]> code.delx.au - gnu-emacs/blob - lisp/emacs-lisp/byte-opt.el
Merge from emacs--devo--0
[gnu-emacs] / lisp / emacs-lisp / byte-opt.el
1 ;;; byte-opt.el --- the optimization passes of the emacs-lisp byte compiler
2
3 ;; Copyright (C) 1991, 1994, 2000, 2001, 2002, 2003, 2004,
4 ;; 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 ;; Author: Jamie Zawinski <jwz@lucid.com>
7 ;; Hallvard Furuseth <hbf@ulrik.uio.no>
8 ;; Maintainer: FSF
9 ;; Keywords: internal
10
11 ;; This file is part of GNU Emacs.
12
13 ;; GNU Emacs is free software; you can redistribute it and/or modify
14 ;; it under the terms of the GNU General Public License as published by
15 ;; the Free Software Foundation; either version 3, or (at your option)
16 ;; any later version.
17
18 ;; GNU Emacs is distributed in the hope that it will be useful,
19 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
20 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 ;; GNU General Public License for more details.
22
23 ;; You should have received a copy of the GNU General Public License
24 ;; along with GNU Emacs; see the file COPYING. If not, write to the
25 ;; Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
26 ;; Boston, MA 02110-1301, USA.
27
28 ;;; Commentary:
29
30 ;; ========================================================================
31 ;; "No matter how hard you try, you can't make a racehorse out of a pig.
32 ;; You can, however, make a faster pig."
33 ;;
34 ;; Or, to put it another way, the Emacs byte compiler is a VW Bug. This code
35 ;; makes it be a VW Bug with fuel injection and a turbocharger... You're
36 ;; still not going to make it go faster than 70 mph, but it might be easier
37 ;; to get it there.
38 ;;
39
40 ;; TO DO:
41 ;;
42 ;; (apply (lambda (x &rest y) ...) 1 (foo))
43 ;;
44 ;; maintain a list of functions known not to access any global variables
45 ;; (actually, give them a 'dynamically-safe property) and then
46 ;; (let ( v1 v2 ... vM vN ) <...dynamically-safe...> ) ==>
47 ;; (let ( v1 v2 ... vM ) vN <...dynamically-safe...> )
48 ;; by recursing on this, we might be able to eliminate the entire let.
49 ;; However certain variables should never have their bindings optimized
50 ;; away, because they affect everything.
51 ;; (put 'debug-on-error 'binding-is-magic t)
52 ;; (put 'debug-on-abort 'binding-is-magic t)
53 ;; (put 'debug-on-next-call 'binding-is-magic t)
54 ;; (put 'inhibit-quit 'binding-is-magic t)
55 ;; (put 'quit-flag 'binding-is-magic t)
56 ;; (put 't 'binding-is-magic t)
57 ;; (put 'nil 'binding-is-magic t)
58 ;; possibly also
59 ;; (put 'gc-cons-threshold 'binding-is-magic t)
60 ;; (put 'track-mouse 'binding-is-magic t)
61 ;; others?
62 ;;
63 ;; Simple defsubsts often produce forms like
64 ;; (let ((v1 (f1)) (v2 (f2)) ...)
65 ;; (FN v1 v2 ...))
66 ;; It would be nice if we could optimize this to
67 ;; (FN (f1) (f2) ...)
68 ;; but we can't unless FN is dynamically-safe (it might be dynamically
69 ;; referring to the bindings that the lambda arglist established.)
70 ;; One of the uncountable lossages introduced by dynamic scope...
71 ;;
72 ;; Maybe there should be a control-structure that says "turn on
73 ;; fast-and-loose type-assumptive optimizations here." Then when
74 ;; we see a form like (car foo) we can from then on assume that
75 ;; the variable foo is of type cons, and optimize based on that.
76 ;; But, this won't win much because of (you guessed it) dynamic
77 ;; scope. Anything down the stack could change the value.
78 ;; (Another reason it doesn't work is that it is perfectly valid
79 ;; to call car with a null argument.) A better approach might
80 ;; be to allow type-specification of the form
81 ;; (put 'foo 'arg-types '(float (list integer) dynamic))
82 ;; (put 'foo 'result-type 'bool)
83 ;; It should be possible to have these types checked to a certain
84 ;; degree.
85 ;;
86 ;; collapse common subexpressions
87 ;;
88 ;; It would be nice if redundant sequences could be factored out as well,
89 ;; when they are known to have no side-effects:
90 ;; (list (+ a b c) (+ a b c)) --> a b add c add dup list-2
91 ;; but beware of traps like
92 ;; (cons (list x y) (list x y))
93 ;;
94 ;; Tail-recursion elimination is not really possible in Emacs Lisp.
95 ;; Tail-recursion elimination is almost always impossible when all variables
96 ;; have dynamic scope, but given that the "return" byteop requires the
97 ;; binding stack to be empty (rather than emptying it itself), there can be
98 ;; no truly tail-recursive Emacs Lisp functions that take any arguments or
99 ;; make any bindings.
100 ;;
101 ;; Here is an example of an Emacs Lisp function which could safely be
102 ;; byte-compiled tail-recursively:
103 ;;
104 ;; (defun tail-map (fn list)
105 ;; (cond (list
106 ;; (funcall fn (car list))
107 ;; (tail-map fn (cdr list)))))
108 ;;
109 ;; However, if there was even a single let-binding around the COND,
110 ;; it could not be byte-compiled, because there would be an "unbind"
111 ;; byte-op between the final "call" and "return." Adding a
112 ;; Bunbind_all byteop would fix this.
113 ;;
114 ;; (defun foo (x y z) ... (foo a b c))
115 ;; ... (const foo) (varref a) (varref b) (varref c) (call 3) END: (return)
116 ;; ... (varref a) (varbind x) (varref b) (varbind y) (varref c) (varbind z) (goto 0) END: (unbind-all) (return)
117 ;; ... (varref a) (varset x) (varref b) (varset y) (varref c) (varset z) (goto 0) END: (return)
118 ;;
119 ;; this also can be considered tail recursion:
120 ;;
121 ;; ... (const foo) (varref a) (call 1) (goto X) ... X: (return)
122 ;; could generalize this by doing the optimization
123 ;; (goto X) ... X: (return) --> (return)
124 ;;
125 ;; But this doesn't solve all of the problems: although by doing tail-
126 ;; recursion elimination in this way, the call-stack does not grow, the
127 ;; binding-stack would grow with each recursive step, and would eventually
128 ;; overflow. I don't believe there is any way around this without lexical
129 ;; scope.
130 ;;
131 ;; Wouldn't it be nice if Emacs Lisp had lexical scope.
132 ;;
133 ;; Idea: the form (lexical-scope) in a file means that the file may be
134 ;; compiled lexically. This proclamation is file-local. Then, within
135 ;; that file, "let" would establish lexical bindings, and "let-dynamic"
136 ;; would do things the old way. (Or we could use CL "declare" forms.)
137 ;; We'd have to notice defvars and defconsts, since those variables should
138 ;; always be dynamic, and attempting to do a lexical binding of them
139 ;; should simply do a dynamic binding instead.
140 ;; But! We need to know about variables that were not necessarily defvarred
141 ;; in the file being compiled (doing a boundp check isn't good enough.)
142 ;; Fdefvar() would have to be modified to add something to the plist.
143 ;;
144 ;; A major disadvantage of this scheme is that the interpreter and compiler
145 ;; would have different semantics for files compiled with (dynamic-scope).
146 ;; Since this would be a file-local optimization, there would be no way to
147 ;; modify the interpreter to obey this (unless the loader was hacked
148 ;; in some grody way, but that's a really bad idea.)
149
150 ;; Other things to consider:
151
152 ;; ;; Associative math should recognize subcalls to identical function:
153 ;; (disassemble (lambda (x) (+ (+ (foo) 1) (+ (bar) 2))))
154 ;; ;; This should generate the same as (1+ x) and (1- x)
155
156 ;; (disassemble (lambda (x) (cons (+ x 1) (- x 1))))
157 ;; ;; An awful lot of functions always return a non-nil value. If they're
158 ;; ;; error free also they may act as true-constants.
159
160 ;; (disassemble (lambda (x) (and (point) (foo))))
161 ;; ;; When
162 ;; ;; - all but one arguments to a function are constant
163 ;; ;; - the non-constant argument is an if-expression (cond-expression?)
164 ;; ;; then the outer function can be distributed. If the guarding
165 ;; ;; condition is side-effect-free [assignment-free] then the other
166 ;; ;; arguments may be any expressions. Since, however, the code size
167 ;; ;; can increase this way they should be "simple". Compare:
168
169 ;; (disassemble (lambda (x) (eq (if (point) 'a 'b) 'c)))
170 ;; (disassemble (lambda (x) (if (point) (eq 'a 'c) (eq 'b 'c))))
171
172 ;; ;; (car (cons A B)) -> (prog1 A B)
173 ;; (disassemble (lambda (x) (car (cons (foo) 42))))
174
175 ;; ;; (cdr (cons A B)) -> (progn A B)
176 ;; (disassemble (lambda (x) (cdr (cons 42 (foo)))))
177
178 ;; ;; (car (list A B ...)) -> (prog1 A B ...)
179 ;; (disassemble (lambda (x) (car (list (foo) 42 (bar)))))
180
181 ;; ;; (cdr (list A B ...)) -> (progn A (list B ...))
182 ;; (disassemble (lambda (x) (cdr (list 42 (foo) (bar)))))
183
184
185 ;;; Code:
186
187 (require 'bytecomp)
188 (eval-when-compile (require 'cl))
189
190 (defun byte-compile-log-lap-1 (format &rest args)
191 (if (aref byte-code-vector 0)
192 (error "The old version of the disassembler is loaded. Reload new-bytecomp as well"))
193 (byte-compile-log-1
194 (apply 'format format
195 (let (c a)
196 (mapcar (lambda (arg)
197 (if (not (consp arg))
198 (if (and (symbolp arg)
199 (string-match "^byte-" (symbol-name arg)))
200 (intern (substring (symbol-name arg) 5))
201 arg)
202 (if (integerp (setq c (car arg)))
203 (error "non-symbolic byte-op %s" c))
204 (if (eq c 'TAG)
205 (setq c arg)
206 (setq a (cond ((memq c byte-goto-ops)
207 (car (cdr (cdr arg))))
208 ((memq c byte-constref-ops)
209 (car (cdr arg)))
210 (t (cdr arg))))
211 (setq c (symbol-name c))
212 (if (string-match "^byte-." c)
213 (setq c (intern (substring c 5)))))
214 (if (eq c 'constant) (setq c 'const))
215 (if (and (eq (cdr arg) 0)
216 (not (memq c '(unbind call const))))
217 c
218 (format "(%s %s)" c a))))
219 args)))))
220
221 (defmacro byte-compile-log-lap (format-string &rest args)
222 `(and (memq byte-optimize-log '(t byte))
223 (byte-compile-log-lap-1 ,format-string ,@args)))
224
225 \f
226 ;;; byte-compile optimizers to support inlining
227
228 (put 'inline 'byte-optimizer 'byte-optimize-inline-handler)
229
230 (defun byte-optimize-inline-handler (form)
231 "byte-optimize-handler for the `inline' special-form."
232 (cons 'progn
233 (mapcar
234 (lambda (sexp)
235 (let ((f (car-safe sexp)))
236 (if (and (symbolp f)
237 (or (cdr (assq f byte-compile-function-environment))
238 (not (or (not (fboundp f))
239 (cdr (assq f byte-compile-macro-environment))
240 (and (consp (setq f (symbol-function f)))
241 (eq (car f) 'macro))
242 (subrp f)))))
243 (byte-compile-inline-expand sexp)
244 sexp)))
245 (cdr form))))
246
247
248 ;; Splice the given lap code into the current instruction stream.
