if (range_start <= (c) && (c) <= range_end) \
833 { \
834 (not) = !(not); \
835 break; \
836 } \
837 } \
838 } \
839 while (0)
840
841 /* Test if C is in range table of CHARSET. The flag NOT is negated if
842 C is listed in it. */
843 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
844 do \
845 { \
846 /* Number of ranges in range table. */ \
847 int count; \
848 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
849 \
850 EXTRACT_NUMBER_AND_INCR (count, range_table); \
851 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
852 } \
853 while (0)
854 \f
855 /* If DEBUG is defined, Regex prints many voluminous messages about what
856 it is doing (if the variable `debug' is nonzero). If linked with the
857 main program in `iregex.c', you can enter patterns and strings
858 interactively. And if linked with the main program in `main.c' and
859 the other test files, you can run the already-written tests. */
860
861 #ifdef DEBUG
862
863 /* We use standard I/O for debugging. */
864 # include <stdio.h>
865
866 /* It is useful to test things that ``must'' be true when debugging. */
867 # include <assert.h>
868
869 static int debug = -100000;
870
871 # define DEBUG_STATEMENT(e) e
872 # define DEBUG_PRINT1(x) if (debug > 0) printf (x)
873 # define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
874 # define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
875 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
876 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
877 if (debug > 0) print_partial_compiled_pattern (s, e)
878 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
879 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
880
881
882 /* Print the fastmap in human-readable form. */
883
884 void
885 print_fastmap (fastmap)
886 char *fastmap;
887 {
888 unsigned was_a_range = 0;
889 unsigned i = 0;
890
891 while (i < (1 << BYTEWIDTH))
892 {
893 if (fastmap[i++])
894 {
895 was_a_range = 0;
896 putchar (i - 1);
897 while (i < (1 << BYTEWIDTH) && fastmap[i])
898 {
899 was_a_range = 1;
900 i++;
901 }
902 if (was_a_range)
903 {
904 printf ("-");
905 putchar (i - 1);
906 }
907 }
908 }
909 putchar ('\n');
910 }
911
912
913 /* Print a compiled pattern string in human-readable form, starting at
914 the START pointer into it and ending just before the pointer END. */
915
916 void
917 print_partial_compiled_pattern (start, end)
918 re_char *start;
919 re_char *end;
920 {
921 int mcnt, mcnt2;
922 re_char *p = start;
923 re_char *pend = end;
924
925 if (start == NULL)
926 {
927 fprintf (stderr, "(null)\n");
928 return;
929 }
930
931 /* Loop over pattern commands. */
932 while (p < pend)
933 {
934 fprintf (stderr, "%d:\t", p - start);
935
936 switch ((re_opcode_t) *p++)
937 {
938 case no_op:
939 fprintf (stderr, "/no_op");
940 break;
941
942 case succeed:
943 fprintf (stderr, "/succeed");
944 break;
945
946 case exactn:
947 mcnt = *p++;
948 fprintf (stderr, "/exactn/%d", mcnt);
949 do
950 {
951 fprintf (stderr, "/%c", *p++);
952 }
953 while (--mcnt);
954 break;
955
956 case start_memory:
957 fprintf (stderr, "/start_memory/%d", *p++);
958 break;
959
960 case stop_memory:
961 fprintf (stderr, "/stop_memory/%d", *p++);
962 break;
963
964 case duplicate:
965 fprintf (stderr, "/duplicate/%d", *p++);
966 break;
967
968 case anychar:
969 fprintf (stderr, "/anychar");
970 break;
971
972 case charset:
973 case charset_not:
974 {
975 register int c, last = -100;
976 register int in_range = 0;
977 int length = CHARSET_BITMAP_SIZE (p - 1);
978 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
979
980 fprintf (stderr, "/charset [%s",
981 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
982
983 if (p + *p >= pend)
984 fprintf (stderr, " !extends past end of pattern! ");
985
986 for (c = 0; c < 256; c++)
987 if (c / 8 < length
988 && (p[1 + (c/8)] & (1 << (c % 8))))
989 {
990 /* Are we starting a range? */
991 if (last + 1 == c && ! in_range)
992 {
993 fprintf (stderr, "-");
994 in_range = 1;
995 }
996 /* Have we broken a range? */
997 else if (last + 1 != c && in_range)
998 {
999 fprintf (stderr, "%c", last);
1000 in_range = 0;
1001 }
1002
1003 if (! in_range)
1004 fprintf (stderr, "%c", c);
1005
1006 last = c;
1007 }
1008
1009 if (in_range)
1010 fprintf (stderr, "%c", last);
1011
1012 fprintf (stderr, "]");
1013
1014 p += 1 + length;
1015
1016 if (has_range_table)
1017 {
1018 int count;
1019 fprintf (stderr, "has-range-table");
1020
1021 /* ??? Should print the range table; for now, just skip it. */
1022 p += 2; /* skip range table bits */
1023 EXTRACT_NUMBER_AND_INCR (count, p);
1024 p = CHARSET_RANGE_TABLE_END (p, count);
1025 }
1026 }
1027 break;
1028
1029 case begline:
1030 fprintf (stderr, "/begline");
1031 break;
1032
1033 case endline:
1034 fprintf (stderr, "/endline");
1035 break;
1036
1037 case on_failure_jump:
1038 extract_number_and_incr (&mcnt, &p);
1039 fprintf (stderr, "/on_failure_jump to %d", p + mcnt - start);
1040 break;
1041
1042 case on_failure_keep_string_jump:
1043 extract_number_and_incr (&mcnt, &p);
1044 fprintf (stderr, "/on_failure_keep_string_jump to %d", p + mcnt - start);
1045 break;
1046
1047 case on_failure_jump_nastyloop:
1048 extract_number_and_incr (&mcnt, &p);
1049 fprintf (stderr, "/on_failure_jump_nastyloop to %d", p + mcnt - start);
1050 break;
1051
1052 case on_failure_jump_loop:
1053 extract_number_and_incr (&mcnt, &p);
1054 fprintf (stderr, "/on_failure_jump_loop to %d", p + mcnt - start);
1055 break;
1056
1057 case on_failure_jump_smart:
1058 extract_number_and_incr (&mcnt, &p);
1059 fprintf (stderr, "/on_failure_jump_smart to %d", p + mcnt - start);
1060 break;
1061
1062 case jump:
1063 extract_number_and_incr (&mcnt, &p);
1064 fprintf (stderr, "/jump to %d", p + mcnt - start);
1065 break;
1066
1067 case succeed_n:
1068 extract_number_and_incr (&mcnt, &p);
1069 extract_number_and_incr (&mcnt2, &p);
1070 fprintf (stderr, "/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
1071 break;
1072
1073 case jump_n:
1074 extract_number_and_incr (&mcnt, &p);
1075 extract_number_and_incr (&mcnt2, &p);
1076 fprintf (stderr, "/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
1077 break;
1078
1079 case set_number_at:
1080 extract_number_and_incr (&mcnt, &p);
1081 extract_number_and_incr (&mcnt2, &p);
1082 fprintf (stderr, "/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
1083 break;
1084
1085 case wordbound:
1086 fprintf (stderr, "/wordbound");
1087 break;
1088
1089 case notwordbound:
1090 fprintf (stderr, "/notwordbound");
1091 break;
1092
1093 case wordbeg:
1094 fprintf (stderr, "/wordbeg");
1095 break;
1096
1097 case wordend:
1098 fprintf (stderr, "/wordend");
1099 break;
1100
1101 case symbeg:
1102 fprintf (stderr, "/symbeg");
1103 break;
1104
1105 case symend:
1106 fprintf (stderr, "/symend");
1107 break;
1108
1109 case syntaxspec:
1110 fprintf (stderr, "/syntaxspec");
1111 mcnt = *p++;
1112 fprintf (stderr, "/%d", mcnt);
1113 break;
1114
1115 case notsyntaxspec:
1116 fprintf (stderr, "/notsyntaxspec");
1117 mcnt = *p++;
1118 fprintf (stderr, "/%d", mcnt);
1119 break;
1120
1121 # ifdef emacs
1122 case before_dot:
1123 fprintf (stderr, "/before_dot");
1124 break;
1125
1126 case at_dot:
1127 fprintf (stderr, "/at_dot");
1128 break;
1129
1130 case after_dot:
1131 fprintf (stderr, "/after_dot");
1132 break;
1133
1134 case categoryspec:
1135 fprintf (stderr, "/categoryspec");
1136 mcnt = *p++;
1137 fprintf (stderr, "/%d", mcnt);
1138 break;
1139
1140 case notcategoryspec:
1141 fprintf (stderr, "/notcategoryspec");
1142 mcnt = *p++;
1143 fprintf (stderr, "/%d", mcnt);
1144 break;
1145 # endif /* emacs */
1146
1147 case begbuf:
1148 fprintf (stderr, "/begbuf");
1149 break;
1150
1151 case endbuf:
1152 fprintf (stderr, "/endbuf");
1153 break;
1154
1155 default:
1156 fprintf (stderr, "?%d", *(p-1));
1157 }
1158
1159 fprintf (stderr, "\n");
1160 }
1161
1162 fprintf (stderr, "%d:\tend of pattern.\n", p - start);
1163 }
1164
1165
1166 void
1167 print_compiled_pattern (bufp)
1168 struct re_pattern_buffer *bufp;
1169 {
1170 re_char *buffer = bufp->buffer;
1171
1172 print_partial_compiled_pattern (buffer, buffer + bufp->used);
1173 printf ("%ld bytes used/%ld bytes allocated.\n",
1174 bufp->used, bufp->allocated);
1175
1176 if (bufp->fastmap_accurate && bufp->fastmap)
1177 {
1178 printf ("fastmap: ");
1179 print_fastmap (bufp->fastmap);
1180 }
1181
1182 printf ("re_nsub: %d\t", bufp->re_nsub);
1183 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1184 printf ("can_be_null: %d\t", bufp->can_be_null);
1185 printf ("no_sub: %d\t", bufp->no_sub);
1186 printf ("not_bol: %d\t", bufp->not_bol);
1187 printf ("not_eol: %d\t", bufp->not_eol);
1188 printf ("syntax: %lx\n", bufp->syntax);
1189 fflush (stdout);
1190 /* Perhaps we should print the translate table? */
1191 }
1192
1193
1194 void
1195 print_double_string (where, string1, size1, string2, size2)
1196 re_char *where;
1197 re_char *string1;
1198 re_char *string2;
1199 int size1;
1200 int size2;
1201 {
1202 int this_char;
1203
1204 if (where == NULL)
1205 printf ("(null)");
1206 else
1207 {
1208 if (FIRST_STRING_P (where))
1209 {
1210 for (this_char = where - string1; this_char < size1; this_char++)
1211 putchar (string1[this_char]);
1212
1213 where = string2;
1214 }
1215
1216 for (this_char = where - string2; this_char < size2; this_char++)
1217 putchar (string2[this_char]);
1218 }
1219 }
1220
1221 #else /* not DEBUG */
1222
1223 # undef assert
1224 # define assert(e)
1225
1226 # define DEBUG_STATEMENT(e)
1227 # define DEBUG_PRINT1(x)
1228 # define DEBUG_PRINT2(x1, x2)
1229 # define DEBUG_PRINT3(x1, x2, x3)
1230 # define DEBUG_PRINT4(x1, x2, x3, x4)
1231 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1232 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1233
1234 #endif /* not DEBUG */
1235 \f
1236 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1237 also be assigned to arbitrarily: each pattern buffer stores its own
1238 syntax, so it can be changed between regex compilations. */
1239 /* This has no initializer because initialized variables in Emacs
1240 become read-only after dumping. */
1241 reg_syntax_t re_syntax_options;
1242
1243
1244 /* Specify the precise syntax of regexps for compilation. This provides
1245 for compatibility for various utilities which historically have
1246 different, incompatible syntaxes.
1247
1248 The argument SYNTAX is a bit mask comprised of the various bits
1249 defined in regex.h. We return the old syntax. */
1250
1251 reg_syntax_t
1252 re_set_syntax (syntax)
1253 reg_syntax_t syntax;
1254 {
1255 reg_syntax_t ret = re_syntax_options;
1256
1257 re_syntax_options = syntax;
1258 return ret;
1259 }
1260 WEAK_ALIAS (__re_set_syntax, re_set_syntax)
1261 \f
1262 /* This table gives an error message for each of the error codes listed
1263 in regex.h. Obviously the order here has to be same as there.
1264 POSIX doesn't require that we do anything for REG_NOERROR,
1265 but why not be nice? */
1266
1267 static const char *re_error_msgid[] =
1268 {
1269 gettext_noop ("Success"), /* REG_NOERROR */
1270 gettext_noop ("No match"), /* REG_NOMATCH */
1271 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1272 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1273 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1274 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1275 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1276 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1277 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1278 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1279 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1280 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1281 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1282 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1283 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1284 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1285 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1286 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
1287 };
1288 \f
1289 /* Avoiding alloca during matching, to placate r_alloc. */
1290
1291 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1292 searching and matching functions should not call alloca. On some
1293 systems, alloca is implemented in terms of malloc, and if we're
1294 using the relocating allocator routines, then malloc could cause a
1295 relocation, which might (if the strings being searched are in the
1296 ralloc heap) shift the data out from underneath the regexp
1297 routines.
1298
1299 Here's another reason to avoid allocation: Emacs
1300 processes input from X in a signal handler; processing X input may
1301 call malloc; if input arrives while a matching routine is calling
1302 malloc, then we're scrod. But Emacs can't just block input while
1303 calling matching routines; then we don't notice interrupts when
1304 they come in. So, Emacs blocks input around all regexp calls
1305 except the matching calls, which it leaves unprotected, in the
1306 faith that they will not malloc. */
1307
1308 /* Normally, this is fine. */
1309 #define MATCH_MAY_ALLOCATE
1310
1311 /* When using GNU C, we are not REALLY using the C alloca, no matter
1312 what config.h may say. So don't take precautions for it. */
1313 #ifdef __GNUC__
1314 # undef C_ALLOCA
1315 #endif
1316
1317 /* The match routines may not allocate if (1) they would do it with malloc
1318 and (2) it's not safe for them to use malloc.
1319 Note that if REL_ALLOC is defined, matching would not use malloc for the
1320 failure stack, but we would still use it for the register vectors;
1321 so REL_ALLOC should not affect this. */
1322 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1323 # undef MATCH_MAY_ALLOCATE
1324 #endif
1325
1326 \f
1327 /* Failure stack declarations and macros; both re_compile_fastmap and
1328 re_match_2 use a failure stack. These have to be macros because of
1329 REGEX_ALLOCATE_STACK. */
1330
1331
1332 /* Approximate number of failure points for which to initially allocate space
1333 when matching. If this number is exceeded, we allocate more
1334 space, so it is not a hard limit. */
1335 #ifndef INIT_FAILURE_ALLOC
1336 # define INIT_FAILURE_ALLOC 20
1337 #endif
1338
1339 /* Roughly the maximum number of failure points on the stack. Would be
1340 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1341 This is a variable only so users of regex can assign to it; we never
1342 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1343 before using it, so it should probably be a byte-count instead. */
1344 # if defined MATCH_MAY_ALLOCATE
1345 /* Note that 4400 was enough to cause a crash on Alpha OSF/1,
1346 whose default stack limit is 2mb. In order for a larger
1347 value to work reliably, you have to try to make it accord
1348 with the process stack limit. */
1349 size_t re_max_failures = 40000;
1350 # else
1351 size_t re_max_failures = 4000;
1352 # endif
1353
1354 union fail_stack_elt
1355 {
1356 re_char *pointer;
1357 /* This should be the biggest `int' that's no bigger than a pointer. */
1358 long integer;
1359 };
1360
1361 typedef union fail_stack_elt fail_stack_elt_t;
1362
1363 typedef struct
1364 {
1365 fail_stack_elt_t *stack;
1366 size_t size;
1367 size_t avail; /* Offset of next open position. */
1368 size_t frame; /* Offset of the cur constructed frame. */
1369 } fail_stack_type;
1370
1371 #define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
1372 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1373
1374
1375 /* Define macros to initialize and free the failure stack.
1376 Do `return -2' if the alloc fails. */
1377
1378 #ifdef MATCH_MAY_ALLOCATE
1379 # define INIT_FAIL_STACK() \
1380 do { \
1381 fail_stack.stack = (fail_stack_elt_t *) \
1382 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1383 * sizeof (fail_stack_elt_t)); \
1384 \
1385 if (fail_stack.stack == NULL) \
1386 return -2; \
1387 \
1388 fail_stack.size = INIT_FAILURE_ALLOC; \
1389 fail_stack.avail = 0; \
1390 fail_stack.frame = 0; \
1391 } while (0)
1392
1393 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1394 #else
1395 # define INIT_FAIL_STACK() \
1396 do { \
1397 fail_stack.avail = 0; \
1398 fail_stack.frame = 0; \
1399 } while (0)
1400
1401 # define RESET_FAIL_STACK() ((void)0)
1402 #endif
1403
1404
1405 /* Double the size of FAIL_STACK, up to a limit
1406 which allows approximately `re_max_failures' items.
1407
1408 Return 1 if succeeds, and 0 if either ran out of memory
1409 allocating space for it or it was already too large.
1410
1411 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1412
1413 /* Factor to increase the failure stack size by
1414 when we increase it.
1415 This used to be 2, but 2 was too wasteful
1416 because the old discarded stacks added up to as much space
1417 were as ultimate, maximum-size stack. */
1418 #define FAIL_STACK_GROWTH_FACTOR 4
1419
1420 #define GROW_FAIL_STACK(fail_stack) \
1421 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1422 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
1423 ? 0 \
1424 : ((fail_stack).stack \
1425 = (fail_stack_elt_t *) \
1426 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1427 (fail_stack).size * sizeof (fail_stack_elt_t), \
1428 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1429 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1430 * FAIL_STACK_GROWTH_FACTOR))), \
1431 \
1432 (fail_stack).stack == NULL \
1433 ? 0 \
1434 : ((fail_stack).size \
1435 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1436 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1437 * FAIL_STACK_GROWTH_FACTOR)) \
1438 / sizeof (fail_stack_elt_t)), \
1439 1)))
1440
1441
1442 /* Push a pointer value onto the failure stack.
1443 Assumes the variable `fail_stack'. Probably should only
1444 be called from within `PUSH_FAILURE_POINT'. */
1445 #define PUSH_FAILURE_POINTER(item) \
1446 fail_stack.stack[fail_stack.avail++].pointer = (item)
1447
1448 /* This pushes an integer-valued item onto the failure stack.
1449 Assumes the variable `fail_stack'. Probably should only
1450 be called from within `PUSH_FAILURE_POINT'. */
1451 #define PUSH_FAILURE_INT(item) \
1452 fail_stack.stack[fail_stack.avail++].integer = (item)
1453
1454 /* Push a fail_stack_elt_t value onto the failure stack.
1455 Assumes the variable `fail_stack'. Probably should only
1456 be called from within `PUSH_FAILURE_POINT'. */
1457 #define PUSH_FAILURE_ELT(item) \
1458 fail_stack.stack[fail_stack.avail++] = (item)
1459
1460 /* These three POP... operations complement the three PUSH... operations.
1461 All assume that `fail_stack' is nonempty. */
1462 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1463 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1464 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1465
1466 /* Individual items aside from the registers. */
1467 #define NUM_NONREG_ITEMS 3
1468
1469 /* Used to examine the stack (to detect infinite loops). */
1470 #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
1471 #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
1472 #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1473 #define TOP_FAILURE_HANDLE() fail_stack.frame
1474
1475
1476 #define ENSURE_FAIL_STACK(space) \
1477 while (REMAINING_AVAIL_SLOTS <= space) { \
1478 if (!GROW_FAIL_STACK (fail_stack)) \
1479 return -2; \
1480 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1481 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1482 }
1483
1484 /* Push register NUM onto the stack. */
1485 #define PUSH_FAILURE_REG(num) \
1486 do { \
1487 char *destination; \
1488 ENSURE_FAIL_STACK(3); \
1489 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1490 num, regstart[num], regend[num]); \
1491 PUSH_FAILURE_POINTER (regstart[num]); \
1492 PUSH_FAILURE_POINTER (regend[num]); \
1493 PUSH_FAILURE_INT (num); \
1494 } while (0)
1495
1496 /* Change the counter's value to VAL, but make sure that it will
1497 be reset when backtracking. */
1498 #define PUSH_NUMBER(ptr,val) \
1499 do { \
1500 char *destination; \
1501 int c; \
1502 ENSURE_FAIL_STACK(3); \
1503 EXTRACT_NUMBER (c, ptr); \
1504 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
1505 PUSH_FAILURE_INT (c); \
1506 PUSH_FAILURE_POINTER (ptr); \
1507 PUSH_FAILURE_INT (-1); \
1508 STORE_NUMBER (ptr, val); \
1509 } while (0)
1510
1511 /* Pop a saved register off the stack. */
1512 #define POP_FAILURE_REG_OR_COUNT() \
1513 do { \
1514 int reg = POP_FAILURE_INT (); \
1515 if (reg == -1) \
1516 { \
1517 /* It's a counter. */ \
1518 /* Here, we discard `const', making re_match non-reentrant. */ \
1519 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
1520 reg = POP_FAILURE_INT (); \
1521 STORE_NUMBER (ptr, reg); \
1522 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1523 } \
1524 else \
1525 { \
1526 regend[reg] = POP_FAILURE_POINTER (); \
1527 regstart[reg] = POP_FAILURE_POINTER (); \
1528 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1529 reg, regstart[reg], regend[reg]); \
1530 } \
1531 } while (0)
1532
1533 /* Check that we are not stuck in an infinite loop. */
1534 #define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1535 do { \
1536 int failure = TOP_FAILURE_HANDLE (); \
1537 /* Check for infinite matching loops */ \
1538 while (failure > 0 \
1539 && (FAILURE_STR (failure) == string_place \
1540 || FAILURE_STR (failure) == NULL)) \
1541 { \
1542 assert (FAILURE_PAT (failure) >= bufp->buffer \
1543 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
1544 if (FAILURE_PAT (failure) == pat_cur) \
1545 { \
1546 cycle = 1; \
1547 break; \
1548 } \
1549 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
1550 failure = NEXT_FAILURE_HANDLE(failure); \
1551 } \
1552 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1553 } while (0)
1554
1555 /* Push the information about the state we will need
1556 if we ever fail back to it.
