]> code.delx.au - gnu-emacs/blob - src/regex.c
(x_detect_focus_change): Remove unused var `nr_events'.
[gnu-emacs] / src / regex.c
1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
3 internationalization features.)
4
5 Copyright (C) 1993,94,95,96,97,98,99,2000,04 Free Software Foundation, Inc.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
20 USA. */
21
22 /* TODO:
23 - structure the opcode space into opcode+flag.
24 - merge with glibc's regex.[ch].
25 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
26 need to modify the compiled regexp so that re_match can be reentrant.
27 - get rid of on_failure_jump_smart by doing the optimization in re_comp
28 rather than at run-time, so that re_match can be reentrant.
29 */
30
31 /* AIX requires this to be the first thing in the file. */
32 #if defined _AIX && !defined REGEX_MALLOC
33 #pragma alloca
34 #endif
35
36 #ifdef HAVE_CONFIG_H
37 # include <config.h>
38 #endif
39
40 #if defined STDC_HEADERS && !defined emacs
41 # include <stddef.h>
42 #else
43 /* We need this for `regex.h', and perhaps for the Emacs include files. */
44 # include <sys/types.h>
45 #endif
46
47 /* Whether to use ISO C Amendment 1 wide char functions.
48 Those should not be used for Emacs since it uses its own. */
49 #if defined _LIBC
50 #define WIDE_CHAR_SUPPORT 1
51 #else
52 #define WIDE_CHAR_SUPPORT \
53 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
54 #endif
55
56 /* For platform which support the ISO C amendement 1 functionality we
57 support user defined character classes. */
58 #if WIDE_CHAR_SUPPORT
59 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
60 # include <wchar.h>
61 # include <wctype.h>
62 #endif
63
64 #ifdef _LIBC
65 /* We have to keep the namespace clean. */
66 # define regfree(preg) __regfree (preg)
67 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
68 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
69 # define regerror(errcode, preg, errbuf, errbuf_size) \
70 __regerror(errcode, preg, errbuf, errbuf_size)
71 # define re_set_registers(bu, re, nu, st, en) \
72 __re_set_registers (bu, re, nu, st, en)
73 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
74 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
75 # define re_match(bufp, string, size, pos, regs) \
76 __re_match (bufp, string, size, pos, regs)
77 # define re_search(bufp, string, size, startpos, range, regs) \
78 __re_search (bufp, string, size, startpos, range, regs)
79 # define re_compile_pattern(pattern, length, bufp) \
80 __re_compile_pattern (pattern, length, bufp)
81 # define re_set_syntax(syntax) __re_set_syntax (syntax)
82 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
83 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
84 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
85
86 /* Make sure we call libc's function even if the user overrides them. */
87 # define btowc __btowc
88 # define iswctype __iswctype
89 # define wctype __wctype
90
91 # define WEAK_ALIAS(a,b) weak_alias (a, b)
92
93 /* We are also using some library internals. */
94 # include <locale/localeinfo.h>
95 # include <locale/elem-hash.h>
96 # include <langinfo.h>
97 #else
98 # define WEAK_ALIAS(a,b)
99 #endif
100
101 /* This is for other GNU distributions with internationalized messages. */
102 #if HAVE_LIBINTL_H || defined _LIBC
103 # include <libintl.h>
104 #else
105 # define gettext(msgid) (msgid)
106 #endif
107
108 #ifndef gettext_noop
109 /* This define is so xgettext can find the internationalizable
110 strings. */
111 # define gettext_noop(String) String
112 #endif
113
114 /* The `emacs' switch turns on certain matching commands
115 that make sense only in Emacs. */
116 #ifdef emacs
117
118 # include "lisp.h"
119 # include "buffer.h"
120
121 /* Make syntax table lookup grant data in gl_state. */
122 # define SYNTAX_ENTRY_VIA_PROPERTY
123
124 # include "syntax.h"
125 # include "charset.h"
126 # include "category.h"
127
128 # ifdef malloc
129 # undef malloc
130 # endif
131 # define malloc xmalloc
132 # ifdef realloc
133 # undef realloc
134 # endif
135 # define realloc xrealloc
136 # ifdef free
137 # undef free
138 # endif
139 # define free xfree
140
141 /* Converts the pointer to the char to BEG-based offset from the start. */
142 # define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
143 # define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
144
145 # define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
146 # define RE_STRING_CHAR(p, s) \
147 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
148 # define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
149 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
150
151 /* Set C a (possibly multibyte) character before P. P points into a
152 string which is the virtual concatenation of STR1 (which ends at
153 END1) or STR2 (which ends at END2). */
154 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
155 do { \
156 if (multibyte) \
157 { \
158 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
159 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
160 re_char *d0 = dtemp; \
161 PREV_CHAR_BOUNDARY (d0, dlimit); \
162 c = STRING_CHAR (d0, dtemp - d0); \
163 } \
164 else \
165 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
166 } while (0)
167
168
169 #else /* not emacs */
170
171 /* If we are not linking with Emacs proper,
172 we can't use the relocating allocator
173 even if config.h says that we can. */
174 # undef REL_ALLOC
175
176 # if defined STDC_HEADERS || defined _LIBC
177 # include <stdlib.h>
178 # else
179 char *malloc ();
180 char *realloc ();
181 # endif
182
183 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
184 If nothing else has been done, use the method below. */
185 # ifdef INHIBIT_STRING_HEADER
186 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
187 # if !defined bzero && !defined bcopy
188 # undef INHIBIT_STRING_HEADER
189 # endif
190 # endif
191 # endif
192
193 /* This is the normal way of making sure we have memcpy, memcmp and bzero.
194 This is used in most programs--a few other programs avoid this
195 by defining INHIBIT_STRING_HEADER. */
196 # ifndef INHIBIT_STRING_HEADER
197 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
198 # include <string.h>
199 # ifndef bzero
200 # ifndef _LIBC
201 # define bzero(s, n) (memset (s, '\0', n), (s))
202 # else
203 # define bzero(s, n) __bzero (s, n)
204 # endif
205 # endif
206 # else
207 # include <strings.h>
208 # ifndef memcmp
209 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
210 # endif
211 # ifndef memcpy
212 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
213 # endif
214 # endif
215 # endif
216
217 /* Define the syntax stuff for \<, \>, etc. */
218
219 /* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
220 enum syntaxcode { Swhitespace = 0, Sword = 1, Ssymbol = 2 };
221
222 # ifdef SWITCH_ENUM_BUG
223 # define SWITCH_ENUM_CAST(x) ((int)(x))
224 # else
225 # define SWITCH_ENUM_CAST(x) (x)
226 # endif
227
228 /* Dummy macros for non-Emacs environments. */
229 # define BASE_LEADING_CODE_P(c) (0)
230 # define CHAR_CHARSET(c) 0
231 # define CHARSET_LEADING_CODE_BASE(c) 0
232 # define MAX_MULTIBYTE_LENGTH 1
233 # define RE_MULTIBYTE_P(x) 0
234 # define WORD_BOUNDARY_P(c1, c2) (0)
235 # define CHAR_HEAD_P(p) (1)
236 # define SINGLE_BYTE_CHAR_P(c) (1)
237 # define SAME_CHARSET_P(c1, c2) (1)
238 # define MULTIBYTE_FORM_LENGTH(p, s) (1)
239 # define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
240 # define STRING_CHAR(p, s) (*(p))
241 # define RE_STRING_CHAR STRING_CHAR
242 # define CHAR_STRING(c, s) (*(s) = (c), 1)
243 # define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
244 # define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
245 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
246 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
247 # define MAKE_CHAR(charset, c1, c2) (c1)
248 #endif /* not emacs */
249
250 #ifndef RE_TRANSLATE
251 # define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
252 # define RE_TRANSLATE_P(TBL) (TBL)
253 #endif
254 \f
255 /* Get the interface, including the syntax bits. */
256 #include "regex.h"
257
258 /* isalpha etc. are used for the character classes. */
259 #include <ctype.h>
260
261 #ifdef emacs
262
263 /* 1 if C is an ASCII character. */
264 # define IS_REAL_ASCII(c) ((c) < 0200)
265
266 /* 1 if C is a unibyte character. */
267 # define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
268
269 /* The Emacs definitions should not be directly affected by locales. */
270
271 /* In Emacs, these are only used for single-byte characters. */
272 # define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
273 # define ISCNTRL(c) ((c) < ' ')
274 # define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
275 || ((c) >= 'a' && (c) <= 'f') \
276 || ((c) >= 'A' && (c) <= 'F'))
277
278 /* This is only used for single-byte characters. */
279 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
280
281 /* The rest must handle multibyte characters. */
282
283 # define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
284 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
285 : 1)
286
287 # define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
288 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
289 : 1)
290
291 # define ISALNUM(c) (IS_REAL_ASCII (c) \
292 ? (((c) >= 'a' && (c) <= 'z') \
293 || ((c) >= 'A' && (c) <= 'Z') \
294 || ((c) >= '0' && (c) <= '9')) \
295 : SYNTAX (c) == Sword)
296
297 # define ISALPHA(c) (IS_REAL_ASCII (c) \
298 ? (((c) >= 'a' && (c) <= 'z') \
299 || ((c) >= 'A' && (c) <= 'Z')) \
300 : SYNTAX (c) == Sword)
301
302 # define ISLOWER(c) (LOWERCASEP (c))
303
304 # define ISPUNCT(c) (IS_REAL_ASCII (c) \
305 ? ((c) > ' ' && (c) < 0177 \
306 && !(((c) >= 'a' && (c) <= 'z') \
307 || ((c) >= 'A' && (c) <= 'Z') \
308 || ((c) >= '0' && (c) <= '9'))) \
309 : SYNTAX (c) != Sword)
310
311 # define ISSPACE(c) (SYNTAX (c) == Swhitespace)
312
313 # define ISUPPER(c) (UPPERCASEP (c))
314
315 # define ISWORD(c) (SYNTAX (c) == Sword)
316
317 #else /* not emacs */
318
319 /* Jim Meyering writes:
320
321 "... Some ctype macros are valid only for character codes that
322 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
323 using /bin/cc or gcc but without giving an ansi option). So, all
324 ctype uses should be through macros like ISPRINT... If
325 STDC_HEADERS is defined, then autoconf has verified that the ctype
326 macros don't need to be guarded with references to isascii. ...
327 Defining isascii to 1 should let any compiler worth its salt
328 eliminate the && through constant folding."
329 Solaris defines some of these symbols so we must undefine them first. */
330
331 # undef ISASCII
332 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
333 # define ISASCII(c) 1
334 # else
335 # define ISASCII(c) isascii(c)
336 # endif
337
338 /* 1 if C is an ASCII character. */
339 # define IS_REAL_ASCII(c) ((c) < 0200)
340
341 /* This distinction is not meaningful, except in Emacs. */
342 # define ISUNIBYTE(c) 1
343
344 # ifdef isblank
345 # define ISBLANK(c) (ISASCII (c) && isblank (c))
346 # else
347 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
348 # endif
349 # ifdef isgraph
350 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
351 # else
352 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
353 # endif
354
355 # undef ISPRINT
356 # define ISPRINT(c) (ISASCII (c) && isprint (c))
357 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
358 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
359 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
360 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
361 # define ISLOWER(c) (ISASCII (c) && islower (c))
362 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
363 # define ISSPACE(c) (ISASCII (c) && isspace (c))
364 # define ISUPPER(c) (ISASCII (c) && isupper (c))
365 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
366
367 # define ISWORD(c) ISALPHA(c)
368
369 # ifdef _tolower
370 # define TOLOWER(c) _tolower(c)
371 # else
372 # define TOLOWER(c) tolower(c)
373 # endif
374
375 /* How many characters in the character set. */
376 # define CHAR_SET_SIZE 256
377
378 # ifdef SYNTAX_TABLE
379
380 extern char *re_syntax_table;
381
382 # else /* not SYNTAX_TABLE */
383
384 static char re_syntax_table[CHAR_SET_SIZE];
385
386 static void
387 init_syntax_once ()
388 {
389 register int c;
390 static int done = 0;
391
392 if (done)
393 return;
394
395 bzero (re_syntax_table, sizeof re_syntax_table);
396
397 for (c = 0; c < CHAR_SET_SIZE; ++c)
398 if (ISALNUM (c))
399 re_syntax_table[c] = Sword;
400
401 re_syntax_table['_'] = Ssymbol;
402
403 done = 1;
404 }
405
406 # endif /* not SYNTAX_TABLE */
407
408 # define SYNTAX(c) re_syntax_table[(c)]
409
410 #endif /* not emacs */
411 \f
412 #ifndef NULL
413 # define NULL (void *)0
414 #endif
415
416 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
417 since ours (we hope) works properly with all combinations of
418 machines, compilers, `char' and `unsigned char' argument types.
419 (Per Bothner suggested the basic approach.) */
420 #undef SIGN_EXTEND_CHAR
421 #if __STDC__
422 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
423 #else /* not __STDC__ */
424 /* As in Harbison and Steele. */
425 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
426 #endif
427 \f
428 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
429 use `alloca' instead of `malloc'. This is because using malloc in
430 re_search* or re_match* could cause memory leaks when C-g is used in
431 Emacs; also, malloc is slower and causes storage fragmentation. On
432 the other hand, malloc is more portable, and easier to debug.
433
434 Because we sometimes use alloca, some routines have to be macros,
435 not functions -- `alloca'-allocated space disappears at the end of the
436 function it is called in. */
437
438 #ifdef REGEX_MALLOC
439
440 # define REGEX_ALLOCATE malloc
441 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
442 # define REGEX_FREE free
443
444 #else /* not REGEX_MALLOC */
445
446 /* Emacs already defines alloca, sometimes. */
447 # ifndef alloca
448
449 /* Make alloca work the best possible way. */
450 # ifdef __GNUC__
451 # define alloca __builtin_alloca
452 # else /* not __GNUC__ */
453 # if HAVE_ALLOCA_H
454 # include <alloca.h>
455 # endif /* HAVE_ALLOCA_H */
456 # endif /* not __GNUC__ */
457
458 # endif /* not alloca */
459
460 # define REGEX_ALLOCATE alloca
461
462 /* Assumes a `char *destination' variable. */
463 # define REGEX_REALLOCATE(source, osize, nsize) \
464 (destination = (char *) alloca (nsize), \
465 memcpy (destination, source, osize))
466
467 /* No need to do anything to free, after alloca. */
468 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
469
470 #endif /* not REGEX_MALLOC */
471
472 /* Define how to allocate the failure stack. */
473
474 #if defined REL_ALLOC && defined REGEX_MALLOC
475
476 # define REGEX_ALLOCATE_STACK(size) \
477 r_alloc (&failure_stack_ptr, (size))
478 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
479 r_re_alloc (&failure_stack_ptr, (nsize))
480 # define REGEX_FREE_STACK(ptr) \
481 r_alloc_free (&failure_stack_ptr)
482
483 #else /* not using relocating allocator */
484
485 # ifdef REGEX_MALLOC
486
487 # define REGEX_ALLOCATE_STACK malloc
488 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
489 # define REGEX_FREE_STACK free
490
491 # else /* not REGEX_MALLOC */
492
493 # define REGEX_ALLOCATE_STACK alloca
494
495 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
496 REGEX_REALLOCATE (source, osize, nsize)
497 /* No need to explicitly free anything. */
498 # define REGEX_FREE_STACK(arg) ((void)0)
499
500 # endif /* not REGEX_MALLOC */
501 #endif /* not using relocating allocator */
502
503
504 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
505 `string1' or just past its end. This works if PTR is NULL, which is
506 a good thing. */
507 #define FIRST_STRING_P(ptr) \
508 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
509
510 /* (Re)Allocate N items of type T using malloc, or fail. */
511 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
512 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
513 #define RETALLOC_IF(addr, n, t) \
514 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
515 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
516
517 #define BYTEWIDTH 8 /* In bits. */
518
519 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
520
521 #undef MAX
522 #undef MIN
523 #define MAX(a, b) ((a) > (b) ? (a) : (b))
524 #define MIN(a, b) ((a) < (b) ? (a) : (b))
525
526 /* Type of source-pattern and string chars. */
527 typedef const unsigned char re_char;
528
529 typedef char boolean;
530 #define false 0
531 #define true 1
532
533 static int re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
534 re_char *string1, int size1,
535 re_char *string2, int size2,
536 int pos,
537 struct re_registers *regs,
538 int stop));
539 \f
540 /* These are the command codes that appear in compiled regular
541 expressions. Some opcodes are followed by argument bytes. A
542 command code can specify any interpretation whatsoever for its
543 arguments. Zero bytes may appear in the compiled regular expression. */
544
545 typedef enum
546 {
547 no_op = 0,
548
549 /* Succeed right away--no more backtracking. */
550 succeed,
551
552 /* Followed by one byte giving n, then by n literal bytes. */
553 exactn,
554
555 /* Matches any (more or less) character. */
556 anychar,
557
558 /* Matches any one char belonging to specified set. First
559 following byte is number of bitmap bytes. Then come bytes
560 for a bitmap saying which chars are in. Bits in each byte
561 are ordered low-bit-first. A character is in the set if its
562 bit is 1. A character too large to have a bit in the map is
563 automatically not in the set.
564
565 If the length byte has the 0x80 bit set, then that stuff
566 is followed by a range table:
567 2 bytes of flags for character sets (low 8 bits, high 8 bits)
568 See RANGE_TABLE_WORK_BITS below.
569 2 bytes, the number of pairs that follow (upto 32767)
570 pairs, each 2 multibyte characters,
571 each multibyte character represented as 3 bytes. */
572 charset,
573
574 /* Same parameters as charset, but match any character that is
575 not one of those specified. */
576 charset_not,
577
578 /* Start remembering the text that is matched, for storing in a
579 register. Followed by one byte with the register number, in
580 the range 0 to one less than the pattern buffer's re_nsub
581 field. */
582 start_memory,
583
584 /* Stop remembering the text that is matched and store it in a
585 memory register. Followed by one byte with the register
586 number, in the range 0 to one less than `re_nsub' in the
587 pattern buffer. */
588 stop_memory,
589
590 /* Match a duplicate of something remembered. Followed by one
591 byte containing the register number. */
592 duplicate,
593
594 /* Fail unless at beginning of line. */
595 begline,
596
597 /* Fail unless at end of line. */
598 endline,
599
600 /* Succeeds if at beginning of buffer (if emacs) or at beginning
601 of string to be matched (if not). */
602 begbuf,
603
604 /* Analogously, for end of buffer/string. */
605 endbuf,
606
607 /* Followed by two byte relative address to which to jump. */
608 jump,
609
610 /* Followed by two-byte relative address of place to resume at
611 in case of failure. */
612 on_failure_jump,
613
614 /* Like on_failure_jump, but pushes a placeholder instead of the
615 current string position when executed. */
616 on_failure_keep_string_jump,
617
618 /* Just like `on_failure_jump', except that it checks that we
619 don't get stuck in an infinite loop (matching an empty string
620 indefinitely). */
621 on_failure_jump_loop,
622
623 /* Just like `on_failure_jump_loop', except that it checks for
624 a different kind of loop (the kind that shows up with non-greedy
625 operators). This operation has to be immediately preceded
626 by a `no_op'. */
627 on_failure_jump_nastyloop,
628
629 /* A smart `on_failure_jump' used for greedy * and + operators.
630 It analyses the loop before which it is put and if the
631 loop does not require backtracking, it changes itself to
632 `on_failure_keep_string_jump' and short-circuits the loop,
633 else it just defaults to changing itself into `on_failure_jump'.
634 It assumes that it is pointing to just past a `jump'. */
635 on_failure_jump_smart,
636
637 /* Followed by two-byte relative address and two-byte number n.
638 After matching N times, jump to the address upon failure.
639 Does not work if N starts at 0: use on_failure_jump_loop
640 instead. */
641 succeed_n,
642
643 /* Followed by two-byte relative address, and two-byte number n.