249 ;; If it has any labels in it, you're responsible for making sure there
250 ;; are no collisions, and that byte-compile-tag-number is reasonable
251 ;; after this is spliced in. The provided list is destroyed.
252 (defun byte-inline-lapcode (lap)
253 (setq byte-compile-output (nconc (nreverse lap) byte-compile-output)))
254
255 (defun byte-compile-inline-expand (form)
256 (let* ((name (car form))
257 (fn (or (cdr (assq name byte-compile-function-environment))
258 (and (fboundp name) (symbol-function name)))))
259 (if (null fn)
260 (progn
261 (byte-compile-warn "attempt to inline `%s' before it was defined"
262 name)
263 form)
264 ;; else
265 (when (and (consp fn) (eq (car fn) 'autoload))
266 (load (nth 1 fn))
267 (setq fn (or (and (fboundp name) (symbol-function name))
268 (cdr (assq name byte-compile-function-environment)))))
269 (if (and (consp fn) (eq (car fn) 'autoload))
270 (error "File `%s' didn't define `%s'" (nth 1 fn) name))
271 (if (and (symbolp fn) (not (eq fn t)))
272 (byte-compile-inline-expand (cons fn (cdr form)))
273 (if (byte-code-function-p fn)
274 (let (string)
275 (fetch-bytecode fn)
276 (setq string (aref fn 1))
277 ;; Isn't it an error for `string' not to be unibyte?? --stef
278 (if (fboundp 'string-as-unibyte)
279 (setq string (string-as-unibyte string)))
280 ;; `byte-compile-splice-in-already-compiled-code'
281 ;; takes care of inlining the body.
282 (cons `(lambda ,(aref fn 0)
283 (byte-code ,string ,(aref fn 2) ,(aref fn 3)))
284 (cdr form)))
285 (if (eq (car-safe fn) 'lambda)
286 (cons fn (cdr form))
287 ;; Give up on inlining.
288 form))))))
289
290 ;; ((lambda ...) ...)
291 (defun byte-compile-unfold-lambda (form &optional name)
292 (or name (setq name "anonymous lambda"))
293 (let ((lambda (car form))
294 (values (cdr form)))
295 (if (byte-code-function-p lambda)
296 (setq lambda (list 'lambda (aref lambda 0)
297 (list 'byte-code (aref lambda 1)
298 (aref lambda 2) (aref lambda 3)))))
299 (let ((arglist (nth 1 lambda))
300 (body (cdr (cdr lambda)))
301 optionalp restp
302 bindings)
303 (if (and (stringp (car body)) (cdr body))
304 (setq body (cdr body)))
305 (if (and (consp (car body)) (eq 'interactive (car (car body))))
306 (setq body (cdr body)))
307 (while arglist
308 (cond ((eq (car arglist) '&optional)
309 ;; ok, I'll let this slide because funcall_lambda() does...
310 ;; (if optionalp (error "multiple &optional keywords in %s" name))
311 (if restp (error "&optional found after &rest in %s" name))
312 (if (null (cdr arglist))
313 (error "nothing after &optional in %s" name))
314 (setq optionalp t))
315 ((eq (car arglist) '&rest)
316 ;; ...but it is by no stretch of the imagination a reasonable
317 ;; thing that funcall_lambda() allows (&rest x y) and
318 ;; (&rest x &optional y) in arglists.
319 (if (null (cdr arglist))
320 (error "nothing after &rest in %s" name))
321 (if (cdr (cdr arglist))
322 (error "multiple vars after &rest in %s" name))
323 (setq restp t))
324 (restp
325 (setq bindings (cons (list (car arglist)
326 (and values (cons 'list values)))
327 bindings)
328 values nil))
329 ((and (not optionalp) (null values))
330 (byte-compile-warn "attempt to open-code `%s' with too few arguments" name)
331 (setq arglist nil values 'too-few))
332 (t
333 (setq bindings (cons (list (car arglist) (car values))
334 bindings)
335 values (cdr values))))
336 (setq arglist (cdr arglist)))
337 (if values
338 (progn
339 (or (eq values 'too-few)
340 (byte-compile-warn
341 "attempt to open-code `%s' with too many arguments" name))
342 form)
343
344 ;; The following leads to infinite recursion when loading a
345 ;; file containing `(defsubst f () (f))', and then trying to
346 ;; byte-compile that file.
347 ;(setq body (mapcar 'byte-optimize-form body)))
348
349 (let ((newform
350 (if bindings
351 (cons 'let (cons (nreverse bindings) body))
352 (cons 'progn body))))
353 (byte-compile-log " %s\t==>\t%s" form newform)
354 newform)))))
355
356 \f
357 ;;; implementing source-level optimizers
358
359 (defun byte-optimize-form-code-walker (form for-effect)
360 ;;
361 ;; For normal function calls, We can just mapcar the optimizer the cdr. But
362 ;; we need to have special knowledge of the syntax of the special forms
363 ;; like let and defun (that's why they're special forms :-). (Actually,
364 ;; the important aspect is that they are subrs that don't evaluate all of
365 ;; their args.)
366 ;;
367 (let ((fn (car-safe form))
368 tmp)
369 (cond ((not (consp form))
370 (if (not (and for-effect
371 (or byte-compile-delete-errors
372 (not (symbolp form))
373 (eq form t))))
374 form))
375 ((eq fn 'quote)
376 (if (cdr (cdr form))
377 (byte-compile-warn "malformed quote form: `%s'"
378 (prin1-to-string form)))
379 ;; map (quote nil) to nil to simplify optimizer logic.
380 ;; map quoted constants to nil if for-effect (just because).
381 (and (nth 1 form)
382 (not for-effect)
383 form))
384 ((or (byte-code-function-p fn)
385 (eq 'lambda (car-safe fn)))
386 (byte-compile-unfold-lambda form))
387 ((memq fn '(let let*))
388 ;; recursively enter the optimizer for the bindings and body
389 ;; of a let or let*. This for depth-firstness: forms that
390 ;; are more deeply nested are optimized first.
391 (cons fn
392 (cons
393 (mapcar (lambda (binding)
394 (if (symbolp binding)
395 binding
396 (if (cdr (cdr binding))
397 (byte-compile-warn "malformed let binding: `%s'"
398 (prin1-to-string binding)))
399 (list (car binding)
400 (byte-optimize-form (nth 1 binding) nil))))
401 (nth 1 form))
402 (byte-optimize-body (cdr (cdr form)) for-effect))))
403 ((eq fn 'cond)
404 (cons fn
405 (mapcar (lambda (clause)
406 (if (consp clause)
407 (cons
408 (byte-optimize-form (car clause) nil)
409 (byte-optimize-body (cdr clause) for-effect))
410 (byte-compile-warn "malformed cond form: `%s'"
411 (prin1-to-string clause))
412 clause))
413 (cdr form))))
414 ((eq fn 'progn)
415 ;; as an extra added bonus, this simplifies (progn <x>) --> <x>
416 (if (cdr (cdr form))
417 (progn
418 (setq tmp (byte-optimize-body (cdr form) for-effect))
419 (if (cdr tmp) (cons 'progn tmp) (car tmp)))
420 (byte-optimize-form (nth 1 form) for-effect)))
421 ((eq fn 'prog1)
422 (if (cdr (cdr form))
423 (cons 'prog1
424 (cons (byte-optimize-form (nth 1 form) for-effect)
425 (byte-optimize-body (cdr (cdr form)) t)))
426 (byte-optimize-form (nth 1 form) for-effect)))
427 ((eq fn 'prog2)
428 (cons 'prog2
429 (cons (byte-optimize-form (nth 1 form) t)
430 (cons (byte-optimize-form (nth 2 form) for-effect)
431 (byte-optimize-body (cdr (cdr (cdr form))) t)))))
432
433 ((memq fn '(save-excursion save-restriction save-current-buffer))
434 ;; those subrs which have an implicit progn; it's not quite good
435 ;; enough to treat these like normal function calls.
436 ;; This can turn (save-excursion ...) into (save-excursion) which
437 ;; will be optimized away in the lap-optimize pass.
438 (cons fn (byte-optimize-body (cdr form) for-effect)))
439
440 ((eq fn 'with-output-to-temp-buffer)
441 ;; this is just like the above, except for the first argument.
442 (cons fn
443 (cons
444 (byte-optimize-form (nth 1 form) nil)
445 (byte-optimize-body (cdr (cdr form)) for-effect))))
446
447 ((eq fn 'if)
448 (when (< (length form) 3)
449 (byte-compile-warn "too few arguments for `if'"))
450 (cons fn
451 (cons (byte-optimize-form (nth 1 form) nil)
452 (cons
453 (byte-optimize-form (nth 2 form) for-effect)
454 (byte-optimize-body (nthcdr 3 form) for-effect)))))
455
456 ((memq fn '(and or)) ; remember, and/or are control structures.
457 ;; take forms off the back until we can't any more.
458 ;; In the future it could conceivably be a problem that the
459 ;; subexpressions of these forms are optimized in the reverse
460 ;; order, but it's ok for now.
461 (if for-effect
462 (let ((backwards (reverse (cdr form))))
463 (while (and backwards
464 (null (setcar backwards
465 (byte-optimize-form (car backwards)
466 for-effect))))
467 (setq backwards (cdr backwards)))
468 (if (and (cdr form) (null backwards))
469 (byte-compile-log
470 " all subforms of %s called for effect; deleted" form))
471 (and backwards
472 (cons fn (nreverse (mapcar 'byte-optimize-form backwards)))))
473 (cons fn (mapcar 'byte-optimize-form (cdr form)))))
474
475 ((eq fn 'interactive)
476 (byte-compile-warn "misplaced interactive spec: `%s'"
477 (prin1-to-string form))
478 nil)
479
480 ((memq fn '(defun defmacro function
481 condition-case save-window-excursion))
482 ;; These forms are compiled as constants or by breaking out
483 ;; all the subexpressions and compiling them separately.
484 form)
485
486 ((eq fn 'unwind-protect)
487 ;; the "protected" part of an unwind-protect is compiled (and thus
488 ;; optimized) as a top-level form, so don't do it here. But the
489 ;; non-protected part has the same for-effect status as the
490 ;; unwind-protect itself. (The protected part is always for effect,
491 ;; but that isn't handled properly yet.)
492 (cons fn
493 (cons (byte-optimize-form (nth 1 form) for-effect)
494 (cdr (cdr form)))))
495
496 ((eq fn 'catch)
497 ;; the body of a catch is compiled (and thus optimized) as a
498 ;; top-level form, so don't do it here. The tag is never
499 ;; for-effect. The body should have the same for-effect status
500 ;; as the catch form itself, but that isn't handled properly yet.
501 (cons fn
502 (cons (byte-optimize-form (nth 1 form) nil)
503 (cdr (cdr form)))))
504
505 ((eq fn 'ignore)
506 ;; Don't treat the args to `ignore' as being
507 ;; computed for effect. We want to avoid the warnings
508 ;; that might occur if they were treated that way.
509 ;; However, don't actually bother calling `ignore'.
510 `(prog1 nil . ,(mapcar 'byte-optimize-form (cdr form))))
511
512 ;; If optimization is on, this is the only place that macros are
513 ;; expanded. If optimization is off, then macroexpansion happens
514 ;; in byte-compile-form. Otherwise, the macros are already expanded
515 ;; by the time that is reached.
516 ((not (eq form
517 (setq form (macroexpand form
518 byte-compile-macro-environment))))
519 (byte-optimize-form form for-effect))
520
521 ;; Support compiler macros as in cl.el.
522 ((and (fboundp 'compiler-macroexpand)
523 (symbolp (car-safe form))
524 (get (car-safe form) 'cl-compiler-macro)
525 (not (eq form
526 (with-no-warnings
527 (setq form (compiler-macroexpand form))))))
528 (byte-optimize-form form for-effect))
529
530 ((not (symbolp fn))
531 (byte-compile-warn "`%s' is a malformed function"
532 (prin1-to-string fn))
533 form)
534
535 ((and for-effect (setq tmp (get fn 'side-effect-free))
536 (or byte-compile-delete-errors
537 (eq tmp 'error-free)
538 ;; Detect the expansion of (pop foo).