1557
1558 Requires variables fail_stack, regstart, regend and
1559 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1560 declared.
1561
1562 Does `return FAILURE_CODE' if runs out of memory. */
1563
1564 #define PUSH_FAILURE_POINT(pattern, string_place) \
1565 do { \
1566 char *destination; \
1567 /* Must be int, so when we don't save any registers, the arithmetic \
1568 of 0 + -1 isn't done as unsigned. */ \
1569 \
1570 DEBUG_STATEMENT (nfailure_points_pushed++); \
1571 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
1572 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1573 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1574 \
1575 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1576 \
1577 DEBUG_PRINT1 ("\n"); \
1578 \
1579 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1580 PUSH_FAILURE_INT (fail_stack.frame); \
1581 \
1582 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1583 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1584 DEBUG_PRINT1 ("'\n"); \
1585 PUSH_FAILURE_POINTER (string_place); \
1586 \
1587 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1588 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1589 PUSH_FAILURE_POINTER (pattern); \
1590 \
1591 /* Close the frame by moving the frame pointer past it. */ \
1592 fail_stack.frame = fail_stack.avail; \
1593 } while (0)
1594
1595 /* Estimate the size of data pushed by a typical failure stack entry.
1596 An estimate is all we need, because all we use this for
1597 is to choose a limit for how big to make the failure stack. */
1598 /* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
1599 #define TYPICAL_FAILURE_SIZE 20
1600
1601 /* How many items can still be added to the stack without overflowing it. */
1602 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1603
1604
1605 /* Pops what PUSH_FAIL_STACK pushes.
1606
1607 We restore into the parameters, all of which should be lvalues:
1608 STR -- the saved data position.
1609 PAT -- the saved pattern position.
1610 REGSTART, REGEND -- arrays of string positions.
1611
1612 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1613 `pend', `string1', `size1', `string2', and `size2'. */
1614
1615 #define POP_FAILURE_POINT(str, pat) \
1616 do { \
1617 assert (!FAIL_STACK_EMPTY ()); \
1618 \
1619 /* Remove failure points and point to how many regs pushed. */ \
1620 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1621 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1622 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1623 \
1624 /* Pop the saved registers. */ \
1625 while (fail_stack.frame < fail_stack.avail) \
1626 POP_FAILURE_REG_OR_COUNT (); \
1627 \
1628 pat = POP_FAILURE_POINTER (); \
1629 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1630 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1631 \
1632 /* If the saved string location is NULL, it came from an \
1633 on_failure_keep_string_jump opcode, and we want to throw away the \
1634 saved NULL, thus retaining our current position in the string. */ \
1635 str = POP_FAILURE_POINTER (); \
1636 DEBUG_PRINT2 (" Popping string %p: `", str); \
1637 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1638 DEBUG_PRINT1 ("'\n"); \
1639 \
1640 fail_stack.frame = POP_FAILURE_INT (); \
1641 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
1642 \
1643 assert (fail_stack.avail >= 0); \
1644 assert (fail_stack.frame <= fail_stack.avail); \
1645 \
1646 DEBUG_STATEMENT (nfailure_points_popped++); \
1647 } while (0) /* POP_FAILURE_POINT */
1648
1649
1650 \f
1651 /* Registers are set to a sentinel when they haven't yet matched. */
1652 #define REG_UNSET(e) ((e) == NULL)
1653 \f
1654 /* Subroutine declarations and macros for regex_compile. */
1655
1656 static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
1657 reg_syntax_t syntax,
1658 struct re_pattern_buffer *bufp));
1659 static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1660 static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1661 int arg1, int arg2));
1662 static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1663 int arg, unsigned char *end));
1664 static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1665 int arg1, int arg2, unsigned char *end));
1666 static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
1667 re_char *p,
1668 reg_syntax_t syntax));
1669 static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
1670 re_char *pend,
1671 reg_syntax_t syntax));
1672 static re_char *skip_one_char _RE_ARGS ((re_char *p));
1673 static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
1674 char *fastmap, const int multibyte));
1675
1676 /* Fetch the next character in the uncompiled pattern, with no
1677 translation. */
1678 #define PATFETCH(c) \
1679 do { \
1680 int len; \
1681 if (p == pend) return REG_EEND; \
1682 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1683 p += len; \
1684 } while (0)
1685
1686
1687 /* If `translate' is non-null, return translate[D], else just D. We
1688 cast the subscript to translate because some data is declared as
1689 `char *', to avoid warnings when a string constant is passed. But
1690 when we use a character as a subscript we must make it unsigned. */
1691 #ifndef TRANSLATE
1692 # define TRANSLATE(d) \
1693 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
1694 #endif
1695
1696
1697 /* Macros for outputting the compiled pattern into `buffer'. */
1698
1699 /* If the buffer isn't allocated when it comes in, use this. */
1700 #define INIT_BUF_SIZE 32
1701
1702 /* Make sure we have at least N more bytes of space in buffer. */
1703 #define GET_BUFFER_SPACE(n) \
1704 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
1705 EXTEND_BUFFER ()
1706
1707 /* Make sure we have one more byte of buffer space and then add C to it. */
1708 #define BUF_PUSH(c) \
1709 do { \
1710 GET_BUFFER_SPACE (1); \
1711 *b++ = (unsigned char) (c); \
1712 } while (0)
1713
1714
1715 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1716 #define BUF_PUSH_2(c1, c2) \
1717 do { \
1718 GET_BUFFER_SPACE (2); \
1719 *b++ = (unsigned char) (c1); \
1720 *b++ = (unsigned char) (c2); \
1721 } while (0)
1722
1723
1724 /* As with BUF_PUSH_2, except for three bytes. */
1725 #define BUF_PUSH_3(c1, c2, c3) \
1726 do { \
1727 GET_BUFFER_SPACE (3); \
1728 *b++ = (unsigned char) (c1); \
1729 *b++ = (unsigned char) (c2); \
1730 *b++ = (unsigned char) (c3); \
1731 } while (0)
1732
1733
1734 /* Store a jump with opcode OP at LOC to location TO. We store a
1735 relative address offset by the three bytes the jump itself occupies. */
1736 #define STORE_JUMP(op, loc, to) \
1737 store_op1 (op, loc, (to) - (loc) - 3)
1738
1739 /* Likewise, for a two-argument jump. */
1740 #define STORE_JUMP2(op, loc, to, arg) \
1741 store_op2 (op, loc, (to) - (loc) - 3, arg)
1742
1743 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1744 #define INSERT_JUMP(op, loc, to) \
1745 insert_op1 (op, loc, (to) - (loc) - 3, b)
1746
1747 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1748 #define INSERT_JUMP2(op, loc, to, arg) \
1749 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1750
1751
1752 /* This is not an arbitrary limit: the arguments which represent offsets
1753 into the pattern are two bytes long. So if 2^15 bytes turns out to
1754 be too small, many things would have to change. */
1755 # define MAX_BUF_SIZE (1L << 15)
1756
1757 #if 0 /* This is when we thought it could be 2^16 bytes. */
1758 /* Any other compiler which, like MSC, has allocation limit below 2^16
1759 bytes will have to use approach similar to what was done below for
1760 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1761 reallocating to 0 bytes. Such thing is not going to work too well.
1762 You have been warned!! */
1763 #if defined _MSC_VER && !defined WIN32
1764 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1765 # define MAX_BUF_SIZE 65500L
1766 #else
1767 # define MAX_BUF_SIZE (1L << 16)
1768 #endif
1769 #endif /* 0 */
1770
1771 /* Extend the buffer by twice its current size via realloc and
1772 reset the pointers that pointed into the old block to point to the
1773 correct places in the new one. If extending the buffer results in it
1774 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1775 #if __BOUNDED_POINTERS__
1776 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1777 # define MOVE_BUFFER_POINTER(P) \
1778 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
1779 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1780 else \
1781 { \
1782 SET_HIGH_BOUND (b); \
1783 SET_HIGH_BOUND (begalt); \
1784 if (fixup_alt_jump) \
1785 SET_HIGH_BOUND (fixup_alt_jump); \
1786 if (laststart) \
1787 SET_HIGH_BOUND (laststart); \
1788 if (pending_exact) \
1789 SET_HIGH_BOUND (pending_exact); \
1790 }
1791 #else
1792 # define MOVE_BUFFER_POINTER(P) (P) += incr
1793 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
1794 #endif
1795 #define EXTEND_BUFFER() \
1796 do { \
1797 re_char *old_buffer = bufp->buffer; \
1798 if (bufp->allocated == MAX_BUF_SIZE) \
1799 return REG_ESIZE; \
1800 bufp->allocated <<= 1; \
1801 if (bufp->allocated > MAX_BUF_SIZE) \
1802 bufp->allocated = MAX_BUF_SIZE; \
1803 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
1804 if (bufp->buffer == NULL) \
1805 return REG_ESPACE; \
1806 /* If the buffer moved, move all the pointers into it. */ \
1807 if (old_buffer != bufp->buffer) \
1808 { \
1809 int incr = bufp->buffer - old_buffer; \
1810 MOVE_BUFFER_POINTER (b); \
1811 MOVE_BUFFER_POINTER (begalt); \
1812 if (fixup_alt_jump) \
1813 MOVE_BUFFER_POINTER (fixup_alt_jump); \
1814 if (laststart) \
1815 MOVE_BUFFER_POINTER (laststart); \
1816 if (pending_exact) \
1817 MOVE_BUFFER_POINTER (pending_exact); \
1818 } \
1819 ELSE_EXTEND_BUFFER_HIGH_BOUND \
1820 } while (0)
1821
1822
1823 /* Since we have one byte reserved for the register number argument to
1824 {start,stop}_memory, the maximum number of groups we can report
1825 things about is what fits in that byte. */
1826 #define MAX_REGNUM 255
1827
1828 /* But patterns can have more than `MAX_REGNUM' registers. We just
1829 ignore the excess. */
1830 typedef int regnum_t;
1831
1832
1833 /* Macros for the compile stack. */
1834
1835 /* Since offsets can go either forwards or backwards, this type needs to
1836 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1837 /* int may be not enough when sizeof(int) == 2. */
1838 typedef long pattern_offset_t;
1839
1840 typedef struct
1841 {
1842 pattern_offset_t begalt_offset;
1843 pattern_offset_t fixup_alt_jump;
1844 pattern_offset_t laststart_offset;
1845 regnum_t regnum;
1846 } compile_stack_elt_t;
1847
1848
1849 typedef struct
1850 {
1851 compile_stack_elt_t *stack;
1852 unsigned size;
1853 unsigned avail; /* Offset of next open position. */
1854 } compile_stack_type;
1855
1856
1857 #define INIT_COMPILE_STACK_SIZE 32
1858
1859 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1860 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1861
1862 /* The next available element. */
1863 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1864
1865 /* Explicit quit checking is only used on NTemacs. */
1866 #if defined WINDOWSNT && defined emacs && defined QUIT
1867 extern int immediate_quit;
1868 # define IMMEDIATE_QUIT_CHECK \
1869 do { \
1870 if (immediate_quit) QUIT; \
1871 } while (0)
1872 #else
1873 # define IMMEDIATE_QUIT_CHECK ((void)0)
1874 #endif
1875 \f
1876 /* Structure to manage work area for range table. */
1877 struct range_table_work_area
1878 {
1879 int *table; /* actual work area. */
1880 int allocated; /* allocated size for work area in bytes. */
1881 int used; /* actually used size in words. */
1882 int bits; /* flag to record character classes */
1883 };
1884
1885 /* Make sure that WORK_AREA can hold more N multibyte characters.
1886 This is used only in set_image_of_range and set_image_of_range_1.
1887 It expects WORK_AREA to be a pointer.
1888 If it can't get the space, it returns from the surrounding function. */
1889
1890 #define EXTEND_RANGE_TABLE(work_area, n) \
1891 do { \
1892 if (((work_area)->used + (n)) * sizeof (int) > (work_area)->allocated) \
1893 { \
1894 extend_range_table_work_area (work_area); \
1895 if ((work_area)->table == 0) \
1896 return (REG_ESPACE); \
1897 } \
1898 } while (0)
1899
1900 #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1901 (work_area).bits |= (bit)
1902
1903 /* Bits used to implement the multibyte-part of the various character classes
1904 such as [:alnum:] in a charset's range table. */
1905 #define BIT_WORD 0x1
1906 #define BIT_LOWER 0x2
1907 #define BIT_PUNCT 0x4
1908 #define BIT_SPACE 0x8
1909 #define BIT_UPPER 0x10
1910 #define BIT_MULTIBYTE 0x20
1911
1912 /* Set a range START..END to WORK_AREA.
1913 The range is passed through TRANSLATE, so START and END
1914 should be untranslated. */
1915 #define SET_RANGE_TABLE_WORK_AREA(work_area, start, end) \
1916 do { \
1917 int tem; \
1918 tem = set_image_of_range (&work_area, start, end, translate); \
1919 if (tem > 0) \
1920 FREE_STACK_RETURN (tem); \
1921 } while (0)
1922
1923 /* Free allocated memory for WORK_AREA. */
1924 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1925 do { \
1926 if ((work_area).table) \
1927 free ((work_area).table); \
1928 } while (0)
1929
1930 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
1931 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1932 #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
1933 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1934 \f
1935
1936 /* Set the bit for character C in a list. */
1937 #define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
1938
1939
1940 /* Get the next unsigned number in the uncompiled pattern. */
1941 #define GET_UNSIGNED_NUMBER(num) \
1942 do { if (p != pend) \
1943 { \
1944 PATFETCH (c); \
1945 if (c == ' ') \
1946 FREE_STACK_RETURN (REG_BADBR); \
1947 while ('0' <= c && c <= '9') \
1948 { \
1949 int prev; \
1950 if (num < 0) \
1951 num = 0; \
1952 prev = num; \
1953 num = num * 10 + c - '0'; \
1954 if (num / 10 != prev) \
1955 FREE_STACK_RETURN (REG_BADBR); \
1956 if (p == pend) \
1957 break; \
1958 PATFETCH (c); \
1959 } \
1960 if (c == ' ') \
1961 FREE_STACK_RETURN (REG_BADBR); \
1962 } \
1963 } while (0)
1964 \f
1965 #if ! WIDE_CHAR_SUPPORT
1966
1967 /* Map a string to the char class it names (if any). */
1968 re_wctype_t
1969 re_wctype (str)
1970 re_char *str;
1971 {
1972 const char *string = str;
1973 if (STREQ (string, "alnum")) return RECC_ALNUM;
1974 else if (STREQ (string, "alpha")) return RECC_ALPHA;
1975 else if (STREQ (string, "word")) return RECC_WORD;
1976 else if (STREQ (string, "ascii")) return RECC_ASCII;
1977 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
1978 else if (STREQ (string, "graph")) return RECC_GRAPH;
1979 else if (STREQ (string, "lower")) return RECC_LOWER;
1980 else if (STREQ (string, "print")) return RECC_PRINT;
1981 else if (STREQ (string, "punct")) return RECC_PUNCT;
1982 else if (STREQ (string, "space")) return RECC_SPACE;
1983 else if (STREQ (string, "upper")) return RECC_UPPER;
1984 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
1985 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
1986 else if (STREQ (string, "digit")) return RECC_DIGIT;
1987 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
1988 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
1989 else if (STREQ (string, "blank")) return RECC_BLANK;
1990 else return 0;
1991 }
1992
1993 /* True iff CH is in the char class CC. */
1994 boolean
1995 re_iswctype (ch, cc)
1996 int ch;
1997 re_wctype_t cc;
1998 {
1999 switch (cc)
2000 {
2001 case RECC_ALNUM: return ISALNUM (ch);
2002 case RECC_ALPHA: return ISALPHA (ch);
2003 case RECC_BLANK: return ISBLANK (ch);
2004 case RECC_CNTRL: return ISCNTRL (ch);
2005 case RECC_DIGIT: return ISDIGIT (ch);
2006 case RECC_GRAPH: return ISGRAPH (ch);
2007 case RECC_LOWER: return ISLOWER (ch);
2008 case RECC_PRINT: return ISPRINT (ch);
2009 case RECC_PUNCT: return ISPUNCT (ch);
2010 case RECC_SPACE: return ISSPACE (ch);
2011 case RECC_UPPER: return ISUPPER (ch);
2012 case RECC_XDIGIT: return ISXDIGIT (ch);
2013 case RECC_ASCII: return IS_REAL_ASCII (ch);
2014 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
2015 case RECC_UNIBYTE: return ISUNIBYTE (ch);
2016 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
2017 case RECC_WORD: return ISWORD (ch);
2018 case RECC_ERROR: return false;
2019 default:
2020 abort();
2021 }
2022 }
2023
2024 /* Return a bit-pattern to use in the range-table bits to match multibyte
2025 chars of class CC. */
2026 static int
2027 re_wctype_to_bit (cc)
2028 re_wctype_t cc;
2029 {
2030 switch (cc)
2031 {
2032 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
2033 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2034 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
2035 case RECC_LOWER: return BIT_LOWER;
2036 case RECC_UPPER: return BIT_UPPER;
2037 case RECC_PUNCT: return BIT_PUNCT;
2038 case RECC_SPACE: return BIT_SPACE;
2039 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
2040 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
2041 default:
2042 abort();
2043 }
2044 }
2045 #endif
2046 \f
2047 /* Filling in the work area of a range. */
2048
2049 /* Actually extend the space in WORK_AREA. */
2050
2051 static void
2052 extend_range_table_work_area (work_area)
2053 struct range_table_work_area *work_area;
2054 {
2055 work_area->allocated += 16 * sizeof (int);
2056 if (work_area->table)
2057 work_area->table
2058 = (int *) realloc (work_area->table, work_area->allocated);
2059 else
2060 work_area->table
2061 = (int *) malloc (work_area->allocated);
2062 }
2063
2064 #ifdef emacs
2065
2066 /* Carefully find the ranges of codes that are equivalent
2067 under case conversion to the range start..end when passed through
2068 TRANSLATE. Handle the case where non-letters can come in between
2069 two upper-case letters (which happens in Latin-1).
2070 Also handle the case of groups of more than 2 case-equivalent chars.
2071
2072 The basic method is to look at consecutive characters and see
2073 if they can form a run that can be handled as one.
2074
2075 Returns -1 if successful, REG_ESPACE if ran out of space. */
2076
2077 static int
2078 set_image_of_range_1 (work_area, start, end, translate)
2079 RE_TRANSLATE_TYPE translate;
2080 struct range_table_work_area *work_area;
2081 re_wchar_t start, end;
2082 {
2083 /* `one_case' indicates a character, or a run of characters,
2084 each of which is an isolate (no case-equivalents).
2085 This includes all ASCII non-letters.
2086
2087 `two_case' indicates a character, or a run of characters,
2088 each of which has two case-equivalent forms.
2089 This includes all ASCII letters.
2090
2091 `strange' indicates a character that has more than one
2092 case-equivalent. */
2093
2094 enum case_type {one_case, two_case, strange};
2095
2096 /* Describe the run that is in progress,
2097 which the next character can try to extend.
2098 If run_type is strange, that means there really is no run.
2099 If run_type is one_case, then run_start...run_end is the run.
2100 If run_type is two_case, then the run is run_start...run_end,
2101 and the case-equivalents end at run_eqv_end. */
2102
2103 enum case_type run_type = strange;
2104 int run_start, run_end, run_eqv_end;
2105
2106 Lisp_Object eqv_table;
2107
2108 if (!RE_TRANSLATE_P (translate))
2109 {
2110 EXTEND_RANGE_TABLE (work_area, 2);
2111 work_area->table[work_area->used++] = (start);
2112 work_area->table[work_area->used++] = (end);
2113 return -1;
2114 }
2115
2116 eqv_table = XCHAR_TABLE (translate)->extras[2];
2117
2118 for (; start <= end; start++)
2119 {
2120 enum case_type this_type;
2121 int eqv = RE_TRANSLATE (eqv_table, start);
2122 int minchar, maxchar;
2123
2124 /* Classify this character */
2125 if (eqv == start)
2126 this_type = one_case;
2127 else if (RE_TRANSLATE (eqv_table, eqv) == start)
2128 this_type = two_case;
2129 else
2130 this_type = strange;
2131
2132 if (start < eqv)
2133 minchar = start, maxchar = eqv;
2134 else
2135 minchar = eqv, maxchar = start;
2136
2137 /* Can this character extend the run in progress? */
2138 if (this_type == strange || this_type != run_type
2139 || !(minchar == run_end + 1
2140 && (run_type == two_case
2141 ? maxchar == run_eqv_end + 1 : 1)))
2142 {
2143 /* No, end the run.
