]> code.delx.au - gnu-emacs/blob - src/regex.c
(comint-preinput-scroll-to-bottom): If SCROLL is `this',
[gnu-emacs] / src / regex.c
1 /* Extended regular expression matching and search library,
2 version 0.12.
3 (Implements POSIX draft P10003.2/D11.2, except for
4 internationalization features.)
5
6 Copyright (C) 1993 Free Software Foundation, Inc.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 /* AIX requires this to be the first thing in the file. */
23 #if defined (_AIX) && !defined (REGEX_MALLOC)
24 #pragma alloca
25 #endif
26
27 #define _GNU_SOURCE
28
29 #ifdef HAVE_CONFIG_H
30 #if defined (CONFIG_BROKETS)
31 /* We use <config.h> instead of "config.h" so that a compilation
32 using -I. -I$srcdir will use ./config.h rather than $srcdir/config.h
33 (which it would do because it found this file in $srcdir). */
34 #include <config.h>
35 #else
36 #include "config.h"
37 #endif
38 #endif
39
40 /* We need this for `regex.h', and perhaps for the Emacs include files. */
41 #include <sys/types.h>
42
43 #ifdef HAVE_CONFIG_H
44 #include "config.h"
45 #endif
46
47 /* The `emacs' switch turns on certain matching commands
48 that make sense only in Emacs. */
49 #ifdef emacs
50
51 #include "lisp.h"
52 #include "buffer.h"
53 #include "syntax.h"
54
55 /* Emacs uses `NULL' as a predicate. */
56 #undef NULL
57
58 #else /* not emacs */
59
60 #ifdef STDC_HEADERS
61 #include <stdlib.h>
62 #else
63 char *malloc ();
64 char *realloc ();
65 #endif
66
67
68 /* We used to test for `BSTRING' here, but only GCC and Emacs define
69 `BSTRING', as far as I know, and neither of them use this code. */
70 #if HAVE_STRING_H || STDC_HEADERS
71 #include <string.h>
72 #ifndef bcmp
73 #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
74 #endif
75 #ifndef bcopy
76 #define bcopy(s, d, n) memcpy ((d), (s), (n))
77 #endif
78 #ifndef bzero
79 #define bzero(s, n) memset ((s), 0, (n))
80 #endif
81 #else
82 #include <strings.h>
83 #endif
84
85 /* Define the syntax stuff for \<, \>, etc. */
86
87 /* This must be nonzero for the wordchar and notwordchar pattern
88 commands in re_match_2. */
89 #ifndef Sword
90 #define Sword 1
91 #endif
92
93 #ifdef SYNTAX_TABLE
94
95 extern char *re_syntax_table;
96
97 #else /* not SYNTAX_TABLE */
98
99 /* How many characters in the character set. */
100 #define CHAR_SET_SIZE 256
101
102 static char re_syntax_table[CHAR_SET_SIZE];
103
104 static void
105 init_syntax_once ()
106 {
107 register int c;
108 static int done = 0;
109
110 if (done)
111 return;
112
113 bzero (re_syntax_table, sizeof re_syntax_table);
114
115 for (c = 'a'; c <= 'z'; c++)
116 re_syntax_table[c] = Sword;
117
118 for (c = 'A'; c <= 'Z'; c++)
119 re_syntax_table[c] = Sword;
120
121 for (c = '0'; c <= '9'; c++)
122 re_syntax_table[c] = Sword;
123
124 re_syntax_table['_'] = Sword;
125
126 done = 1;
127 }
128
129 #endif /* not SYNTAX_TABLE */
130
131 #define SYNTAX(c) re_syntax_table[c]
132
133 #endif /* not emacs */
134 \f
135 /* Get the interface, including the syntax bits. */
136 #include "regex.h"
137
138 /* isalpha etc. are used for the character classes. */
139 #include <ctype.h>
140
141 /* Jim Meyering writes:
142
143 "... Some ctype macros are valid only for character codes that
144 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
145 using /bin/cc or gcc but without giving an ansi option). So, all
146 ctype uses should be through macros like ISPRINT... If
147 STDC_HEADERS is defined, then autoconf has verified that the ctype
148 macros don't need to be guarded with references to isascii. ...
149 Defining isascii to 1 should let any compiler worth its salt
150 eliminate the && through constant folding." */
151
152 #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
153 #define ISASCII(c) 1
154 #else
155 #define ISASCII(c) isascii(c)
156 #endif
157
158 #ifdef isblank
159 #define ISBLANK(c) (ISASCII (c) && isblank (c))
160 #else
161 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
162 #endif
163 #ifdef isgraph
164 #define ISGRAPH(c) (ISASCII (c) && isgraph (c))
165 #else
166 #define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
167 #endif
168
169 #define ISPRINT(c) (ISASCII (c) && isprint (c))
170 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
171 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
172 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
173 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
174 #define ISLOWER(c) (ISASCII (c) && islower (c))
175 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
176 #define ISSPACE(c) (ISASCII (c) && isspace (c))
177 #define ISUPPER(c) (ISASCII (c) && isupper (c))
178 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
179
180 #ifndef NULL
181 #define NULL 0
182 #endif
183
184 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
185 since ours (we hope) works properly with all combinations of
186 machines, compilers, `char' and `unsigned char' argument types.
187 (Per Bothner suggested the basic approach.) */
188 #undef SIGN_EXTEND_CHAR
189 #if __STDC__
190 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
191 #else /* not __STDC__ */
192 /* As in Harbison and Steele. */
193 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
194 #endif
195 \f
196 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
197 use `alloca' instead of `malloc'. This is because using malloc in
198 re_search* or re_match* could cause memory leaks when C-g is used in
199 Emacs; also, malloc is slower and causes storage fragmentation. On
200 the other hand, malloc is more portable, and easier to debug.
201
202 Because we sometimes use alloca, some routines have to be macros,
203 not functions -- `alloca'-allocated space disappears at the end of the
204 function it is called in. */
205
206 #ifdef REGEX_MALLOC
207
208 #define REGEX_ALLOCATE malloc
209 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
210
211 #else /* not REGEX_MALLOC */
212
213 /* Emacs already defines alloca, sometimes. */
214 #ifndef alloca
215
216 /* Make alloca work the best possible way. */
217 #ifdef __GNUC__
218 #define alloca __builtin_alloca
219 #else /* not __GNUC__ */
220 #if HAVE_ALLOCA_H
221 #include <alloca.h>
222 #else /* not __GNUC__ or HAVE_ALLOCA_H */
223 #ifndef _AIX /* Already did AIX, up at the top. */
224 char *alloca ();
225 #endif /* not _AIX */
226 #endif /* not HAVE_ALLOCA_H */
227 #endif /* not __GNUC__ */
228
229 #endif /* not alloca */
230
231 #define REGEX_ALLOCATE alloca
232
233 /* Assumes a `char *destination' variable. */
234 #define REGEX_REALLOCATE(source, osize, nsize) \
235 (destination = (char *) alloca (nsize), \
236 bcopy (source, destination, osize), \
237 destination)
238
239 #endif /* not REGEX_MALLOC */
240
241
242 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
243 `string1' or just past its end. This works if PTR is NULL, which is
244 a good thing. */
245 #define FIRST_STRING_P(ptr) \
246 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
247
248 /* (Re)Allocate N items of type T using malloc, or fail. */
249 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
250 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
251 #define RETALLOC_IF(addr, n, t) \
252 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
253 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
254
255 #define BYTEWIDTH 8 /* In bits. */
256
257 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
258
259 #define MAX(a, b) ((a) > (b) ? (a) : (b))
260 #define MIN(a, b) ((a) < (b) ? (a) : (b))
261
262 typedef char boolean;
263 #define false 0
264 #define true 1
265 \f
266 /* These are the command codes that appear in compiled regular
267 expressions. Some opcodes are followed by argument bytes. A
268 command code can specify any interpretation whatsoever for its
269 arguments. Zero bytes may appear in the compiled regular expression.
270
271 The value of `exactn' is needed in search.c (search_buffer) in Emacs.
272 So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
273 `exactn' we use here must also be 1. */
274
275 typedef enum
276 {
277 no_op = 0,
278
279 /* Followed by one byte giving n, then by n literal bytes. */
280 exactn = 1,
281
282 /* Matches any (more or less) character. */
283 anychar,
284
285 /* Matches any one char belonging to specified set. First
286 following byte is number of bitmap bytes. Then come bytes
287 for a bitmap saying which chars are in. Bits in each byte
288 are ordered low-bit-first. A character is in the set if its
289 bit is 1. A character too large to have a bit in the map is
290 automatically not in the set. */
291 charset,
292
293 /* Same parameters as charset, but match any character that is
294 not one of those specified. */
295 charset_not,
296
297 /* Start remembering the text that is matched, for storing in a
298 register. Followed by one byte with the register number, in
299 the range 0 to one less than the pattern buffer's re_nsub
300 field. Then followed by one byte with the number of groups
301 inner to this one. (This last has to be part of the
302 start_memory only because we need it in the on_failure_jump
303 of re_match_2.) */
304 start_memory,
305
306 /* Stop remembering the text that is matched and store it in a
307 memory register. Followed by one byte with the register
308 number, in the range 0 to one less than `re_nsub' in the
309 pattern buffer, and one byte with the number of inner groups,
310 just like `start_memory'. (We need the number of inner
311 groups here because we don't have any easy way of finding the
312 corresponding start_memory when we're at a stop_memory.) */
313 stop_memory,
314
315 /* Match a duplicate of something remembered. Followed by one
316 byte containing the register number. */
317 duplicate,
318
319 /* Fail unless at beginning of line. */
320 begline,
321
322 /* Fail unless at end of line. */
323 endline,
324
325 /* Succeeds if at beginning of buffer (if emacs) or at beginning
326 of string to be matched (if not). */
327 begbuf,
328
329 /* Analogously, for end of buffer/string. */
330 endbuf,
331
332 /* Followed by two byte relative address to which to jump. */
333 jump,
334
335 /* Same as jump, but marks the end of an alternative. */
336 jump_past_alt,
337
338 /* Followed by two-byte relative address of place to resume at
339 in case of failure. */
340 on_failure_jump,
341
342 /* Like on_failure_jump, but pushes a placeholder instead of the
343 current string position when executed. */
344 on_failure_keep_string_jump,
345
346 /* Throw away latest failure point and then jump to following
347 two-byte relative address. */
348 pop_failure_jump,
349
350 /* Change to pop_failure_jump if know won't have to backtrack to
351 match; otherwise change to jump. This is used to jump
352 back to the beginning of a repeat. If what follows this jump
353 clearly won't match what the repeat does, such that we can be
354 sure that there is no use backtracking out of repetitions
355 already matched, then we change it to a pop_failure_jump.
356 Followed by two-byte address. */
357 maybe_pop_jump,
358
359 /* Jump to following two-byte address, and push a dummy failure
360 point. This failure point will be thrown away if an attempt
361 is made to use it for a failure. A `+' construct makes this
362 before the first repeat. Also used as an intermediary kind
363 of jump when compiling an alternative. */
364 dummy_failure_jump,
365
366 /* Push a dummy failure point and continue. Used at the end of
367 alternatives. */
368 push_dummy_failure,
369
370 /* Followed by two-byte relative address and two-byte number n.
371 After matching N times, jump to the address upon failure. */
372 succeed_n,
373
374 /* Followed by two-byte relative address, and two-byte number n.
375 Jump to the address N times, then fail. */
376 jump_n,
377
378 /* Set the following two-byte relative address to the
379 subsequent two-byte number. The address *includes* the two
380 bytes of number. */
381 set_number_at,
382
383 wordchar, /* Matches any word-constituent character. */
384 notwordchar, /* Matches any char that is not a word-constituent. */
385
386 wordbeg, /* Succeeds if at word beginning. */
387 wordend, /* Succeeds if at word end. */
388
389 wordbound, /* Succeeds if at a word boundary. */
390 notwordbound /* Succeeds if not at a word boundary. */
391
392 #ifdef emacs
393 ,before_dot, /* Succeeds if before point. */
394 at_dot, /* Succeeds if at point. */
395 after_dot, /* Succeeds if after point. */
396
397 /* Matches any character whose syntax is specified. Followed by
398 a byte which contains a syntax code, e.g., Sword. */
399 syntaxspec,
400
401 /* Matches any character whose syntax is not that specified. */
402 notsyntaxspec
403 #endif /* emacs */
404 } re_opcode_t;
405 \f
406 /* Common operations on the compiled pattern. */
407
408 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
409
410 #define STORE_NUMBER(destination, number) \
411 do { \
412 (destination)[0] = (number) & 0377; \
413 (destination)[1] = (number) >> 8; \
414 } while (0)
415
416 /* Same as STORE_NUMBER, except increment DESTINATION to
417 the byte after where the number is stored. Therefore, DESTINATION
418 must be an lvalue. */
419
420 #define STORE_NUMBER_AND_INCR(destination, number) \
421 do { \
422 STORE_NUMBER (destination, number); \
423 (destination) += 2; \
424 } while (0)
425
426 /* Put into DESTINATION a number stored in two contiguous bytes starting
427 at SOURCE. */
428
429 #define EXTRACT_NUMBER(destination, source) \
430 do { \
431 (destination) = *(source) & 0377; \
432 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
433 } while (0)
434
435 #ifdef DEBUG
436 static void
437 extract_number (dest, source)
438 int *dest;
439 unsigned char *source;
440 {
441 int temp = SIGN_EXTEND_CHAR (*(source + 1));
442 *dest = *source & 0377;
443 *dest += temp << 8;
444 }
445
446 #ifndef EXTRACT_MACROS /* To debug the macros. */
447 #undef EXTRACT_NUMBER
448 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
449 #endif /* not EXTRACT_MACROS */
450
451 #endif /* DEBUG */
452
453 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
454 SOURCE must be an lvalue. */
455
456 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
457 do { \
458 EXTRACT_NUMBER (destination, source); \
459 (source) += 2; \
460 } while (0)
461
462 #ifdef DEBUG
463 static void
464 extract_number_and_incr (destination, source)
465 int *destination;
466 unsigned char **source;
467 {
468 extract_number (destination, *source);
469 *source += 2;
470 }
471
472 #ifndef EXTRACT_MACROS
473 #undef EXTRACT_NUMBER_AND_INCR
474 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
475 extract_number_and_incr (&dest, &src)
476 #endif /* not EXTRACT_MACROS */
477
478 #endif /* DEBUG */
479 \f
480 /* If DEBUG is defined, Regex prints many voluminous messages about what
481 it is doing (if the variable `debug' is nonzero). If linked with the
482 main program in `iregex.c', you can enter patterns and strings
483 interactively. And if linked with the main program in `main.c' and
484 the other test files, you can run the already-written tests. */
485
486 #ifdef DEBUG
487
488 /* We use standard I/O for debugging. */
489 #include <stdio.h>
490
491 /* It is useful to test things that ``must'' be true when debugging. */
492 #include <assert.h>
493
494 static int debug = 0;
495
496 #define DEBUG_STATEMENT(e) e
497 #define DEBUG_PRINT1(x) if (debug) printf (x)
498 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
499 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
500 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
501 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
502 if (debug) print_partial_compiled_pattern (s, e)
503 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
504 if (debug) print_double_string (w, s1, sz1, s2, sz2)
505
506
507 extern void printchar ();
508
509 /* Print the fastmap in human-readable form. */
510
511 void
512 print_fastmap (fastmap)
513 char *fastmap;
514 {
515 unsigned was_a_range = 0;
516 unsigned i = 0;
517
518 while (i < (1 << BYTEWIDTH))
519 {
520 if (fastmap[i++])
521 {
522 was_a_range = 0;
523 printchar (i - 1);
524 while (i < (1 << BYTEWIDTH) && fastmap[i])
525 {
526 was_a_range = 1;
527 i++;
528 }
529 if (was_a_range)
530 {
531 printf ("-");
532 printchar (i - 1);
533 }
534 }
535 }
536 putchar ('\n');
537 }
538
539
540 /* Print a compiled pattern string in human-readable form, starting at
541 the START pointer into it and ending just before the pointer END. */
542
543 void
544 print_partial_compiled_pattern (start, end)
545 unsigned char *start;
546 unsigned char *end;
547 {
548 int mcnt, mcnt2;
549 unsigned char *p = start;
550 unsigned char *pend = end;
551
552 if (start == NULL)
553 {
554 printf ("(null)\n");
555 return;
556 }
557
558 /* Loop over pattern commands. */
559 while (p < pend)
560 {
561 printf ("%d:\t", p - start);
562
563 switch ((re_opcode_t) *p++)
564 {
565 case no_op:
566 printf ("/no_op");
567 break;
568
569 case exactn:
570 mcnt = *p++;
571 printf ("/exactn/%d", mcnt);
572 do
573 {
574 putchar ('/');
575 printchar (*p++);
576 }
577 while (--mcnt);
578 break;
579
580 case start_memory:
581 mcnt = *p++;
582 printf ("/start_memory/%d/%d", mcnt, *p++);
583 break;
584
585 case stop_memory:
586 mcnt = *p++;
587 printf ("/stop_memory/%d/%d", mcnt, *p++);
588 break;
589
590 case duplicate:
591 printf ("/duplicate/%d", *p++);
592 break;
593
594 case anychar:
595 printf ("/anychar");
596 break;
597
598 case charset:
599 case charset_not:
600 {
601 register int c, last = -100;
602 register int in_range = 0;
603
604 printf ("/charset [%s",
605 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
606
607 assert (p + *p < pend);
608
609 for (c = 0; c < 256; c++)
610 if (c / 8 < *p
611 && (p[1 + (c/8)] & (1 << (c % 8))))
612 {
613 /* Are we starting a range? */
614 if (last + 1 == c && ! in_range)
615 {
616 putchar ('-');
617 in_range = 1;
618 }
619 /* Have we broken a range? */
620 else if (last + 1 != c && in_range)
621 {
622 printchar (last);
623 in_range = 0;
624 }
625
626 if (! in_range)
627 printchar (c);
628
629 last = c;
630 }
631
632 if (in_range)
633 printchar (last);
634
635 putchar (']');
636
637 p += 1 + *p;
638 }
639 break;
640
641 case begline:
642 printf ("/begline");
643 break;
644
645 case endline:
646 printf ("/endline");
647 break;
648
649 case on_failure_jump:
650 extract_number_and_incr (&mcnt, &p);
651 printf ("/on_failure_jump to %d", p + mcnt - start);
652 break;
653
654 case on_failure_keep_string_jump:
655 extract_number_and_incr (&mcnt, &p);
656 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
657 break;
658
659 case dummy_failure_jump:
660 extract_number_and_incr (&mcnt, &p);
661 printf ("/dummy_failure_jump to %d", p + mcnt - start);
662 break;
663
664 case push_dummy_failure:
665 printf ("/push_dummy_failure");
666 break;
667
668 case maybe_pop_jump:
669 extract_number_and_incr (&mcnt, &p);
670 printf ("/maybe_pop_jump to %d", p + mcnt - start);
671 break;
672
673 case pop_failure_jump:
674 extract_number_and_incr (&mcnt, &p);
675 printf ("/pop_failure_jump to %d", p + mcnt - start);
676 break;
677
678 case jump_past_alt:
679 extract_number_and_incr (&mcnt, &p);
680 printf ("/jump_past_alt to %d", p + mcnt - start);
681 break;
682
683 case jump:
684 extract_number_and_incr (&mcnt, &p);
685 printf ("/jump to %d", p + mcnt - start);
686 break;
687
688 case succeed_n:
689 extract_number_and_incr (&mcnt, &p);
690 extract_number_and_incr (&mcnt2, &p);
691 printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2);
692 break;
693
694 case jump_n:
695 extract_number_and_incr (&mcnt, &p);
696 extract_number_and_incr (&mcnt2, &p);
697 printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2);
698 break;
699
700 case set_number_at:
701 extract_number_and_incr (&mcnt, &p);
702 extract_number_and_incr (&mcnt2, &p);
703 printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2);
704 break;
705
706 case wordbound:
707 printf ("/wordbound");
708 break;
709
710 case notwordbound:
711 printf ("/notwordbound");
712 break;
713
714 case wordbeg:
715 printf ("/wordbeg");
716 break;
717
718 case wordend:
719 printf ("/wordend");
720
721 #ifdef emacs
722 case before_dot:
723 printf ("/before_dot");
724 break;
725
726 case at_dot:
727 printf ("/at_dot");
728 break;
729
730 case after_dot:
731 printf ("/after_dot");
732 break;
733
734 case syntaxspec:
735 printf ("/syntaxspec");
736 mcnt = *p++;
737 printf ("/%d", mcnt);
738 break;
739
740 case notsyntaxspec:
741 printf ("/notsyntaxspec");
742 mcnt = *p++;
743 printf ("/%d", mcnt);
744 break;
745 #endif /* emacs */
746
747 case wordchar:
748 printf ("/wordchar");
749 break;
750
751 case notwordchar:
752 printf ("/notwordchar");
753 break;
754
755 case begbuf:
756 printf ("/begbuf");
757 break;
758
759 case endbuf:
760 printf ("/endbuf");
761 break;
762
763 default:
764 printf ("?%d", *(p-1));
765 }
766
767 putchar ('\n');
768 }
769
770 printf ("%d:\tend of pattern.\n", p - start);
771 }
772
773
774 void
775 print_compiled_pattern (bufp)
776 struct re_pattern_buffer *bufp;
777 {
778 unsigned char *buffer = bufp->buffer;
779
780 print_partial_compiled_pattern (buffer, buffer + bufp->used);
781 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
782
783 if (bufp->fastmap_accurate && bufp->fastmap)
784 {
785 printf ("fastmap: ");
786 print_fastmap (bufp->fastmap);
787 }
788
789 printf ("re_nsub: %d\t", bufp->re_nsub);
790 printf ("regs_alloc: %d\t", bufp->regs_allocated);
791 printf ("can_be_null: %d\t", bufp->can_be_null);
792 printf ("newline_anchor: %d\n", bufp->newline_anchor);
793 printf ("no_sub: %d\t", bufp->no_sub);
794 printf ("not_bol: %d\t", bufp->not_bol);
795 printf ("not_eol: %d\t", bufp->not_eol);
796 printf ("syntax: %d\n", bufp->syntax);
797 /* Perhaps we should print the translate table? */
798 }
799
800
801 void
802 print_double_string (where, string1, size1, string2, size2)
803 const char *where;
804 const char *string1;
805 const char *string2;
806 int size1;
807 int size2;
808 {
809 unsigned this_char;
810
811 if (where == NULL)
812 printf ("(null)");
813 else
814 {
815 if (FIRST_STRING_P (where))
816 {
817 for (this_char = where - string1; this_char < size1; this_char++)
818 printchar (string1[this_char]);
819
820 where = string2;
821 }
822
823 for (this_char = where - string2; this_char < size2; this_char++)
824 printchar (string2[this_char]);
825 }
826 }
827
828 #else /* not DEBUG */
829
830 #undef assert
831 #define assert(e)
832
833 #define DEBUG_STATEMENT(e)
834 #define DEBUG_PRINT1(x)
835 #define DEBUG_PRINT2(x1, x2)
836 #define DEBUG_PRINT3(x1, x2, x3)
837 #define DEBUG_PRINT4(x1, x2, x3, x4)
838 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
839 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
840
841 #endif /* not DEBUG */
842 \f
843 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
844 also be assigned to arbitrarily: each pattern buffer stores its own
845 syntax, so it can be changed between regex compilations. */
846 reg_syntax_t re_syntax_options = RE_SYNTAX_EMACS;
847
848
849 /* Specify the precise syntax of regexps for compilation. This provides
850 for compatibility for various utilities which historically have
851 different, incompatible syntaxes.
