]> code.delx.au - gnu-emacs/blob - src/fns.c
(Frequire): Treat evaluating from a source file
[gnu-emacs] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985, 1986, 1987, 1993, 1994, 1995, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004,
4 2005 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs; see the file COPYING. If not, write to
20 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include <config.h>
24
25 #ifdef HAVE_UNISTD_H
26 #include <unistd.h>
27 #endif
28 #include <time.h>
29
30 #ifndef MAC_OS
31 /* On Mac OS, defining this conflicts with precompiled headers. */
32
33 /* Note on some machines this defines `vector' as a typedef,
34 so make sure we don't use that name in this file. */
35 #undef vector
36 #define vector *****
37
38 #endif /* ! MAC_OSX */
39
40 #include "lisp.h"
41 #include "commands.h"
42 #include "charset.h"
43 #include "coding.h"
44 #include "buffer.h"
45 #include "keyboard.h"
46 #include "keymap.h"
47 #include "intervals.h"
48 #include "frame.h"
49 #include "window.h"
50 #include "blockinput.h"
51 #if defined (HAVE_MENUS) && defined (HAVE_X_WINDOWS)
52 #include "xterm.h"
53 #endif
54
55 #ifndef NULL
56 #define NULL ((POINTER_TYPE *)0)
57 #endif
58
59 /* Nonzero enables use of dialog boxes for questions
60 asked by mouse commands. */
61 int use_dialog_box;
62
63 /* Nonzero enables use of a file dialog for file name
64 questions asked by mouse commands. */
65 int use_file_dialog;
66
67 extern int minibuffer_auto_raise;
68 extern Lisp_Object minibuf_window;
69 extern Lisp_Object Vlocale_coding_system;
70 extern int load_in_progress;
71
72 Lisp_Object Qstring_lessp, Qprovide, Qrequire;
73 Lisp_Object Qyes_or_no_p_history;
74 Lisp_Object Qcursor_in_echo_area;
75 Lisp_Object Qwidget_type;
76 Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
77
78 extern Lisp_Object Qinput_method_function;
79
80 static int internal_equal P_ ((Lisp_Object , Lisp_Object, int, int));
81
82 extern long get_random ();
83 extern void seed_random P_ ((long));
84
85 #ifndef HAVE_UNISTD_H
86 extern long time ();
87 #endif
88 \f
89 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
90 doc: /* Return the argument unchanged. */)
91 (arg)
92 Lisp_Object arg;
93 {
94 return arg;
95 }
96
97 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
98 doc: /* Return a pseudo-random number.
99 All integers representable in Lisp are equally likely.
100 On most systems, this is 29 bits' worth.
101 With positive integer argument N, return random number in interval [0,N).
102 With argument t, set the random number seed from the current time and pid. */)
103 (n)
104 Lisp_Object n;
105 {
106 EMACS_INT val;
107 Lisp_Object lispy_val;
108 unsigned long denominator;
109
110 if (EQ (n, Qt))
111 seed_random (getpid () + time (NULL));
112 if (NATNUMP (n) && XFASTINT (n) != 0)
113 {
114 /* Try to take our random number from the higher bits of VAL,
115 not the lower, since (says Gentzel) the low bits of `random'
116 are less random than the higher ones. We do this by using the
117 quotient rather than the remainder. At the high end of the RNG
118 it's possible to get a quotient larger than n; discarding
119 these values eliminates the bias that would otherwise appear
120 when using a large n. */
121 denominator = ((unsigned long)1 << VALBITS) / XFASTINT (n);
122 do
123 val = get_random () / denominator;
124 while (val >= XFASTINT (n));
125 }
126 else
127 val = get_random ();
128 XSETINT (lispy_val, val);
129 return lispy_val;
130 }
131 \f
132 /* Random data-structure functions */
133
134 DEFUN ("length", Flength, Slength, 1, 1, 0,
135 doc: /* Return the length of vector, list or string SEQUENCE.
136 A byte-code function object is also allowed.
137 If the string contains multibyte characters, this is not necessarily
138 the number of bytes in the string; it is the number of characters.
139 To get the number of bytes, use `string-bytes'. */)
140 (sequence)
141 register Lisp_Object sequence;
142 {
143 register Lisp_Object val;
144 register int i;
145
146 retry:
147 if (STRINGP (sequence))
148 XSETFASTINT (val, SCHARS (sequence));
149 else if (VECTORP (sequence))
150 XSETFASTINT (val, XVECTOR (sequence)->size);
151 else if (SUB_CHAR_TABLE_P (sequence))
152 XSETFASTINT (val, SUB_CHAR_TABLE_ORDINARY_SLOTS);
153 else if (CHAR_TABLE_P (sequence))
154 XSETFASTINT (val, MAX_CHAR);
155 else if (BOOL_VECTOR_P (sequence))
156 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
157 else if (COMPILEDP (sequence))
158 XSETFASTINT (val, XVECTOR (sequence)->size & PSEUDOVECTOR_SIZE_MASK);
159 else if (CONSP (sequence))
160 {
161 i = 0;
162 while (CONSP (sequence))
163 {
164 sequence = XCDR (sequence);
165 ++i;
166
167 if (!CONSP (sequence))
168 break;
169
170 sequence = XCDR (sequence);
171 ++i;
172 QUIT;
173 }
174
175 if (!NILP (sequence))
176 wrong_type_argument (Qlistp, sequence);
177
178 val = make_number (i);
179 }
180 else if (NILP (sequence))
181 XSETFASTINT (val, 0);
182 else
183 {
184 sequence = wrong_type_argument (Qsequencep, sequence);
185 goto retry;
186 }
187 return val;
188 }
189
190 /* This does not check for quits. That is safe since it must terminate. */
191
192 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
193 doc: /* Return the length of a list, but avoid error or infinite loop.
194 This function never gets an error. If LIST is not really a list,
195 it returns 0. If LIST is circular, it returns a finite value
196 which is at least the number of distinct elements. */)
197 (list)
198 Lisp_Object list;
199 {
200 Lisp_Object tail, halftail, length;
201 int len = 0;
202
203 /* halftail is used to detect circular lists. */
204 halftail = list;
205 for (tail = list; CONSP (tail); tail = XCDR (tail))
206 {
207 if (EQ (tail, halftail) && len != 0)
208 break;
209 len++;
210 if ((len & 1) == 0)
211 halftail = XCDR (halftail);
212 }
213
214 XSETINT (length, len);
215 return length;
216 }
217
218 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
219 doc: /* Return the number of bytes in STRING.
220 If STRING is a multibyte string, this is greater than the length of STRING. */)
221 (string)
222 Lisp_Object string;
223 {
224 CHECK_STRING (string);
225 return make_number (SBYTES (string));
226 }
227
228 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
229 doc: /* Return t if two strings have identical contents.
230 Case is significant, but text properties are ignored.
231 Symbols are also allowed; their print names are used instead. */)
232 (s1, s2)
233 register Lisp_Object s1, s2;
234 {
235 if (SYMBOLP (s1))
236 s1 = SYMBOL_NAME (s1);
237 if (SYMBOLP (s2))
238 s2 = SYMBOL_NAME (s2);
239 CHECK_STRING (s1);
240 CHECK_STRING (s2);
241
242 if (SCHARS (s1) != SCHARS (s2)
243 || SBYTES (s1) != SBYTES (s2)
244 || bcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
245 return Qnil;
246 return Qt;
247 }
248
249 DEFUN ("compare-strings", Fcompare_strings,
250 Scompare_strings, 6, 7, 0,
251 doc: /* Compare the contents of two strings, converting to multibyte if needed.
252 In string STR1, skip the first START1 characters and stop at END1.
253 In string STR2, skip the first START2 characters and stop at END2.
254 END1 and END2 default to the full lengths of the respective strings.
255
256 Case is significant in this comparison if IGNORE-CASE is nil.
257 Unibyte strings are converted to multibyte for comparison.
258
259 The value is t if the strings (or specified portions) match.
260 If string STR1 is less, the value is a negative number N;
261 - 1 - N is the number of characters that match at the beginning.
262 If string STR1 is greater, the value is a positive number N;
263 N - 1 is the number of characters that match at the beginning. */)
264 (str1, start1, end1, str2, start2, end2, ignore_case)
265 Lisp_Object str1, start1, end1, start2, str2, end2, ignore_case;
266 {
267 register int end1_char, end2_char;
268 register int i1, i1_byte, i2, i2_byte;
269
270 CHECK_STRING (str1);
271 CHECK_STRING (str2);
272 if (NILP (start1))
273 start1 = make_number (0);
274 if (NILP (start2))
275 start2 = make_number (0);
276 CHECK_NATNUM (start1);
277 CHECK_NATNUM (start2);
278 if (! NILP (end1))
279 CHECK_NATNUM (end1);
280 if (! NILP (end2))
281 CHECK_NATNUM (end2);
282
283 i1 = XINT (start1);
284 i2 = XINT (start2);
285
286 i1_byte = string_char_to_byte (str1, i1);
287 i2_byte = string_char_to_byte (str2, i2);
288
289 end1_char = SCHARS (str1);
290 if (! NILP (end1) && end1_char > XINT (end1))
291 end1_char = XINT (end1);
292
293 end2_char = SCHARS (str2);
294 if (! NILP (end2) && end2_char > XINT (end2))
295 end2_char = XINT (end2);
296
297 while (i1 < end1_char && i2 < end2_char)
298 {
299 /* When we find a mismatch, we must compare the
300 characters, not just the bytes. */
301 int c1, c2;
302
303 if (STRING_MULTIBYTE (str1))
304 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
305 else
306 {
307 c1 = SREF (str1, i1++);
308 c1 = unibyte_char_to_multibyte (c1);
309 }
310
311 if (STRING_MULTIBYTE (str2))
312 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
313 else
314 {
315 c2 = SREF (str2, i2++);
316 c2 = unibyte_char_to_multibyte (c2);
317 }
318
319 if (c1 == c2)
320 continue;
321
322 if (! NILP (ignore_case))
323 {
324 Lisp_Object tem;
325
326 tem = Fupcase (make_number (c1));
327 c1 = XINT (tem);
328 tem = Fupcase (make_number (c2));
329 c2 = XINT (tem);
330 }
331
332 if (c1 == c2)
333 continue;
334
335 /* Note that I1 has already been incremented
336 past the character that we are comparing;
337 hence we don't add or subtract 1 here. */
338 if (c1 < c2)
339 return make_number (- i1 + XINT (start1));
340 else
341 return make_number (i1 - XINT (start1));
342 }
343
344 if (i1 < end1_char)
345 return make_number (i1 - XINT (start1) + 1);
346 if (i2 < end2_char)
347 return make_number (- i1 + XINT (start1) - 1);
348
349 return Qt;
350 }
351
352 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
353 doc: /* Return t if first arg string is less than second in lexicographic order.
354 Case is significant.
355 Symbols are also allowed; their print names are used instead. */)
356 (s1, s2)
357 register Lisp_Object s1, s2;
358 {
359 register int end;
360 register int i1, i1_byte, i2, i2_byte;
361
362 if (SYMBOLP (s1))
363 s1 = SYMBOL_NAME (s1);
364 if (SYMBOLP (s2))
365 s2 = SYMBOL_NAME (s2);
366 CHECK_STRING (s1);
367 CHECK_STRING (s2);
368
369 i1 = i1_byte = i2 = i2_byte = 0;
370
371 end = SCHARS (s1);
372 if (end > SCHARS (s2))
373 end = SCHARS (s2);
374
375 while (i1 < end)
376 {
377 /* When we find a mismatch, we must compare the
378 characters, not just the bytes. */
379 int c1, c2;
380
381 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
382 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
383
384 if (c1 != c2)
385 return c1 < c2 ? Qt : Qnil;
386 }
387 return i1 < SCHARS (s2) ? Qt : Qnil;
388 }
389 \f
390 static Lisp_Object concat ();
391
392 /* ARGSUSED */
393 Lisp_Object
394 concat2 (s1, s2)
395 Lisp_Object s1, s2;
396 {
397 #ifdef NO_ARG_ARRAY
398 Lisp_Object args[2];
399 args[0] = s1;
400 args[1] = s2;
401 return concat (2, args, Lisp_String, 0);
402 #else
403 return concat (2, &s1, Lisp_String, 0);
404 #endif /* NO_ARG_ARRAY */
405 }
406
407 /* ARGSUSED */
408 Lisp_Object
409 concat3 (s1, s2, s3)
410 Lisp_Object s1, s2, s3;
411 {
412 #ifdef NO_ARG_ARRAY
413 Lisp_Object args[3];
414 args[0] = s1;
415 args[1] = s2;
416 args[2] = s3;
417 return concat (3, args, Lisp_String, 0);
418 #else
419 return concat (3, &s1, Lisp_String, 0);
420 #endif /* NO_ARG_ARRAY */
421 }
422
423 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
424 doc: /* Concatenate all the arguments and make the result a list.
425 The result is a list whose elements are the elements of all the arguments.
426 Each argument may be a list, vector or string.
427 The last argument is not copied, just used as the tail of the new list.
428 usage: (append &rest SEQUENCES) */)
429 (nargs, args)
430 int nargs;
431 Lisp_Object *args;
432 {
433 return concat (nargs, args, Lisp_Cons, 1);
434 }
435
436 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
437 doc: /* Concatenate all the arguments and make the result a string.
438 The result is a string whose elements are the elements of all the arguments.
439 Each argument may be a string or a list or vector of characters (integers).
440 usage: (concat &rest SEQUENCES) */)
441 (nargs, args)
442 int nargs;
443 Lisp_Object *args;
444 {
445 return concat (nargs, args, Lisp_String, 0);
446 }
447
448 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
449 doc: /* Concatenate all the arguments and make the result a vector.
450 The result is a vector whose elements are the elements of all the arguments.
451 Each argument may be a list, vector or string.
452 usage: (vconcat &rest SEQUENCES) */)
453 (nargs, args)
454 int nargs;
455 Lisp_Object *args;
456 {
457 return concat (nargs, args, Lisp_Vectorlike, 0);
458 }
459
460 /* Return a copy of a sub char table ARG. The elements except for a
461 nested sub char table are not copied. */
462 static Lisp_Object
463 copy_sub_char_table (arg)
464 Lisp_Object arg;
465 {
466 Lisp_Object copy = make_sub_char_table (Qnil);
467 int i;
468
469 XCHAR_TABLE (copy)->defalt = XCHAR_TABLE (arg)->defalt;
470 /* Copy all the contents. */
471 bcopy (XCHAR_TABLE (arg)->contents, XCHAR_TABLE (copy)->contents,
472 SUB_CHAR_TABLE_ORDINARY_SLOTS * sizeof (Lisp_Object));
473 /* Recursively copy any sub char-tables in the ordinary slots. */
474 for (i = 32; i < SUB_CHAR_TABLE_ORDINARY_SLOTS; i++)
475 if (SUB_CHAR_TABLE_P (XCHAR_TABLE (arg)->contents[i]))
476 XCHAR_TABLE (copy)->contents[i]
477 = copy_sub_char_table (XCHAR_TABLE (copy)->contents[i]);
478
479 return copy;
480 }
481
482
483 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
484 doc: /* Return a copy of a list, vector, string or char-table.
485 The elements of a list or vector are not copied; they are shared
486 with the original. */)
487 (arg)
488 Lisp_Object arg;
489 {
490 if (NILP (arg)) return arg;
491
492 if (CHAR_TABLE_P (arg))
493 {
494 int i;
495 Lisp_Object copy;
496
497 copy = Fmake_char_table (XCHAR_TABLE (arg)->purpose, Qnil);
498 /* Copy all the slots, including the extra ones. */
499 bcopy (XVECTOR (arg)->contents, XVECTOR (copy)->contents,
500 ((XCHAR_TABLE (arg)->size & PSEUDOVECTOR_SIZE_MASK)
501 * sizeof (Lisp_Object)));
502
503 /* Recursively copy any sub char tables in the ordinary slots
504 for multibyte characters. */
505 for (i = CHAR_TABLE_SINGLE_BYTE_SLOTS;
506 i < CHAR_TABLE_ORDINARY_SLOTS; i++)
507 if (SUB_CHAR_TABLE_P (XCHAR_TABLE (arg)->contents[i]))
508 XCHAR_TABLE (copy)->contents[i]
509 = copy_sub_char_table (XCHAR_TABLE (copy)->contents[i]);
510
511 return copy;
512 }
513
514 if (BOOL_VECTOR_P (arg))
515 {
516 Lisp_Object val;
517 int size_in_chars
518 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
519 / BOOL_VECTOR_BITS_PER_CHAR);
520
521 val = Fmake_bool_vector (Flength (arg), Qnil);
522 bcopy (XBOOL_VECTOR (arg)->data, XBOOL_VECTOR (val)->data,
523 size_in_chars);
524 return val;
525 }
526
527 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
528 arg = wrong_type_argument (Qsequencep, arg);
529 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
530 }
531
532 /* This structure holds information of an argument of `concat' that is
533 a string and has text properties to be copied. */
534 struct textprop_rec
535 {
536 int argnum; /* refer to ARGS (arguments of `concat') */
537 int from; /* refer to ARGS[argnum] (argument string) */
538 int to; /* refer to VAL (the target string) */
539 };
540
541 static Lisp_Object
542 concat (nargs, args, target_type, last_special)
543 int nargs;
544 Lisp_Object *args;
545 enum Lisp_Type target_type;
546 int last_special;
547 {
548 Lisp_Object val;
549 register Lisp_Object tail;
550 register Lisp_Object this;
551 int toindex;
552 int toindex_byte = 0;
553 register int result_len;
554 register int result_len_byte;
555 register int argnum;
556 Lisp_Object last_tail;
557 Lisp_Object prev;
558 int some_multibyte;
559 /* When we make a multibyte string, we can't copy text properties
560 while concatinating each string because the length of resulting
561 string can't be decided until we finish the whole concatination.
562 So, we record strings that have text properties to be copied
563 here, and copy the text properties after the concatination. */
564 struct textprop_rec *textprops = NULL;
565 /* Number of elments in textprops. */
566 int num_textprops = 0;
567 USE_SAFE_ALLOCA;
568
569 tail = Qnil;
570
571 /* In append, the last arg isn't treated like the others */
572 if (last_special && nargs > 0)
573 {
574 nargs--;
575 last_tail = args[nargs];
576 }
577 else
578 last_tail = Qnil;
579
580 /* Canonicalize each argument. */
581 for (argnum = 0; argnum < nargs; argnum++)
582 {
583 this = args[argnum];
584 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
585 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
586 {
587 args[argnum] = wrong_type_argument (Qsequencep, this);
588 }
589 }
590
591 /* Compute total length in chars of arguments in RESULT_LEN.