539 ;; There is no need to compile the call to `car' there.
540 (and (eq fn 'car)
541 (eq (car-safe (cadr form)) 'prog1)
542 (let ((var (cadr (cadr form)))
543 (last (nth 2 (cadr form))))
544 (and (symbolp var)
545 (null (nthcdr 3 (cadr form)))
546 (eq (car-safe last) 'setq)
547 (eq (cadr last) var)
548 (eq (car-safe (nth 2 last)) 'cdr)
549 (eq (cadr (nth 2 last)) var))))
550 (progn
551 (byte-compile-warn "value returned from %s is unused"
552 (prin1-to-string form))
553 nil)))
554 (byte-compile-log " %s called for effect; deleted" fn)
555 ;; appending a nil here might not be necessary, but it can't hurt.
556 (byte-optimize-form
557 (cons 'progn (append (cdr form) '(nil))) t))
558
559 (t
560 ;; Otherwise, no args can be considered to be for-effect,
561 ;; even if the called function is for-effect, because we
562 ;; don't know anything about that function.
563 (let ((args (mapcar #'byte-optimize-form (cdr form))))
564 (if (and (get fn 'pure)
565 (byte-optimize-all-constp args))
566 (list 'quote (apply fn (mapcar #'eval args)))
567 (cons fn args)))))))
568
569 (defun byte-optimize-all-constp (list)
570 "Non-nil if all elements of LIST satisfy `byte-compile-constp'."
571 (let ((constant t))
572 (while (and list constant)
573 (unless (byte-compile-constp (car list))
574 (setq constant nil))
575 (setq list (cdr list)))
576 constant))
577
578 (defun byte-optimize-form (form &optional for-effect)
579 "The source-level pass of the optimizer."
580 ;;
581 ;; First, optimize all sub-forms of this one.
582 (setq form (byte-optimize-form-code-walker form for-effect))
583 ;;
584 ;; after optimizing all subforms, optimize this form until it doesn't
585 ;; optimize any further. This means that some forms will be passed through
586 ;; the optimizer many times, but that's necessary to make the for-effect
587 ;; processing do as much as possible.
588 ;;
589 (let (opt new)
590 (if (and (consp form)
591 (symbolp (car form))
592 (or (and for-effect
593 ;; we don't have any of these yet, but we might.
594 (setq opt (get (car form) 'byte-for-effect-optimizer)))
595 (setq opt (get (car form) 'byte-optimizer)))
596 (not (eq form (setq new (funcall opt form)))))
597 (progn
598 ;; (if (equal form new) (error "bogus optimizer -- %s" opt))
599 (byte-compile-log " %s\t==>\t%s" form new)
600 (setq new (byte-optimize-form new for-effect))
601 new)
602 form)))
603
604
605 (defun byte-optimize-body (forms all-for-effect)
606 ;; optimize the cdr of a progn or implicit progn; all forms is a list of
607 ;; forms, all but the last of which are optimized with the assumption that
608 ;; they are being called for effect. the last is for-effect as well if
609 ;; all-for-effect is true. returns a new list of forms.
610 (let ((rest forms)
611 (result nil)
612 fe new)
613 (while rest
614 (setq fe (or all-for-effect (cdr rest)))
615 (setq new (and (car rest) (byte-optimize-form (car rest) fe)))
616 (if (or new (not fe))
617 (setq result (cons new result)))
618 (setq rest (cdr rest)))
619 (nreverse result)))
620
621 \f
622 ;; some source-level optimizers
623 ;;
624 ;; when writing optimizers, be VERY careful that the optimizer returns
625 ;; something not EQ to its argument if and ONLY if it has made a change.
626 ;; This implies that you cannot simply destructively modify the list;
627 ;; you must return something not EQ to it if you make an optimization.
628 ;;
629 ;; It is now safe to optimize code such that it introduces new bindings.
630
631 (defsubst byte-compile-trueconstp (form)
632 "Return non-nil if FORM always evaluates to a non-nil value."
633 (cond ((consp form)
634 (case (car form)
635 (quote (cadr form))
636 (progn (byte-compile-trueconstp (car (last (cdr form)))))))
637 ((not (symbolp form)))
638 ((eq form t))
639 ((keywordp form))))
640
641 (defsubst byte-compile-nilconstp (form)
642 "Return non-nil if FORM always evaluates to a nil value."
643 (cond ((consp form)
644 (case (car form)
645 (quote (null (cadr form)))
646 (progn (byte-compile-nilconstp (car (last (cdr form)))))))
647 ((not (symbolp form)) nil)
648 ((null form))))
649
650 ;; If the function is being called with constant numeric args,
651 ;; evaluate as much as possible at compile-time. This optimizer
652 ;; assumes that the function is associative, like + or *.
653 (defun byte-optimize-associative-math (form)
654 (let ((args nil)
655 (constants nil)
656 (rest (cdr form)))
657 (while rest
658 (if (numberp (car rest))
659 (setq constants (cons (car rest) constants))
660 (setq args (cons (car rest) args)))
661 (setq rest (cdr rest)))
662 (if (cdr constants)
663 (if args
664 (list (car form)
665 (apply (car form) constants)
666 (if (cdr args)
667 (cons (car form) (nreverse args))
668 (car args)))
669 (apply (car form) constants))
670 form)))
671
672 ;; If the function is being called with constant numeric args,
673 ;; evaluate as much as possible at compile-time. This optimizer
674 ;; assumes that the function satisfies
675 ;; (op x1 x2 ... xn) == (op ...(op (op x1 x2) x3) ...xn)
676 ;; like - and /.
677 (defun byte-optimize-nonassociative-math (form)
678 (if (or (not (numberp (car (cdr form))))
679 (not (numberp (car (cdr (cdr form))))))
680 form
681 (let ((constant (car (cdr form)))
682 (rest (cdr (cdr form))))
683 (while (numberp (car rest))
684 (setq constant (funcall (car form) constant (car rest))
685 rest (cdr rest)))
686 (if rest
687 (cons (car form) (cons constant rest))
688 constant))))
689
690 ;;(defun byte-optimize-associative-two-args-math (form)
691 ;; (setq form (byte-optimize-associative-math form))
692 ;; (if (consp form)
693 ;; (byte-optimize-two-args-left form)
694 ;; form))
695
696 ;;(defun byte-optimize-nonassociative-two-args-math (form)
697 ;; (setq form (byte-optimize-nonassociative-math form))
698 ;; (if (consp form)
699 ;; (byte-optimize-two-args-right form)
700 ;; form))
701
702 (defun byte-optimize-approx-equal (x y)
703 (<= (* (abs (- x y)) 100) (abs (+ x y))))
704
705 ;; Collect all the constants from FORM, after the STARTth arg,
706 ;; and apply FUN to them to make one argument at the end.
707 ;; For functions that can handle floats, that optimization
708 ;; can be incorrect because reordering can cause an overflow
709 ;; that would otherwise be avoided by encountering an arg that is a float.
710 ;; We avoid this problem by (1) not moving float constants and
711 ;; (2) not moving anything if it would cause an overflow.
712 (defun byte-optimize-delay-constants-math (form start fun)
713 ;; Merge all FORM's constants from number START, call FUN on them
714 ;; and put the result at the end.
715 (let ((rest (nthcdr (1- start) form))
716 (orig form)
717 ;; t means we must check for overflow.
718 (overflow (memq fun '(+ *))))
719 (while (cdr (setq rest (cdr rest)))
720 (if (integerp (car rest))
721 (let (constants)
722 (setq form (copy-sequence form)
723 rest (nthcdr (1- start) form))
724 (while (setq rest (cdr rest))
725 (cond ((integerp (car rest))
726 (setq constants (cons (car rest) constants))
727 (setcar rest nil))))
728 ;; If necessary, check now for overflow
729 ;; that might be caused by reordering.
730 (if (and overflow
731 ;; We have overflow if the result of doing the arithmetic
732 ;; on floats is not even close to the result
733 ;; of doing it on integers.
734 (not (byte-optimize-approx-equal
735 (apply fun (mapcar 'float constants))
736 (float (apply fun constants)))))
737 (setq form orig)
738 (setq form (nconc (delq nil form)
739 (list (apply fun (nreverse constants)))))))))
740 form))
741
742 (defun byte-optimize-plus (form)
743 (setq form (byte-optimize-delay-constants-math form 1 '+))
744 (if (memq 0 form) (setq form (delq 0 (copy-sequence form))))
745 ;;(setq form (byte-optimize-associative-two-args-math form))
746 (cond ((null (cdr form))
747 (condition-case ()
748 (eval form)
749 (error form)))
750 ;;; It is not safe to delete the function entirely
751 ;;; (actually, it would be safe if we know the sole arg
752 ;;; is not a marker).
753 ;;; ((null (cdr (cdr form))) (nth 1 form))
754 ((null (cddr form))
755 (if (numberp (nth 1 form))
756 (nth 1 form)
757 form))
758 ((and (null (nthcdr 3 form))
759 (or (memq (nth 1 form) '(1 -1))
760 (memq (nth 2 form) '(1 -1))))
761 ;; Optimize (+ x 1) into (1+ x) and (+ x -1) into (1- x).
762 (let ((integer
763 (if (memq (nth 1 form) '(1 -1))
764 (nth 1 form)
765 (nth 2 form)))
766 (other
767 (if (memq (nth 1 form) '(1 -1))
768 (nth 2 form)
769 (nth 1 form))))
770 (list (if (eq integer 1) '1+ '1-)
771 other)))
772 (t form)))
773
774 (defun byte-optimize-minus (form)
775 ;; Put constants at the end, except the last constant.
776 (setq form (byte-optimize-delay-constants-math form 2 '+))
777 ;; Now only first and last element can be a number.
778 (let ((last (car (reverse (nthcdr 3 form)))))
779 (cond ((eq 0 last)
780 ;; (- x y ... 0) --> (- x y ...)
781 (setq form (copy-sequence form))
782 (setcdr (cdr (cdr form)) (delq 0 (nthcdr 3 form))))
783 ((equal (nthcdr 2 form) '(1))
784 (setq form (list '1- (nth 1 form))))
785 ((equal (nthcdr 2 form) '(-1))
786 (setq form (list '1+ (nth 1 form))))
787 ;; If form is (- CONST foo... CONST), merge first and last.
788 ((and (numberp (nth 1 form))
789 (numberp last))
790 (setq form (nconc (list '- (- (nth 1 form) last) (nth 2 form))
791 (delq last (copy-sequence (nthcdr 3 form))))))))
792 ;;; It is not safe to delete the function entirely
793 ;;; (actually, it would be safe if we know the sole arg
794 ;;; is not a marker).
795 ;;; (if (eq (nth 2 form) 0)
796 ;;; (nth 1 form) ; (- x 0) --> x
797 (byte-optimize-predicate
798 (if (and (null (cdr (cdr (cdr form))))
799 (eq (nth 1 form) 0)) ; (- 0 x) --> (- x)
800 (cons (car form) (cdr (cdr form)))
801 form))
802 ;;; )
803 )
804
805 (defun byte-optimize-multiply (form)
806 (setq form (byte-optimize-delay-constants-math form 1 '*))
807 ;; If there is a constant in FORM, it is now the last element.
808 (cond ((null (cdr form)) 1)
809 ;;; It is not safe to delete the function entirely
810 ;;; (actually, it would be safe if we know the sole arg
811 ;;; is not a marker or if it appears in other arithmetic).