852
853 The argument SYNTAX is a bit mask comprised of the various bits
854 defined in regex.h. We return the old syntax. */
855
856 reg_syntax_t
857 re_set_syntax (syntax)
858 reg_syntax_t syntax;
859 {
860 reg_syntax_t ret = re_syntax_options;
861
862 re_syntax_options = syntax;
863 return ret;
864 }
865 \f
866 /* This table gives an error message for each of the error codes listed
867 in regex.h. Obviously the order here has to be same as there. */
868
869 static const char *re_error_msg[] =
870 { NULL, /* REG_NOERROR */
871 "No match", /* REG_NOMATCH */
872 "Invalid regular expression", /* REG_BADPAT */
873 "Invalid collation character", /* REG_ECOLLATE */
874 "Invalid character class name", /* REG_ECTYPE */
875 "Trailing backslash", /* REG_EESCAPE */
876 "Invalid back reference", /* REG_ESUBREG */
877 "Unmatched [ or [^", /* REG_EBRACK */
878 "Unmatched ( or \\(", /* REG_EPAREN */
879 "Unmatched \\{", /* REG_EBRACE */
880 "Invalid content of \\{\\}", /* REG_BADBR */
881 "Invalid range end", /* REG_ERANGE */
882 "Memory exhausted", /* REG_ESPACE */
883 "Invalid preceding regular expression", /* REG_BADRPT */
884 "Premature end of regular expression", /* REG_EEND */
885 "Regular expression too big", /* REG_ESIZE */
886 "Unmatched ) or \\)", /* REG_ERPAREN */
887 };
888 \f
889 /* Avoiding alloca during matching, to placate r_alloc. */
890
891 /* Define MATCH_MAY_ALLOCATE if we need to make sure that the
892 searching and matching functions should not call alloca. On some
893 systems, alloca is implemented in terms of malloc, and if we're
894 using the relocating allocator routines, then malloc could cause a
895 relocation, which might (if the strings being searched are in the
896 ralloc heap) shift the data out from underneath the regexp
897 routines.
898
899 Here's another reason to avoid allocation: Emacs insists on
900 processing input from X in a signal handler; processing X input may
901 call malloc; if input arrives while a matching routine is calling
902 malloc, then we're scrod. But Emacs can't just block input while
903 calling matching routines; then we don't notice interrupts when
904 they come in. So, Emacs blocks input around all regexp calls
905 except the matching calls, which it leaves unprotected, in the
906 faith that they will not malloc. */
907
908 /* Normally, this is fine. */
909 #define MATCH_MAY_ALLOCATE
910
911 /* But under some circumstances, it's not. */
912 #if defined (emacs) || (defined (REL_ALLOC) && defined (C_ALLOCA))
913 #undef MATCH_MAY_ALLOCATE
914 #endif
915
916 \f
917 /* Failure stack declarations and macros; both re_compile_fastmap and
918 re_match_2 use a failure stack. These have to be macros because of
919 REGEX_ALLOCATE. */
920
921
922 /* Number of failure points for which to initially allocate space
923 when matching. If this number is exceeded, we allocate more
924 space, so it is not a hard limit. */
925 #ifndef INIT_FAILURE_ALLOC
926 #define INIT_FAILURE_ALLOC 5
927 #endif
928
929 /* Roughly the maximum number of failure points on the stack. Would be
930 exactly that if always used MAX_FAILURE_SPACE each time we failed.
931 This is a variable only so users of regex can assign to it; we never
932 change it ourselves. */
933 int re_max_failures = 2000;
934
935 typedef unsigned char *fail_stack_elt_t;
936
937 typedef struct
938 {
939 fail_stack_elt_t *stack;
940 unsigned size;
941 unsigned avail; /* Offset of next open position. */
942 } fail_stack_type;
943
944 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
945 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
946 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
947 #define FAIL_STACK_TOP() (fail_stack.stack[fail_stack.avail])
948
949
950 /* Initialize `fail_stack'. Do `return -2' if the alloc fails. */
951
952 #ifdef MATCH_MAY_ALLOCATE
953 #define INIT_FAIL_STACK() \
954 do { \
955 fail_stack.stack = (fail_stack_elt_t *) \
956 REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
957 \
958 if (fail_stack.stack == NULL) \
959 return -2; \
960 \
961 fail_stack.size = INIT_FAILURE_ALLOC; \
962 fail_stack.avail = 0; \
963 } while (0)
964 #else
965 #define INIT_FAIL_STACK() \
966 do { \
967 fail_stack.avail = 0; \
968 } while (0)
969 #endif
970
971
972 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
973
974 Return 1 if succeeds, and 0 if either ran out of memory
975 allocating space for it or it was already too large.
976
977 REGEX_REALLOCATE requires `destination' be declared. */
978
979 #define DOUBLE_FAIL_STACK(fail_stack) \
980 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
981 ? 0 \
982 : ((fail_stack).stack = (fail_stack_elt_t *) \
983 REGEX_REALLOCATE ((fail_stack).stack, \
984 (fail_stack).size * sizeof (fail_stack_elt_t), \
985 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
986 \
987 (fail_stack).stack == NULL \
988 ? 0 \
989 : ((fail_stack).size <<= 1, \
990 1)))
991
992
993 /* Push PATTERN_OP on FAIL_STACK.
994
995 Return 1 if was able to do so and 0 if ran out of memory allocating
996 space to do so. */
997 #define PUSH_PATTERN_OP(pattern_op, fail_stack) \
998 ((FAIL_STACK_FULL () \
999 && !DOUBLE_FAIL_STACK (fail_stack)) \
1000 ? 0 \
1001 : ((fail_stack).stack[(fail_stack).avail++] = pattern_op, \
1002 1))
1003
1004 /* This pushes an item onto the failure stack. Must be a four-byte
1005 value. Assumes the variable `fail_stack'. Probably should only
1006 be called from within `PUSH_FAILURE_POINT'. */
1007 #define PUSH_FAILURE_ITEM(item) \
1008 fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item
1009
1010 /* The complement operation. Assumes `fail_stack' is nonempty. */
1011 #define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail]
1012
1013 /* Used to omit pushing failure point id's when we're not debugging. */
1014 #ifdef DEBUG
1015 #define DEBUG_PUSH PUSH_FAILURE_ITEM
1016 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM ()
1017 #else
1018 #define DEBUG_PUSH(item)
1019 #define DEBUG_POP(item_addr)
1020 #endif
1021
1022
1023 /* Push the information about the state we will need
1024 if we ever fail back to it.
1025
1026 Requires variables fail_stack, regstart, regend, reg_info, and
1027 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
1028 declared.
1029
1030 Does `return FAILURE_CODE' if runs out of memory. */
1031
1032 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1033 do { \
1034 char *destination; \
1035 /* Must be int, so when we don't save any registers, the arithmetic \
1036 of 0 + -1 isn't done as unsigned. */ \
1037 int this_reg; \
1038 \
1039 DEBUG_STATEMENT (failure_id++); \
1040 DEBUG_STATEMENT (nfailure_points_pushed++); \
1041 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1042 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1043 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1044 \
1045 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
1046 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1047 \
1048 /* Ensure we have enough space allocated for what we will push. */ \
1049 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1050 { \
1051 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1052 return failure_code; \
1053 \
1054 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1055 (fail_stack).size); \
1056 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1057 } \
1058 \
1059 /* Push the info, starting with the registers. */ \
1060 DEBUG_PRINT1 ("\n"); \
1061 \
1062 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1063 this_reg++) \
1064 { \
1065 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
1066 DEBUG_STATEMENT (num_regs_pushed++); \
1067 \
1068 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1069 PUSH_FAILURE_ITEM (regstart[this_reg]); \
1070 \
1071 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1072 PUSH_FAILURE_ITEM (regend[this_reg]); \
1073 \
1074 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
1075 DEBUG_PRINT2 (" match_null=%d", \
1076 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1077 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1078 DEBUG_PRINT2 (" matched_something=%d", \
1079 MATCHED_SOMETHING (reg_info[this_reg])); \
1080 DEBUG_PRINT2 (" ever_matched=%d", \
1081 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1082 DEBUG_PRINT1 ("\n"); \
1083 PUSH_FAILURE_ITEM (reg_info[this_reg].word); \
1084 } \
1085 \
1086 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
1087 PUSH_FAILURE_ITEM (lowest_active_reg); \
1088 \
1089 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
1090 PUSH_FAILURE_ITEM (highest_active_reg); \
1091 \
1092 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
1093 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1094 PUSH_FAILURE_ITEM (pattern_place); \
1095 \
1096 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
1097 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1098 size2); \
1099 DEBUG_PRINT1 ("'\n"); \
1100 PUSH_FAILURE_ITEM (string_place); \
1101 \
1102 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1103 DEBUG_PUSH (failure_id); \
1104 } while (0)
1105
1106 /* This is the number of items that are pushed and popped on the stack
1107 for each register. */
1108 #define NUM_REG_ITEMS 3
1109
1110 /* Individual items aside from the registers. */
1111 #ifdef DEBUG
1112 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1113 #else
1114 #define NUM_NONREG_ITEMS 4
1115 #endif
1116
1117 /* We push at most this many items on the stack. */
1118 #define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1119
1120 /* We actually push this many items. */
1121 #define NUM_FAILURE_ITEMS \
1122 ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
1123 + NUM_NONREG_ITEMS)
1124
1125 /* How many items can still be added to the stack without overflowing it. */
1126 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1127
1128
1129 /* Pops what PUSH_FAIL_STACK pushes.
1130
1131 We restore into the parameters, all of which should be lvalues:
1132 STR -- the saved data position.
1133 PAT -- the saved pattern position.
1134 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1135 REGSTART, REGEND -- arrays of string positions.
1136 REG_INFO -- array of information about each subexpression.
1137
1138 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1139 `pend', `string1', `size1', `string2', and `size2'. */
1140
1141 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1142 { \
1143 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
1144 int this_reg; \
1145 const unsigned char *string_temp; \
1146 \
1147 assert (!FAIL_STACK_EMPTY ()); \
1148 \
1149 /* Remove failure points and point to how many regs pushed. */ \
1150 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1151 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1152 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1153 \
1154 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1155 \
1156 DEBUG_POP (&failure_id); \
1157 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1158 \
1159 /* If the saved string location is NULL, it came from an \
1160 on_failure_keep_string_jump opcode, and we want to throw away the \
1161 saved NULL, thus retaining our current position in the string. */ \
1162 string_temp = POP_FAILURE_ITEM (); \
1163 if (string_temp != NULL) \
1164 str = (const char *) string_temp; \
1165 \
1166 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
1167 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1168 DEBUG_PRINT1 ("'\n"); \
1169 \
1170 pat = (unsigned char *) POP_FAILURE_ITEM (); \
1171 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
1172 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1173 \
1174 /* Restore register info. */ \
1175 high_reg = (unsigned) POP_FAILURE_ITEM (); \
1176 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
1177 \
1178 low_reg = (unsigned) POP_FAILURE_ITEM (); \
1179 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
1180 \
1181 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1182 { \
1183 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
1184 \
1185 reg_info[this_reg].word = POP_FAILURE_ITEM (); \
1186 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
1187 \
1188 regend[this_reg] = (const char *) POP_FAILURE_ITEM (); \
1189 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1190 \
1191 regstart[this_reg] = (const char *) POP_FAILURE_ITEM (); \
1192 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1193 } \
1194 \
1195 DEBUG_STATEMENT (nfailure_points_popped++); \
1196 } /* POP_FAILURE_POINT */
1197
1198
1199 \f
1200 /* Structure for per-register (a.k.a. per-group) information.
1201 This must not be longer than one word, because we push this value
1202 onto the failure stack. Other register information, such as the
1203 starting and ending positions (which are addresses), and the list of
1204 inner groups (which is a bits list) are maintained in separate
1205 variables.
1206
1207 We are making a (strictly speaking) nonportable assumption here: that
1208 the compiler will pack our bit fields into something that fits into
1209 the type of `word', i.e., is something that fits into one item on the
1210 failure stack. */
1211 typedef union
1212 {
1213 fail_stack_elt_t word;
1214 struct
1215 {
1216 /* This field is one if this group can match the empty string,
1217 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1218 #define MATCH_NULL_UNSET_VALUE 3
1219 unsigned match_null_string_p : 2;
1220 unsigned is_active : 1;
1221 unsigned matched_something : 1;
1222 unsigned ever_matched_something : 1;
1223 } bits;
1224 } register_info_type;
1225
1226 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1227 #define IS_ACTIVE(R) ((R).bits.is_active)
1228 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1229 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1230
1231
1232 /* Call this when have matched a real character; it sets `matched' flags
1233 for the subexpressions which we are currently inside. Also records
1234 that those subexprs have matched. */
1235 #define SET_REGS_MATCHED() \
1236 do \
1237 { \
1238 unsigned r; \
1239 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1240 { \
1241 MATCHED_SOMETHING (reg_info[r]) \
1242 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1243 = 1; \
1244 } \
1245 } \
1246 while (0)
1247
1248
1249 /* Registers are set to a sentinel when they haven't yet matched. */
1250 #define REG_UNSET_VALUE ((char *) -1)
1251 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1252
1253
1254 \f
1255 /* How do we implement a missing MATCH_MAY_ALLOCATE?