592 If desired output is a string, also compute length in bytes
593 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
594 whether the result should be a multibyte string. */
595 result_len_byte = 0;
596 result_len = 0;
597 some_multibyte = 0;
598 for (argnum = 0; argnum < nargs; argnum++)
599 {
600 int len;
601 this = args[argnum];
602 len = XFASTINT (Flength (this));
603 if (target_type == Lisp_String)
604 {
605 /* We must count the number of bytes needed in the string
606 as well as the number of characters. */
607 int i;
608 Lisp_Object ch;
609 int this_len_byte;
610
611 if (VECTORP (this))
612 for (i = 0; i < len; i++)
613 {
614 ch = XVECTOR (this)->contents[i];
615 if (! INTEGERP (ch))
616 wrong_type_argument (Qintegerp, ch);
617 this_len_byte = CHAR_BYTES (XINT (ch));
618 result_len_byte += this_len_byte;
619 if (!SINGLE_BYTE_CHAR_P (XINT (ch)))
620 some_multibyte = 1;
621 }
622 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
623 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
624 else if (CONSP (this))
625 for (; CONSP (this); this = XCDR (this))
626 {
627 ch = XCAR (this);
628 if (! INTEGERP (ch))
629 wrong_type_argument (Qintegerp, ch);
630 this_len_byte = CHAR_BYTES (XINT (ch));
631 result_len_byte += this_len_byte;
632 if (!SINGLE_BYTE_CHAR_P (XINT (ch)))
633 some_multibyte = 1;
634 }
635 else if (STRINGP (this))
636 {
637 if (STRING_MULTIBYTE (this))
638 {
639 some_multibyte = 1;
640 result_len_byte += SBYTES (this);
641 }
642 else
643 result_len_byte += count_size_as_multibyte (SDATA (this),
644 SCHARS (this));
645 }
646 }
647
648 result_len += len;
649 }
650
651 if (! some_multibyte)
652 result_len_byte = result_len;
653
654 /* Create the output object. */
655 if (target_type == Lisp_Cons)
656 val = Fmake_list (make_number (result_len), Qnil);
657 else if (target_type == Lisp_Vectorlike)
658 val = Fmake_vector (make_number (result_len), Qnil);
659 else if (some_multibyte)
660 val = make_uninit_multibyte_string (result_len, result_len_byte);
661 else
662 val = make_uninit_string (result_len);
663
664 /* In `append', if all but last arg are nil, return last arg. */
665 if (target_type == Lisp_Cons && EQ (val, Qnil))
666 return last_tail;
667
668 /* Copy the contents of the args into the result. */
669 if (CONSP (val))
670 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
671 else
672 toindex = 0, toindex_byte = 0;
673
674 prev = Qnil;
675 if (STRINGP (val))
676 SAFE_ALLOCA (textprops, struct textprop_rec *, sizeof (struct textprop_rec) * nargs);
677
678 for (argnum = 0; argnum < nargs; argnum++)
679 {
680 Lisp_Object thislen;
681 int thisleni = 0;
682 register unsigned int thisindex = 0;
683 register unsigned int thisindex_byte = 0;
684
685 this = args[argnum];
686 if (!CONSP (this))
687 thislen = Flength (this), thisleni = XINT (thislen);
688
689 /* Between strings of the same kind, copy fast. */
690 if (STRINGP (this) && STRINGP (val)
691 && STRING_MULTIBYTE (this) == some_multibyte)
692 {
693 int thislen_byte = SBYTES (this);
694
695 bcopy (SDATA (this), SDATA (val) + toindex_byte,
696 SBYTES (this));
697 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
698 {
699 textprops[num_textprops].argnum = argnum;
700 textprops[num_textprops].from = 0;
701 textprops[num_textprops++].to = toindex;
702 }
703 toindex_byte += thislen_byte;
704 toindex += thisleni;
705 STRING_SET_CHARS (val, SCHARS (val));
706 }
707 /* Copy a single-byte string to a multibyte string. */
708 else if (STRINGP (this) && STRINGP (val))
709 {
710 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
711 {
712 textprops[num_textprops].argnum = argnum;
713 textprops[num_textprops].from = 0;
714 textprops[num_textprops++].to = toindex;
715 }
716 toindex_byte += copy_text (SDATA (this),
717 SDATA (val) + toindex_byte,
718 SCHARS (this), 0, 1);
719 toindex += thisleni;
720 }
721 else
722 /* Copy element by element. */
723 while (1)
724 {
725 register Lisp_Object elt;
726
727 /* Fetch next element of `this' arg into `elt', or break if
728 `this' is exhausted. */
729 if (NILP (this)) break;
730 if (CONSP (this))
731 elt = XCAR (this), this = XCDR (this);
732 else if (thisindex >= thisleni)
733 break;
734 else if (STRINGP (this))
735 {
736 int c;
737 if (STRING_MULTIBYTE (this))
738 {
739 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
740 thisindex,
741 thisindex_byte);
742 XSETFASTINT (elt, c);
743 }
744 else
745 {
746 XSETFASTINT (elt, SREF (this, thisindex)); thisindex++;
747 if (some_multibyte
748 && (XINT (elt) >= 0240
749 || (XINT (elt) >= 0200
750 && ! NILP (Vnonascii_translation_table)))
751 && XINT (elt) < 0400)
752 {
753 c = unibyte_char_to_multibyte (XINT (elt));
754 XSETINT (elt, c);
755 }
756 }
757 }
758 else if (BOOL_VECTOR_P (this))
759 {
760 int byte;
761 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
762 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
763 elt = Qt;
764 else
765 elt = Qnil;
766 thisindex++;
767 }
768 else
769 elt = XVECTOR (this)->contents[thisindex++];
770
771 /* Store this element into the result. */
772 if (toindex < 0)
773 {
774 XSETCAR (tail, elt);
775 prev = tail;
776 tail = XCDR (tail);
777 }
778 else if (VECTORP (val))
779 XVECTOR (val)->contents[toindex++] = elt;
780 else
781 {
782 CHECK_NUMBER (elt);
783 if (SINGLE_BYTE_CHAR_P (XINT (elt)))
784 {
785 if (some_multibyte)
786 toindex_byte
787 += CHAR_STRING (XINT (elt),
788 SDATA (val) + toindex_byte);
789 else
790 SSET (val, toindex_byte++, XINT (elt));
791 toindex++;
792 }
793 else
794 /* If we have any multibyte characters,
795 we already decided to make a multibyte string. */
796 {
797 int c = XINT (elt);
798 /* P exists as a variable
799 to avoid a bug on the Masscomp C compiler. */
800 unsigned char *p = SDATA (val) + toindex_byte;
801
802 toindex_byte += CHAR_STRING (c, p);
803 toindex++;
804 }
805 }
806 }
807 }
808 if (!NILP (prev))
809 XSETCDR (prev, last_tail);
810
811 if (num_textprops > 0)
812 {
813 Lisp_Object props;
814 int last_to_end = -1;
815
816 for (argnum = 0; argnum < num_textprops; argnum++)
817 {
818 this = args[textprops[argnum].argnum];
819 props = text_property_list (this,
820 make_number (0),
821 make_number (SCHARS (this)),
822 Qnil);
823 /* If successive arguments have properites, be sure that the
824 value of `composition' property be the copy. */
825 if (last_to_end == textprops[argnum].to)
826 make_composition_value_copy (props);
827 add_text_properties_from_list (val, props,
828 make_number (textprops[argnum].to));
829 last_to_end = textprops[argnum].to + SCHARS (this);
830 }
831 }
832
833 SAFE_FREE ();
834 return val;
835 }
836 \f
837 static Lisp_Object string_char_byte_cache_string;
838 static int string_char_byte_cache_charpos;
839 static int string_char_byte_cache_bytepos;
840
841 void
842 clear_string_char_byte_cache ()
843 {
844 string_char_byte_cache_string = Qnil;
845 }
846
847 /* Return the character index corresponding to CHAR_INDEX in STRING. */
848
849 int
850 string_char_to_byte (string, char_index)
851 Lisp_Object string;
852 int char_index;
853 {
854 int i, i_byte;
855 int best_below, best_below_byte;
856 int best_above, best_above_byte;
857
858 best_below = best_below_byte = 0;
859 best_above = SCHARS (string);
860 best_above_byte = SBYTES (string);
861 if (best_above == best_above_byte)
862 return char_index;
863
864 if (EQ (string, string_char_byte_cache_string))
865 {
866 if (string_char_byte_cache_charpos < char_index)
867 {
868 best_below = string_char_byte_cache_charpos;
869 best_below_byte = string_char_byte_cache_bytepos;
870 }
871 else
872 {
873 best_above = string_char_byte_cache_charpos;
874 best_above_byte = string_char_byte_cache_bytepos;
875 }
876 }
877
878 if (char_index - best_below < best_above - char_index)
879 {
880 while (best_below < char_index)
881 {
882 int c;
883 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, string,
884 best_below, best_below_byte);
885 }
886 i = best_below;
887 i_byte = best_below_byte;
888 }
889 else
890 {
891 while (best_above > char_index)
892 {
893 unsigned char *pend = SDATA (string) + best_above_byte;
894 unsigned char *pbeg = pend - best_above_byte;
895 unsigned char *p = pend - 1;
896 int bytes;
897
898 while (p > pbeg && !CHAR_HEAD_P (*p)) p--;
899 PARSE_MULTIBYTE_SEQ (p, pend - p, bytes);
900 if (bytes == pend - p)
901 best_above_byte -= bytes;
902 else if (bytes > pend - p)
903 best_above_byte -= (pend - p);
904 else
905 best_above_byte--;
906 best_above--;
907 }
908 i = best_above;
909 i_byte = best_above_byte;
910 }
911
912 string_char_byte_cache_bytepos = i_byte;
913 string_char_byte_cache_charpos = i;
914 string_char_byte_cache_string = string;
915
916 return i_byte;
917 }
918 \f
919 /* Return the character index corresponding to BYTE_INDEX in STRING. */
920
921 int
922 string_byte_to_char (string, byte_index)
923 Lisp_Object string;
924 int byte_index;
925 {
926 int i, i_byte;
927 int best_below, best_below_byte;
928 int best_above, best_above_byte;
929
930 best_below = best_below_byte = 0;
931 best_above = SCHARS (string);
932 best_above_byte = SBYTES (string);
933 if (best_above == best_above_byte)
934 return byte_index;
935
936 if (EQ (string, string_char_byte_cache_string))
937 {
938 if (string_char_byte_cache_bytepos < byte_index)
939 {
940 best_below = string_char_byte_cache_charpos;
941 best_below_byte = string_char_byte_cache_bytepos;
942 }
943 else
944 {
945 best_above = string_char_byte_cache_charpos;
946 best_above_byte = string_char_byte_cache_bytepos;
947 }
948 }
949
950 if (byte_index - best_below_byte < best_above_byte - byte_index)
951 {
952 while (best_below_byte < byte_index)
953 {
954 int c;
955 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, string,
956 best_below, best_below_byte);
957 }
958 i = best_below;
959 i_byte = best_below_byte;
960 }
961 else
962 {
963 while (best_above_byte > byte_index)
964 {
965 unsigned char *pend = SDATA (string) + best_above_byte;
966 unsigned char *pbeg = pend - best_above_byte;
967 unsigned char *p = pend - 1;
968 int bytes;
969
970 while (p > pbeg && !CHAR_HEAD_P (*p)) p--;
971 PARSE_MULTIBYTE_SEQ (p, pend - p, bytes);
972 if (bytes == pend - p)
973 best_above_byte -= bytes;
974 else if (bytes > pend - p)
975 best_above_byte -= (pend - p);
976 else
977 best_above_byte--;
978 best_above--;
979 }
980 i = best_above;
981 i_byte = best_above_byte;
982 }
983
984 string_char_byte_cache_bytepos = i_byte;
985 string_char_byte_cache_charpos = i;
986 string_char_byte_cache_string = string;
987
988 return i;
989 }
990 \f
991 /* Convert STRING to a multibyte string.
992 Single-byte characters 0240 through 0377 are converted
993 by adding nonascii_insert_offset to each. */
994
995 Lisp_Object
996 string_make_multibyte (string)
997 Lisp_Object string;
998 {
999 unsigned char *buf;
1000 int nbytes;
1001 Lisp_Object ret;
1002 USE_SAFE_ALLOCA;
1003
1004 if (STRING_MULTIBYTE (string))
1005 return string;
1006
1007 nbytes = count_size_as_multibyte (SDATA (string),
1008 SCHARS (string));
1009 /* If all the chars are ASCII, they won't need any more bytes
1010 once converted. In that case, we can return STRING itself. */
1011 if (nbytes == SBYTES (string))
1012 return string;
1013
1014 SAFE_ALLOCA (buf, unsigned char *, nbytes);
1015 copy_text (SDATA (string), buf, SBYTES (string),
1016 0, 1);
1017
1018 ret = make_multibyte_string (buf, SCHARS (string), nbytes);
1019 SAFE_FREE ();
1020
1021 return ret;
1022 }
1023
1024
1025 /* Convert STRING to a multibyte string without changing each
1026 character codes. Thus, characters 0200 trough 0237 are converted
1027 to eight-bit-control characters, and characters 0240 through 0377
1028 are converted eight-bit-graphic characters. */
1029
1030 Lisp_Object
1031 string_to_multibyte (string)
1032 Lisp_Object string;
1033 {
1034 unsigned char *buf;
1035 int nbytes;
1036 Lisp_Object ret;
1037 USE_SAFE_ALLOCA;
1038
1039 if (STRING_MULTIBYTE (string))
1040 return string;
1041
1042 nbytes = parse_str_to_multibyte (SDATA (string), SBYTES (string));
1043 /* If all the chars are ASCII or eight-bit-graphic, they won't need
1044 any more bytes once converted. */
1045 if (nbytes == SBYTES (string))
1046 return make_multibyte_string (SDATA (string), nbytes, nbytes);
1047
1048 SAFE_ALLOCA (buf, unsigned char *, nbytes);
1049 bcopy (SDATA (string), buf, SBYTES (string));
1050 str_to_multibyte (buf, nbytes, SBYTES (string));
1051
1052 ret = make_multibyte_string (buf, SCHARS (string), nbytes);
1053 SAFE_FREE ();
1054
1055 return ret;
1056 }
1057
1058
1059 /* Convert STRING to a single-byte string. */
1060
1061 Lisp_Object
1062 string_make_unibyte (string)
1063 Lisp_Object string;
1064 {
1065 int nchars;
1066 unsigned char *buf;
1067 Lisp_Object ret;
1068 USE_SAFE_ALLOCA;
1069
1070 if (! STRING_MULTIBYTE (string))
1071 return string;
1072
1073 nchars = SCHARS (string);
1074
1075 SAFE_ALLOCA (buf, unsigned char *, nchars);
1076 copy_text (SDATA (string), buf, SBYTES (string),
1077 1, 0);
1078
1079 ret = make_unibyte_string (buf, nchars);
1080 SAFE_FREE ();
1081
1082 return ret;
1083 }
1084
1085 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
1086 1, 1, 0,
1087 doc: /* Return the multibyte equivalent of STRING.
1088 If STRING is unibyte and contains non-ASCII characters, the function
1089 `unibyte-char-to-multibyte' is used to convert each unibyte character
1090 to a multibyte character. In this case, the returned string is a
1091 newly created string with no text properties. If STRING is multibyte
1092 or entirely ASCII, it is returned unchanged. In particular, when
1093 STRING is unibyte and entirely ASCII, the returned string is unibyte.
1094 \(When the characters are all ASCII, Emacs primitives will treat the
1095 string the same way whether it is unibyte or multibyte.) */)
1096 (string)
1097 Lisp_Object string;
1098 {
1099 CHECK_STRING (string);
1100
1101 return string_make_multibyte (string);
1102 }
1103
1104 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
1105 1, 1, 0,
1106 doc: /* Return the unibyte equivalent of STRING.
1107 Multibyte character codes are converted to unibyte according to
1108 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
1109 If the lookup in the translation table fails, this function takes just
1110 the low 8 bits of each character. */)
1111 (string)
1112 Lisp_Object string;
1113 {
1114 CHECK_STRING (string);
1115
1116 return string_make_unibyte (string);
1117 }
1118
1119 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
1120 1, 1, 0,
1121 doc: /* Return a unibyte string with the same individual bytes as STRING.
1122 If STRING is unibyte, the result is STRING itself.
1123 Otherwise it is a newly created string, with no text properties.
1124 If STRING is multibyte and contains a character of charset
1125 `eight-bit-control' or `eight-bit-graphic', it is converted to the
1126 corresponding single byte. */)
1127 (string)
1128 Lisp_Object string;
1129 {
1130 CHECK_STRING (string);
1131
1132 if (STRING_MULTIBYTE (string))
1133 {
1134 int bytes = SBYTES (string);
1135 unsigned char *str = (unsigned char *) xmalloc (bytes);
1136
1137 bcopy (SDATA (string), str, bytes);
1138 bytes = str_as_unibyte (str, bytes);
1139 string = make_unibyte_string (str, bytes);
1140 xfree (str);
1141 }
1142 return string;
1143 }
1144
1145 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1146 1, 1, 0,
1147 doc: /* Return a multibyte string with the same individual bytes as STRING.
1148 If STRING is multibyte, the result is STRING itself.
1149 Otherwise it is a newly created string, with no text properties.
1150 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1151 part of a multibyte form), it is converted to the corresponding
1152 multibyte character of charset `eight-bit-control' or `eight-bit-graphic'.
1153 Beware, this often doesn't really do what you think it does.
1154 It is similar to (decode-coding-string STRING 'emacs-mule-unix).
1155 If you're not sure, whether to use `string-as-multibyte' or
1156 `string-to-multibyte', use `string-to-multibyte'. Beware:
1157 (aref (string-as-multibyte "\\201") 0) -> 129 (aka ?\\201)
1158 (aref (string-as-multibyte "\\300") 0) -> 192 (aka ?\\300)
1159 (aref (string-as-multibyte "\\300\\201") 0) -> 192 (aka ?\\300)
1160 (aref (string-as-multibyte "\\300\\201") 1) -> 129 (aka ?\\201)
1161 but
1162 (aref (string-as-multibyte "\\201\\300") 0) -> 2240
1163 (aref (string-as-multibyte "\\201\\300") 1) -> <error> */)
1164 (string)
1165 Lisp_Object string;
1166 {
1167 CHECK_STRING (string);
1168
1169 if (! STRING_MULTIBYTE (string))
1170 {
1171 Lisp_Object new_string;
1172 int nchars, nbytes;
1173
1174 parse_str_as_multibyte (SDATA (string),
1175 SBYTES (string),
1176 &nchars, &nbytes);
1177 new_string = make_uninit_multibyte_string (nchars, nbytes);
1178 bcopy (SDATA (string), SDATA (new_string),
1179 SBYTES (string));
1180 if (nbytes != SBYTES (string))
1181 str_as_multibyte (SDATA (new_string), nbytes,
1182 SBYTES (string), NULL);
1183 string = new_string;
1184 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1185 }
1186 return string;
1187 }
1188
1189 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1190 1, 1, 0,
1191 doc: /* Return a multibyte string with the same individual chars as STRING.
1192 If STRING is multibyte, the result is STRING itself.
1193 Otherwise it is a newly created string, with no text properties.
1194 Characters 0200 through 0237 are converted to eight-bit-control
1195 characters of the same character code. Characters 0240 through 0377
1196 are converted to eight-bit-graphic characters of the same character
1197 codes.
1198 This is similar to (decode-coding-string STRING 'binary) */)
1199 (string)
1200 Lisp_Object string;
1201 {
1202 CHECK_STRING (string);
1203
1204 return string_to_multibyte (string);
1205 }
1206
1207 \f
1208 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1209 doc: /* Return a copy of ALIST.
1210 This is an alist which represents the same mapping from objects to objects,
1211 but does not share the alist structure with ALIST.
1212 The objects mapped (cars and cdrs of elements of the alist)
1213 are shared, however.
1214 Elements of ALIST that are not conses are also shared. */)
1215 (alist)
1216 Lisp_Object alist;
1217 {
1218 register Lisp_Object tem;
1219
1220 CHECK_LIST (alist);
1221 if (NILP (alist))
1222 return alist;
1223 alist = concat (1, &alist, Lisp_Cons, 0);
1224 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1225 {
1226 register Lisp_Object car;
1227 car = XCAR (tem);
1228
1229 if (CONSP (car))
1230 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1231 }
1232 return alist;
1233 }
1234
1235 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1236 doc: /* Return a substring of STRING, starting at index FROM and ending before TO.
1237 TO may be nil or omitted; then the substring runs to the end of STRING.
1238 FROM and TO start at 0. If either is negative, it counts from the end.
1239
1240 This function allows vectors as well as strings. */)
1241 (string, from, to)
1242 Lisp_Object string;
1243 register Lisp_Object from, to;
1244 {
1245 Lisp_Object res;
1246 int size;
1247 int size_byte = 0;
1248 int from_char, to_char;
1249 int from_byte = 0, to_byte = 0;
1250
1251 if (! (STRINGP (string) || VECTORP (string)))
1252 wrong_type_argument (Qarrayp, string);
1253
1254 CHECK_NUMBER (from);
1255
1256 if (STRINGP (string))
1257 {
1258 size = SCHARS (string);
1259 size_byte = SBYTES (string);
1260 }
1261 else
1262 size = XVECTOR (string)->size;
1263
1264 if (NILP (to))
1265 {
1266 to_char = size;
1267 to_byte = size_byte;
1268 }
1269 else
1270 {
1271 CHECK_NUMBER (to);
1272
1273 to_char = XINT (to);
1274 if (to_char < 0)
1275 to_char += size;
1276
1277 if (STRINGP (string))
1278 to_byte = string_char_to_byte (string, to_char);
1279 }
1280
1281 from_char = XINT (from);
1282 if (from_char < 0)
1283 from_char += size;
1284 if (STRINGP (string))
1285 from_byte = string_char_to_byte (string, from_char);
1286
1287 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1288 args_out_of_range_3 (string, make_number (from_char),
1289 make_number (to_char));
1290
1291 if (STRINGP (string))
1292 {
1293 res = make_specified_string (SDATA (string) + from_byte,
1294 to_char - from_char, to_byte - from_byte,
1295 STRING_MULTIBYTE (string));
1296 copy_text_properties (make_number (from_char), make_number (to_char),
1297 string, make_number (0), res, Qnil);
1298 }
1299 else
1300 res = Fvector (to_char - from_char,
1301 XVECTOR (string)->contents + from_char);
1302
1303 return res;
1304 }
1305
1306
1307 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1308 doc: /* Return a substring of STRING, without text properties.
1309 It starts at index FROM and ending before TO.
1310 TO may be nil or omitted; then the substring runs to the end of STRING.
1311 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1312 If FROM or TO is negative, it counts from the end.
1313
1314 With one argument, just copy STRING without its properties. */)
1315 (string, from, to)
1316 Lisp_Object string;
1317 register Lisp_Object from, to;
1318 {
1319 int size, size_byte;
1320 int from_char, to_char;
1321 int from_byte, to_byte;
1322
1323 CHECK_STRING (string);
1324
1325 size = SCHARS (string);
1326 size_byte = SBYTES (string);
1327
1328 if (NILP (from))
1329 from_char = from_byte = 0;
1330 else
1331 {
1332 CHECK_NUMBER (from);
1333 from_char = XINT (from);
1334 if (from_char < 0)
1335 from_char += size;
1336
1337 from_byte = string_char_to_byte (string, from_char);
1338 }
1339
1340 if (NILP (to))
1341 {
1342 to_char = size;
1343 to_byte = size_byte;
1344 }
1345 else
1346 {
1347 CHECK_NUMBER (to);
1348
1349 to_char = XINT (to);
1350 if (to_char < 0)
1351 to_char += size;
1352
1353 to_byte = string_char_to_byte (string, to_char);
1354 }
1355
1356 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1357 args_out_of_range_3 (string, make_number (from_char),
1358 make_number (to_char));
1359
1360 return make_specified_string (SDATA (string) + from_byte,
1361 to_char - from_char, to_byte - from_byte,
1362 STRING_MULTIBYTE (string));
1363 }
1364
1365 /* Extract a substring of STRING, giving start and end positions
1366 both in characters and in bytes. */
1367
1368 Lisp_Object
1369 substring_both (string, from, from_byte, to, to_byte)
1370 Lisp_Object string;
1371 int from, from_byte, to, to_byte;
1372 {
1373 Lisp_Object res;
1374 int size;
1375 int size_byte;
1376
1377 if (! (STRINGP (string) || VECTORP (string)))
1378 wrong_type_argument (Qarrayp, string);
1379
1380 if (STRINGP (string))
1381 {
1382 size = SCHARS (string);
1383 size_byte = SBYTES (string);
1384 }
1385 else
1386 size = XVECTOR (string)->size;
1387
1388 if (!(0 <= from && from <= to && to <= size))
1389 args_out_of_range_3 (string, make_number (from), make_number (to));
1390
1391 if (STRINGP (string))
1392 {
1393 res = make_specified_string (SDATA (string) + from_byte,
1394 to - from, to_byte - from_byte,
1395 STRING_MULTIBYTE (string));
1396 copy_text_properties (make_number (from), make_number (to),
1397 string, make_number (0), res, Qnil);
1398 }
1399 else
1400 res = Fvector (to - from,
1401 XVECTOR (string)->contents + from);
1402
1403 return res;
1404 }
1405 \f
1406 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1407 doc: /* Take cdr N times on LIST, returns the result. */)
1408 (n, list)
1409 Lisp_Object n;
1410 register Lisp_Object list;
1411 {
1412 register int i, num;
1413 CHECK_NUMBER (n);
1414 num = XINT (n);
1415 for (i = 0; i < num && !NILP (list); i++)
1416 {
1417 QUIT;
1418 if (! CONSP (list))
1419 wrong_type_argument (Qlistp, list);
1420 list = XCDR (list);
1421 }
1422 return list;
1423 }
1424
1425 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1426 doc: /* Return the Nth element of LIST.
1427 N counts from zero. If LIST is not that long, nil is returned. */)
1428 (n, list)
1429 Lisp_Object n, list;
1430 {
1431 return Fcar (Fnthcdr (n, list));
1432 }
1433
1434 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1435 doc: /* Return element of SEQUENCE at index N. */)
1436 (sequence, n)
1437 register Lisp_Object sequence, n;
1438 {
1439 CHECK_NUMBER (n);
1440 while (1)
1441 {
1442 if (CONSP (sequence) || NILP (sequence))
1443 return Fcar (Fnthcdr (n, sequence));
1444 else if (STRINGP (sequence) || VECTORP (sequence)
1445 || BOOL_VECTOR_P (sequence) || CHAR_TABLE_P (sequence))
1446 return Faref (sequence, n);
1447 else
1448 sequence = wrong_type_argument (Qsequencep, sequence);
1449 }
1450 }
1451
1452 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1453 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1454 The value is actually the tail of LIST whose car is ELT. */)
1455 (elt, list)
1456 register Lisp_Object elt;
1457 Lisp_Object list;
1458 {
1459 register Lisp_Object tail;
1460 for (tail = list; !NILP (tail); tail = XCDR (tail))
1461 {
1462 register Lisp_Object tem;
1463 if (! CONSP (tail))
1464 wrong_type_argument (Qlistp, list);
1465 tem = XCAR (tail);
1466 if (! NILP (Fequal (elt, tem)))
1467 return tail;
1468 QUIT;
1469 }
1470 return Qnil;
1471 }
1472
1473 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1474 doc: /* Return non-nil if ELT is an element of LIST.
1475 Comparison done with `eq'. The value is actually the tail of LIST
1476 whose car is ELT. */)
1477 (elt, list)
1478 Lisp_Object elt, list;
1479 {
1480 while (1)
1481 {
1482 if (!CONSP (list) || EQ (XCAR (list), elt))
1483 break;
1484
1485 list = XCDR (list);
1486 if (!CONSP (list) || EQ (XCAR (list), elt))
1487 break;
1488
1489 list = XCDR (list);
1490 if (!CONSP (list) || EQ (XCAR (list), elt))
1491 break;
1492
1493 list = XCDR (list);
1494 QUIT;
1495 }
1496
1497 if (!CONSP (list) && !NILP (list))
1498 list = wrong_type_argument (Qlistp, list);
1499
1500 return list;
1501 }
1502
1503 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1504 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1505 The value is actually the first element of LIST whose car is KEY.
1506 Elements of LIST that are not conses are ignored. */)
1507 (key, list)
1508 Lisp_Object key, list;
1509 {
1510 Lisp_Object result;
1511
1512 while (1)
1513 {
1514 if (!CONSP (list)
1515 || (CONSP (XCAR (list))
1516 && EQ (XCAR (XCAR (list)), key)))
1517 break;
1518
1519 list = XCDR (list);
1520 if (!CONSP (list)
1521 || (CONSP (XCAR (list))
1522 && EQ (XCAR (XCAR (list)), key)))
1523 break;
1524
1525 list = XCDR (list);
1526 if (!CONSP (list)
1527 || (CONSP (XCAR (list))
1528 && EQ (XCAR (XCAR (list)), key)))
1529 break;
1530
1531 list = XCDR (list);
1532 QUIT;
1533 }
1534
1535 if (CONSP (list))
1536 result = XCAR (list);
1537 else if (NILP (list))
1538 result = Qnil;
1539 else
1540 result = wrong_type_argument (Qlistp, list);
1541
1542 return result;
1543 }
1544
1545 /* Like Fassq but never report an error and do not allow quits.