2144 Record each of its equivalent ranges. */
2145 if (run_type == one_case)
2146 {
2147 EXTEND_RANGE_TABLE (work_area, 2);
2148 work_area->table[work_area->used++] = run_start;
2149 work_area->table[work_area->used++] = run_end;
2150 }
2151 else if (run_type == two_case)
2152 {
2153 EXTEND_RANGE_TABLE (work_area, 4);
2154 work_area->table[work_area->used++] = run_start;
2155 work_area->table[work_area->used++] = run_end;
2156 work_area->table[work_area->used++]
2157 = RE_TRANSLATE (eqv_table, run_start);
2158 work_area->table[work_area->used++]
2159 = RE_TRANSLATE (eqv_table, run_end);
2160 }
2161 run_type = strange;
2162 }
2163
2164 if (this_type == strange)
2165 {
2166 /* For a strange character, add each of its equivalents, one
2167 by one. Don't start a range. */
2168 do
2169 {
2170 EXTEND_RANGE_TABLE (work_area, 2);
2171 work_area->table[work_area->used++] = eqv;
2172 work_area->table[work_area->used++] = eqv;
2173 eqv = RE_TRANSLATE (eqv_table, eqv);
2174 }
2175 while (eqv != start);
2176 }
2177
2178 /* Add this char to the run, or start a new run. */
2179 else if (run_type == strange)
2180 {
2181 /* Initialize a new range. */
2182 run_type = this_type;
2183 run_start = start;
2184 run_end = start;
2185 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2186 }
2187 else
2188 {
2189 /* Extend a running range. */
2190 run_end = minchar;
2191 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2192 }
2193 }
2194
2195 /* If a run is still in progress at the end, finish it now
2196 by recording its equivalent ranges. */
2197 if (run_type == one_case)
2198 {
2199 EXTEND_RANGE_TABLE (work_area, 2);
2200 work_area->table[work_area->used++] = run_start;
2201 work_area->table[work_area->used++] = run_end;
2202 }
2203 else if (run_type == two_case)
2204 {
2205 EXTEND_RANGE_TABLE (work_area, 4);
2206 work_area->table[work_area->used++] = run_start;
2207 work_area->table[work_area->used++] = run_end;
2208 work_area->table[work_area->used++]
2209 = RE_TRANSLATE (eqv_table, run_start);
2210 work_area->table[work_area->used++]
2211 = RE_TRANSLATE (eqv_table, run_end);
2212 }
2213
2214 return -1;
2215 }
2216
2217 #endif /* emacs */
2218
2219 /* Record the the image of the range start..end when passed through
2220 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2221 and is not even necessarily contiguous.
2222 Normally we approximate it with the smallest contiguous range that contains
2223 all the chars we need. However, for Latin-1 we go to extra effort
2224 to do a better job.
2225
2226 This function is not called for ASCII ranges.
2227
2228 Returns -1 if successful, REG_ESPACE if ran out of space. */
2229
2230 static int
2231 set_image_of_range (work_area, start, end, translate)
2232 RE_TRANSLATE_TYPE translate;
2233 struct range_table_work_area *work_area;
2234 re_wchar_t start, end;
2235 {
2236 re_wchar_t cmin, cmax;
2237
2238 #ifdef emacs
2239 /* For Latin-1 ranges, use set_image_of_range_1
2240 to get proper handling of ranges that include letters and nonletters.
2241 For a range that includes the whole of Latin-1, this is not necessary.
2242 For other character sets, we don't bother to get this right. */
2243 if (RE_TRANSLATE_P (translate) && start < 04400
2244 && !(start < 04200 && end >= 04377))
2245 {
2246 int newend;
2247 int tem;
2248 newend = end;
2249 if (newend > 04377)
2250 newend = 04377;
2251 tem = set_image_of_range_1 (work_area, start, newend, translate);
2252 if (tem > 0)
2253 return tem;
2254
2255 start = 04400;
2256 if (end < 04400)
2257 return -1;
2258 }
2259 #endif
2260
2261 EXTEND_RANGE_TABLE (work_area, 2);
2262 work_area->table[work_area->used++] = (start);
2263 work_area->table[work_area->used++] = (end);
2264
2265 cmin = -1, cmax = -1;
2266
2267 if (RE_TRANSLATE_P (translate))
2268 {
2269 int ch;
2270
2271 for (ch = start; ch <= end; ch++)
2272 {
2273 re_wchar_t c = TRANSLATE (ch);
2274 if (! (start <= c && c <= end))
2275 {
2276 if (cmin == -1)
2277 cmin = c, cmax = c;
2278 else
2279 {
2280 cmin = MIN (cmin, c);
2281 cmax = MAX (cmax, c);
2282 }
2283 }
2284 }
2285
2286 if (cmin != -1)
2287 {
2288 EXTEND_RANGE_TABLE (work_area, 2);
2289 work_area->table[work_area->used++] = (cmin);
2290 work_area->table[work_area->used++] = (cmax);
2291 }
2292 }
2293
2294 return -1;
2295 }
2296 \f
2297 #ifndef MATCH_MAY_ALLOCATE
2298
2299 /* If we cannot allocate large objects within re_match_2_internal,
2300 we make the fail stack and register vectors global.
2301 The fail stack, we grow to the maximum size when a regexp
2302 is compiled.
2303 The register vectors, we adjust in size each time we
2304 compile a regexp, according to the number of registers it needs. */
2305
2306 static fail_stack_type fail_stack;
2307
2308 /* Size with which the following vectors are currently allocated.
2309 That is so we can make them bigger as needed,
2310 but never make them smaller. */
2311 static int regs_allocated_size;
2312
2313 static re_char ** regstart, ** regend;
2314 static re_char **best_regstart, **best_regend;
2315
2316 /* Make the register vectors big enough for NUM_REGS registers,
2317 but don't make them smaller. */
2318
2319 static
2320 regex_grow_registers (num_regs)
2321 int num_regs;
2322 {
2323 if (num_regs > regs_allocated_size)
2324 {
2325 RETALLOC_IF (regstart, num_regs, re_char *);
2326 RETALLOC_IF (regend, num_regs, re_char *);
2327 RETALLOC_IF (best_regstart, num_regs, re_char *);
2328 RETALLOC_IF (best_regend, num_regs, re_char *);
2329
2330 regs_allocated_size = num_regs;
2331 }
2332 }
2333
2334 #endif /* not MATCH_MAY_ALLOCATE */
2335 \f
2336 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2337 compile_stack,
2338 regnum_t regnum));
2339
2340 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2341 Returns one of error codes defined in `regex.h', or zero for success.
2342
2343 Assumes the `allocated' (and perhaps `buffer') and `translate'
2344 fields are set in BUFP on entry.
2345
2346 If it succeeds, results are put in BUFP (if it returns an error, the
2347 contents of BUFP are undefined):
2348 `buffer' is the compiled pattern;
2349 `syntax' is set to SYNTAX;
2350 `used' is set to the length of the compiled pattern;
2351 `fastmap_accurate' is zero;
2352 `re_nsub' is the number of subexpressions in PATTERN;
2353 `not_bol' and `not_eol' are zero;
2354
2355 The `fastmap' field is neither examined nor set. */
2356
2357 /* Insert the `jump' from the end of last alternative to "here".
2358 The space for the jump has already been allocated. */
2359 #define FIXUP_ALT_JUMP() \
2360 do { \
2361 if (fixup_alt_jump) \
2362 STORE_JUMP (jump, fixup_alt_jump, b); \
2363 } while (0)
2364
2365
2366 /* Return, freeing storage we allocated. */
2367 #define FREE_STACK_RETURN(value) \
2368 do { \
2369 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2370 free (compile_stack.stack); \
2371 return value; \
2372 } while (0)
2373
2374 static reg_errcode_t
2375 regex_compile (pattern, size, syntax, bufp)
2376 re_char *pattern;
2377 size_t size;
2378 reg_syntax_t syntax;
2379 struct re_pattern_buffer *bufp;
2380 {
2381 /* We fetch characters from PATTERN here. */
2382 register re_wchar_t c, c1;
2383
2384 /* A random temporary spot in PATTERN. */
2385 re_char *p1;
2386
2387 /* Points to the end of the buffer, where we should append. */
2388 register unsigned char *b;
2389
2390 /* Keeps track of unclosed groups. */
2391 compile_stack_type compile_stack;
2392
2393 /* Points to the current (ending) position in the pattern. */
2394 #ifdef AIX
2395 /* `const' makes AIX compiler fail. */
2396 unsigned char *p = pattern;
2397 #else
2398 re_char *p = pattern;
2399 #endif
2400 re_char *pend = pattern + size;
2401
2402 /* How to translate the characters in the pattern. */
2403 RE_TRANSLATE_TYPE translate = bufp->translate;
2404
2405 /* Address of the count-byte of the most recently inserted `exactn'
2406 command. This makes it possible to tell if a new exact-match
2407 character can be added to that command or if the character requires
2408 a new `exactn' command. */
2409 unsigned char *pending_exact = 0;
2410
2411 /* Address of start of the most recently finished expression.
2412 This tells, e.g., postfix * where to find the start of its
2413 operand. Reset at the beginning of groups and alternatives. */
2414 unsigned char *laststart = 0;
2415
2416 /* Address of beginning of regexp, or inside of last group. */
2417 unsigned char *begalt;
2418
2419 /* Place in the uncompiled pattern (i.e., the {) to
2420 which to go back if the interval is invalid. */
2421 re_char *beg_interval;
2422
2423 /* Address of the place where a forward jump should go to the end of
2424 the containing expression. Each alternative of an `or' -- except the
2425 last -- ends with a forward jump of this sort. */
2426 unsigned char *fixup_alt_jump = 0;
2427
2428 /* Counts open-groups as they are encountered. Remembered for the
2429 matching close-group on the compile stack, so the same register
2430 number is put in the stop_memory as the start_memory. */
2431 regnum_t regnum = 0;
2432
2433 /* Work area for range table of charset. */
2434 struct range_table_work_area range_table_work;
2435
2436 /* If the object matched can contain multibyte characters. */
2437 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2438
2439 #ifdef DEBUG
2440 debug++;
2441 DEBUG_PRINT1 ("\nCompiling pattern: ");
2442 if (debug > 0)
2443 {
2444 unsigned debug_count;
2445
2446 for (debug_count = 0; debug_count < size; debug_count++)
2447 putchar (pattern[debug_count]);
2448 putchar ('\n');
2449 }
2450 #endif /* DEBUG */
2451
2452 /* Initialize the compile stack. */
2453 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2454 if (compile_stack.stack == NULL)
2455 return REG_ESPACE;
2456
2457 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2458 compile_stack.avail = 0;
2459
2460 range_table_work.table = 0;
2461 range_table_work.allocated = 0;
2462
2463 /* Initialize the pattern buffer. */
2464 bufp->syntax = syntax;
2465 bufp->fastmap_accurate = 0;
2466 bufp->not_bol = bufp->not_eol = 0;
2467
2468 /* Set `used' to zero, so that if we return an error, the pattern
2469 printer (for debugging) will think there's no pattern. We reset it
2470 at the end. */
2471 bufp->used = 0;
2472
2473 /* Always count groups, whether or not bufp->no_sub is set. */
2474 bufp->re_nsub = 0;
2475
2476 #if !defined emacs && !defined SYNTAX_TABLE
2477 /* Initialize the syntax table. */
2478 init_syntax_once ();
2479 #endif
2480
2481 if (bufp->allocated == 0)
2482 {
2483 if (bufp->buffer)
2484 { /* If zero allocated, but buffer is non-null, try to realloc
2485 enough space. This loses if buffer's address is bogus, but
2486 that is the user's responsibility. */
2487 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2488 }
2489 else
2490 { /* Caller did not allocate a buffer. Do it for them. */
2491 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2492 }
2493 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2494
2495 bufp->allocated = INIT_BUF_SIZE;
2496 }
2497
2498 begalt = b = bufp->buffer;
2499
2500 /* Loop through the uncompiled pattern until we're at the end. */
2501 while (p != pend)
2502 {
2503 PATFETCH (c);
2504
2505 switch (c)
2506 {
2507 case '^':
2508 {
2509 if ( /* If at start of pattern, it's an operator. */
2510 p == pattern + 1
2511 /* If context independent, it's an operator. */
2512 || syntax & RE_CONTEXT_INDEP_ANCHORS
2513 /* Otherwise, depends on what's come before. */
2514 || at_begline_loc_p (pattern, p, syntax))
2515 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
2516 else
2517 goto normal_char;
2518 }
2519 break;
2520
2521
2522 case '$':
2523 {
2524 if ( /* If at end of pattern, it's an operator. */
2525 p == pend
2526 /* If context independent, it's an operator. */
2527 || syntax & RE_CONTEXT_INDEP_ANCHORS
2528 /* Otherwise, depends on what's next. */
2529 || at_endline_loc_p (p, pend, syntax))
2530 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
2531 else
2532 goto normal_char;
2533 }
2534 break;
2535
2536
2537 case '+':
2538 case '?':
2539 if ((syntax & RE_BK_PLUS_QM)
2540 || (syntax & RE_LIMITED_OPS))
2541 goto normal_char;
2542 handle_plus:
2543 case '*':
2544 /* If there is no previous pattern... */
2545 if (!laststart)
2546 {
2547 if (syntax & RE_CONTEXT_INVALID_OPS)
2548 FREE_STACK_RETURN (REG_BADRPT);
2549 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2550 goto normal_char;
2551 }
2552
2553 {
2554 /* 1 means zero (many) matches is allowed. */
2555 boolean zero_times_ok = 0, many_times_ok = 0;
2556 boolean greedy = 1;
2557
2558 /* If there is a sequence of repetition chars, collapse it
2559 down to just one (the right one). We can't combine
2560 interval operators with these because of, e.g., `a{2}*',
2561 which should only match an even number of `a's. */
2562
2563 for (;;)
2564 {
2565 if ((syntax & RE_FRUGAL)
2566 && c == '?' && (zero_times_ok || many_times_ok))
2567 greedy = 0;
2568 else
2569 {
2570 zero_times_ok |= c != '+';
2571 many_times_ok |= c != '?';
2572 }
2573
2574 if (p == pend)
2575 break;
2576 else if (*p == '*'
2577 || (!(syntax & RE_BK_PLUS_QM)
2578 && (*p == '+' || *p == '?')))
2579 ;
2580 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
2581 {
2582 if (p+1 == pend)
2583 FREE_STACK_RETURN (REG_EESCAPE);
2584 if (p[1] == '+' || p[1] == '?')
2585 PATFETCH (c); /* Gobble up the backslash. */
2586 else
2587 break;
2588 }
2589 else
2590 break;
2591 /* If we get here, we found another repeat character. */
2592 PATFETCH (c);
2593 }
2594
2595 /* Star, etc. applied to an empty pattern is equivalent
2596 to an empty pattern. */
2597 if (!laststart || laststart == b)
2598 break;
2599
2600 /* Now we know whether or not zero matches is allowed
2601 and also whether or not two or more matches is allowed. */
2602 if (greedy)
2603 {
2604 if (many_times_ok)
2605 {
2606 boolean simple = skip_one_char (laststart) == b;
2607 unsigned int startoffset = 0;
2608 re_opcode_t ofj =
2609 /* Check if the loop can match the empty string. */
2610 (simple || !analyse_first (laststart, b, NULL, 0))
2611 ? on_failure_jump : on_failure_jump_loop;
2612 assert (skip_one_char (laststart) <= b);
2613
2614 if (!zero_times_ok && simple)
2615 { /* Since simple * loops can be made faster by using
2616 on_failure_keep_string_jump, we turn simple P+
2617 into PP* if P is simple. */
2618 unsigned char *p1, *p2;
2619 startoffset = b - laststart;
2620 GET_BUFFER_SPACE (startoffset);
2621 p1 = b; p2 = laststart;
2622 while (p2 < p1)
2623 *b++ = *p2++;
2624 zero_times_ok = 1;
2625 }
2626
2627 GET_BUFFER_SPACE (6);
2628 if (!zero_times_ok)
2629 /* A + loop. */
2630 STORE_JUMP (ofj, b, b + 6);
2631 else
2632 /* Simple * loops can use on_failure_keep_string_jump
2633 depending on what follows. But since we don't know
2634 that yet, we leave the decision up to
2635 on_failure_jump_smart. */
2636 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
2637 laststart + startoffset, b + 6);
2638 b += 3;
2639 STORE_JUMP (jump, b, laststart + startoffset);
2640 b += 3;
2641 }
2642 else
2643 {
2644 /* A simple ? pattern. */
2645 assert (zero_times_ok);
2646 GET_BUFFER_SPACE (3);
2647 INSERT_JUMP (on_failure_jump, laststart, b + 3);
2648 b += 3;
2649 }
2650 }
2651 else /* not greedy */
2652 { /* I wish the greedy and non-greedy cases could be merged. */
2653
2654 GET_BUFFER_SPACE (7); /* We might use less. */
2655 if (many_times_ok)
2656 {
2657 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2658
2659 /* The non-greedy multiple match looks like
2660 a repeat..until: we only need a conditional jump
2661 at the end of the loop. */
2662 if (emptyp) BUF_PUSH (no_op);
2663 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2664 : on_failure_jump, b, laststart);
2665 b += 3;
2666 if (zero_times_ok)
2667 {
2668 /* The repeat...until naturally matches one or more.
2669 To also match zero times, we need to first jump to
2670 the end of the loop (its conditional jump). */
2671 INSERT_JUMP (jump, laststart, b);
2672 b += 3;
2673 }
2674 }
2675 else
2676 {
2677 /* non-greedy a?? */
2678 INSERT_JUMP (jump, laststart, b + 3);
2679 b += 3;
2680 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2681 b += 3;
2682 }
2683 }
2684 }
2685 pending_exact = 0;
2686 break;
2687
2688
2689 case '.':
2690 laststart = b;
2691 BUF_PUSH (anychar);
2692 break;
2693
2694
2695 case '[':
2696 {
2697 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
2698
2699 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2700
2701 /* Ensure that we have enough space to push a charset: the
2702 opcode, the length count, and the bitset; 34 bytes in all. */
2703 GET_BUFFER_SPACE (34);
2704
2705 laststart = b;
2706
2707 /* We test `*p == '^' twice, instead of using an if
2708 statement, so we only need one BUF_PUSH. */
2709 BUF_PUSH (*p == '^' ? charset_not : charset);
2710 if (*p == '^')
2711 p++;
2712
2713 /* Remember the first position in the bracket expression. */
2714 p1 = p;
2715
2716 /* Push the number of bytes in the bitmap. */
2717 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2718
2719 /* Clear the whole map. */
2720 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2721
2722 /* charset_not matches newline according to a syntax bit. */
2723 if ((re_opcode_t) b[-2] == charset_not
2724 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2725 SET_LIST_BIT ('\n');
2726
2727 /* Read in characters and ranges, setting map bits. */
2728 for (;;)
2729 {
2730 boolean escaped_char = false;
2731 const unsigned char *p2 = p;
2732
2733 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2734
2735 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2736 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2737 So the translation is done later in a loop. Example:
2738 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
2739 PATFETCH (c);
2740
2741 /* \ might escape characters inside [...] and [^...]. */
2742 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2743 {
2744 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2745
2746 PATFETCH (c);
2747 escaped_char = true;
2748 }
2749 else
2750 {
2751 /* Could be the end of the bracket expression. If it's
2752 not (i.e., when the bracket expression is `[]' so
2753 far), the ']' character bit gets set way below. */
2754 if (c == ']' && p2 != p1)
2755 break;
2756 }
2757
2758 /* What should we do for the character which is
2759 greater than 0x7F, but not BASE_LEADING_CODE_P?
2760 XXX */
2761
2762 /* See if we're at the beginning of a possible character
2763 class. */
2764
2765 if (!escaped_char &&
2766 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2767 {
2768 /* Leave room for the null. */
2769 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
2770 const unsigned char *class_beg;
2771
2772 PATFETCH (c);
2773 c1 = 0;
2774 class_beg = p;
2775
2776 /* If pattern is `[[:'. */
2777 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2778
2779 for (;;)
2780 {
2781 PATFETCH (c);
2782 if ((c == ':' && *p == ']') || p == pend)
2783 break;
2784 if (c1 < CHAR_CLASS_MAX_LENGTH)
2785 str[c1++] = c;
2786 else
2787 /* This is in any case an invalid class name. */
2788 str[0] = '\0';
2789 }
2790 str[c1] = '\0';
2791
2792 /* If isn't a word bracketed by `[:' and `:]':
2793 undo the ending character, the letters, and
2794 leave the leading `:' and `[' (but set bits for
2795 them). */
2796 if (c == ':' && *p == ']')
2797 {
2798 re_wchar_t ch;
2799 re_wctype_t cc;
2800
2801 cc = re_wctype (str);
2802
2803 if (cc == 0)
2804 FREE_STACK_RETURN (REG_ECTYPE);
2805
2806 /* Throw away the ] at the end of the character
2807 class. */
2808 PATFETCH (c);
2809
2810 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2811
2812 /* Most character classes in a multibyte match
2813 just set a flag. Exceptions are is_blank,
2814 is_digit, is_cntrl, and is_xdigit, since
2815 they can only match ASCII characters. We
2816 don't need to handle them for multibyte.
2817 They are distinguished by a negative wctype. */
2818
2819 if (multibyte)
2820 SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work,
2821 re_wctype_to_bit (cc));
2822
2823 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
2824 {
2825 int translated = TRANSLATE (ch);
2826 if (re_iswctype (btowc (ch), cc))
2827 SET_LIST_BIT (translated);
2828 }
2829
2830 /* Repeat the loop. */
2831 continue;
2832 }
2833 else
2834 {
2835 /* Go back to right after the "[:". */
2836 p = class_beg;
2837 SET_LIST_BIT ('[');
2838
2839 /* Because the `:' may starts the range, we
2840 can't simply set bit and repeat the loop.
2841 Instead, just set it to C and handle below. */
2842 c = ':';
2843 }
2844 }
2845
2846 if (p < pend && p[0] == '-' && p[1] != ']')
2847 {
2848
2849 /* Discard the `-'. */
2850 PATFETCH (c1);
2851
2852 /* Fetch the character which ends the range. */
2853 PATFETCH (c1);
2854
2855 if (SINGLE_BYTE_CHAR_P (c))
2856 {
2857 if (! SINGLE_BYTE_CHAR_P (c1))
2858 {
2859 /* Handle a range starting with a
2860 character of less than 256, and ending
2861 with a character of not less than 256.