812 ;;; ((null (cdr (cdr form))) (nth 1 form))
813 ((let ((last (car (reverse form))))
814 (cond ((eq 0 last) (cons 'progn (cdr form)))
815 ((eq 1 last) (delq 1 (copy-sequence form)))
816 ((eq -1 last) (list '- (delq -1 (copy-sequence form))))
817 ((and (eq 2 last)
818 (memq t (mapcar 'symbolp (cdr form))))
819 (prog1 (setq form (delq 2 (copy-sequence form)))
820 (while (not (symbolp (car (setq form (cdr form))))))
821 (setcar form (list '+ (car form) (car form)))))
822 (form))))))
823
824 (defsubst byte-compile-butlast (form)
825 (nreverse (cdr (reverse form))))
826
827 (defun byte-optimize-divide (form)
828 (setq form (byte-optimize-delay-constants-math form 2 '*))
829 (let ((last (car (reverse (cdr (cdr form))))))
830 (if (numberp last)
831 (cond ((= (length form) 3)
832 (if (and (numberp (nth 1 form))
833 (not (zerop last))
834 (condition-case nil
835 (/ (nth 1 form) last)
836 (error nil)))
837 (setq form (list 'progn (/ (nth 1 form) last)))))
838 ((= last 1)
839 (setq form (byte-compile-butlast form)))
840 ((numberp (nth 1 form))
841 (setq form (cons (car form)
842 (cons (/ (nth 1 form) last)
843 (byte-compile-butlast (cdr (cdr form)))))
844 last nil))))
845 (cond
846 ;;; ((null (cdr (cdr form)))
847 ;;; (nth 1 form))
848 ((eq (nth 1 form) 0)
849 (append '(progn) (cdr (cdr form)) '(0)))
850 ((eq last -1)
851 (list '- (if (nthcdr 3 form)
852 (byte-compile-butlast form)
853 (nth 1 form))))
854 (form))))
855
856 (defun byte-optimize-logmumble (form)
857 (setq form (byte-optimize-delay-constants-math form 1 (car form)))
858 (byte-optimize-predicate
859 (cond ((memq 0 form)
860 (setq form (if (eq (car form) 'logand)
861 (cons 'progn (cdr form))
862 (delq 0 (copy-sequence form)))))
863 ((and (eq (car-safe form) 'logior)
864 (memq -1 form))
865 (cons 'progn (cdr form)))
866 (form))))
867
868
869 (defun byte-optimize-binary-predicate (form)
870 (if (byte-compile-constp (nth 1 form))
871 (if (byte-compile-constp (nth 2 form))
872 (condition-case ()
873 (list 'quote (eval form))
874 (error form))
875 ;; This can enable some lapcode optimizations.
876 (list (car form) (nth 2 form) (nth 1 form)))
877 form))
878
879 (defun byte-optimize-predicate (form)
880 (let ((ok t)
881 (rest (cdr form)))
882 (while (and rest ok)
883 (setq ok (byte-compile-constp (car rest))
884 rest (cdr rest)))
885 (if ok
886 (condition-case ()
887 (list 'quote (eval form))
888 (error form))
889 form)))
890
891 (defun byte-optimize-identity (form)
892 (if (and (cdr form) (null (cdr (cdr form))))
893 (nth 1 form)
894 (byte-compile-warn "identity called with %d arg%s, but requires 1"
895 (length (cdr form))
896 (if (= 1 (length (cdr form))) "" "s"))
897 form))
898
899 (put 'identity 'byte-optimizer 'byte-optimize-identity)
900
901 (put '+ 'byte-optimizer 'byte-optimize-plus)
902 (put '* 'byte-optimizer 'byte-optimize-multiply)
903 (put '- 'byte-optimizer 'byte-optimize-minus)
904 (put '/ 'byte-optimizer 'byte-optimize-divide)
905 (put 'max 'byte-optimizer 'byte-optimize-associative-math)
906 (put 'min 'byte-optimizer 'byte-optimize-associative-math)
907
908 (put '= 'byte-optimizer 'byte-optimize-binary-predicate)
909 (put 'eq 'byte-optimizer 'byte-optimize-binary-predicate)
910 (put 'equal 'byte-optimizer 'byte-optimize-binary-predicate)
911 (put 'string= 'byte-optimizer 'byte-optimize-binary-predicate)
912 (put 'string-equal 'byte-optimizer 'byte-optimize-binary-predicate)
913
914 (put '< 'byte-optimizer 'byte-optimize-predicate)
915 (put '> 'byte-optimizer 'byte-optimize-predicate)
916 (put '<= 'byte-optimizer 'byte-optimize-predicate)
917 (put '>= 'byte-optimizer 'byte-optimize-predicate)
918 (put '1+ 'byte-optimizer 'byte-optimize-predicate)
919 (put '1- 'byte-optimizer 'byte-optimize-predicate)
920 (put 'not 'byte-optimizer 'byte-optimize-predicate)
921 (put 'null 'byte-optimizer 'byte-optimize-predicate)
922 (put 'memq 'byte-optimizer 'byte-optimize-predicate)
923 (put 'consp 'byte-optimizer 'byte-optimize-predicate)
924 (put 'listp 'byte-optimizer 'byte-optimize-predicate)
925 (put 'symbolp 'byte-optimizer 'byte-optimize-predicate)
926 (put 'stringp 'byte-optimizer 'byte-optimize-predicate)
927 (put 'string< 'byte-optimizer 'byte-optimize-predicate)
928 (put 'string-lessp 'byte-optimizer 'byte-optimize-predicate)
929
930 (put 'logand 'byte-optimizer 'byte-optimize-logmumble)
931 (put 'logior 'byte-optimizer 'byte-optimize-logmumble)
932 (put 'logxor 'byte-optimizer 'byte-optimize-logmumble)
933 (put 'lognot 'byte-optimizer 'byte-optimize-predicate)
934
935 (put 'car 'byte-optimizer 'byte-optimize-predicate)
936 (put 'cdr 'byte-optimizer 'byte-optimize-predicate)
937 (put 'car-safe 'byte-optimizer 'byte-optimize-predicate)
938 (put 'cdr-safe 'byte-optimizer 'byte-optimize-predicate)
939
940
941 ;; I'm not convinced that this is necessary. Doesn't the optimizer loop
942 ;; take care of this? - Jamie
943 ;; I think this may some times be necessary to reduce ie (quote 5) to 5,
944 ;; so arithmetic optimizers recognize the numeric constant. - Hallvard
945 (put 'quote 'byte-optimizer 'byte-optimize-quote)
946 (defun byte-optimize-quote (form)
947 (if (or (consp (nth 1 form))
948 (and (symbolp (nth 1 form))
949 (not (byte-compile-const-symbol-p form))))
950 form
951 (nth 1 form)))
952
953 (defun byte-optimize-zerop (form)
954 (cond ((numberp (nth 1 form))
955 (eval form))
956 (byte-compile-delete-errors
957 (list '= (nth 1 form) 0))
958 (form)))
959
960 (put 'zerop 'byte-optimizer 'byte-optimize-zerop)
961
962 (defun byte-optimize-and (form)
963 ;; Simplify if less than 2 args.
964 ;; if there is a literal nil in the args to `and', throw it and following
965 ;; forms away, and surround the `and' with (progn ... nil).
966 (cond ((null (cdr form)))
967 ((memq nil form)
968 (list 'progn
969 (byte-optimize-and
970 (prog1 (setq form (copy-sequence form))
971 (while (nth 1 form)
972 (setq form (cdr form)))
973 (setcdr form nil)))
974 nil))
975 ((null (cdr (cdr form)))
976 (nth 1 form))
977 ((byte-optimize-predicate form))))
978
979 (defun byte-optimize-or (form)
980 ;; Throw away nil's, and simplify if less than 2 args.
981 ;; If there is a literal non-nil constant in the args to `or', throw away all
982 ;; following forms.
983 (if (memq nil form)
984 (setq form (delq nil (copy-sequence form))))
985 (let ((rest form))
986 (while (cdr (setq rest (cdr rest)))
987 (if (byte-compile-trueconstp (car rest))
988 (setq form (copy-sequence form)
989 rest (setcdr (memq (car rest) form) nil))))
990 (if (cdr (cdr form))
991 (byte-optimize-predicate form)
992 (nth 1 form))))
993
994 (defun byte-optimize-cond (form)
995 ;; if any clauses have a literal nil as their test, throw them away.
996 ;; if any clause has a literal non-nil constant as its test, throw
997 ;; away all following clauses.
998 (let (rest)
999 ;; This must be first, to reduce (cond (t ...) (nil)) to (progn t ...)
1000 (while (setq rest (assq nil (cdr form)))
1001 (setq form (delq rest (copy-sequence form))))
1002 (if (memq nil (cdr form))
1003 (setq form (delq nil (copy-sequence form))))
1004 (setq rest form)
1005 (while (setq rest (cdr rest))
1006 (cond ((byte-compile-trueconstp (car-safe (car rest)))
1007 ;; This branch will always be taken: kill the subsequent ones.
1008 (cond ((eq rest (cdr form)) ;First branch of `cond'.
1009 (setq form `(progn ,@(car rest))))
1010 ((cdr rest)
1011 (setq form (copy-sequence form))
1012 (setcdr (memq (car rest) form) nil)))
1013 (setq rest nil))
1014 ((and (consp (car rest))
1015 (byte-compile-nilconstp (caar rest)))
1016 ;; This branch will never be taken: kill its body.
1017 (setcdr (car rest) nil)))))
1018 ;;
1019 ;; Turn (cond (( <x> )) ... ) into (or <x> (cond ... ))
1020 (if (eq 'cond (car-safe form))
1021 (let ((clauses (cdr form)))
1022 (if (and (consp (car clauses))
1023 (null (cdr (car clauses))))
1024 (list 'or (car (car clauses))
1025 (byte-optimize-cond
1026 (cons (car form) (cdr (cdr form)))))
1027 form))
1028 form))
1029
1030 (defun byte-optimize-if (form)
1031 ;; (if (progn <insts> <test>) <rest>) ==> (progn <insts> (if <test> <rest>))
1032 ;; (if <true-constant> <then> <else...>) ==> <then>
1033 ;; (if <false-constant> <then> <else...>) ==> (progn <else...>)
1034 ;; (if <test> nil <else...>) ==> (if (not <test>) (progn <else...>))
1035 ;; (if <test> <then> nil) ==> (if <test> <then>)
1036 (let ((clause (nth 1 form)))
1037 (cond ((and (eq (car-safe clause) 'progn)
1038 ;; `clause' is a proper list.
1039 (null (cdr (last clause))))
1040 (if (null (cddr clause))
1041 ;; A trivial `progn'.
1042 (byte-optimize-if `(if ,(cadr clause) ,@(nthcdr 2 form)))
1043 (nconc (butlast clause)
1044 (list
1045 (byte-optimize-if
1046 `(if ,(car (last clause)) ,@(nthcdr 2 form)))))))
1047 ((byte-compile-trueconstp clause)
1048 `(progn ,clause ,(nth 2 form)))
1049 ((byte-compile-nilconstp clause)
1050 `(progn ,clause ,@(nthcdr 3 form)))
1051 ((nth 2 form)
1052 (if (equal '(nil) (nthcdr 3 form))
1053 (list 'if clause (nth 2 form))
1054 form))
1055 ((or (nth 3 form) (nthcdr 4 form))
1056 (list 'if
1057 ;; Don't make a double negative;
1058 ;; instead, take away the one that is there.