1546 Use only on lists known never to be circular. */
1547
1548 Lisp_Object
1549 assq_no_quit (key, list)
1550 Lisp_Object key, list;
1551 {
1552 while (CONSP (list)
1553 && (!CONSP (XCAR (list))
1554 || !EQ (XCAR (XCAR (list)), key)))
1555 list = XCDR (list);
1556
1557 return CONSP (list) ? XCAR (list) : Qnil;
1558 }
1559
1560 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1561 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1562 The value is actually the first element of LIST whose car equals KEY. */)
1563 (key, list)
1564 Lisp_Object key, list;
1565 {
1566 Lisp_Object result, car;
1567
1568 while (1)
1569 {
1570 if (!CONSP (list)
1571 || (CONSP (XCAR (list))
1572 && (car = XCAR (XCAR (list)),
1573 EQ (car, key) || !NILP (Fequal (car, key)))))
1574 break;
1575
1576 list = XCDR (list);
1577 if (!CONSP (list)
1578 || (CONSP (XCAR (list))
1579 && (car = XCAR (XCAR (list)),
1580 EQ (car, key) || !NILP (Fequal (car, key)))))
1581 break;
1582
1583 list = XCDR (list);
1584 if (!CONSP (list)
1585 || (CONSP (XCAR (list))
1586 && (car = XCAR (XCAR (list)),
1587 EQ (car, key) || !NILP (Fequal (car, key)))))
1588 break;
1589
1590 list = XCDR (list);
1591 QUIT;
1592 }
1593
1594 if (CONSP (list))
1595 result = XCAR (list);
1596 else if (NILP (list))
1597 result = Qnil;
1598 else
1599 result = wrong_type_argument (Qlistp, list);
1600
1601 return result;
1602 }
1603
1604 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1605 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1606 The value is actually the first element of LIST whose cdr is KEY. */)
1607 (key, list)
1608 register Lisp_Object key;
1609 Lisp_Object list;
1610 {
1611 Lisp_Object result;
1612
1613 while (1)
1614 {
1615 if (!CONSP (list)
1616 || (CONSP (XCAR (list))
1617 && EQ (XCDR (XCAR (list)), key)))
1618 break;
1619
1620 list = XCDR (list);
1621 if (!CONSP (list)
1622 || (CONSP (XCAR (list))
1623 && EQ (XCDR (XCAR (list)), key)))
1624 break;
1625
1626 list = XCDR (list);
1627 if (!CONSP (list)
1628 || (CONSP (XCAR (list))
1629 && EQ (XCDR (XCAR (list)), key)))
1630 break;
1631
1632 list = XCDR (list);
1633 QUIT;
1634 }
1635
1636 if (NILP (list))
1637 result = Qnil;
1638 else if (CONSP (list))
1639 result = XCAR (list);
1640 else
1641 result = wrong_type_argument (Qlistp, list);
1642
1643 return result;
1644 }
1645
1646 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1647 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1648 The value is actually the first element of LIST whose cdr equals KEY. */)
1649 (key, list)
1650 Lisp_Object key, list;
1651 {
1652 Lisp_Object result, cdr;
1653
1654 while (1)
1655 {
1656 if (!CONSP (list)
1657 || (CONSP (XCAR (list))
1658 && (cdr = XCDR (XCAR (list)),
1659 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1660 break;
1661
1662 list = XCDR (list);
1663 if (!CONSP (list)
1664 || (CONSP (XCAR (list))
1665 && (cdr = XCDR (XCAR (list)),
1666 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1667 break;
1668
1669 list = XCDR (list);
1670 if (!CONSP (list)
1671 || (CONSP (XCAR (list))
1672 && (cdr = XCDR (XCAR (list)),
1673 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1674 break;
1675
1676 list = XCDR (list);
1677 QUIT;
1678 }
1679
1680 if (CONSP (list))
1681 result = XCAR (list);
1682 else if (NILP (list))
1683 result = Qnil;
1684 else
1685 result = wrong_type_argument (Qlistp, list);
1686
1687 return result;
1688 }
1689 \f
1690 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1691 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1692 The modified LIST is returned. Comparison is done with `eq'.
1693 If the first member of LIST is ELT, there is no way to remove it by side effect;
1694 therefore, write `(setq foo (delq element foo))'
1695 to be sure of changing the value of `foo'. */)
1696 (elt, list)
1697 register Lisp_Object elt;
1698 Lisp_Object list;
1699 {
1700 register Lisp_Object tail, prev;
1701 register Lisp_Object tem;
1702
1703 tail = list;
1704 prev = Qnil;
1705 while (!NILP (tail))
1706 {
1707 if (! CONSP (tail))
1708 wrong_type_argument (Qlistp, list);
1709 tem = XCAR (tail);
1710 if (EQ (elt, tem))
1711 {
1712 if (NILP (prev))
1713 list = XCDR (tail);
1714 else
1715 Fsetcdr (prev, XCDR (tail));
1716 }
1717 else
1718 prev = tail;
1719 tail = XCDR (tail);
1720 QUIT;
1721 }
1722 return list;
1723 }
1724
1725 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1726 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1727 SEQ must be a list, a vector, or a string.
1728 The modified SEQ is returned. Comparison is done with `equal'.
1729 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1730 is not a side effect; it is simply using a different sequence.
1731 Therefore, write `(setq foo (delete element foo))'
1732 to be sure of changing the value of `foo'. */)
1733 (elt, seq)
1734 Lisp_Object elt, seq;
1735 {
1736 if (VECTORP (seq))
1737 {
1738 EMACS_INT i, n;
1739
1740 for (i = n = 0; i < ASIZE (seq); ++i)
1741 if (NILP (Fequal (AREF (seq, i), elt)))
1742 ++n;
1743
1744 if (n != ASIZE (seq))
1745 {
1746 struct Lisp_Vector *p = allocate_vector (n);
1747
1748 for (i = n = 0; i < ASIZE (seq); ++i)
1749 if (NILP (Fequal (AREF (seq, i), elt)))
1750 p->contents[n++] = AREF (seq, i);
1751
1752 XSETVECTOR (seq, p);
1753 }
1754 }
1755 else if (STRINGP (seq))
1756 {
1757 EMACS_INT i, ibyte, nchars, nbytes, cbytes;
1758 int c;
1759
1760 for (i = nchars = nbytes = ibyte = 0;
1761 i < SCHARS (seq);
1762 ++i, ibyte += cbytes)
1763 {
1764 if (STRING_MULTIBYTE (seq))
1765 {
1766 c = STRING_CHAR (SDATA (seq) + ibyte,
1767 SBYTES (seq) - ibyte);
1768 cbytes = CHAR_BYTES (c);
1769 }
1770 else
1771 {
1772 c = SREF (seq, i);
1773 cbytes = 1;
1774 }
1775
1776 if (!INTEGERP (elt) || c != XINT (elt))
1777 {
1778 ++nchars;
1779 nbytes += cbytes;
1780 }
1781 }
1782
1783 if (nchars != SCHARS (seq))
1784 {
1785 Lisp_Object tem;
1786
1787 tem = make_uninit_multibyte_string (nchars, nbytes);
1788 if (!STRING_MULTIBYTE (seq))
1789 STRING_SET_UNIBYTE (tem);
1790
1791 for (i = nchars = nbytes = ibyte = 0;
1792 i < SCHARS (seq);
1793 ++i, ibyte += cbytes)
1794 {
1795 if (STRING_MULTIBYTE (seq))
1796 {
1797 c = STRING_CHAR (SDATA (seq) + ibyte,
1798 SBYTES (seq) - ibyte);
1799 cbytes = CHAR_BYTES (c);
1800 }
1801 else
1802 {
1803 c = SREF (seq, i);
1804 cbytes = 1;
1805 }
1806
1807 if (!INTEGERP (elt) || c != XINT (elt))
1808 {
1809 unsigned char *from = SDATA (seq) + ibyte;
1810 unsigned char *to = SDATA (tem) + nbytes;
1811 EMACS_INT n;
1812
1813 ++nchars;
1814 nbytes += cbytes;
1815
1816 for (n = cbytes; n--; )
1817 *to++ = *from++;
1818 }
1819 }
1820
1821 seq = tem;
1822 }
1823 }
1824 else
1825 {
1826 Lisp_Object tail, prev;
1827
1828 for (tail = seq, prev = Qnil; !NILP (tail); tail = XCDR (tail))
1829 {
1830 if (!CONSP (tail))
1831 wrong_type_argument (Qlistp, seq);
1832
1833 if (!NILP (Fequal (elt, XCAR (tail))))
1834 {
1835 if (NILP (prev))
1836 seq = XCDR (tail);
1837 else
1838 Fsetcdr (prev, XCDR (tail));
1839 }
1840 else
1841 prev = tail;
1842 QUIT;
1843 }
1844 }
1845
1846 return seq;
1847 }
1848
1849 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1850 doc: /* Reverse LIST by modifying cdr pointers.
1851 Return the reversed list. */)
1852 (list)
1853 Lisp_Object list;
1854 {
1855 register Lisp_Object prev, tail, next;
1856
1857 if (NILP (list)) return list;
1858 prev = Qnil;
1859 tail = list;
1860 while (!NILP (tail))
1861 {
1862 QUIT;
1863 if (! CONSP (tail))
1864 wrong_type_argument (Qlistp, list);
1865 next = XCDR (tail);
1866 Fsetcdr (tail, prev);
1867 prev = tail;
1868 tail = next;
1869 }
1870 return prev;
1871 }
1872
1873 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1874 doc: /* Reverse LIST, copying. Return the reversed list.
1875 See also the function `nreverse', which is used more often. */)
1876 (list)
1877 Lisp_Object list;
1878 {
1879 Lisp_Object new;
1880
1881 for (new = Qnil; CONSP (list); list = XCDR (list))
1882 {
1883 QUIT;
1884 new = Fcons (XCAR (list), new);
1885 }
1886 if (!NILP (list))
1887 wrong_type_argument (Qconsp, list);
1888 return new;
1889 }
1890 \f
1891 Lisp_Object merge ();
1892
1893 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1894 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1895 Returns the sorted list. LIST is modified by side effects.
1896 PREDICATE is called with two elements of LIST, and should return non-nil
1897 if the first element should sort before the second. */)
1898 (list, predicate)
1899 Lisp_Object list, predicate;
1900 {
1901 Lisp_Object front, back;
1902 register Lisp_Object len, tem;
1903 struct gcpro gcpro1, gcpro2;
1904 register int length;
1905
1906 front = list;
1907 len = Flength (list);
1908 length = XINT (len);
1909 if (length < 2)
1910 return list;
1911
1912 XSETINT (len, (length / 2) - 1);
1913 tem = Fnthcdr (len, list);
1914 back = Fcdr (tem);
1915 Fsetcdr (tem, Qnil);
1916
1917 GCPRO2 (front, back);
1918 front = Fsort (front, predicate);
1919 back = Fsort (back, predicate);
1920 UNGCPRO;
1921 return merge (front, back, predicate);
1922 }
1923
1924 Lisp_Object
1925 merge (org_l1, org_l2, pred)
1926 Lisp_Object org_l1, org_l2;
1927 Lisp_Object pred;
1928 {
1929 Lisp_Object value;
1930 register Lisp_Object tail;
1931 Lisp_Object tem;
1932 register Lisp_Object l1, l2;
1933 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1934
1935 l1 = org_l1;
1936 l2 = org_l2;
1937 tail = Qnil;
1938 value = Qnil;
1939
1940 /* It is sufficient to protect org_l1 and org_l2.
1941 When l1 and l2 are updated, we copy the new values
1942 back into the org_ vars. */
1943 GCPRO4 (org_l1, org_l2, pred, value);
1944
1945 while (1)
1946 {
1947 if (NILP (l1))
1948 {
1949 UNGCPRO;
1950 if (NILP (tail))
1951 return l2;
1952 Fsetcdr (tail, l2);
1953 return value;
1954 }
1955 if (NILP (l2))
1956 {
1957 UNGCPRO;
1958 if (NILP (tail))
1959 return l1;
1960 Fsetcdr (tail, l1);
1961 return value;
1962 }
1963 tem = call2 (pred, Fcar (l2), Fcar (l1));
1964 if (NILP (tem))
1965 {
1966 tem = l1;
1967 l1 = Fcdr (l1);
1968 org_l1 = l1;
1969 }
1970 else
1971 {
1972 tem = l2;
1973 l2 = Fcdr (l2);
1974 org_l2 = l2;
1975 }
1976 if (NILP (tail))
1977 value = tem;
1978 else
1979 Fsetcdr (tail, tem);
1980 tail = tem;
1981 }
1982 }
1983
1984 \f
1985 #if 0 /* Unsafe version. */
1986 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1987 doc: /* Extract a value from a property list.
1988 PLIST is a property list, which is a list of the form
1989 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1990 corresponding to the given PROP, or nil if PROP is not
1991 one of the properties on the list. */)
1992 (plist, prop)
1993 Lisp_Object plist;
1994 Lisp_Object prop;
1995 {
1996 Lisp_Object tail;
1997
1998 for (tail = plist;
1999 CONSP (tail) && CONSP (XCDR (tail));
2000 tail = XCDR (XCDR (tail)))
2001 {
2002 if (EQ (prop, XCAR (tail)))
2003 return XCAR (XCDR (tail));
2004
2005 /* This function can be called asynchronously
2006 (setup_coding_system). Don't QUIT in that case. */
2007 if (!interrupt_input_blocked)
2008 QUIT;
2009 }
2010
2011 if (!NILP (tail))
2012 wrong_type_argument (Qlistp, prop);
2013
2014 return Qnil;
2015 }
2016 #endif
2017
2018 /* This does not check for quits. That is safe since it must terminate. */
2019
2020 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
2021 doc: /* Extract a value from a property list.
2022 PLIST is a property list, which is a list of the form
2023 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
2024 corresponding to the given PROP, or nil if PROP is not one of the
2025 properties on the list. This function never signals an error. */)
2026 (plist, prop)
2027 Lisp_Object plist;
2028 Lisp_Object prop;
2029 {
2030 Lisp_Object tail, halftail;
2031
2032 /* halftail is used to detect circular lists. */
2033 tail = halftail = plist;
2034 while (CONSP (tail) && CONSP (XCDR (tail)))
2035 {
2036 if (EQ (prop, XCAR (tail)))
2037 return XCAR (XCDR (tail));
2038
2039 tail = XCDR (XCDR (tail));
2040 halftail = XCDR (halftail);
2041 if (EQ (tail, halftail))
2042 break;
2043 }
2044
2045 return Qnil;
2046 }
2047
2048 DEFUN ("get", Fget, Sget, 2, 2, 0,
2049 doc: /* Return the value of SYMBOL's PROPNAME property.
2050 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
2051 (symbol, propname)
2052 Lisp_Object symbol, propname;
2053 {
2054 CHECK_SYMBOL (symbol);
2055 return Fplist_get (XSYMBOL (symbol)->plist, propname);
2056 }
2057
2058 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
2059 doc: /* Change value in PLIST of PROP to VAL.
2060 PLIST is a property list, which is a list of the form
2061 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
2062 If PROP is already a property on the list, its value is set to VAL,
2063 otherwise the new PROP VAL pair is added. The new plist is returned;
2064 use `(setq x (plist-put x prop val))' to be sure to use the new value.
2065 The PLIST is modified by side effects. */)
2066 (plist, prop, val)
2067 Lisp_Object plist;
2068 register Lisp_Object prop;
2069 Lisp_Object val;
2070 {
2071 register Lisp_Object tail, prev;
2072 Lisp_Object newcell;
2073 prev = Qnil;
2074 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2075 tail = XCDR (XCDR (tail)))
2076 {
2077 if (EQ (prop, XCAR (tail)))
2078 {
2079 Fsetcar (XCDR (tail), val);
2080 return plist;
2081 }
2082
2083 prev = tail;
2084 QUIT;
2085 }
2086 newcell = Fcons (prop, Fcons (val, Qnil));
2087 if (NILP (prev))
2088 return newcell;
2089 else
2090 Fsetcdr (XCDR (prev), newcell);
2091 return plist;
2092 }
2093
2094 DEFUN ("put", Fput, Sput, 3, 3, 0,
2095 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
2096 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
2097 (symbol, propname, value)
2098 Lisp_Object symbol, propname, value;
2099 {
2100 CHECK_SYMBOL (symbol);
2101 XSYMBOL (symbol)->plist
2102 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
2103 return value;
2104 }
2105 \f
2106 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
2107 doc: /* Extract a value from a property list, comparing with `equal'.
2108 PLIST is a property list, which is a list of the form
2109 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
2110 corresponding to the given PROP, or nil if PROP is not
2111 one of the properties on the list. */)
2112 (plist, prop)
2113 Lisp_Object plist;
2114 Lisp_Object prop;
2115 {
2116 Lisp_Object tail;
2117
2118 for (tail = plist;
2119 CONSP (tail) && CONSP (XCDR (tail));
2120 tail = XCDR (XCDR (tail)))
2121 {
2122 if (! NILP (Fequal (prop, XCAR (tail))))
2123 return XCAR (XCDR (tail));
2124
2125 QUIT;
2126 }
2127
2128 if (!NILP (tail))
2129 wrong_type_argument (Qlistp, prop);
2130
2131 return Qnil;
2132 }
2133
2134 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
2135 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
2136 PLIST is a property list, which is a list of the form
2137 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
2138 If PROP is already a property on the list, its value is set to VAL,
2139 otherwise the new PROP VAL pair is added. The new plist is returned;
2140 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
2141 The PLIST is modified by side effects. */)
2142 (plist, prop, val)
2143 Lisp_Object plist;
2144 register Lisp_Object prop;
2145 Lisp_Object val;
2146 {
2147 register Lisp_Object tail, prev;
2148 Lisp_Object newcell;
2149 prev = Qnil;
2150 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2151 tail = XCDR (XCDR (tail)))
2152 {
2153 if (! NILP (Fequal (prop, XCAR (tail))))
2154 {
2155 Fsetcar (XCDR (tail), val);
2156 return plist;
2157 }
2158
2159 prev = tail;
2160 QUIT;
2161 }
2162 newcell = Fcons (prop, Fcons (val, Qnil));
2163 if (NILP (prev))
2164 return newcell;
2165 else
2166 Fsetcdr (XCDR (prev), newcell);
2167 return plist;
2168 }
2169 \f
2170 DEFUN ("eql", Feql, Seql, 2, 2, 0,
2171 doc: /* Return t if the two args are the same Lisp object.
2172 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
2173 (obj1, obj2)
2174 Lisp_Object obj1, obj2;
2175 {
2176 if (FLOATP (obj1))
2177 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
2178 else
2179 return EQ (obj1, obj2) ? Qt : Qnil;
2180 }
2181
2182 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
2183 doc: /* Return t if two Lisp objects have similar structure and contents.
2184 They must have the same data type.
2185 Conses are compared by comparing the cars and the cdrs.
2186 Vectors and strings are compared element by element.
2187 Numbers are compared by value, but integers cannot equal floats.
2188 (Use `=' if you want integers and floats to be able to be equal.)
2189 Symbols must match exactly. */)
2190 (o1, o2)
2191 register Lisp_Object o1, o2;
2192 {
2193 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
2194 }
2195
2196 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
2197 doc: /* Return t if two Lisp objects have similar structure and contents.
2198 This is like `equal' except that it compares the text properties
2199 of strings. (`equal' ignores text properties.) */)
2200 (o1, o2)
2201 register Lisp_Object o1, o2;
2202 {
2203 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
2204 }
2205
2206 /* DEPTH is current depth of recursion. Signal an error if it
2207 gets too deep.
2208 PROPS, if non-nil, means compare string text properties too. */
2209
2210 static int
2211 internal_equal (o1, o2, depth, props)
2212 register Lisp_Object o1, o2;
2213 int depth, props;
2214 {
2215 if (depth > 200)
2216 error ("Stack overflow in equal");
2217
2218 tail_recurse:
2219 QUIT;
2220 if (EQ (o1, o2))
2221 return 1;
2222 if (XTYPE (o1) != XTYPE (o2))
2223 return 0;
2224
2225 switch (XTYPE (o1))
2226 {
2227 case Lisp_Float:
2228 {
2229 double d1, d2;
2230
2231 d1 = extract_float (o1);
2232 d2 = extract_float (o2);
2233 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2234 though they are not =. */
2235 return d1 == d2 || (d1 != d1 && d2 != d2);
2236 }
2237
2238 case Lisp_Cons:
2239 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2240 return 0;
2241 o1 = XCDR (o1);
2242 o2 = XCDR (o2);
2243 goto tail_recurse;
2244
2245 case Lisp_Misc:
2246 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2247 return 0;
2248 if (OVERLAYP (o1))
2249 {
2250 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2251 depth + 1, props)
2252 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2253 depth + 1, props))
2254 return 0;
2255 o1 = XOVERLAY (o1)->plist;
2256 o2 = XOVERLAY (o2)->plist;
2257 goto tail_recurse;
2258 }
2259 if (MARKERP (o1))
2260 {
2261 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2262 && (XMARKER (o1)->buffer == 0
2263 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2264 }
2265 break;
2266
2267 case Lisp_Vectorlike:
2268 {
2269 register int i;
2270 EMACS_INT size = XVECTOR (o1)->size;
2271 /* Pseudovectors have the type encoded in the size field, so this test
2272 actually checks that the objects have the same type as well as the
2273 same size. */
2274 if (XVECTOR (o2)->size != size)
2275 return 0;
2276 /* Boolvectors are compared much like strings. */
2277 if (BOOL_VECTOR_P (o1))
2278 {
2279 int size_in_chars
2280 = ((XBOOL_VECTOR (o1)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2281 / BOOL_VECTOR_BITS_PER_CHAR);
2282
2283 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2284 return 0;
2285 if (bcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2286 size_in_chars))
2287 return 0;
2288 return 1;
2289 }
2290 if (WINDOW_CONFIGURATIONP (o1))
2291 return compare_window_configurations (o1, o2, 0);
2292
2293 /* Aside from them, only true vectors, char-tables, and compiled
2294 functions are sensible to compare, so eliminate the others now. */
2295 if (size & PSEUDOVECTOR_FLAG)
2296 {
2297 if (!(size & (PVEC_COMPILED | PVEC_CHAR_TABLE)))
2298 return 0;
2299 size &= PSEUDOVECTOR_SIZE_MASK;
2300 }
2301 for (i = 0; i < size; i++)
2302 {
2303 Lisp_Object v1, v2;
2304 v1 = XVECTOR (o1)->contents [i];
2305 v2 = XVECTOR (o2)->contents [i];
2306 if (!internal_equal (v1, v2, depth + 1, props))
2307 return 0;
2308 }
2309 return 1;
2310 }
2311 break;
2312
2313 case Lisp_String:
2314 if (SCHARS (o1) != SCHARS (o2))
2315 return 0;
2316 if (SBYTES (o1) != SBYTES (o2))
2317 return 0;
2318 if (bcmp (SDATA (o1), SDATA (o2),
2319 SBYTES (o1)))
2320 return 0;
2321 if (props && !compare_string_intervals (o1, o2))
2322 return 0;
2323 return 1;
2324
2325 case Lisp_Int:
2326 case Lisp_Symbol:
2327 case Lisp_Type_Limit:
2328 break;
2329 }
2330
2331 return 0;
2332 }
2333 \f
2334 extern Lisp_Object Fmake_char_internal ();
2335
2336 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2337 doc: /* Store each element of ARRAY with ITEM.