644 Jump to the address N times, then fail. */
645 jump_n,
646
647 /* Set the following two-byte relative address to the
648 subsequent two-byte number. The address *includes* the two
649 bytes of number. */
650 set_number_at,
651
652 wordbeg, /* Succeeds if at word beginning. */
653 wordend, /* Succeeds if at word end. */
654
655 wordbound, /* Succeeds if at a word boundary. */
656 notwordbound, /* Succeeds if not at a word boundary. */
657
658 symbeg, /* Succeeds if at symbol beginning. */
659 symend, /* Succeeds if at symbol end. */
660
661 /* Matches any character whose syntax is specified. Followed by
662 a byte which contains a syntax code, e.g., Sword. */
663 syntaxspec,
664
665 /* Matches any character whose syntax is not that specified. */
666 notsyntaxspec
667
668 #ifdef emacs
669 ,before_dot, /* Succeeds if before point. */
670 at_dot, /* Succeeds if at point. */
671 after_dot, /* Succeeds if after point. */
672
673 /* Matches any character whose category-set contains the specified
674 category. The operator is followed by a byte which contains a
675 category code (mnemonic ASCII character). */
676 categoryspec,
677
678 /* Matches any character whose category-set does not contain the
679 specified category. The operator is followed by a byte which
680 contains the category code (mnemonic ASCII character). */
681 notcategoryspec
682 #endif /* emacs */
683 } re_opcode_t;
684 \f
685 /* Common operations on the compiled pattern. */
686
687 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
688
689 #define STORE_NUMBER(destination, number) \
690 do { \
691 (destination)[0] = (number) & 0377; \
692 (destination)[1] = (number) >> 8; \
693 } while (0)
694
695 /* Same as STORE_NUMBER, except increment DESTINATION to
696 the byte after where the number is stored. Therefore, DESTINATION
697 must be an lvalue. */
698
699 #define STORE_NUMBER_AND_INCR(destination, number) \
700 do { \
701 STORE_NUMBER (destination, number); \
702 (destination) += 2; \
703 } while (0)
704
705 /* Put into DESTINATION a number stored in two contiguous bytes starting
706 at SOURCE. */
707
708 #define EXTRACT_NUMBER(destination, source) \
709 do { \
710 (destination) = *(source) & 0377; \
711 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
712 } while (0)
713
714 #ifdef DEBUG
715 static void extract_number _RE_ARGS ((int *dest, re_char *source));
716 static void
717 extract_number (dest, source)
718 int *dest;
719 re_char *source;
720 {
721 int temp = SIGN_EXTEND_CHAR (*(source + 1));
722 *dest = *source & 0377;
723 *dest += temp << 8;
724 }
725
726 # ifndef EXTRACT_MACROS /* To debug the macros. */
727 # undef EXTRACT_NUMBER
728 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
729 # endif /* not EXTRACT_MACROS */
730
731 #endif /* DEBUG */
732
733 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
734 SOURCE must be an lvalue. */
735
736 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
737 do { \
738 EXTRACT_NUMBER (destination, source); \
739 (source) += 2; \
740 } while (0)
741
742 #ifdef DEBUG
743 static void extract_number_and_incr _RE_ARGS ((int *destination,
744 re_char **source));
745 static void
746 extract_number_and_incr (destination, source)
747 int *destination;
748 re_char **source;
749 {
750 extract_number (destination, *source);
751 *source += 2;
752 }
753
754 # ifndef EXTRACT_MACROS
755 # undef EXTRACT_NUMBER_AND_INCR
756 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
757 extract_number_and_incr (&dest, &src)
758 # endif /* not EXTRACT_MACROS */
759
760 #endif /* DEBUG */
761 \f
762 /* Store a multibyte character in three contiguous bytes starting
763 DESTINATION, and increment DESTINATION to the byte after where the
764 character is stored. Therefore, DESTINATION must be an lvalue. */
765
766 #define STORE_CHARACTER_AND_INCR(destination, character) \
767 do { \
768 (destination)[0] = (character) & 0377; \
769 (destination)[1] = ((character) >> 8) & 0377; \
770 (destination)[2] = (character) >> 16; \
771 (destination) += 3; \
772 } while (0)
773
774 /* Put into DESTINATION a character stored in three contiguous bytes
775 starting at SOURCE. */
776
777 #define EXTRACT_CHARACTER(destination, source) \
778 do { \
779 (destination) = ((source)[0] \
780 | ((source)[1] << 8) \
781 | ((source)[2] << 16)); \
782 } while (0)
783
784
785 /* Macros for charset. */
786
787 /* Size of bitmap of charset P in bytes. P is a start of charset,
788 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
789 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
790
791 /* Nonzero if charset P has range table. */
792 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
793
794 /* Return the address of range table of charset P. But not the start
795 of table itself, but the before where the number of ranges is
796 stored. `2 +' means to skip re_opcode_t and size of bitmap,
797 and the 2 bytes of flags at the start of the range table. */
798 #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
799
800 /* Extract the bit flags that start a range table. */
801 #define CHARSET_RANGE_TABLE_BITS(p) \
802 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
803 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
804
805 /* Test if C is listed in the bitmap of charset P. */
806 #define CHARSET_LOOKUP_BITMAP(p, c) \
807 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
808 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
809
810 /* Return the address of end of RANGE_TABLE. COUNT is number of
811 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
812 is start of range and end of range. `* 3' is size of each start
813 and end. */
814 #define CHARSET_RANGE_TABLE_END(range_table, count) \
815 ((range_table) + (count) * 2 * 3)
816
817 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
818 COUNT is number of ranges in RANGE_TABLE. */
819 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
820 do \
821 { \
822 re_wchar_t range_start, range_end; \
823 re_char *p; \
824 re_char *range_table_end \
825 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
826 \
827 for (p = (range_table); p < range_table_end; p += 2 * 3) \
828 { \
829 EXTRACT_CHARACTER (range_start, p); \
830 EXTRACT_CHARACTER (range_end, p + 3); \
831 \
832 if (range_start <= (c) && (c) <= range_end) \
833 { \
834 (not) = !(not); \
835 break; \
836 } \
837 } \
838 } \
839 while (0)
840
841 /* Test if C is in range table of CHARSET. The flag NOT is negated if
842 C is listed in it. */
843 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
844 do \
845 { \
846 /* Number of ranges in range table. */ \
847 int count; \
848 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
849 \
850 EXTRACT_NUMBER_AND_INCR (count, range_table); \
851 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
852 } \
853 while (0)
854 \f
855 /* If DEBUG is defined, Regex prints many voluminous messages about what
856 it is doing (if the variable `debug' is nonzero). If linked with the
857 main program in `iregex.c', you can enter patterns and strings
858 interactively. And if linked with the main program in `main.c' and
859 the other test files, you can run the already-written tests. */
860
861 #ifdef DEBUG
862
863 /* We use standard I/O for debugging. */
864 # include <stdio.h>
865
866 /* It is useful to test things that ``must'' be true when debugging. */
867 # include <assert.h>
868
869 static int debug = -100000;
870
871 # define DEBUG_STATEMENT(e) e
872 # define DEBUG_PRINT1(x) if (debug > 0) printf (x)
873 # define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
874 # define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
875 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
876 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
877 if (debug > 0) print_partial_compiled_pattern (s, e)
878 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
879 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
880
881
882 /* Print the fastmap in human-readable form. */
883
884 void
885 print_fastmap (fastmap)
886 char *fastmap;
887 {
888 unsigned was_a_range = 0;
889 unsigned i = 0;
890
891 while (i < (1 << BYTEWIDTH))
892 {
893 if (fastmap[i++])
894 {
895 was_a_range = 0;
896 putchar (i - 1);
897 while (i < (1 << BYTEWIDTH) && fastmap[i])
898 {
899 was_a_range = 1;
900 i++;
901 }
902 if (was_a_range)
903 {
904 printf ("-");
905 putchar (i - 1);
906 }
907 }
908 }
909 putchar ('\n');
910 }
911
912
913 /* Print a compiled pattern string in human-readable form, starting at
914 the START pointer into it and ending just before the pointer END. */
915
916 void
917 print_partial_compiled_pattern (start, end)
918 re_char *start;
919 re_char *end;
920 {
921 int mcnt, mcnt2;
922 re_char *p = start;
923 re_char *pend = end;
924
925 if (start == NULL)
926 {
927 fprintf (stderr, "(null)\n");
928 return;
929 }
930
931 /* Loop over pattern commands. */
932 while (p < pend)
933 {
934 fprintf (stderr, "%d:\t", p - start);
935
936 switch ((re_opcode_t) *p++)
937 {
938 case no_op:
939 fprintf (stderr, "/no_op");
940 break;
941
942 case succeed:
943 fprintf (stderr, "/succeed");
944 break;
945
946 case exactn:
947 mcnt = *p++;
948 fprintf (stderr, "/exactn/%d", mcnt);
949 do
950 {
951 fprintf (stderr, "/%c", *p++);
952 }
953 while (--mcnt);
954 break;
955
956 case start_memory:
957 fprintf (stderr, "/start_memory/%d", *p++);
958 break;
959
960 case stop_memory:
961 fprintf (stderr, "/stop_memory/%d", *p++);
962 break;
963
964 case duplicate:
965 fprintf (stderr, "/duplicate/%d", *p++);
966 break;
967
968 case anychar:
969 fprintf (stderr, "/anychar");
970 break;
971
972 case charset:
973 case charset_not:
974 {
975 register int c, last = -100;
976 register int in_range = 0;
977 int length = CHARSET_BITMAP_SIZE (p - 1);
978 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
979
980 fprintf (stderr, "/charset [%s",
981 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
982
983 if (p + *p >= pend)
984 fprintf (stderr, " !extends past end of pattern! ");
985
986 for (c = 0; c < 256; c++)
987 if (c / 8 < length
988 && (p[1 + (c/8)] & (1 << (c % 8))))
989 {
990 /* Are we starting a range? */
991 if (last + 1 == c && ! in_range)
992 {
993 fprintf (stderr, "-");
994 in_range = 1;
995 }
996 /* Have we broken a range? */
997 else if (last + 1 != c && in_range)
998 {
999 fprintf (stderr, "%c", last);
1000 in_range = 0;
1001 }
1002
1003 if (! in_range)
1004 fprintf (stderr, "%c", c);
1005
1006 last = c;
1007 }
1008
1009 if (in_range)
1010 fprintf (stderr, "%c", last);
1011
1012 fprintf (stderr, "]");
1013
1014 p += 1 + length;
1015
1016 if (has_range_table)
1017 {
1018 int count;
1019 fprintf (stderr, "has-range-table");
1020
1021 /* ??? Should print the range table; for now, just skip it. */
1022 p += 2; /* skip range table bits */
1023 EXTRACT_NUMBER_AND_INCR (count, p);
1024 p = CHARSET_RANGE_TABLE_END (p, count);
1025 }
1026 }
1027 break;
1028
1029 case begline:
1030 fprintf (stderr, "/begline");
1031 break;
1032
1033 case endline:
1034 fprintf (stderr, "/endline");
1035 break;
1036
1037 case on_failure_jump:
1038 extract_number_and_incr (&mcnt, &p);
1039 fprintf (stderr, "/on_failure_jump to %d", p + mcnt - start);
1040 break;
1041
1042 case on_failure_keep_string_jump:
1043 extract_number_and_incr (&mcnt, &p);
1044 fprintf (stderr, "/on_failure_keep_string_jump to %d", p + mcnt - start);
1045 break;
1046
1047 case on_failure_jump_nastyloop:
1048 extract_number_and_incr (&mcnt, &p);
1049 fprintf (stderr, "/on_failure_jump_nastyloop to %d", p + mcnt - start);
1050 break;
1051
1052 case on_failure_jump_loop:
1053 extract_number_and_incr (&mcnt, &p);
1054 fprintf (stderr, "/on_failure_jump_loop to %d", p + mcnt - start);
1055 break;
1056
1057 case on_failure_jump_smart:
1058 extract_number_and_incr (&mcnt, &p);
1059 fprintf (stderr, "/on_failure_jump_smart to %d", p + mcnt - start);
1060 break;
1061
1062 case jump:
1063 extract_number_and_incr (&mcnt, &p);
1064 fprintf (stderr, "/jump to %d", p + mcnt - start);
1065 break;
1066
1067 case succeed_n:
1068 extract_number_and_incr (&mcnt, &p);
1069 extract_number_and_incr (&mcnt2, &p);
1070 fprintf (stderr, "/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
1071 break;
1072
1073 case jump_n:
1074 extract_number_and_incr (&mcnt, &p);
1075 extract_number_and_incr (&mcnt2, &p);
1076 fprintf (stderr, "/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
1077 break;
1078
1079 case set_number_at:
1080 extract_number_and_incr (&mcnt, &p);
1081 extract_number_and_incr (&mcnt2, &p);
1082 fprintf (stderr, "/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
1083 break;
1084
1085 case wordbound:
1086 fprintf (stderr, "/wordbound");
1087 break;
1088
1089 case notwordbound:
1090 fprintf (stderr, "/notwordbound");
1091 break;
1092
1093 case wordbeg:
1094 fprintf (stderr, "/wordbeg");
1095 break;
1096
1097 case wordend:
1098 fprintf (stderr, "/wordend");
1099 break;
1100
1101 case symbeg:
1102 fprintf (stderr, "/symbeg");
1103 break;
1104
1105 case symend:
1106 fprintf (stderr, "/symend");
1107 break;
1108
1109 case syntaxspec:
1110 fprintf (stderr, "/syntaxspec");
1111 mcnt = *p++;
1112 fprintf (stderr, "/%d", mcnt);
1113 break;
1114
1115 case notsyntaxspec:
1116 fprintf (stderr, "/notsyntaxspec");
1117 mcnt = *p++;
1118 fprintf (stderr, "/%d", mcnt);
1119 break;
1120
1121 # ifdef emacs
1122 case before_dot:
1123 fprintf (stderr, "/before_dot");
1124 break;
1125
1126 case at_dot:
1127 fprintf (stderr, "/at_dot");
1128 break;
1129
1130 case after_dot:
1131 fprintf (stderr, "/after_dot");
1132 break;
1133
1134 case categoryspec:
1135 fprintf (stderr, "/categoryspec");
1136 mcnt = *p++;
1137 fprintf (stderr, "/%d", mcnt);
1138 break;
1139
1140 case notcategoryspec:
1141 fprintf (stderr, "/notcategoryspec");
1142 mcnt = *p++;
1143 fprintf (stderr, "/%d", mcnt);
1144 break;
1145 # endif /* emacs */
1146
1147 case begbuf:
1148 fprintf (stderr, "/begbuf");
1149 break;
1150
1151 case endbuf:
1152 fprintf (stderr, "/endbuf");
1153 break;
1154
1155 default:
1156 fprintf (stderr, "?%d", *(p-1));
1157 }
1158
1159 fprintf (stderr, "\n");
1160 }
1161
1162 fprintf (stderr, "%d:\tend of pattern.\n", p - start);
1163 }
1164
1165
1166 void
1167 print_compiled_pattern (bufp)
1168 struct re_pattern_buffer *bufp;
1169 {
1170 re_char *buffer = bufp->buffer;
1171
1172 print_partial_compiled_pattern (buffer, buffer + bufp->used);
1173 printf ("%ld bytes used/%ld bytes allocated.\n",
1174 bufp->used, bufp->allocated);
1175
1176 if (bufp->fastmap_accurate && bufp->fastmap)
1177 {
1178 printf ("fastmap: ");
1179 print_fastmap (bufp->fastmap);
1180 }
1181
1182 printf ("re_nsub: %d\t", bufp->re_nsub);
1183 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1184 printf ("can_be_null: %d\t", bufp->can_be_null);
1185 printf ("no_sub: %d\t", bufp->no_sub);
1186 printf ("not_bol: %d\t", bufp->not_bol);
1187 printf ("not_eol: %d\t", bufp->not_eol);
1188 printf ("syntax: %lx\n", bufp->syntax);
1189 fflush (stdout);
1190 /* Perhaps we should print the translate table? */
1191 }
1192
1193
1194 void
1195 print_double_string (where, string1, size1, string2, size2)
1196 re_char *where;
1197 re_char *string1;
1198 re_char *string2;
1199 int size1;
1200 int size2;
1201 {
1202 int this_char;
1203
1204 if (where == NULL)
1205 printf ("(null)");
1206 else
1207 {
1208 if (FIRST_STRING_P (where))
1209 {
1210 for (this_char = where - string1; this_char < size1; this_char++)
1211 putchar (string1[this_char]);
1212
1213 where = string2;
1214 }
1215
1216 for (this_char = where - string2; this_char < size2; this_char++)
1217 putchar (string2[this_char]);
1218 }
1219 }
1220
1221 #else /* not DEBUG */
1222
1223 # undef assert
1224 # define assert(e)
1225
1226 # define DEBUG_STATEMENT(e)
1227 # define DEBUG_PRINT1(x)
1228 # define DEBUG_PRINT2(x1, x2)
1229 # define DEBUG_PRINT3(x1, x2, x3)
1230 # define DEBUG_PRINT4(x1, x2, x3, x4)
1231 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1232 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1233
1234 #endif /* not DEBUG */
1235 \f
1236 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1237 also be assigned to arbitrarily: each pattern buffer stores its own
1238 syntax, so it can be changed between regex compilations. */
1239 /* This has no initializer because initialized variables in Emacs
1240 become read-only after dumping. */
1241 reg_syntax_t re_syntax_options;
1242
1243
1244 /* Specify the precise syntax of regexps for compilation. This provides
1245 for compatibility for various utilities which historically have
1246 different, incompatible syntaxes.
1247
1248 The argument SYNTAX is a bit mask comprised of the various bits
1249 defined in regex.h. We return the old syntax. */
1250
1251 reg_syntax_t
1252 re_set_syntax (syntax)
1253 reg_syntax_t syntax;
1254 {
1255 reg_syntax_t ret = re_syntax_options;
1256
1257 re_syntax_options = syntax;
1258 return ret;
1259 }
1260 WEAK_ALIAS (__re_set_syntax, re_set_syntax)
1261 \f
1262 /* This table gives an error message for each of the error codes listed
1263 in regex.h. Obviously the order here has to be same as there.
1264 POSIX doesn't require that we do anything for REG_NOERROR,
1265 but why not be nice? */
1266
1267 static const char *re_error_msgid[] =
1268 {
1269 gettext_noop ("Success"), /* REG_NOERROR */
1270 gettext_noop ("No match"), /* REG_NOMATCH */
1271 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1272 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1273 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1274 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1275 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1276 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1277 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1278 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1279 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1280 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1281 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1282 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1283 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1284 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1285 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1286 };
1287 \f
1288 /* Avoiding alloca during matching, to placate r_alloc. */
1289
1290 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1291 searching and matching functions should not call alloca. On some
1292 systems, alloca is implemented in terms of malloc, and if we're
1293 using the relocating allocator routines, then malloc could cause a
1294 relocation, which might (if the strings being searched are in the
1295 ralloc heap) shift the data out from underneath the regexp
1296 routines.
1297
1298 Here's another reason to avoid allocation: Emacs
1299 processes input from X in a signal handler; processing X input may
1300 call malloc; if input arrives while a matching routine is calling
1301 malloc, then we're scrod. But Emacs can't just block input while
1302 calling matching routines; then we don't notice interrupts when
1303 they come in. So, Emacs blocks input around all regexp calls
1304 except the matching calls, which it leaves unprotected, in the
1305 faith that they will not malloc. */
1306
1307 /* Normally, this is fine. */
1308 #define MATCH_MAY_ALLOCATE
1309
1310 /* When using GNU C, we are not REALLY using the C alloca, no matter
1311 what config.h may say. So don't take precautions for it. */
1312 #ifdef __GNUC__
1313 # undef C_ALLOCA
1314 #endif
1315
1316 /* The match routines may not allocate if (1) they would do it with malloc
1317 and (2) it's not safe for them to use malloc.
1318 Note that if REL_ALLOC is defined, matching would not use malloc for the
1319 failure stack, but we would still use it for the register vectors;
1320 so REL_ALLOC should not affect this. */
1321 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1322 # undef MATCH_MAY_ALLOCATE
1323 #endif
1324
1325 \f
1326 /* Failure stack declarations and macros; both re_compile_fastmap and
1327 re_match_2 use a failure stack. These have to be macros because of
1328 REGEX_ALLOCATE_STACK. */
1329
1330
1331 /* Approximate number of failure points for which to initially allocate space
1332 when matching. If this number is exceeded, we allocate more
1333 space, so it is not a hard limit. */
1334 #ifndef INIT_FAILURE_ALLOC
1335 # define INIT_FAILURE_ALLOC 20
1336 #endif
1337
1338 /* Roughly the maximum number of failure points on the stack. Would be
1339 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1340 This is a variable only so users of regex can assign to it; we never
1341 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1342 before using it, so it should probably be a byte-count instead. */
1343 # if defined MATCH_MAY_ALLOCATE
1344 /* Note that 4400 was enough to cause a crash on Alpha OSF/1,
1345 whose default stack limit is 2mb. In order for a larger
1346 value to work reliably, you have to try to make it accord
1347 with the process stack limit. */
1348 size_t re_max_failures = 40000;
1349 # else
1350 size_t re_max_failures = 4000;
1351 # endif
1352
1353 union fail_stack_elt
1354 {
1355 re_char *pointer;
1356 /* This should be the biggest `int' that's no bigger than a pointer. */
1357 long integer;
1358 };
1359
1360 typedef union fail_stack_elt fail_stack_elt_t;
1361
1362 typedef struct
1363 {
1364 fail_stack_elt_t *stack;
1365 size_t size;
1366 size_t avail; /* Offset of next open position. */
1367 size_t frame; /* Offset of the cur constructed frame. */
1368 } fail_stack_type;
1369
1370 #define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
1371 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1372
1373
1374 /* Define macros to initialize and free the failure stack.
1375 Do `return -2' if the alloc fails. */
1376
1377 #ifdef MATCH_MAY_ALLOCATE
1378 # define INIT_FAIL_STACK() \
1379 do { \
1380 fail_stack.stack = (fail_stack_elt_t *) \
1381 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1382 * sizeof (fail_stack_elt_t)); \
1383 \
1384 if (fail_stack.stack == NULL) \
1385 return -2; \
1386 \
1387 fail_stack.size = INIT_FAILURE_ALLOC; \
1388 fail_stack.avail = 0; \
1389 fail_stack.frame = 0; \
1390 } while (0)
1391
1392 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1393 #else
1394 # define INIT_FAIL_STACK() \
1395 do { \
1396 fail_stack.avail = 0; \
1397 fail_stack.frame = 0; \
1398 } while (0)
1399
1400 # define RESET_FAIL_STACK() ((void)0)
1401 #endif
1402
1403
1404 /* Double the size of FAIL_STACK, up to a limit
1405 which allows approximately `re_max_failures' items.
1406
1407 Return 1 if succeeds, and 0 if either ran out of memory
1408 allocating space for it or it was already too large.
1409
1410 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1411
1412 /* Factor to increase the failure stack size by
1413 when we increase it.
1414 This used to be 2, but 2 was too wasteful
1415 because the old discarded stacks added up to as much space
1416 were as ultimate, maximum-size stack. */
1417 #define FAIL_STACK_GROWTH_FACTOR 4
1418
1419 #define GROW_FAIL_STACK(fail_stack) \
1420 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1421 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
1422 ? 0 \
1423 : ((fail_stack).stack \
1424 = (fail_stack_elt_t *) \
1425 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1426 (fail_stack).size * sizeof (fail_stack_elt_t), \
1427 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1428 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1429 * FAIL_STACK_GROWTH_FACTOR))), \
1430 \
1431 (fail_stack).stack == NULL \
1432 ? 0 \
1433 : ((fail_stack).size \
1434 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1435 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1436 * FAIL_STACK_GROWTH_FACTOR)) \
1437 / sizeof (fail_stack_elt_t)), \
1438 1)))
1439
1440
1441 /* Push a pointer value onto the failure stack.
1442 Assumes the variable `fail_stack'. Probably should only
1443 be called from within `PUSH_FAILURE_POINT'. */
1444 #define PUSH_FAILURE_POINTER(item) \
1445 fail_stack.stack[fail_stack.avail++].pointer = (item)
1446
1447 /* This pushes an integer-valued item onto the failure stack.
1448 Assumes the variable `fail_stack'. Probably should only
1449 be called from within `PUSH_FAILURE_POINT'. */
1450 #define PUSH_FAILURE_INT(item) \
1451 fail_stack.stack[fail_stack.avail++].integer = (item)
1452
1453 /* Push a fail_stack_elt_t value onto the failure stack.
1454 Assumes the variable `fail_stack'. Probably should only
1455 be called from within `PUSH_FAILURE_POINT'. */
1456 #define PUSH_FAILURE_ELT(item) \
1457 fail_stack.stack[fail_stack.avail++] = (item)
1458
1459 /* These three POP... operations complement the three PUSH... operations.
1460 All assume that `fail_stack' is nonempty. */
1461 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1462 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1463 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1464
1465 /* Individual items aside from the registers. */
1466 #define NUM_NONREG_ITEMS 3
1467
1468 /* Used to examine the stack (to detect infinite loops). */
1469 #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
1470 #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
1471 #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1472 #define TOP_FAILURE_HANDLE() fail_stack.frame
1473
1474
1475 #define ENSURE_FAIL_STACK(space) \
1476 while (REMAINING_AVAIL_SLOTS <= space) { \
1477 if (!GROW_FAIL_STACK (fail_stack)) \
1478 return -2; \
1479 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1480 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1481 }
1482
1483 /* Push register NUM onto the stack. */
1484 #define PUSH_FAILURE_REG(num) \
1485 do { \
1486 char *destination; \
1487 ENSURE_FAIL_STACK(3); \
1488 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1489 num, regstart[num], regend[num]); \
1490 PUSH_FAILURE_POINTER (regstart[num]); \
1491 PUSH_FAILURE_POINTER (regend[num]); \
1492 PUSH_FAILURE_INT (num); \
1493 } while (0)
1494
1495 /* Change the counter's value to VAL, but make sure that it will
1496 be reset when backtracking. */
1497 #define PUSH_NUMBER(ptr,val) \
1498 do { \
1499 char *destination; \
1500 int c; \
1501 ENSURE_FAIL_STACK(3); \
1502 EXTRACT_NUMBER (c, ptr); \
1503 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
1504 PUSH_FAILURE_INT (c); \
1505 PUSH_FAILURE_POINTER (ptr); \
1506 PUSH_FAILURE_INT (-1); \
1507 STORE_NUMBER (ptr, val); \
1508 } while (0)
1509
1510 /* Pop a saved register off the stack. */
1511 #define POP_FAILURE_REG_OR_COUNT() \
1512 do { \
1513 int reg = POP_FAILURE_INT (); \
1514 if (reg == -1) \
1515 { \
1516 /* It's a counter. */ \
1517 /* Here, we discard `const', making re_match non-reentrant. */ \
1518 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
1519 reg = POP_FAILURE_INT (); \
1520 STORE_NUMBER (ptr, reg); \
1521 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1522 } \
1523 else \
1524 { \
1525 regend[reg] = POP_FAILURE_POINTER (); \
1526 regstart[reg] = POP_FAILURE_POINTER (); \
1527 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1528 reg, regstart[reg], regend[reg]); \
1529 } \
1530 } while (0)
1531
1532 /* Check that we are not stuck in an infinite loop. */
1533 #define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1534 do { \
1535 int failure = TOP_FAILURE_HANDLE (); \
1536 /* Check for infinite matching loops */ \
1537 while (failure > 0 \
1538 && (FAILURE_STR (failure) == string_place \
1539 || FAILURE_STR (failure) == NULL)) \
1540 { \
1541 assert (FAILURE_PAT (failure) >= bufp->buffer \
1542 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
1543 if (FAILURE_PAT (failure) == pat_cur) \
1544 { \
1545 cycle = 1; \
1546 break; \
1547 } \
1548 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
1549 failure = NEXT_FAILURE_HANDLE(failure); \
1550 } \
1551 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1552 } while (0)
1553
1554 /* Push the information about the state we will need
1555 if we ever fail back to it.
1556
1557 Requires variables fail_stack, regstart, regend and
1558 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1559 declared.
1560
1561 Does `return FAILURE_CODE' if runs out of memory. */
1562
1563 #define PUSH_FAILURE_POINT(pattern, string_place) \
1564 do { \
1565 char *destination; \
1566 /* Must be int, so when we don't save any registers, the arithmetic \
1567 of 0 + -1 isn't done as unsigned. */ \
1568 \
1569 DEBUG_STATEMENT (nfailure_points_pushed++); \
1570 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
1571 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1572 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1573 \
1574 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1575 \
1576 DEBUG_PRINT1 ("\n"); \
1577 \
1578 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1579 PUSH_FAILURE_INT (fail_stack.frame); \
1580 \
1581 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1582 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1583 DEBUG_PRINT1 ("'\n"); \
1584 PUSH_FAILURE_POINTER (string_place); \
1585 \
1586 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1587 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1588 PUSH_FAILURE_POINTER (pattern); \
1589 \
1590 /* Close the frame by moving the frame pointer past it. */ \
1591 fail_stack.frame = fail_stack.avail; \
1592 } while (0)
1593
1594 /* Estimate the size of data pushed by a typical failure stack entry.
1595 An estimate is all we need, because all we use this for
1596 is to choose a limit for how big to make the failure stack. */
1597 /* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
1598 #define TYPICAL_FAILURE_SIZE 20
1599
1600 /* How many items can still be added to the stack without overflowing it. */
1601 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1602
1603
1604 /* Pops what PUSH_FAIL_STACK pushes.