2862 Split that into two ranges, the low one
2863 ending at 0377, and the high one
2864 starting at the smallest character in
2865 the charset of C1 and ending at C1. */
2866 int charset = CHAR_CHARSET (c1);
2867 re_wchar_t c2 = MAKE_CHAR (charset, 0, 0);
2868
2869 SET_RANGE_TABLE_WORK_AREA (range_table_work,
2870 c2, c1);
2871 c1 = 0377;
2872 }
2873 }
2874 else if (!SAME_CHARSET_P (c, c1))
2875 FREE_STACK_RETURN (REG_ERANGEX);
2876 }
2877 else
2878 /* Range from C to C. */
2879 c1 = c;
2880
2881 /* Set the range ... */
2882 if (SINGLE_BYTE_CHAR_P (c))
2883 /* ... into bitmap. */
2884 {
2885 re_wchar_t this_char;
2886 re_wchar_t range_start = c, range_end = c1;
2887
2888 /* If the start is after the end, the range is empty. */
2889 if (range_start > range_end)
2890 {
2891 if (syntax & RE_NO_EMPTY_RANGES)
2892 FREE_STACK_RETURN (REG_ERANGE);
2893 /* Else, repeat the loop. */
2894 }
2895 else
2896 {
2897 for (this_char = range_start; this_char <= range_end;
2898 this_char++)
2899 SET_LIST_BIT (TRANSLATE (this_char));
2900 }
2901 }
2902 else
2903 /* ... into range table. */
2904 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
2905 }
2906
2907 /* Discard any (non)matching list bytes that are all 0 at the
2908 end of the map. Decrease the map-length byte too. */
2909 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2910 b[-1]--;
2911 b += b[-1];
2912
2913 /* Build real range table from work area. */
2914 if (RANGE_TABLE_WORK_USED (range_table_work)
2915 || RANGE_TABLE_WORK_BITS (range_table_work))
2916 {
2917 int i;
2918 int used = RANGE_TABLE_WORK_USED (range_table_work);
2919
2920 /* Allocate space for COUNT + RANGE_TABLE. Needs two
2921 bytes for flags, two for COUNT, and three bytes for
2922 each character. */
2923 GET_BUFFER_SPACE (4 + used * 3);
2924
2925 /* Indicate the existence of range table. */
2926 laststart[1] |= 0x80;
2927
2928 /* Store the character class flag bits into the range table.
2929 If not in emacs, these flag bits are always 0. */
2930 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
2931 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
2932
2933 STORE_NUMBER_AND_INCR (b, used / 2);
2934 for (i = 0; i < used; i++)
2935 STORE_CHARACTER_AND_INCR
2936 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
2937 }
2938 }
2939 break;
2940
2941
2942 case '(':
2943 if (syntax & RE_NO_BK_PARENS)
2944 goto handle_open;
2945 else
2946 goto normal_char;
2947
2948
2949 case ')':
2950 if (syntax & RE_NO_BK_PARENS)
2951 goto handle_close;
2952 else
2953 goto normal_char;
2954
2955
2956 case '\n':
2957 if (syntax & RE_NEWLINE_ALT)
2958 goto handle_alt;
2959 else
2960 goto normal_char;
2961
2962
2963 case '|':
2964 if (syntax & RE_NO_BK_VBAR)
2965 goto handle_alt;
2966 else
2967 goto normal_char;
2968
2969
2970 case '{':
2971 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2972 goto handle_interval;
2973 else
2974 goto normal_char;
2975
2976
2977 case '\\':
2978 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2979
2980 /* Do not translate the character after the \, so that we can
2981 distinguish, e.g., \B from \b, even if we normally would
2982 translate, e.g., B to b. */
2983 PATFETCH (c);
2984
2985 switch (c)
2986 {
2987 case '(':
2988 if (syntax & RE_NO_BK_PARENS)
2989 goto normal_backslash;
2990
2991 handle_open:
2992 {
2993 int shy = 0;
2994 if (p+1 < pend)
2995 {
2996 /* Look for a special (?...) construct */
2997 if ((syntax & RE_SHY_GROUPS) && *p == '?')
2998 {
2999 PATFETCH (c); /* Gobble up the '?'. */
3000 PATFETCH (c);
3001 switch (c)
3002 {
3003 case ':': shy = 1; break;
3004 default:
3005 /* Only (?:...) is supported right now. */
3006 FREE_STACK_RETURN (REG_BADPAT);
3007 }
3008 }
3009 }
3010
3011 if (!shy)
3012 {
3013 bufp->re_nsub++;
3014 regnum++;
3015 }
3016
3017 if (COMPILE_STACK_FULL)
3018 {
3019 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3020 compile_stack_elt_t);
3021 if (compile_stack.stack == NULL) return REG_ESPACE;
3022
3023 compile_stack.size <<= 1;
3024 }
3025
3026 /* These are the values to restore when we hit end of this
3027 group. They are all relative offsets, so that if the
3028 whole pattern moves because of realloc, they will still
3029 be valid. */
3030 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
3031 COMPILE_STACK_TOP.fixup_alt_jump
3032 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
3033 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
3034 COMPILE_STACK_TOP.regnum = shy ? -regnum : regnum;
3035
3036 /* Do not push a
3037 start_memory for groups beyond the last one we can
3038 represent in the compiled pattern. */
3039 if (regnum <= MAX_REGNUM && !shy)
3040 BUF_PUSH_2 (start_memory, regnum);
3041
3042 compile_stack.avail++;
3043
3044 fixup_alt_jump = 0;
3045 laststart = 0;
3046 begalt = b;
3047 /* If we've reached MAX_REGNUM groups, then this open
3048 won't actually generate any code, so we'll have to
3049 clear pending_exact explicitly. */
3050 pending_exact = 0;
3051 break;
3052 }
3053
3054 case ')':
3055 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3056
3057 if (COMPILE_STACK_EMPTY)
3058 {
3059 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3060 goto normal_backslash;
3061 else
3062 FREE_STACK_RETURN (REG_ERPAREN);
3063 }
3064
3065 handle_close:
3066 FIXUP_ALT_JUMP ();
3067
3068 /* See similar code for backslashed left paren above. */
3069 if (COMPILE_STACK_EMPTY)
3070 {
3071 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3072 goto normal_char;
3073 else
3074 FREE_STACK_RETURN (REG_ERPAREN);
3075 }
3076
3077 /* Since we just checked for an empty stack above, this
3078 ``can't happen''. */
3079 assert (compile_stack.avail != 0);
3080 {
3081 /* We don't just want to restore into `regnum', because
3082 later groups should continue to be numbered higher,
3083 as in `(ab)c(de)' -- the second group is #2. */
3084 regnum_t this_group_regnum;
3085
3086 compile_stack.avail--;
3087 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
3088 fixup_alt_jump
3089 = COMPILE_STACK_TOP.fixup_alt_jump
3090 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
3091 : 0;
3092 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
3093 this_group_regnum = COMPILE_STACK_TOP.regnum;
3094 /* If we've reached MAX_REGNUM groups, then this open
3095 won't actually generate any code, so we'll have to
3096 clear pending_exact explicitly. */
3097 pending_exact = 0;
3098
3099 /* We're at the end of the group, so now we know how many
3100 groups were inside this one. */
3101 if (this_group_regnum <= MAX_REGNUM && this_group_regnum > 0)
3102 BUF_PUSH_2 (stop_memory, this_group_regnum);
3103 }
3104 break;
3105
3106
3107 case '|': /* `\|'. */
3108 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3109 goto normal_backslash;
3110 handle_alt:
3111 if (syntax & RE_LIMITED_OPS)
3112 goto normal_char;
3113
3114 /* Insert before the previous alternative a jump which
3115 jumps to this alternative if the former fails. */
3116 GET_BUFFER_SPACE (3);
3117 INSERT_JUMP (on_failure_jump, begalt, b + 6);
3118 pending_exact = 0;
3119 b += 3;
3120
3121 /* The alternative before this one has a jump after it
3122 which gets executed if it gets matched. Adjust that
3123 jump so it will jump to this alternative's analogous
3124 jump (put in below, which in turn will jump to the next
3125 (if any) alternative's such jump, etc.). The last such
3126 jump jumps to the correct final destination. A picture:
3127 _____ _____
3128 | | | |
3129 | v | v
3130 a | b | c
3131
3132 If we are at `b', then fixup_alt_jump right now points to a
3133 three-byte space after `a'. We'll put in the jump, set
3134 fixup_alt_jump to right after `b', and leave behind three
3135 bytes which we'll fill in when we get to after `c'. */
3136
3137 FIXUP_ALT_JUMP ();
3138
3139 /* Mark and leave space for a jump after this alternative,
3140 to be filled in later either by next alternative or
3141 when know we're at the end of a series of alternatives. */
3142 fixup_alt_jump = b;
3143 GET_BUFFER_SPACE (3);
3144 b += 3;
3145
3146 laststart = 0;
3147 begalt = b;
3148 break;
3149
3150
3151 case '{':
3152 /* If \{ is a literal. */
3153 if (!(syntax & RE_INTERVALS)
3154 /* If we're at `\{' and it's not the open-interval
3155 operator. */
3156 || (syntax & RE_NO_BK_BRACES))
3157 goto normal_backslash;
3158
3159 handle_interval:
3160 {
3161 /* If got here, then the syntax allows intervals. */
3162
3163 /* At least (most) this many matches must be made. */
3164 int lower_bound = 0, upper_bound = -1;
3165
3166 beg_interval = p;
3167
3168 if (p == pend)
3169 FREE_STACK_RETURN (REG_EBRACE);
3170
3171 GET_UNSIGNED_NUMBER (lower_bound);
3172
3173 if (c == ',')
3174 GET_UNSIGNED_NUMBER (upper_bound);
3175 else
3176 /* Interval such as `{1}' => match exactly once. */
3177 upper_bound = lower_bound;
3178
3179 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
3180 || (upper_bound >= 0 && lower_bound > upper_bound))
3181 FREE_STACK_RETURN (REG_BADBR);
3182
3183 if (!(syntax & RE_NO_BK_BRACES))
3184 {
3185 if (c != '\\')
3186 FREE_STACK_RETURN (REG_BADBR);
3187
3188 PATFETCH (c);
3189 }
3190
3191 if (c != '}')
3192 FREE_STACK_RETURN (REG_BADBR);
3193
3194 /* We just parsed a valid interval. */
3195
3196 /* If it's invalid to have no preceding re. */
3197 if (!laststart)
3198 {
3199 if (syntax & RE_CONTEXT_INVALID_OPS)
3200 FREE_STACK_RETURN (REG_BADRPT);
3201 else if (syntax & RE_CONTEXT_INDEP_OPS)
3202 laststart = b;
3203 else
3204 goto unfetch_interval;
3205 }
3206
3207 if (upper_bound == 0)
3208 /* If the upper bound is zero, just drop the sub pattern
3209 altogether. */
3210 b = laststart;
3211 else if (lower_bound == 1 && upper_bound == 1)
3212 /* Just match it once: nothing to do here. */
3213 ;
3214
3215 /* Otherwise, we have a nontrivial interval. When
3216 we're all done, the pattern will look like:
3217 set_number_at <jump count> <upper bound>
3218 set_number_at <succeed_n count> <lower bound>
3219 succeed_n <after jump addr> <succeed_n count>
3220 <body of loop>
3221 jump_n <succeed_n addr> <jump count>
3222 (The upper bound and `jump_n' are omitted if
3223 `upper_bound' is 1, though.) */
3224 else
3225 { /* If the upper bound is > 1, we need to insert
3226 more at the end of the loop. */
3227 unsigned int nbytes = (upper_bound < 0 ? 3
3228 : upper_bound > 1 ? 5 : 0);
3229 unsigned int startoffset = 0;
3230
3231 GET_BUFFER_SPACE (20); /* We might use less. */
3232
3233 if (lower_bound == 0)
3234 {
3235 /* A succeed_n that starts with 0 is really a
3236 a simple on_failure_jump_loop. */
3237 INSERT_JUMP (on_failure_jump_loop, laststart,
3238 b + 3 + nbytes);
3239 b += 3;
3240 }
3241 else
3242 {
3243 /* Initialize lower bound of the `succeed_n', even
3244 though it will be set during matching by its
3245 attendant `set_number_at' (inserted next),
3246 because `re_compile_fastmap' needs to know.
3247 Jump to the `jump_n' we might insert below. */
3248 INSERT_JUMP2 (succeed_n, laststart,
3249 b + 5 + nbytes,
3250 lower_bound);
3251 b += 5;
3252
3253 /* Code to initialize the lower bound. Insert
3254 before the `succeed_n'. The `5' is the last two
3255 bytes of this `set_number_at', plus 3 bytes of
3256 the following `succeed_n'. */
3257 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3258 b += 5;
3259 startoffset += 5;
3260 }
3261
3262 if (upper_bound < 0)
3263 {
3264 /* A negative upper bound stands for infinity,
3265 in which case it degenerates to a plain jump. */
3266 STORE_JUMP (jump, b, laststart + startoffset);
3267 b += 3;
3268 }
3269 else if (upper_bound > 1)
3270 { /* More than one repetition is allowed, so
3271 append a backward jump to the `succeed_n'
3272 that starts this interval.
3273
3274 When we've reached this during matching,
3275 we'll have matched the interval once, so
3276 jump back only `upper_bound - 1' times. */
3277 STORE_JUMP2 (jump_n, b, laststart + startoffset,
3278 upper_bound - 1);
3279 b += 5;
3280
3281 /* The location we want to set is the second
3282 parameter of the `jump_n'; that is `b-2' as
3283 an absolute address. `laststart' will be
3284 the `set_number_at' we're about to insert;
3285 `laststart+3' the number to set, the source
3286 for the relative address. But we are
3287 inserting into the middle of the pattern --
3288 so everything is getting moved up by 5.
3289 Conclusion: (b - 2) - (laststart + 3) + 5,
3290 i.e., b - laststart.
3291
3292 We insert this at the beginning of the loop
3293 so that if we fail during matching, we'll
3294 reinitialize the bounds. */
3295 insert_op2 (set_number_at, laststart, b - laststart,
3296 upper_bound - 1, b);
3297 b += 5;
3298 }
3299 }
3300 pending_exact = 0;
3301 beg_interval = NULL;
3302 }
3303 break;
3304
3305 unfetch_interval:
3306 /* If an invalid interval, match the characters as literals. */
3307 assert (beg_interval);
3308 p = beg_interval;
3309 beg_interval = NULL;
3310
3311 /* normal_char and normal_backslash need `c'. */
3312 c = '{';
3313
3314 if (!(syntax & RE_NO_BK_BRACES))
3315 {
3316 assert (p > pattern && p[-1] == '\\');
3317 goto normal_backslash;
3318 }
3319 else
3320 goto normal_char;
3321
3322 #ifdef emacs
3323 /* There is no way to specify the before_dot and after_dot
3324 operators. rms says this is ok. --karl */
3325 case '=':
3326 BUF_PUSH (at_dot);
3327 break;
3328
3329 case 's':
3330 laststart = b;
3331 PATFETCH (c);
3332 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3333 break;
3334
3335 case 'S':
3336 laststart = b;
3337 PATFETCH (c);
3338 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3339 break;
3340
3341 case 'c':
3342 laststart = b;
3343 PATFETCH (c);
3344 BUF_PUSH_2 (categoryspec, c);
3345 break;
3346
3347 case 'C':
3348 laststart = b;
3349 PATFETCH (c);
3350 BUF_PUSH_2 (notcategoryspec, c);
3351 break;
3352 #endif /* emacs */
3353
3354
3355 case 'w':
3356 if (syntax & RE_NO_GNU_OPS)
3357 goto normal_char;
3358 laststart = b;
3359 BUF_PUSH_2 (syntaxspec, Sword);
3360 break;
3361
3362
3363 case 'W':
3364 if (syntax & RE_NO_GNU_OPS)
3365 goto normal_char;
3366 laststart = b;
3367 BUF_PUSH_2 (notsyntaxspec, Sword);
3368 break;
3369
3370
3371 case '<':
3372 if (syntax & RE_NO_GNU_OPS)
3373 goto normal_char;
3374 BUF_PUSH (wordbeg);
3375 break;
3376
3377 case '>':
3378 if (syntax & RE_NO_GNU_OPS)
3379 goto normal_char;
3380 BUF_PUSH (wordend);
3381 break;
3382
3383 case '_':
3384 if (syntax & RE_NO_GNU_OPS)
3385 goto normal_char;
3386 laststart = b;
3387 PATFETCH (c);
3388 if (c == '<')
3389 BUF_PUSH (symbeg);
3390 else if (c == '>')
3391 BUF_PUSH (symend);
3392 else
3393 FREE_STACK_RETURN (REG_BADPAT);
3394 break;
3395
3396 case 'b':
3397 if (syntax & RE_NO_GNU_OPS)
3398 goto normal_char;
3399 BUF_PUSH (wordbound);
3400 break;
3401
3402 case 'B':
3403 if (syntax & RE_NO_GNU_OPS)
3404 goto normal_char;
3405 BUF_PUSH (notwordbound);
3406 break;
3407
3408 case '`':
3409 if (syntax & RE_NO_GNU_OPS)
3410 goto normal_char;
3411 BUF_PUSH (begbuf);
3412 break;
3413
3414 case '\'':
3415 if (syntax & RE_NO_GNU_OPS)
3416 goto normal_char;
3417 BUF_PUSH (endbuf);
3418 break;
3419
3420 case '1': case '2': case '3': case '4': case '5':
3421 case '6': case '7': case '8': case '9':
3422 {
3423 regnum_t reg;
3424
3425 if (syntax & RE_NO_BK_REFS)
3426 goto normal_backslash;
3427
3428 reg = c - '0';
3429
3430 /* Can't back reference to a subexpression before its end. */
3431 if (reg > regnum || group_in_compile_stack (compile_stack, reg))
3432 FREE_STACK_RETURN (REG_ESUBREG);
3433
3434 laststart = b;
3435 BUF_PUSH_2 (duplicate, reg);
3436 }
3437 break;
3438
3439
3440 case '+':
3441 case '?':
3442 if (syntax & RE_BK_PLUS_QM)
3443 goto handle_plus;
3444 else
3445 goto normal_backslash;
3446
3447 default:
3448 normal_backslash:
3449 /* You might think it would be useful for \ to mean
3450 not to translate; but if we don't translate it
3451 it will never match anything. */
3452 goto normal_char;
3453 }
3454 break;
3455
3456
3457 default:
3458 /* Expects the character in `c'. */
3459 normal_char:
3460 /* If no exactn currently being built. */
3461 if (!pending_exact
3462
3463 /* If last exactn not at current position. */
3464 || pending_exact + *pending_exact + 1 != b
3465
3466 /* We have only one byte following the exactn for the count. */
3467 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
3468
3469 /* If followed by a repetition operator. */
3470 || (p != pend && (*p == '*' || *p == '^'))
3471 || ((syntax & RE_BK_PLUS_QM)
3472 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3473 : p != pend && (*p == '+' || *p == '?'))
3474 || ((syntax & RE_INTERVALS)
3475 && ((syntax & RE_NO_BK_BRACES)
3476 ? p != pend && *p == '{'
3477 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
3478 {
3479 /* Start building a new exactn. */
3480
3481 laststart = b;
3482
3483 BUF_PUSH_2 (exactn, 0);
3484 pending_exact = b - 1;
3485 }
3486
3487 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3488 {
3489 int len;
3490
3491 c = TRANSLATE (c);
3492 if (multibyte)
3493 len = CHAR_STRING (c, b);
3494 else
3495 *b = c, len = 1;
3496 b += len;
3497 (*pending_exact) += len;
3498 }
3499
3500 break;
3501 } /* switch (c) */
3502 } /* while p != pend */
3503
3504
3505 /* Through the pattern now. */
3506
3507 FIXUP_ALT_JUMP ();
3508
3509 if (!COMPILE_STACK_EMPTY)
3510 FREE_STACK_RETURN (REG_EPAREN);
3511
3512 /* If we don't want backtracking, force success
3513 the first time we reach the end of the compiled pattern. */
3514 if (syntax & RE_NO_POSIX_BACKTRACKING)
3515 BUF_PUSH (succeed);
3516
3517 /* We have succeeded; set the length of the buffer. */
3518 bufp->used = b - bufp->buffer;
3519
3520 #ifdef DEBUG
3521 if (debug > 0)
3522 {
3523 re_compile_fastmap (bufp);
3524 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3525 print_compiled_pattern (bufp);
3526 }
3527 debug--;
3528 #endif /* DEBUG */
3529
3530 #ifndef MATCH_MAY_ALLOCATE
3531 /* Initialize the failure stack to the largest possible stack. This
3532 isn't necessary unless we're trying to avoid calling alloca in
3533 the search and match routines. */
3534 {
3535 int num_regs = bufp->re_nsub + 1;
3536
3537 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
3538 {
3539 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
3540
3541 if (! fail_stack.stack)
3542 fail_stack.stack
3543 = (fail_stack_elt_t *) malloc (fail_stack.size
3544 * sizeof (fail_stack_elt_t));
3545 else
3546 fail_stack.stack
3547 = (fail_stack_elt_t *) realloc (fail_stack.stack,
3548 (fail_stack.size
3549 * sizeof (fail_stack_elt_t)));
3550 }
3551
3552 regex_grow_registers (num_regs);
3553 }
3554 #endif /* not MATCH_MAY_ALLOCATE */
3555
3556 FREE_STACK_RETURN (REG_NOERROR);
3557 } /* regex_compile */
3558 \f
3559 /* Subroutines for `regex_compile'. */
3560
3561 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3562
3563 static void
3564 store_op1 (op, loc, arg)
3565 re_opcode_t op;
3566 unsigned char *loc;
3567 int arg;
3568 {
3569 *loc = (unsigned char) op;
3570 STORE_NUMBER (loc + 1, arg);
3571 }
3572
3573
3574 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3575
3576 static void
3577 store_op2 (op, loc, arg1, arg2)
3578 re_opcode_t op;
3579 unsigned char *loc;
3580 int arg1, arg2;
3581 {
3582 *loc = (unsigned char) op;
3583 STORE_NUMBER (loc + 1, arg1);
3584 STORE_NUMBER (loc + 3, arg2);
3585 }
3586
3587
3588 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3589 for OP followed by two-byte integer parameter ARG. */
3590
3591 static void
3592 insert_op1 (op, loc, arg, end)
3593 re_opcode_t op;
3594 unsigned char *loc;
3595 int arg;
3596 unsigned char *end;
3597 {
3598 register unsigned char *pfrom = end;
3599 register unsigned char *pto = end + 3;
3600
3601 while (pfrom != loc)
3602 *--pto = *--pfrom;
3603
3604 store_op1 (op, loc, arg);
3605 }
3606
3607
3608 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3609
3610 static void
3611 insert_op2 (op, loc, arg1, arg2, end)
3612 re_opcode_t op;
3613 unsigned char *loc;
3614 int arg1, arg2;
3615 unsigned char *end;
3616 {
3617 register unsigned char *pfrom = end;
3618 register unsigned char *pto = end + 5;
3619
3620 while (pfrom != loc)
3621 *--pto = *--pfrom;
3622
3623 store_op2 (op, loc, arg1, arg2);
3624 }
3625
3626
3627 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3628 after an alternative or a begin-subexpression. We assume there is at
3629 least one character before the ^. */
3630
3631 static boolean
3632 at_begline_loc_p (pattern, p, syntax)
3633 re_char *pattern, *p;
3634 reg_syntax_t syntax;
3635 {
3636 re_char *prev = p - 2;
3637 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
3638
3639 return
3640 /* After a subexpression? */
3641 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
3642 /* After an alternative? */
3643 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
3644 /* After a shy subexpression? */
3645 || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
3646 && prev[-1] == '?' && prev[-2] == '('
3647 && (syntax & RE_NO_BK_PARENS
3648 || (prev - 3 >= pattern && prev[-3] == '\\')));
3649 }
3650
3651
3652 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3653 at least one character after the $, i.e., `P < PEND'. */
3654
3655 static boolean
3656 at_endline_loc_p (p, pend, syntax)
3657 re_char *p, *pend;
3658 reg_syntax_t syntax;
3659 {
3660 re_char *next = p;
3661 boolean next_backslash = *next == '\\';
3662 re_char *next_next = p + 1 < pend ? p + 1 : 0;
3663
3664 return
3665 /* Before a subexpression? */
3666 (syntax & RE_NO_BK_PARENS ? *next == ')'
3667 : next_backslash && next_next && *next_next == ')')
3668 /* Before an alternative? */
3669 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3670 : next_backslash && next_next && *next_next == '|');
3671 }
3672
3673
3674 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3675 false if it's not. */
3676
3677 static boolean
3678 group_in_compile_stack (compile_stack, regnum)
3679 compile_stack_type compile_stack;
3680 regnum_t regnum;
3681 {
3682 int this_element;
3683
3684 for (this_element = compile_stack.avail - 1;
3685 this_element >= 0;
3686 this_element--)
3687 if (compile_stack.stack[this_element].regnum == regnum)
3688 return true;
3689
3690 return false;
3691 }
3692 \f
3693 /* analyse_first.