2338 ARRAY is a vector, string, char-table, or bool-vector. */)
2339 (array, item)
2340 Lisp_Object array, item;
2341 {
2342 register int size, index, charval;
2343 retry:
2344 if (VECTORP (array))
2345 {
2346 register Lisp_Object *p = XVECTOR (array)->contents;
2347 size = XVECTOR (array)->size;
2348 for (index = 0; index < size; index++)
2349 p[index] = item;
2350 }
2351 else if (CHAR_TABLE_P (array))
2352 {
2353 register Lisp_Object *p = XCHAR_TABLE (array)->contents;
2354 size = CHAR_TABLE_ORDINARY_SLOTS;
2355 for (index = 0; index < size; index++)
2356 p[index] = item;
2357 XCHAR_TABLE (array)->defalt = Qnil;
2358 }
2359 else if (STRINGP (array))
2360 {
2361 register unsigned char *p = SDATA (array);
2362 CHECK_NUMBER (item);
2363 charval = XINT (item);
2364 size = SCHARS (array);
2365 if (STRING_MULTIBYTE (array))
2366 {
2367 unsigned char str[MAX_MULTIBYTE_LENGTH];
2368 int len = CHAR_STRING (charval, str);
2369 int size_byte = SBYTES (array);
2370 unsigned char *p1 = p, *endp = p + size_byte;
2371 int i;
2372
2373 if (size != size_byte)
2374 while (p1 < endp)
2375 {
2376 int this_len = MULTIBYTE_FORM_LENGTH (p1, endp - p1);
2377 if (len != this_len)
2378 error ("Attempt to change byte length of a string");
2379 p1 += this_len;
2380 }
2381 for (i = 0; i < size_byte; i++)
2382 *p++ = str[i % len];
2383 }
2384 else
2385 for (index = 0; index < size; index++)
2386 p[index] = charval;
2387 }
2388 else if (BOOL_VECTOR_P (array))
2389 {
2390 register unsigned char *p = XBOOL_VECTOR (array)->data;
2391 int size_in_chars
2392 = ((XBOOL_VECTOR (array)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2393 / BOOL_VECTOR_BITS_PER_CHAR);
2394
2395 charval = (! NILP (item) ? -1 : 0);
2396 for (index = 0; index < size_in_chars - 1; index++)
2397 p[index] = charval;
2398 if (index < size_in_chars)
2399 {
2400 /* Mask out bits beyond the vector size. */
2401 if (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)
2402 charval &= (1 << (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2403 p[index] = charval;
2404 }
2405 }
2406 else
2407 {
2408 array = wrong_type_argument (Qarrayp, array);
2409 goto retry;
2410 }
2411 return array;
2412 }
2413
2414 DEFUN ("clear-string", Fclear_string, Sclear_string,
2415 1, 1, 0,
2416 doc: /* Clear the contents of STRING.
2417 This makes STRING unibyte and may change its length. */)
2418 (string)
2419 Lisp_Object string;
2420 {
2421 int len;
2422 CHECK_STRING (string);
2423 len = SBYTES (string);
2424 bzero (SDATA (string), len);
2425 STRING_SET_CHARS (string, len);
2426 STRING_SET_UNIBYTE (string);
2427 return Qnil;
2428 }
2429 \f
2430 DEFUN ("char-table-subtype", Fchar_table_subtype, Schar_table_subtype,
2431 1, 1, 0,
2432 doc: /* Return the subtype of char-table CHAR-TABLE. The value is a symbol. */)
2433 (char_table)
2434 Lisp_Object char_table;
2435 {
2436 CHECK_CHAR_TABLE (char_table);
2437
2438 return XCHAR_TABLE (char_table)->purpose;
2439 }
2440
2441 DEFUN ("char-table-parent", Fchar_table_parent, Schar_table_parent,
2442 1, 1, 0,
2443 doc: /* Return the parent char-table of CHAR-TABLE.
2444 The value is either nil or another char-table.
2445 If CHAR-TABLE holds nil for a given character,
2446 then the actual applicable value is inherited from the parent char-table
2447 \(or from its parents, if necessary). */)
2448 (char_table)
2449 Lisp_Object char_table;
2450 {
2451 CHECK_CHAR_TABLE (char_table);
2452
2453 return XCHAR_TABLE (char_table)->parent;
2454 }
2455
2456 DEFUN ("set-char-table-parent", Fset_char_table_parent, Sset_char_table_parent,
2457 2, 2, 0,
2458 doc: /* Set the parent char-table of CHAR-TABLE to PARENT.
2459 Return PARENT. PARENT must be either nil or another char-table. */)
2460 (char_table, parent)
2461 Lisp_Object char_table, parent;
2462 {
2463 Lisp_Object temp;
2464
2465 CHECK_CHAR_TABLE (char_table);
2466
2467 if (!NILP (parent))
2468 {
2469 CHECK_CHAR_TABLE (parent);
2470
2471 for (temp = parent; !NILP (temp); temp = XCHAR_TABLE (temp)->parent)
2472 if (EQ (temp, char_table))
2473 error ("Attempt to make a chartable be its own parent");
2474 }
2475
2476 XCHAR_TABLE (char_table)->parent = parent;
2477
2478 return parent;
2479 }
2480
2481 DEFUN ("char-table-extra-slot", Fchar_table_extra_slot, Schar_table_extra_slot,
2482 2, 2, 0,
2483 doc: /* Return the value of CHAR-TABLE's extra-slot number N. */)
2484 (char_table, n)
2485 Lisp_Object char_table, n;
2486 {
2487 CHECK_CHAR_TABLE (char_table);
2488 CHECK_NUMBER (n);
2489 if (XINT (n) < 0
2490 || XINT (n) >= CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (char_table)))
2491 args_out_of_range (char_table, n);
2492
2493 return XCHAR_TABLE (char_table)->extras[XINT (n)];
2494 }
2495
2496 DEFUN ("set-char-table-extra-slot", Fset_char_table_extra_slot,
2497 Sset_char_table_extra_slot,
2498 3, 3, 0,
2499 doc: /* Set CHAR-TABLE's extra-slot number N to VALUE. */)
2500 (char_table, n, value)
2501 Lisp_Object char_table, n, value;
2502 {
2503 CHECK_CHAR_TABLE (char_table);
2504 CHECK_NUMBER (n);
2505 if (XINT (n) < 0
2506 || XINT (n) >= CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (char_table)))
2507 args_out_of_range (char_table, n);
2508
2509 return XCHAR_TABLE (char_table)->extras[XINT (n)] = value;
2510 }
2511 \f
2512 static Lisp_Object
2513 char_table_range (table, from, to, defalt)
2514 Lisp_Object table;
2515 int from, to;
2516 Lisp_Object defalt;
2517 {
2518 Lisp_Object val;
2519
2520 if (! NILP (XCHAR_TABLE (table)->defalt))
2521 defalt = XCHAR_TABLE (table)->defalt;
2522 val = XCHAR_TABLE (table)->contents[from];
2523 if (SUB_CHAR_TABLE_P (val))
2524 val = char_table_range (val, 32, 127, defalt);
2525 else if (NILP (val))
2526 val = defalt;
2527 for (from++; from <= to; from++)
2528 {
2529 Lisp_Object this_val;
2530
2531 this_val = XCHAR_TABLE (table)->contents[from];
2532 if (SUB_CHAR_TABLE_P (this_val))
2533 this_val = char_table_range (this_val, 32, 127, defalt);
2534 else if (NILP (this_val))
2535 this_val = defalt;
2536 if (! EQ (val, this_val))
2537 error ("Characters in the range have inconsistent values");
2538 }
2539 return val;
2540 }
2541
2542
2543 DEFUN ("char-table-range", Fchar_table_range, Schar_table_range,
2544 2, 2, 0,
2545 doc: /* Return the value in CHAR-TABLE for a range of characters RANGE.
2546 RANGE should be nil (for the default value),
2547 a vector which identifies a character set or a row of a character set,
2548 a character set name, or a character code.
2549 If the characters in the specified range have different values,
2550 an error is signaled.
2551
2552 Note that this function doesn't check the parent of CHAR-TABLE. */)
2553 (char_table, range)
2554 Lisp_Object char_table, range;
2555 {
2556 int charset_id, c1 = 0, c2 = 0;
2557 int size;
2558 Lisp_Object ch, val, current_default;
2559
2560 CHECK_CHAR_TABLE (char_table);
2561
2562 if (EQ (range, Qnil))
2563 return XCHAR_TABLE (char_table)->defalt;
2564 if (INTEGERP (range))
2565 {
2566 int c = XINT (range);
2567 if (! CHAR_VALID_P (c, 0))
2568 error ("Invalid character code: %d", c);
2569 ch = range;
2570 SPLIT_CHAR (c, charset_id, c1, c2);
2571 }
2572 else if (SYMBOLP (range))
2573 {
2574 Lisp_Object charset_info;
2575
2576 charset_info = Fget (range, Qcharset);
2577 CHECK_VECTOR (charset_info);
2578 charset_id = XINT (XVECTOR (charset_info)->contents[0]);
2579 ch = Fmake_char_internal (make_number (charset_id),
2580 make_number (0), make_number (0));
2581 }
2582 else if (VECTORP (range))
2583 {
2584 size = ASIZE (range);
2585 if (size == 0)
2586 args_out_of_range (range, make_number (0));
2587 CHECK_NUMBER (AREF (range, 0));
2588 charset_id = XINT (AREF (range, 0));
2589 if (size > 1)
2590 {
2591 CHECK_NUMBER (AREF (range, 1));
2592 c1 = XINT (AREF (range, 1));
2593 if (size > 2)
2594 {
2595 CHECK_NUMBER (AREF (range, 2));
2596 c2 = XINT (AREF (range, 2));
2597 }
2598 }
2599
2600 /* This checks if charset_id, c0, and c1 are all valid or not. */
2601 ch = Fmake_char_internal (make_number (charset_id),
2602 make_number (c1), make_number (c2));
2603 }
2604 else
2605 error ("Invalid RANGE argument to `char-table-range'");
2606
2607 if (c1 > 0 && (CHARSET_DIMENSION (charset_id) == 1 || c2 > 0))
2608 {
2609 /* Fully specified character. */
2610 Lisp_Object parent = XCHAR_TABLE (char_table)->parent;
2611
2612 XCHAR_TABLE (char_table)->parent = Qnil;
2613 val = Faref (char_table, ch);
2614 XCHAR_TABLE (char_table)->parent = parent;
2615 return val;
2616 }
2617
2618 current_default = XCHAR_TABLE (char_table)->defalt;
2619 if (charset_id == CHARSET_ASCII
2620 || charset_id == CHARSET_8_BIT_CONTROL
2621 || charset_id == CHARSET_8_BIT_GRAPHIC)
2622 {
2623 int from, to, defalt;
2624
2625 if (charset_id == CHARSET_ASCII)
2626 from = 0, to = 127, defalt = CHAR_TABLE_DEFAULT_SLOT_ASCII;
2627 else if (charset_id == CHARSET_8_BIT_CONTROL)
2628 from = 128, to = 159, defalt = CHAR_TABLE_DEFAULT_SLOT_8_BIT_CONTROL;
2629 else
2630 from = 160, to = 255, defalt = CHAR_TABLE_DEFAULT_SLOT_8_BIT_GRAPHIC;
2631 if (! NILP (XCHAR_TABLE (char_table)->contents[defalt]))
2632 current_default = XCHAR_TABLE (char_table)->contents[defalt];
2633 return char_table_range (char_table, from, to, current_default);
2634 }
2635
2636 val = XCHAR_TABLE (char_table)->contents[128 + charset_id];
2637 if (! SUB_CHAR_TABLE_P (val))
2638 return (NILP (val) ? current_default : val);
2639 if (! NILP (XCHAR_TABLE (val)->defalt))
2640 current_default = XCHAR_TABLE (val)->defalt;
2641 if (c1 == 0)
2642 return char_table_range (val, 32, 127, current_default);
2643 val = XCHAR_TABLE (val)->contents[c1];
2644 if (! SUB_CHAR_TABLE_P (val))
2645 return (NILP (val) ? current_default : val);
2646 if (! NILP (XCHAR_TABLE (val)->defalt))
2647 current_default = XCHAR_TABLE (val)->defalt;
2648 return char_table_range (val, 32, 127, current_default);
2649 }
2650
2651 DEFUN ("set-char-table-range", Fset_char_table_range, Sset_char_table_range,
2652 3, 3, 0,
2653 doc: /* Set the value in CHAR-TABLE for a range of characters RANGE to VALUE.
2654 RANGE should be t (for all characters), nil (for the default value),
2655 a character set, a vector which identifies a character set, a row of a
2656 character set, or a character code. Return VALUE. */)
2657 (char_table, range, value)
2658 Lisp_Object char_table, range, value;
2659 {
2660 int i;
2661
2662 CHECK_CHAR_TABLE (char_table);
2663
2664 if (EQ (range, Qt))
2665 for (i = 0; i < CHAR_TABLE_ORDINARY_SLOTS; i++)
2666 {
2667 /* Don't set these special slots used for default values of
2668 ascii, eight-bit-control, and eight-bit-graphic. */
2669 if (i != CHAR_TABLE_DEFAULT_SLOT_ASCII
2670 && i != CHAR_TABLE_DEFAULT_SLOT_8_BIT_CONTROL
2671 && i != CHAR_TABLE_DEFAULT_SLOT_8_BIT_GRAPHIC)
2672 XCHAR_TABLE (char_table)->contents[i] = value;
2673 }
2674 else if (EQ (range, Qnil))
2675 XCHAR_TABLE (char_table)->defalt = value;
2676 else if (SYMBOLP (range))
2677 {
2678 Lisp_Object charset_info;
2679 int charset_id;
2680
2681 charset_info = Fget (range, Qcharset);
2682 if (! VECTORP (charset_info)
2683 || ! NATNUMP (AREF (charset_info, 0))
2684 || (charset_id = XINT (AREF (charset_info, 0)),
2685 ! CHARSET_DEFINED_P (charset_id)))
2686 error ("Invalid charset: %s", SDATA (SYMBOL_NAME (range)));
2687
2688 if (charset_id == CHARSET_ASCII)
2689 for (i = 0; i < 128; i++)
2690 XCHAR_TABLE (char_table)->contents[i] = value;
2691 else if (charset_id == CHARSET_8_BIT_CONTROL)
2692 for (i = 128; i < 160; i++)
2693 XCHAR_TABLE (char_table)->contents[i] = value;
2694 else if (charset_id == CHARSET_8_BIT_GRAPHIC)
2695 for (i = 160; i < 256; i++)
2696 XCHAR_TABLE (char_table)->contents[i] = value;
2697 else
2698 XCHAR_TABLE (char_table)->contents[charset_id + 128] = value;
2699 }
2700 else if (INTEGERP (range))
2701 Faset (char_table, range, value);
2702 else if (VECTORP (range))
2703 {
2704 int size = XVECTOR (range)->size;
2705 Lisp_Object *val = XVECTOR (range)->contents;
2706 Lisp_Object ch = Fmake_char_internal (size <= 0 ? Qnil : val[0],
2707 size <= 1 ? Qnil : val[1],
2708 size <= 2 ? Qnil : val[2]);
2709 Faset (char_table, ch, value);
2710 }
2711 else
2712 error ("Invalid RANGE argument to `set-char-table-range'");
2713
2714 return value;
2715 }
2716
2717 DEFUN ("set-char-table-default", Fset_char_table_default,
2718 Sset_char_table_default, 3, 3, 0,
2719 doc: /* Set the default value in CHAR-TABLE for generic character CH to VALUE.
2720 The generic character specifies the group of characters.
2721 If CH is a normal character, set the default value for a group of
2722 characters to which CH belongs.
2723 See also the documentation of `make-char'. */)
2724 (char_table, ch, value)
2725 Lisp_Object char_table, ch, value;
2726 {
2727 int c, charset, code1, code2;
2728 Lisp_Object temp;
2729
2730 CHECK_CHAR_TABLE (char_table);
2731 CHECK_NUMBER (ch);
2732
2733 c = XINT (ch);
2734 SPLIT_CHAR (c, charset, code1, code2);
2735
2736 /* Since we may want to set the default value for a character set
2737 not yet defined, we check only if the character set is in the
2738 valid range or not, instead of it is already defined or not. */
2739 if (! CHARSET_VALID_P (charset))
2740 invalid_character (c);
2741
2742 if (SINGLE_BYTE_CHAR_P (c))
2743 {
2744 /* We use special slots for the default values of single byte
2745 characters. */
2746 int default_slot
2747 = (c < 0x80 ? CHAR_TABLE_DEFAULT_SLOT_ASCII
2748 : c < 0xA0 ? CHAR_TABLE_DEFAULT_SLOT_8_BIT_CONTROL
2749 : CHAR_TABLE_DEFAULT_SLOT_8_BIT_GRAPHIC);
2750
2751 return (XCHAR_TABLE (char_table)->contents[default_slot] = value);
2752 }
2753
2754 /* Even if C is not a generic char, we had better behave as if a
2755 generic char is specified. */
2756 if (!CHARSET_DEFINED_P (charset) || CHARSET_DIMENSION (charset) == 1)
2757 code1 = 0;
2758 temp = XCHAR_TABLE (char_table)->contents[charset + 128];
2759 if (! SUB_CHAR_TABLE_P (temp))
2760 {
2761 temp = make_sub_char_table (temp);
2762 XCHAR_TABLE (char_table)->contents[charset + 128] = temp;
2763 }
2764 if (!code1)
2765 {
2766 XCHAR_TABLE (temp)->defalt = value;
2767 return value;
2768 }
2769 char_table = temp;
2770 temp = XCHAR_TABLE (char_table)->contents[code1];
2771 if (SUB_CHAR_TABLE_P (temp))
2772 XCHAR_TABLE (temp)->defalt = value;
2773 else
2774 XCHAR_TABLE (char_table)->contents[code1] = value;
2775 return value;
2776 }
2777
2778 /* Look up the element in TABLE at index CH,
2779 and return it as an integer.
2780 If the element is nil, return CH itself.
2781 (Actually we do that for any non-integer.) */
2782
2783 int
2784 char_table_translate (table, ch)
2785 Lisp_Object table;
2786 int ch;
2787 {
2788 Lisp_Object value;
2789 value = Faref (table, make_number (ch));
2790 if (! INTEGERP (value))
2791 return ch;
2792 return XINT (value);
2793 }
2794
2795 static void
2796 optimize_sub_char_table (table, chars)
2797 Lisp_Object *table;
2798 int chars;
2799 {
2800 Lisp_Object elt;
2801 int from, to;
2802
2803 if (chars == 94)
2804 from = 33, to = 127;
2805 else
2806 from = 32, to = 128;
2807
2808 if (!SUB_CHAR_TABLE_P (*table))
2809 return;
2810 elt = XCHAR_TABLE (*table)->contents[from++];
2811 for (; from < to; from++)
2812 if (NILP (Fequal (elt, XCHAR_TABLE (*table)->contents[from])))
2813 return;
2814 *table = elt;
2815 }
2816
2817 DEFUN ("optimize-char-table", Foptimize_char_table, Soptimize_char_table,
2818 1, 1, 0, doc: /* Optimize char table TABLE. */)
2819 (table)
2820 Lisp_Object table;
2821 {
2822 Lisp_Object elt;
2823 int dim;
2824 int i, j;
2825
2826 CHECK_CHAR_TABLE (table);
2827
2828 for (i = CHAR_TABLE_SINGLE_BYTE_SLOTS; i < CHAR_TABLE_ORDINARY_SLOTS; i++)
2829 {
2830 elt = XCHAR_TABLE (table)->contents[i];
2831 if (!SUB_CHAR_TABLE_P (elt))
2832 continue;
2833 dim = CHARSET_DIMENSION (i - 128);
2834 if (dim == 2)
2835 for (j = 32; j < SUB_CHAR_TABLE_ORDINARY_SLOTS; j++)
2836 optimize_sub_char_table (XCHAR_TABLE (elt)->contents + j, dim);
2837 optimize_sub_char_table (XCHAR_TABLE (table)->contents + i, dim);
2838 }
2839 return Qnil;
2840 }
2841
2842 \f
2843 /* Map C_FUNCTION or FUNCTION over SUBTABLE, calling it for each
2844 character or group of characters that share a value.
2845 DEPTH is the current depth in the originally specified
2846 chartable, and INDICES contains the vector indices
2847 for the levels our callers have descended.
2848
2849 ARG is passed to C_FUNCTION when that is called. */
2850
2851 void
2852 map_char_table (c_function, function, table, subtable, arg, depth, indices)
2853 void (*c_function) P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
2854 Lisp_Object function, table, subtable, arg, *indices;
2855 int depth;
2856 {
2857 int i, to;
2858 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
2859
2860 GCPRO4 (arg, table, subtable, function);
2861
2862 if (depth == 0)
2863 {
2864 /* At first, handle ASCII and 8-bit European characters. */
2865 for (i = 0; i < CHAR_TABLE_SINGLE_BYTE_SLOTS; i++)
2866 {
2867 Lisp_Object elt= XCHAR_TABLE (subtable)->contents[i];
2868 if (NILP (elt))
2869 elt = XCHAR_TABLE (subtable)->defalt;
2870 if (NILP (elt))
2871 elt = Faref (subtable, make_number (i));
2872 if (c_function)
2873 (*c_function) (arg, make_number (i), elt);
2874 else
2875 call2 (function, make_number (i), elt);
2876 }
2877 #if 0 /* If the char table has entries for higher characters,
2878 we should report them. */
2879 if (NILP (current_buffer->enable_multibyte_characters))
2880 {
2881 UNGCPRO;
2882 return;
2883 }
2884 #endif
2885 to = CHAR_TABLE_ORDINARY_SLOTS;
2886 }
2887 else
2888 {
2889 int charset = XFASTINT (indices[0]) - 128;
2890
2891 i = 32;
2892 to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
2893 if (CHARSET_CHARS (charset) == 94)
2894 i++, to--;
2895 }
2896
2897 for (; i < to; i++)
2898 {
2899 Lisp_Object elt;
2900 int charset;
2901
2902 elt = XCHAR_TABLE (subtable)->contents[i];
2903 XSETFASTINT (indices[depth], i);
2904 charset = XFASTINT (indices[0]) - 128;
2905 if (depth == 0
2906 && (!CHARSET_DEFINED_P (charset)
2907 || charset == CHARSET_8_BIT_CONTROL
2908 || charset == CHARSET_8_BIT_GRAPHIC))
2909 continue;
2910
2911 if (SUB_CHAR_TABLE_P (elt))
2912 {
2913 if (depth >= 3)
2914 error ("Too deep char table");
2915 map_char_table (c_function, function, table, elt, arg, depth + 1, indices);
2916 }
2917 else
2918 {
2919 int c1, c2, c;
2920
2921 c1 = depth >= 1 ? XFASTINT (indices[1]) : 0;
2922 c2 = depth >= 2 ? XFASTINT (indices[2]) : 0;
2923 c = MAKE_CHAR (charset, c1, c2);
2924
2925 if (NILP (elt))
2926 elt = XCHAR_TABLE (subtable)->defalt;
2927 if (NILP (elt))
2928 elt = Faref (table, make_number (c));
2929
2930 if (c_function)
2931 (*c_function) (arg, make_number (c), elt);
2932 else
2933 call2 (function, make_number (c), elt);
2934 }
2935 }
2936 UNGCPRO;
2937 }
2938
2939 static void void_call2 P_ ((Lisp_Object a, Lisp_Object b, Lisp_Object c));
2940 static void
2941 void_call2 (a, b, c)
2942 Lisp_Object a, b, c;
2943 {
2944 call2 (a, b, c);
2945 }
2946
2947 DEFUN ("map-char-table", Fmap_char_table, Smap_char_table,
2948 2, 2, 0,
2949 doc: /* Call FUNCTION for each (normal and generic) characters in CHAR-TABLE.
2950 FUNCTION is called with two arguments--a key and a value.
2951 The key is always a possible IDX argument to `aref'. */)
2952 (function, char_table)
2953 Lisp_Object function, char_table;
2954 {
2955 /* The depth of char table is at most 3. */
2956 Lisp_Object indices[3];
2957
2958 CHECK_CHAR_TABLE (char_table);
2959
2960 /* When Lisp_Object is represented as a union, `call2' cannot directly
2961 be passed to map_char_table because it returns a Lisp_Object rather
2962 than returning nothing.
