]> code.delx.au - gnu-emacs/blob - src/alloc.c
Merge from emacs--devo--0
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef STDC_HEADERS
27 #include <stddef.h> /* For offsetof, used by PSEUDOVECSIZE. */
28 #endif
29
30 #ifdef ALLOC_DEBUG
31 #undef INLINE
32 #endif
33
34 /* Note that this declares bzero on OSF/1. How dumb. */
35
36 #include <signal.h>
37
38 #ifdef HAVE_GTK_AND_PTHREAD
39 #include <pthread.h>
40 #endif
41
42 /* This file is part of the core Lisp implementation, and thus must
43 deal with the real data structures. If the Lisp implementation is
44 replaced, this file likely will not be used. */
45
46 #undef HIDE_LISP_IMPLEMENTATION
47 #include "lisp.h"
48 #include "process.h"
49 #include "intervals.h"
50 #include "puresize.h"
51 #include "buffer.h"
52 #include "window.h"
53 #include "keyboard.h"
54 #include "frame.h"
55 #include "blockinput.h"
56 #include "character.h"
57 #include "syssignal.h"
58 #include "termhooks.h" /* For struct terminal. */
59 #include <setjmp.h>
60
61 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
62 memory. Can do this only if using gmalloc.c. */
63
64 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
65 #undef GC_MALLOC_CHECK
66 #endif
67
68 #ifdef HAVE_UNISTD_H
69 #include <unistd.h>
70 #else
71 extern POINTER_TYPE *sbrk ();
72 #endif
73
74 #ifdef HAVE_FCNTL_H
75 #define INCLUDED_FCNTL
76 #include <fcntl.h>
77 #endif
78 #ifndef O_WRONLY
79 #define O_WRONLY 1
80 #endif
81
82 #ifdef WINDOWSNT
83 #include <fcntl.h>
84 #include "w32.h"
85 #endif
86
87 #ifdef DOUG_LEA_MALLOC
88
89 #include <malloc.h>
90 /* malloc.h #defines this as size_t, at least in glibc2. */
91 #ifndef __malloc_size_t
92 #define __malloc_size_t int
93 #endif
94
95 /* Specify maximum number of areas to mmap. It would be nice to use a
96 value that explicitly means "no limit". */
97
98 #define MMAP_MAX_AREAS 100000000
99
100 #else /* not DOUG_LEA_MALLOC */
101
102 /* The following come from gmalloc.c. */
103
104 #define __malloc_size_t size_t
105 extern __malloc_size_t _bytes_used;
106 extern __malloc_size_t __malloc_extra_blocks;
107
108 #endif /* not DOUG_LEA_MALLOC */
109
110 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
111
112 /* When GTK uses the file chooser dialog, different backends can be loaded
113 dynamically. One such a backend is the Gnome VFS backend that gets loaded
114 if you run Gnome. That backend creates several threads and also allocates
115 memory with malloc.
116
117 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
118 functions below are called from malloc, there is a chance that one
119 of these threads preempts the Emacs main thread and the hook variables
120 end up in an inconsistent state. So we have a mutex to prevent that (note
121 that the backend handles concurrent access to malloc within its own threads
122 but Emacs code running in the main thread is not included in that control).
123
124 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
125 happens in one of the backend threads we will have two threads that tries
126 to run Emacs code at once, and the code is not prepared for that.
127 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
128
129 static pthread_mutex_t alloc_mutex;
130
131 #define BLOCK_INPUT_ALLOC \
132 do \
133 { \
134 if (pthread_equal (pthread_self (), main_thread)) \
135 BLOCK_INPUT; \
136 pthread_mutex_lock (&alloc_mutex); \
137 } \
138 while (0)
139 #define UNBLOCK_INPUT_ALLOC \
140 do \
141 { \
142 pthread_mutex_unlock (&alloc_mutex); \
143 if (pthread_equal (pthread_self (), main_thread)) \
144 UNBLOCK_INPUT; \
145 } \
146 while (0)
147
148 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
149
150 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
151 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
152
153 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
154
155 /* Value of _bytes_used, when spare_memory was freed. */
156
157 static __malloc_size_t bytes_used_when_full;
158
159 static __malloc_size_t bytes_used_when_reconsidered;
160
161 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
162 to a struct Lisp_String. */
163
164 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
165 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
166 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
167
168 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
169 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
170 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
171
172 /* Value is the number of bytes/chars of S, a pointer to a struct
173 Lisp_String. This must be used instead of STRING_BYTES (S) or
174 S->size during GC, because S->size contains the mark bit for
175 strings. */
176
177 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
178 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
179
180 /* Number of bytes of consing done since the last gc. */
181
182 int consing_since_gc;
183
184 /* Count the amount of consing of various sorts of space. */
185
186 EMACS_INT cons_cells_consed;
187 EMACS_INT floats_consed;
188 EMACS_INT vector_cells_consed;
189 EMACS_INT symbols_consed;
190 EMACS_INT string_chars_consed;
191 EMACS_INT misc_objects_consed;
192 EMACS_INT intervals_consed;
193 EMACS_INT strings_consed;
194
195 /* Minimum number of bytes of consing since GC before next GC. */
196
197 EMACS_INT gc_cons_threshold;
198
199 /* Similar minimum, computed from Vgc_cons_percentage. */
200
201 EMACS_INT gc_relative_threshold;
202
203 static Lisp_Object Vgc_cons_percentage;
204
205 /* Minimum number of bytes of consing since GC before next GC,
206 when memory is full. */
207
208 EMACS_INT memory_full_cons_threshold;
209
210 /* Nonzero during GC. */
211
212 int gc_in_progress;
213
214 /* Nonzero means abort if try to GC.
215 This is for code which is written on the assumption that
216 no GC will happen, so as to verify that assumption. */
217
218 int abort_on_gc;
219
220 /* Nonzero means display messages at beginning and end of GC. */
221
222 int garbage_collection_messages;
223
224 #ifndef VIRT_ADDR_VARIES
225 extern
226 #endif /* VIRT_ADDR_VARIES */
227 int malloc_sbrk_used;
228
229 #ifndef VIRT_ADDR_VARIES
230 extern
231 #endif /* VIRT_ADDR_VARIES */
232 int malloc_sbrk_unused;
233
234 /* Number of live and free conses etc. */
235
236 static int total_conses, total_markers, total_symbols, total_vector_size;
237 static int total_free_conses, total_free_markers, total_free_symbols;
238 static int total_free_floats, total_floats;
239
240 /* Points to memory space allocated as "spare", to be freed if we run
241 out of memory. We keep one large block, four cons-blocks, and
242 two string blocks. */
243
244 static char *spare_memory[7];
245
246 /* Amount of spare memory to keep in large reserve block. */
247
248 #define SPARE_MEMORY (1 << 14)
249
250 /* Number of extra blocks malloc should get when it needs more core. */
251
252 static int malloc_hysteresis;
253
254 /* Non-nil means defun should do purecopy on the function definition. */
255
256 Lisp_Object Vpurify_flag;
257
258 /* Non-nil means we are handling a memory-full error. */
259
260 Lisp_Object Vmemory_full;
261
262 #ifndef HAVE_SHM
263
264 /* Initialize it to a nonzero value to force it into data space
265 (rather than bss space). That way unexec will remap it into text
266 space (pure), on some systems. We have not implemented the
267 remapping on more recent systems because this is less important
268 nowadays than in the days of small memories and timesharing. */
269
270 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
271 #define PUREBEG (char *) pure
272
273 #else /* HAVE_SHM */
274
275 #define pure PURE_SEG_BITS /* Use shared memory segment */
276 #define PUREBEG (char *)PURE_SEG_BITS
277
278 #endif /* HAVE_SHM */
279
280 /* Pointer to the pure area, and its size. */
281
282 static char *purebeg;
283 static size_t pure_size;
284
285 /* Number of bytes of pure storage used before pure storage overflowed.
286 If this is non-zero, this implies that an overflow occurred. */
287
288 static size_t pure_bytes_used_before_overflow;
289
290 /* Value is non-zero if P points into pure space. */
291
292 #define PURE_POINTER_P(P) \
293 (((PNTR_COMPARISON_TYPE) (P) \
294 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
295 && ((PNTR_COMPARISON_TYPE) (P) \
296 >= (PNTR_COMPARISON_TYPE) purebeg))
297
298 /* Total number of bytes allocated in pure storage. */
299
300 EMACS_INT pure_bytes_used;
301
302 /* Index in pure at which next pure Lisp object will be allocated.. */
303
304 static EMACS_INT pure_bytes_used_lisp;
305
306 /* Number of bytes allocated for non-Lisp objects in pure storage. */
307
308 static EMACS_INT pure_bytes_used_non_lisp;
309
310 /* If nonzero, this is a warning delivered by malloc and not yet
311 displayed. */
312
313 char *pending_malloc_warning;
314
315 /* Pre-computed signal argument for use when memory is exhausted. */
316
317 Lisp_Object Vmemory_signal_data;
318
319 /* Maximum amount of C stack to save when a GC happens. */
320
321 #ifndef MAX_SAVE_STACK
322 #define MAX_SAVE_STACK 16000
323 #endif
324
325 /* Buffer in which we save a copy of the C stack at each GC. */
326
327 static char *stack_copy;
328 static int stack_copy_size;
329
330 /* Non-zero means ignore malloc warnings. Set during initialization.
331 Currently not used. */
332
333 static int ignore_warnings;
334
335 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
336
337 /* Hook run after GC has finished. */
338
339 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
340
341 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
342 EMACS_INT gcs_done; /* accumulated GCs */
343
344 static void mark_buffer P_ ((Lisp_Object));
345 static void mark_terminals P_ ((void));
346 extern void mark_kboards P_ ((void));
347 extern void mark_ttys P_ ((void));
348 extern void mark_backtrace P_ ((void));
349 static void gc_sweep P_ ((void));
350 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
351 static void mark_face_cache P_ ((struct face_cache *));
352
353 #ifdef HAVE_WINDOW_SYSTEM
354 extern void mark_fringe_data P_ ((void));
355 static void mark_image P_ ((struct image *));
356 static void mark_image_cache P_ ((struct frame *));
357 #endif /* HAVE_WINDOW_SYSTEM */
358
359 static struct Lisp_String *allocate_string P_ ((void));
360 static void compact_small_strings P_ ((void));
361 static void free_large_strings P_ ((void));
362 static void sweep_strings P_ ((void));
363
364 extern int message_enable_multibyte;
365
366 /* When scanning the C stack for live Lisp objects, Emacs keeps track
367 of what memory allocated via lisp_malloc is intended for what
368 purpose. This enumeration specifies the type of memory. */
369
370 enum mem_type
371 {
372 MEM_TYPE_NON_LISP,
373 MEM_TYPE_BUFFER,
374 MEM_TYPE_CONS,
375 MEM_TYPE_STRING,
376 MEM_TYPE_MISC,
377 MEM_TYPE_SYMBOL,
378 MEM_TYPE_FLOAT,
379 /* We used to keep separate mem_types for subtypes of vectors such as
380 process, hash_table, frame, terminal, and window, but we never made
381 use of the distinction, so it only caused source-code complexity
382 and runtime slowdown. Minor but pointless. */
383 MEM_TYPE_VECTORLIKE
384 };
385
386 static POINTER_TYPE *lisp_align_malloc P_ ((size_t, enum mem_type));
387 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
388 void refill_memory_reserve ();
389
390
391 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
392
393 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
394 #include <stdio.h> /* For fprintf. */
395 #endif
396
397 /* A unique object in pure space used to make some Lisp objects
398 on free lists recognizable in O(1). */
399
400 static Lisp_Object Vdead;
401
402 #ifdef GC_MALLOC_CHECK
403
404 enum mem_type allocated_mem_type;
405 static int dont_register_blocks;
406
407 #endif /* GC_MALLOC_CHECK */
408
409 /* A node in the red-black tree describing allocated memory containing
410 Lisp data. Each such block is recorded with its start and end
411 address when it is allocated, and removed from the tree when it
412 is freed.
413
414 A red-black tree is a balanced binary tree with the following
415 properties:
416
417 1. Every node is either red or black.
418 2. Every leaf is black.
419 3. If a node is red, then both of its children are black.
420 4. Every simple path from a node to a descendant leaf contains
421 the same number of black nodes.
422 5. The root is always black.
423
424 When nodes are inserted into the tree, or deleted from the tree,
425 the tree is "fixed" so that these properties are always true.
426
427 A red-black tree with N internal nodes has height at most 2
428 log(N+1). Searches, insertions and deletions are done in O(log N).