1059 (if (and (consp clause) (memq (car clause) '(not null))
1060 (= (length clause) 2)) ; (not xxxx) or (not (xxxx))
1061 (nth 1 clause)
1062 (list 'not clause))
1063 (if (nthcdr 4 form)
1064 (cons 'progn (nthcdr 3 form))
1065 (nth 3 form))))
1066 (t
1067 (list 'progn clause nil)))))
1068
1069 (defun byte-optimize-while (form)
1070 (when (< (length form) 2)
1071 (byte-compile-warn "too few arguments for `while'"))
1072 (if (nth 1 form)
1073 form))
1074
1075 (put 'and 'byte-optimizer 'byte-optimize-and)
1076 (put 'or 'byte-optimizer 'byte-optimize-or)
1077 (put 'cond 'byte-optimizer 'byte-optimize-cond)
1078 (put 'if 'byte-optimizer 'byte-optimize-if)
1079 (put 'while 'byte-optimizer 'byte-optimize-while)
1080
1081 ;; byte-compile-negation-optimizer lives in bytecomp.el
1082 (put '/= 'byte-optimizer 'byte-compile-negation-optimizer)
1083 (put 'atom 'byte-optimizer 'byte-compile-negation-optimizer)
1084 (put 'nlistp 'byte-optimizer 'byte-compile-negation-optimizer)
1085
1086
1087 (defun byte-optimize-funcall (form)
1088 ;; (funcall (lambda ...) ...) ==> ((lambda ...) ...)
1089 ;; (funcall foo ...) ==> (foo ...)
1090 (let ((fn (nth 1 form)))
1091 (if (memq (car-safe fn) '(quote function))
1092 (cons (nth 1 fn) (cdr (cdr form)))
1093 form)))
1094
1095 (defun byte-optimize-apply (form)
1096 ;; If the last arg is a literal constant, turn this into a funcall.
1097 ;; The funcall optimizer can then transform (funcall 'foo ...) -> (foo ...).
1098 (let ((fn (nth 1 form))
1099 (last (nth (1- (length form)) form))) ; I think this really is fastest
1100 (or (if (or (null last)
1101 (eq (car-safe last) 'quote))
1102 (if (listp (nth 1 last))
1103 (let ((butlast (nreverse (cdr (reverse (cdr (cdr form)))))))
1104 (nconc (list 'funcall fn) butlast
1105 (mapcar (lambda (x) (list 'quote x)) (nth 1 last))))
1106 (byte-compile-warn
1107 "last arg to apply can't be a literal atom: `%s'"
1108 (prin1-to-string last))
1109 nil))
1110 form)))
1111
1112 (put 'funcall 'byte-optimizer 'byte-optimize-funcall)
1113 (put 'apply 'byte-optimizer 'byte-optimize-apply)
1114
1115
1116 (put 'let 'byte-optimizer 'byte-optimize-letX)
1117 (put 'let* 'byte-optimizer 'byte-optimize-letX)
1118 (defun byte-optimize-letX (form)
1119 (cond ((null (nth 1 form))
1120 ;; No bindings
1121 (cons 'progn (cdr (cdr form))))
1122 ((or (nth 2 form) (nthcdr 3 form))
1123 form)
1124 ;; The body is nil
1125 ((eq (car form) 'let)
1126 (append '(progn) (mapcar 'car-safe (mapcar 'cdr-safe (nth 1 form)))
1127 '(nil)))
1128 (t
1129 (let ((binds (reverse (nth 1 form))))
1130 (list 'let* (reverse (cdr binds)) (nth 1 (car binds)) nil)))))
1131
1132
1133 (put 'nth 'byte-optimizer 'byte-optimize-nth)
1134 (defun byte-optimize-nth (form)
1135 (if (= (safe-length form) 3)
1136 (if (memq (nth 1 form) '(0 1))
1137 (list 'car (if (zerop (nth 1 form))
1138 (nth 2 form)
1139 (list 'cdr (nth 2 form))))
1140 (byte-optimize-predicate form))
1141 form))
1142
1143 (put 'nthcdr 'byte-optimizer 'byte-optimize-nthcdr)
1144 (defun byte-optimize-nthcdr (form)
1145 (if (= (safe-length form) 3)
1146 (if (memq (nth 1 form) '(0 1 2))
1147 (let ((count (nth 1 form)))
1148 (setq form (nth 2 form))
1149 (while (>= (setq count (1- count)) 0)
1150 (setq form (list 'cdr form)))
1151 form)
1152 (byte-optimize-predicate form))
1153 form))
1154
1155 ;; Fixme: delete-char -> delete-region (byte-coded)
1156 ;; optimize string-as-unibyte, string-as-multibyte, string-make-unibyte,
1157 ;; string-make-multibyte for constant args.
1158
1159 (put 'featurep 'byte-optimizer 'byte-optimize-featurep)
1160 (defun byte-optimize-featurep (form)
1161 ;; Emacs-21's byte-code doesn't run under XEmacs or SXEmacs anyway, so we
1162 ;; can safely optimize away this test.
1163 (if (member (cdr-safe form) '(((quote xemacs)) ((quote sxemacs))))
1164 nil
1165 (if (member (cdr-safe form) '(((quote emacs))))
1166 t
1167 form)))
1168
1169 (put 'set 'byte-optimizer 'byte-optimize-set)
1170 (defun byte-optimize-set (form)
1171 (let ((var (car-safe (cdr-safe form))))
1172 (cond
1173 ((and (eq (car-safe var) 'quote) (consp (cdr var)))
1174 `(setq ,(cadr var) ,@(cddr form)))
1175 ((and (eq (car-safe var) 'make-local-variable)
1176 (eq (car-safe (setq var (car-safe (cdr var)))) 'quote)
1177 (consp (cdr var)))
1178 `(progn ,(cadr form) (setq ,(cadr var) ,@(cddr form))))
1179 (t form))))
1180 \f
1181 ;; enumerating those functions which need not be called if the returned
1182 ;; value is not used. That is, something like
1183 ;; (progn (list (something-with-side-effects) (yow))
1184 ;; (foo))
1185 ;; may safely be turned into
1186 ;; (progn (progn (something-with-side-effects) (yow))
1187 ;; (foo))
1188 ;; Further optimizations will turn (progn (list 1 2 3) 'foo) into 'foo.
1189
1190 ;; Some of these functions have the side effect of allocating memory
1191 ;; and it would be incorrect to replace two calls with one.
1192 ;; But we don't try to do those kinds of optimizations,
1193 ;; so it is safe to list such functions here.
1194 ;; Some of these functions return values that depend on environment
1195 ;; state, so that constant folding them would be wrong,
1196 ;; but we don't do constant folding based on this list.
1197
1198 ;; However, at present the only optimization we normally do
1199 ;; is delete calls that need not occur, and we only do that
1200 ;; with the error-free functions.
1201
1202 ;; I wonder if I missed any :-\)
1203 (let ((side-effect-free-fns
1204 '(% * + - / /= 1+ 1- < <= = > >= abs acos append aref ash asin atan
1205 assoc assq
1206 boundp buffer-file-name buffer-local-variables buffer-modified-p
1207 buffer-substring byte-code-function-p
1208 capitalize car-less-than-car car cdr ceiling char-after char-before
1209 char-equal char-to-string char-width
1210 compare-strings concat coordinates-in-window-p
1211 copy-alist copy-sequence copy-marker cos count-lines
1212 decdoe-char
1213 decode-time default-boundp default-value documentation downcase
1214 elt encode-char exp expt encode-time error-message-string
1215 fboundp fceiling featurep ffloor
1216 file-directory-p file-exists-p file-locked-p file-name-absolute-p
1217 file-newer-than-file-p file-readable-p file-symlink-p file-writable-p
1218 float float-time floor format format-time-string frame-visible-p
1219 fround ftruncate
1220 get gethash get-buffer get-buffer-window getenv get-file-buffer
1221 hash-table-count
1222 int-to-string intern-soft
1223 keymap-parent
1224 length local-variable-if-set-p local-variable-p log log10 logand
1225 logb logior lognot logxor lsh langinfo
1226 make-list make-string make-symbol
1227 marker-buffer max member memq min mod multibyte-char-to-unibyte
1228 next-window nth nthcdr number-to-string
1229 parse-colon-path plist-get plist-member
1230 prefix-numeric-value previous-window prin1-to-string propertize
1231 radians-to-degrees rassq rassoc read-from-string regexp-quote
1232 region-beginning region-end reverse round
1233 sin sqrt string string< string= string-equal string-lessp string-to-char
1234 string-to-int string-to-number substring sxhash symbol-function
1235 symbol-name symbol-plist symbol-value string-make-unibyte
1236 string-make-multibyte string-as-multibyte string-as-unibyte
1237 string-to-multibyte
1238 tan truncate
1239 unibyte-char-to-multibyte upcase user-full-name
1240 user-login-name user-original-login-name user-variable-p
1241 vconcat
1242 window-buffer window-dedicated-p window-edges window-height
1243 window-hscroll window-minibuffer-p window-width
1244 zerop))
1245 (side-effect-and-error-free-fns
1246 '(arrayp atom
1247 bobp bolp bool-vector-p
1248 buffer-end buffer-list buffer-size buffer-string bufferp
1249 car-safe case-table-p cdr-safe char-or-string-p characterp
1250 charsetp commandp cons consp
1251 current-buffer current-global-map current-indentation
1252 current-local-map current-minor-mode-maps current-time
1253 current-time-string current-time-zone
1254 eobp eolp eq equal eventp
1255 floatp following-char framep
1256 get-largest-window get-lru-window
1257 hash-table-p
1258 identity ignore integerp integer-or-marker-p interactive-p
1259 invocation-directory invocation-name
1260 keymapp
1261 line-beginning-position line-end-position list listp
1262 make-marker mark mark-marker markerp max-char
1263 memory-limit minibuffer-window
1264 mouse-movement-p
1265 natnump nlistp not null number-or-marker-p numberp
1266 one-window-p overlayp
1267 point point-marker point-min point-max preceding-char primary-charset
1268 processp
1269 recent-keys recursion-depth
1270 safe-length selected-frame selected-window sequencep
1271 standard-case-table standard-syntax-table stringp subrp symbolp
1272 syntax-table syntax-table-p
1273 this-command-keys this-command-keys-vector this-single-command-keys
1274 this-single-command-raw-keys
1275 user-real-login-name user-real-uid user-uid
1276 vector vectorp visible-frame-list
1277 wholenump window-configuration-p window-live-p windowp)))
1278 (while side-effect-free-fns
1279 (put (car side-effect-free-fns) 'side-effect-free t)
1280 (setq side-effect-free-fns (cdr side-effect-free-fns)))
1281 (while side-effect-and-error-free-fns
1282 (put (car side-effect-and-error-free-fns) 'side-effect-free 'error-free)
1283 (setq side-effect-and-error-free-fns (cdr side-effect-and-error-free-fns)))
1284 nil)
1285
1286 \f
1287 ;; pure functions are side-effect free functions whose values depend
1288 ;; only on their arguments. For these functions, calls with constant
1289 ;; arguments can be evaluated at compile time. This may shift run time
1290 ;; errors to compile time.
1291
1292 (let ((pure-fns
1293 '(concat symbol-name regexp-opt regexp-quote string-to-syntax)))
1294 (while pure-fns
1295 (put (car pure-fns) 'pure t)
1296 (setq pure-fns (cdr pure-fns)))
1297 nil)
1298
1299 (defun byte-compile-splice-in-already-compiled-code (form)
1300 ;; form is (byte-code "..." [...] n)
1301 (if (not (memq byte-optimize '(t lap)))
1302 (byte-compile-normal-call form)
1303 (byte-inline-lapcode
1304 (byte-decompile-bytecode-1 (nth 1 form) (nth 2 form) t))
1305 (setq byte-compile-maxdepth (max (+ byte-compile-depth (nth 3 form))
1306 byte-compile-maxdepth))
1307 (setq byte-compile-depth (1+ byte-compile-depth))))
1308
1309 (put 'byte-code 'byte-compile 'byte-compile-splice-in-already-compiled-code)
1310
1311 \f
1312 (defconst byte-constref-ops
1313 '(byte-constant byte-constant2 byte-varref byte-varset byte-varbind))
1314
1315 ;; This function extracts the bitfields from variable-length opcodes.