2963 Casting leads to crashes on some architectures. -stef */
2964 map_char_table (void_call2, Qnil, char_table, char_table, function, 0, indices);
2965 return Qnil;
2966 }
2967
2968 /* Return a value for character C in char-table TABLE. Store the
2969 actual index for that value in *IDX. Ignore the default value of
2970 TABLE. */
2971
2972 Lisp_Object
2973 char_table_ref_and_index (table, c, idx)
2974 Lisp_Object table;
2975 int c, *idx;
2976 {
2977 int charset, c1, c2;
2978 Lisp_Object elt;
2979
2980 if (SINGLE_BYTE_CHAR_P (c))
2981 {
2982 *idx = c;
2983 return XCHAR_TABLE (table)->contents[c];
2984 }
2985 SPLIT_CHAR (c, charset, c1, c2);
2986 elt = XCHAR_TABLE (table)->contents[charset + 128];
2987 *idx = MAKE_CHAR (charset, 0, 0);
2988 if (!SUB_CHAR_TABLE_P (elt))
2989 return elt;
2990 if (c1 < 32 || NILP (XCHAR_TABLE (elt)->contents[c1]))
2991 return XCHAR_TABLE (elt)->defalt;
2992 elt = XCHAR_TABLE (elt)->contents[c1];
2993 *idx = MAKE_CHAR (charset, c1, 0);
2994 if (!SUB_CHAR_TABLE_P (elt))
2995 return elt;
2996 if (c2 < 32 || NILP (XCHAR_TABLE (elt)->contents[c2]))
2997 return XCHAR_TABLE (elt)->defalt;
2998 *idx = c;
2999 return XCHAR_TABLE (elt)->contents[c2];
3000 }
3001
3002 \f
3003 /* ARGSUSED */
3004 Lisp_Object
3005 nconc2 (s1, s2)
3006 Lisp_Object s1, s2;
3007 {
3008 #ifdef NO_ARG_ARRAY
3009 Lisp_Object args[2];
3010 args[0] = s1;
3011 args[1] = s2;
3012 return Fnconc (2, args);
3013 #else
3014 return Fnconc (2, &s1);
3015 #endif /* NO_ARG_ARRAY */
3016 }
3017
3018 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
3019 doc: /* Concatenate any number of lists by altering them.
3020 Only the last argument is not altered, and need not be a list.
3021 usage: (nconc &rest LISTS) */)
3022 (nargs, args)
3023 int nargs;
3024 Lisp_Object *args;
3025 {
3026 register int argnum;
3027 register Lisp_Object tail, tem, val;
3028
3029 val = tail = Qnil;
3030
3031 for (argnum = 0; argnum < nargs; argnum++)
3032 {
3033 tem = args[argnum];
3034 if (NILP (tem)) continue;
3035
3036 if (NILP (val))
3037 val = tem;
3038
3039 if (argnum + 1 == nargs) break;
3040
3041 if (!CONSP (tem))
3042 tem = wrong_type_argument (Qlistp, tem);
3043
3044 while (CONSP (tem))
3045 {
3046 tail = tem;
3047 tem = XCDR (tail);
3048 QUIT;
3049 }
3050
3051 tem = args[argnum + 1];
3052 Fsetcdr (tail, tem);
3053 if (NILP (tem))
3054 args[argnum + 1] = tail;
3055 }
3056
3057 return val;
3058 }
3059 \f
3060 /* This is the guts of all mapping functions.
3061 Apply FN to each element of SEQ, one by one,
3062 storing the results into elements of VALS, a C vector of Lisp_Objects.
3063 LENI is the length of VALS, which should also be the length of SEQ. */
3064
3065 static void
3066 mapcar1 (leni, vals, fn, seq)
3067 int leni;
3068 Lisp_Object *vals;
3069 Lisp_Object fn, seq;
3070 {
3071 register Lisp_Object tail;
3072 Lisp_Object dummy;
3073 register int i;
3074 struct gcpro gcpro1, gcpro2, gcpro3;
3075
3076 if (vals)
3077 {
3078 /* Don't let vals contain any garbage when GC happens. */
3079 for (i = 0; i < leni; i++)
3080 vals[i] = Qnil;
3081
3082 GCPRO3 (dummy, fn, seq);
3083 gcpro1.var = vals;
3084 gcpro1.nvars = leni;
3085 }
3086 else
3087 GCPRO2 (fn, seq);
3088 /* We need not explicitly protect `tail' because it is used only on lists, and
3089 1) lists are not relocated and 2) the list is marked via `seq' so will not be freed */
3090
3091 if (VECTORP (seq))
3092 {
3093 for (i = 0; i < leni; i++)
3094 {
3095 dummy = XVECTOR (seq)->contents[i];
3096 dummy = call1 (fn, dummy);
3097 if (vals)
3098 vals[i] = dummy;
3099 }
3100 }
3101 else if (BOOL_VECTOR_P (seq))
3102 {
3103 for (i = 0; i < leni; i++)
3104 {
3105 int byte;
3106 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
3107 if (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR)))
3108 dummy = Qt;
3109 else
3110 dummy = Qnil;
3111
3112 dummy = call1 (fn, dummy);
3113 if (vals)
3114 vals[i] = dummy;
3115 }
3116 }
3117 else if (STRINGP (seq))
3118 {
3119 int i_byte;
3120
3121 for (i = 0, i_byte = 0; i < leni;)
3122 {
3123 int c;
3124 int i_before = i;
3125
3126 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
3127 XSETFASTINT (dummy, c);
3128 dummy = call1 (fn, dummy);
3129 if (vals)
3130 vals[i_before] = dummy;
3131 }
3132 }
3133 else /* Must be a list, since Flength did not get an error */
3134 {
3135 tail = seq;
3136 for (i = 0; i < leni && CONSP (tail); i++)
3137 {
3138 dummy = call1 (fn, XCAR (tail));
3139 if (vals)
3140 vals[i] = dummy;
3141 tail = XCDR (tail);
3142 }
3143 }
3144
3145 UNGCPRO;
3146 }
3147
3148 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
3149 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
3150 In between each pair of results, stick in SEPARATOR. Thus, " " as
3151 SEPARATOR results in spaces between the values returned by FUNCTION.
3152 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
3153 (function, sequence, separator)
3154 Lisp_Object function, sequence, separator;
3155 {
3156 Lisp_Object len;
3157 register int leni;
3158 int nargs;
3159 register Lisp_Object *args;
3160 register int i;
3161 struct gcpro gcpro1;
3162 Lisp_Object ret;
3163 USE_SAFE_ALLOCA;
3164
3165 len = Flength (sequence);
3166 leni = XINT (len);
3167 nargs = leni + leni - 1;
3168 if (nargs < 0) return build_string ("");
3169
3170 SAFE_ALLOCA_LISP (args, nargs);
3171
3172 GCPRO1 (separator);
3173 mapcar1 (leni, args, function, sequence);
3174 UNGCPRO;
3175
3176 for (i = leni - 1; i > 0; i--)
3177 args[i + i] = args[i];
3178
3179 for (i = 1; i < nargs; i += 2)
3180 args[i] = separator;
3181
3182 ret = Fconcat (nargs, args);
3183 SAFE_FREE ();
3184
3185 return ret;
3186 }
3187
3188 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
3189 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
3190 The result is a list just as long as SEQUENCE.
3191 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
3192 (function, sequence)
3193 Lisp_Object function, sequence;
3194 {
3195 register Lisp_Object len;
3196 register int leni;
3197 register Lisp_Object *args;
3198 Lisp_Object ret;
3199 USE_SAFE_ALLOCA;
3200
3201 len = Flength (sequence);
3202 leni = XFASTINT (len);
3203
3204 SAFE_ALLOCA_LISP (args, leni);
3205
3206 mapcar1 (leni, args, function, sequence);
3207
3208 ret = Flist (leni, args);
3209 SAFE_FREE ();
3210
3211 return ret;
3212 }
3213
3214 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
3215 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
3216 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
3217 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
3218 (function, sequence)
3219 Lisp_Object function, sequence;
3220 {
3221 register int leni;
3222
3223 leni = XFASTINT (Flength (sequence));
3224 mapcar1 (leni, 0, function, sequence);
3225
3226 return sequence;
3227 }
3228 \f
3229 /* Anything that calls this function must protect from GC! */
3230
3231 DEFUN ("y-or-n-p", Fy_or_n_p, Sy_or_n_p, 1, 1, 0,
3232 doc: /* Ask user a "y or n" question. Return t if answer is "y".
3233 Takes one argument, which is the string to display to ask the question.
3234 It should end in a space; `y-or-n-p' adds `(y or n) ' to it.
3235 No confirmation of the answer is requested; a single character is enough.
3236 Also accepts Space to mean yes, or Delete to mean no. \(Actually, it uses
3237 the bindings in `query-replace-map'; see the documentation of that variable
3238 for more information. In this case, the useful bindings are `act', `skip',
3239 `recenter', and `quit'.\)
3240
3241 Under a windowing system a dialog box will be used if `last-nonmenu-event'
3242 is nil and `use-dialog-box' is non-nil. */)
3243 (prompt)
3244 Lisp_Object prompt;
3245 {
3246 register Lisp_Object obj, key, def, map;
3247 register int answer;
3248 Lisp_Object xprompt;
3249 Lisp_Object args[2];
3250 struct gcpro gcpro1, gcpro2;
3251 int count = SPECPDL_INDEX ();
3252
3253 specbind (Qcursor_in_echo_area, Qt);
3254
3255 map = Fsymbol_value (intern ("query-replace-map"));
3256
3257 CHECK_STRING (prompt);
3258 xprompt = prompt;
3259 GCPRO2 (prompt, xprompt);
3260
3261 #ifdef HAVE_X_WINDOWS
3262 if (display_hourglass_p)
3263 cancel_hourglass ();
3264 #endif
3265
3266 while (1)
3267 {
3268
3269 #ifdef HAVE_MENUS
3270 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3271 && use_dialog_box
3272 && have_menus_p ())
3273 {
3274 Lisp_Object pane, menu;
3275 redisplay_preserve_echo_area (3);
3276 pane = Fcons (Fcons (build_string ("Yes"), Qt),
3277 Fcons (Fcons (build_string ("No"), Qnil),
3278 Qnil));
3279 menu = Fcons (prompt, pane);
3280 obj = Fx_popup_dialog (Qt, menu, Qnil);
3281 answer = !NILP (obj);
3282 break;
3283 }
3284 #endif /* HAVE_MENUS */
3285 cursor_in_echo_area = 1;
3286 choose_minibuf_frame ();
3287
3288 {
3289 Lisp_Object pargs[3];
3290
3291 /* Colorize prompt according to `minibuffer-prompt' face. */
3292 pargs[0] = build_string ("%s(y or n) ");
3293 pargs[1] = intern ("face");
3294 pargs[2] = intern ("minibuffer-prompt");
3295 args[0] = Fpropertize (3, pargs);
3296 args[1] = xprompt;
3297 Fmessage (2, args);
3298 }
3299
3300 if (minibuffer_auto_raise)
3301 {
3302 Lisp_Object mini_frame;
3303
3304 mini_frame = WINDOW_FRAME (XWINDOW (minibuf_window));
3305
3306 Fraise_frame (mini_frame);
3307 }
3308
3309 obj = read_filtered_event (1, 0, 0, 0);
3310 cursor_in_echo_area = 0;
3311 /* If we need to quit, quit with cursor_in_echo_area = 0. */
3312 QUIT;
3313
3314 key = Fmake_vector (make_number (1), obj);
3315 def = Flookup_key (map, key, Qt);
3316
3317 if (EQ (def, intern ("skip")))
3318 {
3319 answer = 0;
3320 break;
3321 }
3322 else if (EQ (def, intern ("act")))
3323 {
3324 answer = 1;
3325 break;
3326 }
3327 else if (EQ (def, intern ("recenter")))
3328 {
3329 Frecenter (Qnil);
3330 xprompt = prompt;
3331 continue;
3332 }
3333 else if (EQ (def, intern ("quit")))
3334 Vquit_flag = Qt;
3335 /* We want to exit this command for exit-prefix,
3336 and this is the only way to do it. */
3337 else if (EQ (def, intern ("exit-prefix")))
3338 Vquit_flag = Qt;
3339
3340 QUIT;
3341
3342 /* If we don't clear this, then the next call to read_char will
3343 return quit_char again, and we'll enter an infinite loop. */
3344 Vquit_flag = Qnil;
3345
3346 Fding (Qnil);
3347 Fdiscard_input ();
3348 if (EQ (xprompt, prompt))
3349 {
3350 args[0] = build_string ("Please answer y or n. ");
3351 args[1] = prompt;
3352 xprompt = Fconcat (2, args);
3353 }
3354 }
3355 UNGCPRO;
3356
3357 if (! noninteractive)
3358 {
3359 cursor_in_echo_area = -1;
3360 message_with_string (answer ? "%s(y or n) y" : "%s(y or n) n",
3361 xprompt, 0);
3362 }
3363
3364 unbind_to (count, Qnil);
3365 return answer ? Qt : Qnil;
3366 }
3367 \f
3368 /* This is how C code calls `yes-or-no-p' and allows the user
3369 to redefined it.
3370
3371 Anything that calls this function must protect from GC! */
3372
3373 Lisp_Object
3374 do_yes_or_no_p (prompt)
3375 Lisp_Object prompt;
3376 {
3377 return call1 (intern ("yes-or-no-p"), prompt);
3378 }
3379
3380 /* Anything that calls this function must protect from GC! */
3381
3382 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
3383 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
3384 Takes one argument, which is the string to display to ask the question.
3385 It should end in a space; `yes-or-no-p' adds `(yes or no) ' to it.
3386 The user must confirm the answer with RET,
3387 and can edit it until it has been confirmed.
3388
3389 Under a windowing system a dialog box will be used if `last-nonmenu-event'
3390 is nil, and `use-dialog-box' is non-nil. */)
3391 (prompt)
3392 Lisp_Object prompt;
3393 {
3394 register Lisp_Object ans;
3395 Lisp_Object args[2];
3396 struct gcpro gcpro1;
3397
3398 CHECK_STRING (prompt);
3399
3400 #ifdef HAVE_MENUS
3401 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3402 && use_dialog_box
3403 && have_menus_p ())
3404 {
3405 Lisp_Object pane, menu, obj;
3406 redisplay_preserve_echo_area (4);
3407 pane = Fcons (Fcons (build_string ("Yes"), Qt),
3408 Fcons (Fcons (build_string ("No"), Qnil),
3409 Qnil));
3410 GCPRO1 (pane);
3411 menu = Fcons (prompt, pane);
3412 obj = Fx_popup_dialog (Qt, menu, Qnil);
3413 UNGCPRO;
3414 return obj;
3415 }
3416 #endif /* HAVE_MENUS */
3417
3418 args[0] = prompt;
3419 args[1] = build_string ("(yes or no) ");
3420 prompt = Fconcat (2, args);
3421
3422 GCPRO1 (prompt);
3423
3424 while (1)
3425 {
3426 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
3427 Qyes_or_no_p_history, Qnil,
3428 Qnil, Qnil));
3429 if (SCHARS (ans) == 3 && !strcmp (SDATA (ans), "yes"))
3430 {
3431 UNGCPRO;
3432 return Qt;
3433 }
3434 if (SCHARS (ans) == 2 && !strcmp (SDATA (ans), "no"))
3435 {
3436 UNGCPRO;
3437 return Qnil;
3438 }
3439
3440 Fding (Qnil);
3441 Fdiscard_input ();
3442 message ("Please answer yes or no.");
3443 Fsleep_for (make_number (2), Qnil);
3444 }
3445 }
3446 \f
3447 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
3448 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
3449
3450 Each of the three load averages is multiplied by 100, then converted
3451 to integer.
3452
3453 When USE-FLOATS is non-nil, floats will be used instead of integers.
3454 These floats are not multiplied by 100.
3455
3456 If the 5-minute or 15-minute load averages are not available, return a
3457 shortened list, containing only those averages which are available.
3458
3459 An error is thrown if the load average can't be obtained. In some
3460 cases making it work would require Emacs being installed setuid or
3461 setgid so that it can read kernel information, and that usually isn't
3462 advisable. */)
3463 (use_floats)
3464 Lisp_Object use_floats;
3465 {
3466 double load_ave[3];
3467 int loads = getloadavg (load_ave, 3);
3468 Lisp_Object ret = Qnil;
3469
3470 if (loads < 0)
3471 error ("load-average not implemented for this operating system");
3472
3473 while (loads-- > 0)
3474 {
3475 Lisp_Object load = (NILP (use_floats) ?
3476 make_number ((int) (100.0 * load_ave[loads]))
3477 : make_float (load_ave[loads]));
3478 ret = Fcons (load, ret);
3479 }
3480
3481 return ret;
3482 }
3483 \f
3484 Lisp_Object Vfeatures, Qsubfeatures;
3485 extern Lisp_Object Vafter_load_alist;
3486
3487 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
3488 doc: /* Returns t if FEATURE is present in this Emacs.
3489
3490 Use this to conditionalize execution of lisp code based on the
3491 presence or absence of emacs or environment extensions.
3492 Use `provide' to declare that a feature is available. This function
3493 looks at the value of the variable `features'. The optional argument
3494 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
3495 (feature, subfeature)
3496 Lisp_Object feature, subfeature;
3497 {
3498 register Lisp_Object tem;
3499 CHECK_SYMBOL (feature);
3500 tem = Fmemq (feature, Vfeatures);
3501 if (!NILP (tem) && !NILP (subfeature))
3502 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
3503 return (NILP (tem)) ? Qnil : Qt;
3504 }
3505
3506 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
3507 doc: /* Announce that FEATURE is a feature of the current Emacs.
3508 The optional argument SUBFEATURES should be a list of symbols listing
3509 particular subfeatures supported in this version of FEATURE. */)
3510 (feature, subfeatures)
3511 Lisp_Object feature, subfeatures;
3512 {
3513 register Lisp_Object tem;
3514 CHECK_SYMBOL (feature);
3515 CHECK_LIST (subfeatures);
3516 if (!NILP (Vautoload_queue))
3517 Vautoload_queue = Fcons (Fcons (Vfeatures, Qnil), Vautoload_queue);
3518 tem = Fmemq (feature, Vfeatures);
3519 if (NILP (tem))
3520 Vfeatures = Fcons (feature, Vfeatures);
3521 if (!NILP (subfeatures))
3522 Fput (feature, Qsubfeatures, subfeatures);
3523 LOADHIST_ATTACH (Fcons (Qprovide, feature));
3524
3525 /* Run any load-hooks for this file. */
3526 tem = Fassq (feature, Vafter_load_alist);
3527 if (CONSP (tem))
3528 Fprogn (XCDR (tem));
3529
3530 return feature;
3531 }
3532 \f
3533 /* `require' and its subroutines. */
3534
3535 /* List of features currently being require'd, innermost first. */
3536
3537 Lisp_Object require_nesting_list;
3538
3539 Lisp_Object
3540 require_unwind (old_value)
3541 Lisp_Object old_value;
3542 {
3543 return require_nesting_list = old_value;
3544 }
3545
3546 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
3547 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
3548 If FEATURE is not a member of the list `features', then the feature
3549 is not loaded; so load the file FILENAME.
3550 If FILENAME is omitted, the printname of FEATURE is used as the file name,
3551 and `load' will try to load this name appended with the suffix `.elc' or
3552 `.el', in that order. The name without appended suffix will not be used.
3553 If the optional third argument NOERROR is non-nil,
3554 then return nil if the file is not found instead of signaling an error.
3555 Normally the return value is FEATURE.
3556 The normal messages at start and end of loading FILENAME are suppressed. */)
3557 (feature, filename, noerror)
3558 Lisp_Object feature, filename, noerror;
3559 {
3560 register Lisp_Object tem;
3561 struct gcpro gcpro1, gcpro2;
3562 int from_file = load_in_progress;
3563
3564 CHECK_SYMBOL (feature);
3565
3566 /* Record the presence of `require' in this file
3567 even if the feature specified is already loaded.
3568 But not more than once in any file,
3569 and not when we aren't loading or reading from a file. */
3570 if (!from_file)
3571 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
3572 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
3573 from_file = 1;
3574
3575 if (from_file)
3576 {
3577 tem = Fcons (Qrequire, feature);
3578 if (NILP (Fmember (tem, Vcurrent_load_list)))
3579 LOADHIST_ATTACH (tem);
3580 }
3581 tem = Fmemq (feature, Vfeatures);
3582
3583 if (NILP (tem))
3584 {
3585 int count = SPECPDL_INDEX ();
3586 int nesting = 0;
3587
3588 /* This is to make sure that loadup.el gives a clear picture
3589 of what files are preloaded and when. */
3590 if (! NILP (Vpurify_flag))
3591 error ("(require %s) while preparing to dump",
3592 SDATA (SYMBOL_NAME (feature)));
3593
3594 /* A certain amount of recursive `require' is legitimate,
3595 but if we require the same feature recursively 3 times,
3596 signal an error. */
3597 tem = require_nesting_list;
3598 while (! NILP (tem))
3599 {
3600 if (! NILP (Fequal (feature, XCAR (tem))))
3601 nesting++;
3602 tem = XCDR (tem);
3603 }
3604 if (nesting > 3)
3605 error ("Recursive `require' for feature `%s'",
3606 SDATA (SYMBOL_NAME (feature)));
3607
3608 /* Update the list for any nested `require's that occur. */
3609 record_unwind_protect (require_unwind, require_nesting_list);
3610 require_nesting_list = Fcons (feature, require_nesting_list);
3611
3612 /* Value saved here is to be restored into Vautoload_queue */
3613 record_unwind_protect (un_autoload, Vautoload_queue);
3614 Vautoload_queue = Qt;
3615
3616 /* Load the file. */
3617 GCPRO2 (feature, filename);
3618 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
3619 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
3620 UNGCPRO;
3621
3622 /* If load failed entirely, return nil. */
3623 if (NILP (tem))
3624 return unbind_to (count, Qnil);
3625
3626 tem = Fmemq (feature, Vfeatures);
3627 if (NILP (tem))
3628 error ("Required feature `%s' was not provided",
3629 SDATA (SYMBOL_NAME (feature)));
3630
3631 /* Once loading finishes, don't undo it. */
3632 Vautoload_queue = Qt;
3633 feature = unbind_to (count, feature);
3634 }
3635
3636 return feature;
3637 }
3638 \f
3639 /* Primitives for work of the "widget" library.
3640 In an ideal world, this section would not have been necessary.
3641 However, lisp function calls being as slow as they are, it turns
3642 out that some functions in the widget library (wid-edit.el) are the
3643 bottleneck of Widget operation. Here is their translation to C,
3644 for the sole reason of efficiency. */
3645
3646 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
3647 doc: /* Return non-nil if PLIST has the property PROP.
3648 PLIST is a property list, which is a list of the form
3649 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
3650 Unlike `plist-get', this allows you to distinguish between a missing
3651 property and a property with the value nil.
3652 The value is actually the tail of PLIST whose car is PROP. */)
3653 (plist, prop)
3654 Lisp_Object plist, prop;
3655 {
3656 while (CONSP (plist) && !EQ (XCAR (plist), prop))
3657 {
3658 QUIT;
3659 plist = XCDR (plist);
3660 plist = CDR (plist);
3661 }
3662 return plist;
3663 }
3664
3665 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
3666 doc: /* In WIDGET, set PROPERTY to VALUE.
3667 The value can later be retrieved with `widget-get'. */)
3668 (widget, property, value)
3669 Lisp_Object widget, property, value;
3670 {
3671 CHECK_CONS (widget);
3672 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
3673 return value;
3674 }
3675
3676 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
3677 doc: /* In WIDGET, get the value of PROPERTY.