1256 We make the fail stack a global thing, and then grow it to
1257 re_max_failures when we compile. */
1258 #ifndef MATCH_MAY_ALLOCATE
1259 static fail_stack_type fail_stack;
1260
1261 static const char ** regstart, ** regend;
1262 static const char ** old_regstart, ** old_regend;
1263 static const char **best_regstart, **best_regend;
1264 static register_info_type *reg_info;
1265 static const char **reg_dummy;
1266 static register_info_type *reg_info_dummy;
1267 #endif
1268
1269 \f
1270 /* Subroutine declarations and macros for regex_compile. */
1271
1272 static void store_op1 (), store_op2 ();
1273 static void insert_op1 (), insert_op2 ();
1274 static boolean at_begline_loc_p (), at_endline_loc_p ();
1275 static boolean group_in_compile_stack ();
1276 static reg_errcode_t compile_range ();
1277
1278 /* Fetch the next character in the uncompiled pattern---translating it
1279 if necessary. Also cast from a signed character in the constant
1280 string passed to us by the user to an unsigned char that we can use
1281 as an array index (in, e.g., `translate'). */
1282 #define PATFETCH(c) \
1283 do {if (p == pend) return REG_EEND; \
1284 c = (unsigned char) *p++; \
1285 if (translate) c = translate[c]; \
1286 } while (0)
1287
1288 /* Fetch the next character in the uncompiled pattern, with no
1289 translation. */
1290 #define PATFETCH_RAW(c) \
1291 do {if (p == pend) return REG_EEND; \
1292 c = (unsigned char) *p++; \
1293 } while (0)
1294
1295 /* Go backwards one character in the pattern. */
1296 #define PATUNFETCH p--
1297
1298
1299 /* If `translate' is non-null, return translate[D], else just D. We
1300 cast the subscript to translate because some data is declared as
1301 `char *', to avoid warnings when a string constant is passed. But
1302 when we use a character as a subscript we must make it unsigned. */
1303 #define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
1304
1305
1306 /* Macros for outputting the compiled pattern into `buffer'. */
1307
1308 /* If the buffer isn't allocated when it comes in, use this. */
1309 #define INIT_BUF_SIZE 32
1310
1311 /* Make sure we have at least N more bytes of space in buffer. */
1312 #define GET_BUFFER_SPACE(n) \
1313 while (b - bufp->buffer + (n) > bufp->allocated) \
1314 EXTEND_BUFFER ()
1315
1316 /* Make sure we have one more byte of buffer space and then add C to it. */
1317 #define BUF_PUSH(c) \
1318 do { \
1319 GET_BUFFER_SPACE (1); \
1320 *b++ = (unsigned char) (c); \
1321 } while (0)
1322
1323
1324 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1325 #define BUF_PUSH_2(c1, c2) \
1326 do { \
1327 GET_BUFFER_SPACE (2); \
1328 *b++ = (unsigned char) (c1); \
1329 *b++ = (unsigned char) (c2); \
1330 } while (0)
1331
1332
1333 /* As with BUF_PUSH_2, except for three bytes. */
1334 #define BUF_PUSH_3(c1, c2, c3) \
1335 do { \
1336 GET_BUFFER_SPACE (3); \
1337 *b++ = (unsigned char) (c1); \
1338 *b++ = (unsigned char) (c2); \
1339 *b++ = (unsigned char) (c3); \
1340 } while (0)
1341
1342
1343 /* Store a jump with opcode OP at LOC to location TO. We store a
1344 relative address offset by the three bytes the jump itself occupies. */
1345 #define STORE_JUMP(op, loc, to) \
1346 store_op1 (op, loc, (to) - (loc) - 3)
1347
1348 /* Likewise, for a two-argument jump. */
1349 #define STORE_JUMP2(op, loc, to, arg) \
1350 store_op2 (op, loc, (to) - (loc) - 3, arg)
1351
1352 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1353 #define INSERT_JUMP(op, loc, to) \
1354 insert_op1 (op, loc, (to) - (loc) - 3, b)
1355
1356 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1357 #define INSERT_JUMP2(op, loc, to, arg) \
1358 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1359
1360
1361 /* This is not an arbitrary limit: the arguments which represent offsets
1362 into the pattern are two bytes long. So if 2^16 bytes turns out to
1363 be too small, many things would have to change. */
1364 #define MAX_BUF_SIZE (1L << 16)
1365
1366
1367 /* Extend the buffer by twice its current size via realloc and
1368 reset the pointers that pointed into the old block to point to the
1369 correct places in the new one. If extending the buffer results in it
1370 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1371 #define EXTEND_BUFFER() \
1372 do { \
1373 unsigned char *old_buffer = bufp->buffer; \
1374 if (bufp->allocated == MAX_BUF_SIZE) \
1375 return REG_ESIZE; \
1376 bufp->allocated <<= 1; \
1377 if (bufp->allocated > MAX_BUF_SIZE) \
1378 bufp->allocated = MAX_BUF_SIZE; \
1379 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1380 if (bufp->buffer == NULL) \
1381 return REG_ESPACE; \
1382 /* If the buffer moved, move all the pointers into it. */ \
1383 if (old_buffer != bufp->buffer) \
1384 { \
1385 b = (b - old_buffer) + bufp->buffer; \
1386 begalt = (begalt - old_buffer) + bufp->buffer; \
1387 if (fixup_alt_jump) \
1388 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1389 if (laststart) \
1390 laststart = (laststart - old_buffer) + bufp->buffer; \
1391 if (pending_exact) \
1392 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1393 } \
1394 } while (0)
1395
1396
1397 /* Since we have one byte reserved for the register number argument to
1398 {start,stop}_memory, the maximum number of groups we can report
1399 things about is what fits in that byte. */
1400 #define MAX_REGNUM 255
1401
1402 /* But patterns can have more than `MAX_REGNUM' registers. We just
1403 ignore the excess. */
1404 typedef unsigned regnum_t;
1405
1406
1407 /* Macros for the compile stack. */
1408
1409 /* Since offsets can go either forwards or backwards, this type needs to
1410 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1411 typedef int pattern_offset_t;
1412
1413 typedef struct
1414 {
1415 pattern_offset_t begalt_offset;
1416 pattern_offset_t fixup_alt_jump;
1417 pattern_offset_t inner_group_offset;
1418 pattern_offset_t laststart_offset;
1419 regnum_t regnum;
1420 } compile_stack_elt_t;
1421
1422
1423 typedef struct
1424 {
1425 compile_stack_elt_t *stack;
1426 unsigned size;
1427 unsigned avail; /* Offset of next open position. */
1428 } compile_stack_type;
1429
1430
1431 #define INIT_COMPILE_STACK_SIZE 32
1432
1433 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1434 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1435
1436 /* The next available element. */
1437 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1438
1439
1440 /* Set the bit for character C in a list. */
1441 #define SET_LIST_BIT(c) \
1442 (b[((unsigned char) (c)) / BYTEWIDTH] \
1443 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1444
1445
1446 /* Get the next unsigned number in the uncompiled pattern. */
1447 #define GET_UNSIGNED_NUMBER(num) \
1448 { if (p != pend) \
1449 { \
1450 PATFETCH (c); \
1451 while (ISDIGIT (c)) \
1452 { \
1453 if (num < 0) \
1454 num = 0; \
1455 num = num * 10 + c - '0'; \
1456 if (p == pend) \
1457 break; \
1458 PATFETCH (c); \
1459 } \
1460 } \
1461 }
1462
1463 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1464
1465 #define IS_CHAR_CLASS(string) \
1466 (STREQ (string, "alpha") || STREQ (string, "upper") \
1467 || STREQ (string, "lower") || STREQ (string, "digit") \
1468 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1469 || STREQ (string, "space") || STREQ (string, "print") \
1470 || STREQ (string, "punct") || STREQ (string, "graph") \
1471 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1472 \f
1473 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1474 Returns one of error codes defined in `regex.h', or zero for success.
1475
1476 Assumes the `allocated' (and perhaps `buffer') and `translate'
1477 fields are set in BUFP on entry.
1478
1479 If it succeeds, results are put in BUFP (if it returns an error, the
1480 contents of BUFP are undefined):
1481 `buffer' is the compiled pattern;
1482 `syntax' is set to SYNTAX;
1483 `used' is set to the length of the compiled pattern;
1484 `fastmap_accurate' is zero;
1485 `re_nsub' is the number of subexpressions in PATTERN;
1486 `not_bol' and `not_eol' are zero;
1487
1488 The `fastmap' and `newline_anchor' fields are neither
1489 examined nor set. */
1490
1491 static reg_errcode_t
1492 regex_compile (pattern, size, syntax, bufp)
1493 const char *pattern;
1494 int size;
1495 reg_syntax_t syntax;
1496 struct re_pattern_buffer *bufp;
1497 {
1498 /* We fetch characters from PATTERN here. Even though PATTERN is
1499 `char *' (i.e., signed), we declare these variables as unsigned, so
1500 they can be reliably used as array indices. */
1501 register unsigned char c, c1;
1502
1503 /* A random tempory spot in PATTERN. */
1504 const char *p1;
1505
1506 /* Points to the end of the buffer, where we should append. */
1507 register unsigned char *b;
1508
1509 /* Keeps track of unclosed groups. */
1510 compile_stack_type compile_stack;
1511
1512 /* Points to the current (ending) position in the pattern. */
1513 const char *p = pattern;
1514 const char *pend = pattern + size;
1515
1516 /* How to translate the characters in the pattern. */
1517 char *translate = bufp->translate;
1518
1519 /* Address of the count-byte of the most recently inserted `exactn'
1520 command. This makes it possible to tell if a new exact-match
1521 character can be added to that command or if the character requires
1522 a new `exactn' command. */
1523 unsigned char *pending_exact = 0;
1524
1525 /* Address of start of the most recently finished expression.
1526 This tells, e.g., postfix * where to find the start of its
1527 operand. Reset at the beginning of groups and alternatives. */
1528 unsigned char *laststart = 0;
1529
1530 /* Address of beginning of regexp, or inside of last group. */
1531 unsigned char *begalt;
1532
1533 /* Place in the uncompiled pattern (i.e., the {) to
1534 which to go back if the interval is invalid. */
1535 const char *beg_interval;
1536
1537 /* Address of the place where a forward jump should go to the end of
1538 the containing expression. Each alternative of an `or' -- except the
1539 last -- ends with a forward jump of this sort. */
1540 unsigned char *fixup_alt_jump = 0;
1541
1542 /* Counts open-groups as they are encountered. Remembered for the
1543 matching close-group on the compile stack, so the same register
1544 number is put in the stop_memory as the start_memory. */
1545 regnum_t regnum = 0;
1546
1547 #ifdef DEBUG
1548 DEBUG_PRINT1 ("\nCompiling pattern: ");
1549 if (debug)
1550 {
1551 unsigned debug_count;
1552
1553 for (debug_count = 0; debug_count < size; debug_count++)
1554 printchar (pattern[debug_count]);
1555 putchar ('\n');
1556 }
1557 #endif /* DEBUG */
1558
1559 /* Initialize the compile stack. */
1560 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1561 if (compile_stack.stack == NULL)
1562 return REG_ESPACE;
1563
1564 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1565 compile_stack.avail = 0;
1566
1567 /* Initialize the pattern buffer. */
1568 bufp->syntax = syntax;
1569 bufp->fastmap_accurate = 0;
1570 bufp->not_bol = bufp->not_eol = 0;
1571
1572 /* Set `used' to zero, so that if we return an error, the pattern
1573 printer (for debugging) will think there's no pattern. We reset it
1574 at the end. */
1575 bufp->used = 0;
1576
1577 /* Always count groups, whether or not bufp->no_sub is set. */
1578 bufp->re_nsub = 0;
1579
1580 #if !defined (emacs) && !defined (SYNTAX_TABLE)
1581 /* Initialize the syntax table. */
1582 init_syntax_once ();
1583 #endif
1584
1585 if (bufp->allocated == 0)
1586 {
1587 if (bufp->buffer)
1588 { /* If zero allocated, but buffer is non-null, try to realloc
1589 enough space. This loses if buffer's address is bogus, but
1590 that is the user's responsibility. */
1591 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1592 }
1593 else
1594 { /* Caller did not allocate a buffer. Do it for them. */
1595 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1596 }
1597 if (!bufp->buffer) return REG_ESPACE;
1598
1599 bufp->allocated = INIT_BUF_SIZE;
1600 }
1601
1602 begalt = b = bufp->buffer;
1603
1604 /* Loop through the uncompiled pattern until we're at the end. */
1605 while (p != pend)
1606 {
1607 PATFETCH (c);
1608
1609 switch (c)
1610 {
1611 case '^':
1612 {
1613 if ( /* If at start of pattern, it's an operator. */
1614 p == pattern + 1
1615 /* If context independent, it's an operator. */
1616 || syntax & RE_CONTEXT_INDEP_ANCHORS
1617 /* Otherwise, depends on what's come before. */
1618 || at_begline_loc_p (pattern, p, syntax))
1619 BUF_PUSH (begline);
1620 else
1621 goto normal_char;
1622 }
1623 break;
1624
1625
1626 case '$':
1627 {
1628 if ( /* If at end of pattern, it's an operator. */
1629 p == pend
1630 /* If context independent, it's an operator. */
1631 || syntax & RE_CONTEXT_INDEP_ANCHORS
1632 /* Otherwise, depends on what's next. */
1633 || at_endline_loc_p (p, pend, syntax))
1634 BUF_PUSH (endline);
1635 else
1636 goto normal_char;
1637 }
1638 break;
1639
1640
1641 case '+':
1642 case '?':
1643 if ((syntax & RE_BK_PLUS_QM)
1644 || (syntax & RE_LIMITED_OPS))
1645 goto normal_char;
1646 handle_plus:
1647 case '*':
1648 /* If there is no previous pattern... */
1649 if (!laststart)
1650 {
1651 if (syntax & RE_CONTEXT_INVALID_OPS)
1652 return REG_BADRPT;
1653 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1654 goto normal_char;
1655 }
1656
1657 {
1658 /* Are we optimizing this jump? */
1659 boolean keep_string_p = false;
1660
1661 /* 1 means zero (many) matches is allowed. */
1662 char zero_times_ok = 0, many_times_ok = 0;
1663
1664 /* If there is a sequence of repetition chars, collapse it
1665 down to just one (the right one). We can't combine
1666 interval operators with these because of, e.g., `a{2}*',
1667 which should only match an even number of `a's. */
1668
1669 for (;;)
1670 {
1671 zero_times_ok |= c != '+';
1672 many_times_ok |= c != '?';
1673
1674 if (p == pend)
1675 break;
1676
1677 PATFETCH (c);
1678
1679 if (c == '*'
1680 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1681 ;
1682
1683 else if (syntax & RE_BK_PLUS_QM && c == '\\')
1684 {
1685 if (p == pend) return REG_EESCAPE;
1686
1687 PATFETCH (c1);
1688 if (!(c1 == '+' || c1 == '?'))
1689 {
1690 PATUNFETCH;
1691 PATUNFETCH;
1692 break;
1693 }
1694
1695 c = c1;
1696 }
1697 else
1698 {
1699 PATUNFETCH;
1700 break;
1701 }
1702
1703 /* If we get here, we found another repeat character. */
1704 }
1705
1706 /* Star, etc. applied to an empty pattern is equivalent
1707 to an empty pattern. */
1708 if (!laststart)
1709 break;
1710
1711 /* Now we know whether or not zero matches is allowed
1712 and also whether or not two or more matches is allowed. */
1713 if (many_times_ok)
1714 { /* More than one repetition is allowed, so put in at the
1715 end a backward relative jump from `b' to before the next
1716 jump we're going to put in below (which jumps from
1717 laststart to after this jump).
1718
1719 But if we are at the `*' in the exact sequence `.*\n',
1720 insert an unconditional jump backwards to the .,
1721 instead of the beginning of the loop. This way we only
1722 push a failure point once, instead of every time
1723 through the loop. */
1724 assert (p - 1 > pattern);
1725
1726 /* Allocate the space for the jump. */
1727 GET_BUFFER_SPACE (3);
1728
1729 /* We know we are not at the first character of the pattern,
1730 because laststart was nonzero. And we've already
1731 incremented `p', by the way, to be the character after
1732 the `*'. Do we have to do something analogous here
1733 for null bytes, because of RE_DOT_NOT_NULL? */
1734 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
1735 && zero_times_ok
1736 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
1737 && !(syntax & RE_DOT_NEWLINE))
1738 { /* We have .*\n. */
1739 STORE_JUMP (jump, b, laststart);
1740 keep_string_p = true;
1741 }
1742 else
1743 /* Anything else. */
1744 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
1745
1746 /* We've added more stuff to the buffer. */
1747 b += 3;
1748 }
1749
1750 /* On failure, jump from laststart to b + 3, which will be the
1751 end of the buffer after this jump is inserted. */
1752 GET_BUFFER_SPACE (3);
1753 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
1754 : on_failure_jump,
1755 laststart, b + 3);
1756 pending_exact = 0;
1757 b += 3;
1758
1759 if (!zero_times_ok)
1760 {
1761 /* At least one repetition is required, so insert a
1762 `dummy_failure_jump' before the initial
1763 `on_failure_jump' instruction of the loop. This
1764 effects a skip over that instruction the first time
1765 we hit that loop. */
1766 GET_BUFFER_SPACE (3);
1767 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
1768 b += 3;
1769 }
1770 }
1771 break;
1772
1773
1774 case '.':
1775 laststart = b;
1776 BUF_PUSH (anychar);
1777 break;
1778
1779
1780 case '[':
1781 {
1782 boolean had_char_class = false;
1783
1784 if (p == pend) return REG_EBRACK;
1785
1786 /* Ensure that we have enough space to push a charset: the
1787 opcode, the length count, and the bitset; 34 bytes in all. */
1788 GET_BUFFER_SPACE (34);
1789
1790 laststart = b;
1791
1792 /* We test `*p == '^' twice, instead of using an if
1793 statement, so we only need one BUF_PUSH. */
1794 BUF_PUSH (*p == '^' ? charset_not : charset);
1795 if (*p == '^')
1796 p++;
1797
1798 /* Remember the first position in the bracket expression. */
1799 p1 = p;
1800
1801 /* Push the number of bytes in the bitmap. */
1802 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
1803
1804 /* Clear the whole map. */
1805 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
1806
1807 /* charset_not matches newline according to a syntax bit. */
1808 if ((re_opcode_t) b[-2] == charset_not
1809 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
1810 SET_LIST_BIT ('\n');
1811
1812 /* Read in characters and ranges, setting map bits. */
1813 for (;;)
1814 {
1815 if (p == pend) return REG_EBRACK;
1816
1817 PATFETCH (c);
1818
1819 /* \ might escape characters inside [...] and [^...]. */
1820 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
1821 {
1822 if (p == pend) return REG_EESCAPE;
1823
1824 PATFETCH (c1);
1825 SET_LIST_BIT (c1);
1826 continue;
1827 }
1828
1829 /* Could be the end of the bracket expression. If it's
1830 not (i.e., when the bracket expression is `[]' so
1831 far), the ']' character bit gets set way below. */
1832 if (c == ']' && p != p1 + 1)
1833 break;
1834
1835 /* Look ahead to see if it's a range when the last thing
1836 was a character class. */
1837 if (had_char_class && c == '-' && *p != ']')
1838 return REG_ERANGE;
1839
1840 /* Look ahead to see if it's a range when the last thing
1841 was a character: if this is a hyphen not at the
1842 beginning or the end of a list, then it's the range
1843 operator. */
1844 if (c == '-'
1845 && !(p - 2 >= pattern && p[-2] == '[')
1846 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
1847 && *p != ']')
1848 {
1849 reg_errcode_t ret
1850 = compile_range (&p, pend, translate, syntax, b);
1851 if (ret != REG_NOERROR) return ret;
1852 }
1853
1854 else if (p[0] == '-' && p[1] != ']')
1855 { /* This handles ranges made up of characters only. */
1856 reg_errcode_t ret;
1857
1858 /* Move past the `-'. */
1859 PATFETCH (c1);
1860
1861 ret = compile_range (&p, pend, translate, syntax, b);
1862 if (ret != REG_NOERROR) return ret;
1863 }
1864
1865 /* See if we're at the beginning of a possible character
1866 class. */
1867
1868 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
1869 { /* Leave room for the null. */
1870 char str[CHAR_CLASS_MAX_LENGTH + 1];
1871
1872 PATFETCH (c);
1873 c1 = 0;
1874
1875 /* If pattern is `[[:'. */
1876 if (p == pend) return REG_EBRACK;
1877
1878 for (;;)
1879 {
1880 PATFETCH (c);
1881 if (c == ':' || c == ']' || p == pend
1882 || c1 == CHAR_CLASS_MAX_LENGTH)
1883 break;
1884 str[c1++] = c;
1885 }
1886 str[c1] = '\0';
1887
1888 /* If isn't a word bracketed by `[:' and:`]':
1889 undo the ending character, the letters, and leave
1890 the leading `:' and `[' (but set bits for them). */
1891 if (c == ':' && *p == ']')
1892 {
1893 int ch;
1894 boolean is_alnum = STREQ (str, "alnum");
1895 boolean is_alpha = STREQ (str, "alpha");
1896 boolean is_blank = STREQ (str, "blank");
1897 boolean is_cntrl = STREQ (str, "cntrl");
1898 boolean is_digit = STREQ (str, "digit");
1899 boolean is_graph = STREQ (str, "graph");
1900 boolean is_lower = STREQ (str, "lower");
1901 boolean is_print = STREQ (str, "print");
1902 boolean is_punct = STREQ (str, "punct");
1903 boolean is_space = STREQ (str, "space");
1904 boolean is_upper = STREQ (str, "upper");