1605
1606 We restore into the parameters, all of which should be lvalues:
1607 STR -- the saved data position.
1608 PAT -- the saved pattern position.
1609 REGSTART, REGEND -- arrays of string positions.
1610
1611 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1612 `pend', `string1', `size1', `string2', and `size2'. */
1613
1614 #define POP_FAILURE_POINT(str, pat) \
1615 do { \
1616 assert (!FAIL_STACK_EMPTY ()); \
1617 \
1618 /* Remove failure points and point to how many regs pushed. */ \
1619 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1620 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1621 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1622 \
1623 /* Pop the saved registers. */ \
1624 while (fail_stack.frame < fail_stack.avail) \
1625 POP_FAILURE_REG_OR_COUNT (); \
1626 \
1627 pat = POP_FAILURE_POINTER (); \
1628 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1629 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1630 \
1631 /* If the saved string location is NULL, it came from an \
1632 on_failure_keep_string_jump opcode, and we want to throw away the \
1633 saved NULL, thus retaining our current position in the string. */ \
1634 str = POP_FAILURE_POINTER (); \
1635 DEBUG_PRINT2 (" Popping string %p: `", str); \
1636 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1637 DEBUG_PRINT1 ("'\n"); \
1638 \
1639 fail_stack.frame = POP_FAILURE_INT (); \
1640 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
1641 \
1642 assert (fail_stack.avail >= 0); \
1643 assert (fail_stack.frame <= fail_stack.avail); \
1644 \
1645 DEBUG_STATEMENT (nfailure_points_popped++); \
1646 } while (0) /* POP_FAILURE_POINT */
1647
1648
1649 \f
1650 /* Registers are set to a sentinel when they haven't yet matched. */
1651 #define REG_UNSET(e) ((e) == NULL)
1652 \f
1653 /* Subroutine declarations and macros for regex_compile. */
1654
1655 static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
1656 reg_syntax_t syntax,
1657 struct re_pattern_buffer *bufp));
1658 static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1659 static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1660 int arg1, int arg2));
1661 static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1662 int arg, unsigned char *end));
1663 static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1664 int arg1, int arg2, unsigned char *end));
1665 static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
1666 re_char *p,
1667 reg_syntax_t syntax));
1668 static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
1669 re_char *pend,
1670 reg_syntax_t syntax));
1671 static re_char *skip_one_char _RE_ARGS ((re_char *p));
1672 static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
1673 char *fastmap, const int multibyte));
1674
1675 /* Fetch the next character in the uncompiled pattern, with no
1676 translation. */
1677 #define PATFETCH(c) \
1678 do { \
1679 int len; \
1680 if (p == pend) return REG_EEND; \
1681 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1682 p += len; \
1683 } while (0)
1684
1685
1686 /* If `translate' is non-null, return translate[D], else just D. We
1687 cast the subscript to translate because some data is declared as
1688 `char *', to avoid warnings when a string constant is passed. But
1689 when we use a character as a subscript we must make it unsigned. */
1690 #ifndef TRANSLATE
1691 # define TRANSLATE(d) \
1692 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
1693 #endif
1694
1695
1696 /* Macros for outputting the compiled pattern into `buffer'. */
1697
1698 /* If the buffer isn't allocated when it comes in, use this. */
1699 #define INIT_BUF_SIZE 32
1700
1701 /* Make sure we have at least N more bytes of space in buffer. */
1702 #define GET_BUFFER_SPACE(n) \
1703 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
1704 EXTEND_BUFFER ()
1705
1706 /* Make sure we have one more byte of buffer space and then add C to it. */
1707 #define BUF_PUSH(c) \
1708 do { \
1709 GET_BUFFER_SPACE (1); \
1710 *b++ = (unsigned char) (c); \
1711 } while (0)
1712
1713
1714 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1715 #define BUF_PUSH_2(c1, c2) \
1716 do { \
1717 GET_BUFFER_SPACE (2); \
1718 *b++ = (unsigned char) (c1); \
1719 *b++ = (unsigned char) (c2); \
1720 } while (0)
1721
1722
1723 /* As with BUF_PUSH_2, except for three bytes. */
1724 #define BUF_PUSH_3(c1, c2, c3) \
1725 do { \
1726 GET_BUFFER_SPACE (3); \
1727 *b++ = (unsigned char) (c1); \
1728 *b++ = (unsigned char) (c2); \
1729 *b++ = (unsigned char) (c3); \
1730 } while (0)
1731
1732
1733 /* Store a jump with opcode OP at LOC to location TO. We store a
1734 relative address offset by the three bytes the jump itself occupies. */
1735 #define STORE_JUMP(op, loc, to) \
1736 store_op1 (op, loc, (to) - (loc) - 3)
1737
1738 /* Likewise, for a two-argument jump. */
1739 #define STORE_JUMP2(op, loc, to, arg) \
1740 store_op2 (op, loc, (to) - (loc) - 3, arg)
1741
1742 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1743 #define INSERT_JUMP(op, loc, to) \
1744 insert_op1 (op, loc, (to) - (loc) - 3, b)
1745
1746 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1747 #define INSERT_JUMP2(op, loc, to, arg) \
1748 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1749
1750
1751 /* This is not an arbitrary limit: the arguments which represent offsets
1752 into the pattern are two bytes long. So if 2^15 bytes turns out to
1753 be too small, many things would have to change. */
1754 # define MAX_BUF_SIZE (1L << 15)
1755
1756 #if 0 /* This is when we thought it could be 2^16 bytes. */
1757 /* Any other compiler which, like MSC, has allocation limit below 2^16
1758 bytes will have to use approach similar to what was done below for
1759 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1760 reallocating to 0 bytes. Such thing is not going to work too well.
1761 You have been warned!! */
1762 #if defined _MSC_VER && !defined WIN32
1763 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1764 # define MAX_BUF_SIZE 65500L
1765 #else
1766 # define MAX_BUF_SIZE (1L << 16)
1767 #endif
1768 #endif /* 0 */
1769
1770 /* Extend the buffer by twice its current size via realloc and
1771 reset the pointers that pointed into the old block to point to the
1772 correct places in the new one. If extending the buffer results in it
1773 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1774 #if __BOUNDED_POINTERS__
1775 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1776 # define MOVE_BUFFER_POINTER(P) \
1777 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
1778 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1779 else \
1780 { \
1781 SET_HIGH_BOUND (b); \
1782 SET_HIGH_BOUND (begalt); \
1783 if (fixup_alt_jump) \
1784 SET_HIGH_BOUND (fixup_alt_jump); \
1785 if (laststart) \
1786 SET_HIGH_BOUND (laststart); \
1787 if (pending_exact) \
1788 SET_HIGH_BOUND (pending_exact); \
1789 }
1790 #else
1791 # define MOVE_BUFFER_POINTER(P) (P) += incr
1792 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
1793 #endif
1794 #define EXTEND_BUFFER() \
1795 do { \
1796 re_char *old_buffer = bufp->buffer; \
1797 if (bufp->allocated == MAX_BUF_SIZE) \
1798 return REG_ESIZE; \
1799 bufp->allocated <<= 1; \
1800 if (bufp->allocated > MAX_BUF_SIZE) \
1801 bufp->allocated = MAX_BUF_SIZE; \
1802 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
1803 if (bufp->buffer == NULL) \
1804 return REG_ESPACE; \
1805 /* If the buffer moved, move all the pointers into it. */ \
1806 if (old_buffer != bufp->buffer) \
1807 { \
1808 int incr = bufp->buffer - old_buffer; \
1809 MOVE_BUFFER_POINTER (b); \
1810 MOVE_BUFFER_POINTER (begalt); \
1811 if (fixup_alt_jump) \
1812 MOVE_BUFFER_POINTER (fixup_alt_jump); \
1813 if (laststart) \
1814 MOVE_BUFFER_POINTER (laststart); \
1815 if (pending_exact) \
1816 MOVE_BUFFER_POINTER (pending_exact); \
1817 } \
1818 ELSE_EXTEND_BUFFER_HIGH_BOUND \
1819 } while (0)
1820
1821
1822 /* Since we have one byte reserved for the register number argument to
1823 {start,stop}_memory, the maximum number of groups we can report
1824 things about is what fits in that byte. */
1825 #define MAX_REGNUM 255
1826
1827 /* But patterns can have more than `MAX_REGNUM' registers. We just
1828 ignore the excess. */
1829 typedef int regnum_t;
1830
1831
1832 /* Macros for the compile stack. */
1833
1834 /* Since offsets can go either forwards or backwards, this type needs to
1835 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1836 /* int may be not enough when sizeof(int) == 2. */
1837 typedef long pattern_offset_t;
1838
1839 typedef struct
1840 {
1841 pattern_offset_t begalt_offset;
1842 pattern_offset_t fixup_alt_jump;
1843 pattern_offset_t laststart_offset;
1844 regnum_t regnum;
1845 } compile_stack_elt_t;
1846
1847
1848 typedef struct
1849 {
1850 compile_stack_elt_t *stack;
1851 unsigned size;
1852 unsigned avail; /* Offset of next open position. */
1853 } compile_stack_type;
1854
1855
1856 #define INIT_COMPILE_STACK_SIZE 32
1857
1858 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1859 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1860
1861 /* The next available element. */
1862 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1863
1864 /* Explicit quit checking is only used on NTemacs. */
1865 #if defined WINDOWSNT && defined emacs && defined QUIT
1866 extern int immediate_quit;
1867 # define IMMEDIATE_QUIT_CHECK \
1868 do { \
1869 if (immediate_quit) QUIT; \
1870 } while (0)
1871 #else
1872 # define IMMEDIATE_QUIT_CHECK ((void)0)
1873 #endif
1874 \f
1875 /* Structure to manage work area for range table. */
1876 struct range_table_work_area
1877 {
1878 int *table; /* actual work area. */
1879 int allocated; /* allocated size for work area in bytes. */
1880 int used; /* actually used size in words. */
1881 int bits; /* flag to record character classes */
1882 };
1883
1884 /* Make sure that WORK_AREA can hold more N multibyte characters.
1885 This is used only in set_image_of_range and set_image_of_range_1.
1886 It expects WORK_AREA to be a pointer.
1887 If it can't get the space, it returns from the surrounding function. */
1888
1889 #define EXTEND_RANGE_TABLE(work_area, n) \
1890 do { \
1891 if (((work_area)->used + (n)) * sizeof (int) > (work_area)->allocated) \
1892 { \
1893 extend_range_table_work_area (work_area); \
1894 if ((work_area)->table == 0) \
1895 return (REG_ESPACE); \
1896 } \
1897 } while (0)
1898
1899 #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1900 (work_area).bits |= (bit)
1901
1902 /* Bits used to implement the multibyte-part of the various character classes
1903 such as [:alnum:] in a charset's range table. */
1904 #define BIT_WORD 0x1
1905 #define BIT_LOWER 0x2
1906 #define BIT_PUNCT 0x4
1907 #define BIT_SPACE 0x8
1908 #define BIT_UPPER 0x10
1909 #define BIT_MULTIBYTE 0x20
1910
1911 /* Set a range START..END to WORK_AREA.
1912 The range is passed through TRANSLATE, so START and END
1913 should be untranslated. */
1914 #define SET_RANGE_TABLE_WORK_AREA(work_area, start, end) \
1915 do { \
1916 int tem; \
1917 tem = set_image_of_range (&work_area, start, end, translate); \
1918 if (tem > 0) \
1919 FREE_STACK_RETURN (tem); \
1920 } while (0)
1921
1922 /* Free allocated memory for WORK_AREA. */
1923 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1924 do { \
1925 if ((work_area).table) \
1926 free ((work_area).table); \
1927 } while (0)
1928
1929 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
1930 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1931 #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
1932 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1933 \f
1934
1935 /* Set the bit for character C in a list. */
1936 #define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
1937
1938
1939 /* Get the next unsigned number in the uncompiled pattern. */
1940 #define GET_UNSIGNED_NUMBER(num) \
1941 do { if (p != pend) \
1942 { \
1943 PATFETCH (c); \
1944 if (c == ' ') \
1945 FREE_STACK_RETURN (REG_BADBR); \
1946 while ('0' <= c && c <= '9') \
1947 { \
1948 int prev; \
1949 if (num < 0) \
1950 num = 0; \
1951 prev = num; \
1952 num = num * 10 + c - '0'; \
1953 if (num / 10 != prev) \
1954 FREE_STACK_RETURN (REG_BADBR); \
1955 if (p == pend) \
1956 break; \
1957 PATFETCH (c); \
1958 } \
1959 if (c == ' ') \
1960 FREE_STACK_RETURN (REG_BADBR); \
1961 } \
1962 } while (0)
1963 \f
1964 #if ! WIDE_CHAR_SUPPORT
1965
1966 /* Map a string to the char class it names (if any). */
1967 re_wctype_t
1968 re_wctype (str)
1969 re_char *str;
1970 {
1971 const char *string = str;
1972 if (STREQ (string, "alnum")) return RECC_ALNUM;
1973 else if (STREQ (string, "alpha")) return RECC_ALPHA;
1974 else if (STREQ (string, "word")) return RECC_WORD;
1975 else if (STREQ (string, "ascii")) return RECC_ASCII;
1976 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
1977 else if (STREQ (string, "graph")) return RECC_GRAPH;
1978 else if (STREQ (string, "lower")) return RECC_LOWER;
1979 else if (STREQ (string, "print")) return RECC_PRINT;
1980 else if (STREQ (string, "punct")) return RECC_PUNCT;
1981 else if (STREQ (string, "space")) return RECC_SPACE;
1982 else if (STREQ (string, "upper")) return RECC_UPPER;
1983 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
1984 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
1985 else if (STREQ (string, "digit")) return RECC_DIGIT;
1986 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
1987 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
1988 else if (STREQ (string, "blank")) return RECC_BLANK;
1989 else return 0;
1990 }
1991
1992 /* True iff CH is in the char class CC. */
1993 boolean
1994 re_iswctype (ch, cc)
1995 int ch;
1996 re_wctype_t cc;
1997 {
1998 switch (cc)
1999 {
2000 case RECC_ALNUM: return ISALNUM (ch);
2001 case RECC_ALPHA: return ISALPHA (ch);
2002 case RECC_BLANK: return ISBLANK (ch);
2003 case RECC_CNTRL: return ISCNTRL (ch);
2004 case RECC_DIGIT: return ISDIGIT (ch);
2005 case RECC_GRAPH: return ISGRAPH (ch);
2006 case RECC_LOWER: return ISLOWER (ch);
2007 case RECC_PRINT: return ISPRINT (ch);
2008 case RECC_PUNCT: return ISPUNCT (ch);
2009 case RECC_SPACE: return ISSPACE (ch);
2010 case RECC_UPPER: return ISUPPER (ch);
2011 case RECC_XDIGIT: return ISXDIGIT (ch);
2012 case RECC_ASCII: return IS_REAL_ASCII (ch);
2013 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
2014 case RECC_UNIBYTE: return ISUNIBYTE (ch);
2015 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
2016 case RECC_WORD: return ISWORD (ch);
2017 case RECC_ERROR: return false;
2018 default:
2019 abort();
2020 }
2021 }
2022
2023 /* Return a bit-pattern to use in the range-table bits to match multibyte
2024 chars of class CC. */
2025 static int
2026 re_wctype_to_bit (cc)
2027 re_wctype_t cc;
2028 {
2029 switch (cc)
2030 {
2031 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
2032 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2033 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
2034 case RECC_LOWER: return BIT_LOWER;
2035 case RECC_UPPER: return BIT_UPPER;
2036 case RECC_PUNCT: return BIT_PUNCT;
2037 case RECC_SPACE: return BIT_SPACE;
2038 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
2039 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
2040 default:
2041 abort();
2042 }
2043 }
2044 #endif
2045 \f
2046 /* Filling in the work area of a range. */
2047
2048 /* Actually extend the space in WORK_AREA. */
2049
2050 static void
2051 extend_range_table_work_area (work_area)
2052 struct range_table_work_area *work_area;
2053 {
2054 work_area->allocated += 16 * sizeof (int);
2055 if (work_area->table)
2056 work_area->table
2057 = (int *) realloc (work_area->table, work_area->allocated);
2058 else
2059 work_area->table
2060 = (int *) malloc (work_area->allocated);
2061 }
2062
2063 #ifdef emacs
2064
2065 /* Carefully find the ranges of codes that are equivalent
2066 under case conversion to the range start..end when passed through
2067 TRANSLATE. Handle the case where non-letters can come in between
2068 two upper-case letters (which happens in Latin-1).
2069 Also handle the case of groups of more than 2 case-equivalent chars.
2070
2071 The basic method is to look at consecutive characters and see
2072 if they can form a run that can be handled as one.
2073
2074 Returns -1 if successful, REG_ESPACE if ran out of space. */
2075
2076 static int
2077 set_image_of_range_1 (work_area, start, end, translate)
2078 RE_TRANSLATE_TYPE translate;
2079 struct range_table_work_area *work_area;
2080 re_wchar_t start, end;
2081 {
2082 /* `one_case' indicates a character, or a run of characters,
2083 each of which is an isolate (no case-equivalents).
2084 This includes all ASCII non-letters.
2085
2086 `two_case' indicates a character, or a run of characters,
2087 each of which has two case-equivalent forms.
2088 This includes all ASCII letters.
2089
2090 `strange' indicates a character that has more than one
2091 case-equivalent. */
2092
2093 enum case_type {one_case, two_case, strange};
2094
2095 /* Describe the run that is in progress,
2096 which the next character can try to extend.
2097 If run_type is strange, that means there really is no run.
2098 If run_type is one_case, then run_start...run_end is the run.
2099 If run_type is two_case, then the run is run_start...run_end,
2100 and the case-equivalents end at run_eqv_end. */
2101
2102 enum case_type run_type = strange;
2103 int run_start, run_end, run_eqv_end;
2104
2105 Lisp_Object eqv_table;
2106
2107 if (!RE_TRANSLATE_P (translate))
2108 {
2109 EXTEND_RANGE_TABLE (work_area, 2);
2110 work_area->table[work_area->used++] = (start);
2111 work_area->table[work_area->used++] = (end);
2112 return -1;
2113 }
2114
2115 eqv_table = XCHAR_TABLE (translate)->extras[2];
2116
2117 for (; start <= end; start++)
2118 {
2119 enum case_type this_type;
2120 int eqv = RE_TRANSLATE (eqv_table, start);
2121 int minchar, maxchar;
2122
2123 /* Classify this character */
2124 if (eqv == start)
2125 this_type = one_case;
2126 else if (RE_TRANSLATE (eqv_table, eqv) == start)
2127 this_type = two_case;
2128 else
2129 this_type = strange;
2130
2131 if (start < eqv)
2132 minchar = start, maxchar = eqv;
2133 else
2134 minchar = eqv, maxchar = start;
2135
2136 /* Can this character extend the run in progress? */
2137 if (this_type == strange || this_type != run_type
2138 || !(minchar == run_end + 1
2139 && (run_type == two_case
2140 ? maxchar == run_eqv_end + 1 : 1)))
2141 {
2142 /* No, end the run.
2143 Record each of its equivalent ranges. */
2144 if (run_type == one_case)
2145 {
2146 EXTEND_RANGE_TABLE (work_area, 2);
2147 work_area->table[work_area->used++] = run_start;
2148 work_area->table[work_area->used++] = run_end;
2149 }
2150 else if (run_type == two_case)
2151 {
2152 EXTEND_RANGE_TABLE (work_area, 4);
2153 work_area->table[work_area->used++] = run_start;
2154 work_area->table[work_area->used++] = run_end;
2155 work_area->table[work_area->used++]
2156 = RE_TRANSLATE (eqv_table, run_start);
2157 work_area->table[work_area->used++]
2158 = RE_TRANSLATE (eqv_table, run_end);
2159 }
2160 run_type = strange;
2161 }
2162
2163 if (this_type == strange)
2164 {
2165 /* For a strange character, add each of its equivalents, one
2166 by one. Don't start a range. */
2167 do
2168 {
2169 EXTEND_RANGE_TABLE (work_area, 2);
2170 work_area->table[work_area->used++] = eqv;
2171 work_area->table[work_area->used++] = eqv;
2172 eqv = RE_TRANSLATE (eqv_table, eqv);
2173 }
2174 while (eqv != start);
2175 }
2176
2177 /* Add this char to the run, or start a new run. */
2178 else if (run_type == strange)
2179 {
2180 /* Initialize a new range. */
2181 run_type = this_type;
2182 run_start = start;
2183 run_end = start;
2184 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2185 }
2186 else
2187 {
2188 /* Extend a running range. */
2189 run_end = minchar;
2190 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2191 }
2192 }
2193
2194 /* If a run is still in progress at the end, finish it now
2195 by recording its equivalent ranges. */
2196 if (run_type == one_case)
2197 {
2198 EXTEND_RANGE_TABLE (work_area, 2);
2199 work_area->table[work_area->used++] = run_start;
2200 work_area->table[work_area->used++] = run_end;
2201 }
2202 else if (run_type == two_case)
2203 {
2204 EXTEND_RANGE_TABLE (work_area, 4);
2205 work_area->table[work_area->used++] = run_start;
2206 work_area->table[work_area->used++] = run_end;
2207 work_area->table[work_area->used++]
2208 = RE_TRANSLATE (eqv_table, run_start);
2209 work_area->table[work_area->used++]
2210 = RE_TRANSLATE (eqv_table, run_end);
2211 }
2212
2213 return -1;
2214 }
2215
2216 #endif /* emacs */
2217
2218 /* Record the the image of the range start..end when passed through
2219 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2220 and is not even necessarily contiguous.
2221 Normally we approximate it with the smallest contiguous range that contains
2222 all the chars we need. However, for Latin-1 we go to extra effort
2223 to do a better job.
2224
2225 This function is not called for ASCII ranges.
2226
2227 Returns -1 if successful, REG_ESPACE if ran out of space. */
2228
2229 static int
2230 set_image_of_range (work_area, start, end, translate)
2231 RE_TRANSLATE_TYPE translate;
2232 struct range_table_work_area *work_area;
2233 re_wchar_t start, end;
2234 {
2235 re_wchar_t cmin, cmax;
2236
2237 #ifdef emacs
2238 /* For Latin-1 ranges, use set_image_of_range_1
2239 to get proper handling of ranges that include letters and nonletters.
2240 For a range that includes the whole of Latin-1, this is not necessary.
2241 For other character sets, we don't bother to get this right. */
2242 if (RE_TRANSLATE_P (translate) && start < 04400
2243 && !(start < 04200 && end >= 04377))
2244 {
2245 int newend;
2246 int tem;
2247 newend = end;
2248 if (newend > 04377)
2249 newend = 04377;
2250 tem = set_image_of_range_1 (work_area, start, newend, translate);
2251 if (tem > 0)
2252 return tem;
2253
2254 start = 04400;
2255 if (end < 04400)
2256 return -1;
2257 }
2258 #endif
2259
2260 EXTEND_RANGE_TABLE (work_area, 2);
2261 work_area->table[work_area->used++] = (start);
2262 work_area->table[work_area->used++] = (end);
2263
2264 cmin = -1, cmax = -1;
2265
2266 if (RE_TRANSLATE_P (translate))
2267 {
2268 int ch;
2269
2270 for (ch = start; ch <= end; ch++)
2271 {
2272 re_wchar_t c = TRANSLATE (ch);
2273 if (! (start <= c && c <= end))
2274 {
2275 if (cmin == -1)
2276 cmin = c, cmax = c;
2277 else
2278 {
2279 cmin = MIN (cmin, c);
2280 cmax = MAX (cmax, c);
2281 }
2282 }
2283 }
2284
2285 if (cmin != -1)
2286 {
2287 EXTEND_RANGE_TABLE (work_area, 2);
2288 work_area->table[work_area->used++] = (cmin);
2289 work_area->table[work_area->used++] = (cmax);
2290 }
2291 }
2292
2293 return -1;
2294 }
2295 \f
2296 #ifndef MATCH_MAY_ALLOCATE
2297
2298 /* If we cannot allocate large objects within re_match_2_internal,
2299 we make the fail stack and register vectors global.
2300 The fail stack, we grow to the maximum size when a regexp
2301 is compiled.
2302 The register vectors, we adjust in size each time we
2303 compile a regexp, according to the number of registers it needs. */
2304
2305 static fail_stack_type fail_stack;
2306
2307 /* Size with which the following vectors are currently allocated.
2308 That is so we can make them bigger as needed,
2309 but never make them smaller. */
2310 static int regs_allocated_size;
2311
2312 static re_char ** regstart, ** regend;
2313 static re_char **best_regstart, **best_regend;
2314
2315 /* Make the register vectors big enough for NUM_REGS registers,
2316 but don't make them smaller. */
2317
2318 static
2319 regex_grow_registers (num_regs)
2320 int num_regs;
2321 {
2322 if (num_regs > regs_allocated_size)
2323 {
2324 RETALLOC_IF (regstart, num_regs, re_char *);
2325 RETALLOC_IF (regend, num_regs, re_char *);
2326 RETALLOC_IF (best_regstart, num_regs, re_char *);
2327 RETALLOC_IF (best_regend, num_regs, re_char *);
2328
2329 regs_allocated_size = num_regs;
2330 }
2331 }
2332
2333 #endif /* not MATCH_MAY_ALLOCATE */
2334 \f
2335 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2336 compile_stack,
2337 regnum_t regnum));
2338
2339 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2340 Returns one of error codes defined in `regex.h', or zero for success.
2341
2342 Assumes the `allocated' (and perhaps `buffer') and `translate'
2343 fields are set in BUFP on entry.