3678 The value could either be specified when the widget was created, or
3679 later with `widget-put'. */)
3680 (widget, property)
3681 Lisp_Object widget, property;
3682 {
3683 Lisp_Object tmp;
3684
3685 while (1)
3686 {
3687 if (NILP (widget))
3688 return Qnil;
3689 CHECK_CONS (widget);
3690 tmp = Fplist_member (XCDR (widget), property);
3691 if (CONSP (tmp))
3692 {
3693 tmp = XCDR (tmp);
3694 return CAR (tmp);
3695 }
3696 tmp = XCAR (widget);
3697 if (NILP (tmp))
3698 return Qnil;
3699 widget = Fget (tmp, Qwidget_type);
3700 }
3701 }
3702
3703 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
3704 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
3705 ARGS are passed as extra arguments to the function.
3706 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
3707 (nargs, args)
3708 int nargs;
3709 Lisp_Object *args;
3710 {
3711 /* This function can GC. */
3712 Lisp_Object newargs[3];
3713 struct gcpro gcpro1, gcpro2;
3714 Lisp_Object result;
3715
3716 newargs[0] = Fwidget_get (args[0], args[1]);
3717 newargs[1] = args[0];
3718 newargs[2] = Flist (nargs - 2, args + 2);
3719 GCPRO2 (newargs[0], newargs[2]);
3720 result = Fapply (3, newargs);
3721 UNGCPRO;
3722 return result;
3723 }
3724
3725 #ifdef HAVE_LANGINFO_CODESET
3726 #include <langinfo.h>
3727 #endif
3728
3729 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
3730 doc: /* Access locale data ITEM for the current C locale, if available.
3731 ITEM should be one of the following:
3732
3733 `codeset', returning the character set as a string (locale item CODESET);
3734
3735 `days', returning a 7-element vector of day names (locale items DAY_n);
3736
3737 `months', returning a 12-element vector of month names (locale items MON_n);
3738
3739 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
3740 both measured in milimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
3741
3742 If the system can't provide such information through a call to
3743 `nl_langinfo', or if ITEM isn't from the list above, return nil.
3744
3745 See also Info node `(libc)Locales'.
3746
3747 The data read from the system are decoded using `locale-coding-system'. */)
3748 (item)
3749 Lisp_Object item;
3750 {
3751 char *str = NULL;
3752 #ifdef HAVE_LANGINFO_CODESET
3753 Lisp_Object val;
3754 if (EQ (item, Qcodeset))
3755 {
3756 str = nl_langinfo (CODESET);
3757 return build_string (str);
3758 }
3759 #ifdef DAY_1
3760 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
3761 {
3762 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
3763 int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
3764 int i;
3765 synchronize_system_time_locale ();
3766 for (i = 0; i < 7; i++)
3767 {
3768 str = nl_langinfo (days[i]);
3769 val = make_unibyte_string (str, strlen (str));
3770 /* Fixme: Is this coding system necessarily right, even if
3771 it is consistent with CODESET? If not, what to do? */
3772 Faset (v, make_number (i),
3773 code_convert_string_norecord (val, Vlocale_coding_system,
3774 0));
3775 }
3776 return v;
3777 }
3778 #endif /* DAY_1 */
3779 #ifdef MON_1
3780 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
3781 {
3782 struct Lisp_Vector *p = allocate_vector (12);
3783 int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
3784 MON_8, MON_9, MON_10, MON_11, MON_12};
3785 int i;
3786 synchronize_system_time_locale ();
3787 for (i = 0; i < 12; i++)
3788 {
3789 str = nl_langinfo (months[i]);
3790 val = make_unibyte_string (str, strlen (str));
3791 p->contents[i] =
3792 code_convert_string_norecord (val, Vlocale_coding_system, 0);
3793 }
3794 XSETVECTOR (val, p);
3795 return val;
3796 }
3797 #endif /* MON_1 */
3798 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
3799 but is in the locale files. This could be used by ps-print. */
3800 #ifdef PAPER_WIDTH
3801 else if (EQ (item, Qpaper))
3802 {
3803 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
3804 make_number (nl_langinfo (PAPER_HEIGHT)));
3805 }
3806 #endif /* PAPER_WIDTH */
3807 #endif /* HAVE_LANGINFO_CODESET*/
3808 return Qnil;
3809 }
3810 \f
3811 /* base64 encode/decode functions (RFC 2045).
3812 Based on code from GNU recode. */
3813
3814 #define MIME_LINE_LENGTH 76
3815
3816 #define IS_ASCII(Character) \
3817 ((Character) < 128)
3818 #define IS_BASE64(Character) \
3819 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
3820 #define IS_BASE64_IGNORABLE(Character) \
3821 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
3822 || (Character) == '\f' || (Character) == '\r')
3823
3824 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
3825 character or return retval if there are no characters left to
3826 process. */
3827 #define READ_QUADRUPLET_BYTE(retval) \
3828 do \
3829 { \
3830 if (i == length) \
3831 { \
3832 if (nchars_return) \
3833 *nchars_return = nchars; \
3834 return (retval); \
3835 } \
3836 c = from[i++]; \
3837 } \
3838 while (IS_BASE64_IGNORABLE (c))
3839
3840 /* Table of characters coding the 64 values. */
3841 static char base64_value_to_char[64] =
3842 {
3843 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
3844 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
3845 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
3846 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
3847 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
3848 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
3849 '8', '9', '+', '/' /* 60-63 */
3850 };
3851
3852 /* Table of base64 values for first 128 characters. */
3853 static short base64_char_to_value[128] =
3854 {
3855 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
3856 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
3857 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
3858 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
3859 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
3860 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
3861 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
3862 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
3863 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
3864 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
3865 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
3866 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
3867 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
3868 };
3869
3870 /* The following diagram shows the logical steps by which three octets
3871 get transformed into four base64 characters.
3872
3873 .--------. .--------. .--------.
3874 |aaaaaabb| |bbbbcccc| |ccdddddd|
3875 `--------' `--------' `--------'
3876 6 2 4 4 2 6
3877 .--------+--------+--------+--------.
3878 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
3879 `--------+--------+--------+--------'
3880
3881 .--------+--------+--------+--------.
3882 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
3883 `--------+--------+--------+--------'
3884
3885 The octets are divided into 6 bit chunks, which are then encoded into
3886 base64 characters. */
3887
3888
3889 static int base64_encode_1 P_ ((const char *, char *, int, int, int));
3890 static int base64_decode_1 P_ ((const char *, char *, int, int, int *));
3891
3892 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
3893 2, 3, "r",
3894 doc: /* Base64-encode the region between BEG and END.
3895 Return the length of the encoded text.
3896 Optional third argument NO-LINE-BREAK means do not break long lines
3897 into shorter lines. */)
3898 (beg, end, no_line_break)
3899 Lisp_Object beg, end, no_line_break;
3900 {
3901 char *encoded;
3902 int allength, length;
3903 int ibeg, iend, encoded_length;
3904 int old_pos = PT;
3905 USE_SAFE_ALLOCA;
3906
3907 validate_region (&beg, &end);
3908
3909 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3910 iend = CHAR_TO_BYTE (XFASTINT (end));
3911 move_gap_both (XFASTINT (beg), ibeg);
3912
3913 /* We need to allocate enough room for encoding the text.
3914 We need 33 1/3% more space, plus a newline every 76
3915 characters, and then we round up. */
3916 length = iend - ibeg;
3917 allength = length + length/3 + 1;
3918 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3919
3920 SAFE_ALLOCA (encoded, char *, allength);
3921 encoded_length = base64_encode_1 (BYTE_POS_ADDR (ibeg), encoded, length,
3922 NILP (no_line_break),
3923 !NILP (current_buffer->enable_multibyte_characters));
3924 if (encoded_length > allength)
3925 abort ();
3926
3927 if (encoded_length < 0)
3928 {
3929 /* The encoding wasn't possible. */
3930 SAFE_FREE ();
3931 error ("Multibyte character in data for base64 encoding");
3932 }
3933
3934 /* Now we have encoded the region, so we insert the new contents
3935 and delete the old. (Insert first in order to preserve markers.) */
3936 SET_PT_BOTH (XFASTINT (beg), ibeg);
3937 insert (encoded, encoded_length);
3938 SAFE_FREE ();
3939 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
3940
3941 /* If point was outside of the region, restore it exactly; else just
3942 move to the beginning of the region. */
3943 if (old_pos >= XFASTINT (end))
3944 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3945 else if (old_pos > XFASTINT (beg))
3946 old_pos = XFASTINT (beg);
3947 SET_PT (old_pos);
3948
3949 /* We return the length of the encoded text. */
3950 return make_number (encoded_length);
3951 }
3952
3953 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3954 1, 2, 0,
3955 doc: /* Base64-encode STRING and return the result.
3956 Optional second argument NO-LINE-BREAK means do not break long lines
3957 into shorter lines. */)
3958 (string, no_line_break)
3959 Lisp_Object string, no_line_break;
3960 {
3961 int allength, length, encoded_length;
3962 char *encoded;
3963 Lisp_Object encoded_string;
3964 USE_SAFE_ALLOCA;
3965
3966 CHECK_STRING (string);
3967
3968 /* We need to allocate enough room for encoding the text.
3969 We need 33 1/3% more space, plus a newline every 76
3970 characters, and then we round up. */
3971 length = SBYTES (string);
3972 allength = length + length/3 + 1;
3973 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3974
3975 /* We need to allocate enough room for decoding the text. */
3976 SAFE_ALLOCA (encoded, char *, allength);
3977
3978 encoded_length = base64_encode_1 (SDATA (string),
3979 encoded, length, NILP (no_line_break),
3980 STRING_MULTIBYTE (string));
3981 if (encoded_length > allength)
3982 abort ();
3983
3984 if (encoded_length < 0)
3985 {
3986 /* The encoding wasn't possible. */
3987 SAFE_FREE ();
3988 error ("Multibyte character in data for base64 encoding");
3989 }
3990
3991 encoded_string = make_unibyte_string (encoded, encoded_length);
3992 SAFE_FREE ();
3993
3994 return encoded_string;
3995 }
3996
3997 static int
3998 base64_encode_1 (from, to, length, line_break, multibyte)
3999 const char *from;
4000 char *to;
4001 int length;
4002 int line_break;
4003 int multibyte;
4004 {
4005 int counter = 0, i = 0;
4006 char *e = to;
4007 int c;
4008 unsigned int value;
4009 int bytes;
4010
4011 while (i < length)
4012 {
4013 if (multibyte)
4014 {
4015 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
4016 if (c >= 256)
4017 return -1;
4018 i += bytes;
4019 }
4020 else
4021 c = from[i++];
4022
4023 /* Wrap line every 76 characters. */
4024
4025 if (line_break)
4026 {
4027 if (counter < MIME_LINE_LENGTH / 4)
4028 counter++;
4029 else
4030 {
4031 *e++ = '\n';
4032 counter = 1;
4033 }
4034 }
4035
4036 /* Process first byte of a triplet. */
4037
4038 *e++ = base64_value_to_char[0x3f & c >> 2];
4039 value = (0x03 & c) << 4;
4040
4041 /* Process second byte of a triplet. */
4042
4043 if (i == length)
4044 {
4045 *e++ = base64_value_to_char[value];
4046 *e++ = '=';
4047 *e++ = '=';
4048 break;
4049 }
4050
4051 if (multibyte)
4052 {
4053 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
4054 if (c >= 256)
4055 return -1;
4056 i += bytes;
4057 }
4058 else
4059 c = from[i++];
4060
4061 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
4062 value = (0x0f & c) << 2;
4063
4064 /* Process third byte of a triplet. */
4065
4066 if (i == length)
4067 {
4068 *e++ = base64_value_to_char[value];
4069 *e++ = '=';
4070 break;
4071 }
4072
4073 if (multibyte)
4074 {
4075 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
4076 if (c >= 256)
4077 return -1;
4078 i += bytes;
4079 }
4080 else
4081 c = from[i++];
4082
4083 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
4084 *e++ = base64_value_to_char[0x3f & c];
4085 }
4086
4087 return e - to;
4088 }
4089
4090
4091 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
4092 2, 2, "r",
4093 doc: /* Base64-decode the region between BEG and END.
4094 Return the length of the decoded text.
4095 If the region can't be decoded, signal an error and don't modify the buffer. */)
4096 (beg, end)
4097 Lisp_Object beg, end;
4098 {
4099 int ibeg, iend, length, allength;
4100 char *decoded;
4101 int old_pos = PT;
4102 int decoded_length;
4103 int inserted_chars;
4104 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
4105 USE_SAFE_ALLOCA;
4106
4107 validate_region (&beg, &end);
4108
4109 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
4110 iend = CHAR_TO_BYTE (XFASTINT (end));
4111
4112 length = iend - ibeg;
4113
4114 /* We need to allocate enough room for decoding the text. If we are
4115 working on a multibyte buffer, each decoded code may occupy at
4116 most two bytes. */
4117 allength = multibyte ? length * 2 : length;
4118 SAFE_ALLOCA (decoded, char *, allength);
4119
4120 move_gap_both (XFASTINT (beg), ibeg);
4121 decoded_length = base64_decode_1 (BYTE_POS_ADDR (ibeg), decoded, length,
4122 multibyte, &inserted_chars);
4123 if (decoded_length > allength)
4124 abort ();
4125
4126 if (decoded_length < 0)
4127 {
4128 /* The decoding wasn't possible. */
4129 SAFE_FREE ();
4130 error ("Invalid base64 data");
4131 }
4132
4133 /* Now we have decoded the region, so we insert the new contents
4134 and delete the old. (Insert first in order to preserve markers.) */
4135 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
4136 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
4137 SAFE_FREE ();
4138
4139 /* Delete the original text. */
4140 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
4141 iend + decoded_length, 1);
4142
4143 /* If point was outside of the region, restore it exactly; else just
4144 move to the beginning of the region. */
4145 if (old_pos >= XFASTINT (end))
4146 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
4147 else if (old_pos > XFASTINT (beg))
4148 old_pos = XFASTINT (beg);
4149 SET_PT (old_pos > ZV ? ZV : old_pos);
4150
4151 return make_number (inserted_chars);
4152 }
4153
4154 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
4155 1, 1, 0,
4156 doc: /* Base64-decode STRING and return the result. */)
4157 (string)
4158 Lisp_Object string;
4159 {
4160 char *decoded;
4161 int length, decoded_length;
4162 Lisp_Object decoded_string;
4163 USE_SAFE_ALLOCA;
4164
4165 CHECK_STRING (string);
4166
4167 length = SBYTES (string);
4168 /* We need to allocate enough room for decoding the text. */
4169 SAFE_ALLOCA (decoded, char *, length);
4170
4171 /* The decoded result should be unibyte. */
4172 decoded_length = base64_decode_1 (SDATA (string), decoded, length,
4173 0, NULL);
4174 if (decoded_length > length)
4175 abort ();
4176 else if (decoded_length >= 0)
4177 decoded_string = make_unibyte_string (decoded, decoded_length);
4178 else
4179 decoded_string = Qnil;
4180
4181 SAFE_FREE ();
4182 if (!STRINGP (decoded_string))
4183 error ("Invalid base64 data");
4184
4185 return decoded_string;
4186 }
4187
4188 /* Base64-decode the data at FROM of LENGHT bytes into TO. If
4189 MULTIBYTE is nonzero, the decoded result should be in multibyte
4190 form. If NCHARS_RETRUN is not NULL, store the number of produced
4191 characters in *NCHARS_RETURN. */
4192
4193 static int
4194 base64_decode_1 (from, to, length, multibyte, nchars_return)
4195 const char *from;
4196 char *to;
4197 int length;
4198 int multibyte;
4199 int *nchars_return;
4200 {
4201 int i = 0;
4202 char *e = to;
4203 unsigned char c;
4204 unsigned long value;
4205 int nchars = 0;
4206
4207 while (1)
4208 {
4209 /* Process first byte of a quadruplet. */
4210
4211 READ_QUADRUPLET_BYTE (e-to);
4212
4213 if (!IS_BASE64 (c))
4214 return -1;
4215 value = base64_char_to_value[c] << 18;
4216
4217 /* Process second byte of a quadruplet. */
4218
4219 READ_QUADRUPLET_BYTE (-1);
4220
4221 if (!IS_BASE64 (c))
4222 return -1;
4223 value |= base64_char_to_value[c] << 12;
4224
4225 c = (unsigned char) (value >> 16);
4226 if (multibyte)
4227 e += CHAR_STRING (c, e);
4228 else
4229 *e++ = c;
4230 nchars++;
4231
4232 /* Process third byte of a quadruplet. */
4233
4234 READ_QUADRUPLET_BYTE (-1);
4235
4236 if (c == '=')
4237 {
4238 READ_QUADRUPLET_BYTE (-1);
4239
4240 if (c != '=')
4241 return -1;
4242 continue;
4243 }
4244
4245 if (!IS_BASE64 (c))
4246 return -1;
4247 value |= base64_char_to_value[c] << 6;
4248
4249 c = (unsigned char) (0xff & value >> 8);
4250 if (multibyte)
4251 e += CHAR_STRING (c, e);
4252 else
4253 *e++ = c;
4254 nchars++;
4255
4256 /* Process fourth byte of a quadruplet. */
4257
4258 READ_QUADRUPLET_BYTE (-1);
4259
4260 if (c == '=')
4261 continue;
4262
4263 if (!IS_BASE64 (c))
4264 return -1;
4265 value |= base64_char_to_value[c];
4266
4267 c = (unsigned char) (0xff & value);
4268 if (multibyte)
4269 e += CHAR_STRING (c, e);
4270 else
4271 *e++ = c;
4272 nchars++;
4273 }
4274 }
4275
4276
4277 \f
4278 /***********************************************************************
4279 ***** *****
4280 ***** Hash Tables *****
4281 ***** *****
4282 ***********************************************************************/
4283
4284 /* Implemented by gerd@gnu.org. This hash table implementation was
4285 inspired by CMUCL hash tables. */
4286
4287 /* Ideas:
4288
4289 1. For small tables, association lists are probably faster than
4290 hash tables because they have lower overhead.
4291
4292 For uses of hash tables where the O(1) behavior of table
4293 operations is not a requirement, it might therefore be a good idea
4294 not to hash. Instead, we could just do a linear search in the
4295 key_and_value vector of the hash table. This could be done
4296 if a `:linear-search t' argument is given to make-hash-table. */
4297
4298
4299 /* The list of all weak hash tables. Don't staticpro this one. */
4300
4301 Lisp_Object Vweak_hash_tables;
4302
4303 /* Various symbols. */
4304
4305 Lisp_Object Qhash_table_p, Qeq, Qeql, Qequal, Qkey, Qvalue;
4306 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
4307 Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
4308
4309 /* Function prototypes. */
4310
4311 static struct Lisp_Hash_Table *check_hash_table P_ ((Lisp_Object));
4312 static int get_key_arg P_ ((Lisp_Object, int, Lisp_Object *, char *));
4313 static void maybe_resize_hash_table P_ ((struct Lisp_Hash_Table *));
4314 static int cmpfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
4315 Lisp_Object, unsigned));
4316 static int cmpfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
4317 Lisp_Object, unsigned));
4318 static int cmpfn_user_defined P_ ((struct Lisp_Hash_Table *, Lisp_Object,
4319 unsigned, Lisp_Object, unsigned));
4320 static unsigned hashfn_eq P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4321 static unsigned hashfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4322 static unsigned hashfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4323 static unsigned hashfn_user_defined P_ ((struct Lisp_Hash_Table *,
4324 Lisp_Object));
4325 static unsigned sxhash_string P_ ((unsigned char *, int));
4326 static unsigned sxhash_list P_ ((Lisp_Object, int));
4327 static unsigned sxhash_vector P_ ((Lisp_Object, int));
4328 static unsigned sxhash_bool_vector P_ ((Lisp_Object));
4329 static int sweep_weak_table P_ ((struct Lisp_Hash_Table *, int));
4330
4331
4332 \f
4333 /***********************************************************************
4334 Utilities
4335 ***********************************************************************/
4336
4337 /* If OBJ is a Lisp hash table, return a pointer to its struct
4338 Lisp_Hash_Table. Otherwise, signal an error. */
4339
4340 static struct Lisp_Hash_Table *
4341 check_hash_table (obj)
4342 Lisp_Object obj;
4343 {
4344 CHECK_HASH_TABLE (obj);
4345 return XHASH_TABLE (obj);
4346 }
4347
4348
4349 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
4350 number. */
4351
4352 int
4353 next_almost_prime (n)
4354 int n;
4355 {
4356 if (n % 2 == 0)
4357 n += 1;
4358 if (n % 3 == 0)
4359 n += 2;
4360 if (n % 7 == 0)
4361 n += 4;
4362 return n;
4363 }
4364
4365
4366 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
4367 which USED[I] is non-zero. If found at index I in ARGS, set
4368 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
4369 -1. This function is used to extract a keyword/argument pair from
4370 a DEFUN parameter list. */
4371
4372 static int
4373 get_key_arg (key, nargs, args, used)
4374 Lisp_Object key;
4375 int nargs;
4376 Lisp_Object *args;
4377 char *used;
4378 {
4379 int i;
4380
4381 for (i = 0; i < nargs - 1; ++i)
4382 if (!used[i] && EQ (args[i], key))
4383 break;
4384
4385 if (i >= nargs - 1)
4386 i = -1;
4387 else
4388 {
4389 used[i++] = 1;
4390 used[i] = 1;
4391 }
4392
4393 return i;
4394 }
4395
4396
4397 /* Return a Lisp vector which has the same contents as VEC but has
4398 size NEW_SIZE, NEW_SIZE >= VEC->size. Entries in the resulting
4399 vector that are not copied from VEC are set to INIT. */
4400
4401 Lisp_Object
4402 larger_vector (vec, new_size, init)
4403 Lisp_Object vec;
4404 int new_size;
4405 Lisp_Object init;
4406 {
4407 struct Lisp_Vector *v;
4408 int i, old_size;
4409
4410 xassert (VECTORP (vec));
4411 old_size = XVECTOR (vec)->size;
4412 xassert (new_size >= old_size);
4413
4414 v = allocate_vector (new_size);
4415 bcopy (XVECTOR (vec)->contents, v->contents,
4416 old_size * sizeof *v->contents);
4417 for (i = old_size; i < new_size; ++i)
4418 v->contents[i] = init;
4419 XSETVECTOR (vec, v);
4420 return vec;
4421 }
4422
4423
4424 /***********************************************************************
4425 Low-level Functions
4426 ***********************************************************************/
4427
4428 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
4429 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
4430 KEY2 are the same. */
4431
4432 static int
4433 cmpfn_eql (h, key1, hash1, key2, hash2)
4434 struct Lisp_Hash_Table *h;
4435 Lisp_Object key1, key2;
4436 unsigned hash1, hash2;
4437 {
4438 return (FLOATP (key1)
4439 && FLOATP (key2)
4440 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
4441 }
4442
4443
4444 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
4445 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
4446 KEY2 are the same. */
4447
4448 static int
4449 cmpfn_equal (h, key1, hash1, key2, hash2)
4450 struct Lisp_Hash_Table *h;
4451 Lisp_Object key1, key2;
4452 unsigned hash1, hash2;
4453 {
4454 return hash1 == hash2 && !NILP (Fequal (key1, key2));
4455 }
4456
4457
4458 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
4459 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
4460 if KEY1 and KEY2 are the same. */
4461
4462 static int
4463 cmpfn_user_defined (h, key1, hash1, key2, hash2)
4464 struct Lisp_Hash_Table *h;
4465 Lisp_Object key1, key2;
4466 unsigned hash1, hash2;
4467 {
4468 if (hash1 == hash2)
4469 {
4470 Lisp_Object args[3];
4471
4472 args[0] = h->user_cmp_function;
4473 args[1] = key1;
4474 args[2] = key2;
4475 return !NILP (Ffuncall (3, args));
4476 }
4477 else
4478 return 0;
4479 }
4480
4481
4482 /* Value is a hash code for KEY for use in hash table H which uses
4483 `eq' to compare keys. The hash code returned is guaranteed to fit
4484 in a Lisp integer. */
4485
4486 static unsigned
4487 hashfn_eq (h, key)
4488 struct Lisp_Hash_Table *h;
4489 Lisp_Object key;
4490 {
4491 unsigned hash = XUINT (key) ^ XGCTYPE (key);
4492 xassert ((hash & ~INTMASK) == 0);
4493 return hash;
4494 }
4495
4496
4497 /* Value is a hash code for KEY for use in hash table H which uses
4498 `eql' to compare keys. The hash code returned is guaranteed to fit
4499 in a Lisp integer. */
4500
4501 static unsigned
4502 hashfn_eql (h, key)
4503 struct Lisp_Hash_Table *h;
4504 Lisp_Object key;
4505 {
4506 unsigned hash;
4507 if (FLOATP (key))
4508 hash = sxhash (key, 0);
4509 else
4510 hash = XUINT (key) ^ XGCTYPE (key);
4511 xassert ((hash & ~INTMASK) == 0);
4512 return hash;
4513 }
4514
4515
4516 /* Value is a hash code for KEY for use in hash table H which uses
4517 `equal' to compare keys. The hash code returned is guaranteed to fit
4518 in a Lisp integer. */
4519
4520 static unsigned
4521 hashfn_equal (h, key)
4522 struct Lisp_Hash_Table *h;
4523 Lisp_Object key;
4524 {
4525 unsigned hash = sxhash (key, 0);
4526 xassert ((hash & ~INTMASK) == 0);
4527 return hash;
4528 }
4529
4530
4531 /* Value is a hash code for KEY for use in hash table H which uses as
4532 user-defined function to compare keys. The hash code returned is
4533 guaranteed to fit in a Lisp integer. */
4534
4535 static unsigned
4536 hashfn_user_defined (h, key)
4537 struct Lisp_Hash_Table *h;
4538 Lisp_Object key;
4539 {
4540 Lisp_Object args[2], hash;
4541
4542 args[0] = h->user_hash_function;
4543 args[1] = key;
4544 hash = Ffuncall (2, args);
4545 if (!INTEGERP (hash))
4546 Fsignal (Qerror,
4547 list2 (build_string ("Invalid hash code returned from \
4548 user-supplied hash function"),
4549 hash));
4550 return XUINT (hash);
4551 }
4552
4553
4554 /* Create and initialize a new hash table.