1316 ;; Originally defined in disass.el (which no longer uses it.)
1317
1318 (defun disassemble-offset ()
1319 "Don't call this!"
1320 ;; fetch and return the offset for the current opcode.
1321 ;; return nil if this opcode has no offset
1322 ;; OP, PTR and BYTES are used and set dynamically
1323 (defvar op)
1324 (defvar ptr)
1325 (defvar bytes)
1326 (cond ((< op byte-nth)
1327 (let ((tem (logand op 7)))
1328 (setq op (logand op 248))
1329 (cond ((eq tem 6)
1330 (setq ptr (1+ ptr)) ;offset in next byte
1331 (aref bytes ptr))
1332 ((eq tem 7)
1333 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1334 (+ (aref bytes ptr)
1335 (progn (setq ptr (1+ ptr))
1336 (lsh (aref bytes ptr) 8))))
1337 (t tem)))) ;offset was in opcode
1338 ((>= op byte-constant)
1339 (prog1 (- op byte-constant) ;offset in opcode
1340 (setq op byte-constant)))
1341 ((and (>= op byte-constant2)
1342 (<= op byte-goto-if-not-nil-else-pop))
1343 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1344 (+ (aref bytes ptr)
1345 (progn (setq ptr (1+ ptr))
1346 (lsh (aref bytes ptr) 8))))
1347 ((and (>= op byte-listN)
1348 (<= op byte-insertN))
1349 (setq ptr (1+ ptr)) ;offset in next byte
1350 (aref bytes ptr))))
1351
1352
1353 ;; This de-compiler is used for inline expansion of compiled functions,
1354 ;; and by the disassembler.
1355 ;;
1356 ;; This list contains numbers, which are pc values,
1357 ;; before each instruction.
1358 (defun byte-decompile-bytecode (bytes constvec)
1359 "Turn BYTECODE into lapcode, referring to CONSTVEC."
1360 (let ((byte-compile-constants nil)
1361 (byte-compile-variables nil)
1362 (byte-compile-tag-number 0))
1363 (byte-decompile-bytecode-1 bytes constvec)))
1364
1365 ;; As byte-decompile-bytecode, but updates
1366 ;; byte-compile-{constants, variables, tag-number}.
1367 ;; If MAKE-SPLICEABLE is true, then `return' opcodes are replaced
1368 ;; with `goto's destined for the end of the code.
1369 ;; That is for use by the compiler.
1370 ;; If MAKE-SPLICEABLE is nil, we are being called for the disassembler.
1371 ;; In that case, we put a pc value into the list
1372 ;; before each insn (or its label).
1373 (defun byte-decompile-bytecode-1 (bytes constvec &optional make-spliceable)
1374 (let ((length (length bytes))
1375 (ptr 0) optr tags op offset
1376 lap tmp
1377 endtag)
1378 (while (not (= ptr length))
1379 (or make-spliceable
1380 (setq lap (cons ptr lap)))
1381 (setq op (aref bytes ptr)
1382 optr ptr
1383 offset (disassemble-offset)) ; this does dynamic-scope magic
1384 (setq op (aref byte-code-vector op))
1385 (cond ((memq op byte-goto-ops)
1386 ;; it's a pc
1387 (setq offset
1388 (cdr (or (assq offset tags)
1389 (car (setq tags
1390 (cons (cons offset
1391 (byte-compile-make-tag))
1392 tags)))))))
1393 ((cond ((eq op 'byte-constant2) (setq op 'byte-constant) t)
1394 ((memq op byte-constref-ops)))
1395 (setq tmp (if (>= offset (length constvec))
1396 (list 'out-of-range offset)
1397 (aref constvec offset))
1398 offset (if (eq op 'byte-constant)
1399 (byte-compile-get-constant tmp)
1400 (or (assq tmp byte-compile-variables)
1401 (car (setq byte-compile-variables
1402 (cons (list tmp)
1403 byte-compile-variables)))))))
1404 ((and make-spliceable
1405 (eq op 'byte-return))
1406 (if (= ptr (1- length))
1407 (setq op nil)
1408 (setq offset (or endtag (setq endtag (byte-compile-make-tag)))
1409 op 'byte-goto))))
1410 ;; lap = ( [ (pc . (op . arg)) ]* )
1411 (setq lap (cons (cons optr (cons op (or offset 0)))
1412 lap))
1413 (setq ptr (1+ ptr)))
1414 ;; take off the dummy nil op that we replaced a trailing "return" with.
1415 (let ((rest lap))
1416 (while rest
1417 (cond ((numberp (car rest)))
1418 ((setq tmp (assq (car (car rest)) tags))
1419 ;; this addr is jumped to
1420 (setcdr rest (cons (cons nil (cdr tmp))
1421 (cdr rest)))
1422 (setq tags (delq tmp tags))
1423 (setq rest (cdr rest))))
1424 (setq rest (cdr rest))))
1425 (if tags (error "optimizer error: missed tags %s" tags))
1426 (if (null (car (cdr (car lap))))
1427 (setq lap (cdr lap)))
1428 (if endtag
1429 (setq lap (cons (cons nil endtag) lap)))
1430 ;; remove addrs, lap = ( [ (op . arg) | (TAG tagno) ]* )
1431 (mapcar (function (lambda (elt)
1432 (if (numberp elt)
1433 elt
1434 (cdr elt))))
1435 (nreverse lap))))
1436
1437 \f
1438 ;;; peephole optimizer
1439
1440 (defconst byte-tagref-ops (cons 'TAG byte-goto-ops))
1441
1442 (defconst byte-conditional-ops
1443 '(byte-goto-if-nil byte-goto-if-not-nil byte-goto-if-nil-else-pop
1444 byte-goto-if-not-nil-else-pop))
1445
1446 (defconst byte-after-unbind-ops
1447 '(byte-constant byte-dup
1448 byte-symbolp byte-consp byte-stringp byte-listp byte-numberp byte-integerp
1449 byte-eq byte-not
1450 byte-cons byte-list1 byte-list2 ; byte-list3 byte-list4
1451 byte-interactive-p)
1452 ;; How about other side-effect-free-ops? Is it safe to move an
1453 ;; error invocation (such as from nth) out of an unwind-protect?
1454 ;; No, it is not, because the unwind-protect forms can alter
1455 ;; the inside of the object to which nth would apply.
1456 ;; For the same reason, byte-equal was deleted from this list.
1457 "Byte-codes that can be moved past an unbind.")
1458
1459 (defconst byte-compile-side-effect-and-error-free-ops
1460 '(byte-constant byte-dup byte-symbolp byte-consp byte-stringp byte-listp
1461 byte-integerp byte-numberp byte-eq byte-equal byte-not byte-car-safe
1462 byte-cdr-safe byte-cons byte-list1 byte-list2 byte-point byte-point-max
1463 byte-point-min byte-following-char byte-preceding-char
1464 byte-current-column byte-eolp byte-eobp byte-bolp byte-bobp
1465 byte-current-buffer byte-interactive-p))
1466
1467 (defconst byte-compile-side-effect-free-ops
1468 (nconc
1469 '(byte-varref byte-nth byte-memq byte-car byte-cdr byte-length byte-aref
1470 byte-symbol-value byte-get byte-concat2 byte-concat3 byte-sub1 byte-add1
1471 byte-eqlsign byte-gtr byte-lss byte-leq byte-geq byte-diff byte-negate
1472 byte-plus byte-max byte-min byte-mult byte-char-after byte-char-syntax
1473 byte-buffer-substring byte-string= byte-string< byte-nthcdr byte-elt
1474 byte-member byte-assq byte-quo byte-rem)
1475 byte-compile-side-effect-and-error-free-ops))
1476
1477 ;; This crock is because of the way DEFVAR_BOOL variables work.
1478 ;; Consider the code
1479 ;;
1480 ;; (defun foo (flag)
1481 ;; (let ((old-pop-ups pop-up-windows)
1482 ;; (pop-up-windows flag))
1483 ;; (cond ((not (eq pop-up-windows old-pop-ups))
1484 ;; (setq old-pop-ups pop-up-windows)
1485 ;; ...))))
1486 ;;
1487 ;; Uncompiled, old-pop-ups will always be set to nil or t, even if FLAG is
1488 ;; something else. But if we optimize
1489 ;;
1490 ;; varref flag
1491 ;; varbind pop-up-windows
1492 ;; varref pop-up-windows
1493 ;; not
1494 ;; to
1495 ;; varref flag
1496 ;; dup
1497 ;; varbind pop-up-windows
1498 ;; not
1499 ;;
1500 ;; we break the program, because it will appear that pop-up-windows and
1501 ;; old-pop-ups are not EQ when really they are. So we have to know what
1502 ;; the BOOL variables are, and not perform this optimization on them.
1503
1504 ;; The variable `byte-boolean-vars' is now primitive and updated
1505 ;; automatically by DEFVAR_BOOL.
1506
1507 (defun byte-optimize-lapcode (lap &optional for-effect)
1508 "Simple peephole optimizer. LAP is both modified and returned.
1509 If FOR-EFFECT is non-nil, the return value is assumed to be of no importance."
1510 (let (lap0
1511 lap1
1512 lap2
1513 (keep-going 'first-time)
1514 (add-depth 0)
1515 rest tmp tmp2 tmp3
1516 (side-effect-free (if byte-compile-delete-errors
1517 byte-compile-side-effect-free-ops
1518 byte-compile-side-effect-and-error-free-ops)))
1519 (while keep-going
1520 (or (eq keep-going 'first-time)
1521 (byte-compile-log-lap " ---- next pass"))
1522 (setq rest lap
1523 keep-going nil)
1524 (while rest
1525 (setq lap0 (car rest)
1526 lap1 (nth 1 rest)
1527 lap2 (nth 2 rest))
1528
1529 ;; You may notice that sequences like "dup varset discard" are
1530 ;; optimized but sequences like "dup varset TAG1: discard" are not.
1531 ;; You may be tempted to change this; resist that temptation.
1532 (cond ;;
1533 ;; <side-effect-free> pop --> <deleted>
1534 ;; ...including:
1535 ;; const-X pop --> <deleted>
1536 ;; varref-X pop --> <deleted>
1537 ;; dup pop --> <deleted>
1538 ;;
1539 ((and (eq 'byte-discard (car lap1))
1540 (memq (car lap0) side-effect-free))
1541 (setq keep-going t)
1542 (setq tmp (aref byte-stack+-info (symbol-value (car lap0))))
1543 (setq rest (cdr rest))
1544 (cond ((= tmp 1)
1545 (byte-compile-log-lap
1546 " %s discard\t-->\t<deleted>" lap0)
1547 (setq lap (delq lap0 (delq lap1 lap))))
1548 ((= tmp 0)
1549 (byte-compile-log-lap
1550 " %s discard\t-->\t<deleted> discard" lap0)
1551 (setq lap (delq lap0 lap)))
1552 ((= tmp -1)
1553 (byte-compile-log-lap
1554 " %s discard\t-->\tdiscard discard" lap0)
1555 (setcar lap0 'byte-discard)
1556 (setcdr lap0 0))
1557 ((error "Optimizer error: too much on the stack"))))
1558 ;;
1559 ;; goto*-X X: --> X:
1560 ;;
1561 ((and (memq (car lap0) byte-goto-ops)
1562 (eq (cdr lap0) lap1))
1563 (cond ((eq (car lap0) 'byte-goto)
1564 (setq lap (delq lap0 lap))
1565 (setq tmp "<deleted>"))
1566 ((memq (car lap0) byte-goto-always-pop-ops)
1567 (setcar lap0 (setq tmp 'byte-discard))
1568 (setcdr lap0 0))
1569 ((error "Depth conflict at tag %d" (nth 2 lap0))))
1570 (and (memq byte-optimize-log '(t byte))
1571 (byte-compile-log " (goto %s) %s:\t-->\t%s %s:"
1572 (nth 1 lap1) (nth 1 lap1)
1573 tmp (nth 1 lap1)))
1574 (setq keep-going t))
1575 ;;
1576 ;; varset-X varref-X --> dup varset-X
1577 ;; varbind-X varref-X --> dup varbind-X
1578 ;; const/dup varset-X varref-X --> const/dup varset-X const/dup
1579 ;; const/dup varbind-X varref-X --> const/dup varbind-X const/dup
1580 ;; The latter two can enable other optimizations.