3694 If fastmap is non-NULL, go through the pattern and fill fastmap
3695 with all the possible leading chars. If fastmap is NULL, don't
3696 bother filling it up (obviously) and only return whether the
3697 pattern could potentially match the empty string.
3698
3699 Return 1 if p..pend might match the empty string.
3700 Return 0 if p..pend matches at least one char.
3701 Return -1 if fastmap was not updated accurately. */
3702
3703 static int
3704 analyse_first (p, pend, fastmap, multibyte)
3705 re_char *p, *pend;
3706 char *fastmap;
3707 const int multibyte;
3708 {
3709 int j, k;
3710 boolean not;
3711
3712 /* If all elements for base leading-codes in fastmap is set, this
3713 flag is set true. */
3714 boolean match_any_multibyte_characters = false;
3715
3716 assert (p);
3717
3718 /* The loop below works as follows:
3719 - It has a working-list kept in the PATTERN_STACK and which basically
3720 starts by only containing a pointer to the first operation.
3721 - If the opcode we're looking at is a match against some set of
3722 chars, then we add those chars to the fastmap and go on to the
3723 next work element from the worklist (done via `break').
3724 - If the opcode is a control operator on the other hand, we either
3725 ignore it (if it's meaningless at this point, such as `start_memory')
3726 or execute it (if it's a jump). If the jump has several destinations
3727 (i.e. `on_failure_jump'), then we push the other destination onto the
3728 worklist.
3729 We guarantee termination by ignoring backward jumps (more or less),
3730 so that `p' is monotonically increasing. More to the point, we
3731 never set `p' (or push) anything `<= p1'. */
3732
3733 while (p < pend)
3734 {
3735 /* `p1' is used as a marker of how far back a `on_failure_jump'
3736 can go without being ignored. It is normally equal to `p'
3737 (which prevents any backward `on_failure_jump') except right
3738 after a plain `jump', to allow patterns such as:
3739 0: jump 10
3740 3..9: <body>
3741 10: on_failure_jump 3
3742 as used for the *? operator. */
3743 re_char *p1 = p;
3744
3745 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3746 {
3747 case succeed:
3748 return 1;
3749 continue;
3750
3751 case duplicate:
3752 /* If the first character has to match a backreference, that means
3753 that the group was empty (since it already matched). Since this
3754 is the only case that interests us here, we can assume that the
3755 backreference must match the empty string. */
3756 p++;
3757 continue;
3758
3759
3760 /* Following are the cases which match a character. These end
3761 with `break'. */
3762
3763 case exactn:
3764 if (fastmap)
3765 {
3766 int c = RE_STRING_CHAR (p + 1, pend - p);
3767
3768 if (SINGLE_BYTE_CHAR_P (c))
3769 fastmap[c] = 1;
3770 else
3771 fastmap[p[1]] = 1;
3772 }
3773 break;
3774
3775
3776 case anychar:
3777 /* We could put all the chars except for \n (and maybe \0)
3778 but we don't bother since it is generally not worth it. */
3779 if (!fastmap) break;
3780 return -1;
3781
3782
3783 case charset_not:
3784 /* Chars beyond end of bitmap are possible matches.
3785 All the single-byte codes can occur in multibyte buffers.
3786 So any that are not listed in the charset
3787 are possible matches, even in multibyte buffers. */
3788 if (!fastmap) break;
3789 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
3790 j < (1 << BYTEWIDTH); j++)
3791 fastmap[j] = 1;
3792 /* Fallthrough */
3793 case charset:
3794 if (!fastmap) break;
3795 not = (re_opcode_t) *(p - 1) == charset_not;
3796 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3797 j >= 0; j--)
3798 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
3799 fastmap[j] = 1;
3800
3801 if ((not && multibyte)
3802 /* Any character set can possibly contain a character
3803 which doesn't match the specified set of characters. */
3804 || (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3805 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
3806 /* If we can match a character class, we can match
3807 any character set. */
3808 {
3809 set_fastmap_for_multibyte_characters:
3810 if (match_any_multibyte_characters == false)
3811 {
3812 for (j = 0x80; j < 0xA0; j++) /* XXX */
3813 if (BASE_LEADING_CODE_P (j))
3814 fastmap[j] = 1;
3815 match_any_multibyte_characters = true;
3816 }
3817 }
3818
3819 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3820 && match_any_multibyte_characters == false)
3821 {
3822 /* Set fastmap[I] 1 where I is a base leading code of each
3823 multibyte character in the range table. */
3824 int c, count;
3825
3826 /* Make P points the range table. `+ 2' is to skip flag
3827 bits for a character class. */
3828 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
3829
3830 /* Extract the number of ranges in range table into COUNT. */
3831 EXTRACT_NUMBER_AND_INCR (count, p);
3832 for (; count > 0; count--, p += 2 * 3) /* XXX */
3833 {
3834 /* Extract the start of each range. */
3835 EXTRACT_CHARACTER (c, p);
3836 j = CHAR_CHARSET (c);
3837 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
3838 }
3839 }
3840 break;
3841
3842 case syntaxspec:
3843 case notsyntaxspec:
3844 if (!fastmap) break;
3845 #ifndef emacs
3846 not = (re_opcode_t)p[-1] == notsyntaxspec;
3847 k = *p++;
3848 for (j = 0; j < (1 << BYTEWIDTH); j++)
3849 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
3850 fastmap[j] = 1;
3851 break;
3852 #else /* emacs */
3853 /* This match depends on text properties. These end with
3854 aborting optimizations. */
3855 return -1;
3856
3857 case categoryspec:
3858 case notcategoryspec:
3859 if (!fastmap) break;
3860 not = (re_opcode_t)p[-1] == notcategoryspec;
3861 k = *p++;
3862 for (j = 0; j < (1 << BYTEWIDTH); j++)
3863 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
3864 fastmap[j] = 1;
3865
3866 if (multibyte)
3867 /* Any character set can possibly contain a character
3868 whose category is K (or not). */
3869 goto set_fastmap_for_multibyte_characters;
3870 break;
3871
3872 /* All cases after this match the empty string. These end with
3873 `continue'. */
3874
3875 case before_dot:
3876 case at_dot:
3877 case after_dot:
3878 #endif /* !emacs */
3879 case no_op:
3880 case begline:
3881 case endline:
3882 case begbuf:
3883 case endbuf:
3884 case wordbound:
3885 case notwordbound:
3886 case wordbeg:
3887 case wordend:
3888 case symbeg:
3889 case symend:
3890 continue;
3891
3892
3893 case jump:
3894 EXTRACT_NUMBER_AND_INCR (j, p);
3895 if (j < 0)
3896 /* Backward jumps can only go back to code that we've already
3897 visited. `re_compile' should make sure this is true. */
3898 break;
3899 p += j;
3900 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
3901 {
3902 case on_failure_jump:
3903 case on_failure_keep_string_jump:
3904 case on_failure_jump_loop:
3905 case on_failure_jump_nastyloop:
3906 case on_failure_jump_smart:
3907 p++;
3908 break;
3909 default:
3910 continue;
3911 };
3912 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
3913 to jump back to "just after here". */
3914 /* Fallthrough */
3915
3916 case on_failure_jump:
3917 case on_failure_keep_string_jump:
3918 case on_failure_jump_nastyloop:
3919 case on_failure_jump_loop:
3920 case on_failure_jump_smart:
3921 EXTRACT_NUMBER_AND_INCR (j, p);
3922 if (p + j <= p1)
3923 ; /* Backward jump to be ignored. */
3924 else
3925 { /* We have to look down both arms.
3926 We first go down the "straight" path so as to minimize
3927 stack usage when going through alternatives. */
3928 int r = analyse_first (p, pend, fastmap, multibyte);
3929 if (r) return r;
3930 p += j;
3931 }
3932 continue;
3933
3934
3935 case jump_n:
3936 /* This code simply does not properly handle forward jump_n. */
3937 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
3938 p += 4;
3939 /* jump_n can either jump or fall through. The (backward) jump
3940 case has already been handled, so we only need to look at the
3941 fallthrough case. */
3942 continue;
3943
3944 case succeed_n:
3945 /* If N == 0, it should be an on_failure_jump_loop instead. */
3946 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
3947 p += 4;
3948 /* We only care about one iteration of the loop, so we don't
3949 need to consider the case where this behaves like an
3950 on_failure_jump. */
3951 continue;
3952
3953
3954 case set_number_at:
3955 p += 4;
3956 continue;
3957
3958
3959 case start_memory:
3960 case stop_memory:
3961 p += 1;
3962 continue;
3963
3964
3965 default:
3966 abort (); /* We have listed all the cases. */
3967 } /* switch *p++ */
3968
3969 /* Getting here means we have found the possible starting
3970 characters for one path of the pattern -- and that the empty
3971 string does not match. We need not follow this path further. */
3972 return 0;
3973 } /* while p */
3974
3975 /* We reached the end without matching anything. */
3976 return 1;
3977
3978 } /* analyse_first */
3979 \f
3980 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3981 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3982 characters can start a string that matches the pattern. This fastmap
3983 is used by re_search to skip quickly over impossible starting points.
3984
3985 Character codes above (1 << BYTEWIDTH) are not represented in the
3986 fastmap, but the leading codes are represented. Thus, the fastmap
3987 indicates which character sets could start a match.
3988
3989 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3990 area as BUFP->fastmap.
3991
3992 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3993 the pattern buffer.
3994
3995 Returns 0 if we succeed, -2 if an internal error. */
3996
3997 int
3998 re_compile_fastmap (bufp)
3999 struct re_pattern_buffer *bufp;
4000 {
4001 char *fastmap = bufp->fastmap;
4002 int analysis;
4003
4004 assert (fastmap && bufp->buffer);
4005
4006 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
4007 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4008
4009 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
4010 fastmap, RE_MULTIBYTE_P (bufp));
4011 bufp->can_be_null = (analysis != 0);
4012 return 0;
4013 } /* re_compile_fastmap */
4014 \f
4015 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4016 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4017 this memory for recording register information. STARTS and ENDS
4018 must be allocated using the malloc library routine, and must each
4019 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4020
4021 If NUM_REGS == 0, then subsequent matches should allocate their own
4022 register data.
4023
4024 Unless this function is called, the first search or match using
4025 PATTERN_BUFFER will allocate its own register data, without
4026 freeing the old data. */
4027
4028 void
4029 re_set_registers (bufp, regs, num_regs, starts, ends)
4030 struct re_pattern_buffer *bufp;
4031 struct re_registers *regs;
4032 unsigned num_regs;
4033 regoff_t *starts, *ends;
4034 {
4035 if (num_regs)
4036 {
4037 bufp->regs_allocated = REGS_REALLOCATE;
4038 regs->num_regs = num_regs;
4039 regs->start = starts;
4040 regs->end = ends;
4041 }
4042 else
4043 {
4044 bufp->regs_allocated = REGS_UNALLOCATED;
4045 regs->num_regs = 0;
4046 regs->start = regs->end = (regoff_t *) 0;
4047 }
4048 }
4049 WEAK_ALIAS (__re_set_registers, re_set_registers)
4050 \f
4051 /* Searching routines. */
4052
4053 /* Like re_search_2, below, but only one string is specified, and
4054 doesn't let you say where to stop matching. */
4055
4056 int
4057 re_search (bufp, string, size, startpos, range, regs)
4058 struct re_pattern_buffer *bufp;
4059 const char *string;
4060 int size, startpos, range;
4061 struct re_registers *regs;
4062 {
4063 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
4064 regs, size);
4065 }
4066 WEAK_ALIAS (__re_search, re_search)
4067
4068 /* Head address of virtual concatenation of string. */
4069 #define HEAD_ADDR_VSTRING(P) \
4070 (((P) >= size1 ? string2 : string1))
4071
4072 /* End address of virtual concatenation of string. */
4073 #define STOP_ADDR_VSTRING(P) \
4074 (((P) >= size1 ? string2 + size2 : string1 + size1))
4075
4076 /* Address of POS in the concatenation of virtual string. */
4077 #define POS_ADDR_VSTRING(POS) \
4078 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
4079
4080 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4081 virtual concatenation of STRING1 and STRING2, starting first at index
4082 STARTPOS, then at STARTPOS + 1, and so on.
4083
4084 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4085
4086 RANGE is how far to scan while trying to match. RANGE = 0 means try
4087 only at STARTPOS; in general, the last start tried is STARTPOS +
4088 RANGE.
4089
4090 In REGS, return the indices of the virtual concatenation of STRING1
4091 and STRING2 that matched the entire BUFP->buffer and its contained
4092 subexpressions.
4093
4094 Do not consider matching one past the index STOP in the virtual
4095 concatenation of STRING1 and STRING2.
4096
4097 We return either the position in the strings at which the match was
4098 found, -1 if no match, or -2 if error (such as failure
4099 stack overflow). */
4100
4101 int
4102 re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop)
4103 struct re_pattern_buffer *bufp;
4104 const char *str1, *str2;
4105 int size1, size2;
4106 int startpos;
4107 int range;
4108 struct re_registers *regs;
4109 int stop;
4110 {
4111 int val;
4112 re_char *string1 = (re_char*) str1;
4113 re_char *string2 = (re_char*) str2;
4114 register char *fastmap = bufp->fastmap;
4115 register RE_TRANSLATE_TYPE translate = bufp->translate;
4116 int total_size = size1 + size2;
4117 int endpos = startpos + range;
4118 boolean anchored_start;
4119
4120 /* Nonzero if we have to concern multibyte character. */
4121 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4122
4123 /* Check for out-of-range STARTPOS. */
4124 if (startpos < 0 || startpos > total_size)
4125 return -1;
4126
4127 /* Fix up RANGE if it might eventually take us outside
4128 the virtual concatenation of STRING1 and STRING2.
4129 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
4130 if (endpos < 0)
4131 range = 0 - startpos;
4132 else if (endpos > total_size)
4133 range = total_size - startpos;
4134
4135 /* If the search isn't to be a backwards one, don't waste time in a
4136 search for a pattern anchored at beginning of buffer. */
4137 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
4138 {
4139 if (startpos > 0)
4140 return -1;
4141 else
4142 range = 0;
4143 }
4144
4145 #ifdef emacs
4146 /* In a forward search for something that starts with \=.
4147 don't keep searching past point. */
4148 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4149 {
4150 range = PT_BYTE - BEGV_BYTE - startpos;
4151 if (range < 0)
4152 return -1;
4153 }
4154 #endif /* emacs */
4155
4156 /* Update the fastmap now if not correct already. */
4157 if (fastmap && !bufp->fastmap_accurate)
4158 re_compile_fastmap (bufp);
4159
4160 /* See whether the pattern is anchored. */
4161 anchored_start = (bufp->buffer[0] == begline);
4162
4163 #ifdef emacs
4164 gl_state.object = re_match_object;
4165 {
4166 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
4167
4168 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4169 }
4170 #endif
4171
4172 /* Loop through the string, looking for a place to start matching. */
4173 for (;;)
4174 {
4175 /* If the pattern is anchored,
4176 skip quickly past places we cannot match.
4177 We don't bother to treat startpos == 0 specially
4178 because that case doesn't repeat. */
4179 if (anchored_start && startpos > 0)
4180 {
4181 if (! ((startpos <= size1 ? string1[startpos - 1]
4182 : string2[startpos - size1 - 1])
4183 == '\n'))
4184 goto advance;
4185 }
4186
4187 /* If a fastmap is supplied, skip quickly over characters that
4188 cannot be the start of a match. If the pattern can match the
4189 null string, however, we don't need to skip characters; we want
4190 the first null string. */
4191 if (fastmap && startpos < total_size && !bufp->can_be_null)
4192 {
4193 register re_char *d;
4194 register re_wchar_t buf_ch;
4195
4196 d = POS_ADDR_VSTRING (startpos);
4197
4198 if (range > 0) /* Searching forwards. */
4199 {
4200 register int lim = 0;
4201 int irange = range;
4202
4203 if (startpos < size1 && startpos + range >= size1)
4204 lim = range - (size1 - startpos);
4205
4206 /* Written out as an if-else to avoid testing `translate'
4207 inside the loop. */
4208 if (RE_TRANSLATE_P (translate))
4209 {
4210 if (multibyte)
4211 while (range > lim)
4212 {
4213 int buf_charlen;
4214
4215 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
4216 buf_charlen);
4217
4218 buf_ch = RE_TRANSLATE (translate, buf_ch);
4219 if (buf_ch >= 0400
4220 || fastmap[buf_ch])
4221 break;
4222
4223 range -= buf_charlen;
4224 d += buf_charlen;
4225 }
4226 else
4227 while (range > lim
4228 && !fastmap[RE_TRANSLATE (translate, *d)])
4229 {
4230 d++;
4231 range--;
4232 }
4233 }
4234 else
4235 while (range > lim && !fastmap[*d])
4236 {
4237 d++;
4238 range--;
4239 }
4240
4241 startpos += irange - range;
4242 }
4243 else /* Searching backwards. */
4244 {
4245 int room = (startpos >= size1
4246 ? size2 + size1 - startpos
4247 : size1 - startpos);
4248 buf_ch = RE_STRING_CHAR (d, room);
4249 buf_ch = TRANSLATE (buf_ch);
4250
4251 if (! (buf_ch >= 0400
4252 || fastmap[buf_ch]))
4253 goto advance;
4254 }
4255 }
4256
4257 /* If can't match the null string, and that's all we have left, fail. */
4258 if (range >= 0 && startpos == total_size && fastmap
4259 && !bufp->can_be_null)
4260 return -1;
4261
4262 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4263 startpos, regs, stop);
4264 #ifndef REGEX_MALLOC
4265 # ifdef C_ALLOCA
4266 alloca (0);
4267 # endif
4268 #endif
4269
4270 if (val >= 0)
4271 return startpos;
4272
4273 if (val == -2)
4274 return -2;
4275
4276 advance:
4277 if (!range)
4278 break;
4279 else if (range > 0)
4280 {
4281 /* Update STARTPOS to the next character boundary. */
4282 if (multibyte)
4283 {
4284 re_char *p = POS_ADDR_VSTRING (startpos);
4285 re_char *pend = STOP_ADDR_VSTRING (startpos);
4286 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
4287
4288 range -= len;
4289 if (range < 0)
4290 break;
4291 startpos += len;
4292 }
4293 else
4294 {
4295 range--;
4296 startpos++;
4297 }
4298 }
4299 else
4300 {
4301 range++;
4302 startpos--;
4303
4304 /* Update STARTPOS to the previous character boundary. */
4305 if (multibyte)
4306 {
4307 re_char *p = POS_ADDR_VSTRING (startpos) + 1;
4308 re_char *p0 = p;
4309 re_char *phead = HEAD_ADDR_VSTRING (startpos);
4310
4311 /* Find the head of multibyte form. */
4312 PREV_CHAR_BOUNDARY (p, phead);
4313 range += p0 - 1 - p;
4314 if (range > 0)
4315 break;
4316
4317 startpos -= p0 - 1 - p;
4318 }
4319 }
4320 }
4321 return -1;
4322 } /* re_search_2 */
4323 WEAK_ALIAS (__re_search_2, re_search_2)
4324 \f
4325 /* Declarations and macros for re_match_2. */
4326
4327 static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
4328 register int len,
4329 RE_TRANSLATE_TYPE translate,
4330 const int multibyte));
4331
4332 /* This converts PTR, a pointer into one of the search strings `string1'
4333 and `string2' into an offset from the beginning of that string. */
4334 #define POINTER_TO_OFFSET(ptr) \
4335 (FIRST_STRING_P (ptr) \
4336 ? ((regoff_t) ((ptr) - string1)) \
4337 : ((regoff_t) ((ptr) - string2 + size1)))
4338
4339 /* Call before fetching a character with *d. This switches over to
4340 string2 if necessary.