4555
4556 TEST specifies the test the hash table will use to compare keys.
4557 It must be either one of the predefined tests `eq', `eql' or
4558 `equal' or a symbol denoting a user-defined test named TEST with
4559 test and hash functions USER_TEST and USER_HASH.
4560
4561 Give the table initial capacity SIZE, SIZE >= 0, an integer.
4562
4563 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
4564 new size when it becomes full is computed by adding REHASH_SIZE to
4565 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
4566 table's new size is computed by multiplying its old size with
4567 REHASH_SIZE.
4568
4569 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
4570 be resized when the ratio of (number of entries in the table) /
4571 (table size) is >= REHASH_THRESHOLD.
4572
4573 WEAK specifies the weakness of the table. If non-nil, it must be
4574 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
4575
4576 Lisp_Object
4577 make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4578 user_test, user_hash)
4579 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4580 Lisp_Object user_test, user_hash;
4581 {
4582 struct Lisp_Hash_Table *h;
4583 Lisp_Object table;
4584 int index_size, i, sz;
4585
4586 /* Preconditions. */
4587 xassert (SYMBOLP (test));
4588 xassert (INTEGERP (size) && XINT (size) >= 0);
4589 xassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
4590 || (FLOATP (rehash_size) && XFLOATINT (rehash_size) > 1.0));
4591 xassert (FLOATP (rehash_threshold)
4592 && XFLOATINT (rehash_threshold) > 0
4593 && XFLOATINT (rehash_threshold) <= 1.0);
4594
4595 if (XFASTINT (size) == 0)
4596 size = make_number (1);
4597
4598 /* Allocate a table and initialize it. */
4599 h = allocate_hash_table ();
4600
4601 /* Initialize hash table slots. */
4602 sz = XFASTINT (size);
4603
4604 h->test = test;
4605 if (EQ (test, Qeql))
4606 {
4607 h->cmpfn = cmpfn_eql;
4608 h->hashfn = hashfn_eql;
4609 }
4610 else if (EQ (test, Qeq))
4611 {
4612 h->cmpfn = NULL;
4613 h->hashfn = hashfn_eq;
4614 }
4615 else if (EQ (test, Qequal))
4616 {
4617 h->cmpfn = cmpfn_equal;
4618 h->hashfn = hashfn_equal;
4619 }
4620 else
4621 {
4622 h->user_cmp_function = user_test;
4623 h->user_hash_function = user_hash;
4624 h->cmpfn = cmpfn_user_defined;
4625 h->hashfn = hashfn_user_defined;
4626 }
4627
4628 h->weak = weak;
4629 h->rehash_threshold = rehash_threshold;
4630 h->rehash_size = rehash_size;
4631 h->count = make_number (0);
4632 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
4633 h->hash = Fmake_vector (size, Qnil);
4634 h->next = Fmake_vector (size, Qnil);
4635 /* Cast to int here avoids losing with gcc 2.95 on Tru64/Alpha... */
4636 index_size = next_almost_prime ((int) (sz / XFLOATINT (rehash_threshold)));
4637 h->index = Fmake_vector (make_number (index_size), Qnil);
4638
4639 /* Set up the free list. */
4640 for (i = 0; i < sz - 1; ++i)
4641 HASH_NEXT (h, i) = make_number (i + 1);
4642 h->next_free = make_number (0);
4643
4644 XSET_HASH_TABLE (table, h);
4645 xassert (HASH_TABLE_P (table));
4646 xassert (XHASH_TABLE (table) == h);
4647
4648 /* Maybe add this hash table to the list of all weak hash tables. */
4649 if (NILP (h->weak))
4650 h->next_weak = Qnil;
4651 else
4652 {
4653 h->next_weak = Vweak_hash_tables;
4654 Vweak_hash_tables = table;
4655 }
4656
4657 return table;
4658 }
4659
4660
4661 /* Return a copy of hash table H1. Keys and values are not copied,
4662 only the table itself is. */
4663
4664 Lisp_Object
4665 copy_hash_table (h1)
4666 struct Lisp_Hash_Table *h1;
4667 {
4668 Lisp_Object table;
4669 struct Lisp_Hash_Table *h2;
4670 struct Lisp_Vector *next;
4671
4672 h2 = allocate_hash_table ();
4673 next = h2->vec_next;
4674 bcopy (h1, h2, sizeof *h2);
4675 h2->vec_next = next;
4676 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
4677 h2->hash = Fcopy_sequence (h1->hash);
4678 h2->next = Fcopy_sequence (h1->next);
4679 h2->index = Fcopy_sequence (h1->index);
4680 XSET_HASH_TABLE (table, h2);
4681
4682 /* Maybe add this hash table to the list of all weak hash tables. */
4683 if (!NILP (h2->weak))
4684 {
4685 h2->next_weak = Vweak_hash_tables;
4686 Vweak_hash_tables = table;
4687 }
4688
4689 return table;
4690 }
4691
4692
4693 /* Resize hash table H if it's too full. If H cannot be resized
4694 because it's already too large, throw an error. */
4695
4696 static INLINE void
4697 maybe_resize_hash_table (h)
4698 struct Lisp_Hash_Table *h;
4699 {
4700 if (NILP (h->next_free))
4701 {
4702 int old_size = HASH_TABLE_SIZE (h);
4703 int i, new_size, index_size;
4704
4705 if (INTEGERP (h->rehash_size))
4706 new_size = old_size + XFASTINT (h->rehash_size);
4707 else
4708 new_size = old_size * XFLOATINT (h->rehash_size);
4709 new_size = max (old_size + 1, new_size);
4710 index_size = next_almost_prime ((int)
4711 (new_size
4712 / XFLOATINT (h->rehash_threshold)));
4713 if (max (index_size, 2 * new_size) > MOST_POSITIVE_FIXNUM)
4714 error ("Hash table too large to resize");
4715
4716 h->key_and_value = larger_vector (h->key_and_value, 2 * new_size, Qnil);
4717 h->next = larger_vector (h->next, new_size, Qnil);
4718 h->hash = larger_vector (h->hash, new_size, Qnil);
4719 h->index = Fmake_vector (make_number (index_size), Qnil);
4720
4721 /* Update the free list. Do it so that new entries are added at
4722 the end of the free list. This makes some operations like
4723 maphash faster. */
4724 for (i = old_size; i < new_size - 1; ++i)
4725 HASH_NEXT (h, i) = make_number (i + 1);
4726
4727 if (!NILP (h->next_free))
4728 {
4729 Lisp_Object last, next;
4730
4731 last = h->next_free;
4732 while (next = HASH_NEXT (h, XFASTINT (last)),
4733 !NILP (next))
4734 last = next;
4735
4736 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
4737 }
4738 else
4739 XSETFASTINT (h->next_free, old_size);
4740
4741 /* Rehash. */
4742 for (i = 0; i < old_size; ++i)
4743 if (!NILP (HASH_HASH (h, i)))
4744 {
4745 unsigned hash_code = XUINT (HASH_HASH (h, i));
4746 int start_of_bucket = hash_code % XVECTOR (h->index)->size;
4747 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4748 HASH_INDEX (h, start_of_bucket) = make_number (i);
4749 }
4750 }
4751 }
4752
4753
4754 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
4755 the hash code of KEY. Value is the index of the entry in H
4756 matching KEY, or -1 if not found. */
4757
4758 int
4759 hash_lookup (h, key, hash)
4760 struct Lisp_Hash_Table *h;
4761 Lisp_Object key;
4762 unsigned *hash;
4763 {
4764 unsigned hash_code;
4765 int start_of_bucket;
4766 Lisp_Object idx;
4767
4768 hash_code = h->hashfn (h, key);
4769 if (hash)
4770 *hash = hash_code;
4771
4772 start_of_bucket = hash_code % XVECTOR (h->index)->size;
4773 idx = HASH_INDEX (h, start_of_bucket);
4774
4775 /* We need not gcpro idx since it's either an integer or nil. */
4776 while (!NILP (idx))
4777 {
4778 int i = XFASTINT (idx);
4779 if (EQ (key, HASH_KEY (h, i))
4780 || (h->cmpfn
4781 && h->cmpfn (h, key, hash_code,
4782 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4783 break;
4784 idx = HASH_NEXT (h, i);
4785 }
4786
4787 return NILP (idx) ? -1 : XFASTINT (idx);
4788 }
4789
4790
4791 /* Put an entry into hash table H that associates KEY with VALUE.
4792 HASH is a previously computed hash code of KEY.
4793 Value is the index of the entry in H matching KEY. */
4794
4795 int
4796 hash_put (h, key, value, hash)
4797 struct Lisp_Hash_Table *h;
4798 Lisp_Object key, value;
4799 unsigned hash;
4800 {
4801 int start_of_bucket, i;
4802
4803 xassert ((hash & ~INTMASK) == 0);
4804
4805 /* Increment count after resizing because resizing may fail. */
4806 maybe_resize_hash_table (h);
4807 h->count = make_number (XFASTINT (h->count) + 1);
4808
4809 /* Store key/value in the key_and_value vector. */
4810 i = XFASTINT (h->next_free);
4811 h->next_free = HASH_NEXT (h, i);
4812 HASH_KEY (h, i) = key;
4813 HASH_VALUE (h, i) = value;
4814
4815 /* Remember its hash code. */
4816 HASH_HASH (h, i) = make_number (hash);
4817
4818 /* Add new entry to its collision chain. */
4819 start_of_bucket = hash % XVECTOR (h->index)->size;
4820 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4821 HASH_INDEX (h, start_of_bucket) = make_number (i);
4822 return i;
4823 }
4824
4825
4826 /* Remove the entry matching KEY from hash table H, if there is one. */
4827
4828 void
4829 hash_remove (h, key)
4830 struct Lisp_Hash_Table *h;
4831 Lisp_Object key;
4832 {
4833 unsigned hash_code;
4834 int start_of_bucket;
4835 Lisp_Object idx, prev;
4836
4837 hash_code = h->hashfn (h, key);
4838 start_of_bucket = hash_code % XVECTOR (h->index)->size;
4839 idx = HASH_INDEX (h, start_of_bucket);
4840 prev = Qnil;
4841
4842 /* We need not gcpro idx, prev since they're either integers or nil. */
4843 while (!NILP (idx))
4844 {
4845 int i = XFASTINT (idx);
4846
4847 if (EQ (key, HASH_KEY (h, i))
4848 || (h->cmpfn
4849 && h->cmpfn (h, key, hash_code,
4850 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4851 {
4852 /* Take entry out of collision chain. */
4853 if (NILP (prev))
4854 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
4855 else
4856 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
4857
4858 /* Clear slots in key_and_value and add the slots to
4859 the free list. */
4860 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
4861 HASH_NEXT (h, i) = h->next_free;
4862 h->next_free = make_number (i);
4863 h->count = make_number (XFASTINT (h->count) - 1);
4864 xassert (XINT (h->count) >= 0);
4865 break;
4866 }
4867 else
4868 {
4869 prev = idx;
4870 idx = HASH_NEXT (h, i);
4871 }
4872 }
4873 }
4874
4875
4876 /* Clear hash table H. */
4877
4878 void
4879 hash_clear (h)
4880 struct Lisp_Hash_Table *h;
4881 {
4882 if (XFASTINT (h->count) > 0)
4883 {
4884 int i, size = HASH_TABLE_SIZE (h);
4885
4886 for (i = 0; i < size; ++i)
4887 {
4888 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
4889 HASH_KEY (h, i) = Qnil;
4890 HASH_VALUE (h, i) = Qnil;
4891 HASH_HASH (h, i) = Qnil;
4892 }
4893
4894 for (i = 0; i < XVECTOR (h->index)->size; ++i)
4895 XVECTOR (h->index)->contents[i] = Qnil;
4896
4897 h->next_free = make_number (0);
4898 h->count = make_number (0);
4899 }
4900 }
4901
4902
4903 \f
4904 /************************************************************************
4905 Weak Hash Tables
4906 ************************************************************************/
4907
4908 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
4909 entries from the table that don't survive the current GC.
4910 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
4911 non-zero if anything was marked. */
4912
4913 static int
4914 sweep_weak_table (h, remove_entries_p)
4915 struct Lisp_Hash_Table *h;
4916 int remove_entries_p;
4917 {
4918 int bucket, n, marked;
4919
4920 n = XVECTOR (h->index)->size & ~ARRAY_MARK_FLAG;
4921 marked = 0;
4922
4923 for (bucket = 0; bucket < n; ++bucket)
4924 {
4925 Lisp_Object idx, next, prev;
4926
4927 /* Follow collision chain, removing entries that
4928 don't survive this garbage collection. */
4929 prev = Qnil;
4930 for (idx = HASH_INDEX (h, bucket); !GC_NILP (idx); idx = next)
4931 {
4932 int i = XFASTINT (idx);
4933 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
4934 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
4935 int remove_p;
4936
4937 if (EQ (h->weak, Qkey))
4938 remove_p = !key_known_to_survive_p;
4939 else if (EQ (h->weak, Qvalue))
4940 remove_p = !value_known_to_survive_p;
4941 else if (EQ (h->weak, Qkey_or_value))
4942 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
4943 else if (EQ (h->weak, Qkey_and_value))
4944 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
4945 else
4946 abort ();
4947
4948 next = HASH_NEXT (h, i);
4949
4950 if (remove_entries_p)
4951 {
4952 if (remove_p)
4953 {
4954 /* Take out of collision chain. */
4955 if (GC_NILP (prev))
4956 HASH_INDEX (h, bucket) = next;
4957 else
4958 HASH_NEXT (h, XFASTINT (prev)) = next;
4959
4960 /* Add to free list. */
4961 HASH_NEXT (h, i) = h->next_free;
4962 h->next_free = idx;
4963
4964 /* Clear key, value, and hash. */
4965 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
4966 HASH_HASH (h, i) = Qnil;
4967
4968 h->count = make_number (XFASTINT (h->count) - 1);
4969 }
4970 else
4971 {
4972 prev = idx;
4973 }
4974 }
4975 else
4976 {
4977 if (!remove_p)
4978 {
4979 /* Make sure key and value survive. */
4980 if (!key_known_to_survive_p)
4981 {
4982 mark_object (HASH_KEY (h, i));
4983 marked = 1;
4984 }
4985
4986 if (!value_known_to_survive_p)
4987 {
4988 mark_object (HASH_VALUE (h, i));
4989 marked = 1;
4990 }
4991 }
4992 }
4993 }
4994 }
4995
4996 return marked;
4997 }
4998
4999 /* Remove elements from weak hash tables that don't survive the
5000 current garbage collection. Remove weak tables that don't survive
5001 from Vweak_hash_tables. Called from gc_sweep. */
5002
5003 void
5004 sweep_weak_hash_tables ()
5005 {
5006 Lisp_Object table, used, next;
5007 struct Lisp_Hash_Table *h;
5008 int marked;
5009
5010 /* Mark all keys and values that are in use. Keep on marking until
5011 there is no more change. This is necessary for cases like
5012 value-weak table A containing an entry X -> Y, where Y is used in a
5013 key-weak table B, Z -> Y. If B comes after A in the list of weak
5014 tables, X -> Y might be removed from A, although when looking at B
5015 one finds that it shouldn't. */
5016 do
5017 {
5018 marked = 0;
5019 for (table = Vweak_hash_tables; !GC_NILP (table); table = h->next_weak)
5020 {
5021 h = XHASH_TABLE (table);
5022 if (h->size & ARRAY_MARK_FLAG)
5023 marked |= sweep_weak_table (h, 0);
5024 }
5025 }
5026 while (marked);
5027
5028 /* Remove tables and entries that aren't used. */
5029 for (table = Vweak_hash_tables, used = Qnil; !GC_NILP (table); table = next)
5030 {
5031 h = XHASH_TABLE (table);
5032 next = h->next_weak;
5033
5034 if (h->size & ARRAY_MARK_FLAG)
5035 {
5036 /* TABLE is marked as used. Sweep its contents. */
5037 if (XFASTINT (h->count) > 0)
5038 sweep_weak_table (h, 1);
5039
5040 /* Add table to the list of used weak hash tables. */
5041 h->next_weak = used;
5042 used = table;
5043 }
5044 }
5045
5046 Vweak_hash_tables = used;
5047 }
5048
5049
5050 \f
5051 /***********************************************************************
5052 Hash Code Computation
5053 ***********************************************************************/
5054
5055 /* Maximum depth up to which to dive into Lisp structures. */
5056
5057 #define SXHASH_MAX_DEPTH 3
5058
5059 /* Maximum length up to which to take list and vector elements into
5060 account. */
5061
5062 #define SXHASH_MAX_LEN 7
5063
5064 /* Combine two integers X and Y for hashing. */
5065
5066 #define SXHASH_COMBINE(X, Y) \
5067 ((((unsigned)(X) << 4) + (((unsigned)(X) >> 24) & 0x0fffffff)) \
5068 + (unsigned)(Y))
5069
5070
5071 /* Return a hash for string PTR which has length LEN. The hash
5072 code returned is guaranteed to fit in a Lisp integer. */
5073
5074 static unsigned
5075 sxhash_string (ptr, len)
5076 unsigned char *ptr;
5077 int len;
5078 {
5079 unsigned char *p = ptr;
5080 unsigned char *end = p + len;
5081 unsigned char c;
5082 unsigned hash = 0;
5083
5084 while (p != end)
5085 {
5086 c = *p++;
5087 if (c >= 0140)
5088 c -= 40;
5089 hash = ((hash << 3) + (hash >> 28) + c);
5090 }
5091
5092 return hash & INTMASK;
5093 }
5094
5095
5096 /* Return a hash for list LIST. DEPTH is the current depth in the
5097 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
5098
5099 static unsigned
5100 sxhash_list (list, depth)
5101 Lisp_Object list;
5102 int depth;
5103 {
5104 unsigned hash = 0;
5105 int i;
5106
5107 if (depth < SXHASH_MAX_DEPTH)
5108 for (i = 0;
5109 CONSP (list) && i < SXHASH_MAX_LEN;
5110 list = XCDR (list), ++i)
5111 {
5112 unsigned hash2 = sxhash (XCAR (list), depth + 1);
5113 hash = SXHASH_COMBINE (hash, hash2);
5114 }
5115
5116 return hash;
5117 }
5118
5119
5120 /* Return a hash for vector VECTOR. DEPTH is the current depth in
5121 the Lisp structure. */
5122
5123 static unsigned
5124 sxhash_vector (vec, depth)
5125 Lisp_Object vec;
5126 int depth;
5127 {
5128 unsigned hash = XVECTOR (vec)->size;
5129 int i, n;
5130
5131 n = min (SXHASH_MAX_LEN, XVECTOR (vec)->size);
5132 for (i = 0; i < n; ++i)
5133 {
5134 unsigned hash2 = sxhash (XVECTOR (vec)->contents[i], depth + 1);
5135 hash = SXHASH_COMBINE (hash, hash2);
5136 }
5137
5138 return hash;
5139 }
5140
5141
5142 /* Return a hash for bool-vector VECTOR. */
5143
5144 static unsigned
5145 sxhash_bool_vector (vec)
5146 Lisp_Object vec;
5147 {
5148 unsigned hash = XBOOL_VECTOR (vec)->size;
5149 int i, n;
5150
5151 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->vector_size);
5152 for (i = 0; i < n; ++i)
5153 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
5154
5155 return hash;
5156 }
5157
5158
5159 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
5160 structure. Value is an unsigned integer clipped to INTMASK. */
5161
5162 unsigned
5163 sxhash (obj, depth)
5164 Lisp_Object obj;
5165 int depth;
5166 {
5167 unsigned hash;
5168
5169 if (depth > SXHASH_MAX_DEPTH)
5170 return 0;
5171
5172 switch (XTYPE (obj))
5173 {
5174 case Lisp_Int:
5175 hash = XUINT (obj);
5176 break;
5177
5178 case Lisp_Misc:
5179 hash = XUINT (obj);
5180 break;
5181
5182 case Lisp_Symbol:
5183 obj = SYMBOL_NAME (obj);
5184 /* Fall through. */
5185
5186 case Lisp_String:
5187 hash = sxhash_string (SDATA (obj), SCHARS (obj));
5188 break;
5189
5190 /* This can be everything from a vector to an overlay. */
5191 case Lisp_Vectorlike:
5192 if (VECTORP (obj))
5193 /* According to the CL HyperSpec, two arrays are equal only if
5194 they are `eq', except for strings and bit-vectors. In
5195 Emacs, this works differently. We have to compare element
5196 by element. */
5197 hash = sxhash_vector (obj, depth);
5198 else if (BOOL_VECTOR_P (obj))
5199 hash = sxhash_bool_vector (obj);
5200 else
5201 /* Others are `equal' if they are `eq', so let's take their
5202 address as hash. */
5203 hash = XUINT (obj);
5204 break;
5205
5206 case Lisp_Cons:
5207 hash = sxhash_list (obj, depth);
5208 break;
5209
5210 case Lisp_Float:
5211 {
5212 unsigned char *p = (unsigned char *) &XFLOAT_DATA (obj);
5213 unsigned char *e = p + sizeof XFLOAT_DATA (obj);
5214 for (hash = 0; p < e; ++p)
5215 hash = SXHASH_COMBINE (hash, *p);
5216 break;
5217 }
5218
5219 default:
5220 abort ();
5221 }
5222
5223 return hash & INTMASK;
5224 }
5225
5226
5227 \f
5228 /***********************************************************************
5229 Lisp Interface
5230 ***********************************************************************/
5231
5232
5233 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
5234 doc: /* Compute a hash code for OBJ and return it as integer. */)
5235 (obj)
5236 Lisp_Object obj;
5237 {
5238 unsigned hash = sxhash (obj, 0);;
5239 return make_number (hash);
5240 }
5241
5242
5243 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
5244 doc: /* Create and return a new hash table.
5245
5246 Arguments are specified as keyword/argument pairs. The following
5247 arguments are defined:
5248
5249 :test TEST -- TEST must be a symbol that specifies how to compare
5250 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
5251 `equal'. User-supplied test and hash functions can be specified via
5252 `define-hash-table-test'.
5253
5254 :size SIZE -- A hint as to how many elements will be put in the table.