429 Please see a text book about data structures for a detailed
430 description of red-black trees. Any book worth its salt should
431 describe them. */
432
433 struct mem_node
434 {
435 /* Children of this node. These pointers are never NULL. When there
436 is no child, the value is MEM_NIL, which points to a dummy node. */
437 struct mem_node *left, *right;
438
439 /* The parent of this node. In the root node, this is NULL. */
440 struct mem_node *parent;
441
442 /* Start and end of allocated region. */
443 void *start, *end;
444
445 /* Node color. */
446 enum {MEM_BLACK, MEM_RED} color;
447
448 /* Memory type. */
449 enum mem_type type;
450 };
451
452 /* Base address of stack. Set in main. */
453
454 Lisp_Object *stack_base;
455
456 /* Root of the tree describing allocated Lisp memory. */
457
458 static struct mem_node *mem_root;
459
460 /* Lowest and highest known address in the heap. */
461
462 static void *min_heap_address, *max_heap_address;
463
464 /* Sentinel node of the tree. */
465
466 static struct mem_node mem_z;
467 #define MEM_NIL &mem_z
468
469 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
470 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT));
471 static void lisp_free P_ ((POINTER_TYPE *));
472 static void mark_stack P_ ((void));
473 static int live_vector_p P_ ((struct mem_node *, void *));
474 static int live_buffer_p P_ ((struct mem_node *, void *));
475 static int live_string_p P_ ((struct mem_node *, void *));
476 static int live_cons_p P_ ((struct mem_node *, void *));
477 static int live_symbol_p P_ ((struct mem_node *, void *));
478 static int live_float_p P_ ((struct mem_node *, void *));
479 static int live_misc_p P_ ((struct mem_node *, void *));
480 static void mark_maybe_object P_ ((Lisp_Object));
481 static void mark_memory P_ ((void *, void *, int));
482 static void mem_init P_ ((void));
483 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
484 static void mem_insert_fixup P_ ((struct mem_node *));
485 static void mem_rotate_left P_ ((struct mem_node *));
486 static void mem_rotate_right P_ ((struct mem_node *));
487 static void mem_delete P_ ((struct mem_node *));
488 static void mem_delete_fixup P_ ((struct mem_node *));
489 static INLINE struct mem_node *mem_find P_ ((void *));
490
491
492 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
493 static void check_gcpros P_ ((void));
494 #endif
495
496 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
497
498 /* Recording what needs to be marked for gc. */
499
500 struct gcpro *gcprolist;
501
502 /* Addresses of staticpro'd variables. Initialize it to a nonzero
503 value; otherwise some compilers put it into BSS. */
504
505 #define NSTATICS 0x600
506 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
507
508 /* Index of next unused slot in staticvec. */
509
510 static int staticidx = 0;
511
512 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
513
514
515 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
516 ALIGNMENT must be a power of 2. */
517
518 #define ALIGN(ptr, ALIGNMENT) \
519 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
520 & ~((ALIGNMENT) - 1)))
521
522
523 \f
524 /************************************************************************
525 Malloc
526 ************************************************************************/
527
528 /* Function malloc calls this if it finds we are near exhausting storage. */
529
530 void
531 malloc_warning (str)
532 char *str;
533 {
534 pending_malloc_warning = str;
535 }
536
537
538 /* Display an already-pending malloc warning. */
539
540 void
541 display_malloc_warning ()
542 {
543 call3 (intern ("display-warning"),
544 intern ("alloc"),
545 build_string (pending_malloc_warning),
546 intern ("emergency"));
547 pending_malloc_warning = 0;
548 }
549
550
551 #ifdef DOUG_LEA_MALLOC
552 # define BYTES_USED (mallinfo ().uordblks)
553 #else
554 # define BYTES_USED _bytes_used
555 #endif
556 \f
557 /* Called if we can't allocate relocatable space for a buffer. */
558
559 void
560 buffer_memory_full ()
561 {
562 /* If buffers use the relocating allocator, no need to free
563 spare_memory, because we may have plenty of malloc space left
564 that we could get, and if we don't, the malloc that fails will
565 itself cause spare_memory to be freed. If buffers don't use the
566 relocating allocator, treat this like any other failing
567 malloc. */
568
569 #ifndef REL_ALLOC
570 memory_full ();
571 #endif
572
573 /* This used to call error, but if we've run out of memory, we could
574 get infinite recursion trying to build the string. */
575 xsignal (Qnil, Vmemory_signal_data);
576 }
577
578
579 #ifdef XMALLOC_OVERRUN_CHECK
580
581 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
582 and a 16 byte trailer around each block.
583
584 The header consists of 12 fixed bytes + a 4 byte integer contaning the
585 original block size, while the trailer consists of 16 fixed bytes.
586
587 The header is used to detect whether this block has been allocated
588 through these functions -- as it seems that some low-level libc
589 functions may bypass the malloc hooks.
590 */
591
592
593 #define XMALLOC_OVERRUN_CHECK_SIZE 16
594
595 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
596 { 0x9a, 0x9b, 0xae, 0xaf,
597 0xbf, 0xbe, 0xce, 0xcf,
598 0xea, 0xeb, 0xec, 0xed };
599
600 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
601 { 0xaa, 0xab, 0xac, 0xad,
602 0xba, 0xbb, 0xbc, 0xbd,
603 0xca, 0xcb, 0xcc, 0xcd,
604 0xda, 0xdb, 0xdc, 0xdd };
605
606 /* Macros to insert and extract the block size in the header. */
607
608 #define XMALLOC_PUT_SIZE(ptr, size) \
609 (ptr[-1] = (size & 0xff), \
610 ptr[-2] = ((size >> 8) & 0xff), \
611 ptr[-3] = ((size >> 16) & 0xff), \
612 ptr[-4] = ((size >> 24) & 0xff))
613
614 #define XMALLOC_GET_SIZE(ptr) \
615 (size_t)((unsigned)(ptr[-1]) | \
616 ((unsigned)(ptr[-2]) << 8) | \
617 ((unsigned)(ptr[-3]) << 16) | \
618 ((unsigned)(ptr[-4]) << 24))
619
620
621 /* The call depth in overrun_check functions. For example, this might happen:
622 xmalloc()
623 overrun_check_malloc()
624 -> malloc -> (via hook)_-> emacs_blocked_malloc
625 -> overrun_check_malloc
626 call malloc (hooks are NULL, so real malloc is called).
627 malloc returns 10000.
628 add overhead, return 10016.
629 <- (back in overrun_check_malloc)
630 add overhead again, return 10032
631 xmalloc returns 10032.
632
633 (time passes).
634
635 xfree(10032)
636 overrun_check_free(10032)
637 decrease overhed
638 free(10016) <- crash, because 10000 is the original pointer. */
639
640 static int check_depth;
641
642 /* Like malloc, but wraps allocated block with header and trailer. */
643
644 POINTER_TYPE *
645 overrun_check_malloc (size)
646 size_t size;
647 {
648 register unsigned char *val;
649 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
650
651 val = (unsigned char *) malloc (size + overhead);
652 if (val && check_depth == 1)
653 {
654 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
655 val += XMALLOC_OVERRUN_CHECK_SIZE;
656 XMALLOC_PUT_SIZE(val, size);
657 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
658 }
659 --check_depth;
660 return (POINTER_TYPE *)val;
661 }
662
663
664 /* Like realloc, but checks old block for overrun, and wraps new block
665 with header and trailer. */
666
667 POINTER_TYPE *
668 overrun_check_realloc (block, size)
669 POINTER_TYPE *block;
670 size_t size;
671 {
672 register unsigned char *val = (unsigned char *)block;
673 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
674
675 if (val
676 && check_depth == 1
677 && bcmp (xmalloc_overrun_check_header,
678 val - XMALLOC_OVERRUN_CHECK_SIZE,
679 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
680 {
681 size_t osize = XMALLOC_GET_SIZE (val);
682 if (bcmp (xmalloc_overrun_check_trailer,
683 val + osize,
684 XMALLOC_OVERRUN_CHECK_SIZE))
685 abort ();
686 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
687 val -= XMALLOC_OVERRUN_CHECK_SIZE;
688 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
689 }
690
691 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
692
693 if (val && check_depth == 1)
694 {
695 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
696 val += XMALLOC_OVERRUN_CHECK_SIZE;
697 XMALLOC_PUT_SIZE(val, size);
698 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
699 }
700 --check_depth;
701 return (POINTER_TYPE *)val;
702 }
703
704 /* Like free, but checks block for overrun. */
705
706 void
707 overrun_check_free (block)
708 POINTER_TYPE *block;
709 {
710 unsigned char *val = (unsigned char *)block;
711
712 ++check_depth;
713 if (val
714 && check_depth == 1
715 && bcmp (xmalloc_overrun_check_header,
716 val - XMALLOC_OVERRUN_CHECK_SIZE,
717 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
718 {
719 size_t osize = XMALLOC_GET_SIZE (val);
720 if (bcmp (xmalloc_overrun_check_trailer,
721 val + osize,
722 XMALLOC_OVERRUN_CHECK_SIZE))
723 abort ();
724 #ifdef XMALLOC_CLEAR_FREE_MEMORY
725 val -= XMALLOC_OVERRUN_CHECK_SIZE;
726 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
727 #else
728 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
729 val -= XMALLOC_OVERRUN_CHECK_SIZE;
730 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
731 #endif
732 }
733
734 free (val);
735 --check_depth;
736 }
737
738 #undef malloc
739 #undef realloc
740 #undef free
741 #define malloc overrun_check_malloc
742 #define realloc overrun_check_realloc
743 #define free overrun_check_free
744 #endif
745
746 #ifdef SYNC_INPUT
747 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
748 there's no need to block input around malloc. */
749 #define MALLOC_BLOCK_INPUT ((void)0)
750 #define MALLOC_UNBLOCK_INPUT ((void)0)
751 #else
752 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
753 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
754 #endif
755
756 /* Like malloc but check for no memory and block interrupt input.. */
757
758 POINTER_TYPE *
759 xmalloc (size)
760 size_t size;
761 {
762 register POINTER_TYPE *val;
763
764 MALLOC_BLOCK_INPUT;
765 val = (POINTER_TYPE *) malloc (size);
766 MALLOC_UNBLOCK_INPUT;
767
768 if (!val && size)
769 memory_full ();
770 return val;
771 }
772
773
774 /* Like realloc but check for no memory and block interrupt input.. */
775
776 POINTER_TYPE *
777 xrealloc (block, size)
778 POINTER_TYPE *block;
779 size_t size;
780 {
781 register POINTER_TYPE *val;
782
783 MALLOC_BLOCK_INPUT;
784 /* We must call malloc explicitly when BLOCK is 0, since some
785 reallocs don't do this. */
786 if (! block)
787 val = (POINTER_TYPE *) malloc (size);
788 else
789 val = (POINTER_TYPE *) realloc (block, size);
790 MALLOC_UNBLOCK_INPUT;
791
792 if (!val && size) memory_full ();
793 return val;
794 }
795
796
797 /* Like free but block interrupt input. */
798
799 void
800 xfree (block)
801 POINTER_TYPE *block;
802 {
803 MALLOC_BLOCK_INPUT;
804 free (block);
805 MALLOC_UNBLOCK_INPUT;
806 /* We don't call refill_memory_reserve here
807 because that duplicates doing so in emacs_blocked_free
808 and the criterion should go there. */
809 }
810
811
812 /* Like strdup, but uses xmalloc. */
813
814 char *
815 xstrdup (s)
816 const char *s;
817 {
818 size_t len = strlen (s) + 1;
819 char *p = (char *) xmalloc (len);
820 bcopy (s, p, len);
821 return p;
822 }
823
824
825 /* Unwind for SAFE_ALLOCA */
826
827 Lisp_Object
828 safe_alloca_unwind (arg)
829 Lisp_Object arg;
830 {
831 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
832
833 p->dogc = 0;
834 xfree (p->pointer);
835 p->pointer = 0;
836 free_misc (arg);
837 return Qnil;
838 }
839
840
841 /* Like malloc but used for allocating Lisp data. NBYTES is the
842 number of bytes to allocate, TYPE describes the intended use of the
843 allcated memory block (for strings, for conses, ...). */
844
845 #ifndef USE_LSB_TAG
846 static void *lisp_malloc_loser;
847 #endif
848
849 static POINTER_TYPE *
850 lisp_malloc (nbytes, type)
851 size_t nbytes;
852 enum mem_type type;
853 {
854 register void *val;
855
856 MALLOC_BLOCK_INPUT;
857
858 #ifdef GC_MALLOC_CHECK
859 allocated_mem_type = type;
860 #endif
861
862 val = (void *) malloc (nbytes);
863
864 #ifndef USE_LSB_TAG
865 /* If the memory just allocated cannot be addressed thru a Lisp
866 object's pointer, and it needs to be,
867 that's equivalent to running out of memory. */
868 if (val && type != MEM_TYPE_NON_LISP)
869 {
870 Lisp_Object tem;
871 XSETCONS (tem, (char *) val + nbytes - 1);
872 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
873 {
874 lisp_malloc_loser = val;
875 free (val);
876 val = 0;
877 }
878 }
879 #endif
880
881 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
882 if (val && type != MEM_TYPE_NON_LISP)
883 mem_insert (val, (char *) val + nbytes, type);
884 #endif
885
886 MALLOC_UNBLOCK_INPUT;
887 if (!val && nbytes)
888 memory_full ();
889 return val;
890 }
891
892 /* Free BLOCK. This must be called to free memory allocated with a
893 call to lisp_malloc. */
894
895 static void
896 lisp_free (block)
897 POINTER_TYPE *block;
898 {
899 MALLOC_BLOCK_INPUT;
900 free (block);
901 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
902 mem_delete (mem_find (block));
903 #endif
904 MALLOC_UNBLOCK_INPUT;
905 }
906
907 /* Allocation of aligned blocks of memory to store Lisp data. */
908 /* The entry point is lisp_align_malloc which returns blocks of at most */
909 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
910
911 /* Use posix_memalloc if the system has it and we're using the system's
912 malloc (because our gmalloc.c routines don't have posix_memalign although
913 its memalloc could be used). */
914 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
915 #define USE_POSIX_MEMALIGN 1
916 #endif
917
918 /* BLOCK_ALIGN has to be a power of 2. */
919 #define BLOCK_ALIGN (1 << 10)
920
921 /* Padding to leave at the end of a malloc'd block. This is to give
922 malloc a chance to minimize the amount of memory wasted to alignment.
923 It should be tuned to the particular malloc library used.
924 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
925 posix_memalign on the other hand would ideally prefer a value of 4
926 because otherwise, there's 1020 bytes wasted between each ablocks.
927 In Emacs, testing shows that those 1020 can most of the time be
928 efficiently used by malloc to place other objects, so a value of 0 can
929 still preferable unless you have a lot of aligned blocks and virtually
930 nothing else. */
931 #define BLOCK_PADDING 0
932 #define BLOCK_BYTES \
933 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
934
935 /* Internal data structures and constants. */
936
937 #define ABLOCKS_SIZE 16
938
939 /* An aligned block of memory. */
940 struct ablock
941 {
942 union
943 {
944 char payload[BLOCK_BYTES];
945 struct ablock *next_free;
946 } x;
947 /* `abase' is the aligned base of the ablocks. */
948 /* It is overloaded to hold the virtual `busy' field that counts
949 the number of used ablock in the parent ablocks.