1905 boolean is_xdigit = STREQ (str, "xdigit");
1906
1907 if (!IS_CHAR_CLASS (str)) return REG_ECTYPE;
1908
1909 /* Throw away the ] at the end of the character
1910 class. */
1911 PATFETCH (c);
1912
1913 if (p == pend) return REG_EBRACK;
1914
1915 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
1916 {
1917 if ( (is_alnum && ISALNUM (ch))
1918 || (is_alpha && ISALPHA (ch))
1919 || (is_blank && ISBLANK (ch))
1920 || (is_cntrl && ISCNTRL (ch))
1921 || (is_digit && ISDIGIT (ch))
1922 || (is_graph && ISGRAPH (ch))
1923 || (is_lower && ISLOWER (ch))
1924 || (is_print && ISPRINT (ch))
1925 || (is_punct && ISPUNCT (ch))
1926 || (is_space && ISSPACE (ch))
1927 || (is_upper && ISUPPER (ch))
1928 || (is_xdigit && ISXDIGIT (ch)))
1929 SET_LIST_BIT (ch);
1930 }
1931 had_char_class = true;
1932 }
1933 else
1934 {
1935 c1++;
1936 while (c1--)
1937 PATUNFETCH;
1938 SET_LIST_BIT ('[');
1939 SET_LIST_BIT (':');
1940 had_char_class = false;
1941 }
1942 }
1943 else
1944 {
1945 had_char_class = false;
1946 SET_LIST_BIT (c);
1947 }
1948 }
1949
1950 /* Discard any (non)matching list bytes that are all 0 at the
1951 end of the map. Decrease the map-length byte too. */
1952 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
1953 b[-1]--;
1954 b += b[-1];
1955 }
1956 break;
1957
1958
1959 case '(':
1960 if (syntax & RE_NO_BK_PARENS)
1961 goto handle_open;
1962 else
1963 goto normal_char;
1964
1965
1966 case ')':
1967 if (syntax & RE_NO_BK_PARENS)
1968 goto handle_close;
1969 else
1970 goto normal_char;
1971
1972
1973 case '\n':
1974 if (syntax & RE_NEWLINE_ALT)
1975 goto handle_alt;
1976 else
1977 goto normal_char;
1978
1979
1980 case '|':
1981 if (syntax & RE_NO_BK_VBAR)
1982 goto handle_alt;
1983 else
1984 goto normal_char;
1985
1986
1987 case '{':
1988 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
1989 goto handle_interval;
1990 else
1991 goto normal_char;
1992
1993
1994 case '\\':
1995 if (p == pend) return REG_EESCAPE;
1996
1997 /* Do not translate the character after the \, so that we can
1998 distinguish, e.g., \B from \b, even if we normally would
1999 translate, e.g., B to b. */
2000 PATFETCH_RAW (c);
2001
2002 switch (c)
2003 {
2004 case '(':
2005 if (syntax & RE_NO_BK_PARENS)
2006 goto normal_backslash;
2007
2008 handle_open:
2009 bufp->re_nsub++;
2010 regnum++;
2011
2012 if (COMPILE_STACK_FULL)
2013 {
2014 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2015 compile_stack_elt_t);
2016 if (compile_stack.stack == NULL) return REG_ESPACE;
2017
2018 compile_stack.size <<= 1;
2019 }
2020
2021 /* These are the values to restore when we hit end of this
2022 group. They are all relative offsets, so that if the
2023 whole pattern moves because of realloc, they will still
2024 be valid. */
2025 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2026 COMPILE_STACK_TOP.fixup_alt_jump
2027 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2028 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2029 COMPILE_STACK_TOP.regnum = regnum;
2030
2031 /* We will eventually replace the 0 with the number of
2032 groups inner to this one. But do not push a
2033 start_memory for groups beyond the last one we can
2034 represent in the compiled pattern. */
2035 if (regnum <= MAX_REGNUM)
2036 {
2037 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2038 BUF_PUSH_3 (start_memory, regnum, 0);
2039 }
2040
2041 compile_stack.avail++;
2042
2043 fixup_alt_jump = 0;
2044 laststart = 0;
2045 begalt = b;
2046 /* If we've reached MAX_REGNUM groups, then this open
2047 won't actually generate any code, so we'll have to
2048 clear pending_exact explicitly. */
2049 pending_exact = 0;
2050 break;
2051
2052
2053 case ')':
2054 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2055
2056 if (COMPILE_STACK_EMPTY)
2057 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2058 goto normal_backslash;
2059 else
2060 return REG_ERPAREN;
2061
2062 handle_close:
2063 if (fixup_alt_jump)
2064 { /* Push a dummy failure point at the end of the
2065 alternative for a possible future
2066 `pop_failure_jump' to pop. See comments at
2067 `push_dummy_failure' in `re_match_2'. */
2068 BUF_PUSH (push_dummy_failure);
2069
2070 /* We allocated space for this jump when we assigned
2071 to `fixup_alt_jump', in the `handle_alt' case below. */
2072 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2073 }
2074
2075 /* See similar code for backslashed left paren above. */
2076 if (COMPILE_STACK_EMPTY)
2077 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2078 goto normal_char;
2079 else
2080 return REG_ERPAREN;
2081
2082 /* Since we just checked for an empty stack above, this
2083 ``can't happen''. */
2084 assert (compile_stack.avail != 0);
2085 {
2086 /* We don't just want to restore into `regnum', because
2087 later groups should continue to be numbered higher,
2088 as in `(ab)c(de)' -- the second group is #2. */
2089 regnum_t this_group_regnum;
2090
2091 compile_stack.avail--;
2092 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2093 fixup_alt_jump
2094 = COMPILE_STACK_TOP.fixup_alt_jump
2095 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2096 : 0;
2097 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2098 this_group_regnum = COMPILE_STACK_TOP.regnum;
2099 /* If we've reached MAX_REGNUM groups, then this open
2100 won't actually generate any code, so we'll have to
2101 clear pending_exact explicitly. */
2102 pending_exact = 0;
2103
2104 /* We're at the end of the group, so now we know how many
2105 groups were inside this one. */
2106 if (this_group_regnum <= MAX_REGNUM)
2107 {
2108 unsigned char *inner_group_loc
2109 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2110
2111 *inner_group_loc = regnum - this_group_regnum;
2112 BUF_PUSH_3 (stop_memory, this_group_regnum,
2113 regnum - this_group_regnum);
2114 }
2115 }
2116 break;
2117
2118
2119 case '|': /* `\|'. */
2120 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2121 goto normal_backslash;
2122 handle_alt:
2123 if (syntax & RE_LIMITED_OPS)
2124 goto normal_char;
2125
2126 /* Insert before the previous alternative a jump which
2127 jumps to this alternative if the former fails. */
2128 GET_BUFFER_SPACE (3);
2129 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2130 pending_exact = 0;
2131 b += 3;
2132
2133 /* The alternative before this one has a jump after it
2134 which gets executed if it gets matched. Adjust that
2135 jump so it will jump to this alternative's analogous
2136 jump (put in below, which in turn will jump to the next
2137 (if any) alternative's such jump, etc.). The last such
2138 jump jumps to the correct final destination. A picture:
2139 _____ _____
2140 | | | |
2141 | v | v
2142 a | b | c
2143
2144 If we are at `b', then fixup_alt_jump right now points to a
2145 three-byte space after `a'. We'll put in the jump, set
2146 fixup_alt_jump to right after `b', and leave behind three
2147 bytes which we'll fill in when we get to after `c'. */
2148
2149 if (fixup_alt_jump)
2150 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2151
2152 /* Mark and leave space for a jump after this alternative,
2153 to be filled in later either by next alternative or
2154 when know we're at the end of a series of alternatives. */
2155 fixup_alt_jump = b;
2156 GET_BUFFER_SPACE (3);
2157 b += 3;
2158
2159 laststart = 0;
2160 begalt = b;
2161 break;
2162
2163
2164 case '{':
2165 /* If \{ is a literal. */
2166 if (!(syntax & RE_INTERVALS)
2167 /* If we're at `\{' and it's not the open-interval
2168 operator. */
2169 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2170 || (p - 2 == pattern && p == pend))
2171 goto normal_backslash;
2172
2173 handle_interval:
2174 {
2175 /* If got here, then the syntax allows intervals. */
2176
2177 /* At least (most) this many matches must be made. */
2178 int lower_bound = -1, upper_bound = -1;
2179
2180 beg_interval = p - 1;
2181
2182 if (p == pend)
2183 {
2184 if (syntax & RE_NO_BK_BRACES)
2185 goto unfetch_interval;
2186 else
2187 return REG_EBRACE;
2188 }
2189
2190 GET_UNSIGNED_NUMBER (lower_bound);
2191
2192 if (c == ',')
2193 {
2194 GET_UNSIGNED_NUMBER (upper_bound);
2195 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2196 }
2197 else
2198 /* Interval such as `{1}' => match exactly once. */
2199 upper_bound = lower_bound;
2200
2201 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2202 || lower_bound > upper_bound)
2203 {
2204 if (syntax & RE_NO_BK_BRACES)
2205 goto unfetch_interval;
2206 else
2207 return REG_BADBR;
2208 }
2209
2210 if (!(syntax & RE_NO_BK_BRACES))
2211 {
2212 if (c != '\\') return REG_EBRACE;
2213
2214 PATFETCH (c);
2215 }
2216
2217 if (c != '}')
2218 {
2219 if (syntax & RE_NO_BK_BRACES)
2220 goto unfetch_interval;
2221 else
2222 return REG_BADBR;
2223 }
2224
2225 /* We just parsed a valid interval. */
2226
2227 /* If it's invalid to have no preceding re. */
2228 if (!laststart)
2229 {
2230 if (syntax & RE_CONTEXT_INVALID_OPS)
2231 return REG_BADRPT;
2232 else if (syntax & RE_CONTEXT_INDEP_OPS)
2233 laststart = b;
2234 else
2235 goto unfetch_interval;
2236 }
2237
2238 /* If the upper bound is zero, don't want to succeed at
2239 all; jump from `laststart' to `b + 3', which will be
2240 the end of the buffer after we insert the jump. */
2241 if (upper_bound == 0)
2242 {
2243 GET_BUFFER_SPACE (3);
2244 INSERT_JUMP (jump, laststart, b + 3);
2245 b += 3;
2246 }
2247
2248 /* Otherwise, we have a nontrivial interval. When
2249 we're all done, the pattern will look like:
2250 set_number_at <jump count> <upper bound>
2251 set_number_at <succeed_n count> <lower bound>
2252 succeed_n <after jump addr> <succed_n count>
2253 <body of loop>
2254 jump_n <succeed_n addr> <jump count>
2255 (The upper bound and `jump_n' are omitted if
2256 `upper_bound' is 1, though.) */
2257 else
2258 { /* If the upper bound is > 1, we need to insert
2259 more at the end of the loop. */
2260 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2261
2262 GET_BUFFER_SPACE (nbytes);
2263
2264 /* Initialize lower bound of the `succeed_n', even
2265 though it will be set during matching by its
2266 attendant `set_number_at' (inserted next),
2267 because `re_compile_fastmap' needs to know.
2268 Jump to the `jump_n' we might insert below. */
2269 INSERT_JUMP2 (succeed_n, laststart,
2270 b + 5 + (upper_bound > 1) * 5,
2271 lower_bound);
2272 b += 5;
2273
2274 /* Code to initialize the lower bound. Insert
2275 before the `succeed_n'. The `5' is the last two
2276 bytes of this `set_number_at', plus 3 bytes of
2277 the following `succeed_n'. */
2278 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2279 b += 5;
2280
2281 if (upper_bound > 1)
2282 { /* More than one repetition is allowed, so
2283 append a backward jump to the `succeed_n'
2284 that starts this interval.
2285
2286 When we've reached this during matching,
2287 we'll have matched the interval once, so
2288 jump back only `upper_bound - 1' times. */
2289 STORE_JUMP2 (jump_n, b, laststart + 5,
2290 upper_bound - 1);
2291 b += 5;
2292
2293 /* The location we want to set is the second
2294 parameter of the `jump_n'; that is `b-2' as
2295 an absolute address. `laststart' will be
2296 the `set_number_at' we're about to insert;
2297 `laststart+3' the number to set, the source
2298 for the relative address. But we are
2299 inserting into the middle of the pattern --
2300 so everything is getting moved up by 5.
2301 Conclusion: (b - 2) - (laststart + 3) + 5,
2302 i.e., b - laststart.
2303
2304 We insert this at the beginning of the loop
2305 so that if we fail during matching, we'll
2306 reinitialize the bounds. */
2307 insert_op2 (set_number_at, laststart, b - laststart,
2308 upper_bound - 1, b);
2309 b += 5;
2310 }
2311 }
2312 pending_exact = 0;
2313 beg_interval = NULL;
2314 }
2315 break;
2316
2317 unfetch_interval:
2318 /* If an invalid interval, match the characters as literals. */
2319 assert (beg_interval);
2320 p = beg_interval;
2321 beg_interval = NULL;
2322
2323 /* normal_char and normal_backslash need `c'. */
2324 PATFETCH (c);
2325
2326 if (!(syntax & RE_NO_BK_BRACES))
2327 {
2328 if (p > pattern && p[-1] == '\\')
2329 goto normal_backslash;
2330 }
2331 goto normal_char;
2332
2333 #ifdef emacs
2334 /* There is no way to specify the before_dot and after_dot
2335 operators. rms says this is ok. --karl */
2336 case '=':
2337 BUF_PUSH (at_dot);
2338 break;
2339
2340 case 's':
2341 laststart = b;
2342 PATFETCH (c);
2343 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2344 break;
2345
2346 case 'S':
2347 laststart = b;
2348 PATFETCH (c);
2349 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2350 break;
2351 #endif /* emacs */
2352
2353
2354 case 'w':
2355 laststart = b;
2356 BUF_PUSH (wordchar);
2357 break;
2358
2359
2360 case 'W':
2361 laststart = b;
2362 BUF_PUSH (notwordchar);
2363 break;
2364
2365
2366 case '<':
2367 BUF_PUSH (wordbeg);
2368 break;
2369
2370 case '>':
2371 BUF_PUSH (wordend);
2372 break;
2373
2374 case 'b':
2375 BUF_PUSH (wordbound);
2376 break;
2377
2378 case 'B':
2379 BUF_PUSH (notwordbound);
2380 break;
2381
2382 case '`':
2383 BUF_PUSH (begbuf);
2384 break;
2385
2386 case '\'':
2387 BUF_PUSH (endbuf);
2388 break;
2389
2390 case '1': case '2': case '3': case '4': case '5':
2391 case '6': case '7': case '8': case '9':
2392 if (syntax & RE_NO_BK_REFS)
2393 goto normal_char;
2394
2395 c1 = c - '0';
2396
2397 if (c1 > regnum)
2398 return REG_ESUBREG;
2399
2400 /* Can't back reference to a subexpression if inside of it. */
2401 if (group_in_compile_stack (compile_stack, c1))
2402 goto normal_char;
2403
2404 laststart = b;
2405 BUF_PUSH_2 (duplicate, c1);
2406 break;
2407
2408
2409 case '+':
2410 case '?':
2411 if (syntax & RE_BK_PLUS_QM)
2412 goto handle_plus;
2413 else
2414 goto normal_backslash;
2415
2416 default:
2417 normal_backslash:
2418 /* You might think it would be useful for \ to mean
2419 not to translate; but if we don't translate it
2420 it will never match anything. */
2421 c = TRANSLATE (c);
2422 goto normal_char;
2423 }
2424 break;
2425
2426
2427 default:
2428 /* Expects the character in `c'. */
2429 normal_char:
2430 /* If no exactn currently being built. */
2431 if (!pending_exact
2432
2433 /* If last exactn not at current position. */
2434 || pending_exact + *pending_exact + 1 != b
2435
2436 /* We have only one byte following the exactn for the count. */
2437 || *pending_exact == (1 << BYTEWIDTH) - 1
2438
2439 /* If followed by a repetition operator. */
2440 || *p == '*' || *p == '^'
2441 || ((syntax & RE_BK_PLUS_QM)
2442 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2443 : (*p == '+' || *p == '?'))
2444 || ((syntax & RE_INTERVALS)
2445 && ((syntax & RE_NO_BK_BRACES)
2446 ? *p == '{'
2447 : (p[0] == '\\' && p[1] == '{'))))
2448 {
2449 /* Start building a new exactn. */
2450
2451 laststart = b;
2452
2453 BUF_PUSH_2 (exactn, 0);
2454 pending_exact = b - 1;
2455 }
2456
2457 BUF_PUSH (c);
2458 (*pending_exact)++;
2459 break;
2460 } /* switch (c) */
2461 } /* while p != pend */
2462
2463
2464 /* Through the pattern now. */
2465
2466 if (fixup_alt_jump)
2467 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2468
2469 if (!COMPILE_STACK_EMPTY)
2470 return REG_EPAREN;
2471
2472 free (compile_stack.stack);
2473
2474 /* We have succeeded; set the length of the buffer. */
2475 bufp->used = b - bufp->buffer;
2476
2477 #ifdef DEBUG
2478 if (debug)
2479 {
2480 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2481 print_compiled_pattern (bufp);
2482 }
2483 #endif /* DEBUG */
2484
2485 #ifndef MATCH_MAY_ALLOCATE
2486 /* Initialize the failure stack to the largest possible stack. This
2487 isn't necessary unless we're trying to avoid calling alloca in
2488 the search and match routines. */
2489 {
2490 int num_regs = bufp->re_nsub + 1;
2491
2492 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2493 is strictly greater than re_max_failures, the largest possible stack
2494 is 2 * re_max_failures failure points. */
2495 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2496 if (fail_stack.stack)
2497 fail_stack.stack =
2498 (fail_stack_elt_t *) realloc (fail_stack.stack,
2499 (fail_stack.size
2500 * sizeof (fail_stack_elt_t)));
2501 else
2502 fail_stack.stack =
2503 (fail_stack_elt_t *) malloc (fail_stack.size
2504 * sizeof (fail_stack_elt_t));
2505
2506 /* Initialize some other variables the matcher uses. */
2507 RETALLOC_IF (regstart, num_regs, const char *);
2508 RETALLOC_IF (regend, num_regs, const char *);
2509 RETALLOC_IF (old_regstart, num_regs, const char *);
2510 RETALLOC_IF (old_regend, num_regs, const char *);
2511 RETALLOC_IF (best_regstart, num_regs, const char *);
2512 RETALLOC_IF (best_regend, num_regs, const char *);
2513 RETALLOC_IF (reg_info, num_regs, register_info_type);
2514 RETALLOC_IF (reg_dummy, num_regs, const char *);
2515 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
2516 }
2517 #endif
2518
2519 return REG_NOERROR;
2520 } /* regex_compile */
2521 \f
2522 /* Subroutines for `regex_compile'. */
2523
2524 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2525
2526 static void
2527 store_op1 (op, loc, arg)
2528 re_opcode_t op;
2529 unsigned char *loc;
2530 int arg;
2531 {
2532 *loc = (unsigned char) op;
2533 STORE_NUMBER (loc + 1, arg);
2534 }
2535
2536
2537 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2538
2539 static void
2540 store_op2 (op, loc, arg1, arg2)
2541 re_opcode_t op;
2542 unsigned char *loc;
2543 int arg1, arg2;
2544 {
2545 *loc = (unsigned char) op;
2546 STORE_NUMBER (loc + 1, arg1);
2547 STORE_NUMBER (loc + 3, arg2);
2548 }
2549
2550
2551 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2552 for OP followed by two-byte integer parameter ARG. */
2553
2554 static void
2555 insert_op1 (op, loc, arg, end)
2556 re_opcode_t op;
2557 unsigned char *loc;
2558 int arg;
2559 unsigned char *end;
2560 {
2561 register unsigned char *pfrom = end;
2562 register unsigned char *pto = end + 3;
2563
2564 while (pfrom != loc)
2565 *--pto = *--pfrom;
2566
2567 store_op1 (op, loc, arg);
2568 }
2569
2570
2571 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2572
2573 static void
2574 insert_op2 (op, loc, arg1, arg2, end)
2575 re_opcode_t op;
2576 unsigned char *loc;
2577 int arg1, arg2;
2578 unsigned char *end;
2579 {
2580 register unsigned char *pfrom = end;
2581 register unsigned char *pto = end + 5;
2582
2583 while (pfrom != loc)
2584 *--pto = *--pfrom;
2585
2586 store_op2 (op, loc, arg1, arg2);
2587 }
2588
2589
2590 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2591 after an alternative or a begin-subexpression. We assume there is at
2592 least one character before the ^. */
2593
2594 static boolean
2595 at_begline_loc_p (pattern, p, syntax)
2596 const char *pattern, *p;
2597 reg_syntax_t syntax;
2598 {
2599 const char *prev = p - 2;
2600 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2601
2602 return
2603 /* After a subexpression? */
2604 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2605 /* After an alternative? */
2606 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2607 }
2608
2609
2610 /* The dual of at_begline_loc_p. This one is for $. We assume there is
2611 at least one character after the $, i.e., `P < PEND'. */
2612
2613 static boolean
2614 at_endline_loc_p (p, pend, syntax)
2615 const char *p, *pend;
2616 int syntax;
2617 {
2618 const char *next = p;
2619 boolean next_backslash = *next == '\\';
2620 const char *next_next = p + 1 < pend ? p + 1 : NULL;
2621
2622 return
2623 /* Before a subexpression? */
2624 (syntax & RE_NO_BK_PARENS ? *next == ')'
2625 : next_backslash && next_next && *next_next == ')')
2626 /* Before an alternative? */
2627 || (syntax & RE_NO_BK_VBAR ? *next == '|'
2628 : next_backslash && next_next && *next_next == '|');
2629 }
2630
2631
2632 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2633 false if it's not. */
2634
2635 static boolean
2636 group_in_compile_stack (compile_stack, regnum)
2637 compile_stack_type compile_stack;
2638 regnum_t regnum;
2639 {
2640 int this_element;
2641
2642 for (this_element = compile_stack.avail - 1;
2643 this_element >= 0;
2644 this_element--)
2645 if (compile_stack.stack[this_element].regnum == regnum)
2646 return true;
2647
2648 return false;
2649 }
2650
2651
2652 /* Read the ending character of a range (in a bracket expression) from the
2653 uncompiled pattern *P_PTR (which ends at PEND). We assume the
2654 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
2655 Then we set the translation of all bits between the starting and
2656 ending characters (inclusive) in the compiled pattern B.