1581 ;;
1582 ((and (eq 'byte-varref (car lap2))
1583 (eq (cdr lap1) (cdr lap2))
1584 (memq (car lap1) '(byte-varset byte-varbind)))
1585 (if (and (setq tmp (memq (car (cdr lap2)) byte-boolean-vars))
1586 (not (eq (car lap0) 'byte-constant)))
1587 nil
1588 (setq keep-going t)
1589 (if (memq (car lap0) '(byte-constant byte-dup))
1590 (progn
1591 (setq tmp (if (or (not tmp)
1592 (byte-compile-const-symbol-p
1593 (car (cdr lap0))))
1594 (cdr lap0)
1595 (byte-compile-get-constant t)))
1596 (byte-compile-log-lap " %s %s %s\t-->\t%s %s %s"
1597 lap0 lap1 lap2 lap0 lap1
1598 (cons (car lap0) tmp))
1599 (setcar lap2 (car lap0))
1600 (setcdr lap2 tmp))
1601 (byte-compile-log-lap " %s %s\t-->\tdup %s" lap1 lap2 lap1)
1602 (setcar lap2 (car lap1))
1603 (setcar lap1 'byte-dup)
1604 (setcdr lap1 0)
1605 ;; The stack depth gets locally increased, so we will
1606 ;; increase maxdepth in case depth = maxdepth here.
1607 ;; This can cause the third argument to byte-code to
1608 ;; be larger than necessary.
1609 (setq add-depth 1))))
1610 ;;
1611 ;; dup varset-X discard --> varset-X
1612 ;; dup varbind-X discard --> varbind-X
1613 ;; (the varbind variant can emerge from other optimizations)
1614 ;;
1615 ((and (eq 'byte-dup (car lap0))
1616 (eq 'byte-discard (car lap2))
1617 (memq (car lap1) '(byte-varset byte-varbind)))
1618 (byte-compile-log-lap " dup %s discard\t-->\t%s" lap1 lap1)
1619 (setq keep-going t
1620 rest (cdr rest))
1621 (setq lap (delq lap0 (delq lap2 lap))))
1622 ;;
1623 ;; not goto-X-if-nil --> goto-X-if-non-nil
1624 ;; not goto-X-if-non-nil --> goto-X-if-nil
1625 ;;
1626 ;; it is wrong to do the same thing for the -else-pop variants.
1627 ;;
1628 ((and (eq 'byte-not (car lap0))
1629 (or (eq 'byte-goto-if-nil (car lap1))
1630 (eq 'byte-goto-if-not-nil (car lap1))))
1631 (byte-compile-log-lap " not %s\t-->\t%s"
1632 lap1
1633 (cons
1634 (if (eq (car lap1) 'byte-goto-if-nil)
1635 'byte-goto-if-not-nil
1636 'byte-goto-if-nil)
1637 (cdr lap1)))
1638 (setcar lap1 (if (eq (car lap1) 'byte-goto-if-nil)
1639 'byte-goto-if-not-nil
1640 'byte-goto-if-nil))
1641 (setq lap (delq lap0 lap))
1642 (setq keep-going t))
1643 ;;
1644 ;; goto-X-if-nil goto-Y X: --> goto-Y-if-non-nil X:
1645 ;; goto-X-if-non-nil goto-Y X: --> goto-Y-if-nil X:
1646 ;;
1647 ;; it is wrong to do the same thing for the -else-pop variants.
1648 ;;
1649 ((and (or (eq 'byte-goto-if-nil (car lap0))
1650 (eq 'byte-goto-if-not-nil (car lap0))) ; gotoX
1651 (eq 'byte-goto (car lap1)) ; gotoY
1652 (eq (cdr lap0) lap2)) ; TAG X
1653 (let ((inverse (if (eq 'byte-goto-if-nil (car lap0))
1654 'byte-goto-if-not-nil 'byte-goto-if-nil)))
1655 (byte-compile-log-lap " %s %s %s:\t-->\t%s %s:"
1656 lap0 lap1 lap2
1657 (cons inverse (cdr lap1)) lap2)
1658 (setq lap (delq lap0 lap))
1659 (setcar lap1 inverse)
1660 (setq keep-going t)))
1661 ;;
1662 ;; const goto-if-* --> whatever
1663 ;;
1664 ((and (eq 'byte-constant (car lap0))
1665 (memq (car lap1) byte-conditional-ops))
1666 (cond ((if (or (eq (car lap1) 'byte-goto-if-nil)
1667 (eq (car lap1) 'byte-goto-if-nil-else-pop))
1668 (car (cdr lap0))
1669 (not (car (cdr lap0))))
1670 (byte-compile-log-lap " %s %s\t-->\t<deleted>"
1671 lap0 lap1)
1672 (setq rest (cdr rest)
1673 lap (delq lap0 (delq lap1 lap))))
1674 (t
1675 (if (memq (car lap1) byte-goto-always-pop-ops)
1676 (progn
1677 (byte-compile-log-lap " %s %s\t-->\t%s"
1678 lap0 lap1 (cons 'byte-goto (cdr lap1)))
1679 (setq lap (delq lap0 lap)))
1680 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
1681 (cons 'byte-goto (cdr lap1))))
1682 (setcar lap1 'byte-goto)))
1683 (setq keep-going t))
1684 ;;
1685 ;; varref-X varref-X --> varref-X dup
1686 ;; varref-X [dup ...] varref-X --> varref-X [dup ...] dup
1687 ;; We don't optimize the const-X variations on this here,
1688 ;; because that would inhibit some goto optimizations; we
1689 ;; optimize the const-X case after all other optimizations.
1690 ;;
1691 ((and (eq 'byte-varref (car lap0))
1692 (progn
1693 (setq tmp (cdr rest))
1694 (while (eq (car (car tmp)) 'byte-dup)
1695 (setq tmp (cdr tmp)))
1696 t)
1697 (eq (cdr lap0) (cdr (car tmp)))
1698 (eq 'byte-varref (car (car tmp))))
1699 (if (memq byte-optimize-log '(t byte))
1700 (let ((str ""))
1701 (setq tmp2 (cdr rest))
1702 (while (not (eq tmp tmp2))
1703 (setq tmp2 (cdr tmp2)
1704 str (concat str " dup")))
1705 (byte-compile-log-lap " %s%s %s\t-->\t%s%s dup"
1706 lap0 str lap0 lap0 str)))
1707 (setq keep-going t)
1708 (setcar (car tmp) 'byte-dup)
1709 (setcdr (car tmp) 0)
1710 (setq rest tmp))
1711 ;;
1712 ;; TAG1: TAG2: --> TAG1: <deleted>
1713 ;; (and other references to TAG2 are replaced with TAG1)
1714 ;;
1715 ((and (eq (car lap0) 'TAG)
1716 (eq (car lap1) 'TAG))
1717 (and (memq byte-optimize-log '(t byte))
1718 (byte-compile-log " adjacent tags %d and %d merged"
1719 (nth 1 lap1) (nth 1 lap0)))
1720 (setq tmp3 lap)
1721 (while (setq tmp2 (rassq lap0 tmp3))
1722 (setcdr tmp2 lap1)
1723 (setq tmp3 (cdr (memq tmp2 tmp3))))
1724 (setq lap (delq lap0 lap)
1725 keep-going t))
1726 ;;
1727 ;; unused-TAG: --> <deleted>
1728 ;;
1729 ((and (eq 'TAG (car lap0))
1730 (not (rassq lap0 lap)))
1731 (and (memq byte-optimize-log '(t byte))
1732 (byte-compile-log " unused tag %d removed" (nth 1 lap0)))
1733 (setq lap (delq lap0 lap)
1734 keep-going t))
1735 ;;
1736 ;; goto ... --> goto <delete until TAG or end>
1737 ;; return ... --> return <delete until TAG or end>
1738 ;;
1739 ((and (memq (car lap0) '(byte-goto byte-return))
1740 (not (memq (car lap1) '(TAG nil))))
1741 (setq tmp rest)
1742 (let ((i 0)
1743 (opt-p (memq byte-optimize-log '(t lap)))
1744 str deleted)
1745 (while (and (setq tmp (cdr tmp))
1746 (not (eq 'TAG (car (car tmp)))))
1747 (if opt-p (setq deleted (cons (car tmp) deleted)
1748 str (concat str " %s")
1749 i (1+ i))))
1750 (if opt-p
1751 (let ((tagstr
1752 (if (eq 'TAG (car (car tmp)))
1753 (format "%d:" (car (cdr (car tmp))))
1754 (or (car tmp) ""))))
1755 (if (< i 6)
1756 (apply 'byte-compile-log-lap-1
1757 (concat " %s" str
1758 " %s\t-->\t%s <deleted> %s")
1759 lap0
1760 (nconc (nreverse deleted)
1761 (list tagstr lap0 tagstr)))
1762 (byte-compile-log-lap
1763 " %s <%d unreachable op%s> %s\t-->\t%s <deleted> %s"
1764 lap0 i (if (= i 1) "" "s")
1765 tagstr lap0 tagstr))))
1766 (rplacd rest tmp))
1767 (setq keep-going t))
1768 ;;
1769 ;; <safe-op> unbind --> unbind <safe-op>
1770 ;; (this may enable other optimizations.)
1771 ;;
1772 ((and (eq 'byte-unbind (car lap1))
1773 (memq (car lap0) byte-after-unbind-ops))
1774 (byte-compile-log-lap " %s %s\t-->\t%s %s" lap0 lap1 lap1 lap0)
1775 (setcar rest lap1)
1776 (setcar (cdr rest) lap0)
1777 (setq keep-going t))
1778 ;;
1779 ;; varbind-X unbind-N --> discard unbind-(N-1)
1780 ;; save-excursion unbind-N --> unbind-(N-1)
1781 ;; save-restriction unbind-N --> unbind-(N-1)
1782 ;;
1783 ((and (eq 'byte-unbind (car lap1))
1784 (memq (car lap0) '(byte-varbind byte-save-excursion
1785 byte-save-restriction))
1786 (< 0 (cdr lap1)))
1787 (if (zerop (setcdr lap1 (1- (cdr lap1))))
1788 (delq lap1 rest))
1789 (if (eq (car lap0) 'byte-varbind)
1790 (setcar rest (cons 'byte-discard 0))
1791 (setq lap (delq lap0 lap)))
1792 (byte-compile-log-lap " %s %s\t-->\t%s %s"
1793 lap0 (cons (car lap1) (1+ (cdr lap1)))
1794 (if (eq (car lap0) 'byte-varbind)
1795 (car rest)
1796 (car (cdr rest)))
1797 (if (and (/= 0 (cdr lap1))
1798 (eq (car lap0) 'byte-varbind))
1799 (car (cdr rest))
1800 ""))
1801 (setq keep-going t))
1802 ;;
1803 ;; goto*-X ... X: goto-Y --> goto*-Y
1804 ;; goto-X ... X: return --> return
1805 ;;
1806 ((and (memq (car lap0) byte-goto-ops)
1807 (memq (car (setq tmp (nth 1 (memq (cdr lap0) lap))))
1808 '(byte-goto byte-return)))
1809 (cond ((and (not (eq tmp lap0))
1810 (or (eq (car lap0) 'byte-goto)
1811 (eq (car tmp) 'byte-goto)))
1812 (byte-compile-log-lap " %s [%s]\t-->\t%s"
1813 (car lap0) tmp tmp)
1814 (if (eq (car tmp) 'byte-return)
1815 (setcar lap0 'byte-return))
1816 (setcdr lap0 (cdr tmp))
1817 (setq keep-going t))))
1818 ;;
1819 ;; goto-*-else-pop X ... X: goto-if-* --> whatever
1820 ;; goto-*-else-pop X ... X: discard --> whatever
1821 ;;
1822 ((and (memq (car lap0) '(byte-goto-if-nil-else-pop
1823 byte-goto-if-not-nil-else-pop))
1824 (memq (car (car (setq tmp (cdr (memq (cdr lap0) lap)))))
1825 (eval-when-compile
1826 (cons 'byte-discard byte-conditional-ops)))
1827 (not (eq lap0 (car tmp))))
1828 (setq tmp2 (car tmp))
1829 (setq tmp3 (assq (car lap0) '((byte-goto-if-nil-else-pop
1830 byte-goto-if-nil)
1831 (byte-goto-if-not-nil-else-pop
1832 byte-goto-if-not-nil))))
1833 (if (memq (car tmp2) tmp3)
1834 (progn (setcar lap0 (car tmp2))
1835 (setcdr lap0 (cdr tmp2))
1836 (byte-compile-log-lap " %s-else-pop [%s]\t-->\t%s"
1837 (car lap0) tmp2 lap0))
1838 ;; Get rid of the -else-pop's and jump one step further.