950 The first ablock has the `busy' field, the others have the `abase'
951 field. To tell the difference, we assume that pointers will have
952 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
953 is used to tell whether the real base of the parent ablocks is `abase'
954 (if not, the word before the first ablock holds a pointer to the
955 real base). */
956 struct ablocks *abase;
957 /* The padding of all but the last ablock is unused. The padding of
958 the last ablock in an ablocks is not allocated. */
959 #if BLOCK_PADDING
960 char padding[BLOCK_PADDING];
961 #endif
962 };
963
964 /* A bunch of consecutive aligned blocks. */
965 struct ablocks
966 {
967 struct ablock blocks[ABLOCKS_SIZE];
968 };
969
970 /* Size of the block requested from malloc or memalign. */
971 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
972
973 #define ABLOCK_ABASE(block) \
974 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
975 ? (struct ablocks *)(block) \
976 : (block)->abase)
977
978 /* Virtual `busy' field. */
979 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
980
981 /* Pointer to the (not necessarily aligned) malloc block. */
982 #ifdef USE_POSIX_MEMALIGN
983 #define ABLOCKS_BASE(abase) (abase)
984 #else
985 #define ABLOCKS_BASE(abase) \
986 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
987 #endif
988
989 /* The list of free ablock. */
990 static struct ablock *free_ablock;
991
992 /* Allocate an aligned block of nbytes.
993 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
994 smaller or equal to BLOCK_BYTES. */
995 static POINTER_TYPE *
996 lisp_align_malloc (nbytes, type)
997 size_t nbytes;
998 enum mem_type type;
999 {
1000 void *base, *val;
1001 struct ablocks *abase;
1002
1003 eassert (nbytes <= BLOCK_BYTES);
1004
1005 MALLOC_BLOCK_INPUT;
1006
1007 #ifdef GC_MALLOC_CHECK
1008 allocated_mem_type = type;
1009 #endif
1010
1011 if (!free_ablock)
1012 {
1013 int i;
1014 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
1015
1016 #ifdef DOUG_LEA_MALLOC
1017 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1018 because mapped region contents are not preserved in
1019 a dumped Emacs. */
1020 mallopt (M_MMAP_MAX, 0);
1021 #endif
1022
1023 #ifdef USE_POSIX_MEMALIGN
1024 {
1025 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1026 if (err)
1027 base = NULL;
1028 abase = base;
1029 }
1030 #else
1031 base = malloc (ABLOCKS_BYTES);
1032 abase = ALIGN (base, BLOCK_ALIGN);
1033 #endif
1034
1035 if (base == 0)
1036 {
1037 MALLOC_UNBLOCK_INPUT;
1038 memory_full ();
1039 }
1040
1041 aligned = (base == abase);
1042 if (!aligned)
1043 ((void**)abase)[-1] = base;
1044
1045 #ifdef DOUG_LEA_MALLOC
1046 /* Back to a reasonable maximum of mmap'ed areas. */
1047 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1048 #endif
1049
1050 #ifndef USE_LSB_TAG
1051 /* If the memory just allocated cannot be addressed thru a Lisp
1052 object's pointer, and it needs to be, that's equivalent to
1053 running out of memory. */
1054 if (type != MEM_TYPE_NON_LISP)
1055 {
1056 Lisp_Object tem;
1057 char *end = (char *) base + ABLOCKS_BYTES - 1;
1058 XSETCONS (tem, end);
1059 if ((char *) XCONS (tem) != end)
1060 {
1061 lisp_malloc_loser = base;
1062 free (base);
1063 MALLOC_UNBLOCK_INPUT;
1064 memory_full ();
1065 }
1066 }
1067 #endif
1068
1069 /* Initialize the blocks and put them on the free list.
1070 Is `base' was not properly aligned, we can't use the last block. */
1071 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1072 {
1073 abase->blocks[i].abase = abase;
1074 abase->blocks[i].x.next_free = free_ablock;
1075 free_ablock = &abase->blocks[i];
1076 }
1077 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1078
1079 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1080 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1081 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1082 eassert (ABLOCKS_BASE (abase) == base);
1083 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1084 }
1085
1086 abase = ABLOCK_ABASE (free_ablock);
1087 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1088 val = free_ablock;
1089 free_ablock = free_ablock->x.next_free;
1090
1091 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1092 if (val && type != MEM_TYPE_NON_LISP)
1093 mem_insert (val, (char *) val + nbytes, type);
1094 #endif
1095
1096 MALLOC_UNBLOCK_INPUT;
1097 if (!val && nbytes)
1098 memory_full ();
1099
1100 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1101 return val;
1102 }
1103
1104 static void
1105 lisp_align_free (block)
1106 POINTER_TYPE *block;
1107 {
1108 struct ablock *ablock = block;
1109 struct ablocks *abase = ABLOCK_ABASE (ablock);
1110
1111 MALLOC_BLOCK_INPUT;
1112 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1113 mem_delete (mem_find (block));
1114 #endif
1115 /* Put on free list. */
1116 ablock->x.next_free = free_ablock;
1117 free_ablock = ablock;
1118 /* Update busy count. */
1119 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1120
1121 if (2 > (long) ABLOCKS_BUSY (abase))
1122 { /* All the blocks are free. */
1123 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1124 struct ablock **tem = &free_ablock;
1125 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1126
1127 while (*tem)
1128 {
1129 if (*tem >= (struct ablock *) abase && *tem < atop)
1130 {
1131 i++;
1132 *tem = (*tem)->x.next_free;
1133 }
1134 else
1135 tem = &(*tem)->x.next_free;
1136 }
1137 eassert ((aligned & 1) == aligned);
1138 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1139 #ifdef USE_POSIX_MEMALIGN
1140 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1141 #endif
1142 free (ABLOCKS_BASE (abase));
1143 }
1144 MALLOC_UNBLOCK_INPUT;
1145 }
1146
1147 /* Return a new buffer structure allocated from the heap with
1148 a call to lisp_malloc. */
1149
1150 struct buffer *
1151 allocate_buffer ()
1152 {
1153 struct buffer *b
1154 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1155 MEM_TYPE_BUFFER);
1156 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1157 XSETPVECTYPE (b, PVEC_BUFFER);
1158 return b;
1159 }
1160
1161 \f
1162 #ifndef SYSTEM_MALLOC
1163
1164 /* Arranging to disable input signals while we're in malloc.
1165
1166 This only works with GNU malloc. To help out systems which can't
1167 use GNU malloc, all the calls to malloc, realloc, and free
1168 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1169 pair; unfortunately, we have no idea what C library functions
1170 might call malloc, so we can't really protect them unless you're
1171 using GNU malloc. Fortunately, most of the major operating systems
1172 can use GNU malloc. */
1173
1174 #ifndef SYNC_INPUT
1175 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1176 there's no need to block input around malloc. */
1177
1178 #ifndef DOUG_LEA_MALLOC
1179 extern void * (*__malloc_hook) P_ ((size_t, const void *));
1180 extern void * (*__realloc_hook) P_ ((void *, size_t, const void *));
1181 extern void (*__free_hook) P_ ((void *, const void *));
1182 /* Else declared in malloc.h, perhaps with an extra arg. */
1183 #endif /* DOUG_LEA_MALLOC */
1184 static void * (*old_malloc_hook) P_ ((size_t, const void *));
1185 static void * (*old_realloc_hook) P_ ((void *, size_t, const void*));
1186 static void (*old_free_hook) P_ ((void*, const void*));
1187
1188 /* This function is used as the hook for free to call. */
1189
1190 static void
1191 emacs_blocked_free (ptr, ptr2)
1192 void *ptr;
1193 const void *ptr2;
1194 {
1195 BLOCK_INPUT_ALLOC;
1196
1197 #ifdef GC_MALLOC_CHECK
1198 if (ptr)
1199 {
1200 struct mem_node *m;
1201
1202 m = mem_find (ptr);
1203 if (m == MEM_NIL || m->start != ptr)
1204 {
1205 fprintf (stderr,
1206 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1207 abort ();
1208 }
1209 else
1210 {
1211 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1212 mem_delete (m);
1213 }
1214 }
1215 #endif /* GC_MALLOC_CHECK */
1216
1217 __free_hook = old_free_hook;
1218 free (ptr);
1219
1220 /* If we released our reserve (due to running out of memory),
1221 and we have a fair amount free once again,
1222 try to set aside another reserve in case we run out once more. */
1223 if (! NILP (Vmemory_full)
1224 /* Verify there is enough space that even with the malloc
1225 hysteresis this call won't run out again.
1226 The code here is correct as long as SPARE_MEMORY
1227 is substantially larger than the block size malloc uses. */
1228 && (bytes_used_when_full
1229 > ((bytes_used_when_reconsidered = BYTES_USED)
1230 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1231 refill_memory_reserve ();
1232
1233 __free_hook = emacs_blocked_free;
1234 UNBLOCK_INPUT_ALLOC;
1235 }
1236
1237
1238 /* This function is the malloc hook that Emacs uses. */
1239
1240 static void *
1241 emacs_blocked_malloc (size, ptr)
1242 size_t size;
1243 const void *ptr;
1244 {
1245 void *value;
1246
1247 BLOCK_INPUT_ALLOC;
1248 __malloc_hook = old_malloc_hook;
1249 #ifdef DOUG_LEA_MALLOC
1250 /* Segfaults on my system. --lorentey */
1251 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1252 #else
1253 __malloc_extra_blocks = malloc_hysteresis;
1254 #endif
1255
1256 value = (void *) malloc (size);
1257
1258 #ifdef GC_MALLOC_CHECK
1259 {
1260 struct mem_node *m = mem_find (value);
1261 if (m != MEM_NIL)
1262 {
1263 fprintf (stderr, "Malloc returned %p which is already in use\n",
1264 value);
1265 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1266 m->start, m->end, (char *) m->end - (char *) m->start,
1267 m->type);
1268 abort ();
1269 }
1270
1271 if (!dont_register_blocks)
1272 {
1273 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1274 allocated_mem_type = MEM_TYPE_NON_LISP;
1275 }
1276 }
1277 #endif /* GC_MALLOC_CHECK */
1278
1279 __malloc_hook = emacs_blocked_malloc;
1280 UNBLOCK_INPUT_ALLOC;
1281
1282 /* fprintf (stderr, "%p malloc\n", value); */
1283 return value;
1284 }
1285
1286
1287 /* This function is the realloc hook that Emacs uses. */
1288
1289 static void *
1290 emacs_blocked_realloc (ptr, size, ptr2)
1291 void *ptr;
1292 size_t size;
1293 const void *ptr2;
1294 {
1295 void *value;
1296
1297 BLOCK_INPUT_ALLOC;
1298 __realloc_hook = old_realloc_hook;
1299
1300 #ifdef GC_MALLOC_CHECK
1301 if (ptr)
1302 {
1303 struct mem_node *m = mem_find (ptr);
1304 if (m == MEM_NIL || m->start != ptr)
1305 {
1306 fprintf (stderr,
1307 "Realloc of %p which wasn't allocated with malloc\n",
1308 ptr);
1309 abort ();
1310 }
1311
1312 mem_delete (m);
1313 }
1314
1315 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1316
1317 /* Prevent malloc from registering blocks. */
1318 dont_register_blocks = 1;
1319 #endif /* GC_MALLOC_CHECK */
1320
1321 value = (void *) realloc (ptr, size);
1322
1323 #ifdef GC_MALLOC_CHECK
1324 dont_register_blocks = 0;
1325
1326 {
1327 struct mem_node *m = mem_find (value);
1328 if (m != MEM_NIL)
1329 {
1330 fprintf (stderr, "Realloc returns memory that is already in use\n");
1331 abort ();
1332 }
1333
1334 /* Can't handle zero size regions in the red-black tree. */
1335 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1336 }
1337
1338 /* fprintf (stderr, "%p <- realloc\n", value); */
1339 #endif /* GC_MALLOC_CHECK */
1340
1341 __realloc_hook = emacs_blocked_realloc;
1342 UNBLOCK_INPUT_ALLOC;
1343
1344 return value;
1345 }
1346
1347
1348 #ifdef HAVE_GTK_AND_PTHREAD
1349 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1350 normal malloc. Some thread implementations need this as they call
1351 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1352 calls malloc because it is the first call, and we have an endless loop. */
1353
1354 void
1355 reset_malloc_hooks ()
1356 {
1357 __free_hook = old_free_hook;
1358 __malloc_hook = old_malloc_hook;
1359 __realloc_hook = old_realloc_hook;
1360 }
1361 #endif /* HAVE_GTK_AND_PTHREAD */
1362
1363
1364 /* Called from main to set up malloc to use our hooks. */
1365
1366 void
1367 uninterrupt_malloc ()
1368 {
1369 #ifdef HAVE_GTK_AND_PTHREAD
1370 pthread_mutexattr_t attr;
1371
1372 /* GLIBC has a faster way to do this, but lets keep it portable.
1373 This is according to the Single UNIX Specification. */
1374 pthread_mutexattr_init (&attr);
1375 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1376 pthread_mutex_init (&alloc_mutex, &attr);
1377 #endif /* HAVE_GTK_AND_PTHREAD */
1378
1379 if (__free_hook != emacs_blocked_free)
1380 old_free_hook = __free_hook;
1381 __free_hook = emacs_blocked_free;
1382
1383 if (__malloc_hook != emacs_blocked_malloc)
1384 old_malloc_hook = __malloc_hook;
1385 __malloc_hook = emacs_blocked_malloc;
1386
1387 if (__realloc_hook != emacs_blocked_realloc)
1388 old_realloc_hook = __realloc_hook;
1389 __realloc_hook = emacs_blocked_realloc;
1390 }
1391
1392 #endif /* not SYNC_INPUT */
1393 #endif /* not SYSTEM_MALLOC */
1394
1395
1396 \f
1397 /***********************************************************************
1398 Interval Allocation
1399 ***********************************************************************/
1400
1401 /* Number of intervals allocated in an interval_block structure.