2344
2345 If it succeeds, results are put in BUFP (if it returns an error, the
2346 contents of BUFP are undefined):
2347 `buffer' is the compiled pattern;
2348 `syntax' is set to SYNTAX;
2349 `used' is set to the length of the compiled pattern;
2350 `fastmap_accurate' is zero;
2351 `re_nsub' is the number of subexpressions in PATTERN;
2352 `not_bol' and `not_eol' are zero;
2353
2354 The `fastmap' field is neither examined nor set. */
2355
2356 /* Insert the `jump' from the end of last alternative to "here".
2357 The space for the jump has already been allocated. */
2358 #define FIXUP_ALT_JUMP() \
2359 do { \
2360 if (fixup_alt_jump) \
2361 STORE_JUMP (jump, fixup_alt_jump, b); \
2362 } while (0)
2363
2364
2365 /* Return, freeing storage we allocated. */
2366 #define FREE_STACK_RETURN(value) \
2367 do { \
2368 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2369 free (compile_stack.stack); \
2370 return value; \
2371 } while (0)
2372
2373 static reg_errcode_t
2374 regex_compile (pattern, size, syntax, bufp)
2375 re_char *pattern;
2376 size_t size;
2377 reg_syntax_t syntax;
2378 struct re_pattern_buffer *bufp;
2379 {
2380 /* We fetch characters from PATTERN here. */
2381 register re_wchar_t c, c1;
2382
2383 /* A random temporary spot in PATTERN. */
2384 re_char *p1;
2385
2386 /* Points to the end of the buffer, where we should append. */
2387 register unsigned char *b;
2388
2389 /* Keeps track of unclosed groups. */
2390 compile_stack_type compile_stack;
2391
2392 /* Points to the current (ending) position in the pattern. */
2393 #ifdef AIX
2394 /* `const' makes AIX compiler fail. */
2395 unsigned char *p = pattern;
2396 #else
2397 re_char *p = pattern;
2398 #endif
2399 re_char *pend = pattern + size;
2400
2401 /* How to translate the characters in the pattern. */
2402 RE_TRANSLATE_TYPE translate = bufp->translate;
2403
2404 /* Address of the count-byte of the most recently inserted `exactn'
2405 command. This makes it possible to tell if a new exact-match
2406 character can be added to that command or if the character requires
2407 a new `exactn' command. */
2408 unsigned char *pending_exact = 0;
2409
2410 /* Address of start of the most recently finished expression.
2411 This tells, e.g., postfix * where to find the start of its
2412 operand. Reset at the beginning of groups and alternatives. */
2413 unsigned char *laststart = 0;
2414
2415 /* Address of beginning of regexp, or inside of last group. */
2416 unsigned char *begalt;
2417
2418 /* Place in the uncompiled pattern (i.e., the {) to
2419 which to go back if the interval is invalid. */
2420 re_char *beg_interval;
2421
2422 /* Address of the place where a forward jump should go to the end of
2423 the containing expression. Each alternative of an `or' -- except the
2424 last -- ends with a forward jump of this sort. */
2425 unsigned char *fixup_alt_jump = 0;
2426
2427 /* Counts open-groups as they are encountered. Remembered for the
2428 matching close-group on the compile stack, so the same register
2429 number is put in the stop_memory as the start_memory. */
2430 regnum_t regnum = 0;
2431
2432 /* Work area for range table of charset. */
2433 struct range_table_work_area range_table_work;
2434
2435 /* If the object matched can contain multibyte characters. */
2436 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2437
2438 #ifdef DEBUG
2439 debug++;
2440 DEBUG_PRINT1 ("\nCompiling pattern: ");
2441 if (debug > 0)
2442 {
2443 unsigned debug_count;
2444
2445 for (debug_count = 0; debug_count < size; debug_count++)
2446 putchar (pattern[debug_count]);
2447 putchar ('\n');
2448 }
2449 #endif /* DEBUG */
2450
2451 /* Initialize the compile stack. */
2452 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2453 if (compile_stack.stack == NULL)
2454 return REG_ESPACE;
2455
2456 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2457 compile_stack.avail = 0;
2458
2459 range_table_work.table = 0;
2460 range_table_work.allocated = 0;
2461
2462 /* Initialize the pattern buffer. */
2463 bufp->syntax = syntax;
2464 bufp->fastmap_accurate = 0;
2465 bufp->not_bol = bufp->not_eol = 0;
2466
2467 /* Set `used' to zero, so that if we return an error, the pattern
2468 printer (for debugging) will think there's no pattern. We reset it
2469 at the end. */
2470 bufp->used = 0;
2471
2472 /* Always count groups, whether or not bufp->no_sub is set. */
2473 bufp->re_nsub = 0;
2474
2475 #if !defined emacs && !defined SYNTAX_TABLE
2476 /* Initialize the syntax table. */
2477 init_syntax_once ();
2478 #endif
2479
2480 if (bufp->allocated == 0)
2481 {
2482 if (bufp->buffer)
2483 { /* If zero allocated, but buffer is non-null, try to realloc
2484 enough space. This loses if buffer's address is bogus, but
2485 that is the user's responsibility. */
2486 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2487 }
2488 else
2489 { /* Caller did not allocate a buffer. Do it for them. */
2490 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2491 }
2492 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2493
2494 bufp->allocated = INIT_BUF_SIZE;
2495 }
2496
2497 begalt = b = bufp->buffer;
2498
2499 /* Loop through the uncompiled pattern until we're at the end. */
2500 while (p != pend)
2501 {
2502 PATFETCH (c);
2503
2504 switch (c)
2505 {
2506 case '^':
2507 {
2508 if ( /* If at start of pattern, it's an operator. */
2509 p == pattern + 1
2510 /* If context independent, it's an operator. */
2511 || syntax & RE_CONTEXT_INDEP_ANCHORS
2512 /* Otherwise, depends on what's come before. */
2513 || at_begline_loc_p (pattern, p, syntax))
2514 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
2515 else
2516 goto normal_char;
2517 }
2518 break;
2519
2520
2521 case '$':
2522 {
2523 if ( /* If at end of pattern, it's an operator. */
2524 p == pend
2525 /* If context independent, it's an operator. */
2526 || syntax & RE_CONTEXT_INDEP_ANCHORS
2527 /* Otherwise, depends on what's next. */
2528 || at_endline_loc_p (p, pend, syntax))
2529 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
2530 else
2531 goto normal_char;
2532 }
2533 break;
2534
2535
2536 case '+':
2537 case '?':
2538 if ((syntax & RE_BK_PLUS_QM)
2539 || (syntax & RE_LIMITED_OPS))
2540 goto normal_char;
2541 handle_plus:
2542 case '*':
2543 /* If there is no previous pattern... */
2544 if (!laststart)
2545 {
2546 if (syntax & RE_CONTEXT_INVALID_OPS)
2547 FREE_STACK_RETURN (REG_BADRPT);
2548 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2549 goto normal_char;
2550 }
2551
2552 {
2553 /* 1 means zero (many) matches is allowed. */
2554 boolean zero_times_ok = 0, many_times_ok = 0;
2555 boolean greedy = 1;
2556
2557 /* If there is a sequence of repetition chars, collapse it
2558 down to just one (the right one). We can't combine
2559 interval operators with these because of, e.g., `a{2}*',
2560 which should only match an even number of `a's. */
2561
2562 for (;;)
2563 {
2564 if ((syntax & RE_FRUGAL)
2565 && c == '?' && (zero_times_ok || many_times_ok))
2566 greedy = 0;
2567 else
2568 {
2569 zero_times_ok |= c != '+';
2570 many_times_ok |= c != '?';
2571 }
2572
2573 if (p == pend)
2574 break;
2575 else if (*p == '*'
2576 || (!(syntax & RE_BK_PLUS_QM)
2577 && (*p == '+' || *p == '?')))
2578 ;
2579 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
2580 {
2581 if (p+1 == pend)
2582 FREE_STACK_RETURN (REG_EESCAPE);
2583 if (p[1] == '+' || p[1] == '?')
2584 PATFETCH (c); /* Gobble up the backslash. */
2585 else
2586 break;
2587 }
2588 else
2589 break;
2590 /* If we get here, we found another repeat character. */
2591 PATFETCH (c);
2592 }
2593
2594 /* Star, etc. applied to an empty pattern is equivalent
2595 to an empty pattern. */
2596 if (!laststart || laststart == b)
2597 break;
2598
2599 /* Now we know whether or not zero matches is allowed
2600 and also whether or not two or more matches is allowed. */
2601 if (greedy)
2602 {
2603 if (many_times_ok)
2604 {
2605 boolean simple = skip_one_char (laststart) == b;
2606 unsigned int startoffset = 0;
2607 re_opcode_t ofj =
2608 /* Check if the loop can match the empty string. */
2609 (simple || !analyse_first (laststart, b, NULL, 0))
2610 ? on_failure_jump : on_failure_jump_loop;
2611 assert (skip_one_char (laststart) <= b);
2612
2613 if (!zero_times_ok && simple)
2614 { /* Since simple * loops can be made faster by using
2615 on_failure_keep_string_jump, we turn simple P+
2616 into PP* if P is simple. */
2617 unsigned char *p1, *p2;
2618 startoffset = b - laststart;
2619 GET_BUFFER_SPACE (startoffset);
2620 p1 = b; p2 = laststart;
2621 while (p2 < p1)
2622 *b++ = *p2++;
2623 zero_times_ok = 1;
2624 }
2625
2626 GET_BUFFER_SPACE (6);
2627 if (!zero_times_ok)
2628 /* A + loop. */
2629 STORE_JUMP (ofj, b, b + 6);
2630 else
2631 /* Simple * loops can use on_failure_keep_string_jump
2632 depending on what follows. But since we don't know
2633 that yet, we leave the decision up to
2634 on_failure_jump_smart. */
2635 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
2636 laststart + startoffset, b + 6);
2637 b += 3;
2638 STORE_JUMP (jump, b, laststart + startoffset);
2639 b += 3;
2640 }
2641 else
2642 {
2643 /* A simple ? pattern. */
2644 assert (zero_times_ok);
2645 GET_BUFFER_SPACE (3);
2646 INSERT_JUMP (on_failure_jump, laststart, b + 3);
2647 b += 3;
2648 }
2649 }
2650 else /* not greedy */
2651 { /* I wish the greedy and non-greedy cases could be merged. */
2652
2653 GET_BUFFER_SPACE (7); /* We might use less. */
2654 if (many_times_ok)
2655 {
2656 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2657
2658 /* The non-greedy multiple match looks like
2659 a repeat..until: we only need a conditional jump
2660 at the end of the loop. */
2661 if (emptyp) BUF_PUSH (no_op);
2662 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2663 : on_failure_jump, b, laststart);
2664 b += 3;
2665 if (zero_times_ok)
2666 {
2667 /* The repeat...until naturally matches one or more.
2668 To also match zero times, we need to first jump to
2669 the end of the loop (its conditional jump). */
2670 INSERT_JUMP (jump, laststart, b);
2671 b += 3;
2672 }
2673 }
2674 else
2675 {
2676 /* non-greedy a?? */
2677 INSERT_JUMP (jump, laststart, b + 3);
2678 b += 3;
2679 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2680 b += 3;
2681 }
2682 }
2683 }
2684 pending_exact = 0;
2685 break;
2686
2687
2688 case '.':
2689 laststart = b;
2690 BUF_PUSH (anychar);
2691 break;
2692
2693
2694 case '[':
2695 {
2696 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
2697
2698 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2699
2700 /* Ensure that we have enough space to push a charset: the
2701 opcode, the length count, and the bitset; 34 bytes in all. */
2702 GET_BUFFER_SPACE (34);
2703
2704 laststart = b;
2705
2706 /* We test `*p == '^' twice, instead of using an if
2707 statement, so we only need one BUF_PUSH. */
2708 BUF_PUSH (*p == '^' ? charset_not : charset);
2709 if (*p == '^')
2710 p++;
2711
2712 /* Remember the first position in the bracket expression. */
2713 p1 = p;
2714
2715 /* Push the number of bytes in the bitmap. */
2716 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2717
2718 /* Clear the whole map. */
2719 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2720
2721 /* charset_not matches newline according to a syntax bit. */
2722 if ((re_opcode_t) b[-2] == charset_not
2723 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2724 SET_LIST_BIT ('\n');
2725
2726 /* Read in characters and ranges, setting map bits. */
2727 for (;;)
2728 {
2729 boolean escaped_char = false;
2730 const unsigned char *p2 = p;
2731
2732 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2733
2734 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2735 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2736 So the translation is done later in a loop. Example:
2737 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
2738 PATFETCH (c);
2739
2740 /* \ might escape characters inside [...] and [^...]. */
2741 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2742 {
2743 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2744
2745 PATFETCH (c);
2746 escaped_char = true;
2747 }
2748 else
2749 {
2750 /* Could be the end of the bracket expression. If it's
2751 not (i.e., when the bracket expression is `[]' so
2752 far), the ']' character bit gets set way below. */
2753 if (c == ']' && p2 != p1)
2754 break;
2755 }
2756
2757 /* What should we do for the character which is
2758 greater than 0x7F, but not BASE_LEADING_CODE_P?
2759 XXX */
2760
2761 /* See if we're at the beginning of a possible character
2762 class. */
2763
2764 if (!escaped_char &&
2765 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2766 {
2767 /* Leave room for the null. */
2768 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
2769 const unsigned char *class_beg;
2770
2771 PATFETCH (c);
2772 c1 = 0;
2773 class_beg = p;
2774
2775 /* If pattern is `[[:'. */
2776 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2777
2778 for (;;)
2779 {
2780 PATFETCH (c);
2781 if ((c == ':' && *p == ']') || p == pend)
2782 break;
2783 if (c1 < CHAR_CLASS_MAX_LENGTH)
2784 str[c1++] = c;
2785 else
2786 /* This is in any case an invalid class name. */
2787 str[0] = '\0';
2788 }
2789 str[c1] = '\0';
2790
2791 /* If isn't a word bracketed by `[:' and `:]':
2792 undo the ending character, the letters, and
2793 leave the leading `:' and `[' (but set bits for
2794 them). */
2795 if (c == ':' && *p == ']')
2796 {
2797 re_wchar_t ch;
2798 re_wctype_t cc;
2799
2800 cc = re_wctype (str);
2801
2802 if (cc == 0)
2803 FREE_STACK_RETURN (REG_ECTYPE);
2804
2805 /* Throw away the ] at the end of the character
2806 class. */
2807 PATFETCH (c);
2808
2809 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2810
2811 /* Most character classes in a multibyte match
2812 just set a flag. Exceptions are is_blank,
2813 is_digit, is_cntrl, and is_xdigit, since
2814 they can only match ASCII characters. We
2815 don't need to handle them for multibyte.
2816 They are distinguished by a negative wctype. */
2817
2818 if (multibyte)
2819 SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work,
2820 re_wctype_to_bit (cc));
2821
2822 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
2823 {
2824 int translated = TRANSLATE (ch);
2825 if (re_iswctype (btowc (ch), cc))
2826 SET_LIST_BIT (translated);
2827 }
2828
2829 /* Repeat the loop. */
2830 continue;
2831 }
2832 else
2833 {
2834 /* Go back to right after the "[:". */
2835 p = class_beg;
2836 SET_LIST_BIT ('[');
2837
2838 /* Because the `:' may starts the range, we
2839 can't simply set bit and repeat the loop.
2840 Instead, just set it to C and handle below. */
2841 c = ':';
2842 }
2843 }
2844
2845 if (p < pend && p[0] == '-' && p[1] != ']')
2846 {
2847
2848 /* Discard the `-'. */
2849 PATFETCH (c1);
2850
2851 /* Fetch the character which ends the range. */
2852 PATFETCH (c1);
2853
2854 if (SINGLE_BYTE_CHAR_P (c))
2855 {
2856 if (! SINGLE_BYTE_CHAR_P (c1))
2857 {
2858 /* Handle a range starting with a
2859 character of less than 256, and ending
2860 with a character of not less than 256.
2861 Split that into two ranges, the low one
2862 ending at 0377, and the high one
2863 starting at the smallest character in
2864 the charset of C1 and ending at C1. */
2865 int charset = CHAR_CHARSET (c1);
2866 re_wchar_t c2 = MAKE_CHAR (charset, 0, 0);
2867
2868 SET_RANGE_TABLE_WORK_AREA (range_table_work,
2869 c2, c1);
2870 c1 = 0377;
2871 }
2872 }
2873 else if (!SAME_CHARSET_P (c, c1))
2874 FREE_STACK_RETURN (REG_ERANGE);
2875 }
2876 else
2877 /* Range from C to C. */
2878 c1 = c;
2879
2880 /* Set the range ... */
2881 if (SINGLE_BYTE_CHAR_P (c))
2882 /* ... into bitmap. */
2883 {
2884 re_wchar_t this_char;
2885 re_wchar_t range_start = c, range_end = c1;
2886
2887 /* If the start is after the end, the range is empty. */
2888 if (range_start > range_end)
2889 {
2890 if (syntax & RE_NO_EMPTY_RANGES)
2891 FREE_STACK_RETURN (REG_ERANGE);
2892 /* Else, repeat the loop. */
2893 }
2894 else
2895 {
2896 for (this_char = range_start; this_char <= range_end;
2897 this_char++)
2898 SET_LIST_BIT (TRANSLATE (this_char));
2899 }
2900 }
2901 else
2902 /* ... into range table. */
2903 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
2904 }
2905
2906 /* Discard any (non)matching list bytes that are all 0 at the
2907 end of the map. Decrease the map-length byte too. */
2908 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2909 b[-1]--;
2910 b += b[-1];
2911
2912 /* Build real range table from work area. */
2913 if (RANGE_TABLE_WORK_USED (range_table_work)
2914 || RANGE_TABLE_WORK_BITS (range_table_work))
2915 {
2916 int i;
2917 int used = RANGE_TABLE_WORK_USED (range_table_work);
2918
2919 /* Allocate space for COUNT + RANGE_TABLE. Needs two
2920 bytes for flags, two for COUNT, and three bytes for
2921 each character. */
2922 GET_BUFFER_SPACE (4 + used * 3);
2923
2924 /* Indicate the existence of range table. */
2925 laststart[1] |= 0x80;
2926
2927 /* Store the character class flag bits into the range table.
2928 If not in emacs, these flag bits are always 0. */
2929 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
2930 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
2931
2932 STORE_NUMBER_AND_INCR (b, used / 2);
2933 for (i = 0; i < used; i++)
2934 STORE_CHARACTER_AND_INCR
2935 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
2936 }
2937 }
2938 break;
2939
2940
2941 case '(':
2942 if (syntax & RE_NO_BK_PARENS)
2943 goto handle_open;
2944 else
2945 goto normal_char;
2946
2947
2948 case ')':
2949 if (syntax & RE_NO_BK_PARENS)
2950 goto handle_close;
2951 else
2952 goto normal_char;
2953
2954
2955 case '\n':
2956 if (syntax & RE_NEWLINE_ALT)
2957 goto handle_alt;
2958 else
2959 goto normal_char;
2960
2961
2962 case '|':
2963 if (syntax & RE_NO_BK_VBAR)
2964 goto handle_alt;
2965 else
2966 goto normal_char;
2967
2968
2969 case '{':
2970 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2971 goto handle_interval;
2972 else
2973 goto normal_char;
2974
2975
2976 case '\\':
2977 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2978
2979 /* Do not translate the character after the \, so that we can
2980 distinguish, e.g., \B from \b, even if we normally would
2981 translate, e.g., B to b. */
2982 PATFETCH (c);
2983
2984 switch (c)
2985 {
2986 case '(':
2987 if (syntax & RE_NO_BK_PARENS)
2988 goto normal_backslash;
2989
2990 handle_open:
2991 {
2992 int shy = 0;
2993 if (p+1 < pend)
2994 {
2995 /* Look for a special (?...) construct */
2996 if ((syntax & RE_SHY_GROUPS) && *p == '?')
2997 {
2998 PATFETCH (c); /* Gobble up the '?'. */
2999 PATFETCH (c);
3000 switch (c)
3001 {
3002 case ':': shy = 1; break;
3003 default:
3004 /* Only (?:...) is supported right now. */
3005 FREE_STACK_RETURN (REG_BADPAT);
3006 }
3007 }
3008 }
3009
3010 if (!shy)
3011 {
3012 bufp->re_nsub++;
3013 regnum++;
3014 }
3015
3016 if (COMPILE_STACK_FULL)
3017 {
3018 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3019 compile_stack_elt_t);
3020 if (compile_stack.stack == NULL) return REG_ESPACE;
3021
3022 compile_stack.size <<= 1;
3023 }
3024
3025 /* These are the values to restore when we hit end of this
3026 group. They are all relative offsets, so that if the
3027 whole pattern moves because of realloc, they will still
3028 be valid. */
3029 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
3030 COMPILE_STACK_TOP.fixup_alt_jump
3031 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
3032 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
3033 COMPILE_STACK_TOP.regnum = shy ? -regnum : regnum;
3034
3035 /* Do not push a
3036 start_memory for groups beyond the last one we can
3037 represent in the compiled pattern. */
3038 if (regnum <= MAX_REGNUM && !shy)
3039 BUF_PUSH_2 (start_memory, regnum);
3040
3041 compile_stack.avail++;
3042
3043 fixup_alt_jump = 0;
3044 laststart = 0;
3045 begalt = b;
3046 /* If we've reached MAX_REGNUM groups, then this open
3047 won't actually generate any code, so we'll have to
3048 clear pending_exact explicitly. */
3049 pending_exact = 0;
3050 break;
3051 }
3052
3053 case ')':
3054 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3055
3056 if (COMPILE_STACK_EMPTY)
3057 {
3058 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3059 goto normal_backslash;
3060 else
3061 FREE_STACK_RETURN (REG_ERPAREN);
3062 }
3063
3064 handle_close:
3065 FIXUP_ALT_JUMP ();
3066
3067 /* See similar code for backslashed left paren above. */
3068 if (COMPILE_STACK_EMPTY)
3069 {
3070 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3071 goto normal_char;
3072 else
3073 FREE_STACK_RETURN (REG_ERPAREN);
3074 }
3075
3076 /* Since we just checked for an empty stack above, this
3077 ``can't happen''. */
3078 assert (compile_stack.avail != 0);
3079 {
3080 /* We don't just want to restore into `regnum', because
3081 later groups should continue to be numbered higher,
3082 as in `(ab)c(de)' -- the second group is #2. */
3083 regnum_t this_group_regnum;
3084
3085 compile_stack.avail--;
3086 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
3087 fixup_alt_jump
3088 = COMPILE_STACK_TOP.fixup_alt_jump
3089 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
3090 : 0;
3091 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
3092 this_group_regnum = COMPILE_STACK_TOP.regnum;
3093 /* If we've reached MAX_REGNUM groups, then this open
3094 won't actually generate any code, so we'll have to
3095 clear pending_exact explicitly. */
3096 pending_exact = 0;
3097
3098 /* We're at the end of the group, so now we know how many
3099 groups were inside this one. */
3100 if (this_group_regnum <= MAX_REGNUM && this_group_regnum > 0)
3101 BUF_PUSH_2 (stop_memory, this_group_regnum);
3102 }
3103 break;
3104
3105
3106 case '|': /* `\|'. */
3107 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3108 goto normal_backslash;
3109 handle_alt:
3110 if (syntax & RE_LIMITED_OPS)
3111 goto normal_char;
3112
3113 /* Insert before the previous alternative a jump which
3114 jumps to this alternative if the former fails. */
3115 GET_BUFFER_SPACE (3);
3116 INSERT_JUMP (on_failure_jump, begalt, b + 6);
3117 pending_exact = 0;
3118 b += 3;
3119
3120 /* The alternative before this one has a jump after it
3121 which gets executed if it gets matched. Adjust that
3122 jump so it will jump to this alternative's analogous
3123 jump (put in below, which in turn will jump to the next
3124 (if any) alternative's such jump, etc.). The last such
3125 jump jumps to the correct final destination. A picture:
3126 _____ _____
3127 | | | |
3128 | v | v
3129 a | b | c
3130
3131 If we are at `b', then fixup_alt_jump right now points to a
3132 three-byte space after `a'. We'll put in the jump, set
3133 fixup_alt_jump to right after `b', and leave behind three
3134 bytes which we'll fill in when we get to after `c'. */
3135
3136 FIXUP_ALT_JUMP ();
3137
3138 /* Mark and leave space for a jump after this alternative,
3139 to be filled in later either by next alternative or
3140 when know we're at the end of a series of alternatives. */
3141 fixup_alt_jump = b;
3142 GET_BUFFER_SPACE (3);
3143 b += 3;
3144
3145 laststart = 0;
3146 begalt = b;
3147 break;
3148
3149
3150 case '{':
3151 /* If \{ is a literal. */
3152 if (!(syntax & RE_INTERVALS)
3153 /* If we're at `\{' and it's not the open-interval
3154 operator. */
3155 || (syntax & RE_NO_BK_BRACES))
3156 goto normal_backslash;
3157
3158 handle_interval:
3159 {
3160 /* If got here, then the syntax allows intervals. */
3161
3162 /* At least (most) this many matches must be made. */
3163 int lower_bound = 0, upper_bound = -1;
3164
3165 beg_interval = p;
3166
3167 if (p == pend)
3168 FREE_STACK_RETURN (REG_EBRACE);
3169
3170 GET_UNSIGNED_NUMBER (lower_bound);
3171
3172 if (c == ',')
3173 GET_UNSIGNED_NUMBER (upper_bound);
3174 else
3175 /* Interval such as `{1}' => match exactly once. */
3176 upper_bound = lower_bound;
3177
3178 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
3179 || (upper_bound >= 0 && lower_bound > upper_bound))
3180 FREE_STACK_RETURN (REG_BADBR);
3181
3182 if (!(syntax & RE_NO_BK_BRACES))
3183 {
3184 if (c != '\\')
3185 FREE_STACK_RETURN (REG_BADBR);
3186
3187 PATFETCH (c);
3188 }
3189
3190 if (c != '}')
3191 FREE_STACK_RETURN (REG_BADBR);
3192
3193 /* We just parsed a valid interval. */
3194
3195 /* If it's invalid to have no preceding re. */
3196 if (!laststart)
3197 {
3198 if (syntax & RE_CONTEXT_INVALID_OPS)
3199 FREE_STACK_RETURN (REG_BADRPT);
3200 else if (syntax & RE_CONTEXT_INDEP_OPS)
3201 laststart = b;
3202 else
3203 goto unfetch_interval;
3204 }
3205
3206 if (upper_bound == 0)
3207 /* If the upper bound is zero, just drop the sub pattern
3208 altogether. */
3209 b = laststart;
3210 else if (lower_bound == 1 && upper_bound == 1)
3211 /* Just match it once: nothing to do here. */
3212 ;
3213
3214 /* Otherwise, we have a nontrivial interval. When
3215 we're all done, the pattern will look like:
3216 set_number_at <jump count> <upper bound>
3217 set_number_at <succeed_n count> <lower bound>
3218 succeed_n <after jump addr> <succeed_n count>
3219 <body of loop>
3220 jump_n <succeed_n addr> <jump count>
3221 (The upper bound and `jump_n' are omitted if
3222 `upper_bound' is 1, though.) */
3223 else
3224 { /* If the upper bound is > 1, we need to insert
3225 more at the end of the loop. */
3226 unsigned int nbytes = (upper_bound < 0 ? 3
3227 : upper_bound > 1 ? 5 : 0);
3228 unsigned int startoffset = 0;
3229
3230 GET_BUFFER_SPACE (20); /* We might use less. */
3231
3232 if (lower_bound == 0)
3233 {
3234 /* A succeed_n that starts with 0 is really a
3235 a simple on_failure_jump_loop. */
3236 INSERT_JUMP (on_failure_jump_loop, laststart,
3237 b + 3 + nbytes);
3238 b += 3;
3239 }
3240 else
3241 {
3242 /* Initialize lower bound of the `succeed_n', even
3243 though it will be set during matching by its
3244 attendant `set_number_at' (inserted next),
3245 because `re_compile_fastmap' needs to know.