2657
2658 Return an error code.
2659
2660 We use these short variable names so we can use the same macros as
2661 `regex_compile' itself. */
2662
2663 static reg_errcode_t
2664 compile_range (p_ptr, pend, translate, syntax, b)
2665 const char **p_ptr, *pend;
2666 char *translate;
2667 reg_syntax_t syntax;
2668 unsigned char *b;
2669 {
2670 unsigned this_char;
2671
2672 const char *p = *p_ptr;
2673 int range_start, range_end;
2674
2675 if (p == pend)
2676 return REG_ERANGE;
2677
2678 /* Even though the pattern is a signed `char *', we need to fetch
2679 with unsigned char *'s; if the high bit of the pattern character
2680 is set, the range endpoints will be negative if we fetch using a
2681 signed char *.
2682
2683 We also want to fetch the endpoints without translating them; the
2684 appropriate translation is done in the bit-setting loop below. */
2685 range_start = ((unsigned char *) p)[-2];
2686 range_end = ((unsigned char *) p)[0];
2687
2688 /* Have to increment the pointer into the pattern string, so the
2689 caller isn't still at the ending character. */
2690 (*p_ptr)++;
2691
2692 /* If the start is after the end, the range is empty. */
2693 if (range_start > range_end)
2694 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
2695
2696 /* Here we see why `this_char' has to be larger than an `unsigned
2697 char' -- the range is inclusive, so if `range_end' == 0xff
2698 (assuming 8-bit characters), we would otherwise go into an infinite
2699 loop, since all characters <= 0xff. */
2700 for (this_char = range_start; this_char <= range_end; this_char++)
2701 {
2702 SET_LIST_BIT (TRANSLATE (this_char));
2703 }
2704
2705 return REG_NOERROR;
2706 }
2707 \f
2708 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2709 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
2710 characters can start a string that matches the pattern. This fastmap
2711 is used by re_search to skip quickly over impossible starting points.
2712
2713 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2714 area as BUFP->fastmap.
2715
2716 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2717 the pattern buffer.
2718
2719 Returns 0 if we succeed, -2 if an internal error. */
2720
2721 int
2722 re_compile_fastmap (bufp)
2723 struct re_pattern_buffer *bufp;
2724 {
2725 int j, k;
2726 #ifdef MATCH_MAY_ALLOCATE
2727 fail_stack_type fail_stack;
2728 #endif
2729 #ifndef REGEX_MALLOC
2730 char *destination;
2731 #endif
2732 /* We don't push any register information onto the failure stack. */
2733 unsigned num_regs = 0;
2734
2735 register char *fastmap = bufp->fastmap;
2736 unsigned char *pattern = bufp->buffer;
2737 unsigned long size = bufp->used;
2738 unsigned char *p = pattern;
2739 register unsigned char *pend = pattern + size;
2740
2741 /* Assume that each path through the pattern can be null until
2742 proven otherwise. We set this false at the bottom of switch
2743 statement, to which we get only if a particular path doesn't
2744 match the empty string. */
2745 boolean path_can_be_null = true;
2746
2747 /* We aren't doing a `succeed_n' to begin with. */
2748 boolean succeed_n_p = false;
2749
2750 assert (fastmap != NULL && p != NULL);
2751
2752 INIT_FAIL_STACK ();
2753 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
2754 bufp->fastmap_accurate = 1; /* It will be when we're done. */
2755 bufp->can_be_null = 0;
2756
2757 while (p != pend || !FAIL_STACK_EMPTY ())
2758 {
2759 if (p == pend)
2760 {
2761 bufp->can_be_null |= path_can_be_null;
2762
2763 /* Reset for next path. */
2764 path_can_be_null = true;
2765
2766 p = fail_stack.stack[--fail_stack.avail];
2767 }
2768
2769 /* We should never be about to go beyond the end of the pattern. */
2770 assert (p < pend);
2771
2772 #ifdef SWITCH_ENUM_BUG
2773 switch ((int) ((re_opcode_t) *p++))
2774 #else
2775 switch ((re_opcode_t) *p++)
2776 #endif
2777 {
2778
2779 /* I guess the idea here is to simply not bother with a fastmap
2780 if a backreference is used, since it's too hard to figure out
2781 the fastmap for the corresponding group. Setting
2782 `can_be_null' stops `re_search_2' from using the fastmap, so
2783 that is all we do. */
2784 case duplicate:
2785 bufp->can_be_null = 1;
2786 return 0;
2787
2788
2789 /* Following are the cases which match a character. These end
2790 with `break'. */
2791
2792 case exactn:
2793 fastmap[p[1]] = 1;
2794 break;
2795
2796
2797 case charset:
2798 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2799 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
2800 fastmap[j] = 1;
2801 break;
2802
2803
2804 case charset_not:
2805 /* Chars beyond end of map must be allowed. */
2806 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
2807 fastmap[j] = 1;
2808
2809 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2810 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
2811 fastmap[j] = 1;
2812 break;
2813
2814
2815 case wordchar:
2816 for (j = 0; j < (1 << BYTEWIDTH); j++)
2817 if (SYNTAX (j) == Sword)
2818 fastmap[j] = 1;
2819 break;
2820
2821
2822 case notwordchar:
2823 for (j = 0; j < (1 << BYTEWIDTH); j++)
2824 if (SYNTAX (j) != Sword)
2825 fastmap[j] = 1;
2826 break;
2827
2828
2829 case anychar:
2830 /* `.' matches anything ... */
2831 for (j = 0; j < (1 << BYTEWIDTH); j++)
2832 fastmap[j] = 1;
2833
2834 /* ... except perhaps newline. */
2835 if (!(bufp->syntax & RE_DOT_NEWLINE))
2836 fastmap['\n'] = 0;
2837
2838 /* Return if we have already set `can_be_null'; if we have,
2839 then the fastmap is irrelevant. Something's wrong here. */
2840 else if (bufp->can_be_null)
2841 return 0;
2842
2843 /* Otherwise, have to check alternative paths. */
2844 break;
2845
2846
2847 #ifdef emacs
2848 case syntaxspec:
2849 k = *p++;
2850 for (j = 0; j < (1 << BYTEWIDTH); j++)
2851 if (SYNTAX (j) == (enum syntaxcode) k)
2852 fastmap[j] = 1;
2853 break;
2854
2855
2856 case notsyntaxspec:
2857 k = *p++;
2858 for (j = 0; j < (1 << BYTEWIDTH); j++)
2859 if (SYNTAX (j) != (enum syntaxcode) k)
2860 fastmap[j] = 1;
2861 break;
2862
2863
2864 /* All cases after this match the empty string. These end with
2865 `continue'. */
2866
2867
2868 case before_dot:
2869 case at_dot:
2870 case after_dot:
2871 continue;
2872 #endif /* not emacs */
2873
2874
2875 case no_op:
2876 case begline:
2877 case endline:
2878 case begbuf:
2879 case endbuf:
2880 case wordbound:
2881 case notwordbound:
2882 case wordbeg:
2883 case wordend:
2884 case push_dummy_failure:
2885 continue;
2886
2887
2888 case jump_n:
2889 case pop_failure_jump:
2890 case maybe_pop_jump:
2891 case jump:
2892 case jump_past_alt:
2893 case dummy_failure_jump:
2894 EXTRACT_NUMBER_AND_INCR (j, p);
2895 p += j;
2896 if (j > 0)
2897 continue;
2898
2899 /* Jump backward implies we just went through the body of a
2900 loop and matched nothing. Opcode jumped to should be
2901 `on_failure_jump' or `succeed_n'. Just treat it like an
2902 ordinary jump. For a * loop, it has pushed its failure
2903 point already; if so, discard that as redundant. */
2904 if ((re_opcode_t) *p != on_failure_jump
2905 && (re_opcode_t) *p != succeed_n)
2906 continue;
2907
2908 p++;
2909 EXTRACT_NUMBER_AND_INCR (j, p);
2910 p += j;
2911
2912 /* If what's on the stack is where we are now, pop it. */
2913 if (!FAIL_STACK_EMPTY ()
2914 && fail_stack.stack[fail_stack.avail - 1] == p)
2915 fail_stack.avail--;
2916
2917 continue;
2918
2919
2920 case on_failure_jump:
2921 case on_failure_keep_string_jump:
2922 handle_on_failure_jump:
2923 EXTRACT_NUMBER_AND_INCR (j, p);
2924
2925 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
2926 end of the pattern. We don't want to push such a point,
2927 since when we restore it above, entering the switch will
2928 increment `p' past the end of the pattern. We don't need
2929 to push such a point since we obviously won't find any more
2930 fastmap entries beyond `pend'. Such a pattern can match
2931 the null string, though. */
2932 if (p + j < pend)
2933 {
2934 if (!PUSH_PATTERN_OP (p + j, fail_stack))
2935 return -2;
2936 }
2937 else
2938 bufp->can_be_null = 1;
2939
2940 if (succeed_n_p)
2941 {
2942 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
2943 succeed_n_p = false;
2944 }
2945
2946 continue;
2947
2948
2949 case succeed_n:
2950 /* Get to the number of times to succeed. */
2951 p += 2;
2952
2953 /* Increment p past the n for when k != 0. */
2954 EXTRACT_NUMBER_AND_INCR (k, p);
2955 if (k == 0)
2956 {
2957 p -= 4;
2958 succeed_n_p = true; /* Spaghetti code alert. */
2959 goto handle_on_failure_jump;
2960 }
2961 continue;
2962
2963
2964 case set_number_at:
2965 p += 4;
2966 continue;
2967
2968
2969 case start_memory:
2970 case stop_memory:
2971 p += 2;
2972 continue;
2973
2974
2975 default:
2976 abort (); /* We have listed all the cases. */
2977 } /* switch *p++ */
2978
2979 /* Getting here means we have found the possible starting
2980 characters for one path of the pattern -- and that the empty
2981 string does not match. We need not follow this path further.
2982 Instead, look at the next alternative (remembered on the
2983 stack), or quit if no more. The test at the top of the loop
2984 does these things. */
2985 path_can_be_null = false;
2986 p = pend;
2987 } /* while p */
2988
2989 /* Set `can_be_null' for the last path (also the first path, if the
2990 pattern is empty). */
2991 bufp->can_be_null |= path_can_be_null;
2992 return 0;
2993 } /* re_compile_fastmap */
2994 \f
2995 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
2996 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
2997 this memory for recording register information. STARTS and ENDS
2998 must be allocated using the malloc library routine, and must each
2999 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3000
3001 If NUM_REGS == 0, then subsequent matches should allocate their own
3002 register data.
3003
3004 Unless this function is called, the first search or match using
3005 PATTERN_BUFFER will allocate its own register data, without
3006 freeing the old data. */
3007
3008 void
3009 re_set_registers (bufp, regs, num_regs, starts, ends)
3010 struct re_pattern_buffer *bufp;
3011 struct re_registers *regs;
3012 unsigned num_regs;
3013 regoff_t *starts, *ends;
3014 {
3015 if (num_regs)
3016 {
3017 bufp->regs_allocated = REGS_REALLOCATE;
3018 regs->num_regs = num_regs;
3019 regs->start = starts;
3020 regs->end = ends;
3021 }
3022 else
3023 {
3024 bufp->regs_allocated = REGS_UNALLOCATED;
3025 regs->num_regs = 0;
3026 regs->start = regs->end = (regoff_t *) 0;
3027 }
3028 }
3029 \f
3030 /* Searching routines. */
3031
3032 /* Like re_search_2, below, but only one string is specified, and
3033 doesn't let you say where to stop matching. */
3034
3035 int
3036 re_search (bufp, string, size, startpos, range, regs)
3037 struct re_pattern_buffer *bufp;
3038 const char *string;
3039 int size, startpos, range;
3040 struct re_registers *regs;
3041 {
3042 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3043 regs, size);
3044 }
3045
3046
3047 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3048 virtual concatenation of STRING1 and STRING2, starting first at index
3049 STARTPOS, then at STARTPOS + 1, and so on.
3050
3051 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3052
3053 RANGE is how far to scan while trying to match. RANGE = 0 means try
3054 only at STARTPOS; in general, the last start tried is STARTPOS +
3055 RANGE.
3056
3057 In REGS, return the indices of the virtual concatenation of STRING1
3058 and STRING2 that matched the entire BUFP->buffer and its contained
3059 subexpressions.
3060
3061 Do not consider matching one past the index STOP in the virtual
3062 concatenation of STRING1 and STRING2.
3063
3064 We return either the position in the strings at which the match was
3065 found, -1 if no match, or -2 if error (such as failure
3066 stack overflow). */
3067
3068 int
3069 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3070 struct re_pattern_buffer *bufp;
3071 const char *string1, *string2;
3072 int size1, size2;
3073 int startpos;
3074 int range;
3075 struct re_registers *regs;
3076 int stop;
3077 {
3078 int val;
3079 register char *fastmap = bufp->fastmap;
3080 register char *translate = bufp->translate;
3081 int total_size = size1 + size2;
3082 int endpos = startpos + range;
3083
3084 /* Check for out-of-range STARTPOS. */
3085 if (startpos < 0 || startpos > total_size)
3086 return -1;
3087
3088 /* Fix up RANGE if it might eventually take us outside
3089 the virtual concatenation of STRING1 and STRING2. */
3090 if (endpos < -1)
3091 range = -1 - startpos;
3092 else if (endpos > total_size)
3093 range = total_size - startpos;
3094
3095 /* If the search isn't to be a backwards one, don't waste time in a
3096 search for a pattern that must be anchored. */
3097 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3098 {
3099 if (startpos > 0)
3100 return -1;
3101 else
3102 range = 1;
3103 }
3104
3105 /* Update the fastmap now if not correct already. */
3106 if (fastmap && !bufp->fastmap_accurate)
3107 if (re_compile_fastmap (bufp) == -2)
3108 return -2;
3109
3110 /* Loop through the string, looking for a place to start matching. */
3111 for (;;)
3112 {
3113 /* If a fastmap is supplied, skip quickly over characters that
3114 cannot be the start of a match. If the pattern can match the
3115 null string, however, we don't need to skip characters; we want
3116 the first null string. */
3117 if (fastmap && startpos < total_size && !bufp->can_be_null)
3118 {
3119 if (range > 0) /* Searching forwards. */
3120 {
3121 register const char *d;
3122 register int lim = 0;
3123 int irange = range;
3124
3125 if (startpos < size1 && startpos + range >= size1)
3126 lim = range - (size1 - startpos);
3127
3128 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
3129
3130 /* Written out as an if-else to avoid testing `translate'
3131 inside the loop. */
3132 if (translate)
3133 while (range > lim
3134 && !fastmap[(unsigned char)
3135 translate[(unsigned char) *d++]])
3136 range--;
3137 else
3138 while (range > lim && !fastmap[(unsigned char) *d++])
3139 range--;
3140
3141 startpos += irange - range;
3142 }
3143 else /* Searching backwards. */
3144 {
3145 register char c = (size1 == 0 || startpos >= size1
3146 ? string2[startpos - size1]
3147 : string1[startpos]);
3148
3149 if (!fastmap[(unsigned char) TRANSLATE (c)])
3150 goto advance;
3151 }
3152 }
3153
3154 /* If can't match the null string, and that's all we have left, fail. */
3155 if (range >= 0 && startpos == total_size && fastmap
3156 && !bufp->can_be_null)
3157 return -1;
3158
3159 val = re_match_2 (bufp, string1, size1, string2, size2,
3160 startpos, regs, stop);
3161 if (val >= 0)
3162 return startpos;
3163
3164 if (val == -2)
3165 return -2;
3166
3167 advance:
3168 if (!range)
3169 break;
3170 else if (range > 0)
3171 {
3172 range--;
3173 startpos++;
3174 }
3175 else
3176 {
3177 range++;
3178 startpos--;
3179 }
3180 }
3181 return -1;
3182 } /* re_search_2 */
3183 \f
3184 /* Declarations and macros for re_match_2. */
3185
3186 static int bcmp_translate ();
3187 static boolean alt_match_null_string_p (),
3188 common_op_match_null_string_p (),
3189 group_match_null_string_p ();
3190
3191 /* This converts PTR, a pointer into one of the search strings `string1'
3192 and `string2' into an offset from the beginning of that string. */
3193 #define POINTER_TO_OFFSET(ptr) \
3194 (FIRST_STRING_P (ptr) \
3195 ? ((regoff_t) ((ptr) - string1)) \
3196 : ((regoff_t) ((ptr) - string2 + size1)))
3197
3198 /* Macros for dealing with the split strings in re_match_2. */
3199
3200 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3201
3202 /* Call before fetching a character with *d. This switches over to
3203 string2 if necessary. */
3204 #define PREFETCH() \
3205 while (d == dend) \
3206 { \
3207 /* End of string2 => fail. */ \
3208 if (dend == end_match_2) \
3209 goto fail; \
3210 /* End of string1 => advance to string2. */ \
3211 d = string2; \
3212 dend = end_match_2; \
3213 }
3214
3215
3216 /* Test if at very beginning or at very end of the virtual concatenation
3217 of `string1' and `string2'. If only one string, it's `string2'. */
3218 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3219 #define AT_STRINGS_END(d) ((d) == end2)
3220
3221
3222 /* Test if D points to a character which is word-constituent. We have
3223 two special cases to check for: if past the end of string1, look at
3224 the first character in string2; and if before the beginning of
3225 string2, look at the last character in string1. */
3226 #define WORDCHAR_P(d) \
3227 (SYNTAX ((d) == end1 ? *string2 \
3228 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3229 == Sword)
3230
3231 /* Test if the character before D and the one at D differ with respect
3232 to being word-constituent. */
3233 #define AT_WORD_BOUNDARY(d) \
3234 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3235 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3236
3237
3238 /* Free everything we malloc. */
3239 #ifdef MATCH_MAY_ALLOCATE
3240 #ifdef REGEX_MALLOC
3241 #define FREE_VAR(var) if (var) free (var); var = NULL
3242 #define FREE_VARIABLES() \
3243 do { \
3244 FREE_VAR (fail_stack.stack); \
3245 FREE_VAR (regstart); \
3246 FREE_VAR (regend); \
3247 FREE_VAR (old_regstart); \
3248 FREE_VAR (old_regend); \
3249 FREE_VAR (best_regstart); \
3250 FREE_VAR (best_regend); \
3251 FREE_VAR (reg_info); \
3252 FREE_VAR (reg_dummy); \
3253 FREE_VAR (reg_info_dummy); \
3254 } while (0)
3255 #else /* not REGEX_MALLOC */
3256 /* Some MIPS systems (at least) want this to free alloca'd storage. */
3257 #define FREE_VARIABLES() alloca (0)
3258 #endif /* not REGEX_MALLOC */
3259 #else
3260 #define FREE_VARIABLES() /* Do nothing! */
3261 #endif /* not MATCH_MAY_ALLOCATE */
3262
3263 /* These values must meet several constraints. They must not be valid
3264 register values; since we have a limit of 255 registers (because
3265 we use only one byte in the pattern for the register number), we can
3266 use numbers larger than 255. They must differ by 1, because of
3267 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3268 be larger than the value for the highest register, so we do not try
3269 to actually save any registers when none are active. */
3270 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3271 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3272 \f
3273 /* Matching routines. */
3274
3275 #ifndef emacs /* Emacs never uses this. */
3276 /* re_match is like re_match_2 except it takes only a single string. */
3277
3278 int
3279 re_match (bufp, string, size, pos, regs)
3280 struct re_pattern_buffer *bufp;
3281 const char *string;
3282 int size, pos;
3283 struct re_registers *regs;
3284 {
3285 return re_match_2 (bufp, NULL, 0, string, size, pos, regs, size);
3286 }
3287 #endif /* not emacs */
3288
3289
3290 /* re_match_2 matches the compiled pattern in BUFP against the
3291 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3292 and SIZE2, respectively). We start matching at POS, and stop
3293 matching at STOP.