1402 The 1020 is 1024 minus malloc overhead. */
1403
1404 #define INTERVAL_BLOCK_SIZE \
1405 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1406
1407 /* Intervals are allocated in chunks in form of an interval_block
1408 structure. */
1409
1410 struct interval_block
1411 {
1412 /* Place `intervals' first, to preserve alignment. */
1413 struct interval intervals[INTERVAL_BLOCK_SIZE];
1414 struct interval_block *next;
1415 };
1416
1417 /* Current interval block. Its `next' pointer points to older
1418 blocks. */
1419
1420 static struct interval_block *interval_block;
1421
1422 /* Index in interval_block above of the next unused interval
1423 structure. */
1424
1425 static int interval_block_index;
1426
1427 /* Number of free and live intervals. */
1428
1429 static int total_free_intervals, total_intervals;
1430
1431 /* List of free intervals. */
1432
1433 INTERVAL interval_free_list;
1434
1435 /* Total number of interval blocks now in use. */
1436
1437 static int n_interval_blocks;
1438
1439
1440 /* Initialize interval allocation. */
1441
1442 static void
1443 init_intervals ()
1444 {
1445 interval_block = NULL;
1446 interval_block_index = INTERVAL_BLOCK_SIZE;
1447 interval_free_list = 0;
1448 n_interval_blocks = 0;
1449 }
1450
1451
1452 /* Return a new interval. */
1453
1454 INTERVAL
1455 make_interval ()
1456 {
1457 INTERVAL val;
1458
1459 /* eassert (!handling_signal); */
1460
1461 MALLOC_BLOCK_INPUT;
1462
1463 if (interval_free_list)
1464 {
1465 val = interval_free_list;
1466 interval_free_list = INTERVAL_PARENT (interval_free_list);
1467 }
1468 else
1469 {
1470 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1471 {
1472 register struct interval_block *newi;
1473
1474 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1475 MEM_TYPE_NON_LISP);
1476
1477 newi->next = interval_block;
1478 interval_block = newi;
1479 interval_block_index = 0;
1480 n_interval_blocks++;
1481 }
1482 val = &interval_block->intervals[interval_block_index++];
1483 }
1484
1485 MALLOC_UNBLOCK_INPUT;
1486
1487 consing_since_gc += sizeof (struct interval);
1488 intervals_consed++;
1489 RESET_INTERVAL (val);
1490 val->gcmarkbit = 0;
1491 return val;
1492 }
1493
1494
1495 /* Mark Lisp objects in interval I. */
1496
1497 static void
1498 mark_interval (i, dummy)
1499 register INTERVAL i;
1500 Lisp_Object dummy;
1501 {
1502 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1503 i->gcmarkbit = 1;
1504 mark_object (i->plist);
1505 }
1506
1507
1508 /* Mark the interval tree rooted in TREE. Don't call this directly;
1509 use the macro MARK_INTERVAL_TREE instead. */
1510
1511 static void
1512 mark_interval_tree (tree)
1513 register INTERVAL tree;
1514 {
1515 /* No need to test if this tree has been marked already; this
1516 function is always called through the MARK_INTERVAL_TREE macro,
1517 which takes care of that. */
1518
1519 traverse_intervals_noorder (tree, mark_interval, Qnil);
1520 }
1521
1522
1523 /* Mark the interval tree rooted in I. */
1524
1525 #define MARK_INTERVAL_TREE(i) \
1526 do { \
1527 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1528 mark_interval_tree (i); \
1529 } while (0)
1530
1531
1532 #define UNMARK_BALANCE_INTERVALS(i) \
1533 do { \
1534 if (! NULL_INTERVAL_P (i)) \
1535 (i) = balance_intervals (i); \
1536 } while (0)
1537
1538 \f
1539 /* Number support. If NO_UNION_TYPE isn't in effect, we
1540 can't create number objects in macros. */
1541 #ifndef make_number
1542 Lisp_Object
1543 make_number (n)
1544 EMACS_INT n;
1545 {
1546 Lisp_Object obj;
1547 obj.s.val = n;
1548 obj.s.type = Lisp_Int;
1549 return obj;
1550 }
1551 #endif
1552 \f
1553 /***********************************************************************
1554 String Allocation
1555 ***********************************************************************/
1556
1557 /* Lisp_Strings are allocated in string_block structures. When a new
1558 string_block is allocated, all the Lisp_Strings it contains are
1559 added to a free-list string_free_list. When a new Lisp_String is
1560 needed, it is taken from that list. During the sweep phase of GC,
1561 string_blocks that are entirely free are freed, except two which
1562 we keep.
1563
1564 String data is allocated from sblock structures. Strings larger
1565 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1566 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1567
1568 Sblocks consist internally of sdata structures, one for each
1569 Lisp_String. The sdata structure points to the Lisp_String it
1570 belongs to. The Lisp_String points back to the `u.data' member of
1571 its sdata structure.
1572
1573 When a Lisp_String is freed during GC, it is put back on
1574 string_free_list, and its `data' member and its sdata's `string'
1575 pointer is set to null. The size of the string is recorded in the
1576 `u.nbytes' member of the sdata. So, sdata structures that are no
1577 longer used, can be easily recognized, and it's easy to compact the
1578 sblocks of small strings which we do in compact_small_strings. */
1579
1580 /* Size in bytes of an sblock structure used for small strings. This
1581 is 8192 minus malloc overhead. */
1582
1583 #define SBLOCK_SIZE 8188
1584
1585 /* Strings larger than this are considered large strings. String data
1586 for large strings is allocated from individual sblocks. */
1587
1588 #define LARGE_STRING_BYTES 1024
1589
1590 /* Structure describing string memory sub-allocated from an sblock.
1591 This is where the contents of Lisp strings are stored. */
1592
1593 struct sdata
1594 {
1595 /* Back-pointer to the string this sdata belongs to. If null, this
1596 structure is free, and the NBYTES member of the union below
1597 contains the string's byte size (the same value that STRING_BYTES
1598 would return if STRING were non-null). If non-null, STRING_BYTES
1599 (STRING) is the size of the data, and DATA contains the string's
1600 contents. */
1601 struct Lisp_String *string;
1602
1603 #ifdef GC_CHECK_STRING_BYTES
1604
1605 EMACS_INT nbytes;
1606 unsigned char data[1];
1607
1608 #define SDATA_NBYTES(S) (S)->nbytes
1609 #define SDATA_DATA(S) (S)->data
1610
1611 #else /* not GC_CHECK_STRING_BYTES */
1612
1613 union
1614 {
1615 /* When STRING in non-null. */
1616 unsigned char data[1];
1617
1618 /* When STRING is null. */
1619 EMACS_INT nbytes;
1620 } u;
1621
1622
1623 #define SDATA_NBYTES(S) (S)->u.nbytes
1624 #define SDATA_DATA(S) (S)->u.data
1625
1626 #endif /* not GC_CHECK_STRING_BYTES */
1627 };
1628
1629
1630 /* Structure describing a block of memory which is sub-allocated to
1631 obtain string data memory for strings. Blocks for small strings
1632 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1633 as large as needed. */
1634
1635 struct sblock
1636 {
1637 /* Next in list. */
1638 struct sblock *next;
1639
1640 /* Pointer to the next free sdata block. This points past the end
1641 of the sblock if there isn't any space left in this block. */
1642 struct sdata *next_free;
1643
1644 /* Start of data. */
1645 struct sdata first_data;
1646 };
1647
1648 /* Number of Lisp strings in a string_block structure. The 1020 is
1649 1024 minus malloc overhead. */
1650
1651 #define STRING_BLOCK_SIZE \
1652 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1653
1654 /* Structure describing a block from which Lisp_String structures
1655 are allocated. */
1656
1657 struct string_block
1658 {
1659 /* Place `strings' first, to preserve alignment. */
1660 struct Lisp_String strings[STRING_BLOCK_SIZE];
1661 struct string_block *next;
1662 };
1663
1664 /* Head and tail of the list of sblock structures holding Lisp string
1665 data. We always allocate from current_sblock. The NEXT pointers
1666 in the sblock structures go from oldest_sblock to current_sblock. */
1667
1668 static struct sblock *oldest_sblock, *current_sblock;
1669
1670 /* List of sblocks for large strings. */
1671
1672 static struct sblock *large_sblocks;
1673
1674 /* List of string_block structures, and how many there are. */
1675
1676 static struct string_block *string_blocks;
1677 static int n_string_blocks;
1678
1679 /* Free-list of Lisp_Strings. */
1680
1681 static struct Lisp_String *string_free_list;
1682
1683 /* Number of live and free Lisp_Strings. */
1684
1685 static int total_strings, total_free_strings;
1686
1687 /* Number of bytes used by live strings. */
1688
1689 static int total_string_size;
1690
1691 /* Given a pointer to a Lisp_String S which is on the free-list
1692 string_free_list, return a pointer to its successor in the
1693 free-list. */
1694
1695 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1696
1697 /* Return a pointer to the sdata structure belonging to Lisp string S.
1698 S must be live, i.e. S->data must not be null. S->data is actually
1699 a pointer to the `u.data' member of its sdata structure; the
1700 structure starts at a constant offset in front of that. */
1701
1702 #ifdef GC_CHECK_STRING_BYTES
1703
1704 #define SDATA_OF_STRING(S) \
1705 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1706 - sizeof (EMACS_INT)))
1707
1708 #else /* not GC_CHECK_STRING_BYTES */
1709
1710 #define SDATA_OF_STRING(S) \
1711 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1712
1713 #endif /* not GC_CHECK_STRING_BYTES */
1714
1715
1716 #ifdef GC_CHECK_STRING_OVERRUN
1717
1718 /* We check for overrun in string data blocks by appending a small
1719 "cookie" after each allocated string data block, and check for the
1720 presence of this cookie during GC. */
1721
1722 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1723 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1724 { 0xde, 0xad, 0xbe, 0xef };
1725
1726 #else
1727 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1728 #endif
1729
1730 /* Value is the size of an sdata structure large enough to hold NBYTES
1731 bytes of string data. The value returned includes a terminating
1732 NUL byte, the size of the sdata structure, and padding. */
1733
1734 #ifdef GC_CHECK_STRING_BYTES
1735
1736 #define SDATA_SIZE(NBYTES) \
1737 ((sizeof (struct Lisp_String *) \
1738 + (NBYTES) + 1 \
1739 + sizeof (EMACS_INT) \
1740 + sizeof (EMACS_INT) - 1) \
1741 & ~(sizeof (EMACS_INT) - 1))
1742
1743 #else /* not GC_CHECK_STRING_BYTES */
1744
1745 #define SDATA_SIZE(NBYTES) \
1746 ((sizeof (struct Lisp_String *) \
1747 + (NBYTES) + 1 \
1748 + sizeof (EMACS_INT) - 1) \
1749 & ~(sizeof (EMACS_INT) - 1))
1750
1751 #endif /* not GC_CHECK_STRING_BYTES */
1752
1753 /* Extra bytes to allocate for each string. */
1754
1755 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1756
1757 /* Initialize string allocation. Called from init_alloc_once. */
1758
1759 static void
1760 init_strings ()
1761 {
1762 total_strings = total_free_strings = total_string_size = 0;
1763 oldest_sblock = current_sblock = large_sblocks = NULL;
1764 string_blocks = NULL;
1765 n_string_blocks = 0;
1766 string_free_list = NULL;
1767 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1768 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1769 }
1770
1771
1772 #ifdef GC_CHECK_STRING_BYTES
1773
1774 static int check_string_bytes_count;
1775
1776 static void check_string_bytes P_ ((int));
1777 static void check_sblock P_ ((struct sblock *));
1778
1779 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1780
1781
1782 /* Like GC_STRING_BYTES, but with debugging check. */
1783
1784 int
1785 string_bytes (s)
1786 struct Lisp_String *s;
1787 {
1788 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1789 if (!PURE_POINTER_P (s)
1790 && s->data
1791 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1792 abort ();
1793 return nbytes;
1794 }
1795
1796 /* Check validity of Lisp strings' string_bytes member in B. */
1797
1798 static void
1799 check_sblock (b)
1800 struct sblock *b;
1801 {
1802 struct sdata *from, *end, *from_end;
1803
1804 end = b->next_free;
1805
1806 for (from = &b->first_data; from < end; from = from_end)
1807 {
1808 /* Compute the next FROM here because copying below may
1809 overwrite data we need to compute it. */
1810 int nbytes;
1811
1812 /* Check that the string size recorded in the string is the
1813 same as the one recorded in the sdata structure. */
1814 if (from->string)
1815 CHECK_STRING_BYTES (from->string);
1816
1817 if (from->string)
1818 nbytes = GC_STRING_BYTES (from->string);
1819 else
1820 nbytes = SDATA_NBYTES (from);
1821
1822 nbytes = SDATA_SIZE (nbytes);
1823 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1824 }
1825 }
1826
1827
1828 /* Check validity of Lisp strings' string_bytes member. ALL_P
1829 non-zero means check all strings, otherwise check only most
1830 recently allocated strings. Used for hunting a bug. */
1831
1832 static void
1833 check_string_bytes (all_p)
1834 int all_p;
1835 {
1836 if (all_p)
1837 {
1838 struct sblock *b;
1839
1840 for (b = large_sblocks; b; b = b->next)
1841 {
1842 struct Lisp_String *s = b->first_data.string;
1843 if (s)
1844 CHECK_STRING_BYTES (s);
1845 }
1846
1847 for (b = oldest_sblock; b; b = b->next)
1848 check_sblock (b);
1849 }
1850 else
1851 check_sblock (current_sblock);
1852 }
1853
1854 #endif /* GC_CHECK_STRING_BYTES */
1855
1856 #ifdef GC_CHECK_STRING_FREE_LIST
1857
1858 /* Walk through the string free list looking for bogus next pointers.