1839 (or (eq 'TAG (car (nth 1 tmp)))
1840 (setcdr tmp (cons (byte-compile-make-tag)
1841 (cdr tmp))))
1842 (byte-compile-log-lap " %s [%s]\t-->\t%s <skip>"
1843 (car lap0) tmp2 (nth 1 tmp3))
1844 (setcar lap0 (nth 1 tmp3))
1845 (setcdr lap0 (nth 1 tmp)))
1846 (setq keep-going t))
1847 ;;
1848 ;; const goto-X ... X: goto-if-* --> whatever
1849 ;; const goto-X ... X: discard --> whatever
1850 ;;
1851 ((and (eq (car lap0) 'byte-constant)
1852 (eq (car lap1) 'byte-goto)
1853 (memq (car (car (setq tmp (cdr (memq (cdr lap1) lap)))))
1854 (eval-when-compile
1855 (cons 'byte-discard byte-conditional-ops)))
1856 (not (eq lap1 (car tmp))))
1857 (setq tmp2 (car tmp))
1858 (cond ((memq (car tmp2)
1859 (if (null (car (cdr lap0)))
1860 '(byte-goto-if-nil byte-goto-if-nil-else-pop)
1861 '(byte-goto-if-not-nil
1862 byte-goto-if-not-nil-else-pop)))
1863 (byte-compile-log-lap " %s goto [%s]\t-->\t%s %s"
1864 lap0 tmp2 lap0 tmp2)
1865 (setcar lap1 (car tmp2))
1866 (setcdr lap1 (cdr tmp2))
1867 ;; Let next step fix the (const,goto-if*) sequence.
1868 (setq rest (cons nil rest)))
1869 (t
1870 ;; Jump one step further
1871 (byte-compile-log-lap
1872 " %s goto [%s]\t-->\t<deleted> goto <skip>"
1873 lap0 tmp2)
1874 (or (eq 'TAG (car (nth 1 tmp)))
1875 (setcdr tmp (cons (byte-compile-make-tag)
1876 (cdr tmp))))
1877 (setcdr lap1 (car (cdr tmp)))
1878 (setq lap (delq lap0 lap))))
1879 (setq keep-going t))
1880 ;;
1881 ;; X: varref-Y ... varset-Y goto-X -->
1882 ;; X: varref-Y Z: ... dup varset-Y goto-Z
1883 ;; (varset-X goto-BACK, BACK: varref-X --> copy the varref down.)
1884 ;; (This is so usual for while loops that it is worth handling).
1885 ;;
1886 ((and (eq (car lap1) 'byte-varset)
1887 (eq (car lap2) 'byte-goto)
1888 (not (memq (cdr lap2) rest)) ;Backwards jump
1889 (eq (car (car (setq tmp (cdr (memq (cdr lap2) lap)))))
1890 'byte-varref)
1891 (eq (cdr (car tmp)) (cdr lap1))
1892 (not (memq (car (cdr lap1)) byte-boolean-vars)))
1893 ;;(byte-compile-log-lap " Pulled %s to end of loop" (car tmp))
1894 (let ((newtag (byte-compile-make-tag)))
1895 (byte-compile-log-lap
1896 " %s: %s ... %s %s\t-->\t%s: %s %s: ... %s %s %s"
1897 (nth 1 (cdr lap2)) (car tmp)
1898 lap1 lap2
1899 (nth 1 (cdr lap2)) (car tmp)
1900 (nth 1 newtag) 'byte-dup lap1
1901 (cons 'byte-goto newtag)
1902 )
1903 (setcdr rest (cons (cons 'byte-dup 0) (cdr rest)))
1904 (setcdr tmp (cons (setcdr lap2 newtag) (cdr tmp))))
1905 (setq add-depth 1)
1906 (setq keep-going t))
1907 ;;
1908 ;; goto-X Y: ... X: goto-if*-Y --> goto-if-not-*-X+1 Y:
1909 ;; (This can pull the loop test to the end of the loop)
1910 ;;
1911 ((and (eq (car lap0) 'byte-goto)
1912 (eq (car lap1) 'TAG)
1913 (eq lap1
1914 (cdr (car (setq tmp (cdr (memq (cdr lap0) lap))))))
1915 (memq (car (car tmp))
1916 '(byte-goto byte-goto-if-nil byte-goto-if-not-nil
1917 byte-goto-if-nil-else-pop)))
1918 ;; (byte-compile-log-lap " %s %s, %s %s --> moved conditional"
1919 ;; lap0 lap1 (cdr lap0) (car tmp))
1920 (let ((newtag (byte-compile-make-tag)))
1921 (byte-compile-log-lap
1922 "%s %s: ... %s: %s\t-->\t%s ... %s:"
1923 lap0 (nth 1 lap1) (nth 1 (cdr lap0)) (car tmp)
1924 (cons (cdr (assq (car (car tmp))
1925 '((byte-goto-if-nil . byte-goto-if-not-nil)
1926 (byte-goto-if-not-nil . byte-goto-if-nil)
1927 (byte-goto-if-nil-else-pop .
1928 byte-goto-if-not-nil-else-pop)
1929 (byte-goto-if-not-nil-else-pop .
1930 byte-goto-if-nil-else-pop))))
1931 newtag)
1932
1933 (nth 1 newtag)
1934 )
1935 (setcdr tmp (cons (setcdr lap0 newtag) (cdr tmp)))
1936 (if (eq (car (car tmp)) 'byte-goto-if-nil-else-pop)
1937 ;; We can handle this case but not the -if-not-nil case,
1938 ;; because we won't know which non-nil constant to push.
1939 (setcdr rest (cons (cons 'byte-constant
1940 (byte-compile-get-constant nil))
1941 (cdr rest))))
1942 (setcar lap0 (nth 1 (memq (car (car tmp))
1943 '(byte-goto-if-nil-else-pop
1944 byte-goto-if-not-nil
1945 byte-goto-if-nil
1946 byte-goto-if-not-nil
1947 byte-goto byte-goto))))
1948 )
1949 (setq keep-going t))
1950 )
1951 (setq rest (cdr rest)))
1952 )
1953 ;; Cleanup stage:
1954 ;; Rebuild byte-compile-constants / byte-compile-variables.
1955 ;; Simple optimizations that would inhibit other optimizations if they
1956 ;; were done in the optimizing loop, and optimizations which there is no
1957 ;; need to do more than once.
1958 (setq byte-compile-constants nil
1959 byte-compile-variables nil)
1960 (setq rest lap)
1961 (while rest
1962 (setq lap0 (car rest)
1963 lap1 (nth 1 rest))
1964 (if (memq (car lap0) byte-constref-ops)
1965 (if (or (eq (car lap0) 'byte-constant)
1966 (eq (car lap0) 'byte-constant2))
1967 (unless (memq (cdr lap0) byte-compile-constants)
1968 (setq byte-compile-constants (cons (cdr lap0)
1969 byte-compile-constants)))
1970 (unless (memq (cdr lap0) byte-compile-variables)
1971 (setq byte-compile-variables (cons (cdr lap0)
1972 byte-compile-variables)))))
1973 (cond (;;
1974 ;; const-C varset-X const-C --> const-C dup varset-X
1975 ;; const-C varbind-X const-C --> const-C dup varbind-X
1976 ;;
1977 (and (eq (car lap0) 'byte-constant)
1978 (eq (car (nth 2 rest)) 'byte-constant)
1979 (eq (cdr lap0) (cdr (nth 2 rest)))
1980 (memq (car lap1) '(byte-varbind byte-varset)))
1981 (byte-compile-log-lap " %s %s %s\t-->\t%s dup %s"
1982 lap0 lap1 lap0 lap0 lap1)
1983 (setcar (cdr (cdr rest)) (cons (car lap1) (cdr lap1)))
1984 (setcar (cdr rest) (cons 'byte-dup 0))
1985 (setq add-depth 1))
1986 ;;
1987 ;; const-X [dup/const-X ...] --> const-X [dup ...] dup
1988 ;; varref-X [dup/varref-X ...] --> varref-X [dup ...] dup
1989 ;;
1990 ((memq (car lap0) '(byte-constant byte-varref))
1991 (setq tmp rest
1992 tmp2 nil)
1993 (while (progn
1994 (while (eq 'byte-dup (car (car (setq tmp (cdr tmp))))))
1995 (and (eq (cdr lap0) (cdr (car tmp)))
1996 (eq (car lap0) (car (car tmp)))))
1997 (setcar tmp (cons 'byte-dup 0))
1998 (setq tmp2 t))
1999 (if tmp2
2000 (byte-compile-log-lap
2001 " %s [dup/%s]...\t-->\t%s dup..." lap0 lap0 lap0)))
2002 ;;
2003 ;; unbind-N unbind-M --> unbind-(N+M)
2004 ;;
2005 ((and (eq 'byte-unbind (car lap0))
2006 (eq 'byte-unbind (car lap1)))
2007 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
2008 (cons 'byte-unbind
2009 (+ (cdr lap0) (cdr lap1))))
2010 (setq keep-going t)
2011 (setq lap (delq lap0 lap))
2012 (setcdr lap1 (+ (cdr lap1) (cdr lap0))))
2013 )
2014 (setq rest (cdr rest)))
2015 (setq byte-compile-maxdepth (+ byte-compile-maxdepth add-depth)))
2016 lap)
2017
2018 (provide 'byte-opt)
2019
2020 \f
2021 ;; To avoid "lisp nesting exceeds max-lisp-eval-depth" when this file compiles
2022 ;; itself, compile some of its most used recursive functions (at load time).
2023 ;;
2024 (eval-when-compile
2025 (or (byte-code-function-p (symbol-function 'byte-optimize-form))
2026 (assq 'byte-code (symbol-function 'byte-optimize-form))
2027 (let ((byte-optimize nil)
2028 (byte-compile-warnings nil))
2029 (mapc (lambda (x)
2030 (or noninteractive (message "compiling %s..." x))
2031 (byte-compile x)
2032 (or noninteractive (message "compiling %s...done" x)))
2033 '(byte-optimize-form
2034 byte-optimize-body
2035 byte-optimize-predicate
2036 byte-optimize-binary-predicate
2037 ;; Inserted some more than necessary, to speed it up.
2038 byte-optimize-form-code-walker
2039 byte-optimize-lapcode))))
2040 nil)
2041
2042 ;; arch-tag: 0f14076b-737e-4bef-aae6-908826ec1ff1
2043 ;;; byte-opt.el ends here