4341 Check re_match_2_internal for a discussion of why end_match_2 might
4342 not be within string2 (but be equal to end_match_1 instead). */
4343 #define PREFETCH() \
4344 while (d == dend) \
4345 { \
4346 /* End of string2 => fail. */ \
4347 if (dend == end_match_2) \
4348 goto fail; \
4349 /* End of string1 => advance to string2. */ \
4350 d = string2; \
4351 dend = end_match_2; \
4352 }
4353
4354 /* Call before fetching a char with *d if you already checked other limits.
4355 This is meant for use in lookahead operations like wordend, etc..
4356 where we might need to look at parts of the string that might be
4357 outside of the LIMITs (i.e past `stop'). */
4358 #define PREFETCH_NOLIMIT() \
4359 if (d == end1) \
4360 { \
4361 d = string2; \
4362 dend = end_match_2; \
4363 } \
4364
4365 /* Test if at very beginning or at very end of the virtual concatenation
4366 of `string1' and `string2'. If only one string, it's `string2'. */
4367 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
4368 #define AT_STRINGS_END(d) ((d) == end2)
4369
4370
4371 /* Test if D points to a character which is word-constituent. We have
4372 two special cases to check for: if past the end of string1, look at
4373 the first character in string2; and if before the beginning of
4374 string2, look at the last character in string1. */
4375 #define WORDCHAR_P(d) \
4376 (SYNTAX ((d) == end1 ? *string2 \
4377 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4378 == Sword)
4379
4380 /* Disabled due to a compiler bug -- see comment at case wordbound */
4381
4382 /* The comment at case wordbound is following one, but we don't use
4383 AT_WORD_BOUNDARY anymore to support multibyte form.
4384
4385 The DEC Alpha C compiler 3.x generates incorrect code for the
4386 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4387 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4388 macro and introducing temporary variables works around the bug. */
4389
4390 #if 0
4391 /* Test if the character before D and the one at D differ with respect
4392 to being word-constituent. */
4393 #define AT_WORD_BOUNDARY(d) \
4394 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4395 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4396 #endif
4397
4398 /* Free everything we malloc. */
4399 #ifdef MATCH_MAY_ALLOCATE
4400 # define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4401 # define FREE_VARIABLES() \
4402 do { \
4403 REGEX_FREE_STACK (fail_stack.stack); \
4404 FREE_VAR (regstart); \
4405 FREE_VAR (regend); \
4406 FREE_VAR (best_regstart); \
4407 FREE_VAR (best_regend); \
4408 } while (0)
4409 #else
4410 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4411 #endif /* not MATCH_MAY_ALLOCATE */
4412
4413 \f
4414 /* Optimization routines. */
4415
4416 /* If the operation is a match against one or more chars,
4417 return a pointer to the next operation, else return NULL. */
4418 static re_char *
4419 skip_one_char (p)
4420 re_char *p;
4421 {
4422 switch (SWITCH_ENUM_CAST (*p++))
4423 {
4424 case anychar:
4425 break;
4426
4427 case exactn:
4428 p += *p + 1;
4429 break;
4430
4431 case charset_not:
4432 case charset:
4433 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4434 {
4435 int mcnt;
4436 p = CHARSET_RANGE_TABLE (p - 1);
4437 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4438 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4439 }
4440 else
4441 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4442 break;
4443
4444 case syntaxspec:
4445 case notsyntaxspec:
4446 #ifdef emacs
4447 case categoryspec:
4448 case notcategoryspec:
4449 #endif /* emacs */
4450 p++;
4451 break;
4452
4453 default:
4454 p = NULL;
4455 }
4456 return p;
4457 }
4458
4459
4460 /* Jump over non-matching operations. */
4461 static re_char *
4462 skip_noops (p, pend)
4463 re_char *p, *pend;
4464 {
4465 int mcnt;
4466 while (p < pend)
4467 {
4468 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4469 {
4470 case start_memory:
4471 case stop_memory:
4472 p += 2; break;
4473 case no_op:
4474 p += 1; break;
4475 case jump:
4476 p += 1;
4477 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4478 p += mcnt;
4479 break;
4480 default:
4481 return p;
4482 }
4483 }
4484 assert (p == pend);
4485 return p;
4486 }
4487
4488 /* Non-zero if "p1 matches something" implies "p2 fails". */
4489 static int
4490 mutually_exclusive_p (bufp, p1, p2)
4491 struct re_pattern_buffer *bufp;
4492 re_char *p1, *p2;
4493 {
4494 re_opcode_t op2;
4495 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4496 unsigned char *pend = bufp->buffer + bufp->used;
4497
4498 assert (p1 >= bufp->buffer && p1 < pend
4499 && p2 >= bufp->buffer && p2 <= pend);
4500
4501 /* Skip over open/close-group commands.
4502 If what follows this loop is a ...+ construct,
4503 look at what begins its body, since we will have to
4504 match at least one of that. */
4505 p2 = skip_noops (p2, pend);
4506 /* The same skip can be done for p1, except that this function
4507 is only used in the case where p1 is a simple match operator. */
4508 /* p1 = skip_noops (p1, pend); */
4509
4510 assert (p1 >= bufp->buffer && p1 < pend
4511 && p2 >= bufp->buffer && p2 <= pend);
4512
4513 op2 = p2 == pend ? succeed : *p2;
4514
4515 switch (SWITCH_ENUM_CAST (op2))
4516 {
4517 case succeed:
4518 case endbuf:
4519 /* If we're at the end of the pattern, we can change. */
4520 if (skip_one_char (p1))
4521 {
4522 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4523 return 1;
4524 }
4525 break;
4526
4527 case endline:
4528 case exactn:
4529 {
4530 register re_wchar_t c
4531 = (re_opcode_t) *p2 == endline ? '\n'
4532 : RE_STRING_CHAR (p2 + 2, pend - p2 - 2);
4533
4534 if ((re_opcode_t) *p1 == exactn)
4535 {
4536 if (c != RE_STRING_CHAR (p1 + 2, pend - p1 - 2))
4537 {
4538 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4539 return 1;
4540 }
4541 }
4542
4543 else if ((re_opcode_t) *p1 == charset
4544 || (re_opcode_t) *p1 == charset_not)
4545 {
4546 int not = (re_opcode_t) *p1 == charset_not;
4547
4548 /* Test if C is listed in charset (or charset_not)
4549 at `p1'. */
4550 if (SINGLE_BYTE_CHAR_P (c))
4551 {
4552 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4553 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4554 not = !not;
4555 }
4556 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4557 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
4558
4559 /* `not' is equal to 1 if c would match, which means
4560 that we can't change to pop_failure_jump. */
4561 if (!not)
4562 {
4563 DEBUG_PRINT1 (" No match => fast loop.\n");
4564 return 1;
4565 }
4566 }
4567 else if ((re_opcode_t) *p1 == anychar
4568 && c == '\n')
4569 {
4570 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4571 return 1;
4572 }
4573 }
4574 break;
4575
4576 case charset:
4577 {
4578 if ((re_opcode_t) *p1 == exactn)
4579 /* Reuse the code above. */
4580 return mutually_exclusive_p (bufp, p2, p1);
4581
4582 /* It is hard to list up all the character in charset
4583 P2 if it includes multibyte character. Give up in
4584 such case. */
4585 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4586 {
4587 /* Now, we are sure that P2 has no range table.
4588 So, for the size of bitmap in P2, `p2[1]' is
4589 enough. But P1 may have range table, so the
4590 size of bitmap table of P1 is extracted by
4591 using macro `CHARSET_BITMAP_SIZE'.
4592
4593 Since we know that all the character listed in
4594 P2 is ASCII, it is enough to test only bitmap
4595 table of P1. */
4596
4597 if ((re_opcode_t) *p1 == charset)
4598 {
4599 int idx;
4600 /* We win if the charset inside the loop
4601 has no overlap with the one after the loop. */
4602 for (idx = 0;
4603 (idx < (int) p2[1]
4604 && idx < CHARSET_BITMAP_SIZE (p1));
4605 idx++)
4606 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4607 break;
4608
4609 if (idx == p2[1]
4610 || idx == CHARSET_BITMAP_SIZE (p1))
4611 {
4612 DEBUG_PRINT1 (" No match => fast loop.\n");
4613 return 1;
4614 }
4615 }
4616 else if ((re_opcode_t) *p1 == charset_not)
4617 {
4618 int idx;
4619 /* We win if the charset_not inside the loop lists
4620 every character listed in the charset after. */
4621 for (idx = 0; idx < (int) p2[1]; idx++)
4622 if (! (p2[2 + idx] == 0
4623 || (idx < CHARSET_BITMAP_SIZE (p1)
4624 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4625 break;
4626
4627 if (idx == p2[1])
4628 {
4629 DEBUG_PRINT1 (" No match => fast loop.\n");
4630 return 1;
4631 }
4632 }
4633 }
4634 }
4635 break;
4636
4637 case charset_not:
4638 switch (SWITCH_ENUM_CAST (*p1))
4639 {
4640 case exactn:
4641 case charset:
4642 /* Reuse the code above. */
4643 return mutually_exclusive_p (bufp, p2, p1);
4644 case charset_not:
4645 /* When we have two charset_not, it's very unlikely that
4646 they don't overlap. The union of the two sets of excluded
4647 chars should cover all possible chars, which, as a matter of
4648 fact, is virtually impossible in multibyte buffers. */
4649 break;
4650 }
4651 break;
4652
4653 case wordend:
4654 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == Sword);
4655 case symend:
4656 return ((re_opcode_t) *p1 == syntaxspec
4657 && (p1[1] == Ssymbol || p1[1] == Sword));
4658 case notsyntaxspec:
4659 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == p2[1]);
4660
4661 case wordbeg:
4662 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == Sword);
4663 case symbeg:
4664 return ((re_opcode_t) *p1 == notsyntaxspec
4665 && (p1[1] == Ssymbol || p1[1] == Sword));
4666 case syntaxspec:
4667 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == p2[1]);
4668
4669 case wordbound:
4670 return (((re_opcode_t) *p1 == notsyntaxspec
4671 || (re_opcode_t) *p1 == syntaxspec)
4672 && p1[1] == Sword);
4673
4674 #ifdef emacs
4675 case categoryspec:
4676 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4677 case notcategoryspec:
4678 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4679 #endif /* emacs */
4680
4681 default:
4682 ;
4683 }
4684
4685 /* Safe default. */
4686 return 0;
4687 }
4688
4689 \f
4690 /* Matching routines. */
4691
4692 #ifndef emacs /* Emacs never uses this. */
4693 /* re_match is like re_match_2 except it takes only a single string. */
4694
4695 int
4696 re_match (bufp, string, size, pos, regs)
4697 struct re_pattern_buffer *bufp;
4698 const char *string;
4699 int size, pos;
4700 struct re_registers *regs;
4701 {
4702 int result = re_match_2_internal (bufp, NULL, 0, (re_char*) string, size,
4703 pos, regs, size);
4704 # if defined C_ALLOCA && !defined REGEX_MALLOC
4705 alloca (0);
4706 # endif
4707 return result;
4708 }
4709 WEAK_ALIAS (__re_match, re_match)
4710 #endif /* not emacs */
4711
4712 #ifdef emacs
4713 /* In Emacs, this is the string or buffer in which we
4714 are matching. It is used for looking up syntax properties. */
4715 Lisp_Object re_match_object;
4716 #endif
4717
4718 /* re_match_2 matches the compiled pattern in BUFP against the
4719 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4720 and SIZE2, respectively). We start matching at POS, and stop
4721 matching at STOP.
4722
4723 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4724 store offsets for the substring each group matched in REGS. See the
4725 documentation for exactly how many groups we fill.
4726
4727 We return -1 if no match, -2 if an internal error (such as the
4728 failure stack overflowing). Otherwise, we return the length of the
4729 matched substring. */
4730
4731 int
4732 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4733 struct re_pattern_buffer *bufp;
4734 const char *string1, *string2;
4735 int size1, size2;
4736 int pos;
4737 struct re_registers *regs;
4738 int stop;
4739 {
4740 int result;
4741
4742 #ifdef emacs
4743 int charpos;
4744 gl_state.object = re_match_object;
4745 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
4746 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4747 #endif
4748
4749 result = re_match_2_internal (bufp, (re_char*) string1, size1,
4750 (re_char*) string2, size2,
4751 pos, regs, stop);
4752 #if defined C_ALLOCA && !defined REGEX_MALLOC
4753 alloca (0);
4754 #endif
4755 return result;
4756 }
4757 WEAK_ALIAS (__re_match_2, re_match_2)
4758
4759 /* This is a separate function so that we can force an alloca cleanup
4760 afterwards. */
4761 static int
4762 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4763 struct re_pattern_buffer *bufp;
4764 re_char *string1, *string2;
4765 int size1, size2;
4766 int pos;
4767 struct re_registers *regs;
4768 int stop;
4769 {
4770 /* General temporaries. */
4771 int mcnt;
4772 size_t reg;
4773 boolean not;
4774
4775 /* Just past the end of the corresponding string. */
4776 re_char *end1, *end2;
4777
4778 /* Pointers into string1 and string2, just past the last characters in
4779 each to consider matching. */
4780 re_char *end_match_1, *end_match_2;
4781
4782 /* Where we are in the data, and the end of the current string. */
4783 re_char *d, *dend;
4784
4785 /* Used sometimes to remember where we were before starting matching
4786 an operator so that we can go back in case of failure. This "atomic"
4787 behavior of matching opcodes is indispensable to the correctness
4788 of the on_failure_keep_string_jump optimization. */
4789 re_char *dfail;
4790
4791 /* Where we are in the pattern, and the end of the pattern. */
4792 re_char *p = bufp->buffer;
4793 re_char *pend = p + bufp->used;
4794
4795 /* We use this to map every character in the string. */
4796 RE_TRANSLATE_TYPE translate = bufp->translate;
4797
4798 /* Nonzero if we have to concern multibyte character. */
4799 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4800
4801 /* Failure point stack. Each place that can handle a failure further
4802 down the line pushes a failure point on this stack. It consists of
4803 regstart, and regend for all registers corresponding to
4804 the subexpressions we're currently inside, plus the number of such
4805 registers, and, finally, two char *'s. The first char * is where
4806 to resume scanning the pattern; the second one is where to resume
4807 scanning the strings. */
4808 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
4809 fail_stack_type fail_stack;
4810 #endif
4811 #ifdef DEBUG
4812 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4813 #endif
4814
4815 #if defined REL_ALLOC && defined REGEX_MALLOC
4816 /* This holds the pointer to the failure stack, when
4817 it is allocated relocatably. */
4818 fail_stack_elt_t *failure_stack_ptr;
4819 #endif
4820
4821 /* We fill all the registers internally, independent of what we
4822 return, for use in backreferences. The number here includes
4823 an element for register zero. */
4824 size_t num_regs = bufp->re_nsub + 1;
4825
4826 /* Information on the contents of registers. These are pointers into
4827 the input strings; they record just what was matched (on this
4828 attempt) by a subexpression part of the pattern, that is, the
4829 regnum-th regstart pointer points to where in the pattern we began
4830 matching and the regnum-th regend points to right after where we
4831 stopped matching the regnum-th subexpression. (The zeroth register
4832 keeps track of what the whole pattern matches.) */
4833 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4834 re_char **regstart, **regend;
4835 #endif
4836
4837 /* The following record the register info as found in the above
4838 variables when we find a match better than any we've seen before.
4839 This happens as we backtrack through the failure points, which in
4840 turn happens only if we have not yet matched the entire string. */
4841 unsigned best_regs_set = false;
4842 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4843 re_char **best_regstart, **best_regend;
4844 #endif
4845
4846 /* Logically, this is `best_regend[0]'. But we don't want to have to
4847 allocate space for that if we're not allocating space for anything
4848 else (see below). Also, we never need info about register 0 for
4849 any of the other register vectors, and it seems rather a kludge to
4850 treat `best_regend' differently than the rest. So we keep track of
4851 the end of the best match so far in a separate variable. We
4852 initialize this to NULL so that when we backtrack the first time
4853 and need to test it, it's not garbage. */
4854 re_char *match_end = NULL;
4855
4856 #ifdef DEBUG
4857 /* Counts the total number of registers pushed. */
4858 unsigned num_regs_pushed = 0;
4859 #endif
4860
4861 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
4862
4863 INIT_FAIL_STACK ();
4864
4865 #ifdef MATCH_MAY_ALLOCATE
4866 /* Do not bother to initialize all the register variables if there are
4867 no groups in the pattern, as it takes a fair amount of time. If
4868 there are groups, we include space for register 0 (the whole
4869 pattern), even though we never use it, since it simplifies the
4870 array indexing. We should fix this. */
4871 if (bufp->re_nsub)
4872 {
4873 regstart = REGEX_TALLOC (num_regs, re_char *);
4874 regend = REGEX_TALLOC (num_regs, re_char *);
4875 best_regstart = REGEX_TALLOC (num_regs, re_char *);
4876 best_regend = REGEX_TALLOC (num_regs, re_char *);
4877
4878 if (!(regstart && regend && best_regstart && best_regend))
4879 {
4880 FREE_VARIABLES ();
4881 return -2;
4882 }
4883 }
4884 else
4885 {
4886 /* We must initialize all our variables to NULL, so that
4887 `FREE_VARIABLES' doesn't try to free them. */
4888 regstart = regend = best_regstart = best_regend = NULL;
4889 }
4890 #endif /* MATCH_MAY_ALLOCATE */
4891
4892 /* The starting position is bogus. */
4893 if (pos < 0 || pos > size1 + size2)
4894 {
4895 FREE_VARIABLES ();
4896 return -1;
4897 }
4898
4899 /* Initialize subexpression text positions to -1 to mark ones that no
4900 start_memory/stop_memory has been seen for. Also initialize the
4901 register information struct. */
4902 for (reg = 1; reg < num_regs; reg++)
4903 regstart[reg] = regend[reg] = NULL;
4904
4905 /* We move `string1' into `string2' if the latter's empty -- but not if
4906 `string1' is null. */
4907 if (size2 == 0 && string1 != NULL)
4908 {
4909 string2 = string1;
4910 size2 = size1;
4911 string1 = 0;
4912 size1 = 0;
4913 }
4914 end1 = string1 + size1;
4915 end2 = string2 + size2;
4916
4917 /* `p' scans through the pattern as `d' scans through the data.
4918 `dend' is the end of the input string that `d' points within. `d'
4919 is advanced into the following input string whenever necessary, but
4920 this happens before fetching; therefore, at the beginning of the
4921 loop, `d' can be pointing at the end of a string, but it cannot
4922 equal `string2'. */
4923 if (pos >= size1)
4924 {
4925 /* Only match within string2. */
4926 d = string2 + pos - size1;
4927 dend = end_match_2 = string2 + stop - size1;
4928 end_match_1 = end1; /* Just to give it a value. */
4929 }
4930 else
4931 {
4932 if (stop < size1)
4933 {
4934 /* Only match within string1. */
4935 end_match_1 = string1 + stop;
4936 /* BEWARE!
4937 When we reach end_match_1, PREFETCH normally switches to string2.
4938 But in the present case, this means that just doing a PREFETCH
4939 makes us jump from `stop' to `gap' within the string.
4940 What we really want here is for the search to stop as
4941 soon as we hit end_match_1. That's why we set end_match_2
4942 to end_match_1 (since PREFETCH fails as soon as we hit
4943 end_match_2). */
4944 end_match_2 = end_match_1;
4945 }
4946 else
4947 { /* It's important to use this code when stop == size so that
4948 moving `d' from end1 to string2 will not prevent the d == dend
4949 check from catching the end of string. */
4950 end_match_1 = end1;
4951 end_match_2 = string2 + stop - size1;
4952 }
4953 d = string1 + pos;
4954 dend = end_match_1;
4955 }
4956
4957 DEBUG_PRINT1 ("The compiled pattern is: ");
4958 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4959 DEBUG_PRINT1 ("The string to match is: `");
4960 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4961 DEBUG_PRINT1 ("'\n");
4962
4963 /* This loops over pattern commands. It exits by returning from the
4964 function if the match is complete, or it drops through if the match
4965 fails at this starting point in the input data. */
4966 for (;;)
4967 {
4968 DEBUG_PRINT2 ("\n%p: ", p);
4969
4970 if (p == pend)
4971 { /* End of pattern means we might have succeeded. */
4972 DEBUG_PRINT1 ("end of pattern ... ");
4973
4974 /* If we haven't matched the entire string, and we want the
4975 longest match, try backtracking. */
4976 if (d != end_match_2)
4977 {
4978 /* 1 if this match ends in the same string (string1 or string2)
4979 as the best previous match. */
4980 boolean same_str_p = (FIRST_STRING_P (match_end)
4981 == FIRST_STRING_P (d));
4982 /* 1 if this match is the best seen so far. */
4983 boolean best_match_p;
4984
4985 /* AIX compiler got confused when this was combined
4986 with the previous declaration. */
4987 if (same_str_p)
4988 best_match_p = d > match_end;
4989 else
4990 best_match_p = !FIRST_STRING_P (d);
4991
4992 DEBUG_PRINT1 ("backtracking.\n");
4993
4994 if (!FAIL_STACK_EMPTY ())
4995 { /* More failure points to try. */
4996
4997 /* If exceeds best match so far, save it. */
4998 if (!best_regs_set || best_match_p)
4999 {
5000 best_regs_set = true;
5001 match_end = d;
5002
5003 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5004
5005 for (reg = 1; reg < num_regs; reg++)
5006 {
5007 best_regstart[reg] = regstart[reg];
5008 best_regend[reg] = regend[reg];
5009 }
5010 }
5011 goto fail;
5012 }
5013
5014 /* If no failure points, don't restore garbage. And if
5015 last match is real best match, don't restore second
5016 best one. */
5017 else if (best_regs_set && !best_match_p)
5018 {
5019 restore_best_regs:
5020 /* Restore best match. It may happen that `dend ==
5021 end_match_1' while the restored d is in string2.