5255 Default is 65.
5256
5257 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
5258 fills up. If REHASH-SIZE is an integer, add that many space. If it
5259 is a float, it must be > 1.0, and the new size is computed by
5260 multiplying the old size with that factor. Default is 1.5.
5261
5262 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
5263 Resize the hash table when ratio of the number of entries in the
5264 table. Default is 0.8.
5265
5266 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
5267 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
5268 returned is a weak table. Key/value pairs are removed from a weak
5269 hash table when there are no non-weak references pointing to their
5270 key, value, one of key or value, or both key and value, depending on
5271 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
5272 is nil.
5273
5274 usage: (make-hash-table &rest KEYWORD-ARGS) */)
5275 (nargs, args)
5276 int nargs;
5277 Lisp_Object *args;
5278 {
5279 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
5280 Lisp_Object user_test, user_hash;
5281 char *used;
5282 int i;
5283
5284 /* The vector `used' is used to keep track of arguments that
5285 have been consumed. */
5286 used = (char *) alloca (nargs * sizeof *used);
5287 bzero (used, nargs * sizeof *used);
5288
5289 /* See if there's a `:test TEST' among the arguments. */
5290 i = get_key_arg (QCtest, nargs, args, used);
5291 test = i < 0 ? Qeql : args[i];
5292 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
5293 {
5294 /* See if it is a user-defined test. */
5295 Lisp_Object prop;
5296
5297 prop = Fget (test, Qhash_table_test);
5298 if (!CONSP (prop) || !CONSP (XCDR (prop)))
5299 Fsignal (Qerror, list2 (build_string ("Invalid hash table test"),
5300 test));
5301 user_test = XCAR (prop);
5302 user_hash = XCAR (XCDR (prop));
5303 }
5304 else
5305 user_test = user_hash = Qnil;
5306
5307 /* See if there's a `:size SIZE' argument. */
5308 i = get_key_arg (QCsize, nargs, args, used);
5309 size = i < 0 ? Qnil : args[i];
5310 if (NILP (size))
5311 size = make_number (DEFAULT_HASH_SIZE);
5312 else if (!INTEGERP (size) || XINT (size) < 0)
5313 Fsignal (Qerror,
5314 list2 (build_string ("Invalid hash table size"),
5315 size));
5316
5317 /* Look for `:rehash-size SIZE'. */
5318 i = get_key_arg (QCrehash_size, nargs, args, used);
5319 rehash_size = i < 0 ? make_float (DEFAULT_REHASH_SIZE) : args[i];
5320 if (!NUMBERP (rehash_size)
5321 || (INTEGERP (rehash_size) && XINT (rehash_size) <= 0)
5322 || XFLOATINT (rehash_size) <= 1.0)
5323 Fsignal (Qerror,
5324 list2 (build_string ("Invalid hash table rehash size"),
5325 rehash_size));
5326
5327 /* Look for `:rehash-threshold THRESHOLD'. */
5328 i = get_key_arg (QCrehash_threshold, nargs, args, used);
5329 rehash_threshold = i < 0 ? make_float (DEFAULT_REHASH_THRESHOLD) : args[i];
5330 if (!FLOATP (rehash_threshold)
5331 || XFLOATINT (rehash_threshold) <= 0.0
5332 || XFLOATINT (rehash_threshold) > 1.0)
5333 Fsignal (Qerror,
5334 list2 (build_string ("Invalid hash table rehash threshold"),
5335 rehash_threshold));
5336
5337 /* Look for `:weakness WEAK'. */
5338 i = get_key_arg (QCweakness, nargs, args, used);
5339 weak = i < 0 ? Qnil : args[i];
5340 if (EQ (weak, Qt))
5341 weak = Qkey_and_value;
5342 if (!NILP (weak)
5343 && !EQ (weak, Qkey)
5344 && !EQ (weak, Qvalue)
5345 && !EQ (weak, Qkey_or_value)
5346 && !EQ (weak, Qkey_and_value))
5347 Fsignal (Qerror, list2 (build_string ("Invalid hash table weakness"),
5348 weak));
5349
5350 /* Now, all args should have been used up, or there's a problem. */
5351 for (i = 0; i < nargs; ++i)
5352 if (!used[i])
5353 Fsignal (Qerror,
5354 list2 (build_string ("Invalid argument list"), args[i]));
5355
5356 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
5357 user_test, user_hash);
5358 }
5359
5360
5361 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
5362 doc: /* Return a copy of hash table TABLE. */)
5363 (table)
5364 Lisp_Object table;
5365 {
5366 return copy_hash_table (check_hash_table (table));
5367 }
5368
5369
5370 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
5371 doc: /* Return the number of elements in TABLE. */)
5372 (table)
5373 Lisp_Object table;
5374 {
5375 return check_hash_table (table)->count;
5376 }
5377
5378
5379 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
5380 Shash_table_rehash_size, 1, 1, 0,
5381 doc: /* Return the current rehash size of TABLE. */)
5382 (table)
5383 Lisp_Object table;
5384 {
5385 return check_hash_table (table)->rehash_size;
5386 }
5387
5388
5389 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
5390 Shash_table_rehash_threshold, 1, 1, 0,
5391 doc: /* Return the current rehash threshold of TABLE. */)
5392 (table)
5393 Lisp_Object table;
5394 {
5395 return check_hash_table (table)->rehash_threshold;
5396 }
5397
5398
5399 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
5400 doc: /* Return the size of TABLE.
5401 The size can be used as an argument to `make-hash-table' to create
5402 a hash table than can hold as many elements of TABLE holds
5403 without need for resizing. */)
5404 (table)
5405 Lisp_Object table;
5406 {
5407 struct Lisp_Hash_Table *h = check_hash_table (table);
5408 return make_number (HASH_TABLE_SIZE (h));
5409 }
5410
5411
5412 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
5413 doc: /* Return the test TABLE uses. */)
5414 (table)
5415 Lisp_Object table;
5416 {
5417 return check_hash_table (table)->test;
5418 }
5419
5420
5421 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
5422 1, 1, 0,
5423 doc: /* Return the weakness of TABLE. */)
5424 (table)
5425 Lisp_Object table;
5426 {
5427 return check_hash_table (table)->weak;
5428 }
5429
5430
5431 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
5432 doc: /* Return t if OBJ is a Lisp hash table object. */)
5433 (obj)
5434 Lisp_Object obj;
5435 {
5436 return HASH_TABLE_P (obj) ? Qt : Qnil;
5437 }
5438
5439
5440 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
5441 doc: /* Clear hash table TABLE. */)
5442 (table)
5443 Lisp_Object table;
5444 {
5445 hash_clear (check_hash_table (table));
5446 return Qnil;
5447 }
5448
5449
5450 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
5451 doc: /* Look up KEY in TABLE and return its associated value.
5452 If KEY is not found, return DFLT which defaults to nil. */)
5453 (key, table, dflt)
5454 Lisp_Object key, table, dflt;
5455 {
5456 struct Lisp_Hash_Table *h = check_hash_table (table);
5457 int i = hash_lookup (h, key, NULL);
5458 return i >= 0 ? HASH_VALUE (h, i) : dflt;
5459 }
5460
5461
5462 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
5463 doc: /* Associate KEY with VALUE in hash table TABLE.
5464 If KEY is already present in table, replace its current value with
5465 VALUE. */)
5466 (key, value, table)
5467 Lisp_Object key, value, table;
5468 {
5469 struct Lisp_Hash_Table *h = check_hash_table (table);
5470 int i;
5471 unsigned hash;
5472
5473 i = hash_lookup (h, key, &hash);
5474 if (i >= 0)
5475 HASH_VALUE (h, i) = value;
5476 else
5477 hash_put (h, key, value, hash);
5478
5479 return value;
5480 }
5481
5482
5483 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
5484 doc: /* Remove KEY from TABLE. */)
5485 (key, table)
5486 Lisp_Object key, table;
5487 {
5488 struct Lisp_Hash_Table *h = check_hash_table (table);
5489 hash_remove (h, key);
5490 return Qnil;
5491 }
5492
5493
5494 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
5495 doc: /* Call FUNCTION for all entries in hash table TABLE.
5496 FUNCTION is called with two arguments, KEY and VALUE. */)
5497 (function, table)
5498 Lisp_Object function, table;
5499 {
5500 struct Lisp_Hash_Table *h = check_hash_table (table);
5501 Lisp_Object args[3];
5502 int i;
5503
5504 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
5505 if (!NILP (HASH_HASH (h, i)))
5506 {
5507 args[0] = function;
5508 args[1] = HASH_KEY (h, i);
5509 args[2] = HASH_VALUE (h, i);
5510 Ffuncall (3, args);
5511 }
5512
5513 return Qnil;
5514 }
5515
5516
5517 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
5518 Sdefine_hash_table_test, 3, 3, 0,
5519 doc: /* Define a new hash table test with name NAME, a symbol.
5520
5521 In hash tables created with NAME specified as test, use TEST to
5522 compare keys, and HASH for computing hash codes of keys.
5523
5524 TEST must be a function taking two arguments and returning non-nil if
5525 both arguments are the same. HASH must be a function taking one
5526 argument and return an integer that is the hash code of the argument.
5527 Hash code computation should use the whole value range of integers,
5528 including negative integers. */)
5529 (name, test, hash)
5530 Lisp_Object name, test, hash;
5531 {
5532 return Fput (name, Qhash_table_test, list2 (test, hash));
5533 }
5534
5535
5536 \f
5537 /************************************************************************
5538 MD5
5539 ************************************************************************/
5540
5541 #include "md5.h"
5542 #include "coding.h"
5543
5544 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
5545 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
5546
5547 A message digest is a cryptographic checksum of a document, and the
5548 algorithm to calculate it is defined in RFC 1321.
5549
5550 The two optional arguments START and END are character positions
5551 specifying for which part of OBJECT the message digest should be
5552 computed. If nil or omitted, the digest is computed for the whole
5553 OBJECT.
5554
5555 The MD5 message digest is computed from the result of encoding the
5556 text in a coding system, not directly from the internal Emacs form of
5557 the text. The optional fourth argument CODING-SYSTEM specifies which
5558 coding system to encode the text with. It should be the same coding
5559 system that you used or will use when actually writing the text into a
5560 file.
5561
5562 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
5563 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
5564 system would be chosen by default for writing this text into a file.
5565
5566 If OBJECT is a string, the most preferred coding system (see the
5567 command `prefer-coding-system') is used.
5568
5569 If NOERROR is non-nil, silently assume the `raw-text' coding if the
5570 guesswork fails. Normally, an error is signaled in such case. */)
5571 (object, start, end, coding_system, noerror)
5572 Lisp_Object object, start, end, coding_system, noerror;
5573 {
5574 unsigned char digest[16];
5575 unsigned char value[33];
5576 int i;
5577 int size;
5578 int size_byte = 0;
5579 int start_char = 0, end_char = 0;
5580 int start_byte = 0, end_byte = 0;
5581 register int b, e;
5582 register struct buffer *bp;
5583 int temp;
5584
5585 if (STRINGP (object))
5586 {
5587 if (NILP (coding_system))
5588 {
5589 /* Decide the coding-system to encode the data with. */
5590
5591 if (STRING_MULTIBYTE (object))
5592 /* use default, we can't guess correct value */
5593 coding_system = SYMBOL_VALUE (XCAR (Vcoding_category_list));
5594 else
5595 coding_system = Qraw_text;
5596 }
5597
5598 if (NILP (Fcoding_system_p (coding_system)))
5599 {
5600 /* Invalid coding system. */
5601
5602 if (!NILP (noerror))
5603 coding_system = Qraw_text;
5604 else
5605 while (1)
5606 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
5607 }
5608
5609 if (STRING_MULTIBYTE (object))
5610 object = code_convert_string1 (object, coding_system, Qnil, 1);
5611
5612 size = SCHARS (object);
5613 size_byte = SBYTES (object);
5614
5615 if (!NILP (start))
5616 {
5617 CHECK_NUMBER (start);
5618
5619 start_char = XINT (start);
5620
5621 if (start_char < 0)
5622 start_char += size;
5623
5624 start_byte = string_char_to_byte (object, start_char);
5625 }
5626
5627 if (NILP (end))
5628 {
5629 end_char = size;
5630 end_byte = size_byte;
5631 }
5632 else
5633 {
5634 CHECK_NUMBER (end);
5635
5636 end_char = XINT (end);
5637
5638 if (end_char < 0)
5639 end_char += size;
5640
5641 end_byte = string_char_to_byte (object, end_char);
5642 }
5643
5644 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
5645 args_out_of_range_3 (object, make_number (start_char),
5646 make_number (end_char));
5647 }
5648 else
5649 {
5650 struct buffer *prev = current_buffer;
5651
5652 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
5653
5654 CHECK_BUFFER (object);
5655
5656 bp = XBUFFER (object);
5657 if (bp != current_buffer)
5658 set_buffer_internal (bp);
5659
5660 if (NILP (start))
5661 b = BEGV;
5662 else
5663 {
5664 CHECK_NUMBER_COERCE_MARKER (start);
5665 b = XINT (start);
5666 }
5667
5668 if (NILP (end))
5669 e = ZV;
5670 else
5671 {
5672 CHECK_NUMBER_COERCE_MARKER (end);
5673 e = XINT (end);
5674 }
5675
5676 if (b > e)
5677 temp = b, b = e, e = temp;
5678
5679 if (!(BEGV <= b && e <= ZV))
5680 args_out_of_range (start, end);
5681
5682 if (NILP (coding_system))
5683 {
5684 /* Decide the coding-system to encode the data with.
5685 See fileio.c:Fwrite-region */
5686
5687 if (!NILP (Vcoding_system_for_write))
5688 coding_system = Vcoding_system_for_write;
5689 else
5690 {
5691 int force_raw_text = 0;
5692
5693 coding_system = XBUFFER (object)->buffer_file_coding_system;
5694 if (NILP (coding_system)
5695 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
5696 {
5697 coding_system = Qnil;
5698 if (NILP (current_buffer->enable_multibyte_characters))
5699 force_raw_text = 1;
5700 }
5701
5702 if (NILP (coding_system) && !NILP (Fbuffer_file_name(object)))
5703 {
5704 /* Check file-coding-system-alist. */
5705 Lisp_Object args[4], val;
5706
5707 args[0] = Qwrite_region; args[1] = start; args[2] = end;
5708 args[3] = Fbuffer_file_name(object);
5709 val = Ffind_operation_coding_system (4, args);
5710 if (CONSP (val) && !NILP (XCDR (val)))
5711 coding_system = XCDR (val);
5712 }
5713
5714 if (NILP (coding_system)
5715 && !NILP (XBUFFER (object)->buffer_file_coding_system))
5716 {
5717 /* If we still have not decided a coding system, use the
5718 default value of buffer-file-coding-system. */
5719 coding_system = XBUFFER (object)->buffer_file_coding_system;
5720 }
5721
5722 if (!force_raw_text
5723 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
5724 /* Confirm that VAL can surely encode the current region. */
5725 coding_system = call4 (Vselect_safe_coding_system_function,
5726 make_number (b), make_number (e),
5727 coding_system, Qnil);
5728
5729 if (force_raw_text)
5730 coding_system = Qraw_text;
5731 }
5732
5733 if (NILP (Fcoding_system_p (coding_system)))
5734 {
5735 /* Invalid coding system. */
5736
5737 if (!NILP (noerror))
5738 coding_system = Qraw_text;
5739 else
5740 while (1)
5741 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
5742 }
5743 }
5744
5745 object = make_buffer_string (b, e, 0);
5746 if (prev != current_buffer)
5747 set_buffer_internal (prev);
5748 /* Discard the unwind protect for recovering the current
5749 buffer. */
5750 specpdl_ptr--;
5751
5752 if (STRING_MULTIBYTE (object))
5753 object = code_convert_string1 (object, coding_system, Qnil, 1);
5754 }
5755
5756 md5_buffer (SDATA (object) + start_byte,
5757 SBYTES (object) - (size_byte - end_byte),
5758 digest);
5759
5760 for (i = 0; i < 16; i++)
5761 sprintf (&value[2 * i], "%02x", digest[i]);
5762 value[32] = '\0';
5763
5764 return make_string (value, 32);
5765 }
5766
5767 \f
5768 void
5769 syms_of_fns ()
5770 {
5771 /* Hash table stuff. */
5772 Qhash_table_p = intern ("hash-table-p");
5773 staticpro (&Qhash_table_p);
5774 Qeq = intern ("eq");
5775 staticpro (&Qeq);
5776 Qeql = intern ("eql");
5777 staticpro (&Qeql);
5778 Qequal = intern ("equal");
5779 staticpro (&Qequal);
5780 QCtest = intern (":test");
5781 staticpro (&QCtest);
5782 QCsize = intern (":size");
5783 staticpro (&QCsize);
5784 QCrehash_size = intern (":rehash-size");
5785 staticpro (&QCrehash_size);
5786 QCrehash_threshold = intern (":rehash-threshold");
5787 staticpro (&QCrehash_threshold);
5788 QCweakness = intern (":weakness");
5789 staticpro (&QCweakness);
5790 Qkey = intern ("key");
5791 staticpro (&Qkey);
5792 Qvalue = intern ("value");
5793 staticpro (&Qvalue);
5794 Qhash_table_test = intern ("hash-table-test");
5795 staticpro (&Qhash_table_test);
5796 Qkey_or_value = intern ("key-or-value");
5797 staticpro (&Qkey_or_value);
5798 Qkey_and_value = intern ("key-and-value");
5799 staticpro (&Qkey_and_value);
5800
5801 defsubr (&Ssxhash);
5802 defsubr (&Smake_hash_table);
5803 defsubr (&Scopy_hash_table);
5804 defsubr (&Shash_table_count);
5805 defsubr (&Shash_table_rehash_size);
5806 defsubr (&Shash_table_rehash_threshold);
5807 defsubr (&Shash_table_size);
5808 defsubr (&Shash_table_test);
5809 defsubr (&Shash_table_weakness);
5810 defsubr (&Shash_table_p);
5811 defsubr (&Sclrhash);
5812 defsubr (&Sgethash);
5813 defsubr (&Sputhash);
5814 defsubr (&Sremhash);
5815 defsubr (&Smaphash);
5816 defsubr (&Sdefine_hash_table_test);
5817
5818 Qstring_lessp = intern ("string-lessp");
5819 staticpro (&Qstring_lessp);
5820 Qprovide = intern ("provide");
5821 staticpro (&Qprovide);
5822 Qrequire = intern ("require");
5823 staticpro (&Qrequire);
5824 Qyes_or_no_p_history = intern ("yes-or-no-p-history");
5825 staticpro (&Qyes_or_no_p_history);
5826 Qcursor_in_echo_area = intern ("cursor-in-echo-area");
5827 staticpro (&Qcursor_in_echo_area);
5828 Qwidget_type = intern ("widget-type");
5829 staticpro (&Qwidget_type);
5830
5831 staticpro (&string_char_byte_cache_string);
5832 string_char_byte_cache_string = Qnil;
5833
5834 require_nesting_list = Qnil;
5835 staticpro (&require_nesting_list);
5836
5837 Fset (Qyes_or_no_p_history, Qnil);
5838
5839 DEFVAR_LISP ("features", &Vfeatures,
5840 doc: /* A list of symbols which are the features of the executing emacs.
5841 Used by `featurep' and `require', and altered by `provide'. */);
5842 Vfeatures = Fcons (intern ("emacs"), Qnil);
5843 Qsubfeatures = intern ("subfeatures");
5844 staticpro (&Qsubfeatures);
5845
5846 #ifdef HAVE_LANGINFO_CODESET
5847 Qcodeset = intern ("codeset");
5848 staticpro (&Qcodeset);
5849 Qdays = intern ("days");
5850 staticpro (&Qdays);
5851 Qmonths = intern ("months");
5852 staticpro (&Qmonths);
5853 Qpaper = intern ("paper");
5854 staticpro (&Qpaper);
5855 #endif /* HAVE_LANGINFO_CODESET */
5856
5857 DEFVAR_BOOL ("use-dialog-box", &use_dialog_box,
5858 doc: /* *Non-nil means mouse commands use dialog boxes to ask questions.
5859 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
5860 invoked by mouse clicks and mouse menu items. */);
5861 use_dialog_box = 1;
5862
5863 DEFVAR_BOOL ("use-file-dialog", &use_file_dialog,
5864 doc: /* *Non-nil means mouse commands use a file dialog to ask for files.
5865 This applies to commands from menus and tool bar buttons. The value of
5866 `use-dialog-box' takes precedence over this variable, so a file dialog is only
5867 used if both `use-dialog-box' and this variable are non-nil. */);
5868 use_file_dialog = 1;
5869
5870 defsubr (&Sidentity);
5871 defsubr (&Srandom);
5872 defsubr (&Slength);
5873 defsubr (&Ssafe_length);
5874 defsubr (&Sstring_bytes);
5875 defsubr (&Sstring_equal);
5876 defsubr (&Scompare_strings);
5877 defsubr (&Sstring_lessp);
5878 defsubr (&Sappend);
5879 defsubr (&Sconcat);
5880 defsubr (&Svconcat);
5881 defsubr (&Scopy_sequence);
5882 defsubr (&Sstring_make_multibyte);
5883 defsubr (&Sstring_make_unibyte);
5884 defsubr (&Sstring_as_multibyte);
5885 defsubr (&Sstring_as_unibyte);
5886 defsubr (&Sstring_to_multibyte);
5887 defsubr (&Scopy_alist);
5888 defsubr (&Ssubstring);
5889 defsubr (&Ssubstring_no_properties);
5890 defsubr (&Snthcdr);
5891 defsubr (&Snth);
5892 defsubr (&Selt);
5893 defsubr (&Smember);
5894 defsubr (&Smemq);
5895 defsubr (&Sassq);
5896 defsubr (&Sassoc);
5897 defsubr (&Srassq);
5898 defsubr (&Srassoc);
5899 defsubr (&Sdelq);
5900 defsubr (&Sdelete);
5901 defsubr (&Snreverse);
5902 defsubr (&Sreverse);
5903 defsubr (&Ssort);
5904 defsubr (&Splist_get);
5905 defsubr (&Sget);
5906 defsubr (&Splist_put);
5907 defsubr (&Sput);
5908 defsubr (&Slax_plist_get);
5909 defsubr (&Slax_plist_put);
5910 defsubr (&Seql);
5911 defsubr (&Sequal);
5912 defsubr (&Sequal_including_properties);
5913 defsubr (&Sfillarray);
5914 defsubr (&Sclear_string);
5915 defsubr (&Schar_table_subtype);
5916 defsubr (&Schar_table_parent);
5917 defsubr (&Sset_char_table_parent);
5918 defsubr (&Schar_table_extra_slot);
5919 defsubr (&Sset_char_table_extra_slot);
5920 defsubr (&Schar_table_range);
5921 defsubr (&Sset_char_table_range);
5922 defsubr (&Sset_char_table_default);
5923 defsubr (&Soptimize_char_table);
5924 defsubr (&Smap_char_table);
5925 defsubr (&Snconc);
5926 defsubr (&Smapcar);
5927 defsubr (&Smapc);
5928 defsubr (&Smapconcat);
5929 defsubr (&Sy_or_n_p);
5930 defsubr (&Syes_or_no_p);
5931 defsubr (&Sload_average);
5932 defsubr (&Sfeaturep);
5933 defsubr (&Srequire);
5934 defsubr (&Sprovide);
5935 defsubr (&Splist_member);
5936 defsubr (&Swidget_put);
5937 defsubr (&Swidget_get);
5938 defsubr (&Swidget_apply);
5939 defsubr (&Sbase64_encode_region);
5940 defsubr (&Sbase64_decode_region);
5941 defsubr (&Sbase64_encode_string);
5942 defsubr (&Sbase64_decode_string);
5943 defsubr (&Smd5);
5944 defsubr (&Slocale_info);
5945 }
5946
5947
5948 void
5949 init_fns ()
5950 {
5951 Vweak_hash_tables = Qnil;
5952 }
5953
5954 /* arch-tag: 787f8219-5b74-46bd-8469-7e1cc475fa31
5955 (do not change this comment) */