1859 This may catch buffer overrun from a previous string. */
1860
1861 static void
1862 check_string_free_list ()
1863 {
1864 struct Lisp_String *s;
1865
1866 /* Pop a Lisp_String off the free-list. */
1867 s = string_free_list;
1868 while (s != NULL)
1869 {
1870 if ((unsigned)s < 1024)
1871 abort();
1872 s = NEXT_FREE_LISP_STRING (s);
1873 }
1874 }
1875 #else
1876 #define check_string_free_list()
1877 #endif
1878
1879 /* Return a new Lisp_String. */
1880
1881 static struct Lisp_String *
1882 allocate_string ()
1883 {
1884 struct Lisp_String *s;
1885
1886 /* eassert (!handling_signal); */
1887
1888 MALLOC_BLOCK_INPUT;
1889
1890 /* If the free-list is empty, allocate a new string_block, and
1891 add all the Lisp_Strings in it to the free-list. */
1892 if (string_free_list == NULL)
1893 {
1894 struct string_block *b;
1895 int i;
1896
1897 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1898 bzero (b, sizeof *b);
1899 b->next = string_blocks;
1900 string_blocks = b;
1901 ++n_string_blocks;
1902
1903 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1904 {
1905 s = b->strings + i;
1906 NEXT_FREE_LISP_STRING (s) = string_free_list;
1907 string_free_list = s;
1908 }
1909
1910 total_free_strings += STRING_BLOCK_SIZE;
1911 }
1912
1913 check_string_free_list ();
1914
1915 /* Pop a Lisp_String off the free-list. */
1916 s = string_free_list;
1917 string_free_list = NEXT_FREE_LISP_STRING (s);
1918
1919 MALLOC_UNBLOCK_INPUT;
1920
1921 /* Probably not strictly necessary, but play it safe. */
1922 bzero (s, sizeof *s);
1923
1924 --total_free_strings;
1925 ++total_strings;
1926 ++strings_consed;
1927 consing_since_gc += sizeof *s;
1928
1929 #ifdef GC_CHECK_STRING_BYTES
1930 if (!noninteractive
1931 #ifdef MAC_OS8
1932 && current_sblock
1933 #endif
1934 )
1935 {
1936 if (++check_string_bytes_count == 200)
1937 {
1938 check_string_bytes_count = 0;
1939 check_string_bytes (1);
1940 }
1941 else
1942 check_string_bytes (0);
1943 }
1944 #endif /* GC_CHECK_STRING_BYTES */
1945
1946 return s;
1947 }
1948
1949
1950 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1951 plus a NUL byte at the end. Allocate an sdata structure for S, and
1952 set S->data to its `u.data' member. Store a NUL byte at the end of
1953 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1954 S->data if it was initially non-null. */
1955
1956 void
1957 allocate_string_data (s, nchars, nbytes)
1958 struct Lisp_String *s;
1959 int nchars, nbytes;
1960 {
1961 struct sdata *data, *old_data;
1962 struct sblock *b;
1963 int needed, old_nbytes;
1964
1965 /* Determine the number of bytes needed to store NBYTES bytes
1966 of string data. */
1967 needed = SDATA_SIZE (nbytes);
1968 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1969 old_nbytes = GC_STRING_BYTES (s);
1970
1971 MALLOC_BLOCK_INPUT;
1972
1973 if (nbytes > LARGE_STRING_BYTES)
1974 {
1975 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1976
1977 #ifdef DOUG_LEA_MALLOC
1978 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1979 because mapped region contents are not preserved in
1980 a dumped Emacs.
1981
1982 In case you think of allowing it in a dumped Emacs at the
1983 cost of not being able to re-dump, there's another reason:
1984 mmap'ed data typically have an address towards the top of the
1985 address space, which won't fit into an EMACS_INT (at least on
1986 32-bit systems with the current tagging scheme). --fx */
1987 mallopt (M_MMAP_MAX, 0);
1988 #endif
1989
1990 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1991
1992 #ifdef DOUG_LEA_MALLOC
1993 /* Back to a reasonable maximum of mmap'ed areas. */
1994 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1995 #endif
1996
1997 b->next_free = &b->first_data;
1998 b->first_data.string = NULL;
1999 b->next = large_sblocks;
2000 large_sblocks = b;
2001 }
2002 else if (current_sblock == NULL
2003 || (((char *) current_sblock + SBLOCK_SIZE
2004 - (char *) current_sblock->next_free)
2005 < (needed + GC_STRING_EXTRA)))
2006 {
2007 /* Not enough room in the current sblock. */
2008 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2009 b->next_free = &b->first_data;
2010 b->first_data.string = NULL;
2011 b->next = NULL;
2012
2013 if (current_sblock)
2014 current_sblock->next = b;
2015 else
2016 oldest_sblock = b;
2017 current_sblock = b;
2018 }
2019 else
2020 b = current_sblock;
2021
2022 data = b->next_free;
2023 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2024
2025 MALLOC_UNBLOCK_INPUT;
2026
2027 data->string = s;
2028 s->data = SDATA_DATA (data);
2029 #ifdef GC_CHECK_STRING_BYTES
2030 SDATA_NBYTES (data) = nbytes;
2031 #endif
2032 s->size = nchars;
2033 s->size_byte = nbytes;
2034 s->data[nbytes] = '\0';
2035 #ifdef GC_CHECK_STRING_OVERRUN
2036 bcopy (string_overrun_cookie, (char *) data + needed,
2037 GC_STRING_OVERRUN_COOKIE_SIZE);
2038 #endif
2039
2040 /* If S had already data assigned, mark that as free by setting its
2041 string back-pointer to null, and recording the size of the data
2042 in it. */
2043 if (old_data)
2044 {
2045 SDATA_NBYTES (old_data) = old_nbytes;
2046 old_data->string = NULL;
2047 }
2048
2049 consing_since_gc += needed;
2050 }
2051
2052
2053 /* Sweep and compact strings. */
2054
2055 static void
2056 sweep_strings ()
2057 {
2058 struct string_block *b, *next;
2059 struct string_block *live_blocks = NULL;
2060
2061 string_free_list = NULL;
2062 total_strings = total_free_strings = 0;
2063 total_string_size = 0;
2064
2065 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2066 for (b = string_blocks; b; b = next)
2067 {
2068 int i, nfree = 0;
2069 struct Lisp_String *free_list_before = string_free_list;
2070
2071 next = b->next;
2072
2073 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2074 {
2075 struct Lisp_String *s = b->strings + i;
2076
2077 if (s->data)
2078 {
2079 /* String was not on free-list before. */
2080 if (STRING_MARKED_P (s))
2081 {
2082 /* String is live; unmark it and its intervals. */
2083 UNMARK_STRING (s);
2084
2085 if (!NULL_INTERVAL_P (s->intervals))
2086 UNMARK_BALANCE_INTERVALS (s->intervals);
2087
2088 ++total_strings;
2089 total_string_size += STRING_BYTES (s);
2090 }
2091 else
2092 {
2093 /* String is dead. Put it on the free-list. */
2094 struct sdata *data = SDATA_OF_STRING (s);
2095
2096 /* Save the size of S in its sdata so that we know
2097 how large that is. Reset the sdata's string
2098 back-pointer so that we know it's free. */
2099 #ifdef GC_CHECK_STRING_BYTES
2100 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2101 abort ();
2102 #else
2103 data->u.nbytes = GC_STRING_BYTES (s);
2104 #endif
2105 data->string = NULL;
2106
2107 /* Reset the strings's `data' member so that we
2108 know it's free. */
2109 s->data = NULL;
2110
2111 /* Put the string on the free-list. */
2112 NEXT_FREE_LISP_STRING (s) = string_free_list;
2113 string_free_list = s;
2114 ++nfree;
2115 }
2116 }
2117 else
2118 {
2119 /* S was on the free-list before. Put it there again. */
2120 NEXT_FREE_LISP_STRING (s) = string_free_list;
2121 string_free_list = s;
2122 ++nfree;
2123 }
2124 }
2125
2126 /* Free blocks that contain free Lisp_Strings only, except
2127 the first two of them. */
2128 if (nfree == STRING_BLOCK_SIZE
2129 && total_free_strings > STRING_BLOCK_SIZE)
2130 {
2131 lisp_free (b);
2132 --n_string_blocks;
2133 string_free_list = free_list_before;
2134 }
2135 else
2136 {
2137 total_free_strings += nfree;
2138 b->next = live_blocks;
2139 live_blocks = b;
2140 }
2141 }
2142
2143 check_string_free_list ();
2144
2145 string_blocks = live_blocks;
2146 free_large_strings ();
2147 compact_small_strings ();
2148
2149 check_string_free_list ();
2150 }
2151
2152
2153 /* Free dead large strings. */
2154
2155 static void
2156 free_large_strings ()
2157 {
2158 struct sblock *b, *next;
2159 struct sblock *live_blocks = NULL;
2160
2161 for (b = large_sblocks; b; b = next)
2162 {
2163 next = b->next;
2164
2165 if (b->first_data.string == NULL)
2166 lisp_free (b);
2167 else
2168 {
2169 b->next = live_blocks;
2170 live_blocks = b;
2171 }
2172 }
2173
2174 large_sblocks = live_blocks;
2175 }
2176
2177
2178 /* Compact data of small strings. Free sblocks that don't contain
2179 data of live strings after compaction. */
2180
2181 static void
2182 compact_small_strings ()
2183 {
2184 struct sblock *b, *tb, *next;
2185 struct sdata *from, *to, *end, *tb_end;
2186 struct sdata *to_end, *from_end;
2187
2188 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2189 to, and TB_END is the end of TB. */
2190 tb = oldest_sblock;
2191 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2192 to = &tb->first_data;
2193
2194 /* Step through the blocks from the oldest to the youngest. We
2195 expect that old blocks will stabilize over time, so that less
2196 copying will happen this way. */
2197 for (b = oldest_sblock; b; b = b->next)
2198 {
2199 end = b->next_free;
2200 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2201
2202 for (from = &b->first_data; from < end; from = from_end)
2203 {
2204 /* Compute the next FROM here because copying below may
2205 overwrite data we need to compute it. */
2206 int nbytes;
2207
2208 #ifdef GC_CHECK_STRING_BYTES
2209 /* Check that the string size recorded in the string is the
2210 same as the one recorded in the sdata structure. */
2211 if (from->string
2212 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2213 abort ();
2214 #endif /* GC_CHECK_STRING_BYTES */
2215
2216 if (from->string)
2217 nbytes = GC_STRING_BYTES (from->string);
2218 else
2219 nbytes = SDATA_NBYTES (from);
2220
2221 if (nbytes > LARGE_STRING_BYTES)
2222 abort ();
2223
2224 nbytes = SDATA_SIZE (nbytes);
2225 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2226
2227 #ifdef GC_CHECK_STRING_OVERRUN
2228 if (bcmp (string_overrun_cookie,
2229 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2230 GC_STRING_OVERRUN_COOKIE_SIZE))
2231 abort ();
2232 #endif
2233
2234 /* FROM->string non-null means it's alive. Copy its data. */
2235 if (from->string)
2236 {
2237 /* If TB is full, proceed with the next sblock. */
2238 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2239 if (to_end > tb_end)
2240 {
2241 tb->next_free = to;
2242 tb = tb->next;
2243 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2244 to = &tb->first_data;
2245 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2246 }
2247
2248 /* Copy, and update the string's `data' pointer. */
2249 if (from != to)
2250 {
2251 xassert (tb != b || to <= from);
2252 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
2253 to->string->data = SDATA_DATA (to);
2254 }
2255
2256 /* Advance past the sdata we copied to. */
2257 to = to_end;
2258 }
2259 }
2260 }
2261
2262 /* The rest of the sblocks following TB don't contain live data, so
2263 we can free them. */
2264 for (b = tb->next; b; b = next)
2265 {
2266 next = b->next;
2267 lisp_free (b);
2268 }
2269
2270 tb->next_free = to;
2271 tb->next = NULL;
2272 current_sblock = tb;
2273 }
2274
2275
2276 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2277 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2278 LENGTH must be an integer.