5022 For example, the pattern `x.*y.*z' against the
5023 strings `x-' and `y-z-', if the two strings are
5024 not consecutive in memory. */
5025 DEBUG_PRINT1 ("Restoring best registers.\n");
5026
5027 d = match_end;
5028 dend = ((d >= string1 && d <= end1)
5029 ? end_match_1 : end_match_2);
5030
5031 for (reg = 1; reg < num_regs; reg++)
5032 {
5033 regstart[reg] = best_regstart[reg];
5034 regend[reg] = best_regend[reg];
5035 }
5036 }
5037 } /* d != end_match_2 */
5038
5039 succeed_label:
5040 DEBUG_PRINT1 ("Accepting match.\n");
5041
5042 /* If caller wants register contents data back, do it. */
5043 if (regs && !bufp->no_sub)
5044 {
5045 /* Have the register data arrays been allocated? */
5046 if (bufp->regs_allocated == REGS_UNALLOCATED)
5047 { /* No. So allocate them with malloc. We need one
5048 extra element beyond `num_regs' for the `-1' marker
5049 GNU code uses. */
5050 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5051 regs->start = TALLOC (regs->num_regs, regoff_t);
5052 regs->end = TALLOC (regs->num_regs, regoff_t);
5053 if (regs->start == NULL || regs->end == NULL)
5054 {
5055 FREE_VARIABLES ();
5056 return -2;
5057 }
5058 bufp->regs_allocated = REGS_REALLOCATE;
5059 }
5060 else if (bufp->regs_allocated == REGS_REALLOCATE)
5061 { /* Yes. If we need more elements than were already
5062 allocated, reallocate them. If we need fewer, just
5063 leave it alone. */
5064 if (regs->num_regs < num_regs + 1)
5065 {
5066 regs->num_regs = num_regs + 1;
5067 RETALLOC (regs->start, regs->num_regs, regoff_t);
5068 RETALLOC (regs->end, regs->num_regs, regoff_t);
5069 if (regs->start == NULL || regs->end == NULL)
5070 {
5071 FREE_VARIABLES ();
5072 return -2;
5073 }
5074 }
5075 }
5076 else
5077 {
5078 /* These braces fend off a "empty body in an else-statement"
5079 warning under GCC when assert expands to nothing. */
5080 assert (bufp->regs_allocated == REGS_FIXED);
5081 }
5082
5083 /* Convert the pointer data in `regstart' and `regend' to
5084 indices. Register zero has to be set differently,
5085 since we haven't kept track of any info for it. */
5086 if (regs->num_regs > 0)
5087 {
5088 regs->start[0] = pos;
5089 regs->end[0] = POINTER_TO_OFFSET (d);
5090 }
5091
5092 /* Go through the first `min (num_regs, regs->num_regs)'
5093 registers, since that is all we initialized. */
5094 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
5095 {
5096 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
5097 regs->start[reg] = regs->end[reg] = -1;
5098 else
5099 {
5100 regs->start[reg]
5101 = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
5102 regs->end[reg]
5103 = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
5104 }
5105 }
5106
5107 /* If the regs structure we return has more elements than
5108 were in the pattern, set the extra elements to -1. If
5109 we (re)allocated the registers, this is the case,
5110 because we always allocate enough to have at least one
5111 -1 at the end. */
5112 for (reg = num_regs; reg < regs->num_regs; reg++)
5113 regs->start[reg] = regs->end[reg] = -1;
5114 } /* regs && !bufp->no_sub */
5115
5116 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5117 nfailure_points_pushed, nfailure_points_popped,
5118 nfailure_points_pushed - nfailure_points_popped);
5119 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
5120
5121 mcnt = POINTER_TO_OFFSET (d) - pos;
5122
5123 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
5124
5125 FREE_VARIABLES ();
5126 return mcnt;
5127 }
5128
5129 /* Otherwise match next pattern command. */
5130 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
5131 {
5132 /* Ignore these. Used to ignore the n of succeed_n's which
5133 currently have n == 0. */
5134 case no_op:
5135 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5136 break;
5137
5138 case succeed:
5139 DEBUG_PRINT1 ("EXECUTING succeed.\n");
5140 goto succeed_label;
5141
5142 /* Match the next n pattern characters exactly. The following
5143 byte in the pattern defines n, and the n bytes after that
5144 are the characters to match. */
5145 case exactn:
5146 mcnt = *p++;
5147 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
5148
5149 /* Remember the start point to rollback upon failure. */
5150 dfail = d;
5151
5152 /* This is written out as an if-else so we don't waste time
5153 testing `translate' inside the loop. */
5154 if (RE_TRANSLATE_P (translate))
5155 {
5156 if (multibyte)
5157 do
5158 {
5159 int pat_charlen, buf_charlen;
5160 unsigned int pat_ch, buf_ch;
5161
5162 PREFETCH ();
5163 pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
5164 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
5165
5166 if (RE_TRANSLATE (translate, buf_ch)
5167 != pat_ch)
5168 {
5169 d = dfail;
5170 goto fail;
5171 }
5172
5173 p += pat_charlen;
5174 d += buf_charlen;
5175 mcnt -= pat_charlen;
5176 }
5177 while (mcnt > 0);
5178 else
5179 do
5180 {
5181 PREFETCH ();
5182 if (RE_TRANSLATE (translate, *d) != *p++)
5183 {
5184 d = dfail;
5185 goto fail;
5186 }
5187 d++;
5188 }
5189 while (--mcnt);
5190 }
5191 else
5192 {
5193 do
5194 {
5195 PREFETCH ();
5196 if (*d++ != *p++)
5197 {
5198 d = dfail;
5199 goto fail;
5200 }
5201 }
5202 while (--mcnt);
5203 }
5204 break;
5205
5206
5207 /* Match any character except possibly a newline or a null. */
5208 case anychar:
5209 {
5210 int buf_charlen;
5211 re_wchar_t buf_ch;
5212
5213 DEBUG_PRINT1 ("EXECUTING anychar.\n");
5214
5215 PREFETCH ();
5216 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
5217 buf_ch = TRANSLATE (buf_ch);
5218
5219 if ((!(bufp->syntax & RE_DOT_NEWLINE)
5220 && buf_ch == '\n')
5221 || ((bufp->syntax & RE_DOT_NOT_NULL)
5222 && buf_ch == '\000'))
5223 goto fail;
5224
5225 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
5226 d += buf_charlen;
5227 }
5228 break;
5229
5230
5231 case charset:
5232 case charset_not:
5233 {
5234 register unsigned int c;
5235 boolean not = (re_opcode_t) *(p - 1) == charset_not;
5236 int len;
5237
5238 /* Start of actual range_table, or end of bitmap if there is no
5239 range table. */
5240 re_char *range_table;
5241
5242 /* Nonzero if there is a range table. */
5243 int range_table_exists;
5244
5245 /* Number of ranges of range table. This is not included
5246 in the initial byte-length of the command. */
5247 int count = 0;
5248
5249 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
5250
5251 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
5252
5253 if (range_table_exists)
5254 {
5255 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
5256 EXTRACT_NUMBER_AND_INCR (count, range_table);
5257 }
5258
5259 PREFETCH ();
5260 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5261 c = TRANSLATE (c); /* The character to match. */
5262
5263 if (SINGLE_BYTE_CHAR_P (c))
5264 { /* Lookup bitmap. */
5265 /* Cast to `unsigned' instead of `unsigned char' in
5266 case the bit list is a full 32 bytes long. */
5267 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
5268 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5269 not = !not;
5270 }
5271 #ifdef emacs
5272 else if (range_table_exists)
5273 {
5274 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
5275
5276 if ( (class_bits & BIT_LOWER && ISLOWER (c))
5277 | (class_bits & BIT_MULTIBYTE)
5278 | (class_bits & BIT_PUNCT && ISPUNCT (c))
5279 | (class_bits & BIT_SPACE && ISSPACE (c))
5280 | (class_bits & BIT_UPPER && ISUPPER (c))
5281 | (class_bits & BIT_WORD && ISWORD (c)))
5282 not = !not;
5283 else
5284 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5285 }
5286 #endif /* emacs */
5287
5288 if (range_table_exists)
5289 p = CHARSET_RANGE_TABLE_END (range_table, count);
5290 else
5291 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
5292
5293 if (!not) goto fail;
5294
5295 d += len;
5296 break;
5297 }
5298
5299
5300 /* The beginning of a group is represented by start_memory.
5301 The argument is the register number. The text
5302 matched within the group is recorded (in the internal
5303 registers data structure) under the register number. */
5304 case start_memory:
5305 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
5306
5307 /* In case we need to undo this operation (via backtracking). */
5308 PUSH_FAILURE_REG ((unsigned int)*p);
5309
5310 regstart[*p] = d;
5311 regend[*p] = NULL; /* probably unnecessary. -sm */
5312 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
5313
5314 /* Move past the register number and inner group count. */
5315 p += 1;
5316 break;
5317
5318
5319 /* The stop_memory opcode represents the end of a group. Its
5320 argument is the same as start_memory's: the register number. */
5321 case stop_memory:
5322 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
5323
5324 assert (!REG_UNSET (regstart[*p]));
5325 /* Strictly speaking, there should be code such as:
5326
5327 assert (REG_UNSET (regend[*p]));
5328 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5329
5330 But the only info to be pushed is regend[*p] and it is known to
5331 be UNSET, so there really isn't anything to push.
5332 Not pushing anything, on the other hand deprives us from the
5333 guarantee that regend[*p] is UNSET since undoing this operation
5334 will not reset its value properly. This is not important since
5335 the value will only be read on the next start_memory or at
5336 the very end and both events can only happen if this stop_memory
5337 is *not* undone. */
5338
5339 regend[*p] = d;
5340 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
5341
5342 /* Move past the register number and the inner group count. */
5343 p += 1;
5344 break;
5345
5346
5347 /* \<digit> has been turned into a `duplicate' command which is
5348 followed by the numeric value of <digit> as the register number. */
5349 case duplicate:
5350 {
5351 register re_char *d2, *dend2;
5352 int regno = *p++; /* Get which register to match against. */
5353 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
5354
5355 /* Can't back reference a group which we've never matched. */
5356 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5357 goto fail;
5358
5359 /* Where in input to try to start matching. */
5360 d2 = regstart[regno];
5361
5362 /* Remember the start point to rollback upon failure. */
5363 dfail = d;
5364
5365 /* Where to stop matching; if both the place to start and
5366 the place to stop matching are in the same string, then
5367 set to the place to stop, otherwise, for now have to use
5368 the end of the first string. */
5369
5370 dend2 = ((FIRST_STRING_P (regstart[regno])
5371 == FIRST_STRING_P (regend[regno]))
5372 ? regend[regno] : end_match_1);
5373 for (;;)
5374 {
5375 /* If necessary, advance to next segment in register
5376 contents. */
5377 while (d2 == dend2)
5378 {
5379 if (dend2 == end_match_2) break;
5380 if (dend2 == regend[regno]) break;
5381
5382 /* End of string1 => advance to string2. */
5383 d2 = string2;
5384 dend2 = regend[regno];
5385 }
5386 /* At end of register contents => success */
5387 if (d2 == dend2) break;
5388
5389 /* If necessary, advance to next segment in data. */
5390 PREFETCH ();
5391
5392 /* How many characters left in this segment to match. */
5393 mcnt = dend - d;
5394
5395 /* Want how many consecutive characters we can match in
5396 one shot, so, if necessary, adjust the count. */
5397 if (mcnt > dend2 - d2)
5398 mcnt = dend2 - d2;
5399
5400 /* Compare that many; failure if mismatch, else move
5401 past them. */
5402 if (RE_TRANSLATE_P (translate)
5403 ? bcmp_translate (d, d2, mcnt, translate, multibyte)
5404 : memcmp (d, d2, mcnt))
5405 {
5406 d = dfail;
5407 goto fail;
5408 }
5409 d += mcnt, d2 += mcnt;
5410 }
5411 }
5412 break;
5413
5414
5415 /* begline matches the empty string at the beginning of the string
5416 (unless `not_bol' is set in `bufp'), and after newlines. */
5417 case begline:
5418 DEBUG_PRINT1 ("EXECUTING begline.\n");
5419
5420 if (AT_STRINGS_BEG (d))
5421 {
5422 if (!bufp->not_bol) break;
5423 }
5424 else
5425 {
5426 unsigned char c;
5427 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
5428 if (c == '\n')
5429 break;
5430 }
5431 /* In all other cases, we fail. */
5432 goto fail;
5433
5434
5435 /* endline is the dual of begline. */
5436 case endline:
5437 DEBUG_PRINT1 ("EXECUTING endline.\n");
5438
5439 if (AT_STRINGS_END (d))
5440 {
5441 if (!bufp->not_eol) break;
5442 }
5443 else
5444 {
5445 PREFETCH_NOLIMIT ();
5446 if (*d == '\n')
5447 break;
5448 }
5449 goto fail;
5450
5451
5452 /* Match at the very beginning of the data. */
5453 case begbuf:
5454 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5455 if (AT_STRINGS_BEG (d))
5456 break;
5457 goto fail;
5458
5459
5460 /* Match at the very end of the data. */
5461 case endbuf:
5462 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
5463 if (AT_STRINGS_END (d))
5464 break;
5465 goto fail;
5466
5467
5468 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5469 pushes NULL as the value for the string on the stack. Then
5470 `POP_FAILURE_POINT' will keep the current value for the
5471 string, instead of restoring it. To see why, consider
5472 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5473 then the . fails against the \n. But the next thing we want
5474 to do is match the \n against the \n; if we restored the
5475 string value, we would be back at the foo.
5476
5477 Because this is used only in specific cases, we don't need to
5478 check all the things that `on_failure_jump' does, to make
5479 sure the right things get saved on the stack. Hence we don't
5480 share its code. The only reason to push anything on the
5481 stack at all is that otherwise we would have to change
5482 `anychar's code to do something besides goto fail in this
5483 case; that seems worse than this. */
5484 case on_failure_keep_string_jump:
5485 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5486 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5487 mcnt, p + mcnt);
5488
5489 PUSH_FAILURE_POINT (p - 3, NULL);
5490 break;
5491
5492 /* A nasty loop is introduced by the non-greedy *? and +?.
5493 With such loops, the stack only ever contains one failure point
5494 at a time, so that a plain on_failure_jump_loop kind of
5495 cycle detection cannot work. Worse yet, such a detection
5496 can not only fail to detect a cycle, but it can also wrongly
5497 detect a cycle (between different instantiations of the same
5498 loop).
5499 So the method used for those nasty loops is a little different:
5500 We use a special cycle-detection-stack-frame which is pushed
5501 when the on_failure_jump_nastyloop failure-point is *popped*.
5502 This special frame thus marks the beginning of one iteration
5503 through the loop and we can hence easily check right here
5504 whether something matched between the beginning and the end of
5505 the loop. */
5506 case on_failure_jump_nastyloop:
5507 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5508 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5509 mcnt, p + mcnt);
5510
5511 assert ((re_opcode_t)p[-4] == no_op);
5512 {
5513 int cycle = 0;
5514 CHECK_INFINITE_LOOP (p - 4, d);
5515 if (!cycle)
5516 /* If there's a cycle, just continue without pushing
5517 this failure point. The failure point is the "try again"
5518 option, which shouldn't be tried.
5519 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5520 PUSH_FAILURE_POINT (p - 3, d);
5521 }
5522 break;
5523
5524 /* Simple loop detecting on_failure_jump: just check on the
5525 failure stack if the same spot was already hit earlier. */
5526 case on_failure_jump_loop:
5527 on_failure:
5528 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5529 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5530 mcnt, p + mcnt);
5531 {
5532 int cycle = 0;
5533 CHECK_INFINITE_LOOP (p - 3, d);
5534 if (cycle)
5535 /* If there's a cycle, get out of the loop, as if the matching
5536 had failed. We used to just `goto fail' here, but that was
5537 aborting the search a bit too early: we want to keep the
5538 empty-loop-match and keep matching after the loop.
5539 We want (x?)*y\1z to match both xxyz and xxyxz. */
5540 p += mcnt;
5541 else
5542 PUSH_FAILURE_POINT (p - 3, d);
5543 }
5544 break;
5545
5546
5547 /* Uses of on_failure_jump:
5548
5549 Each alternative starts with an on_failure_jump that points
5550 to the beginning of the next alternative. Each alternative
5551 except the last ends with a jump that in effect jumps past
5552 the rest of the alternatives. (They really jump to the
5553 ending jump of the following alternative, because tensioning
5554 these jumps is a hassle.)
5555
5556 Repeats start with an on_failure_jump that points past both
5557 the repetition text and either the following jump or
5558 pop_failure_jump back to this on_failure_jump. */
5559 case on_failure_jump:
5560 IMMEDIATE_QUIT_CHECK;
5561 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5562 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5563 mcnt, p + mcnt);
5564
5565 PUSH_FAILURE_POINT (p -3, d);
5566 break;
5567
5568 /* This operation is used for greedy *.
5569 Compare the beginning of the repeat with what in the
5570 pattern follows its end. If we can establish that there
5571 is nothing that they would both match, i.e., that we
5572 would have to backtrack because of (as in, e.g., `a*a')
5573 then we can use a non-backtracking loop based on
5574 on_failure_keep_string_jump instead of on_failure_jump. */
5575 case on_failure_jump_smart:
5576 IMMEDIATE_QUIT_CHECK;
5577 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5578 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5579 mcnt, p + mcnt);
5580 {
5581 re_char *p1 = p; /* Next operation. */
5582 /* Here, we discard `const', making re_match non-reentrant. */
5583 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
5584 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
5585
5586 p -= 3; /* Reset so that we will re-execute the
5587 instruction once it's been changed. */
5588
5589 EXTRACT_NUMBER (mcnt, p2 - 2);
5590
5591 /* Ensure this is a indeed the trivial kind of loop
5592 we are expecting. */
5593 assert (skip_one_char (p1) == p2 - 3);
5594 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
5595 DEBUG_STATEMENT (debug += 2);
5596 if (mutually_exclusive_p (bufp, p1, p2))
5597 {
5598 /* Use a fast `on_failure_keep_string_jump' loop. */
5599 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
5600 *p3 = (unsigned char) on_failure_keep_string_jump;
5601 STORE_NUMBER (p2 - 2, mcnt + 3);
5602 }
5603 else
5604 {
5605 /* Default to a safe `on_failure_jump' loop. */
5606 DEBUG_PRINT1 (" smart default => slow loop.\n");
5607 *p3 = (unsigned char) on_failure_jump;
5608 }
5609 DEBUG_STATEMENT (debug -= 2);
5610 }
5611 break;
5612
5613 /* Unconditionally jump (without popping any failure points). */
5614 case jump:
5615 unconditional_jump:
5616 IMMEDIATE_QUIT_CHECK;
5617 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
5618 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5619 p += mcnt; /* Do the jump. */
5620 DEBUG_PRINT2 ("(to %p).\n", p);
5621 break;
5622
5623
5624 /* Have to succeed matching what follows at least n times.