3246 Jump to the `jump_n' we might insert below. */
3247 INSERT_JUMP2 (succeed_n, laststart,
3248 b + 5 + nbytes,
3249 lower_bound);
3250 b += 5;
3251
3252 /* Code to initialize the lower bound. Insert
3253 before the `succeed_n'. The `5' is the last two
3254 bytes of this `set_number_at', plus 3 bytes of
3255 the following `succeed_n'. */
3256 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3257 b += 5;
3258 startoffset += 5;
3259 }
3260
3261 if (upper_bound < 0)
3262 {
3263 /* A negative upper bound stands for infinity,
3264 in which case it degenerates to a plain jump. */
3265 STORE_JUMP (jump, b, laststart + startoffset);
3266 b += 3;
3267 }
3268 else if (upper_bound > 1)
3269 { /* More than one repetition is allowed, so
3270 append a backward jump to the `succeed_n'
3271 that starts this interval.
3272
3273 When we've reached this during matching,
3274 we'll have matched the interval once, so
3275 jump back only `upper_bound - 1' times. */
3276 STORE_JUMP2 (jump_n, b, laststart + startoffset,
3277 upper_bound - 1);
3278 b += 5;
3279
3280 /* The location we want to set is the second
3281 parameter of the `jump_n'; that is `b-2' as
3282 an absolute address. `laststart' will be
3283 the `set_number_at' we're about to insert;
3284 `laststart+3' the number to set, the source
3285 for the relative address. But we are
3286 inserting into the middle of the pattern --
3287 so everything is getting moved up by 5.
3288 Conclusion: (b - 2) - (laststart + 3) + 5,
3289 i.e., b - laststart.
3290
3291 We insert this at the beginning of the loop
3292 so that if we fail during matching, we'll
3293 reinitialize the bounds. */
3294 insert_op2 (set_number_at, laststart, b - laststart,
3295 upper_bound - 1, b);
3296 b += 5;
3297 }
3298 }
3299 pending_exact = 0;
3300 beg_interval = NULL;
3301 }
3302 break;
3303
3304 unfetch_interval:
3305 /* If an invalid interval, match the characters as literals. */
3306 assert (beg_interval);
3307 p = beg_interval;
3308 beg_interval = NULL;
3309
3310 /* normal_char and normal_backslash need `c'. */
3311 c = '{';
3312
3313 if (!(syntax & RE_NO_BK_BRACES))
3314 {
3315 assert (p > pattern && p[-1] == '\\');
3316 goto normal_backslash;
3317 }
3318 else
3319 goto normal_char;
3320
3321 #ifdef emacs
3322 /* There is no way to specify the before_dot and after_dot
3323 operators. rms says this is ok. --karl */
3324 case '=':
3325 BUF_PUSH (at_dot);
3326 break;
3327
3328 case 's':
3329 laststart = b;
3330 PATFETCH (c);
3331 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3332 break;
3333
3334 case 'S':
3335 laststart = b;
3336 PATFETCH (c);
3337 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3338 break;
3339
3340 case 'c':
3341 laststart = b;
3342 PATFETCH (c);
3343 BUF_PUSH_2 (categoryspec, c);
3344 break;
3345
3346 case 'C':
3347 laststart = b;
3348 PATFETCH (c);
3349 BUF_PUSH_2 (notcategoryspec, c);
3350 break;
3351 #endif /* emacs */
3352
3353
3354 case 'w':
3355 if (syntax & RE_NO_GNU_OPS)
3356 goto normal_char;
3357 laststart = b;
3358 BUF_PUSH_2 (syntaxspec, Sword);
3359 break;
3360
3361
3362 case 'W':
3363 if (syntax & RE_NO_GNU_OPS)
3364 goto normal_char;
3365 laststart = b;
3366 BUF_PUSH_2 (notsyntaxspec, Sword);
3367 break;
3368
3369
3370 case '<':
3371 if (syntax & RE_NO_GNU_OPS)
3372 goto normal_char;
3373 BUF_PUSH (wordbeg);
3374 break;
3375
3376 case '>':
3377 if (syntax & RE_NO_GNU_OPS)
3378 goto normal_char;
3379 BUF_PUSH (wordend);
3380 break;
3381
3382 case '_':
3383 if (syntax & RE_NO_GNU_OPS)
3384 goto normal_char;
3385 laststart = b;
3386 PATFETCH (c);
3387 if (c == '<')
3388 BUF_PUSH (symbeg);
3389 else if (c == '>')
3390 BUF_PUSH (symend);
3391 else
3392 FREE_STACK_RETURN (REG_BADPAT);
3393 break;
3394
3395 case 'b':
3396 if (syntax & RE_NO_GNU_OPS)
3397 goto normal_char;
3398 BUF_PUSH (wordbound);
3399 break;
3400
3401 case 'B':
3402 if (syntax & RE_NO_GNU_OPS)
3403 goto normal_char;
3404 BUF_PUSH (notwordbound);
3405 break;
3406
3407 case '`':
3408 if (syntax & RE_NO_GNU_OPS)
3409 goto normal_char;
3410 BUF_PUSH (begbuf);
3411 break;
3412
3413 case '\'':
3414 if (syntax & RE_NO_GNU_OPS)
3415 goto normal_char;
3416 BUF_PUSH (endbuf);
3417 break;
3418
3419 case '1': case '2': case '3': case '4': case '5':
3420 case '6': case '7': case '8': case '9':
3421 {
3422 regnum_t reg;
3423
3424 if (syntax & RE_NO_BK_REFS)
3425 goto normal_backslash;
3426
3427 reg = c - '0';
3428
3429 /* Can't back reference to a subexpression before its end. */
3430 if (reg > regnum || group_in_compile_stack (compile_stack, reg))
3431 FREE_STACK_RETURN (REG_ESUBREG);
3432
3433 laststart = b;
3434 BUF_PUSH_2 (duplicate, reg);
3435 }
3436 break;
3437
3438
3439 case '+':
3440 case '?':
3441 if (syntax & RE_BK_PLUS_QM)
3442 goto handle_plus;
3443 else
3444 goto normal_backslash;
3445
3446 default:
3447 normal_backslash:
3448 /* You might think it would be useful for \ to mean
3449 not to translate; but if we don't translate it
3450 it will never match anything. */
3451 goto normal_char;
3452 }
3453 break;
3454
3455
3456 default:
3457 /* Expects the character in `c'. */
3458 normal_char:
3459 /* If no exactn currently being built. */
3460 if (!pending_exact
3461
3462 /* If last exactn not at current position. */
3463 || pending_exact + *pending_exact + 1 != b
3464
3465 /* We have only one byte following the exactn for the count. */
3466 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
3467
3468 /* If followed by a repetition operator. */
3469 || (p != pend && (*p == '*' || *p == '^'))
3470 || ((syntax & RE_BK_PLUS_QM)
3471 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3472 : p != pend && (*p == '+' || *p == '?'))
3473 || ((syntax & RE_INTERVALS)
3474 && ((syntax & RE_NO_BK_BRACES)
3475 ? p != pend && *p == '{'
3476 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
3477 {
3478 /* Start building a new exactn. */
3479
3480 laststart = b;
3481
3482 BUF_PUSH_2 (exactn, 0);
3483 pending_exact = b - 1;
3484 }
3485
3486 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3487 {
3488 int len;
3489
3490 c = TRANSLATE (c);
3491 if (multibyte)
3492 len = CHAR_STRING (c, b);
3493 else
3494 *b = c, len = 1;
3495 b += len;
3496 (*pending_exact) += len;
3497 }
3498
3499 break;
3500 } /* switch (c) */
3501 } /* while p != pend */
3502
3503
3504 /* Through the pattern now. */
3505
3506 FIXUP_ALT_JUMP ();
3507
3508 if (!COMPILE_STACK_EMPTY)
3509 FREE_STACK_RETURN (REG_EPAREN);
3510
3511 /* If we don't want backtracking, force success
3512 the first time we reach the end of the compiled pattern. */
3513 if (syntax & RE_NO_POSIX_BACKTRACKING)
3514 BUF_PUSH (succeed);
3515
3516 /* We have succeeded; set the length of the buffer. */
3517 bufp->used = b - bufp->buffer;
3518
3519 #ifdef DEBUG
3520 if (debug > 0)
3521 {
3522 re_compile_fastmap (bufp);
3523 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3524 print_compiled_pattern (bufp);
3525 }
3526 debug--;
3527 #endif /* DEBUG */
3528
3529 #ifndef MATCH_MAY_ALLOCATE
3530 /* Initialize the failure stack to the largest possible stack. This
3531 isn't necessary unless we're trying to avoid calling alloca in
3532 the search and match routines. */
3533 {
3534 int num_regs = bufp->re_nsub + 1;
3535
3536 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
3537 {
3538 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
3539
3540 if (! fail_stack.stack)
3541 fail_stack.stack
3542 = (fail_stack_elt_t *) malloc (fail_stack.size
3543 * sizeof (fail_stack_elt_t));
3544 else
3545 fail_stack.stack
3546 = (fail_stack_elt_t *) realloc (fail_stack.stack,
3547 (fail_stack.size
3548 * sizeof (fail_stack_elt_t)));
3549 }
3550
3551 regex_grow_registers (num_regs);
3552 }
3553 #endif /* not MATCH_MAY_ALLOCATE */
3554
3555 FREE_STACK_RETURN (REG_NOERROR);
3556 } /* regex_compile */
3557 \f
3558 /* Subroutines for `regex_compile'. */
3559
3560 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3561
3562 static void
3563 store_op1 (op, loc, arg)
3564 re_opcode_t op;
3565 unsigned char *loc;
3566 int arg;
3567 {
3568 *loc = (unsigned char) op;
3569 STORE_NUMBER (loc + 1, arg);
3570 }
3571
3572
3573 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3574
3575 static void
3576 store_op2 (op, loc, arg1, arg2)
3577 re_opcode_t op;
3578 unsigned char *loc;
3579 int arg1, arg2;
3580 {
3581 *loc = (unsigned char) op;
3582 STORE_NUMBER (loc + 1, arg1);
3583 STORE_NUMBER (loc + 3, arg2);
3584 }
3585
3586
3587 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3588 for OP followed by two-byte integer parameter ARG. */
3589
3590 static void
3591 insert_op1 (op, loc, arg, end)
3592 re_opcode_t op;
3593 unsigned char *loc;
3594 int arg;
3595 unsigned char *end;
3596 {
3597 register unsigned char *pfrom = end;
3598 register unsigned char *pto = end + 3;
3599
3600 while (pfrom != loc)
3601 *--pto = *--pfrom;
3602
3603 store_op1 (op, loc, arg);
3604 }
3605
3606
3607 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3608
3609 static void
3610 insert_op2 (op, loc, arg1, arg2, end)
3611 re_opcode_t op;
3612 unsigned char *loc;
3613 int arg1, arg2;
3614 unsigned char *end;
3615 {
3616 register unsigned char *pfrom = end;
3617 register unsigned char *pto = end + 5;
3618
3619 while (pfrom != loc)
3620 *--pto = *--pfrom;
3621
3622 store_op2 (op, loc, arg1, arg2);
3623 }
3624
3625
3626 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3627 after an alternative or a begin-subexpression. We assume there is at
3628 least one character before the ^. */
3629
3630 static boolean
3631 at_begline_loc_p (pattern, p, syntax)
3632 re_char *pattern, *p;
3633 reg_syntax_t syntax;
3634 {
3635 re_char *prev = p - 2;
3636 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
3637
3638 return
3639 /* After a subexpression? */
3640 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
3641 /* After an alternative? */
3642 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
3643 /* After a shy subexpression? */
3644 || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
3645 && prev[-1] == '?' && prev[-2] == '('
3646 && (syntax & RE_NO_BK_PARENS
3647 || (prev - 3 >= pattern && prev[-3] == '\\')));
3648 }
3649
3650
3651 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3652 at least one character after the $, i.e., `P < PEND'. */
3653
3654 static boolean
3655 at_endline_loc_p (p, pend, syntax)
3656 re_char *p, *pend;
3657 reg_syntax_t syntax;
3658 {
3659 re_char *next = p;
3660 boolean next_backslash = *next == '\\';
3661 re_char *next_next = p + 1 < pend ? p + 1 : 0;
3662
3663 return
3664 /* Before a subexpression? */
3665 (syntax & RE_NO_BK_PARENS ? *next == ')'
3666 : next_backslash && next_next && *next_next == ')')
3667 /* Before an alternative? */
3668 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3669 : next_backslash && next_next && *next_next == '|');
3670 }
3671
3672
3673 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3674 false if it's not. */
3675
3676 static boolean
3677 group_in_compile_stack (compile_stack, regnum)
3678 compile_stack_type compile_stack;
3679 regnum_t regnum;
3680 {
3681 int this_element;
3682
3683 for (this_element = compile_stack.avail - 1;
3684 this_element >= 0;
3685 this_element--)
3686 if (compile_stack.stack[this_element].regnum == regnum)
3687 return true;
3688
3689 return false;
3690 }
3691 \f
3692 /* analyse_first.
3693 If fastmap is non-NULL, go through the pattern and fill fastmap
3694 with all the possible leading chars. If fastmap is NULL, don't
3695 bother filling it up (obviously) and only return whether the
3696 pattern could potentially match the empty string.
3697
3698 Return 1 if p..pend might match the empty string.
3699 Return 0 if p..pend matches at least one char.
3700 Return -1 if fastmap was not updated accurately. */
3701
3702 static int
3703 analyse_first (p, pend, fastmap, multibyte)
3704 re_char *p, *pend;
3705 char *fastmap;
3706 const int multibyte;
3707 {
3708 int j, k;
3709 boolean not;
3710
3711 /* If all elements for base leading-codes in fastmap is set, this
3712 flag is set true. */
3713 boolean match_any_multibyte_characters = false;
3714
3715 assert (p);
3716
3717 /* The loop below works as follows:
3718 - It has a working-list kept in the PATTERN_STACK and which basically
3719 starts by only containing a pointer to the first operation.
3720 - If the opcode we're looking at is a match against some set of
3721 chars, then we add those chars to the fastmap and go on to the
3722 next work element from the worklist (done via `break').
3723 - If the opcode is a control operator on the other hand, we either
3724 ignore it (if it's meaningless at this point, such as `start_memory')
3725 or execute it (if it's a jump). If the jump has several destinations
3726 (i.e. `on_failure_jump'), then we push the other destination onto the
3727 worklist.
3728 We guarantee termination by ignoring backward jumps (more or less),
3729 so that `p' is monotonically increasing. More to the point, we
3730 never set `p' (or push) anything `<= p1'. */
3731
3732 while (p < pend)
3733 {
3734 /* `p1' is used as a marker of how far back a `on_failure_jump'
3735 can go without being ignored. It is normally equal to `p'
3736 (which prevents any backward `on_failure_jump') except right
3737 after a plain `jump', to allow patterns such as:
3738 0: jump 10
3739 3..9: <body>
3740 10: on_failure_jump 3
3741 as used for the *? operator. */
3742 re_char *p1 = p;
3743
3744 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3745 {
3746 case succeed:
3747 return 1;
3748 continue;
3749
3750 case duplicate:
3751 /* If the first character has to match a backreference, that means
3752 that the group was empty (since it already matched). Since this
3753 is the only case that interests us here, we can assume that the
3754 backreference must match the empty string. */
3755 p++;
3756 continue;
3757
3758
3759 /* Following are the cases which match a character. These end
3760 with `break'. */
3761
3762 case exactn:
3763 if (fastmap)
3764 {
3765 int c = RE_STRING_CHAR (p + 1, pend - p);
3766
3767 if (SINGLE_BYTE_CHAR_P (c))
3768 fastmap[c] = 1;
3769 else
3770 fastmap[p[1]] = 1;
3771 }
3772 break;
3773
3774
3775 case anychar:
3776 /* We could put all the chars except for \n (and maybe \0)
3777 but we don't bother since it is generally not worth it. */
3778 if (!fastmap) break;
3779 return -1;
3780
3781
3782 case charset_not:
3783 /* Chars beyond end of bitmap are possible matches.
3784 All the single-byte codes can occur in multibyte buffers.
3785 So any that are not listed in the charset
3786 are possible matches, even in multibyte buffers. */
3787 if (!fastmap) break;
3788 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
3789 j < (1 << BYTEWIDTH); j++)
3790 fastmap[j] = 1;
3791 /* Fallthrough */
3792 case charset:
3793 if (!fastmap) break;
3794 not = (re_opcode_t) *(p - 1) == charset_not;
3795 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3796 j >= 0; j--)
3797 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
3798 fastmap[j] = 1;
3799
3800 if ((not && multibyte)
3801 /* Any character set can possibly contain a character
3802 which doesn't match the specified set of characters. */
3803 || (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3804 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
3805 /* If we can match a character class, we can match
3806 any character set. */
3807 {
3808 set_fastmap_for_multibyte_characters:
3809 if (match_any_multibyte_characters == false)
3810 {
3811 for (j = 0x80; j < 0xA0; j++) /* XXX */
3812 if (BASE_LEADING_CODE_P (j))
3813 fastmap[j] = 1;
3814 match_any_multibyte_characters = true;
3815 }
3816 }
3817
3818 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3819 && match_any_multibyte_characters == false)
3820 {
3821 /* Set fastmap[I] 1 where I is a base leading code of each
3822 multibyte character in the range table. */
3823 int c, count;
3824
3825 /* Make P points the range table. `+ 2' is to skip flag
3826 bits for a character class. */
3827 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
3828
3829 /* Extract the number of ranges in range table into COUNT. */
3830 EXTRACT_NUMBER_AND_INCR (count, p);
3831 for (; count > 0; count--, p += 2 * 3) /* XXX */
3832 {
3833 /* Extract the start of each range. */
3834 EXTRACT_CHARACTER (c, p);
3835 j = CHAR_CHARSET (c);
3836 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
3837 }
3838 }
3839 break;
3840
3841 case syntaxspec:
3842 case notsyntaxspec:
3843 if (!fastmap) break;
3844 #ifndef emacs
3845 not = (re_opcode_t)p[-1] == notsyntaxspec;
3846 k = *p++;
3847 for (j = 0; j < (1 << BYTEWIDTH); j++)
3848 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
3849 fastmap[j] = 1;
3850 break;
3851 #else /* emacs */
3852 /* This match depends on text properties. These end with
3853 aborting optimizations. */
3854 return -1;
3855
3856 case categoryspec:
3857 case notcategoryspec:
3858 if (!fastmap) break;
3859 not = (re_opcode_t)p[-1] == notcategoryspec;
3860 k = *p++;
3861 for (j = 0; j < (1 << BYTEWIDTH); j++)
3862 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
3863 fastmap[j] = 1;
3864
3865 if (multibyte)
3866 /* Any character set can possibly contain a character
3867 whose category is K (or not). */
3868 goto set_fastmap_for_multibyte_characters;
3869 break;
3870
3871 /* All cases after this match the empty string. These end with
3872 `continue'. */
3873
3874 case before_dot:
3875 case at_dot:
3876 case after_dot:
3877 #endif /* !emacs */
3878 case no_op:
3879 case begline:
3880 case endline:
3881 case begbuf:
3882 case endbuf:
3883 case wordbound:
3884 case notwordbound:
3885 case wordbeg:
3886 case wordend:
3887 case symbeg:
3888 case symend:
3889 continue;
3890
3891
3892 case jump:
3893 EXTRACT_NUMBER_AND_INCR (j, p);
3894 if (j < 0)
3895 /* Backward jumps can only go back to code that we've already
3896 visited. `re_compile' should make sure this is true. */
3897 break;
3898 p += j;
3899 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
3900 {
3901 case on_failure_jump:
3902 case on_failure_keep_string_jump:
3903 case on_failure_jump_loop:
3904 case on_failure_jump_nastyloop:
3905 case on_failure_jump_smart:
3906 p++;
3907 break;
3908 default:
3909 continue;
3910 };
3911 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
3912 to jump back to "just after here". */
3913 /* Fallthrough */
3914
3915 case on_failure_jump:
3916 case on_failure_keep_string_jump:
3917 case on_failure_jump_nastyloop:
3918 case on_failure_jump_loop:
3919 case on_failure_jump_smart:
3920 EXTRACT_NUMBER_AND_INCR (j, p);
3921 if (p + j <= p1)
3922 ; /* Backward jump to be ignored. */
3923 else
3924 { /* We have to look down both arms.
3925 We first go down the "straight" path so as to minimize
3926 stack usage when going through alternatives. */
3927 int r = analyse_first (p, pend, fastmap, multibyte);
3928 if (r) return r;
3929 p += j;
3930 }
3931 continue;
3932
3933
3934 case jump_n:
3935 /* This code simply does not properly handle forward jump_n. */
3936 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
3937 p += 4;
3938 /* jump_n can either jump or fall through. The (backward) jump
3939 case has already been handled, so we only need to look at the
3940 fallthrough case. */
3941 continue;
3942
3943 case succeed_n:
3944 /* If N == 0, it should be an on_failure_jump_loop instead. */
3945 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
3946 p += 4;
3947 /* We only care about one iteration of the loop, so we don't
3948 need to consider the case where this behaves like an
3949 on_failure_jump. */
3950 continue;
3951
3952
3953 case set_number_at:
3954 p += 4;
3955 continue;
3956
3957
3958 case start_memory:
3959 case stop_memory:
3960 p += 1;
3961 continue;
3962
3963
3964 default:
3965 abort (); /* We have listed all the cases. */
3966 } /* switch *p++ */
3967
3968 /* Getting here means we have found the possible starting
3969 characters for one path of the pattern -- and that the empty
3970 string does not match. We need not follow this path further. */
3971 return 0;
3972 } /* while p */
3973
3974 /* We reached the end without matching anything. */
3975 return 1;
3976
3977 } /* analyse_first */
3978 \f
3979 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3980 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3981 characters can start a string that matches the pattern. This fastmap
3982 is used by re_search to skip quickly over impossible starting points.
3983
3984 Character codes above (1 << BYTEWIDTH) are not represented in the
3985 fastmap, but the leading codes are represented. Thus, the fastmap
3986 indicates which character sets could start a match.
3987
3988 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3989 area as BUFP->fastmap.
3990
3991 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3992 the pattern buffer.