2279 INIT must be an integer that represents a character. */)
2280 (length, init)
2281 Lisp_Object length, init;
2282 {
2283 register Lisp_Object val;
2284 register unsigned char *p, *end;
2285 int c, nbytes;
2286
2287 CHECK_NATNUM (length);
2288 CHECK_NUMBER (init);
2289
2290 c = XINT (init);
2291 if (ASCII_CHAR_P (c))
2292 {
2293 nbytes = XINT (length);
2294 val = make_uninit_string (nbytes);
2295 p = SDATA (val);
2296 end = p + SCHARS (val);
2297 while (p != end)
2298 *p++ = c;
2299 }
2300 else
2301 {
2302 unsigned char str[MAX_MULTIBYTE_LENGTH];
2303 int len = CHAR_STRING (c, str);
2304
2305 nbytes = len * XINT (length);
2306 val = make_uninit_multibyte_string (XINT (length), nbytes);
2307 p = SDATA (val);
2308 end = p + nbytes;
2309 while (p != end)
2310 {
2311 bcopy (str, p, len);
2312 p += len;
2313 }
2314 }
2315
2316 *p = 0;
2317 return val;
2318 }
2319
2320
2321 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2322 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2323 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2324 (length, init)
2325 Lisp_Object length, init;
2326 {
2327 register Lisp_Object val;
2328 struct Lisp_Bool_Vector *p;
2329 int real_init, i;
2330 int length_in_chars, length_in_elts, bits_per_value;
2331
2332 CHECK_NATNUM (length);
2333
2334 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2335
2336 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2337 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2338 / BOOL_VECTOR_BITS_PER_CHAR);
2339
2340 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2341 slot `size' of the struct Lisp_Bool_Vector. */
2342 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2343
2344 /* Get rid of any bits that would cause confusion. */
2345 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2346 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2347 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2348
2349 p = XBOOL_VECTOR (val);
2350 p->size = XFASTINT (length);
2351
2352 real_init = (NILP (init) ? 0 : -1);
2353 for (i = 0; i < length_in_chars ; i++)
2354 p->data[i] = real_init;
2355
2356 /* Clear the extraneous bits in the last byte. */
2357 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2358 p->data[length_in_chars - 1]
2359 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2360
2361 return val;
2362 }
2363
2364
2365 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2366 of characters from the contents. This string may be unibyte or
2367 multibyte, depending on the contents. */
2368
2369 Lisp_Object
2370 make_string (contents, nbytes)
2371 const char *contents;
2372 int nbytes;
2373 {
2374 register Lisp_Object val;
2375 int nchars, multibyte_nbytes;
2376
2377 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2378 if (nbytes == nchars || nbytes != multibyte_nbytes)
2379 /* CONTENTS contains no multibyte sequences or contains an invalid
2380 multibyte sequence. We must make unibyte string. */
2381 val = make_unibyte_string (contents, nbytes);
2382 else
2383 val = make_multibyte_string (contents, nchars, nbytes);
2384 return val;
2385 }
2386
2387
2388 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2389
2390 Lisp_Object
2391 make_unibyte_string (contents, length)
2392 const char *contents;
2393 int length;
2394 {
2395 register Lisp_Object val;
2396 val = make_uninit_string (length);
2397 bcopy (contents, SDATA (val), length);
2398 STRING_SET_UNIBYTE (val);
2399 return val;
2400 }
2401
2402
2403 /* Make a multibyte string from NCHARS characters occupying NBYTES
2404 bytes at CONTENTS. */
2405
2406 Lisp_Object
2407 make_multibyte_string (contents, nchars, nbytes)
2408 const char *contents;
2409 int nchars, nbytes;
2410 {
2411 register Lisp_Object val;
2412 val = make_uninit_multibyte_string (nchars, nbytes);
2413 bcopy (contents, SDATA (val), nbytes);
2414 return val;
2415 }
2416
2417
2418 /* Make a string from NCHARS characters occupying NBYTES bytes at
2419 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2420
2421 Lisp_Object
2422 make_string_from_bytes (contents, nchars, nbytes)
2423 const char *contents;
2424 int nchars, nbytes;
2425 {
2426 register Lisp_Object val;
2427 val = make_uninit_multibyte_string (nchars, nbytes);
2428 bcopy (contents, SDATA (val), nbytes);
2429 if (SBYTES (val) == SCHARS (val))
2430 STRING_SET_UNIBYTE (val);
2431 return val;
2432 }
2433
2434
2435 /* Make a string from NCHARS characters occupying NBYTES bytes at
2436 CONTENTS. The argument MULTIBYTE controls whether to label the
2437 string as multibyte. If NCHARS is negative, it counts the number of
2438 characters by itself. */
2439
2440 Lisp_Object
2441 make_specified_string (contents, nchars, nbytes, multibyte)
2442 const char *contents;
2443 int nchars, nbytes;
2444 int multibyte;
2445 {
2446 register Lisp_Object val;
2447
2448 if (nchars < 0)
2449 {
2450 if (multibyte)
2451 nchars = multibyte_chars_in_text (contents, nbytes);
2452 else
2453 nchars = nbytes;
2454 }
2455 val = make_uninit_multibyte_string (nchars, nbytes);
2456 bcopy (contents, SDATA (val), nbytes);
2457 if (!multibyte)
2458 STRING_SET_UNIBYTE (val);
2459 return val;
2460 }
2461
2462
2463 /* Make a string from the data at STR, treating it as multibyte if the
2464 data warrants. */
2465
2466 Lisp_Object
2467 build_string (str)
2468 const char *str;
2469 {
2470 return make_string (str, strlen (str));
2471 }
2472
2473
2474 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2475 occupying LENGTH bytes. */
2476
2477 Lisp_Object
2478 make_uninit_string (length)
2479 int length;
2480 {
2481 Lisp_Object val;
2482
2483 if (!length)
2484 return empty_unibyte_string;
2485 val = make_uninit_multibyte_string (length, length);
2486 STRING_SET_UNIBYTE (val);
2487 return val;
2488 }
2489
2490
2491 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2492 which occupy NBYTES bytes. */
2493
2494 Lisp_Object
2495 make_uninit_multibyte_string (nchars, nbytes)
2496 int nchars, nbytes;
2497 {
2498 Lisp_Object string;
2499 struct Lisp_String *s;
2500
2501 if (nchars < 0)
2502 abort ();
2503 if (!nbytes)
2504 return empty_multibyte_string;
2505
2506 s = allocate_string ();
2507 allocate_string_data (s, nchars, nbytes);
2508 XSETSTRING (string, s);
2509 string_chars_consed += nbytes;
2510 return string;
2511 }
2512
2513
2514 \f
2515 /***********************************************************************
2516 Float Allocation
2517 ***********************************************************************/
2518
2519 /* We store float cells inside of float_blocks, allocating a new
2520 float_block with malloc whenever necessary. Float cells reclaimed
2521 by GC are put on a free list to be reallocated before allocating
2522 any new float cells from the latest float_block. */
2523
2524 #define FLOAT_BLOCK_SIZE \
2525 (((BLOCK_BYTES - sizeof (struct float_block *) \
2526 /* The compiler might add padding at the end. */ \
2527 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2528 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2529
2530 #define GETMARKBIT(block,n) \
2531 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2532 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2533 & 1)
2534
2535 #define SETMARKBIT(block,n) \
2536 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2537 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2538
2539 #define UNSETMARKBIT(block,n) \
2540 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2541 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2542
2543 #define FLOAT_BLOCK(fptr) \
2544 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2545
2546 #define FLOAT_INDEX(fptr) \
2547 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2548
2549 struct float_block
2550 {
2551 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2552 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2553 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2554 struct float_block *next;
2555 };
2556
2557 #define FLOAT_MARKED_P(fptr) \
2558 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2559
2560 #define FLOAT_MARK(fptr) \
2561 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2562
2563 #define FLOAT_UNMARK(fptr) \
2564 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2565
2566 /* Current float_block. */
2567
2568 struct float_block *float_block;
2569
2570 /* Index of first unused Lisp_Float in the current float_block. */
2571
2572 int float_block_index;
2573
2574 /* Total number of float blocks now in use. */
2575
2576 int n_float_blocks;
2577
2578 /* Free-list of Lisp_Floats. */
2579
2580 struct Lisp_Float *float_free_list;
2581
2582
2583 /* Initialize float allocation. */
2584
2585 static void
2586 init_float ()
2587 {
2588 float_block = NULL;
2589 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2590 float_free_list = 0;
2591 n_float_blocks = 0;
2592 }
2593
2594
2595 /* Explicitly free a float cell by putting it on the free-list. */
2596
2597 static void
2598 free_float (ptr)
2599 struct Lisp_Float *ptr;
2600 {
2601 ptr->u.chain = float_free_list;
2602 float_free_list = ptr;
2603 }
2604
2605
2606 /* Return a new float object with value FLOAT_VALUE. */
2607
2608 Lisp_Object
2609 make_float (float_value)
2610 double float_value;
2611 {
2612 register Lisp_Object val;
2613
2614 /* eassert (!handling_signal); */
2615
2616 MALLOC_BLOCK_INPUT;
2617
2618 if (float_free_list)
2619 {
2620 /* We use the data field for chaining the free list
2621 so that we won't use the same field that has the mark bit. */
2622 XSETFLOAT (val, float_free_list);
2623 float_free_list = float_free_list->u.chain;
2624 }
2625 else
2626 {
2627 if (float_block_index == FLOAT_BLOCK_SIZE)
2628 {
2629 register struct float_block *new;
2630
2631 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2632 MEM_TYPE_FLOAT);
2633 new->next = float_block;
2634 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2635 float_block = new;
2636 float_block_index = 0;
2637 n_float_blocks++;
2638 }
2639 XSETFLOAT (val, &float_block->floats[float_block_index]);
2640 float_block_index++;
2641 }
2642
2643 MALLOC_UNBLOCK_INPUT;
2644
2645 XFLOAT_DATA (val) = float_value;
2646 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2647 consing_since_gc += sizeof (struct Lisp_Float);
2648 floats_consed++;
2649 return val;
2650 }
2651
2652
2653 \f
2654 /***********************************************************************
2655 Cons Allocation
2656 ***********************************************************************/
2657
2658 /* We store cons cells inside of cons_blocks, allocating a new
2659 cons_block with malloc whenever necessary. Cons cells reclaimed by
2660 GC are put on a free list to be reallocated before allocating
2661 any new cons cells from the latest cons_block. */
2662
2663 #define CONS_BLOCK_SIZE \
2664 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2665 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2666
2667 #define CONS_BLOCK(fptr) \
2668 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2669
2670 #define CONS_INDEX(fptr) \
2671 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2672
2673 struct cons_block
2674 {
2675 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2676 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2677 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2678 struct cons_block *next;
2679 };
2680
2681 #define CONS_MARKED_P(fptr) \
2682 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2683
2684 #define CONS_MARK(fptr) \
2685 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2686
2687 #define CONS_UNMARK(fptr) \
2688 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2689
2690 /* Current cons_block. */
2691
2692 struct cons_block *cons_block;
2693
2694 /* Index of first unused Lisp_Cons in the current block. */
2695
2696 int cons_block_index;
2697
2698 /* Free-list of Lisp_Cons structures. */
2699
2700 struct Lisp_Cons *cons_free_list;
2701
2702 /* Total number of cons blocks now in use. */
2703
2704 static int n_cons_blocks;
2705
2706
2707 /* Initialize cons allocation. */
2708
2709 static void
2710 init_cons ()
2711 {
2712 cons_block = NULL;
2713 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2714 cons_free_list = 0;
2715 n_cons_blocks = 0;
2716 }
2717
2718
2719 /* Explicitly free a cons cell by putting it on the free-list. */
2720
2721 void
2722 free_cons (ptr)
2723 struct Lisp_Cons *ptr;
2724 {
2725 ptr->u.chain = cons_free_list;
2726 #if GC_MARK_STACK
2727 ptr->car = Vdead;
2728 #endif
2729 cons_free_list = ptr;
2730 }
2731
2732 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2733 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2734 (car, cdr)
2735 Lisp_Object car, cdr;
2736 {
2737 register Lisp_Object val;
2738
2739 /* eassert (!handling_signal); */
2740
2741 MALLOC_BLOCK_INPUT;
2742
2743 if (cons_free_list)
2744 {
2745 /* We use the cdr for chaining the free list
2746 so that we won't use the same field that has the mark bit. */
2747 XSETCONS (val, cons_free_list);
2748 cons_free_list = cons_free_list->u.chain;
2749 }
2750 else
2751 {
2752 if (cons_block_index == CONS_BLOCK_SIZE)
2753 {
2754 register struct cons_block *new;
2755 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2756 MEM_TYPE_CONS);
2757 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2758 new->next = cons_block;
2759 cons_block = new;
2760 cons_block_index = 0;
2761 n_cons_blocks++;
2762 }
2763 XSETCONS (val, &cons_block->conses[cons_block_index]);
2764 cons_block_index++;
2765 }
2766
2767 MALLOC_UNBLOCK_INPUT;
2768
2769 XSETCAR (val, car);
2770 XSETCDR (val, cdr);
2771 eassert (!CONS_MARKED_P (XCONS (val)));
2772 consing_since_gc += sizeof (struct Lisp_Cons);
2773 cons_cells_consed++;
2774 return val;
2775 }
2776
2777 /* Get an error now if there's any junk in the cons free list. */
2778 void
2779 check_cons_list ()
2780 {
2781 #ifdef GC_CHECK_CONS_LIST
2782 struct Lisp_Cons *tail = cons_free_list;
2783
2784 while (tail)
2785 tail = tail->u.chain;
2786 #endif
2787 }
2788
2789 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2790
2791 Lisp_Object
2792 list1 (arg1)
2793 Lisp_Object arg1;
2794 {
2795 return Fcons (arg1, Qnil);
2796 }
2797
2798 Lisp_Object
2799 list2 (arg1, arg2)
2800 Lisp_Object arg1, arg2;
2801 {
2802 return Fcons (arg1, Fcons (arg2, Qnil));
2803 }
2804
2805
2806 Lisp_Object
2807 list3 (arg1, arg2, arg3)
2808 Lisp_Object arg1, arg2, arg3;
2809 {
2810 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2811 }
2812
2813
2814 Lisp_Object
2815 list4 (arg1, arg2, arg3, arg4)
2816 Lisp_Object arg1, arg2, arg3, arg4;
2817 {
2818 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2819 }
2820
2821
2822 Lisp_Object
2823 list5 (arg1, arg2, arg3, arg4, arg5)
2824 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2825 {
2826 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2827 Fcons (arg5, Qnil)))));
2828 }
2829
2830
2831 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2832 doc: /* Return a newly created list with specified arguments as elements.