5625 After that, handle like `on_failure_jump'. */
5626 case succeed_n:
5627 /* Signedness doesn't matter since we only compare MCNT to 0. */
5628 EXTRACT_NUMBER (mcnt, p + 2);
5629 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5630
5631 /* Originally, mcnt is how many times we HAVE to succeed. */
5632 if (mcnt != 0)
5633 {
5634 /* Here, we discard `const', making re_match non-reentrant. */
5635 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
5636 mcnt--;
5637 p += 4;
5638 PUSH_NUMBER (p2, mcnt);
5639 }
5640 else
5641 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5642 goto on_failure;
5643 break;
5644
5645 case jump_n:
5646 /* Signedness doesn't matter since we only compare MCNT to 0. */
5647 EXTRACT_NUMBER (mcnt, p + 2);
5648 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5649
5650 /* Originally, this is how many times we CAN jump. */
5651 if (mcnt != 0)
5652 {
5653 /* Here, we discard `const', making re_match non-reentrant. */
5654 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
5655 mcnt--;
5656 PUSH_NUMBER (p2, mcnt);
5657 goto unconditional_jump;
5658 }
5659 /* If don't have to jump any more, skip over the rest of command. */
5660 else
5661 p += 4;
5662 break;
5663
5664 case set_number_at:
5665 {
5666 unsigned char *p2; /* Location of the counter. */
5667 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5668
5669 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5670 /* Here, we discard `const', making re_match non-reentrant. */
5671 p2 = (unsigned char*) p + mcnt;
5672 /* Signedness doesn't matter since we only copy MCNT's bits . */
5673 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5674 DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
5675 PUSH_NUMBER (p2, mcnt);
5676 break;
5677 }
5678
5679 case wordbound:
5680 case notwordbound:
5681 not = (re_opcode_t) *(p - 1) == notwordbound;
5682 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
5683
5684 /* We SUCCEED (or FAIL) in one of the following cases: */
5685
5686 /* Case 1: D is at the beginning or the end of string. */
5687 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5688 not = !not;
5689 else
5690 {
5691 /* C1 is the character before D, S1 is the syntax of C1, C2
5692 is the character at D, and S2 is the syntax of C2. */
5693 re_wchar_t c1, c2;
5694 int s1, s2;
5695 #ifdef emacs
5696 int offset = PTR_TO_OFFSET (d - 1);
5697 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5698 UPDATE_SYNTAX_TABLE (charpos);
5699 #endif
5700 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5701 s1 = SYNTAX (c1);
5702 #ifdef emacs
5703 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
5704 #endif
5705 PREFETCH_NOLIMIT ();
5706 c2 = RE_STRING_CHAR (d, dend - d);
5707 s2 = SYNTAX (c2);
5708
5709 if (/* Case 2: Only one of S1 and S2 is Sword. */
5710 ((s1 == Sword) != (s2 == Sword))
5711 /* Case 3: Both of S1 and S2 are Sword, and macro
5712 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5713 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
5714 not = !not;
5715 }
5716 if (not)
5717 break;
5718 else
5719 goto fail;
5720
5721 case wordbeg:
5722 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5723
5724 /* We FAIL in one of the following cases: */
5725
5726 /* Case 1: D is at the end of string. */
5727 if (AT_STRINGS_END (d))
5728 goto fail;
5729 else
5730 {
5731 /* C1 is the character before D, S1 is the syntax of C1, C2
5732 is the character at D, and S2 is the syntax of C2. */
5733 re_wchar_t c1, c2;
5734 int s1, s2;
5735 #ifdef emacs
5736 int offset = PTR_TO_OFFSET (d);
5737 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5738 UPDATE_SYNTAX_TABLE (charpos);
5739 #endif
5740 PREFETCH ();
5741 c2 = RE_STRING_CHAR (d, dend - d);
5742 s2 = SYNTAX (c2);
5743
5744 /* Case 2: S2 is not Sword. */
5745 if (s2 != Sword)
5746 goto fail;
5747
5748 /* Case 3: D is not at the beginning of string ... */
5749 if (!AT_STRINGS_BEG (d))
5750 {
5751 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5752 #ifdef emacs
5753 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
5754 #endif
5755 s1 = SYNTAX (c1);
5756
5757 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
5758 returns 0. */
5759 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5760 goto fail;
5761 }
5762 }
5763 break;
5764
5765 case wordend:
5766 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5767
5768 /* We FAIL in one of the following cases: */
5769
5770 /* Case 1: D is at the beginning of string. */
5771 if (AT_STRINGS_BEG (d))
5772 goto fail;
5773 else
5774 {
5775 /* C1 is the character before D, S1 is the syntax of C1, C2
5776 is the character at D, and S2 is the syntax of C2. */
5777 re_wchar_t c1, c2;
5778 int s1, s2;
5779 #ifdef emacs
5780 int offset = PTR_TO_OFFSET (d) - 1;
5781 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5782 UPDATE_SYNTAX_TABLE (charpos);
5783 #endif
5784 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5785 s1 = SYNTAX (c1);
5786
5787 /* Case 2: S1 is not Sword. */
5788 if (s1 != Sword)
5789 goto fail;
5790
5791 /* Case 3: D is not at the end of string ... */
5792 if (!AT_STRINGS_END (d))
5793 {
5794 PREFETCH_NOLIMIT ();
5795 c2 = RE_STRING_CHAR (d, dend - d);
5796 #ifdef emacs
5797 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
5798 #endif
5799 s2 = SYNTAX (c2);
5800
5801 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
5802 returns 0. */
5803 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5804 goto fail;
5805 }
5806 }
5807 break;
5808
5809 case symbeg:
5810 DEBUG_PRINT1 ("EXECUTING symbeg.\n");
5811
5812 /* We FAIL in one of the following cases: */
5813
5814 /* Case 1: D is at the end of string. */
5815 if (AT_STRINGS_END (d))
5816 goto fail;
5817 else
5818 {
5819 /* C1 is the character before D, S1 is the syntax of C1, C2
5820 is the character at D, and S2 is the syntax of C2. */
5821 re_wchar_t c1, c2;
5822 int s1, s2;
5823 #ifdef emacs
5824 int offset = PTR_TO_OFFSET (d);
5825 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5826 UPDATE_SYNTAX_TABLE (charpos);
5827 #endif
5828 PREFETCH ();
5829 c2 = RE_STRING_CHAR (d, dend - d);
5830 s2 = SYNTAX (c2);
5831
5832 /* Case 2: S2 is neither Sword nor Ssymbol. */
5833 if (s2 != Sword && s2 != Ssymbol)
5834 goto fail;
5835
5836 /* Case 3: D is not at the beginning of string ... */
5837 if (!AT_STRINGS_BEG (d))
5838 {
5839 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5840 #ifdef emacs
5841 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
5842 #endif
5843 s1 = SYNTAX (c1);
5844
5845 /* ... and S1 is Sword or Ssymbol. */
5846 if (s1 == Sword || s1 == Ssymbol)
5847 goto fail;
5848 }
5849 }
5850 break;
5851
5852 case symend:
5853 DEBUG_PRINT1 ("EXECUTING symend.\n");
5854
5855 /* We FAIL in one of the following cases: */
5856
5857 /* Case 1: D is at the beginning of string. */
5858 if (AT_STRINGS_BEG (d))
5859 goto fail;
5860 else
5861 {
5862 /* C1 is the character before D, S1 is the syntax of C1, C2
5863 is the character at D, and S2 is the syntax of C2. */
5864 re_wchar_t c1, c2;
5865 int s1, s2;
5866 #ifdef emacs
5867 int offset = PTR_TO_OFFSET (d) - 1;
5868 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5869 UPDATE_SYNTAX_TABLE (charpos);
5870 #endif
5871 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5872 s1 = SYNTAX (c1);
5873
5874 /* Case 2: S1 is neither Ssymbol nor Sword. */
5875 if (s1 != Sword && s1 != Ssymbol)
5876 goto fail;
5877
5878 /* Case 3: D is not at the end of string ... */
5879 if (!AT_STRINGS_END (d))
5880 {
5881 PREFETCH_NOLIMIT ();
5882 c2 = RE_STRING_CHAR (d, dend - d);
5883 #ifdef emacs
5884 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
5885 #endif
5886 s2 = SYNTAX (c2);
5887
5888 /* ... and S2 is Sword or Ssymbol. */
5889 if (s2 == Sword || s2 == Ssymbol)
5890 goto fail;
5891 }
5892 }
5893 break;
5894
5895 case syntaxspec:
5896 case notsyntaxspec:
5897 not = (re_opcode_t) *(p - 1) == notsyntaxspec;
5898 mcnt = *p++;
5899 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
5900 PREFETCH ();
5901 #ifdef emacs
5902 {
5903 int offset = PTR_TO_OFFSET (d);
5904 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5905 UPDATE_SYNTAX_TABLE (pos1);
5906 }
5907 #endif
5908 {
5909 int len;
5910 re_wchar_t c;
5911
5912 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5913
5914 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
5915 goto fail;
5916 d += len;
5917 }
5918 break;
5919
5920 #ifdef emacs
5921 case before_dot:
5922 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5923 if (PTR_BYTE_POS (d) >= PT_BYTE)
5924 goto fail;
5925 break;
5926
5927 case at_dot:
5928 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5929 if (PTR_BYTE_POS (d) != PT_BYTE)
5930 goto fail;
5931 break;
5932
5933 case after_dot:
5934 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5935 if (PTR_BYTE_POS (d) <= PT_BYTE)
5936 goto fail;
5937 break;
5938
5939 case categoryspec:
5940 case notcategoryspec:
5941 not = (re_opcode_t) *(p - 1) == notcategoryspec;
5942 mcnt = *p++;
5943 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
5944 PREFETCH ();
5945 {
5946 int len;
5947 re_wchar_t c;
5948
5949 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5950
5951 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
5952 goto fail;
5953 d += len;
5954 }
5955 break;
5956
5957 #endif /* emacs */
5958
5959 default:
5960 abort ();
5961 }
5962 continue; /* Successfully executed one pattern command; keep going. */
5963
5964
5965 /* We goto here if a matching operation fails. */
5966 fail:
5967 IMMEDIATE_QUIT_CHECK;
5968 if (!FAIL_STACK_EMPTY ())
5969 {
5970 re_char *str, *pat;
5971 /* A restart point is known. Restore to that state. */
5972 DEBUG_PRINT1 ("\nFAIL:\n");
5973 POP_FAILURE_POINT (str, pat);
5974 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
5975 {
5976 case on_failure_keep_string_jump:
5977 assert (str == NULL);
5978 goto continue_failure_jump;
5979
5980 case on_failure_jump_nastyloop:
5981 assert ((re_opcode_t)pat[-2] == no_op);
5982 PUSH_FAILURE_POINT (pat - 2, str);
5983 /* Fallthrough */
5984
5985 case on_failure_jump_loop:
5986 case on_failure_jump:
5987 case succeed_n:
5988 d = str;
5989 continue_failure_jump:
5990 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
5991 p = pat + mcnt;
5992 break;
5993
5994 case no_op:
5995 /* A special frame used for nastyloops. */
5996 goto fail;
5997
5998 default:
5999 abort();
6000 }
6001
6002 assert (p >= bufp->buffer && p <= pend);
6003
6004 if (d >= string1 && d <= end1)
6005 dend = end_match_1;
6006 }
6007 else
6008 break; /* Matching at this starting point really fails. */
6009 } /* for (;;) */
6010
6011 if (best_regs_set)
6012 goto restore_best_regs;
6013
6014 FREE_VARIABLES ();
6015
6016 return -1; /* Failure to match. */
6017 } /* re_match_2 */
6018 \f
6019 /* Subroutine definitions for re_match_2. */
6020
6021 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6022 bytes; nonzero otherwise. */
6023
6024 static int
6025 bcmp_translate (s1, s2, len, translate, multibyte)
6026 re_char *s1, *s2;
6027 register int len;
6028 RE_TRANSLATE_TYPE translate;
6029 const int multibyte;
6030 {
6031 register re_char *p1 = s1, *p2 = s2;
6032 re_char *p1_end = s1 + len;
6033 re_char *p2_end = s2 + len;
6034
6035 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6036 different lengths, but relying on a single `len' would break this. -sm */
6037 while (p1 < p1_end && p2 < p2_end)
6038 {
6039 int p1_charlen, p2_charlen;
6040 re_wchar_t p1_ch, p2_ch;
6041
6042 p1_ch = RE_STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen);
6043 p2_ch = RE_STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen);
6044
6045 if (RE_TRANSLATE (translate, p1_ch)
6046 != RE_TRANSLATE (translate, p2_ch))
6047 return 1;
6048
6049 p1 += p1_charlen, p2 += p2_charlen;
6050 }
6051
6052 if (p1 != p1_end || p2 != p2_end)
6053 return 1;
6054
6055 return 0;
6056 }
6057 \f
6058 /* Entry points for GNU code. */
6059
6060 /* re_compile_pattern is the GNU regular expression compiler: it
6061 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6062 Returns 0 if the pattern was valid, otherwise an error string.
6063
6064 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6065 are set in BUFP on entry.
6066
6067 We call regex_compile to do the actual compilation. */
6068
6069 const char *
6070 re_compile_pattern (pattern, length, bufp)
6071 const char *pattern;
6072 size_t length;
6073 struct re_pattern_buffer *bufp;
6074 {
6075 reg_errcode_t ret;
6076
6077 /* GNU code is written to assume at least RE_NREGS registers will be set
6078 (and at least one extra will be -1). */
6079 bufp->regs_allocated = REGS_UNALLOCATED;
6080
6081 /* And GNU code determines whether or not to get register information
6082 by passing null for the REGS argument to re_match, etc., not by
6083 setting no_sub. */
6084 bufp->no_sub = 0;
6085
6086 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
6087
6088 if (!ret)
6089 return NULL;
6090 return gettext (re_error_msgid[(int) ret]);
6091 }
6092 WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
6093 \f
6094 /* Entry points compatible with 4.2 BSD regex library. We don't define
6095 them unless specifically requested. */
6096
6097 #if defined _REGEX_RE_COMP || defined _LIBC
6098
6099 /* BSD has one and only one pattern buffer. */
6100 static struct re_pattern_buffer re_comp_buf;
6101
6102 char *
6103 # ifdef _LIBC
6104 /* Make these definitions weak in libc, so POSIX programs can redefine
6105 these names if they don't use our functions, and still use
6106 regcomp/regexec below without link errors. */
6107 weak_function
6108 # endif
6109 re_comp (s)
6110 const char *s;
6111 {
6112 reg_errcode_t ret;
6113
6114 if (!s)
6115 {
6116 if (!re_comp_buf.buffer)
6117 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6118 return (char *) gettext ("No previous regular expression");
6119 return 0;
6120 }
6121
6122 if (!re_comp_buf.buffer)
6123 {
6124 re_comp_buf.buffer = (unsigned char *) malloc (200);
6125 if (re_comp_buf.buffer == NULL)
6126 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6127 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6128 re_comp_buf.allocated = 200;
6129
6130 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
6131 if (re_comp_buf.fastmap == NULL)
6132 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6133 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6134 }
6135
6136 /* Since `re_exec' always passes NULL for the `regs' argument, we
6137 don't need to initialize the pattern buffer fields which affect it. */
6138
6139 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
6140
6141 if (!ret)
6142 return NULL;
6143
6144 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6145 return (char *) gettext (re_error_msgid[(int) ret]);
6146 }
6147
6148
6149 int
6150 # ifdef _LIBC
6151 weak_function
6152 # endif
6153 re_exec (s)
6154 const char *s;
6155 {
6156 const int len = strlen (s);
6157 return
6158 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6159 }
6160 #endif /* _REGEX_RE_COMP */
6161 \f
6162 /* POSIX.2 functions. Don't define these for Emacs. */
6163
6164 #ifndef emacs
6165
6166 /* regcomp takes a regular expression as a string and compiles it.
6167
6168 PREG is a regex_t *. We do not expect any fields to be initialized,
6169 since POSIX says we shouldn't. Thus, we set
6170
6171 `buffer' to the compiled pattern;
6172 `used' to the length of the compiled pattern;
6173 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6174 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6175 RE_SYNTAX_POSIX_BASIC;
6176 `fastmap' to an allocated space for the fastmap;
6177 `fastmap_accurate' to zero;
6178 `re_nsub' to the number of subexpressions in PATTERN.
6179
6180 PATTERN is the address of the pattern string.
6181
6182 CFLAGS is a series of bits which affect compilation.
6183
6184 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6185 use POSIX basic syntax.
6186
6187 If REG_NEWLINE is set, then . and [^...] don't match newline.
6188 Also, regexec will try a match beginning after every newline.
6189
6190 If REG_ICASE is set, then we considers upper- and lowercase
6191 versions of letters to be equivalent when matching.
6192
6193 If REG_NOSUB is set, then when PREG is passed to regexec, that
6194 routine will report only success or failure, and nothing about the
6195 registers.
6196
6197 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
6198 the return codes and their meanings.) */
6199
6200 int
6201 regcomp (preg, pattern, cflags)
6202 regex_t *__restrict preg;
6203 const char *__restrict pattern;
6204 int cflags;
6205 {
6206 reg_errcode_t ret;
6207 reg_syntax_t syntax
6208 = (cflags & REG_EXTENDED) ?
6209 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6210
6211 /* regex_compile will allocate the space for the compiled pattern. */
6212 preg->buffer = 0;
6213 preg->allocated = 0;
6214 preg->used = 0;
6215
6216 /* Try to allocate space for the fastmap. */
6217 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
6218
6219 if (cflags & REG_ICASE)
6220 {
6221 unsigned i;
6222
6223 preg->translate
6224 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6225 * sizeof (*(RE_TRANSLATE_TYPE)0));
6226 if (preg->translate == NULL)
6227 return (int) REG_ESPACE;
6228
6229 /* Map uppercase characters to corresponding lowercase ones. */
6230 for (i = 0; i < CHAR_SET_SIZE; i++)
6231 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
6232 }
6233 else
6234 preg->translate = NULL;
6235
6236 /* If REG_NEWLINE is set, newlines are treated differently. */
6237 if (cflags & REG_NEWLINE)
6238 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6239 syntax &= ~RE_DOT_NEWLINE;
6240 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
6241 }
6242 else
6243 syntax |= RE_NO_NEWLINE_ANCHOR;
6244
6245 preg->no_sub = !!(cflags & REG_NOSUB);
6246
6247 /* POSIX says a null character in the pattern terminates it, so we
6248 can use strlen here in compiling the pattern. */
6249 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
6250
6251 /* POSIX doesn't distinguish between an unmatched open-group and an
6252 unmatched close-group: both are REG_EPAREN. */
6253 if (ret == REG_ERPAREN)
6254 ret = REG_EPAREN;
6255
6256 if (ret == REG_NOERROR && preg->fastmap)
6257 { /* Compute the fastmap now, since regexec cannot modify the pattern
6258 buffer. */
6259 re_compile_fastmap (preg);
6260 if (preg->can_be_null)
6261 { /* The fastmap can't be used anyway. */
6262 free (preg->fastmap);
6263 preg->fastmap = NULL;
6264 }
6265 }
6266 return (int) ret;
6267 }
6268 WEAK_ALIAS (__regcomp, regcomp)
6269
6270
6271 /* regexec searches for a given pattern, specified by PREG, in the
6272 string STRING.
6273
6274 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
6275 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
6276 least NMATCH elements, and we set them to the offsets of the
6277 corresponding matched substrings.
6278
6279 EFLAGS specifies `execution flags' which affect matching: if
6280 REG_NOTBOL is set, then ^ does not match at the beginning of the
6281 string; if REG_NOTEOL is set, then $ does not match at the end.
6282
6283 We return 0 if we find a match and REG_NOMATCH if not. */
6284
6285 int
6286 regexec (preg, string, nmatch, pmatch, eflags)
6287 const regex_t *__restrict preg;
6288 const char *__restrict string;
6289 size_t nmatch;
6290 regmatch_t pmatch[__restrict_arr];
6291 int eflags;
6292 {
6293 int ret;
6294 struct re_registers regs;
6295 regex_t private_preg;
6296 int len = strlen (string);
6297 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
6298
6299 private_preg = *preg;
6300
6301 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6302 private_preg.not_eol = !!(eflags & REG_NOTEOL);
6303
6304 /* The user has told us exactly how many registers to return
6305 information about, via `nmatch'. We have to pass that on to the
6306 matching routines. */
6307 private_preg.regs_allocated = REGS_FIXED;
6308
6309 if (want_reg_info)
6310 {
6311 regs.num_regs = nmatch;
6312 regs.start = TALLOC (nmatch * 2, regoff_t);
6313 if (regs.start == NULL)
6314 return (int) REG_NOMATCH;
6315 regs.end = regs.start + nmatch;
6316 }
6317
6318 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6319 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6320 was a little bit longer but still only matching the real part.
6321 This works because the `endline' will check for a '\n' and will find a
6322 '\0', correctly deciding that this is not the end of a line.
6323 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6324 a convenient '\0' there. For all we know, the string could be preceded
6325 by '\n' which would throw things off. */
6326
6327 /* Perform the searching operation. */
6328 ret = re_search (&private_preg, string, len,
6329 /* start: */ 0, /* range: */ len,
6330 want_reg_info ? &regs : (struct re_registers *) 0);
6331
6332 /* Copy the register information to the POSIX structure. */
6333 if (want_reg_info)
6334 {
6335 if (ret >= 0)
6336 {
6337 unsigned r;
6338
6339 for (r = 0; r < nmatch; r++)
6340 {
6341 pmatch[r].rm_so = regs.start[r];
6342 pmatch[r].rm_eo = regs.end[r];
6343 }
6344 }
6345
6346 /* If we needed the temporary register info, free the space now. */
6347 free (regs.start);
6348 }
6349
6350 /* We want zero return to mean success, unlike `re_search'. */
6351 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6352 }
6353 WEAK_ALIAS (__regexec, regexec)
6354
6355
6356 /* Returns a message corresponding to an error code, ERRCODE, returned
6357 from either regcomp or regexec. We don't use PREG here. */
6358
6359 size_t
6360 regerror (errcode, preg, errbuf, errbuf_size)
6361 int errcode;
6362 const regex_t *preg;
6363 char *errbuf;
6364 size_t errbuf_size;
6365 {
6366 const char *msg;
6367 size_t msg_size;
6368
6369 if (errcode < 0
6370 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
6371 /* Only error codes returned by the rest of the code should be passed
6372 to this routine. If we are given anything else, or if other regex
6373 code generates an invalid error code, then the program has a bug.
6374 Dump core so we can fix it. */
6375 abort ();
6376
6377 msg = gettext (re_error_msgid[errcode]);
6378
6379 msg_size = strlen (msg) + 1; /* Includes the null. */
6380
6381 if (errbuf_size != 0)
6382 {
6383 if (msg_size > errbuf_size)
6384 {
6385 strncpy (errbuf, msg, errbuf_size - 1);
6386 errbuf[errbuf_size - 1] = 0;
6387 }
6388 else
6389 strcpy (errbuf, msg);
6390 }
6391
6392 return msg_size;
6393 }
6394 WEAK_ALIAS (__regerror, regerror)
6395
6396
6397 /* Free dynamically allocated space used by PREG. */
6398
6399 void
6400 regfree (preg)
6401 regex_t *preg;
6402 {
6403 if (preg->buffer != NULL)
6404 free (preg->buffer);
6405 preg->buffer = NULL;
6406
6407 preg->allocated = 0;
6408 preg->used = 0;
6409
6410 if (preg->fastmap != NULL)
6411 free (preg->fastmap);
6412 preg->fastmap = NULL;
6413 preg->fastmap_accurate = 0;
6414
6415 if (preg->translate != NULL)
6416 free (preg->translate);
6417 preg->translate = NULL;
6418 }
6419 WEAK_ALIAS (__regfree, regfree)
6420
6421 #endif /* not emacs */
6422
6423 /* arch-tag: 4ffd68ba-2a9e-435b-a21a-018990f9eeb2
6424 (do not change this comment) */