3993
3994 Returns 0 if we succeed, -2 if an internal error. */
3995
3996 int
3997 re_compile_fastmap (bufp)
3998 struct re_pattern_buffer *bufp;
3999 {
4000 char *fastmap = bufp->fastmap;
4001 int analysis;
4002
4003 assert (fastmap && bufp->buffer);
4004
4005 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
4006 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4007
4008 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
4009 fastmap, RE_MULTIBYTE_P (bufp));
4010 bufp->can_be_null = (analysis != 0);
4011 return 0;
4012 } /* re_compile_fastmap */
4013 \f
4014 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4015 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4016 this memory for recording register information. STARTS and ENDS
4017 must be allocated using the malloc library routine, and must each
4018 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4019
4020 If NUM_REGS == 0, then subsequent matches should allocate their own
4021 register data.
4022
4023 Unless this function is called, the first search or match using
4024 PATTERN_BUFFER will allocate its own register data, without
4025 freeing the old data. */
4026
4027 void
4028 re_set_registers (bufp, regs, num_regs, starts, ends)
4029 struct re_pattern_buffer *bufp;
4030 struct re_registers *regs;
4031 unsigned num_regs;
4032 regoff_t *starts, *ends;
4033 {
4034 if (num_regs)
4035 {
4036 bufp->regs_allocated = REGS_REALLOCATE;
4037 regs->num_regs = num_regs;
4038 regs->start = starts;
4039 regs->end = ends;
4040 }
4041 else
4042 {
4043 bufp->regs_allocated = REGS_UNALLOCATED;
4044 regs->num_regs = 0;
4045 regs->start = regs->end = (regoff_t *) 0;
4046 }
4047 }
4048 WEAK_ALIAS (__re_set_registers, re_set_registers)
4049 \f
4050 /* Searching routines. */
4051
4052 /* Like re_search_2, below, but only one string is specified, and
4053 doesn't let you say where to stop matching. */
4054
4055 int
4056 re_search (bufp, string, size, startpos, range, regs)
4057 struct re_pattern_buffer *bufp;
4058 const char *string;
4059 int size, startpos, range;
4060 struct re_registers *regs;
4061 {
4062 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
4063 regs, size);
4064 }
4065 WEAK_ALIAS (__re_search, re_search)
4066
4067 /* Head address of virtual concatenation of string. */
4068 #define HEAD_ADDR_VSTRING(P) \
4069 (((P) >= size1 ? string2 : string1))
4070
4071 /* End address of virtual concatenation of string. */
4072 #define STOP_ADDR_VSTRING(P) \
4073 (((P) >= size1 ? string2 + size2 : string1 + size1))
4074
4075 /* Address of POS in the concatenation of virtual string. */
4076 #define POS_ADDR_VSTRING(POS) \
4077 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
4078
4079 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4080 virtual concatenation of STRING1 and STRING2, starting first at index
4081 STARTPOS, then at STARTPOS + 1, and so on.
4082
4083 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4084
4085 RANGE is how far to scan while trying to match. RANGE = 0 means try
4086 only at STARTPOS; in general, the last start tried is STARTPOS +
4087 RANGE.
4088
4089 In REGS, return the indices of the virtual concatenation of STRING1
4090 and STRING2 that matched the entire BUFP->buffer and its contained
4091 subexpressions.
4092
4093 Do not consider matching one past the index STOP in the virtual
4094 concatenation of STRING1 and STRING2.
4095
4096 We return either the position in the strings at which the match was
4097 found, -1 if no match, or -2 if error (such as failure
4098 stack overflow). */
4099
4100 int
4101 re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop)
4102 struct re_pattern_buffer *bufp;
4103 const char *str1, *str2;
4104 int size1, size2;
4105 int startpos;
4106 int range;
4107 struct re_registers *regs;
4108 int stop;
4109 {
4110 int val;
4111 re_char *string1 = (re_char*) str1;
4112 re_char *string2 = (re_char*) str2;
4113 register char *fastmap = bufp->fastmap;
4114 register RE_TRANSLATE_TYPE translate = bufp->translate;
4115 int total_size = size1 + size2;
4116 int endpos = startpos + range;
4117 boolean anchored_start;
4118
4119 /* Nonzero if we have to concern multibyte character. */
4120 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4121
4122 /* Check for out-of-range STARTPOS. */
4123 if (startpos < 0 || startpos > total_size)
4124 return -1;
4125
4126 /* Fix up RANGE if it might eventually take us outside
4127 the virtual concatenation of STRING1 and STRING2.
4128 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
4129 if (endpos < 0)
4130 range = 0 - startpos;
4131 else if (endpos > total_size)
4132 range = total_size - startpos;
4133
4134 /* If the search isn't to be a backwards one, don't waste time in a
4135 search for a pattern anchored at beginning of buffer. */
4136 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
4137 {
4138 if (startpos > 0)
4139 return -1;
4140 else
4141 range = 0;
4142 }
4143
4144 #ifdef emacs
4145 /* In a forward search for something that starts with \=.
4146 don't keep searching past point. */
4147 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4148 {
4149 range = PT_BYTE - BEGV_BYTE - startpos;
4150 if (range < 0)
4151 return -1;
4152 }
4153 #endif /* emacs */
4154
4155 /* Update the fastmap now if not correct already. */
4156 if (fastmap && !bufp->fastmap_accurate)
4157 re_compile_fastmap (bufp);
4158
4159 /* See whether the pattern is anchored. */
4160 anchored_start = (bufp->buffer[0] == begline);
4161
4162 #ifdef emacs
4163 gl_state.object = re_match_object;
4164 {
4165 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
4166
4167 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4168 }
4169 #endif
4170
4171 /* Loop through the string, looking for a place to start matching. */
4172 for (;;)
4173 {
4174 /* If the pattern is anchored,
4175 skip quickly past places we cannot match.
4176 We don't bother to treat startpos == 0 specially
4177 because that case doesn't repeat. */
4178 if (anchored_start && startpos > 0)
4179 {
4180 if (! ((startpos <= size1 ? string1[startpos - 1]
4181 : string2[startpos - size1 - 1])
4182 == '\n'))
4183 goto advance;
4184 }
4185
4186 /* If a fastmap is supplied, skip quickly over characters that
4187 cannot be the start of a match. If the pattern can match the
4188 null string, however, we don't need to skip characters; we want
4189 the first null string. */
4190 if (fastmap && startpos < total_size && !bufp->can_be_null)
4191 {
4192 register re_char *d;
4193 register re_wchar_t buf_ch;
4194
4195 d = POS_ADDR_VSTRING (startpos);
4196
4197 if (range > 0) /* Searching forwards. */
4198 {
4199 register int lim = 0;
4200 int irange = range;
4201
4202 if (startpos < size1 && startpos + range >= size1)
4203 lim = range - (size1 - startpos);
4204
4205 /* Written out as an if-else to avoid testing `translate'
4206 inside the loop. */
4207 if (RE_TRANSLATE_P (translate))
4208 {
4209 if (multibyte)
4210 while (range > lim)
4211 {
4212 int buf_charlen;
4213
4214 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
4215 buf_charlen);
4216
4217 buf_ch = RE_TRANSLATE (translate, buf_ch);
4218 if (buf_ch >= 0400
4219 || fastmap[buf_ch])
4220 break;
4221
4222 range -= buf_charlen;
4223 d += buf_charlen;
4224 }
4225 else
4226 while (range > lim
4227 && !fastmap[RE_TRANSLATE (translate, *d)])
4228 {
4229 d++;
4230 range--;
4231 }
4232 }
4233 else
4234 while (range > lim && !fastmap[*d])
4235 {
4236 d++;
4237 range--;
4238 }
4239
4240 startpos += irange - range;
4241 }
4242 else /* Searching backwards. */
4243 {
4244 int room = (startpos >= size1
4245 ? size2 + size1 - startpos
4246 : size1 - startpos);
4247 buf_ch = RE_STRING_CHAR (d, room);
4248 buf_ch = TRANSLATE (buf_ch);
4249
4250 if (! (buf_ch >= 0400
4251 || fastmap[buf_ch]))
4252 goto advance;
4253 }
4254 }
4255
4256 /* If can't match the null string, and that's all we have left, fail. */
4257 if (range >= 0 && startpos == total_size && fastmap
4258 && !bufp->can_be_null)
4259 return -1;
4260
4261 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4262 startpos, regs, stop);
4263 #ifndef REGEX_MALLOC
4264 # ifdef C_ALLOCA
4265 alloca (0);
4266 # endif
4267 #endif
4268
4269 if (val >= 0)
4270 return startpos;
4271
4272 if (val == -2)
4273 return -2;
4274
4275 advance:
4276 if (!range)
4277 break;
4278 else if (range > 0)
4279 {
4280 /* Update STARTPOS to the next character boundary. */
4281 if (multibyte)
4282 {
4283 re_char *p = POS_ADDR_VSTRING (startpos);
4284 re_char *pend = STOP_ADDR_VSTRING (startpos);
4285 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
4286
4287 range -= len;
4288 if (range < 0)
4289 break;
4290 startpos += len;
4291 }
4292 else
4293 {
4294 range--;
4295 startpos++;
4296 }
4297 }
4298 else
4299 {
4300 range++;
4301 startpos--;
4302
4303 /* Update STARTPOS to the previous character boundary. */
4304 if (multibyte)
4305 {
4306 re_char *p = POS_ADDR_VSTRING (startpos) + 1;
4307 re_char *p0 = p;
4308 re_char *phead = HEAD_ADDR_VSTRING (startpos);
4309
4310 /* Find the head of multibyte form. */
4311 PREV_CHAR_BOUNDARY (p, phead);
4312 range += p0 - 1 - p;
4313 if (range > 0)
4314 break;
4315
4316 startpos -= p0 - 1 - p;
4317 }
4318 }
4319 }
4320 return -1;
4321 } /* re_search_2 */
4322 WEAK_ALIAS (__re_search_2, re_search_2)
4323 \f
4324 /* Declarations and macros for re_match_2. */
4325
4326 static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
4327 register int len,
4328 RE_TRANSLATE_TYPE translate,
4329 const int multibyte));
4330
4331 /* This converts PTR, a pointer into one of the search strings `string1'
4332 and `string2' into an offset from the beginning of that string. */
4333 #define POINTER_TO_OFFSET(ptr) \
4334 (FIRST_STRING_P (ptr) \
4335 ? ((regoff_t) ((ptr) - string1)) \
4336 : ((regoff_t) ((ptr) - string2 + size1)))
4337
4338 /* Call before fetching a character with *d. This switches over to
4339 string2 if necessary.
4340 Check re_match_2_internal for a discussion of why end_match_2 might
4341 not be within string2 (but be equal to end_match_1 instead). */
4342 #define PREFETCH() \
4343 while (d == dend) \
4344 { \
4345 /* End of string2 => fail. */ \
4346 if (dend == end_match_2) \
4347 goto fail; \
4348 /* End of string1 => advance to string2. */ \
4349 d = string2; \
4350 dend = end_match_2; \
4351 }
4352
4353 /* Call before fetching a char with *d if you already checked other limits.
4354 This is meant for use in lookahead operations like wordend, etc..
4355 where we might need to look at parts of the string that might be
4356 outside of the LIMITs (i.e past `stop'). */
4357 #define PREFETCH_NOLIMIT() \
4358 if (d == end1) \
4359 { \
4360 d = string2; \
4361 dend = end_match_2; \
4362 } \
4363
4364 /* Test if at very beginning or at very end of the virtual concatenation
4365 of `string1' and `string2'. If only one string, it's `string2'. */
4366 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
4367 #define AT_STRINGS_END(d) ((d) == end2)
4368
4369
4370 /* Test if D points to a character which is word-constituent. We have
4371 two special cases to check for: if past the end of string1, look at
4372 the first character in string2; and if before the beginning of
4373 string2, look at the last character in string1. */
4374 #define WORDCHAR_P(d) \
4375 (SYNTAX ((d) == end1 ? *string2 \
4376 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4377 == Sword)
4378
4379 /* Disabled due to a compiler bug -- see comment at case wordbound */
4380
4381 /* The comment at case wordbound is following one, but we don't use
4382 AT_WORD_BOUNDARY anymore to support multibyte form.
4383
4384 The DEC Alpha C compiler 3.x generates incorrect code for the
4385 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4386 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4387 macro and introducing temporary variables works around the bug. */
4388
4389 #if 0
4390 /* Test if the character before D and the one at D differ with respect
4391 to being word-constituent. */
4392 #define AT_WORD_BOUNDARY(d) \
4393 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4394 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4395 #endif
4396
4397 /* Free everything we malloc. */
4398 #ifdef MATCH_MAY_ALLOCATE
4399 # define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4400 # define FREE_VARIABLES() \
4401 do { \
4402 REGEX_FREE_STACK (fail_stack.stack); \
4403 FREE_VAR (regstart); \
4404 FREE_VAR (regend); \
4405 FREE_VAR (best_regstart); \
4406 FREE_VAR (best_regend); \
4407 } while (0)
4408 #else
4409 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4410 #endif /* not MATCH_MAY_ALLOCATE */
4411
4412 \f
4413 /* Optimization routines. */
4414
4415 /* If the operation is a match against one or more chars,
4416 return a pointer to the next operation, else return NULL. */
4417 static re_char *
4418 skip_one_char (p)
4419 re_char *p;
4420 {
4421 switch (SWITCH_ENUM_CAST (*p++))
4422 {
4423 case anychar:
4424 break;
4425
4426 case exactn:
4427 p += *p + 1;
4428 break;
4429
4430 case charset_not:
4431 case charset:
4432 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4433 {
4434 int mcnt;
4435 p = CHARSET_RANGE_TABLE (p - 1);
4436 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4437 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4438 }
4439 else
4440 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4441 break;
4442
4443 case syntaxspec:
4444 case notsyntaxspec:
4445 #ifdef emacs
4446 case categoryspec:
4447 case notcategoryspec:
4448 #endif /* emacs */
4449 p++;
4450 break;
4451
4452 default:
4453 p = NULL;
4454 }
4455 return p;
4456 }
4457
4458
4459 /* Jump over non-matching operations. */
4460 static re_char *
4461 skip_noops (p, pend)
4462 re_char *p, *pend;
4463 {
4464 int mcnt;
4465 while (p < pend)
4466 {
4467 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4468 {
4469 case start_memory:
4470 case stop_memory:
4471 p += 2; break;
4472 case no_op:
4473 p += 1; break;
4474 case jump:
4475 p += 1;
4476 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4477 p += mcnt;
4478 break;
4479 default:
4480 return p;
4481 }
4482 }
4483 assert (p == pend);
4484 return p;
4485 }
4486
4487 /* Non-zero if "p1 matches something" implies "p2 fails". */
4488 static int
4489 mutually_exclusive_p (bufp, p1, p2)
4490 struct re_pattern_buffer *bufp;
4491 re_char *p1, *p2;
4492 {
4493 re_opcode_t op2;
4494 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4495 unsigned char *pend = bufp->buffer + bufp->used;
4496
4497 assert (p1 >= bufp->buffer && p1 < pend
4498 && p2 >= bufp->buffer && p2 <= pend);
4499
4500 /* Skip over open/close-group commands.
4501 If what follows this loop is a ...+ construct,
4502 look at what begins its body, since we will have to
4503 match at least one of that. */
4504 p2 = skip_noops (p2, pend);
4505 /* The same skip can be done for p1, except that this function
4506 is only used in the case where p1 is a simple match operator. */
4507 /* p1 = skip_noops (p1, pend); */
4508
4509 assert (p1 >= bufp->buffer && p1 < pend
4510 && p2 >= bufp->buffer && p2 <= pend);
4511
4512 op2 = p2 == pend ? succeed : *p2;
4513
4514 switch (SWITCH_ENUM_CAST (op2))
4515 {
4516 case succeed:
4517 case endbuf:
4518 /* If we're at the end of the pattern, we can change. */
4519 if (skip_one_char (p1))
4520 {
4521 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4522 return 1;
4523 }
4524 break;
4525
4526 case endline:
4527 case exactn:
4528 {
4529 register re_wchar_t c
4530 = (re_opcode_t) *p2 == endline ? '\n'
4531 : RE_STRING_CHAR (p2 + 2, pend - p2 - 2);
4532
4533 if ((re_opcode_t) *p1 == exactn)
4534 {
4535 if (c != RE_STRING_CHAR (p1 + 2, pend - p1 - 2))
4536 {
4537 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4538 return 1;
4539 }
4540 }
4541
4542 else if ((re_opcode_t) *p1 == charset
4543 || (re_opcode_t) *p1 == charset_not)
4544 {
4545 int not = (re_opcode_t) *p1 == charset_not;
4546
4547 /* Test if C is listed in charset (or charset_not)
4548 at `p1'. */
4549 if (SINGLE_BYTE_CHAR_P (c))
4550 {
4551 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4552 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4553 not = !not;
4554 }
4555 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4556 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
4557
4558 /* `not' is equal to 1 if c would match, which means
4559 that we can't change to pop_failure_jump. */
4560 if (!not)
4561 {
4562 DEBUG_PRINT1 (" No match => fast loop.\n");
4563 return 1;
4564 }
4565 }
4566 else if ((re_opcode_t) *p1 == anychar
4567 && c == '\n')
4568 {
4569 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4570 return 1;
4571 }
4572 }
4573 break;
4574
4575 case charset:
4576 {
4577 if ((re_opcode_t) *p1 == exactn)
4578 /* Reuse the code above. */
4579 return mutually_exclusive_p (bufp, p2, p1);
4580
4581 /* It is hard to list up all the character in charset
4582 P2 if it includes multibyte character. Give up in
4583 such case. */
4584 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4585 {
4586 /* Now, we are sure that P2 has no range table.
4587 So, for the size of bitmap in P2, `p2[1]' is
4588 enough. But P1 may have range table, so the
4589 size of bitmap table of P1 is extracted by
4590 using macro `CHARSET_BITMAP_SIZE'.
4591
4592 Since we know that all the character listed in
4593 P2 is ASCII, it is enough to test only bitmap
4594 table of P1. */
4595
4596 if ((re_opcode_t) *p1 == charset)
4597 {
4598 int idx;
4599 /* We win if the charset inside the loop
4600 has no overlap with the one after the loop. */
4601 for (idx = 0;
4602 (idx < (int) p2[1]
4603 && idx < CHARSET_BITMAP_SIZE (p1));
4604 idx++)
4605 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4606 break;
4607
4608 if (idx == p2[1]
4609 || idx == CHARSET_BITMAP_SIZE (p1))
4610 {
4611 DEBUG_PRINT1 (" No match => fast loop.\n");
4612 return 1;
4613 }
4614 }
4615 else if ((re_opcode_t) *p1 == charset_not)
4616 {
4617 int idx;
4618 /* We win if the charset_not inside the loop lists
4619 every character listed in the charset after. */
4620 for (idx = 0; idx < (int) p2[1]; idx++)
4621 if (! (p2[2 + idx] == 0
4622 || (idx < CHARSET_BITMAP_SIZE (p1)
4623 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4624 break;
4625
4626 if (idx == p2[1])
4627 {
4628 DEBUG_PRINT1 (" No match => fast loop.\n");
4629 return 1;
4630 }
4631 }
4632 }
4633 }
4634 break;
4635
4636 case charset_not:
4637 switch (SWITCH_ENUM_CAST (*p1))
4638 {
4639 case exactn:
4640 case charset:
4641 /* Reuse the code above. */
4642 return mutually_exclusive_p (bufp, p2, p1);
4643 case charset_not:
4644 /* When we have two charset_not, it's very unlikely that
4645 they don't overlap. The union of the two sets of excluded
4646 chars should cover all possible chars, which, as a matter of
4647 fact, is virtually impossible in multibyte buffers. */
4648 break;
4649 }
4650 break;
4651
4652 case wordend:
4653 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == Sword);
4654 case symend:
4655 return ((re_opcode_t) *p1 == syntaxspec
4656 && (p1[1] == Ssymbol || p1[1] == Sword));
4657 case notsyntaxspec:
4658 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == p2[1]);
4659
4660 case wordbeg:
4661 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == Sword);
4662 case symbeg:
4663 return ((re_opcode_t) *p1 == notsyntaxspec
4664 && (p1[1] == Ssymbol || p1[1] == Sword));
4665 case syntaxspec:
4666 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == p2[1]);
4667
4668 case wordbound:
4669 return (((re_opcode_t) *p1 == notsyntaxspec
4670 || (re_opcode_t) *p1 == syntaxspec)
4671 && p1[1] == Sword);
4672
4673 #ifdef emacs
4674 case categoryspec:
4675 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4676 case notcategoryspec:
4677 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4678 #endif /* emacs */
4679
4680 default:
4681 ;
4682 }
4683
4684 /* Safe default. */
4685 return 0;
4686 }
4687
4688 \f
4689 /* Matching routines. */
4690
4691 #ifndef emacs /* Emacs never uses this. */
4692 /* re_match is like re_match_2 except it takes only a single string. */
4693
4694 int
4695 re_match (bufp, string, size, pos, regs)
4696 struct re_pattern_buffer *bufp;
4697 const char *string;
4698 int size, pos;
4699 struct re_registers *regs;
4700 {
4701 int result = re_match_2_internal (bufp, NULL, 0, (re_char*) string, size,
4702 pos, regs, size);
4703 # if defined C_ALLOCA && !defined REGEX_MALLOC
4704 alloca (0);
4705 # endif
4706 return result;
4707 }
4708 WEAK_ALIAS (__re_match, re_match)
4709 #endif /* not emacs */
4710
4711 #ifdef emacs
4712 /* In Emacs, this is the string or buffer in which we
4713 are matching. It is used for looking up syntax properties. */
4714 Lisp_Object re_match_object;
4715 #endif
4716
4717 /* re_match_2 matches the compiled pattern in BUFP against the
4718 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4719 and SIZE2, respectively). We start matching at POS, and stop
4720 matching at STOP.
4721
4722 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4723 store offsets for the substring each group matched in REGS. See the
4724 documentation for exactly how many groups we fill.
4725
4726 We return -1 if no match, -2 if an internal error (such as the
4727 failure stack overflowing). Otherwise, we return the length of the
4728 matched substring. */
4729
4730 int
4731 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4732 struct re_pattern_buffer *bufp;
4733 const char *string1, *string2;
4734 int size1, size2;
4735 int pos;
4736 struct re_registers *regs;
4737 int stop;
4738 {
4739 int result;
4740
4741 #ifdef emacs
4742 int charpos;
4743 gl_state.object = re_match_object;
4744 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
4745 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4746 #endif
4747
4748 result = re_match_2_internal (bufp, (re_char*) string1, size1,
4749 (re_char*) string2, size2,
4750 pos, regs, stop);
4751 #if defined C_ALLOCA && !defined REGEX_MALLOC
4752 alloca (0);
4753 #endif
4754 return result;
4755 }
4756 WEAK_ALIAS (__re_match_2, re_match_2)
4757
4758 /* This is a separate function so that we can force an alloca cleanup
4759 afterwards. */
4760 static int
4761 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4762 struct re_pattern_buffer *bufp;
4763 re_char *string1, *string2;
4764 int size1, size2;
4765 int pos;
4766 struct re_registers *regs;
4767 int stop;
4768 {
4769 /* General temporaries. */
4770 int mcnt;
4771 size_t reg;
4772 boolean not;
4773
4774 /* Just past the end of the corresponding string. */
4775 re_char *end1, *end2;
4776
4777 /* Pointers into string1 and string2, just past the last characters in
4778 each to consider matching. */
4779 re_char *end_match_1, *end_match_2;
4780
4781 /* Where we are in the data, and the end of the current string. */
4782 re_char *d, *dend;
4783
4784 /* Used sometimes to remember where we were before starting matching
4785 an operator so that we can go back in case of failure. This "atomic"
4786 behavior of matching opcodes is indispensable to the correctness
4787 of the on_failure_keep_string_jump optimization. */
4788 re_char *dfail;
4789
4790 /* Where we are in the pattern, and the end of the pattern. */
4791 re_char *p = bufp->buffer;
4792 re_char *pend = p + bufp->used;
4793
4794 /* We use this to map every character in the string. */
4795 RE_TRANSLATE_TYPE translate = bufp->translate;
4796
4797 /* Nonzero if we have to concern multibyte character. */
4798 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4799
4800 /* Failure point stack. Each place that can handle a failure further
4801 down the line pushes a failure point on this stack. It consists of
4802 regstart, and regend for all registers corresponding to
4803 the subexpressions we're currently inside, plus the number of such
4804 registers, and, finally, two char *'s. The first char * is where
4805 to resume scanning the pattern; the second one is where to resume
4806 scanning the strings. */
4807 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
4808 fail_stack_type fail_stack;
4809 #endif
4810 #ifdef DEBUG
4811 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4812 #endif
4813
4814 #if defined REL_ALLOC && defined REGEX_MALLOC
4815 /* This holds the pointer to the failure stack, when
4816 it is allocated relocatably. */
4817 fail_stack_elt_t *failure_stack_ptr;
4818 #endif
4819
4820 /* We fill all the registers internally, independent of what we
4821 return, for use in backreferences. The number here includes
4822 an element for register zero. */
4823 size_t num_regs = bufp->re_nsub + 1;
4824
4825 /* Information on the contents of registers. These are pointers into
4826 the input strings; they record just what was matched (on this
4827 attempt) by a subexpression part of the pattern, that is, the
4828 regnum-th regstart pointer points to where in the pattern we began
4829 matching and the regnum-th regend points to right after where we
4830 stopped matching the regnum-th subexpression. (The zeroth register
4831 keeps track of what the whole pattern matches.) */
4832 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4833 re_char **regstart, **regend;
4834 #endif
4835
4836 /* The following record the register info as found in the above
4837 variables when we find a match better than any we've seen before.