3294
3295 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3296 store offsets for the substring each group matched in REGS. See the
3297 documentation for exactly how many groups we fill.
3298
3299 We return -1 if no match, -2 if an internal error (such as the
3300 failure stack overflowing). Otherwise, we return the length of the
3301 matched substring. */
3302
3303 int
3304 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3305 struct re_pattern_buffer *bufp;
3306 const char *string1, *string2;
3307 int size1, size2;
3308 int pos;
3309 struct re_registers *regs;
3310 int stop;
3311 {
3312 /* General temporaries. */
3313 int mcnt;
3314 unsigned char *p1;
3315
3316 /* Just past the end of the corresponding string. */
3317 const char *end1, *end2;
3318
3319 /* Pointers into string1 and string2, just past the last characters in
3320 each to consider matching. */
3321 const char *end_match_1, *end_match_2;
3322
3323 /* Where we are in the data, and the end of the current string. */
3324 const char *d, *dend;
3325
3326 /* Where we are in the pattern, and the end of the pattern. */
3327 unsigned char *p = bufp->buffer;
3328 register unsigned char *pend = p + bufp->used;
3329
3330 /* We use this to map every character in the string. */
3331 char *translate = bufp->translate;
3332
3333 /* Failure point stack. Each place that can handle a failure further
3334 down the line pushes a failure point on this stack. It consists of
3335 restart, regend, and reg_info for all registers corresponding to
3336 the subexpressions we're currently inside, plus the number of such
3337 registers, and, finally, two char *'s. The first char * is where
3338 to resume scanning the pattern; the second one is where to resume
3339 scanning the strings. If the latter is zero, the failure point is
3340 a ``dummy''; if a failure happens and the failure point is a dummy,
3341 it gets discarded and the next next one is tried. */
3342 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3343 fail_stack_type fail_stack;
3344 #endif
3345 #ifdef DEBUG
3346 static unsigned failure_id = 0;
3347 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3348 #endif
3349
3350 /* We fill all the registers internally, independent of what we
3351 return, for use in backreferences. The number here includes
3352 an element for register zero. */
3353 unsigned num_regs = bufp->re_nsub + 1;
3354
3355 /* The currently active registers. */
3356 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3357 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3358
3359 /* Information on the contents of registers. These are pointers into
3360 the input strings; they record just what was matched (on this
3361 attempt) by a subexpression part of the pattern, that is, the
3362 regnum-th regstart pointer points to where in the pattern we began
3363 matching and the regnum-th regend points to right after where we
3364 stopped matching the regnum-th subexpression. (The zeroth register
3365 keeps track of what the whole pattern matches.) */
3366 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3367 const char **regstart, **regend;
3368 #endif
3369
3370 /* If a group that's operated upon by a repetition operator fails to
3371 match anything, then the register for its start will need to be
3372 restored because it will have been set to wherever in the string we
3373 are when we last see its open-group operator. Similarly for a
3374 register's end. */
3375 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3376 const char **old_regstart, **old_regend;
3377 #endif
3378
3379 /* The is_active field of reg_info helps us keep track of which (possibly
3380 nested) subexpressions we are currently in. The matched_something
3381 field of reg_info[reg_num] helps us tell whether or not we have
3382 matched any of the pattern so far this time through the reg_num-th
3383 subexpression. These two fields get reset each time through any
3384 loop their register is in. */
3385 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3386 register_info_type *reg_info;
3387 #endif
3388
3389 /* The following record the register info as found in the above
3390 variables when we find a match better than any we've seen before.
3391 This happens as we backtrack through the failure points, which in
3392 turn happens only if we have not yet matched the entire string. */
3393 unsigned best_regs_set = false;
3394 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3395 const char **best_regstart, **best_regend;
3396 #endif
3397
3398 /* Logically, this is `best_regend[0]'. But we don't want to have to
3399 allocate space for that if we're not allocating space for anything
3400 else (see below). Also, we never need info about register 0 for
3401 any of the other register vectors, and it seems rather a kludge to
3402 treat `best_regend' differently than the rest. So we keep track of
3403 the end of the best match so far in a separate variable. We
3404 initialize this to NULL so that when we backtrack the first time
3405 and need to test it, it's not garbage. */
3406 const char *match_end = NULL;
3407
3408 /* Used when we pop values we don't care about. */
3409 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3410 const char **reg_dummy;
3411 register_info_type *reg_info_dummy;
3412 #endif
3413
3414 #ifdef DEBUG
3415 /* Counts the total number of registers pushed. */
3416 unsigned num_regs_pushed = 0;
3417 #endif
3418
3419 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3420
3421 INIT_FAIL_STACK ();
3422
3423 #ifdef MATCH_MAY_ALLOCATE
3424 /* Do not bother to initialize all the register variables if there are
3425 no groups in the pattern, as it takes a fair amount of time. If
3426 there are groups, we include space for register 0 (the whole
3427 pattern), even though we never use it, since it simplifies the
3428 array indexing. We should fix this. */
3429 if (bufp->re_nsub)
3430 {
3431 regstart = REGEX_TALLOC (num_regs, const char *);
3432 regend = REGEX_TALLOC (num_regs, const char *);
3433 old_regstart = REGEX_TALLOC (num_regs, const char *);
3434 old_regend = REGEX_TALLOC (num_regs, const char *);
3435 best_regstart = REGEX_TALLOC (num_regs, const char *);
3436 best_regend = REGEX_TALLOC (num_regs, const char *);
3437 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3438 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3439 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3440
3441 if (!(regstart && regend && old_regstart && old_regend && reg_info
3442 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3443 {
3444 FREE_VARIABLES ();
3445 return -2;
3446 }
3447 }
3448 #if defined (REGEX_MALLOC)
3449 else
3450 {
3451 /* We must initialize all our variables to NULL, so that
3452 `FREE_VARIABLES' doesn't try to free them. */
3453 regstart = regend = old_regstart = old_regend = best_regstart
3454 = best_regend = reg_dummy = NULL;
3455 reg_info = reg_info_dummy = (register_info_type *) NULL;
3456 }
3457 #endif /* REGEX_MALLOC */
3458 #endif /* MATCH_MAY_ALLOCATE */
3459
3460 /* The starting position is bogus. */
3461 if (pos < 0 || pos > size1 + size2)
3462 {
3463 FREE_VARIABLES ();
3464 return -1;
3465 }
3466
3467 /* Initialize subexpression text positions to -1 to mark ones that no
3468 start_memory/stop_memory has been seen for. Also initialize the
3469 register information struct. */
3470 for (mcnt = 1; mcnt < num_regs; mcnt++)
3471 {
3472 regstart[mcnt] = regend[mcnt]
3473 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3474
3475 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3476 IS_ACTIVE (reg_info[mcnt]) = 0;
3477 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3478 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3479 }
3480
3481 /* We move `string1' into `string2' if the latter's empty -- but not if
3482 `string1' is null. */
3483 if (size2 == 0 && string1 != NULL)
3484 {
3485 string2 = string1;
3486 size2 = size1;
3487 string1 = 0;
3488 size1 = 0;
3489 }
3490 end1 = string1 + size1;
3491 end2 = string2 + size2;
3492
3493 /* Compute where to stop matching, within the two strings. */
3494 if (stop <= size1)
3495 {
3496 end_match_1 = string1 + stop;
3497 end_match_2 = string2;
3498 }
3499 else
3500 {
3501 end_match_1 = end1;
3502 end_match_2 = string2 + stop - size1;
3503 }
3504
3505 /* `p' scans through the pattern as `d' scans through the data.
3506 `dend' is the end of the input string that `d' points within. `d'
3507 is advanced into the following input string whenever necessary, but
3508 this happens before fetching; therefore, at the beginning of the
3509 loop, `d' can be pointing at the end of a string, but it cannot
3510 equal `string2'. */
3511 if (size1 > 0 && pos <= size1)
3512 {
3513 d = string1 + pos;
3514 dend = end_match_1;
3515 }
3516 else
3517 {
3518 d = string2 + pos - size1;
3519 dend = end_match_2;
3520 }
3521
3522 DEBUG_PRINT1 ("The compiled pattern is: ");
3523 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
3524 DEBUG_PRINT1 ("The string to match is: `");
3525 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
3526 DEBUG_PRINT1 ("'\n");
3527
3528 /* This loops over pattern commands. It exits by returning from the
3529 function if the match is complete, or it drops through if the match
3530 fails at this starting point in the input data. */
3531 for (;;)
3532 {
3533 DEBUG_PRINT2 ("\n0x%x: ", p);
3534
3535 if (p == pend)
3536 { /* End of pattern means we might have succeeded. */
3537 DEBUG_PRINT1 ("end of pattern ... ");
3538
3539 /* If we haven't matched the entire string, and we want the
3540 longest match, try backtracking. */
3541 if (d != end_match_2)
3542 {
3543 DEBUG_PRINT1 ("backtracking.\n");
3544
3545 if (!FAIL_STACK_EMPTY ())
3546 { /* More failure points to try. */
3547 boolean same_str_p = (FIRST_STRING_P (match_end)
3548 == MATCHING_IN_FIRST_STRING);
3549
3550 /* If exceeds best match so far, save it. */
3551 if (!best_regs_set
3552 || (same_str_p && d > match_end)
3553 || (!same_str_p && !MATCHING_IN_FIRST_STRING))
3554 {
3555 best_regs_set = true;
3556 match_end = d;
3557
3558 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
3559
3560 for (mcnt = 1; mcnt < num_regs; mcnt++)
3561 {
3562 best_regstart[mcnt] = regstart[mcnt];
3563 best_regend[mcnt] = regend[mcnt];
3564 }
3565 }
3566 goto fail;
3567 }
3568
3569 /* If no failure points, don't restore garbage. */
3570 else if (best_regs_set)
3571 {
3572 restore_best_regs:
3573 /* Restore best match. It may happen that `dend ==
3574 end_match_1' while the restored d is in string2.
3575 For example, the pattern `x.*y.*z' against the
3576 strings `x-' and `y-z-', if the two strings are
3577 not consecutive in memory. */
3578 DEBUG_PRINT1 ("Restoring best registers.\n");
3579
3580 d = match_end;
3581 dend = ((d >= string1 && d <= end1)
3582 ? end_match_1 : end_match_2);
3583
3584 for (mcnt = 1; mcnt < num_regs; mcnt++)
3585 {
3586 regstart[mcnt] = best_regstart[mcnt];
3587 regend[mcnt] = best_regend[mcnt];
3588 }
3589 }
3590 } /* d != end_match_2 */
3591
3592 DEBUG_PRINT1 ("Accepting match.\n");
3593
3594 /* If caller wants register contents data back, do it. */
3595 if (regs && !bufp->no_sub)
3596 {
3597 /* Have the register data arrays been allocated? */
3598 if (bufp->regs_allocated == REGS_UNALLOCATED)
3599 { /* No. So allocate them with malloc. We need one
3600 extra element beyond `num_regs' for the `-1' marker
3601 GNU code uses. */
3602 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
3603 regs->start = TALLOC (regs->num_regs, regoff_t);
3604 regs->end = TALLOC (regs->num_regs, regoff_t);
3605 if (regs->start == NULL || regs->end == NULL)
3606 return -2;
3607 bufp->regs_allocated = REGS_REALLOCATE;
3608 }
3609 else if (bufp->regs_allocated == REGS_REALLOCATE)
3610 { /* Yes. If we need more elements than were already
3611 allocated, reallocate them. If we need fewer, just
3612 leave it alone. */
3613 if (regs->num_regs < num_regs + 1)
3614 {
3615 regs->num_regs = num_regs + 1;
3616 RETALLOC (regs->start, regs->num_regs, regoff_t);
3617 RETALLOC (regs->end, regs->num_regs, regoff_t);
3618 if (regs->start == NULL || regs->end == NULL)
3619 return -2;
3620 }
3621 }
3622 else
3623 {
3624 /* These braces fend off a "empty body in an else-statement"
3625 warning under GCC when assert expands to nothing. */
3626 assert (bufp->regs_allocated == REGS_FIXED);
3627 }
3628
3629 /* Convert the pointer data in `regstart' and `regend' to
3630 indices. Register zero has to be set differently,
3631 since we haven't kept track of any info for it. */
3632 if (regs->num_regs > 0)
3633 {
3634 regs->start[0] = pos;
3635 regs->end[0] = (MATCHING_IN_FIRST_STRING
3636 ? ((regoff_t) (d - string1))
3637 : ((regoff_t) (d - string2 + size1)));
3638 }
3639
3640 /* Go through the first `min (num_regs, regs->num_regs)'
3641 registers, since that is all we initialized. */
3642 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
3643 {
3644 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
3645 regs->start[mcnt] = regs->end[mcnt] = -1;
3646 else
3647 {
3648 regs->start[mcnt]
3649 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
3650 regs->end[mcnt]
3651 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
3652 }
3653 }
3654
3655 /* If the regs structure we return has more elements than
3656 were in the pattern, set the extra elements to -1. If
3657 we (re)allocated the registers, this is the case,
3658 because we always allocate enough to have at least one
3659 -1 at the end. */
3660 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
3661 regs->start[mcnt] = regs->end[mcnt] = -1;
3662 } /* regs && !bufp->no_sub */
3663
3664 FREE_VARIABLES ();
3665 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
3666 nfailure_points_pushed, nfailure_points_popped,
3667 nfailure_points_pushed - nfailure_points_popped);
3668 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
3669
3670 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
3671 ? string1
3672 : string2 - size1);
3673
3674 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
3675
3676 return mcnt;
3677 }
3678
3679 /* Otherwise match next pattern command. */
3680 #ifdef SWITCH_ENUM_BUG
3681 switch ((int) ((re_opcode_t) *p++))
3682 #else
3683 switch ((re_opcode_t) *p++)
3684 #endif
3685 {
3686 /* Ignore these. Used to ignore the n of succeed_n's which
3687 currently have n == 0. */
3688 case no_op:
3689 DEBUG_PRINT1 ("EXECUTING no_op.\n");
3690 break;
3691
3692
3693 /* Match the next n pattern characters exactly. The following
3694 byte in the pattern defines n, and the n bytes after that
3695 are the characters to match. */
3696 case exactn:
3697 mcnt = *p++;
3698 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
3699
3700 /* This is written out as an if-else so we don't waste time
3701 testing `translate' inside the loop. */
3702 if (translate)
3703 {
3704 do
3705 {
3706 PREFETCH ();
3707 if (translate[(unsigned char) *d++] != (char) *p++)
3708 goto fail;
3709 }
3710 while (--mcnt);
3711 }
3712 else
3713 {
3714 do
3715 {
3716 PREFETCH ();
3717 if (*d++ != (char) *p++) goto fail;
3718 }
3719 while (--mcnt);
3720 }
3721 SET_REGS_MATCHED ();
3722 break;
3723
3724
3725 /* Match any character except possibly a newline or a null. */
3726 case anychar:
3727 DEBUG_PRINT1 ("EXECUTING anychar.\n");
3728
3729 PREFETCH ();
3730
3731 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
3732 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
3733 goto fail;
3734
3735 SET_REGS_MATCHED ();
3736 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
3737 d++;
3738 break;
3739
3740
3741 case charset:
3742 case charset_not:
3743 {
3744 register unsigned char c;
3745 boolean not = (re_opcode_t) *(p - 1) == charset_not;
3746
3747 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
3748
3749 PREFETCH ();
3750 c = TRANSLATE (*d); /* The character to match. */
3751
3752 /* Cast to `unsigned' instead of `unsigned char' in case the
3753 bit list is a full 32 bytes long. */
3754 if (c < (unsigned) (*p * BYTEWIDTH)
3755 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
3756 not = !not;
3757
3758 p += 1 + *p;
3759
3760 if (!not) goto fail;
3761
3762 SET_REGS_MATCHED ();
3763 d++;
3764 break;
3765 }
3766
3767
3768 /* The beginning of a group is represented by start_memory.
3769 The arguments are the register number in the next byte, and the
3770 number of groups inner to this one in the next. The text
3771 matched within the group is recorded (in the internal
3772 registers data structure) under the register number. */
3773 case start_memory:
3774 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
3775
3776 /* Find out if this group can match the empty string. */
3777 p1 = p; /* To send to group_match_null_string_p. */
3778
3779 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
3780 REG_MATCH_NULL_STRING_P (reg_info[*p])
3781 = group_match_null_string_p (&p1, pend, reg_info);
3782
3783 /* Save the position in the string where we were the last time
3784 we were at this open-group operator in case the group is
3785 operated upon by a repetition operator, e.g., with `(a*)*b'
3786 against `ab'; then we want to ignore where we are now in
3787 the string in case this attempt to match fails. */
3788 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3789 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
3790 : regstart[*p];
3791 DEBUG_PRINT2 (" old_regstart: %d\n",
3792 POINTER_TO_OFFSET (old_regstart[*p]));
3793
3794 regstart[*p] = d;
3795 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
3796
3797 IS_ACTIVE (reg_info[*p]) = 1;
3798 MATCHED_SOMETHING (reg_info[*p]) = 0;
3799
3800 /* This is the new highest active register. */
3801 highest_active_reg = *p;
3802
3803 /* If nothing was active before, this is the new lowest active
3804 register. */
3805 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
3806 lowest_active_reg = *p;
3807
3808 /* Move past the register number and inner group count. */
3809 p += 2;
3810 break;
3811
3812
3813 /* The stop_memory opcode represents the end of a group. Its
3814 arguments are the same as start_memory's: the register
3815 number, and the number of inner groups. */
3816 case stop_memory:
3817 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
3818
3819 /* We need to save the string position the last time we were at
3820 this close-group operator in case the group is operated
3821 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
3822 against `aba'; then we want to ignore where we are now in
3823 the string in case this attempt to match fails. */
3824 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3825 ? REG_UNSET (regend[*p]) ? d : regend[*p]
3826 : regend[*p];
3827 DEBUG_PRINT2 (" old_regend: %d\n",
3828 POINTER_TO_OFFSET (old_regend[*p]));
3829
3830 regend[*p] = d;
3831 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
3832
3833 /* This register isn't active anymore. */
3834 IS_ACTIVE (reg_info[*p]) = 0;
3835
3836 /* If this was the only register active, nothing is active
3837 anymore. */
3838 if (lowest_active_reg == highest_active_reg)
3839 {
3840 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3841 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3842 }
3843 else
3844 { /* We must scan for the new highest active register, since
3845 it isn't necessarily one less than now: consider
3846 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
3847 new highest active register is 1. */
3848 unsigned char r = *p - 1;
3849 while (r > 0 && !IS_ACTIVE (reg_info[r]))
3850 r--;
3851
3852 /* If we end up at register zero, that means that we saved
3853 the registers as the result of an `on_failure_jump', not
3854 a `start_memory', and we jumped to past the innermost
3855 `stop_memory'. For example, in ((.)*) we save
3856 registers 1 and 2 as a result of the *, but when we pop
3857 back to the second ), we are at the stop_memory 1.