2833 Any number of arguments, even zero arguments, are allowed.
2834 usage: (list &rest OBJECTS) */)
2835 (nargs, args)
2836 int nargs;
2837 register Lisp_Object *args;
2838 {
2839 register Lisp_Object val;
2840 val = Qnil;
2841
2842 while (nargs > 0)
2843 {
2844 nargs--;
2845 val = Fcons (args[nargs], val);
2846 }
2847 return val;
2848 }
2849
2850
2851 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2852 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2853 (length, init)
2854 register Lisp_Object length, init;
2855 {
2856 register Lisp_Object val;
2857 register int size;
2858
2859 CHECK_NATNUM (length);
2860 size = XFASTINT (length);
2861
2862 val = Qnil;
2863 while (size > 0)
2864 {
2865 val = Fcons (init, val);
2866 --size;
2867
2868 if (size > 0)
2869 {
2870 val = Fcons (init, val);
2871 --size;
2872
2873 if (size > 0)
2874 {
2875 val = Fcons (init, val);
2876 --size;
2877
2878 if (size > 0)
2879 {
2880 val = Fcons (init, val);
2881 --size;
2882
2883 if (size > 0)
2884 {
2885 val = Fcons (init, val);
2886 --size;
2887 }
2888 }
2889 }
2890 }
2891
2892 QUIT;
2893 }
2894
2895 return val;
2896 }
2897
2898
2899 \f
2900 /***********************************************************************
2901 Vector Allocation
2902 ***********************************************************************/
2903
2904 /* Singly-linked list of all vectors. */
2905
2906 static struct Lisp_Vector *all_vectors;
2907
2908 /* Total number of vector-like objects now in use. */
2909
2910 static int n_vectors;
2911
2912
2913 /* Value is a pointer to a newly allocated Lisp_Vector structure
2914 with room for LEN Lisp_Objects. */
2915
2916 static struct Lisp_Vector *
2917 allocate_vectorlike (len)
2918 EMACS_INT len;
2919 {
2920 struct Lisp_Vector *p;
2921 size_t nbytes;
2922
2923 MALLOC_BLOCK_INPUT;
2924
2925 #ifdef DOUG_LEA_MALLOC
2926 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2927 because mapped region contents are not preserved in
2928 a dumped Emacs. */
2929 mallopt (M_MMAP_MAX, 0);
2930 #endif
2931
2932 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2933 /* eassert (!handling_signal); */
2934
2935 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2936 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2937
2938 #ifdef DOUG_LEA_MALLOC
2939 /* Back to a reasonable maximum of mmap'ed areas. */
2940 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2941 #endif
2942
2943 consing_since_gc += nbytes;
2944 vector_cells_consed += len;
2945
2946 p->next = all_vectors;
2947 all_vectors = p;
2948
2949 MALLOC_UNBLOCK_INPUT;
2950
2951 ++n_vectors;
2952 return p;
2953 }
2954
2955
2956 /* Allocate a vector with NSLOTS slots. */
2957
2958 struct Lisp_Vector *
2959 allocate_vector (nslots)
2960 EMACS_INT nslots;
2961 {
2962 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2963 v->size = nslots;
2964 return v;
2965 }
2966
2967
2968 /* Allocate other vector-like structures. */
2969
2970 struct Lisp_Vector *
2971 allocate_pseudovector (memlen, lisplen, tag)
2972 int memlen, lisplen;
2973 EMACS_INT tag;
2974 {
2975 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2976 EMACS_INT i;
2977
2978 /* Only the first lisplen slots will be traced normally by the GC. */
2979 v->size = lisplen;
2980 for (i = 0; i < lisplen; ++i)
2981 v->contents[i] = Qnil;
2982
2983 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2984 return v;
2985 }
2986
2987 struct Lisp_Hash_Table *
2988 allocate_hash_table (void)
2989 {
2990 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2991 }
2992
2993
2994 struct window *
2995 allocate_window ()
2996 {
2997 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2998 }
2999
3000
3001 struct terminal *
3002 allocate_terminal ()
3003 {
3004 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
3005 next_terminal, PVEC_TERMINAL);
3006 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3007 bzero (&(t->next_terminal),
3008 ((char*)(t+1)) - ((char*)&(t->next_terminal)));
3009
3010 return t;
3011 }
3012
3013 struct frame *
3014 allocate_frame ()
3015 {
3016 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
3017 face_cache, PVEC_FRAME);
3018 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3019 bzero (&(f->face_cache),
3020 ((char*)(f+1)) - ((char*)&(f->face_cache)));
3021 return f;
3022 }
3023
3024
3025 struct Lisp_Process *
3026 allocate_process ()
3027 {
3028 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3029 }
3030
3031
3032 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3033 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3034 See also the function `vector'. */)
3035 (length, init)
3036 register Lisp_Object length, init;
3037 {
3038 Lisp_Object vector;
3039 register EMACS_INT sizei;
3040 register int index;
3041 register struct Lisp_Vector *p;
3042
3043 CHECK_NATNUM (length);
3044 sizei = XFASTINT (length);
3045
3046 p = allocate_vector (sizei);
3047 for (index = 0; index < sizei; index++)
3048 p->contents[index] = init;
3049
3050 XSETVECTOR (vector, p);
3051 return vector;
3052 }
3053
3054
3055 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3056 doc: /* Return a newly created vector with specified arguments as elements.
3057 Any number of arguments, even zero arguments, are allowed.
3058 usage: (vector &rest OBJECTS) */)
3059 (nargs, args)
3060 register int nargs;
3061 Lisp_Object *args;
3062 {
3063 register Lisp_Object len, val;
3064 register int index;
3065 register struct Lisp_Vector *p;
3066
3067 XSETFASTINT (len, nargs);
3068 val = Fmake_vector (len, Qnil);
3069 p = XVECTOR (val);
3070 for (index = 0; index < nargs; index++)
3071 p->contents[index] = args[index];
3072 return val;
3073 }
3074
3075
3076 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3077 doc: /* Create a byte-code object with specified arguments as elements.
3078 The arguments should be the arglist, bytecode-string, constant vector,
3079 stack size, (optional) doc string, and (optional) interactive spec.
3080 The first four arguments are required; at most six have any
3081 significance.
3082 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3083 (nargs, args)
3084 register int nargs;
3085 Lisp_Object *args;
3086 {
3087 register Lisp_Object len, val;
3088 register int index;
3089 register struct Lisp_Vector *p;
3090
3091 XSETFASTINT (len, nargs);
3092 if (!NILP (Vpurify_flag))
3093 val = make_pure_vector ((EMACS_INT) nargs);
3094 else
3095 val = Fmake_vector (len, Qnil);
3096
3097 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3098 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3099 earlier because they produced a raw 8-bit string for byte-code
3100 and now such a byte-code string is loaded as multibyte while
3101 raw 8-bit characters converted to multibyte form. Thus, now we
3102 must convert them back to the original unibyte form. */
3103 args[1] = Fstring_as_unibyte (args[1]);
3104
3105 p = XVECTOR (val);
3106 for (index = 0; index < nargs; index++)
3107 {
3108 if (!NILP (Vpurify_flag))
3109 args[index] = Fpurecopy (args[index]);
3110 p->contents[index] = args[index];
3111 }
3112 XSETPVECTYPE (p, PVEC_COMPILED);
3113 XSETCOMPILED (val, p);
3114 return val;
3115 }
3116
3117
3118 \f
3119 /***********************************************************************
3120 Symbol Allocation
3121 ***********************************************************************/
3122
3123 /* Each symbol_block is just under 1020 bytes long, since malloc
3124 really allocates in units of powers of two and uses 4 bytes for its
3125 own overhead. */
3126
3127 #define SYMBOL_BLOCK_SIZE \
3128 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3129
3130 struct symbol_block
3131 {
3132 /* Place `symbols' first, to preserve alignment. */
3133 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3134 struct symbol_block *next;
3135 };
3136
3137 /* Current symbol block and index of first unused Lisp_Symbol
3138 structure in it. */
3139
3140 static struct symbol_block *symbol_block;
3141 static int symbol_block_index;
3142
3143 /* List of free symbols. */
3144
3145 static struct Lisp_Symbol *symbol_free_list;
3146
3147 /* Total number of symbol blocks now in use. */
3148
3149 static int n_symbol_blocks;
3150
3151
3152 /* Initialize symbol allocation. */
3153
3154 static void
3155 init_symbol ()
3156 {
3157 symbol_block = NULL;
3158 symbol_block_index = SYMBOL_BLOCK_SIZE;
3159 symbol_free_list = 0;
3160 n_symbol_blocks = 0;
3161 }
3162
3163
3164 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3165 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3166 Its value and function definition are void, and its property list is nil. */)
3167 (name)
3168 Lisp_Object name;
3169 {
3170 register Lisp_Object val;
3171 register struct Lisp_Symbol *p;
3172
3173 CHECK_STRING (name);
3174
3175 /* eassert (!handling_signal); */
3176
3177 MALLOC_BLOCK_INPUT;
3178
3179 if (symbol_free_list)
3180 {
3181 XSETSYMBOL (val, symbol_free_list);
3182 symbol_free_list = symbol_free_list->next;
3183 }
3184 else
3185 {
3186 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3187 {
3188 struct symbol_block *new;
3189 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3190 MEM_TYPE_SYMBOL);
3191 new->next = symbol_block;
3192 symbol_block = new;
3193 symbol_block_index = 0;
3194 n_symbol_blocks++;
3195 }
3196 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3197 symbol_block_index++;
3198 }
3199
3200 MALLOC_UNBLOCK_INPUT;
3201
3202 p = XSYMBOL (val);
3203 p->xname = name;
3204 p->plist = Qnil;
3205 p->value = Qunbound;
3206 p->function = Qunbound;
3207 p->next = NULL;
3208 p->gcmarkbit = 0;
3209 p->interned = SYMBOL_UNINTERNED;
3210 p->constant = 0;
3211 p->indirect_variable = 0;
3212 consing_since_gc += sizeof (struct Lisp_Symbol);
3213 symbols_consed++;
3214 return val;
3215 }
3216
3217
3218 \f
3219 /***********************************************************************
3220 Marker (Misc) Allocation
3221 ***********************************************************************/
3222
3223 /* Allocation of markers and other objects that share that structure.
3224 Works like allocation of conses. */
3225
3226 #define MARKER_BLOCK_SIZE \
3227 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3228
3229 struct marker_block
3230 {
3231 /* Place `markers' first, to preserve alignment. */
3232 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3233 struct marker_block *next;
3234 };
3235
3236 static struct marker_block *marker_block;
3237 static int marker_block_index;
3238
3239 static union Lisp_Misc *marker_free_list;
3240
3241 /* Total number of marker blocks now in use. */
3242
3243 static int n_marker_blocks;
3244
3245 static void
3246 init_marker ()
3247 {
3248 marker_block = NULL;
3249 marker_block_index = MARKER_BLOCK_SIZE;
3250 marker_free_list = 0;
3251 n_marker_blocks = 0;
3252 }
3253
3254 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3255
3256 Lisp_Object
3257 allocate_misc ()
3258 {
3259 Lisp_Object val;
3260
3261 /* eassert (!handling_signal); */
3262
3263 MALLOC_BLOCK_INPUT;
3264
3265 if (marker_free_list)
3266 {
3267 XSETMISC (val, marker_free_list);
3268 marker_free_list = marker_free_list->u_free.chain;
3269 }
3270 else
3271 {
3272 if (marker_block_index == MARKER_BLOCK_SIZE)
3273 {
3274 struct marker_block *new;
3275 new = (struct marker_block *) lisp_malloc (sizeof *new,
3276 MEM_TYPE_MISC);
3277 new->next = marker_block;
3278 marker_block = new;
3279 marker_block_index = 0;
3280 n_marker_blocks++;
3281 total_free_markers += MARKER_BLOCK_SIZE;
3282 }
3283 XSETMISC (val, &marker_block->markers[marker_block_index]);
3284 marker_block_index++;
3285 }
3286
3287 MALLOC_UNBLOCK_INPUT;
3288
3289 --total_free_markers;
3290 consing_since_gc += sizeof (union Lisp_Misc);
3291 misc_objects_consed++;
3292 XMISCANY (val)->gcmarkbit = 0;
3293 return val;
3294 }
3295
3296 /* Free a Lisp_Misc object */
3297
3298 void
3299 free_misc (misc)
3300 Lisp_Object misc;
3301 {
3302 XMISCTYPE (misc) = Lisp_Misc_Free;
3303 XMISC (misc)->u_free.chain = marker_free_list;
3304 marker_free_list = XMISC (misc);
3305
3306 total_free_markers++;
3307 }
3308
3309 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3310 INTEGER. This is used to package C values to call record_unwind_protect.
3311 The unwind function can get the C values back using XSAVE_VALUE. */
3312
3313 Lisp_Object
3314 make_save_value (pointer, integer)
3315 void *pointer;
3316 int integer;
3317 {
3318 register Lisp_Object val;
3319 register struct Lisp_Save_Value *p;
3320
3321 val = allocate_misc ();
3322 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3323 p = XSAVE_VALUE (val);
3324 p->pointer = pointer;
3325 p->integer = integer;
3326 p->dogc = 0;
3327 return val;
3328 }
3329
3330 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3331 doc: /* Return a newly allocated marker which does not point at any place. */)
3332 ()
3333 {
3334 register Lisp_Object val;
3335 register struct Lisp_Marker *p;
3336
3337 val = allocate_misc ();
3338 XMISCTYPE (val) = Lisp_Misc_Marker;
3339 p = XMARKER (val);
3340 p->buffer = 0;
3341 p->bytepos = 0;
3342 p->charpos = 0;
3343 p->next = NULL;
3344 p->insertion_type = 0;
3345 return val;
3346 }
3347
3348 /* Put MARKER back on the free list after using it temporarily. */
3349
3350 void
3351 free_marker (marker)
3352 Lisp_Object marker;
3353 {
3354 unchain_marker (XMARKER (marker));
3355 free_misc (marker);
3356 }
3357
3358 \f
3359 /* Return a newly created vector or string with specified arguments as
3360 elements. If all the arguments are characters that can fit
3361 in a string of events, make a string; otherwise, make a vector.
3362
3363 Any number of arguments, even zero arguments, are allowed. */
3364
3365 Lisp_Object
3366 make_event_array (nargs, args)
3367 register int nargs;
3368 Lisp_Object *args;
3369 {
3370 int i;
3371
3372 for (i = 0; i < nargs; i++)
3373 /* The things that fit in a string
3374 are characters that are in 0...127,
3375 after discarding the meta bit and all the bits above it. */
3376 if (!INTEGERP (args[i])
3377 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3378 return Fvector (nargs, args);
3379
3380 /* Since the loop exited, we know that all the things in it are
3381 characters, so we can make a string. */
3382 {
3383 Lisp_Object result;
3384
3385 result = Fmake_string (make_number (nargs), make_number (0));
3386 for (i = 0; i < nargs; i++)
3387 {
3388 SSET (result, i, XINT (args[i]));
3389 /* Move the meta bit to the right place for a string char. */
3390 if (XINT (args[i]) & CHAR_META)
3391 SSET (result, i, SREF (result, i) | 0x80);
3392 }
3393
3394 return result;
3395 }
3396 }
3397
3398
3399 \f
3400 /************************************************************************
3401 Memory Full Handling
3402 ************************************************************************/
3403
3404
3405 /* Called if malloc returns zero. */
3406
3407 void
3408 memory_full ()
3409 {
3410 int i;
3411
3412 Vmemory_full = Qt;
3413
3414 memory_full_cons_threshold = sizeof (struct cons_block);
3415
3416 /* The first time we get here, free the spare memory. */
3417 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3418 if (spare_memory[i])
3419 {
3420 if (i == 0)
3421 free (spare_memory[i]);
3422 else if (i >= 1 && i <= 4)
3423 lisp_align_free (spare_memory[i]);
3424 else
3425 lisp_free (spare_memory[i]);
3426 spare_memory[i] = 0;
3427 }
3428
3429 /* Record the space now used. When it decreases substantially,
3430 we can refill the memory reserve. */
3431 #ifndef SYSTEM_MALLOC
3432 bytes_used_when_full = BYTES_USED;
3433 #endif
3434
3435 /* This used to call error, but if we've run out of memory, we could
3436 get infinite recursion trying to build the string. */
3437 xsignal (Qnil, Vmemory_signal_data);
3438 }
3439
3440 /* If we released our reserve (due to running out of memory),
3441 and we have a fair amount free once again,
3442 try to set aside another reserve in case we run out once more.