4838 This happens as we backtrack through the failure points, which in
4839 turn happens only if we have not yet matched the entire string. */
4840 unsigned best_regs_set = false;
4841 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4842 re_char **best_regstart, **best_regend;
4843 #endif
4844
4845 /* Logically, this is `best_regend[0]'. But we don't want to have to
4846 allocate space for that if we're not allocating space for anything
4847 else (see below). Also, we never need info about register 0 for
4848 any of the other register vectors, and it seems rather a kludge to
4849 treat `best_regend' differently than the rest. So we keep track of
4850 the end of the best match so far in a separate variable. We
4851 initialize this to NULL so that when we backtrack the first time
4852 and need to test it, it's not garbage. */
4853 re_char *match_end = NULL;
4854
4855 #ifdef DEBUG
4856 /* Counts the total number of registers pushed. */
4857 unsigned num_regs_pushed = 0;
4858 #endif
4859
4860 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
4861
4862 INIT_FAIL_STACK ();
4863
4864 #ifdef MATCH_MAY_ALLOCATE
4865 /* Do not bother to initialize all the register variables if there are
4866 no groups in the pattern, as it takes a fair amount of time. If
4867 there are groups, we include space for register 0 (the whole
4868 pattern), even though we never use it, since it simplifies the
4869 array indexing. We should fix this. */
4870 if (bufp->re_nsub)
4871 {
4872 regstart = REGEX_TALLOC (num_regs, re_char *);
4873 regend = REGEX_TALLOC (num_regs, re_char *);
4874 best_regstart = REGEX_TALLOC (num_regs, re_char *);
4875 best_regend = REGEX_TALLOC (num_regs, re_char *);
4876
4877 if (!(regstart && regend && best_regstart && best_regend))
4878 {
4879 FREE_VARIABLES ();
4880 return -2;
4881 }
4882 }
4883 else
4884 {
4885 /* We must initialize all our variables to NULL, so that
4886 `FREE_VARIABLES' doesn't try to free them. */
4887 regstart = regend = best_regstart = best_regend = NULL;
4888 }
4889 #endif /* MATCH_MAY_ALLOCATE */
4890
4891 /* The starting position is bogus. */
4892 if (pos < 0 || pos > size1 + size2)
4893 {
4894 FREE_VARIABLES ();
4895 return -1;
4896 }
4897
4898 /* Initialize subexpression text positions to -1 to mark ones that no
4899 start_memory/stop_memory has been seen for. Also initialize the
4900 register information struct. */
4901 for (reg = 1; reg < num_regs; reg++)
4902 regstart[reg] = regend[reg] = NULL;
4903
4904 /* We move `string1' into `string2' if the latter's empty -- but not if
4905 `string1' is null. */
4906 if (size2 == 0 && string1 != NULL)
4907 {
4908 string2 = string1;
4909 size2 = size1;
4910 string1 = 0;
4911 size1 = 0;
4912 }
4913 end1 = string1 + size1;
4914 end2 = string2 + size2;
4915
4916 /* `p' scans through the pattern as `d' scans through the data.
4917 `dend' is the end of the input string that `d' points within. `d'
4918 is advanced into the following input string whenever necessary, but
4919 this happens before fetching; therefore, at the beginning of the
4920 loop, `d' can be pointing at the end of a string, but it cannot
4921 equal `string2'. */
4922 if (pos >= size1)
4923 {
4924 /* Only match within string2. */
4925 d = string2 + pos - size1;
4926 dend = end_match_2 = string2 + stop - size1;
4927 end_match_1 = end1; /* Just to give it a value. */
4928 }
4929 else
4930 {
4931 if (stop < size1)
4932 {
4933 /* Only match within string1. */
4934 end_match_1 = string1 + stop;
4935 /* BEWARE!
4936 When we reach end_match_1, PREFETCH normally switches to string2.
4937 But in the present case, this means that just doing a PREFETCH
4938 makes us jump from `stop' to `gap' within the string.
4939 What we really want here is for the search to stop as
4940 soon as we hit end_match_1. That's why we set end_match_2
4941 to end_match_1 (since PREFETCH fails as soon as we hit
4942 end_match_2). */
4943 end_match_2 = end_match_1;
4944 }
4945 else
4946 { /* It's important to use this code when stop == size so that
4947 moving `d' from end1 to string2 will not prevent the d == dend
4948 check from catching the end of string. */
4949 end_match_1 = end1;
4950 end_match_2 = string2 + stop - size1;
4951 }
4952 d = string1 + pos;
4953 dend = end_match_1;
4954 }
4955
4956 DEBUG_PRINT1 ("The compiled pattern is: ");
4957 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4958 DEBUG_PRINT1 ("The string to match is: `");
4959 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4960 DEBUG_PRINT1 ("'\n");
4961
4962 /* This loops over pattern commands. It exits by returning from the
4963 function if the match is complete, or it drops through if the match
4964 fails at this starting point in the input data. */
4965 for (;;)
4966 {
4967 DEBUG_PRINT2 ("\n%p: ", p);
4968
4969 if (p == pend)
4970 { /* End of pattern means we might have succeeded. */
4971 DEBUG_PRINT1 ("end of pattern ... ");
4972
4973 /* If we haven't matched the entire string, and we want the
4974 longest match, try backtracking. */
4975 if (d != end_match_2)
4976 {
4977 /* 1 if this match ends in the same string (string1 or string2)
4978 as the best previous match. */
4979 boolean same_str_p = (FIRST_STRING_P (match_end)
4980 == FIRST_STRING_P (d));
4981 /* 1 if this match is the best seen so far. */
4982 boolean best_match_p;
4983
4984 /* AIX compiler got confused when this was combined
4985 with the previous declaration. */
4986 if (same_str_p)
4987 best_match_p = d > match_end;
4988 else
4989 best_match_p = !FIRST_STRING_P (d);
4990
4991 DEBUG_PRINT1 ("backtracking.\n");
4992
4993 if (!FAIL_STACK_EMPTY ())
4994 { /* More failure points to try. */
4995
4996 /* If exceeds best match so far, save it. */
4997 if (!best_regs_set || best_match_p)
4998 {
4999 best_regs_set = true;
5000 match_end = d;
5001
5002 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5003
5004 for (reg = 1; reg < num_regs; reg++)
5005 {
5006 best_regstart[reg] = regstart[reg];
5007 best_regend[reg] = regend[reg];
5008 }
5009 }
5010 goto fail;
5011 }
5012
5013 /* If no failure points, don't restore garbage. And if
5014 last match is real best match, don't restore second
5015 best one. */
5016 else if (best_regs_set && !best_match_p)
5017 {
5018 restore_best_regs:
5019 /* Restore best match. It may happen that `dend ==
5020 end_match_1' while the restored d is in string2.
5021 For example, the pattern `x.*y.*z' against the
5022 strings `x-' and `y-z-', if the two strings are
5023 not consecutive in memory. */
5024 DEBUG_PRINT1 ("Restoring best registers.\n");
5025
5026 d = match_end;
5027 dend = ((d >= string1 && d <= end1)
5028 ? end_match_1 : end_match_2);
5029
5030 for (reg = 1; reg < num_regs; reg++)
5031 {
5032 regstart[reg] = best_regstart[reg];
5033 regend[reg] = best_regend[reg];
5034 }
5035 }
5036 } /* d != end_match_2 */
5037
5038 succeed_label:
5039 DEBUG_PRINT1 ("Accepting match.\n");
5040
5041 /* If caller wants register contents data back, do it. */
5042 if (regs && !bufp->no_sub)
5043 {
5044 /* Have the register data arrays been allocated? */
5045 if (bufp->regs_allocated == REGS_UNALLOCATED)
5046 { /* No. So allocate them with malloc. We need one
5047 extra element beyond `num_regs' for the `-1' marker
5048 GNU code uses. */
5049 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5050 regs->start = TALLOC (regs->num_regs, regoff_t);
5051 regs->end = TALLOC (regs->num_regs, regoff_t);
5052 if (regs->start == NULL || regs->end == NULL)
5053 {
5054 FREE_VARIABLES ();
5055 return -2;
5056 }
5057 bufp->regs_allocated = REGS_REALLOCATE;
5058 }
5059 else if (bufp->regs_allocated == REGS_REALLOCATE)
5060 { /* Yes. If we need more elements than were already
5061 allocated, reallocate them. If we need fewer, just
5062 leave it alone. */
5063 if (regs->num_regs < num_regs + 1)
5064 {
5065 regs->num_regs = num_regs + 1;
5066 RETALLOC (regs->start, regs->num_regs, regoff_t);
5067 RETALLOC (regs->end, regs->num_regs, regoff_t);
5068 if (regs->start == NULL || regs->end == NULL)
5069 {
5070 FREE_VARIABLES ();
5071 return -2;
5072 }
5073 }
5074 }
5075 else
5076 {
5077 /* These braces fend off a "empty body in an else-statement"
5078 warning under GCC when assert expands to nothing. */
5079 assert (bufp->regs_allocated == REGS_FIXED);
5080 }
5081
5082 /* Convert the pointer data in `regstart' and `regend' to
5083 indices. Register zero has to be set differently,
5084 since we haven't kept track of any info for it. */
5085 if (regs->num_regs > 0)
5086 {
5087 regs->start[0] = pos;
5088 regs->end[0] = POINTER_TO_OFFSET (d);
5089 }
5090
5091 /* Go through the first `min (num_regs, regs->num_regs)'
5092 registers, since that is all we initialized. */
5093 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
5094 {
5095 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
5096 regs->start[reg] = regs->end[reg] = -1;
5097 else
5098 {
5099 regs->start[reg]
5100 = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
5101 regs->end[reg]
5102 = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
5103 }
5104 }
5105
5106 /* If the regs structure we return has more elements than
5107 were in the pattern, set the extra elements to -1. If
5108 we (re)allocated the registers, this is the case,
5109 because we always allocate enough to have at least one
5110 -1 at the end. */
5111 for (reg = num_regs; reg < regs->num_regs; reg++)
5112 regs->start[reg] = regs->end[reg] = -1;
5113 } /* regs && !bufp->no_sub */
5114
5115 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5116 nfailure_points_pushed, nfailure_points_popped,
5117 nfailure_points_pushed - nfailure_points_popped);
5118 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
5119
5120 mcnt = POINTER_TO_OFFSET (d) - pos;
5121
5122 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
5123
5124 FREE_VARIABLES ();
5125 return mcnt;
5126 }
5127
5128 /* Otherwise match next pattern command. */
5129 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
5130 {
5131 /* Ignore these. Used to ignore the n of succeed_n's which
5132 currently have n == 0. */
5133 case no_op:
5134 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5135 break;
5136
5137 case succeed:
5138 DEBUG_PRINT1 ("EXECUTING succeed.\n");
5139 goto succeed_label;
5140
5141 /* Match the next n pattern characters exactly. The following
5142 byte in the pattern defines n, and the n bytes after that
5143 are the characters to match. */
5144 case exactn:
5145 mcnt = *p++;
5146 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
5147
5148 /* Remember the start point to rollback upon failure. */
5149 dfail = d;
5150
5151 /* This is written out as an if-else so we don't waste time
5152 testing `translate' inside the loop. */
5153 if (RE_TRANSLATE_P (translate))
5154 {
5155 if (multibyte)
5156 do
5157 {
5158 int pat_charlen, buf_charlen;
5159 unsigned int pat_ch, buf_ch;
5160
5161 PREFETCH ();
5162 pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
5163 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
5164
5165 if (RE_TRANSLATE (translate, buf_ch)
5166 != pat_ch)
5167 {
5168 d = dfail;
5169 goto fail;
5170 }
5171
5172 p += pat_charlen;
5173 d += buf_charlen;
5174 mcnt -= pat_charlen;
5175 }
5176 while (mcnt > 0);
5177 else
5178 do
5179 {
5180 PREFETCH ();
5181 if (RE_TRANSLATE (translate, *d) != *p++)
5182 {
5183 d = dfail;
5184 goto fail;
5185 }
5186 d++;
5187 }
5188 while (--mcnt);
5189 }
5190 else
5191 {
5192 do
5193 {
5194 PREFETCH ();
5195 if (*d++ != *p++)
5196 {
5197 d = dfail;
5198 goto fail;
5199 }
5200 }
5201 while (--mcnt);
5202 }
5203 break;
5204
5205
5206 /* Match any character except possibly a newline or a null. */
5207 case anychar:
5208 {
5209 int buf_charlen;
5210 re_wchar_t buf_ch;
5211
5212 DEBUG_PRINT1 ("EXECUTING anychar.\n");
5213
5214 PREFETCH ();
5215 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
5216 buf_ch = TRANSLATE (buf_ch);
5217
5218 if ((!(bufp->syntax & RE_DOT_NEWLINE)
5219 && buf_ch == '\n')
5220 || ((bufp->syntax & RE_DOT_NOT_NULL)
5221 && buf_ch == '\000'))
5222 goto fail;
5223
5224 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
5225 d += buf_charlen;
5226 }
5227 break;
5228
5229
5230 case charset:
5231 case charset_not:
5232 {
5233 register unsigned int c;
5234 boolean not = (re_opcode_t) *(p - 1) == charset_not;
5235 int len;
5236
5237 /* Start of actual range_table, or end of bitmap if there is no
5238 range table. */
5239 re_char *range_table;
5240
5241 /* Nonzero if there is a range table. */
5242 int range_table_exists;
5243
5244 /* Number of ranges of range table. This is not included
5245 in the initial byte-length of the command. */
5246 int count = 0;
5247
5248 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
5249
5250 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
5251
5252 if (range_table_exists)
5253 {
5254 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
5255 EXTRACT_NUMBER_AND_INCR (count, range_table);
5256 }
5257
5258 PREFETCH ();
5259 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5260 c = TRANSLATE (c); /* The character to match. */
5261
5262 if (SINGLE_BYTE_CHAR_P (c))
5263 { /* Lookup bitmap. */
5264 /* Cast to `unsigned' instead of `unsigned char' in
5265 case the bit list is a full 32 bytes long. */
5266 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
5267 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5268 not = !not;
5269 }
5270 #ifdef emacs
5271 else if (range_table_exists)
5272 {
5273 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
5274
5275 if ( (class_bits & BIT_LOWER && ISLOWER (c))
5276 | (class_bits & BIT_MULTIBYTE)
5277 | (class_bits & BIT_PUNCT && ISPUNCT (c))
5278 | (class_bits & BIT_SPACE && ISSPACE (c))
5279 | (class_bits & BIT_UPPER && ISUPPER (c))
5280 | (class_bits & BIT_WORD && ISWORD (c)))
5281 not = !not;
5282 else
5283 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5284 }
5285 #endif /* emacs */
5286
5287 if (range_table_exists)
5288 p = CHARSET_RANGE_TABLE_END (range_table, count);
5289 else
5290 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
5291
5292 if (!not) goto fail;
5293
5294 d += len;
5295 break;
5296 }
5297
5298
5299 /* The beginning of a group is represented by start_memory.
5300 The argument is the register number. The text
5301 matched within the group is recorded (in the internal
5302 registers data structure) under the register number. */
5303 case start_memory:
5304 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
5305
5306 /* In case we need to undo this operation (via backtracking). */
5307 PUSH_FAILURE_REG ((unsigned int)*p);
5308
5309 regstart[*p] = d;
5310 regend[*p] = NULL; /* probably unnecessary. -sm */
5311 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
5312
5313 /* Move past the register number and inner group count. */
5314 p += 1;
5315 break;
5316
5317
5318 /* The stop_memory opcode represents the end of a group. Its
5319 argument is the same as start_memory's: the register number. */
5320 case stop_memory:
5321 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
5322
5323 assert (!REG_UNSET (regstart[*p]));
5324 /* Strictly speaking, there should be code such as:
5325
5326 assert (REG_UNSET (regend[*p]));
5327 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5328
5329 But the only info to be pushed is regend[*p] and it is known to
5330 be UNSET, so there really isn't anything to push.
5331 Not pushing anything, on the other hand deprives us from the
5332 guarantee that regend[*p] is UNSET since undoing this operation
5333 will not reset its value properly. This is not important since
5334 the value will only be read on the next start_memory or at
5335 the very end and both events can only happen if this stop_memory
5336 is *not* undone. */
5337
5338 regend[*p] = d;
5339 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
5340
5341 /* Move past the register number and the inner group count. */
5342 p += 1;
5343 break;
5344
5345
5346 /* \<digit> has been turned into a `duplicate' command which is
5347 followed by the numeric value of <digit> as the register number. */
5348 case duplicate:
5349 {
5350 register re_char *d2, *dend2;
5351 int regno = *p++; /* Get which register to match against. */
5352 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
5353
5354 /* Can't back reference a group which we've never matched. */
5355 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5356 goto fail;
5357
5358 /* Where in input to try to start matching. */
5359 d2 = regstart[regno];
5360
5361 /* Remember the start point to rollback upon failure. */
5362 dfail = d;
5363
5364 /* Where to stop matching; if both the place to start and
5365 the place to stop matching are in the same string, then
5366 set to the place to stop, otherwise, for now have to use
5367 the end of the first string. */
5368
5369 dend2 = ((FIRST_STRING_P (regstart[regno])
5370 == FIRST_STRING_P (regend[regno]))
5371 ? regend[regno] : end_match_1);
5372 for (;;)
5373 {
5374 /* If necessary, advance to next segment in register
5375 contents. */
5376 while (d2 == dend2)
5377 {
5378 if (dend2 == end_match_2) break;
5379 if (dend2 == regend[regno]) break;
5380
5381 /* End of string1 => advance to string2. */
5382 d2 = string2;
5383 dend2 = regend[regno];
5384 }
5385 /* At end of register contents => success */
5386 if (d2 == dend2) break;
5387
5388 /* If necessary, advance to next segment in data. */
5389 PREFETCH ();
5390
5391 /* How many characters left in this segment to match. */
5392 mcnt = dend - d;
5393
5394 /* Want how many consecutive characters we can match in
5395 one shot, so, if necessary, adjust the count. */
5396 if (mcnt > dend2 - d2)
5397 mcnt = dend2 - d2;
5398
5399 /* Compare that many; failure if mismatch, else move
5400 past them. */
5401 if (RE_TRANSLATE_P (translate)
5402 ? bcmp_translate (d, d2, mcnt, translate, multibyte)
5403 : memcmp (d, d2, mcnt))
5404 {
5405 d = dfail;
5406 goto fail;
5407 }
5408 d += mcnt, d2 += mcnt;
5409 }
5410 }
5411 break;
5412
5413
5414 /* begline matches the empty string at the beginning of the string
5415 (unless `not_bol' is set in `bufp'), and after newlines. */
5416 case begline:
5417 DEBUG_PRINT1 ("EXECUTING begline.\n");
5418
5419 if (AT_STRINGS_BEG (d))
5420 {
5421 if (!bufp->not_bol) break;
5422 }
5423 else
5424 {
5425 unsigned char c;
5426 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
5427 if (c == '\n')
5428 break;
5429 }
5430 /* In all other cases, we fail. */
5431 goto fail;
5432
5433
5434 /* endline is the dual of begline. */
5435 case endline:
5436 DEBUG_PRINT1 ("EXECUTING endline.\n");
5437
5438 if (AT_STRINGS_END (d))
5439 {
5440 if (!bufp->not_eol) break;
5441 }
5442 else
5443 {
5444 PREFETCH_NOLIMIT ();
5445 if (*d == '\n')
5446 break;
5447 }
5448 goto fail;
5449
5450
5451 /* Match at the very beginning of the data. */
5452 case begbuf:
5453 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5454 if (AT_STRINGS_BEG (d))
5455 break;
5456 goto fail;
5457
5458
5459 /* Match at the very end of the data. */
5460 case endbuf:
5461 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
5462 if (AT_STRINGS_END (d))
5463 break;
5464 goto fail;
5465
5466
5467 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5468 pushes NULL as the value for the string on the stack. Then
5469 `POP_FAILURE_POINT' will keep the current value for the
5470 string, instead of restoring it. To see why, consider
5471 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5472 then the . fails against the \n. But the next thing we want
5473 to do is match the \n against the \n; if we restored the
5474 string value, we would be back at the foo.
5475
5476 Because this is used only in specific cases, we don't need to
5477 check all the things that `on_failure_jump' does, to make
5478 sure the right things get saved on the stack. Hence we don't
5479 share its code. The only reason to push anything on the
5480 stack at all is that otherwise we would have to change
5481 `anychar's code to do something besides goto fail in this
5482 case; that seems worse than this. */
5483 case on_failure_keep_string_jump:
5484 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5485 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5486 mcnt, p + mcnt);
5487
5488 PUSH_FAILURE_POINT (p - 3, NULL);
5489 break;
5490
5491 /* A nasty loop is introduced by the non-greedy *? and +?.
5492 With such loops, the stack only ever contains one failure point
5493 at a time, so that a plain on_failure_jump_loop kind of
5494 cycle detection cannot work. Worse yet, such a detection
5495 can not only fail to detect a cycle, but it can also wrongly
5496 detect a cycle (between different instantiations of the same
5497 loop).
5498 So the method used for those nasty loops is a little different:
5499 We use a special cycle-detection-stack-frame which is pushed
5500 when the on_failure_jump_nastyloop failure-point is *popped*.
5501 This special frame thus marks the beginning of one iteration
5502 through the loop and we can hence easily check right here
5503 whether something matched between the beginning and the end of
5504 the loop. */
5505 case on_failure_jump_nastyloop:
5506 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5507 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5508 mcnt, p + mcnt);
5509
5510 assert ((re_opcode_t)p[-4] == no_op);
5511 {
5512 int cycle = 0;
5513 CHECK_INFINITE_LOOP (p - 4, d);
5514 if (!cycle)
5515 /* If there's a cycle, just continue without pushing
5516 this failure point. The failure point is the "try again"
5517 option, which shouldn't be tried.
5518 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5519 PUSH_FAILURE_POINT (p - 3, d);
5520 }
5521 break;
5522
5523 /* Simple loop detecting on_failure_jump: just check on the
5524 failure stack if the same spot was already hit earlier. */
5525 case on_failure_jump_loop:
5526 on_failure:
5527 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5528 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5529 mcnt, p + mcnt);
5530 {
5531 int cycle = 0;
5532 CHECK_INFINITE_LOOP (p - 3, d);
5533 if (cycle)
5534 /* If there's a cycle, get out of the loop, as if the matching
5535 had failed. We used to just `goto fail' here, but that was
5536 aborting the search a bit too early: we want to keep the
5537 empty-loop-match and keep matching after the loop.
5538 We want (x?)*y\1z to match both xxyz and xxyxz. */
5539 p += mcnt;
5540 else
5541 PUSH_FAILURE_POINT (p - 3, d);
5542 }
5543 break;
5544
5545
5546 /* Uses of on_failure_jump:
5547
5548 Each alternative starts with an on_failure_jump that points
5549 to the beginning of the next alternative. Each alternative
5550 except the last ends with a jump that in effect jumps past
5551 the rest of the alternatives. (They really jump to the
5552 ending jump of the following alternative, because tensioning
5553 these jumps is a hassle.)
5554
5555 Repeats start with an on_failure_jump that points past both
5556 the repetition text and either the following jump or
5557 pop_failure_jump back to this on_failure_jump. */
5558 case on_failure_jump:
5559 IMMEDIATE_QUIT_CHECK;
5560 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5561 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5562 mcnt, p + mcnt);
5563
5564 PUSH_FAILURE_POINT (p -3, d);
5565 break;
5566
5567 /* This operation is used for greedy *.