3858 Thus, nothing is active. */
3859 if (r == 0)
3860 {
3861 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3862 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3863 }
3864 else
3865 highest_active_reg = r;
3866 }
3867
3868 /* If just failed to match something this time around with a
3869 group that's operated on by a repetition operator, try to
3870 force exit from the ``loop'', and restore the register
3871 information for this group that we had before trying this
3872 last match. */
3873 if ((!MATCHED_SOMETHING (reg_info[*p])
3874 || (re_opcode_t) p[-3] == start_memory)
3875 && (p + 2) < pend)
3876 {
3877 boolean is_a_jump_n = false;
3878
3879 p1 = p + 2;
3880 mcnt = 0;
3881 switch ((re_opcode_t) *p1++)
3882 {
3883 case jump_n:
3884 is_a_jump_n = true;
3885 case pop_failure_jump:
3886 case maybe_pop_jump:
3887 case jump:
3888 case dummy_failure_jump:
3889 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3890 if (is_a_jump_n)
3891 p1 += 2;
3892 break;
3893
3894 default:
3895 /* do nothing */ ;
3896 }
3897 p1 += mcnt;
3898
3899 /* If the next operation is a jump backwards in the pattern
3900 to an on_failure_jump right before the start_memory
3901 corresponding to this stop_memory, exit from the loop
3902 by forcing a failure after pushing on the stack the
3903 on_failure_jump's jump in the pattern, and d. */
3904 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
3905 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
3906 {
3907 /* If this group ever matched anything, then restore
3908 what its registers were before trying this last
3909 failed match, e.g., with `(a*)*b' against `ab' for
3910 regstart[1], and, e.g., with `((a*)*(b*)*)*'
3911 against `aba' for regend[3].
3912
3913 Also restore the registers for inner groups for,
3914 e.g., `((a*)(b*))*' against `aba' (register 3 would
3915 otherwise get trashed). */
3916
3917 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
3918 {
3919 unsigned r;
3920
3921 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
3922
3923 /* Restore this and inner groups' (if any) registers. */
3924 for (r = *p; r < *p + *(p + 1); r++)
3925 {
3926 regstart[r] = old_regstart[r];
3927
3928 /* xx why this test? */
3929 if ((int) old_regend[r] >= (int) regstart[r])
3930 regend[r] = old_regend[r];
3931 }
3932 }
3933 p1++;
3934 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3935 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
3936
3937 goto fail;
3938 }
3939 }
3940
3941 /* Move past the register number and the inner group count. */
3942 p += 2;
3943 break;
3944
3945
3946 /* \<digit> has been turned into a `duplicate' command which is
3947 followed by the numeric value of <digit> as the register number. */
3948 case duplicate:
3949 {
3950 register const char *d2, *dend2;
3951 int regno = *p++; /* Get which register to match against. */
3952 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
3953
3954 /* Can't back reference a group which we've never matched. */
3955 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
3956 goto fail;
3957
3958 /* Where in input to try to start matching. */
3959 d2 = regstart[regno];
3960
3961 /* Where to stop matching; if both the place to start and
3962 the place to stop matching are in the same string, then
3963 set to the place to stop, otherwise, for now have to use
3964 the end of the first string. */
3965
3966 dend2 = ((FIRST_STRING_P (regstart[regno])
3967 == FIRST_STRING_P (regend[regno]))
3968 ? regend[regno] : end_match_1);
3969 for (;;)
3970 {
3971 /* If necessary, advance to next segment in register
3972 contents. */
3973 while (d2 == dend2)
3974 {
3975 if (dend2 == end_match_2) break;
3976 if (dend2 == regend[regno]) break;
3977
3978 /* End of string1 => advance to string2. */
3979 d2 = string2;
3980 dend2 = regend[regno];
3981 }
3982 /* At end of register contents => success */
3983 if (d2 == dend2) break;
3984
3985 /* If necessary, advance to next segment in data. */
3986 PREFETCH ();
3987
3988 /* How many characters left in this segment to match. */
3989 mcnt = dend - d;
3990
3991 /* Want how many consecutive characters we can match in
3992 one shot, so, if necessary, adjust the count. */
3993 if (mcnt > dend2 - d2)
3994 mcnt = dend2 - d2;
3995
3996 /* Compare that many; failure if mismatch, else move
3997 past them. */
3998 if (translate
3999 ? bcmp_translate (d, d2, mcnt, translate)
4000 : bcmp (d, d2, mcnt))
4001 goto fail;
4002 d += mcnt, d2 += mcnt;
4003 }
4004 }
4005 break;
4006
4007
4008 /* begline matches the empty string at the beginning of the string
4009 (unless `not_bol' is set in `bufp'), and, if
4010 `newline_anchor' is set, after newlines. */
4011 case begline:
4012 DEBUG_PRINT1 ("EXECUTING begline.\n");
4013
4014 if (AT_STRINGS_BEG (d))
4015 {
4016 if (!bufp->not_bol) break;
4017 }
4018 else if (d[-1] == '\n' && bufp->newline_anchor)
4019 {
4020 break;
4021 }
4022 /* In all other cases, we fail. */
4023 goto fail;
4024
4025
4026 /* endline is the dual of begline. */
4027 case endline:
4028 DEBUG_PRINT1 ("EXECUTING endline.\n");
4029
4030 if (AT_STRINGS_END (d))
4031 {
4032 if (!bufp->not_eol) break;
4033 }
4034
4035 /* We have to ``prefetch'' the next character. */
4036 else if ((d == end1 ? *string2 : *d) == '\n'
4037 && bufp->newline_anchor)
4038 {
4039 break;
4040 }
4041 goto fail;
4042
4043
4044 /* Match at the very beginning of the data. */
4045 case begbuf:
4046 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4047 if (AT_STRINGS_BEG (d))
4048 break;
4049 goto fail;
4050
4051
4052 /* Match at the very end of the data. */
4053 case endbuf:
4054 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4055 if (AT_STRINGS_END (d))
4056 break;
4057 goto fail;
4058
4059
4060 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4061 pushes NULL as the value for the string on the stack. Then
4062 `pop_failure_point' will keep the current value for the
4063 string, instead of restoring it. To see why, consider
4064 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4065 then the . fails against the \n. But the next thing we want
4066 to do is match the \n against the \n; if we restored the
4067 string value, we would be back at the foo.
4068
4069 Because this is used only in specific cases, we don't need to
4070 check all the things that `on_failure_jump' does, to make
4071 sure the right things get saved on the stack. Hence we don't
4072 share its code. The only reason to push anything on the
4073 stack at all is that otherwise we would have to change
4074 `anychar's code to do something besides goto fail in this
4075 case; that seems worse than this. */
4076 case on_failure_keep_string_jump:
4077 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4078
4079 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4080 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4081
4082 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4083 break;
4084
4085
4086 /* Uses of on_failure_jump:
4087
4088 Each alternative starts with an on_failure_jump that points
4089 to the beginning of the next alternative. Each alternative
4090 except the last ends with a jump that in effect jumps past
4091 the rest of the alternatives. (They really jump to the
4092 ending jump of the following alternative, because tensioning
4093 these jumps is a hassle.)
4094
4095 Repeats start with an on_failure_jump that points past both
4096 the repetition text and either the following jump or
4097 pop_failure_jump back to this on_failure_jump. */
4098 case on_failure_jump:
4099 on_failure:
4100 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4101
4102 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4103 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4104
4105 /* If this on_failure_jump comes right before a group (i.e.,
4106 the original * applied to a group), save the information
4107 for that group and all inner ones, so that if we fail back
4108 to this point, the group's information will be correct.
4109 For example, in \(a*\)*\1, we need the preceding group,
4110 and in \(\(a*\)b*\)\2, we need the inner group. */
4111
4112 /* We can't use `p' to check ahead because we push
4113 a failure point to `p + mcnt' after we do this. */
4114 p1 = p;
4115
4116 /* We need to skip no_op's before we look for the
4117 start_memory in case this on_failure_jump is happening as
4118 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4119 against aba. */
4120 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4121 p1++;
4122
4123 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4124 {
4125 /* We have a new highest active register now. This will
4126 get reset at the start_memory we are about to get to,
4127 but we will have saved all the registers relevant to
4128 this repetition op, as described above. */
4129 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4130 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4131 lowest_active_reg = *(p1 + 1);
4132 }
4133
4134 DEBUG_PRINT1 (":\n");
4135 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4136 break;
4137
4138
4139 /* A smart repeat ends with `maybe_pop_jump'.
4140 We change it to either `pop_failure_jump' or `jump'. */
4141 case maybe_pop_jump:
4142 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4143 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4144 {
4145 register unsigned char *p2 = p;
4146
4147 /* Compare the beginning of the repeat with what in the
4148 pattern follows its end. If we can establish that there
4149 is nothing that they would both match, i.e., that we
4150 would have to backtrack because of (as in, e.g., `a*a')
4151 then we can change to pop_failure_jump, because we'll
4152 never have to backtrack.
4153
4154 This is not true in the case of alternatives: in
4155 `(a|ab)*' we do need to backtrack to the `ab' alternative
4156 (e.g., if the string was `ab'). But instead of trying to
4157 detect that here, the alternative has put on a dummy
4158 failure point which is what we will end up popping. */
4159
4160 /* Skip over open/close-group commands.
4161 If what follows this loop is a ...+ construct,
4162 look at what begins its body, since we will have to
4163 match at least one of that. */
4164 while (1)
4165 {
4166 if (p2 + 2 < pend
4167 && ((re_opcode_t) *p2 == stop_memory
4168 || (re_opcode_t) *p2 == start_memory))
4169 p2 += 3;
4170 else if (p2 + 6 < pend
4171 && (re_opcode_t) *p2 == dummy_failure_jump)
4172 p2 += 6;
4173 else
4174 break;
4175 }
4176
4177 p1 = p + mcnt;
4178 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4179 to the `maybe_finalize_jump' of this case. Examine what
4180 follows. */
4181
4182 /* If we're at the end of the pattern, we can change. */
4183 if (p2 == pend)
4184 {
4185 /* Consider what happens when matching ":\(.*\)"
4186 against ":/". I don't really understand this code
4187 yet. */
4188 p[-3] = (unsigned char) pop_failure_jump;
4189 DEBUG_PRINT1
4190 (" End of pattern: change to `pop_failure_jump'.\n");
4191 }
4192
4193 else if ((re_opcode_t) *p2 == exactn
4194 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4195 {
4196 register unsigned char c
4197 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4198
4199 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4200 {
4201 p[-3] = (unsigned char) pop_failure_jump;
4202 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4203 c, p1[5]);
4204 }
4205
4206 else if ((re_opcode_t) p1[3] == charset
4207 || (re_opcode_t) p1[3] == charset_not)
4208 {
4209 int not = (re_opcode_t) p1[3] == charset_not;
4210
4211 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4212 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4213 not = !not;
4214
4215 /* `not' is equal to 1 if c would match, which means
4216 that we can't change to pop_failure_jump. */
4217 if (!not)
4218 {
4219 p[-3] = (unsigned char) pop_failure_jump;
4220 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4221 }
4222 }
4223 }
4224 else if ((re_opcode_t) *p2 == charset)
4225 {
4226 register unsigned char c
4227 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4228
4229 if ((re_opcode_t) p1[3] == exactn
4230 && ! (p2[1] * BYTEWIDTH > p1[4]
4231 && (p2[1 + p1[4] / BYTEWIDTH]
4232 & (1 << (p1[4] % BYTEWIDTH)))))
4233 {
4234 p[-3] = (unsigned char) pop_failure_jump;
4235 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4236 c, p1[5]);
4237 }
4238
4239 else if ((re_opcode_t) p1[3] == charset_not)
4240 {
4241 int idx;
4242 /* We win if the charset_not inside the loop
4243 lists every character listed in the charset after. */
4244 for (idx = 0; idx < p2[1]; idx++)
4245 if (! (p2[2 + idx] == 0
4246 || (idx < p1[4]
4247 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4248 break;
4249
4250 if (idx == p2[1])
4251 {
4252 p[-3] = (unsigned char) pop_failure_jump;
4253 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4254 }
4255 }
4256 else if ((re_opcode_t) p1[3] == charset)
4257 {
4258 int idx;
4259 /* We win if the charset inside the loop
4260 has no overlap with the one after the loop. */
4261 for (idx = 0; idx < p2[1] && idx < p1[4]; idx++)
4262 if ((p2[2 + idx] & p1[5 + idx]) != 0)
4263 break;
4264
4265 if (idx == p2[1] || idx == p1[4])
4266 {
4267 p[-3] = (unsigned char) pop_failure_jump;
4268 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4269 }
4270 }
4271 }
4272 }
4273 p -= 2; /* Point at relative address again. */
4274 if ((re_opcode_t) p[-1] != pop_failure_jump)
4275 {
4276 p[-1] = (unsigned char) jump;
4277 DEBUG_PRINT1 (" Match => jump.\n");
4278 goto unconditional_jump;
4279 }
4280 /* Note fall through. */
4281
4282
4283 /* The end of a simple repeat has a pop_failure_jump back to
4284 its matching on_failure_jump, where the latter will push a
4285 failure point. The pop_failure_jump takes off failure
4286 points put on by this pop_failure_jump's matching
4287 on_failure_jump; we got through the pattern to here from the
4288 matching on_failure_jump, so didn't fail. */
4289 case pop_failure_jump:
4290 {
4291 /* We need to pass separate storage for the lowest and
4292 highest registers, even though we don't care about the
4293 actual values. Otherwise, we will restore only one
4294 register from the stack, since lowest will == highest in
4295 `pop_failure_point'. */
4296 unsigned dummy_low_reg, dummy_high_reg;
4297 unsigned char *pdummy;
4298 const char *sdummy;
4299
4300 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4301 POP_FAILURE_POINT (sdummy, pdummy,
4302 dummy_low_reg, dummy_high_reg,
4303 reg_dummy, reg_dummy, reg_info_dummy);
4304 }
4305 /* Note fall through. */
4306
4307
4308 /* Unconditionally jump (without popping any failure points). */
4309 case jump:
4310 unconditional_jump:
4311 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4312 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4313 p += mcnt; /* Do the jump. */
4314 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4315 break;
4316
4317
4318 /* We need this opcode so we can detect where alternatives end
4319 in `group_match_null_string_p' et al. */
4320 case jump_past_alt:
4321 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4322 goto unconditional_jump;
4323
4324
4325 /* Normally, the on_failure_jump pushes a failure point, which
4326 then gets popped at pop_failure_jump. We will end up at
4327 pop_failure_jump, also, and with a pattern of, say, `a+', we
4328 are skipping over the on_failure_jump, so we have to push
4329 something meaningless for pop_failure_jump to pop. */
4330 case dummy_failure_jump:
4331 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4332 /* It doesn't matter what we push for the string here. What
4333 the code at `fail' tests is the value for the pattern. */
4334 PUSH_FAILURE_POINT (0, 0, -2);
4335 goto unconditional_jump;
4336
4337
4338 /* At the end of an alternative, we need to push a dummy failure
4339 point in case we are followed by a `pop_failure_jump', because
4340 we don't want the failure point for the alternative to be
4341 popped. For example, matching `(a|ab)*' against `aab'
4342 requires that we match the `ab' alternative. */
4343 case push_dummy_failure:
4344 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4345 /* See comments just above at `dummy_failure_jump' about the
4346 two zeroes. */
4347 PUSH_FAILURE_POINT (0, 0, -2);
4348 break;
4349
4350 /* Have to succeed matching what follows at least n times.
4351 After that, handle like `on_failure_jump'. */
4352 case succeed_n:
4353 EXTRACT_NUMBER (mcnt, p + 2);
4354 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4355
4356 assert (mcnt >= 0);
4357 /* Originally, this is how many times we HAVE to succeed. */
4358 if (mcnt > 0)
4359 {
4360 mcnt--;
4361 p += 2;
4362 STORE_NUMBER_AND_INCR (p, mcnt);
4363 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
4364 }
4365 else if (mcnt == 0)
4366 {
4367 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4368 p[2] = (unsigned char) no_op;
4369 p[3] = (unsigned char) no_op;
4370 goto on_failure;
4371 }
4372 break;
4373
4374 case jump_n:
4375 EXTRACT_NUMBER (mcnt, p + 2);
4376 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4377
4378 /* Originally, this is how many times we CAN jump. */
4379 if (mcnt)
4380 {
4381 mcnt--;
4382 STORE_NUMBER (p + 2, mcnt);
4383 goto unconditional_jump;
4384 }
4385 /* If don't have to jump any more, skip over the rest of command. */
4386 else
4387 p += 4;
4388 break;
4389
4390 case set_number_at:
4391 {
4392 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4393
4394 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4395 p1 = p + mcnt;
4396 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4397 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4398 STORE_NUMBER (p1, mcnt);
4399 break;
4400 }
4401
4402 case wordbound:
4403 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4404 if (AT_WORD_BOUNDARY (d))
4405 break;
4406 goto fail;
4407
4408 case notwordbound:
4409 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4410 if (AT_WORD_BOUNDARY (d))
4411 goto fail;
4412 break;
4413
4414 case wordbeg:
4415 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4416 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
4417 break;
4418 goto fail;
4419
4420 case wordend:
4421 DEBUG_PRINT1 ("EXECUTING wordend.\n");
4422 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
4423 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
4424 break;
4425 goto fail;
4426
4427 #ifdef emacs
4428 #ifdef emacs19
4429 case before_dot:
4430 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4431 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
4432 goto fail;
4433 break;
4434
4435 case at_dot:
4436 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4437 if (PTR_CHAR_POS ((unsigned char *) d) != point)
4438 goto fail;
4439 break;
4440
4441 case after_dot:
4442 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4443 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
4444 goto fail;
4445 break;
4446 #else /* not emacs19 */
4447 case at_dot:
4448 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4449 if (PTR_CHAR_POS ((unsigned char *) d) + 1 != point)
4450 goto fail;
4451 break;
4452 #endif /* not emacs19 */
4453
4454 case syntaxspec:
4455 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
4456 mcnt = *p++;
4457 goto matchsyntax;
4458
4459 case wordchar:
4460 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
4461 mcnt = (int) Sword;
4462 matchsyntax:
4463 PREFETCH ();
4464 if (SYNTAX (*d++) != (enum syntaxcode) mcnt)
4465 goto fail;
4466 SET_REGS_MATCHED ();
4467 break;
4468
4469 case notsyntaxspec:
4470 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
4471 mcnt = *p++;
4472 goto matchnotsyntax;
4473
4474 case notwordchar:
4475 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
4476 mcnt = (int) Sword;
4477 matchnotsyntax:
4478 PREFETCH ();
4479 if (SYNTAX (*d++) == (enum syntaxcode) mcnt)
4480 goto fail;
4481 SET_REGS_MATCHED ();
4482 break;
4483
4484 #else /* not emacs */
4485 case wordchar:
4486 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4487 PREFETCH ();
4488 if (!WORDCHAR_P (d))
4489 goto fail;
4490 SET_REGS_MATCHED ();
4491 d++;
4492 break;
4493
4494 case notwordchar:
4495 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4496 PREFETCH ();
4497 if (WORDCHAR_P (d))
4498 goto fail;
4499 SET_REGS_MATCHED ();
4500 d++;
4501 break;
4502 #endif /* not emacs */
4503
4504 default:
4505 abort ();
4506 }
4507 continue; /* Successfully executed one pattern command; keep going. */
4508
4509
4510 /* We goto here if a matching operation fails. */
4511 fail:
4512 if (!FAIL_STACK_EMPTY ())
4513 { /* A restart point is known. Restore to that state. */
4514 DEBUG_PRINT1 ("\nFAIL:\n");
4515 POP_FAILURE_POINT (d, p,
4516 lowest_active_reg, highest_active_reg,
4517 regstart, regend, reg_info);
4518
4519 /* If this failure point is a dummy, try the next one. */
4520 if (!p)
4521 goto fail;
4522
4523 /* If we failed to the end of the pattern, don't examine *p. */
4524 assert (p <= pend);
4525 if (p < pend)
4526 {
4527 boolean is_a_jump_n = false;
4528
4529 /* If failed to a backwards jump that's part of a repetition
4530 loop, need to pop this failure point and use the next one. */
4531 switch ((re_opcode_t) *p)
4532 {
4533 case jump_n:
4534 is_a_jump_n = true;
4535 case maybe_pop_jump:
4536 case pop_failure_jump:
4537 case jump:
4538 p1 = p + 1;
4539 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4540 p1 += mcnt;
4541
4542 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
4543 || (!is_a_jump_n
4544 && (re_opcode_t) *p1 == on_failure_jump))
4545 goto fail;
4546 break;
4547 default:
4548 /* do nothing */ ;
4549 }
4550 }
4551
4552 if (d >= string1 && d <= end1)
4553 dend = end_match_1;
4554 }
4555 else
4556 break; /* Matching at this starting point really fails. */
4557 } /* for (;;) */
4558
4559 if (best_regs_set)
4560 goto restore_best_regs;
4561
4562 FREE_VARIABLES ();
4563
4564 return -1; /* Failure to match. */
4565 } /* re_match_2 */
4566 \f
4567 /* Subroutine definitions for re_match_2. */
4568
4569
4570 /* We are passed P pointing to a register number after a start_memory.
4571
4572 Return true if the pattern up to the corresponding stop_memory can
4573 match the empty string, and false otherwise.
4574
4575 If we find the matching stop_memory, sets P to point to one past its number.
4576 Otherwise, sets P to an undefined byte less than or equal to END.
4577
4578 We don't handle duplicates properly (yet). */
4579
4580 static boolean
4581 group_match_null_string_p (p, end, reg_info)
4582 unsigned char **p, *end;
4583 register_info_type *reg_info;
4584 {
4585 int mcnt;
4586 /* Point to after the args to the start_memory. */
4587 unsigned char *p1 = *p + 2;
4588
4589 while (p1 < end)
4590 {
4591 /* Skip over opcodes that can match nothing, and return true or
4592 false, as appropriate, when we get to one that can't, or to the
4593 matching stop_memory. */
4594
4595 switch ((re_opcode_t) *p1)
4596 {
4597 /* Could be either a loop or a series of alternatives. */
4598 case on_failure_jump:
4599 p1++;
4600 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4601
4602 /* If the next operation is not a jump backwards in the
4603 pattern. */
4604
4605 if (mcnt >= 0)
4606 {
4607 /* Go through the on_failure_jumps of the alternatives,
4608 seeing if any of the alternatives cannot match nothing.
4609 The last alternative starts with only a jump,
4610 whereas the rest start with on_failure_jump and end
4611 with a jump, e.g., here is the pattern for `a|b|c':
4612
4613 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4614 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
4615 /exactn/1/c
4616
4617 So, we have to first go through the first (n-1)
4618 alternatives and then deal with the last one separately. */
4619
4620
4621 /* Deal with the first (n-1) alternatives, which start
4622 with an on_failure_jump (see above) that jumps to right
4623 past a jump_past_alt. */
4624
4625 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
4626 {
4627 /* `mcnt' holds how many bytes long the alternative
4628 is, including the ending `jump_past_alt' and
4629 its number. */
4630
4631 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
4632 reg_info))
4633 return false;
4634
4635 /* Move to right after this alternative, including the
4636 jump_past_alt. */
4637 p1 += mcnt;
4638
4639 /* Break if it's the beginning of an n-th alternative
4640 that doesn't begin with an on_failure_jump. */
4641 if ((re_opcode_t) *p1 != on_failure_jump)
4642 break;
4643
4644 /* Still have to check that it's not an n-th
4645 alternative that starts with an on_failure_jump. */
4646 p1++;
4647 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4648 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
4649 {
4650 /* Get to the beginning of the n-th alternative. */
4651 p1 -= 3;
4652 break;
4653 }
4654 }
4655
4656 /* Deal with the last alternative: go back and get number
4657 of the `jump_past_alt' just before it. `mcnt' contains
4658 the length of the alternative. */
4659 EXTRACT_NUMBER (mcnt, p1 - 2);
4660
4661 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
4662 return false;
4663
4664 p1 += mcnt; /* Get past the n-th alternative. */
4665 } /* if mcnt > 0 */
4666 break;
4667
4668
4669 case stop_memory:
4670 assert (p1[1] == **p);
4671 *p = p1 + 2;
4672 return true;
4673
4674
4675 default:
4676 if (!common_op_match_null_string_p (&p1, end, reg_info))
4677 return false;
4678 }
4679 } /* while p1 < end */
4680
4681 return false;
4682 } /* group_match_null_string_p */
4683
4684
4685 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
4686 It expects P to be the first byte of a single alternative and END one
4687 byte past the last. The alternative can contain groups. */
4688
4689 static boolean
4690 alt_match_null_string_p (p, end, reg_info)
4691 unsigned char *p, *end;
4692 register_info_type *reg_info;
4693 {
4694 int mcnt;
4695 unsigned char *p1 = p;
4696
4697 while (p1 < end)
4698 {
4699 /* Skip over opcodes that can match nothing, and break when we get
4700 to one that can't. */
4701
4702 switch ((re_opcode_t) *p1)
4703 {
4704 /* It's a loop. */
4705 case on_failure_jump:
4706 p1++;
4707 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4708 p1 += mcnt;
4709 break;
4710
4711 default:
4712 if (!common_op_match_null_string_p (&p1, end, reg_info))
4713 return false;
4714 }
4715 } /* while p1 < end */
4716
4717 return true;
4718 } /* alt_match_null_string_p */
4719
4720
4721 /* Deals with the ops common to group_match_null_string_p and
4722 alt_match_null_string_p.
4723
4724 Sets P to one after the op and its arguments, if any. */
4725
4726 static boolean
4727 common_op_match_null_string_p (p, end, reg_info)
4728 unsigned char **p, *end;
4729 register_info_type *reg_info;
4730 {
4731 int mcnt;
4732 boolean ret;
4733 int reg_no;
4734 unsigned char *p1 = *p;
4735
4736 switch ((re_opcode_t) *p1++)
4737 {
4738 case no_op:
4739 case begline:
4740 case endline:
4741 case begbuf:
4742 case endbuf:
4743 case wordbeg:
4744 case wordend:
4745 case wordbound:
4746 case notwordbound:
4747 #ifdef emacs
4748 case before_dot:
4749 case at_dot:
4750 case after_dot:
4751 #endif
4752 break;
4753
4754 case start_memory:
4755 reg_no = *p1;
4756 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
4757 ret = group_match_null_string_p (&p1, end, reg_info);
4758
4759 /* Have to set this here in case we're checking a group which
4760 contains a group and a back reference to it. */
4761
4762 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
4763 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
4764
4765 if (!ret)
4766 return false;
4767 break;
4768
4769 /* If this is an optimized succeed_n for zero times, make the jump. */
4770 case jump:
4771 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4772 if (mcnt >= 0)
4773 p1 += mcnt;
4774 else
4775 return false;
4776 break;
4777
4778 case succeed_n:
4779 /* Get to the number of times to succeed. */
4780 p1 += 2;
4781 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4782
4783 if (mcnt == 0)
4784 {
4785 p1 -= 4;
4786 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4787 p1 += mcnt;
4788 }
4789 else
4790 return false;
4791 break;
4792
4793 case duplicate:
4794 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
4795 return false;
4796 break;
4797
4798 case set_number_at:
4799 p1 += 4;
4800
4801 default:
4802 /* All other opcodes mean we cannot match the empty string. */
4803 return false;
4804 }
4805
4806 *p = p1;
4807 return true;
4808 } /* common_op_match_null_string_p */
4809
4810
4811 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
4812 bytes; nonzero otherwise. */
4813
4814 static int
4815 bcmp_translate (s1, s2, len, translate)
4816 unsigned char *s1, *s2;
4817 register int len;
4818 char *translate;
4819 {
4820 register unsigned char *p1 = s1, *p2 = s2;
4821 while (len)
4822 {
4823 if (translate[*p1++] != translate[*p2++]) return 1;
4824 len--;
4825 }
4826 return 0;
4827 }
4828 \f
4829 /* Entry points for GNU code. */
4830
4831 /* re_compile_pattern is the GNU regular expression compiler: it
4832 compiles PATTERN (of length SIZE) and puts the result in BUFP.
4833 Returns 0 if the pattern was valid, otherwise an error string.
4834
4835 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
4836 are set in BUFP on entry.
4837
4838 We call regex_compile to do the actual compilation. */
4839
4840 const char *
4841 re_compile_pattern (pattern, length, bufp)
4842 const char *pattern;
4843 int length;
4844 struct re_pattern_buffer *bufp;
4845 {
4846 reg_errcode_t ret;
4847
4848 /* GNU code is written to assume at least RE_NREGS registers will be set
4849 (and at least one extra will be -1). */
4850 bufp->regs_allocated = REGS_UNALLOCATED;
4851
4852 /* And GNU code determines whether or not to get register information
4853 by passing null for the REGS argument to re_match, etc., not by
4854 setting no_sub. */
4855 bufp->no_sub = 0;
4856
4857 /* Match anchors at newline. */
4858 bufp->newline_anchor = 1;
4859
4860 ret = regex_compile (pattern, length, re_syntax_options, bufp);
4861
4862 return re_error_msg[(int) ret];
4863 }
4864 \f
4865 /* Entry points compatible with 4.2 BSD regex library. We don't define
4866 them if this is an Emacs or POSIX compilation. */
4867
4868 #if !defined (emacs) && !defined (_POSIX_SOURCE)
4869
4870 /* BSD has one and only one pattern buffer. */
4871 static struct re_pattern_buffer re_comp_buf;
4872
4873 char *
4874 re_comp (s)
4875 const char *s;
4876 {
4877 reg_errcode_t ret;
4878
4879 if (!s)
4880 {
4881 if (!re_comp_buf.buffer)
4882 return "No previous regular expression";
4883 return 0;
4884 }
4885
4886 if (!re_comp_buf.buffer)
4887 {
4888 re_comp_buf.buffer = (unsigned char *) malloc (200);
4889 if (re_comp_buf.buffer == NULL)
4890 return "Memory exhausted";
4891 re_comp_buf.allocated = 200;
4892
4893 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
4894 if (re_comp_buf.fastmap == NULL)
4895 return "Memory exhausted";
4896 }
4897
4898 /* Since `re_exec' always passes NULL for the `regs' argument, we
4899 don't need to initialize the pattern buffer fields which affect it. */
4900
4901 /* Match anchors at newlines. */
4902 re_comp_buf.newline_anchor = 1;
4903
4904 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
4905
4906 /* Yes, we're discarding `const' here. */
4907 return (char *) re_error_msg[(int) ret];
4908 }
4909
4910
4911 int
4912 re_exec (s)
4913 const char *s;
4914 {
4915 const int len = strlen (s);
4916 return
4917 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
4918 }
4919 #endif /* not emacs and not _POSIX_SOURCE */
4920 \f
4921 /* POSIX.2 functions. Don't define these for Emacs. */
4922
4923 #ifndef emacs
4924
4925 /* regcomp takes a regular expression as a string and compiles it.
4926
4927 PREG is a regex_t *. We do not expect any fields to be initialized,
4928 since POSIX says we shouldn't. Thus, we set
4929
4930 `buffer' to the compiled pattern;
4931 `used' to the length of the compiled pattern;
4932 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
4933 REG_EXTENDED bit in CFLAGS is set; otherwise, to
4934 RE_SYNTAX_POSIX_BASIC;
4935 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
4936 `fastmap' and `fastmap_accurate' to zero;
4937 `re_nsub' to the number of subexpressions in PATTERN.
4938
4939 PATTERN is the address of the pattern string.
4940
4941 CFLAGS is a series of bits which affect compilation.
4942
4943 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
4944 use POSIX basic syntax.
4945
4946 If REG_NEWLINE is set, then . and [^...] don't match newline.
4947 Also, regexec will try a match beginning after every newline.
4948
4949 If REG_ICASE is set, then we considers upper- and lowercase
4950 versions of letters to be equivalent when matching.
4951
4952 If REG_NOSUB is set, then when PREG is passed to regexec, that
4953 routine will report only success or failure, and nothing about the
4954 registers.
4955
4956 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
4957 the return codes and their meanings.) */
4958
4959 int
4960 regcomp (preg, pattern, cflags)
4961 regex_t *preg;
4962 const char *pattern;
4963 int cflags;
4964 {
4965 reg_errcode_t ret;
4966 unsigned syntax
4967 = (cflags & REG_EXTENDED) ?
4968 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
4969
4970 /* regex_compile will allocate the space for the compiled pattern. */
4971 preg->buffer = 0;
4972 preg->allocated = 0;
4973 preg->used = 0;
4974
4975 /* Don't bother to use a fastmap when searching. This simplifies the
4976 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
4977 characters after newlines into the fastmap. This way, we just try
4978 every character. */
4979 preg->fastmap = 0;
4980
4981 if (cflags & REG_ICASE)
4982 {
4983 unsigned i;
4984
4985 preg->translate = (char *) malloc (CHAR_SET_SIZE);
4986 if (preg->translate == NULL)
4987 return (int) REG_ESPACE;
4988
4989 /* Map uppercase characters to corresponding lowercase ones. */
4990 for (i = 0; i < CHAR_SET_SIZE; i++)
4991 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
4992 }
4993 else
4994 preg->translate = NULL;
4995
4996 /* If REG_NEWLINE is set, newlines are treated differently. */
4997 if (cflags & REG_NEWLINE)
4998 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
4999 syntax &= ~RE_DOT_NEWLINE;
5000 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5001 /* It also changes the matching behavior. */
5002 preg->newline_anchor = 1;
5003 }
5004 else
5005 preg->newline_anchor = 0;
5006
5007 preg->no_sub = !!(cflags & REG_NOSUB);
5008
5009 /* POSIX says a null character in the pattern terminates it, so we
5010 can use strlen here in compiling the pattern. */
5011 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5012
5013 /* POSIX doesn't distinguish between an unmatched open-group and an
5014 unmatched close-group: both are REG_EPAREN. */
5015 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5016
5017 return (int) ret;
5018 }
5019
5020
5021 /* regexec searches for a given pattern, specified by PREG, in the
5022 string STRING.
5023
5024 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5025 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5026 least NMATCH elements, and we set them to the offsets of the
5027 corresponding matched substrings.
5028
5029 EFLAGS specifies `execution flags' which affect matching: if
5030 REG_NOTBOL is set, then ^ does not match at the beginning of the
5031 string; if REG_NOTEOL is set, then $ does not match at the end.
5032
5033 We return 0 if we find a match and REG_NOMATCH if not. */
5034
5035 int
5036 regexec (preg, string, nmatch, pmatch, eflags)
5037 const regex_t *preg;
5038 const char *string;
5039 size_t nmatch;
5040 regmatch_t pmatch[];
5041 int eflags;
5042 {
5043 int ret;
5044 struct re_registers regs;
5045 regex_t private_preg;
5046 int len = strlen (string);
5047 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5048
5049 private_preg = *preg;
5050
5051 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5052 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5053
5054 /* The user has told us exactly how many registers to return
5055 information about, via `nmatch'. We have to pass that on to the
5056 matching routines. */
5057 private_preg.regs_allocated = REGS_FIXED;
5058
5059 if (want_reg_info)
5060 {
5061 regs.num_regs = nmatch;
5062 regs.start = TALLOC (nmatch, regoff_t);
5063 regs.end = TALLOC (nmatch, regoff_t);
5064 if (regs.start == NULL || regs.end == NULL)
5065 return (int) REG_NOMATCH;
5066 }
5067
5068 /* Perform the searching operation. */
5069 ret = re_search (&private_preg, string, len,
5070 /* start: */ 0, /* range: */ len,
5071 want_reg_info ? &regs : (struct re_registers *) 0);
5072
5073 /* Copy the register information to the POSIX structure. */
5074 if (want_reg_info)
5075 {
5076 if (ret >= 0)
5077 {
5078 unsigned r;
5079
5080 for (r = 0; r < nmatch; r++)
5081 {
5082 pmatch[r].rm_so = regs.start[r];
5083 pmatch[r].rm_eo = regs.end[r];
5084 }
5085 }
5086
5087 /* If we needed the temporary register info, free the space now. */
5088 free (regs.start);
5089 free (regs.end);
5090 }
5091
5092 /* We want zero return to mean success, unlike `re_search'. */
5093 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5094 }
5095
5096
5097 /* Returns a message corresponding to an error code, ERRCODE, returned
5098 from either regcomp or regexec. We don't use PREG here. */
5099
5100 size_t
5101 regerror (errcode, preg, errbuf, errbuf_size)
5102 int errcode;
5103 const regex_t *preg;
5104 char *errbuf;
5105 size_t errbuf_size;
5106 {
5107 const char *msg;
5108 size_t msg_size;
5109
5110 if (errcode < 0
5111 || errcode >= (sizeof (re_error_msg) / sizeof (re_error_msg[0])))
5112 /* Only error codes returned by the rest of the code should be passed
5113 to this routine. If we are given anything else, or if other regex
5114 code generates an invalid error code, then the program has a bug.
5115 Dump core so we can fix it. */
5116 abort ();
5117
5118 msg = re_error_msg[errcode];
5119
5120 /* POSIX doesn't require that we do anything in this case, but why
5121 not be nice. */
5122 if (! msg)
5123 msg = "Success";
5124
5125 msg_size = strlen (msg) + 1; /* Includes the null. */
5126
5127 if (errbuf_size != 0)
5128 {
5129 if (msg_size > errbuf_size)
5130 {
5131 strncpy (errbuf, msg, errbuf_size - 1);
5132 errbuf[errbuf_size - 1] = 0;
5133 }
5134 else
5135 strcpy (errbuf, msg);
5136 }
5137
5138 return msg_size;
5139 }
5140
5141
5142 /* Free dynamically allocated space used by PREG. */
5143
5144 void
5145 regfree (preg)
5146 regex_t *preg;
5147 {
5148 if (preg->buffer != NULL)
5149 free (preg->buffer);
5150 preg->buffer = NULL;
5151
5152 preg->allocated = 0;
5153 preg->used = 0;
5154
5155 if (preg->fastmap != NULL)
5156 free (preg->fastmap);
5157 preg->fastmap = NULL;
5158 preg->fastmap_accurate = 0;
5159
5160 if (preg->translate != NULL)
5161 free (preg->translate);
5162 preg->translate = NULL;
5163 }
5164
5165 #endif /* not emacs */
5166 \f
5167 /*
5168 Local variables:
5169 make-backup-files: t
5170 version-control: t
5171 trim-versions-without-asking: nil
5172 End:
5173 */