5568 Compare the beginning of the repeat with what in the
5569 pattern follows its end. If we can establish that there
5570 is nothing that they would both match, i.e., that we
5571 would have to backtrack because of (as in, e.g., `a*a')
5572 then we can use a non-backtracking loop based on
5573 on_failure_keep_string_jump instead of on_failure_jump. */
5574 case on_failure_jump_smart:
5575 IMMEDIATE_QUIT_CHECK;
5576 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5577 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5578 mcnt, p + mcnt);
5579 {
5580 re_char *p1 = p; /* Next operation. */
5581 /* Here, we discard `const', making re_match non-reentrant. */
5582 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
5583 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
5584
5585 p -= 3; /* Reset so that we will re-execute the
5586 instruction once it's been changed. */
5587
5588 EXTRACT_NUMBER (mcnt, p2 - 2);
5589
5590 /* Ensure this is a indeed the trivial kind of loop
5591 we are expecting. */
5592 assert (skip_one_char (p1) == p2 - 3);
5593 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
5594 DEBUG_STATEMENT (debug += 2);
5595 if (mutually_exclusive_p (bufp, p1, p2))
5596 {
5597 /* Use a fast `on_failure_keep_string_jump' loop. */
5598 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
5599 *p3 = (unsigned char) on_failure_keep_string_jump;
5600 STORE_NUMBER (p2 - 2, mcnt + 3);
5601 }
5602 else
5603 {
5604 /* Default to a safe `on_failure_jump' loop. */
5605 DEBUG_PRINT1 (" smart default => slow loop.\n");
5606 *p3 = (unsigned char) on_failure_jump;
5607 }
5608 DEBUG_STATEMENT (debug -= 2);
5609 }
5610 break;
5611
5612 /* Unconditionally jump (without popping any failure points). */
5613 case jump:
5614 unconditional_jump:
5615 IMMEDIATE_QUIT_CHECK;
5616 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
5617 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5618 p += mcnt; /* Do the jump. */
5619 DEBUG_PRINT2 ("(to %p).\n", p);
5620 break;
5621
5622
5623 /* Have to succeed matching what follows at least n times.
5624 After that, handle like `on_failure_jump'. */
5625 case succeed_n:
5626 /* Signedness doesn't matter since we only compare MCNT to 0. */
5627 EXTRACT_NUMBER (mcnt, p + 2);
5628 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5629
5630 /* Originally, mcnt is how many times we HAVE to succeed. */
5631 if (mcnt != 0)
5632 {
5633 /* Here, we discard `const', making re_match non-reentrant. */
5634 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
5635 mcnt--;
5636 p += 4;
5637 PUSH_NUMBER (p2, mcnt);
5638 }
5639 else
5640 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5641 goto on_failure;
5642 break;
5643
5644 case jump_n:
5645 /* Signedness doesn't matter since we only compare MCNT to 0. */
5646 EXTRACT_NUMBER (mcnt, p + 2);
5647 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5648
5649 /* Originally, this is how many times we CAN jump. */
5650 if (mcnt != 0)
5651 {
5652 /* Here, we discard `const', making re_match non-reentrant. */
5653 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
5654 mcnt--;
5655 PUSH_NUMBER (p2, mcnt);
5656 goto unconditional_jump;
5657 }
5658 /* If don't have to jump any more, skip over the rest of command. */
5659 else
5660 p += 4;
5661 break;
5662
5663 case set_number_at:
5664 {
5665 unsigned char *p2; /* Location of the counter. */
5666 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5667
5668 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5669 /* Here, we discard `const', making re_match non-reentrant. */
5670 p2 = (unsigned char*) p + mcnt;
5671 /* Signedness doesn't matter since we only copy MCNT's bits . */
5672 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5673 DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
5674 PUSH_NUMBER (p2, mcnt);
5675 break;
5676 }
5677
5678 case wordbound:
5679 case notwordbound:
5680 not = (re_opcode_t) *(p - 1) == notwordbound;
5681 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
5682
5683 /* We SUCCEED (or FAIL) in one of the following cases: */
5684
5685 /* Case 1: D is at the beginning or the end of string. */
5686 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5687 not = !not;
5688 else
5689 {
5690 /* C1 is the character before D, S1 is the syntax of C1, C2
5691 is the character at D, and S2 is the syntax of C2. */
5692 re_wchar_t c1, c2;
5693 int s1, s2;
5694 #ifdef emacs
5695 int offset = PTR_TO_OFFSET (d - 1);
5696 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5697 UPDATE_SYNTAX_TABLE (charpos);
5698 #endif
5699 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5700 s1 = SYNTAX (c1);
5701 #ifdef emacs
5702 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
5703 #endif
5704 PREFETCH_NOLIMIT ();
5705 c2 = RE_STRING_CHAR (d, dend - d);
5706 s2 = SYNTAX (c2);
5707
5708 if (/* Case 2: Only one of S1 and S2 is Sword. */
5709 ((s1 == Sword) != (s2 == Sword))
5710 /* Case 3: Both of S1 and S2 are Sword, and macro
5711 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5712 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
5713 not = !not;
5714 }
5715 if (not)
5716 break;
5717 else
5718 goto fail;
5719
5720 case wordbeg:
5721 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5722
5723 /* We FAIL in one of the following cases: */
5724
5725 /* Case 1: D is at the end of string. */
5726 if (AT_STRINGS_END (d))
5727 goto fail;
5728 else
5729 {
5730 /* C1 is the character before D, S1 is the syntax of C1, C2
5731 is the character at D, and S2 is the syntax of C2. */
5732 re_wchar_t c1, c2;
5733 int s1, s2;
5734 #ifdef emacs
5735 int offset = PTR_TO_OFFSET (d);
5736 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5737 UPDATE_SYNTAX_TABLE (charpos);
5738 #endif
5739 PREFETCH ();
5740 c2 = RE_STRING_CHAR (d, dend - d);
5741 s2 = SYNTAX (c2);
5742
5743 /* Case 2: S2 is not Sword. */
5744 if (s2 != Sword)
5745 goto fail;
5746
5747 /* Case 3: D is not at the beginning of string ... */
5748 if (!AT_STRINGS_BEG (d))
5749 {
5750 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5751 #ifdef emacs
5752 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
5753 #endif
5754 s1 = SYNTAX (c1);
5755
5756 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
5757 returns 0. */
5758 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5759 goto fail;
5760 }
5761 }
5762 break;
5763
5764 case wordend:
5765 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5766
5767 /* We FAIL in one of the following cases: */
5768
5769 /* Case 1: D is at the beginning of string. */
5770 if (AT_STRINGS_BEG (d))
5771 goto fail;
5772 else
5773 {
5774 /* C1 is the character before D, S1 is the syntax of C1, C2
5775 is the character at D, and S2 is the syntax of C2. */
5776 re_wchar_t c1, c2;
5777 int s1, s2;
5778 #ifdef emacs
5779 int offset = PTR_TO_OFFSET (d) - 1;
5780 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5781 UPDATE_SYNTAX_TABLE (charpos);
5782 #endif
5783 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5784 s1 = SYNTAX (c1);
5785
5786 /* Case 2: S1 is not Sword. */
5787 if (s1 != Sword)
5788 goto fail;
5789
5790 /* Case 3: D is not at the end of string ... */
5791 if (!AT_STRINGS_END (d))
5792 {
5793 PREFETCH_NOLIMIT ();
5794 c2 = RE_STRING_CHAR (d, dend - d);
5795 #ifdef emacs
5796 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
5797 #endif
5798 s2 = SYNTAX (c2);
5799
5800 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
5801 returns 0. */
5802 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5803 goto fail;
5804 }
5805 }
5806 break;
5807
5808 case symbeg:
5809 DEBUG_PRINT1 ("EXECUTING symbeg.\n");
5810
5811 /* We FAIL in one of the following cases: */
5812
5813 /* Case 1: D is at the end of string. */
5814 if (AT_STRINGS_END (d))
5815 goto fail;
5816 else
5817 {
5818 /* C1 is the character before D, S1 is the syntax of C1, C2
5819 is the character at D, and S2 is the syntax of C2. */
5820 re_wchar_t c1, c2;
5821 int s1, s2;
5822 #ifdef emacs
5823 int offset = PTR_TO_OFFSET (d);
5824 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5825 UPDATE_SYNTAX_TABLE (charpos);
5826 #endif
5827 PREFETCH ();
5828 c2 = RE_STRING_CHAR (d, dend - d);
5829 s2 = SYNTAX (c2);
5830
5831 /* Case 2: S2 is neither Sword nor Ssymbol. */
5832 if (s2 != Sword && s2 != Ssymbol)
5833 goto fail;
5834
5835 /* Case 3: D is not at the beginning of string ... */
5836 if (!AT_STRINGS_BEG (d))
5837 {
5838 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5839 #ifdef emacs
5840 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
5841 #endif
5842 s1 = SYNTAX (c1);
5843
5844 /* ... and S1 is Sword or Ssymbol. */
5845 if (s1 == Sword || s1 == Ssymbol)
5846 goto fail;
5847 }
5848 }
5849 break;
5850
5851 case symend:
5852 DEBUG_PRINT1 ("EXECUTING symend.\n");
5853
5854 /* We FAIL in one of the following cases: */
5855
5856 /* Case 1: D is at the beginning of string. */
5857 if (AT_STRINGS_BEG (d))
5858 goto fail;
5859 else
5860 {
5861 /* C1 is the character before D, S1 is the syntax of C1, C2
5862 is the character at D, and S2 is the syntax of C2. */
5863 re_wchar_t c1, c2;
5864 int s1, s2;
5865 #ifdef emacs
5866 int offset = PTR_TO_OFFSET (d) - 1;
5867 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5868 UPDATE_SYNTAX_TABLE (charpos);
5869 #endif
5870 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5871 s1 = SYNTAX (c1);
5872
5873 /* Case 2: S1 is neither Ssymbol nor Sword. */
5874 if (s1 != Sword && s1 != Ssymbol)
5875 goto fail;
5876
5877 /* Case 3: D is not at the end of string ... */
5878 if (!AT_STRINGS_END (d))
5879 {
5880 PREFETCH_NOLIMIT ();
5881 c2 = RE_STRING_CHAR (d, dend - d);
5882 #ifdef emacs
5883 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
5884 #endif
5885 s2 = SYNTAX (c2);
5886
5887 /* ... and S2 is Sword or Ssymbol. */
5888 if (s2 == Sword || s2 == Ssymbol)
5889 goto fail;
5890 }
5891 }
5892 break;
5893
5894 case syntaxspec:
5895 case notsyntaxspec:
5896 not = (re_opcode_t) *(p - 1) == notsyntaxspec;
5897 mcnt = *p++;
5898 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
5899 PREFETCH ();
5900 #ifdef emacs
5901 {
5902 int offset = PTR_TO_OFFSET (d);
5903 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5904 UPDATE_SYNTAX_TABLE (pos1);
5905 }
5906 #endif
5907 {
5908 int len;
5909 re_wchar_t c;
5910
5911 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5912
5913 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
5914 goto fail;
5915 d += len;
5916 }
5917 break;
5918
5919 #ifdef emacs
5920 case before_dot:
5921 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5922 if (PTR_BYTE_POS (d) >= PT_BYTE)
5923 goto fail;
5924 break;
5925
5926 case at_dot:
5927 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5928 if (PTR_BYTE_POS (d) != PT_BYTE)
5929 goto fail;
5930 break;
5931
5932 case after_dot:
5933 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5934 if (PTR_BYTE_POS (d) <= PT_BYTE)
5935 goto fail;
5936 break;
5937
5938 case categoryspec:
5939 case notcategoryspec:
5940 not = (re_opcode_t) *(p - 1) == notcategoryspec;
5941 mcnt = *p++;
5942 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
5943 PREFETCH ();
5944 {
5945 int len;
5946 re_wchar_t c;
5947
5948 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5949
5950 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
5951 goto fail;
5952 d += len;
5953 }
5954 break;
5955
5956 #endif /* emacs */
5957
5958 default:
5959 abort ();
5960 }
5961 continue; /* Successfully executed one pattern command; keep going. */
5962
5963
5964 /* We goto here if a matching operation fails. */
5965 fail:
5966 IMMEDIATE_QUIT_CHECK;
5967 if (!FAIL_STACK_EMPTY ())
5968 {
5969 re_char *str, *pat;
5970 /* A restart point is known. Restore to that state. */
5971 DEBUG_PRINT1 ("\nFAIL:\n");
5972 POP_FAILURE_POINT (str, pat);
5973 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
5974 {
5975 case on_failure_keep_string_jump:
5976 assert (str == NULL);
5977 goto continue_failure_jump;
5978
5979 case on_failure_jump_nastyloop:
5980 assert ((re_opcode_t)pat[-2] == no_op);
5981 PUSH_FAILURE_POINT (pat - 2, str);
5982 /* Fallthrough */
5983
5984 case on_failure_jump_loop:
5985 case on_failure_jump:
5986 case succeed_n:
5987 d = str;
5988 continue_failure_jump:
5989 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
5990 p = pat + mcnt;
5991 break;
5992
5993 case no_op:
5994 /* A special frame used for nastyloops. */
5995 goto fail;
5996
5997 default:
5998 abort();
5999 }
6000
6001 assert (p >= bufp->buffer && p <= pend);
6002
6003 if (d >= string1 && d <= end1)
6004 dend = end_match_1;
6005 }
6006 else
6007 break; /* Matching at this starting point really fails. */
6008 } /* for (;;) */
6009
6010 if (best_regs_set)
6011 goto restore_best_regs;
6012
6013 FREE_VARIABLES ();
6014
6015 return -1; /* Failure to match. */
6016 } /* re_match_2 */
6017 \f
6018 /* Subroutine definitions for re_match_2. */
6019
6020 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6021 bytes; nonzero otherwise. */
6022
6023 static int
6024 bcmp_translate (s1, s2, len, translate, multibyte)
6025 re_char *s1, *s2;
6026 register int len;
6027 RE_TRANSLATE_TYPE translate;
6028 const int multibyte;
6029 {
6030 register re_char *p1 = s1, *p2 = s2;
6031 re_char *p1_end = s1 + len;
6032 re_char *p2_end = s2 + len;
6033
6034 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6035 different lengths, but relying on a single `len' would break this. -sm */
6036 while (p1 < p1_end && p2 < p2_end)
6037 {
6038 int p1_charlen, p2_charlen;
6039 re_wchar_t p1_ch, p2_ch;
6040
6041 p1_ch = RE_STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen);
6042 p2_ch = RE_STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen);
6043
6044 if (RE_TRANSLATE (translate, p1_ch)
6045 != RE_TRANSLATE (translate, p2_ch))
6046 return 1;
6047
6048 p1 += p1_charlen, p2 += p2_charlen;
6049 }
6050
6051 if (p1 != p1_end || p2 != p2_end)
6052 return 1;
6053
6054 return 0;
6055 }
6056 \f
6057 /* Entry points for GNU code. */
6058
6059 /* re_compile_pattern is the GNU regular expression compiler: it
6060 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6061 Returns 0 if the pattern was valid, otherwise an error string.
6062
6063 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6064 are set in BUFP on entry.
6065
6066 We call regex_compile to do the actual compilation. */
6067
6068 const char *
6069 re_compile_pattern (pattern, length, bufp)
6070 const char *pattern;
6071 size_t length;
6072 struct re_pattern_buffer *bufp;
6073 {
6074 reg_errcode_t ret;
6075
6076 /* GNU code is written to assume at least RE_NREGS registers will be set
6077 (and at least one extra will be -1). */
6078 bufp->regs_allocated = REGS_UNALLOCATED;
6079
6080 /* And GNU code determines whether or not to get register information
6081 by passing null for the REGS argument to re_match, etc., not by
6082 setting no_sub. */
6083 bufp->no_sub = 0;
6084
6085 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
6086
6087 if (!ret)
6088 return NULL;
6089 return gettext (re_error_msgid[(int) ret]);
6090 }
6091 WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
6092 \f
6093 /* Entry points compatible with 4.2 BSD regex library. We don't define
6094 them unless specifically requested. */
6095
6096 #if defined _REGEX_RE_COMP || defined _LIBC
6097
6098 /* BSD has one and only one pattern buffer. */
6099 static struct re_pattern_buffer re_comp_buf;
6100
6101 char *
6102 # ifdef _LIBC
6103 /* Make these definitions weak in libc, so POSIX programs can redefine
6104 these names if they don't use our functions, and still use
6105 regcomp/regexec below without link errors. */
6106 weak_function
6107 # endif
6108 re_comp (s)
6109 const char *s;
6110 {
6111 reg_errcode_t ret;
6112
6113 if (!s)
6114 {
6115 if (!re_comp_buf.buffer)
6116 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6117 return (char *) gettext ("No previous regular expression");
6118 return 0;
6119 }
6120
6121 if (!re_comp_buf.buffer)
6122 {
6123 re_comp_buf.buffer = (unsigned char *) malloc (200);
6124 if (re_comp_buf.buffer == NULL)
6125 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6126 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6127 re_comp_buf.allocated = 200;
6128
6129 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
6130 if (re_comp_buf.fastmap == NULL)
6131 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6132 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6133 }
6134
6135 /* Since `re_exec' always passes NULL for the `regs' argument, we
6136 don't need to initialize the pattern buffer fields which affect it. */
6137
6138 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
6139
6140 if (!ret)
6141 return NULL;
6142
6143 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6144 return (char *) gettext (re_error_msgid[(int) ret]);
6145 }
6146
6147
6148 int
6149 # ifdef _LIBC
6150 weak_function
6151 # endif
6152 re_exec (s)
6153 const char *s;
6154 {
6155 const int len = strlen (s);
6156 return
6157 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6158 }
6159 #endif /* _REGEX_RE_COMP */
6160 \f
6161 /* POSIX.2 functions. Don't define these for Emacs. */
6162
6163 #ifndef emacs
6164
6165 /* regcomp takes a regular expression as a string and compiles it.
6166
6167 PREG is a regex_t *. We do not expect any fields to be initialized,
6168 since POSIX says we shouldn't. Thus, we set
6169
6170 `buffer' to the compiled pattern;
6171 `used' to the length of the compiled pattern;
6172 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6173 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6174 RE_SYNTAX_POSIX_BASIC;
6175 `fastmap' to an allocated space for the fastmap;
6176 `fastmap_accurate' to zero;
6177 `re_nsub' to the number of subexpressions in PATTERN.
6178
6179 PATTERN is the address of the pattern string.
6180
6181 CFLAGS is a series of bits which affect compilation.
6182
6183 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6184 use POSIX basic syntax.
6185
6186 If REG_NEWLINE is set, then . and [^...] don't match newline.
6187 Also, regexec will try a match beginning after every newline.
6188
6189 If REG_ICASE is set, then we considers upper- and lowercase
6190 versions of letters to be equivalent when matching.
6191
6192 If REG_NOSUB is set, then when PREG is passed to regexec, that
6193 routine will report only success or failure, and nothing about the
6194 registers.
6195
6196 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
6197 the return codes and their meanings.) */
6198
6199 int
6200 regcomp (preg, pattern, cflags)
6201 regex_t *__restrict preg;
6202 const char *__restrict pattern;
6203 int cflags;
6204 {
6205 reg_errcode_t ret;
6206 reg_syntax_t syntax
6207 = (cflags & REG_EXTENDED) ?
6208 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6209
6210 /* regex_compile will allocate the space for the compiled pattern. */
6211 preg->buffer = 0;
6212 preg->allocated = 0;
6213 preg->used = 0;
6214
6215 /* Try to allocate space for the fastmap. */
6216 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
6217
6218 if (cflags & REG_ICASE)
6219 {
6220 unsigned i;
6221
6222 preg->translate
6223 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6224 * sizeof (*(RE_TRANSLATE_TYPE)0));
6225 if (preg->translate == NULL)
6226 return (int) REG_ESPACE;
6227
6228 /* Map uppercase characters to corresponding lowercase ones. */
6229 for (i = 0; i < CHAR_SET_SIZE; i++)
6230 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
6231 }
6232 else
6233 preg->translate = NULL;
6234
6235 /* If REG_NEWLINE is set, newlines are treated differently. */
6236 if (cflags & REG_NEWLINE)
6237 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6238 syntax &= ~RE_DOT_NEWLINE;
6239 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
6240 }
6241 else
6242 syntax |= RE_NO_NEWLINE_ANCHOR;
6243
6244 preg->no_sub = !!(cflags & REG_NOSUB);
6245
6246 /* POSIX says a null character in the pattern terminates it, so we
6247 can use strlen here in compiling the pattern. */
6248 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
6249
6250 /* POSIX doesn't distinguish between an unmatched open-group and an
6251 unmatched close-group: both are REG_EPAREN. */
6252 if (ret == REG_ERPAREN)
6253 ret = REG_EPAREN;
6254
6255 if (ret == REG_NOERROR && preg->fastmap)
6256 { /* Compute the fastmap now, since regexec cannot modify the pattern
6257 buffer. */
6258 re_compile_fastmap (preg);
6259 if (preg->can_be_null)
6260 { /* The fastmap can't be used anyway. */
6261 free (preg->fastmap);
6262 preg->fastmap = NULL;
6263 }
6264 }
6265 return (int) ret;
6266 }
6267 WEAK_ALIAS (__regcomp, regcomp)
6268
6269
6270 /* regexec searches for a given pattern, specified by PREG, in the
6271 string STRING.
6272
6273 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
6274 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
6275 least NMATCH elements, and we set them to the offsets of the
6276 corresponding matched substrings.
6277
6278 EFLAGS specifies `execution flags' which affect matching: if
6279 REG_NOTBOL is set, then ^ does not match at the beginning of the
6280 string; if REG_NOTEOL is set, then $ does not match at the end.
6281
6282 We return 0 if we find a match and REG_NOMATCH if not. */
6283
6284 int
6285 regexec (preg, string, nmatch, pmatch, eflags)
6286 const regex_t *__restrict preg;
6287 const char *__restrict string;
6288 size_t nmatch;
6289 regmatch_t pmatch[__restrict_arr];
6290 int eflags;
6291 {
6292 int ret;
6293 struct re_registers regs;
6294 regex_t private_preg;
6295 int len = strlen (string);
6296 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
6297
6298 private_preg = *preg;
6299
6300 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6301 private_preg.not_eol = !!(eflags & REG_NOTEOL);
6302
6303 /* The user has told us exactly how many registers to return
6304 information about, via `nmatch'. We have to pass that on to the
6305 matching routines. */
6306 private_preg.regs_allocated = REGS_FIXED;
6307
6308 if (want_reg_info)
6309 {
6310 regs.num_regs = nmatch;
6311 regs.start = TALLOC (nmatch * 2, regoff_t);
6312 if (regs.start == NULL)
6313 return (int) REG_NOMATCH;
6314 regs.end = regs.start + nmatch;
6315 }
6316
6317 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6318 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6319 was a little bit longer but still only matching the real part.
6320 This works because the `endline' will check for a '\n' and will find a
6321 '\0', correctly deciding that this is not the end of a line.
6322 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6323 a convenient '\0' there. For all we know, the string could be preceded
6324 by '\n' which would throw things off. */
6325
6326 /* Perform the searching operation. */
6327 ret = re_search (&private_preg, string, len,
6328 /* start: */ 0, /* range: */ len,
6329 want_reg_info ? &regs : (struct re_registers *) 0);
6330
6331 /* Copy the register information to the POSIX structure. */
6332 if (want_reg_info)
6333 {
6334 if (ret >= 0)
6335 {
6336 unsigned r;
6337
6338 for (r = 0; r < nmatch; r++)
6339 {
6340 pmatch[r].rm_so = regs.start[r];
6341 pmatch[r].rm_eo = regs.end[r];
6342 }
6343 }
6344
6345 /* If we needed the temporary register info, free the space now. */
6346 free (regs.start);
6347 }
6348
6349 /* We want zero return to mean success, unlike `re_search'. */
6350 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6351 }
6352 WEAK_ALIAS (__regexec, regexec)
6353
6354
6355 /* Returns a message corresponding to an error code, ERRCODE, returned
6356 from either regcomp or regexec. We don't use PREG here. */
6357
6358 size_t
6359 regerror (errcode, preg, errbuf, errbuf_size)
6360 int errcode;
6361 const regex_t *preg;
6362 char *errbuf;
6363 size_t errbuf_size;
6364 {
6365 const char *msg;
6366 size_t msg_size;
6367
6368 if (errcode < 0
6369 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
6370 /* Only error codes returned by the rest of the code should be passed
6371 to this routine. If we are given anything else, or if other regex
6372 code generates an invalid error code, then the program has a bug.
6373 Dump core so we can fix it. */
6374 abort ();
6375
6376 msg = gettext (re_error_msgid[errcode]);
6377
6378 msg_size = strlen (msg) + 1; /* Includes the null. */
6379
6380 if (errbuf_size != 0)
6381 {
6382 if (msg_size > errbuf_size)
6383 {
6384 strncpy (errbuf, msg, errbuf_size - 1);
6385 errbuf[errbuf_size - 1] = 0;
6386 }
6387 else
6388 strcpy (errbuf, msg);
6389 }
6390
6391 return msg_size;
6392 }
6393 WEAK_ALIAS (__regerror, regerror)
6394
6395
6396 /* Free dynamically allocated space used by PREG. */
6397
6398 void
6399 regfree (preg)
6400 regex_t *preg;
6401 {
6402 if (preg->buffer != NULL)
6403 free (preg->buffer);
6404 preg->buffer = NULL;
6405
6406 preg->allocated = 0;
6407 preg->used = 0;
6408
6409 if (preg->fastmap != NULL)
6410 free (preg->fastmap);
6411 preg->fastmap = NULL;
6412 preg->fastmap_accurate = 0;
6413
6414 if (preg->translate != NULL)
6415 free (preg->translate);
6416 preg->translate = NULL;
6417 }
6418 WEAK_ALIAS (__regfree, regfree)
6419
6420 #endif /* not emacs */
6421
6422 /* arch-tag: 4ffd68ba-2a9e-435b-a21a-018990f9eeb2
6423 (do not change this comment) */