3443
3444 This is called when a relocatable block is freed in ralloc.c,
3445 and also directly from this file, in case we're not using ralloc.c. */
3446
3447 void
3448 refill_memory_reserve ()
3449 {
3450 #ifndef SYSTEM_MALLOC
3451 if (spare_memory[0] == 0)
3452 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3453 if (spare_memory[1] == 0)
3454 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3455 MEM_TYPE_CONS);
3456 if (spare_memory[2] == 0)
3457 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3458 MEM_TYPE_CONS);
3459 if (spare_memory[3] == 0)
3460 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3461 MEM_TYPE_CONS);
3462 if (spare_memory[4] == 0)
3463 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3464 MEM_TYPE_CONS);
3465 if (spare_memory[5] == 0)
3466 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3467 MEM_TYPE_STRING);
3468 if (spare_memory[6] == 0)
3469 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3470 MEM_TYPE_STRING);
3471 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3472 Vmemory_full = Qnil;
3473 #endif
3474 }
3475 \f
3476 /************************************************************************
3477 C Stack Marking
3478 ************************************************************************/
3479
3480 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3481
3482 /* Conservative C stack marking requires a method to identify possibly
3483 live Lisp objects given a pointer value. We do this by keeping
3484 track of blocks of Lisp data that are allocated in a red-black tree
3485 (see also the comment of mem_node which is the type of nodes in
3486 that tree). Function lisp_malloc adds information for an allocated
3487 block to the red-black tree with calls to mem_insert, and function
3488 lisp_free removes it with mem_delete. Functions live_string_p etc
3489 call mem_find to lookup information about a given pointer in the
3490 tree, and use that to determine if the pointer points to a Lisp
3491 object or not. */
3492
3493 /* Initialize this part of alloc.c. */
3494
3495 static void
3496 mem_init ()
3497 {
3498 mem_z.left = mem_z.right = MEM_NIL;
3499 mem_z.parent = NULL;
3500 mem_z.color = MEM_BLACK;
3501 mem_z.start = mem_z.end = NULL;
3502 mem_root = MEM_NIL;
3503 }
3504
3505
3506 /* Value is a pointer to the mem_node containing START. Value is
3507 MEM_NIL if there is no node in the tree containing START. */
3508
3509 static INLINE struct mem_node *
3510 mem_find (start)
3511 void *start;
3512 {
3513 struct mem_node *p;
3514
3515 if (start < min_heap_address || start > max_heap_address)
3516 return MEM_NIL;
3517
3518 /* Make the search always successful to speed up the loop below. */
3519 mem_z.start = start;
3520 mem_z.end = (char *) start + 1;
3521
3522 p = mem_root;
3523 while (start < p->start || start >= p->end)
3524 p = start < p->start ? p->left : p->right;
3525 return p;
3526 }
3527
3528
3529 /* Insert a new node into the tree for a block of memory with start
3530 address START, end address END, and type TYPE. Value is a
3531 pointer to the node that was inserted. */
3532
3533 static struct mem_node *
3534 mem_insert (start, end, type)
3535 void *start, *end;
3536 enum mem_type type;
3537 {
3538 struct mem_node *c, *parent, *x;
3539
3540 if (min_heap_address == NULL || start < min_heap_address)
3541 min_heap_address = start;
3542 if (max_heap_address == NULL || end > max_heap_address)
3543 max_heap_address = end;
3544
3545 /* See where in the tree a node for START belongs. In this
3546 particular application, it shouldn't happen that a node is already
3547 present. For debugging purposes, let's check that. */
3548 c = mem_root;
3549 parent = NULL;
3550
3551 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3552
3553 while (c != MEM_NIL)
3554 {
3555 if (start >= c->start && start < c->end)
3556 abort ();
3557 parent = c;
3558 c = start < c->start ? c->left : c->right;
3559 }
3560
3561 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3562
3563 while (c != MEM_NIL)
3564 {
3565 parent = c;
3566 c = start < c->start ? c->left : c->right;
3567 }
3568
3569 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3570
3571 /* Create a new node. */
3572 #ifdef GC_MALLOC_CHECK
3573 x = (struct mem_node *) _malloc_internal (sizeof *x);
3574 if (x == NULL)
3575 abort ();
3576 #else
3577 x = (struct mem_node *) xmalloc (sizeof *x);
3578 #endif
3579 x->start = start;
3580 x->end = end;
3581 x->type = type;
3582 x->parent = parent;
3583 x->left = x->right = MEM_NIL;
3584 x->color = MEM_RED;
3585
3586 /* Insert it as child of PARENT or install it as root. */
3587 if (parent)
3588 {
3589 if (start < parent->start)
3590 parent->left = x;
3591 else
3592 parent->right = x;
3593 }
3594 else
3595 mem_root = x;
3596
3597 /* Re-establish red-black tree properties. */
3598 mem_insert_fixup (x);
3599
3600 return x;
3601 }
3602
3603
3604 /* Re-establish the red-black properties of the tree, and thereby
3605 balance the tree, after node X has been inserted; X is always red. */
3606
3607 static void
3608 mem_insert_fixup (x)
3609 struct mem_node *x;
3610 {
3611 while (x != mem_root && x->parent->color == MEM_RED)
3612 {
3613 /* X is red and its parent is red. This is a violation of
3614 red-black tree property #3. */
3615
3616 if (x->parent == x->parent->parent->left)
3617 {
3618 /* We're on the left side of our grandparent, and Y is our
3619 "uncle". */
3620 struct mem_node *y = x->parent->parent->right;
3621
3622 if (y->color == MEM_RED)
3623 {
3624 /* Uncle and parent are red but should be black because
3625 X is red. Change the colors accordingly and proceed
3626 with the grandparent. */
3627 x->parent->color = MEM_BLACK;
3628 y->color = MEM_BLACK;
3629 x->parent->parent->color = MEM_RED;
3630 x = x->parent->parent;
3631 }
3632 else
3633 {
3634 /* Parent and uncle have different colors; parent is
3635 red, uncle is black. */
3636 if (x == x->parent->right)
3637 {
3638 x = x->parent;
3639 mem_rotate_left (x);
3640 }
3641
3642 x->parent->color = MEM_BLACK;
3643 x->parent->parent->color = MEM_RED;
3644 mem_rotate_right (x->parent->parent);
3645 }
3646 }
3647 else
3648 {
3649 /* This is the symmetrical case of above. */
3650 struct mem_node *y = x->parent->parent->left;
3651
3652 if (y->color == MEM_RED)
3653 {
3654 x->parent->color = MEM_BLACK;
3655 y->color = MEM_BLACK;
3656 x->parent->parent->color = MEM_RED;
3657 x = x->parent->parent;
3658 }
3659 else
3660 {
3661 if (x == x->parent->left)
3662 {
3663 x = x->parent;
3664 mem_rotate_right (x);
3665 }
3666
3667 x->parent->color = MEM_BLACK;
3668 x->parent->parent->color = MEM_RED;
3669 mem_rotate_left (x->parent->parent);
3670 }
3671 }
3672 }
3673
3674 /* The root may have been changed to red due to the algorithm. Set
3675 it to black so that property #5 is satisfied. */
3676 mem_root->color = MEM_BLACK;
3677 }
3678
3679
3680 /* (x) (y)
3681 / \ / \
3682 a (y) ===> (x) c
3683 / \ / \
3684 b c a b */
3685
3686 static void
3687 mem_rotate_left (x)
3688 struct mem_node *x;
3689 {
3690 struct mem_node *y;
3691
3692 /* Turn y's left sub-tree into x's right sub-tree. */
3693 y = x->right;
3694 x->right = y->left;
3695 if (y->left != MEM_NIL)
3696 y->left->parent = x;
3697
3698 /* Y's parent was x's parent. */
3699 if (y != MEM_NIL)
3700 y->parent = x->parent;
3701
3702 /* Get the parent to point to y instead of x. */
3703 if (x->parent)
3704 {
3705 if (x == x->parent->left)
3706 x->parent->left = y;
3707 else
3708 x->parent->right = y;
3709 }
3710 else
3711 mem_root = y;
3712
3713 /* Put x on y's left. */
3714 y->left = x;
3715 if (x != MEM_NIL)
3716 x->parent = y;
3717 }
3718
3719
3720 /* (x) (Y)
3721 / \ / \
3722 (y) c ===> a (x)
3723 / \ / \
3724 a b b c */
3725
3726 static void
3727 mem_rotate_right (x)
3728 struct mem_node *x;
3729 {
3730 struct mem_node *y = x->left;
3731
3732 x->left = y->right;
3733 if (y->right != MEM_NIL)
3734 y->right->parent = x;
3735
3736 if (y != MEM_NIL)
3737 y->parent = x->parent;
3738 if (x->parent)
3739 {
3740 if (x == x->parent->right)
3741 x->parent->right = y;
3742 else
3743 x->parent->left = y;
3744 }
3745 else
3746 mem_root = y;
3747
3748 y->right = x;
3749 if (x != MEM_NIL)
3750 x->parent = y;
3751 }
3752
3753
3754 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3755
3756 static void
3757 mem_delete (z)
3758 struct mem_node *z;
3759 {
3760 struct mem_node *x, *y;
3761
3762 if (!z || z == MEM_NIL)
3763 return;
3764
3765 if (z->left == MEM_NIL || z->right == MEM_NIL)
3766 y = z;
3767 else
3768 {
3769 y = z->right;
3770 while (y->left != MEM_NIL)
3771 y = y->left;
3772 }
3773
3774 if (y->left != MEM_NIL)
3775 x = y->left;
3776 else
3777 x = y->right;
3778
3779 x->parent = y->parent;
3780 if (y->parent)
3781 {
3782 if (y == y->parent->left)
3783 y->parent->left = x;
3784 else
3785 y->parent->right = x;
3786 }
3787 else
3788 mem_root = x;
3789
3790 if (y != z)
3791 {
3792 z->start = y->start;
3793 z->end = y->end;
3794 z->type = y->type;
3795 }
3796
3797 if (y->color == MEM_BLACK)
3798 mem_delete_fixup (x);
3799
3800 #ifdef GC_MALLOC_CHECK
3801 _free_internal (y);
3802 #else
3803 xfree (y);
3804 #endif
3805 }
3806
3807
3808 /* Re-establish the red-black properties of the tree, after a
3809 deletion. */
3810
3811 static void
3812 mem_delete_fixup (x)
3813 struct mem_node *x;
3814 {
3815 while (x != mem_root && x->color == MEM_BLACK)
3816 {
3817 if (x == x->parent->left)
3818 {
3819 struct mem_node *w = x->parent->right;
3820
3821 if (w->color == MEM_RED)
3822 {
3823 w->color = MEM_BLACK;
3824 x->parent->color = MEM_RED;
3825 mem_rotate_left (x->parent);
3826 w = x->parent->right;
3827 }
3828
3829 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3830 {
3831 w->color = MEM_RED;
3832 x = x->parent;
3833 }
3834 else
3835 {
3836 if (w->right->color == MEM_BLACK)
3837 {
3838 w->left->color = MEM_BLACK;
3839 w->color = MEM_RED;
3840 mem_rotate_right (w);
3841 w = x->parent->right;
3842 }
3843 w->color = x->parent->color;
3844 x->parent->color = MEM_BLACK;
3845 w->right->color = MEM_BLACK;
3846 mem_rotate_left (x->parent);
3847 x = mem_root;
3848 }
3849 }
3850 else
3851 {
3852 struct mem_node *w = x->parent->left;
3853
3854 if (w->color == MEM_RED)
3855 {
3856 w->color = MEM_BLACK;
3857 x->parent->color = MEM_RED;
3858 mem_rotate_right (x->parent);
3859 w = x->parent->left;
3860 }
3861
3862 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3863 {
3864 w->color = MEM_RED;
3865 x = x->parent;
3866 }
3867 else
3868 {
3869 if (w->left->color == MEM_BLACK)
3870 {
3871 w->right->color = MEM_BLACK;
3872 w->color = MEM_RED;
3873 mem_rotate_left (w);
3874 w = x->parent->left;
3875 }
3876
3877 w->color = x->parent->color;
3878 x->parent->color = MEM_BLACK;
3879 w->left->color = MEM_BLACK;
3880 mem_rotate_right (x->parent);
3881 x = mem_root;
3882 }
3883 }
3884 }
3885
3886 x->color = MEM_BLACK;
3887 }
3888
3889
3890 /* Value is non-zero if P is a pointer to a live Lisp string on
3891 the heap. M is a pointer to the mem_block for P. */
3892
3893 static INLINE int
3894 live_string_p (m, p)
3895 struct mem_node *m;
3896 void *p;
3897 {
3898 if (m->type == MEM_TYPE_STRING)
3899 {
3900 struct string_block *b = (struct string_block *) m->start;
3901 int offset = (char *) p - (char *) &b->strings[0];
3902
3903 /* P must point to the start of a Lisp_String structure, and it
3904 must not be on the free-list. */
3905 return (offset >= 0
3906 && offset % sizeof b->strings[0] == 0
3907 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3908 && ((struct Lisp_String *) p)->data != NULL);
3909 }
3910 else
3911 return 0;
3912 }
3913
3914
3915 /* Value is non-zero if P is a pointer to a live Lisp cons on
3916 the heap. M is a pointer to the mem_block for P. */
3917
3918 static INLINE int
3919 live_cons_p (m, p)
3920 struct mem_node *m;
3921 void *p;
3922 {
3923 if (m->type == MEM_TYPE_CONS)
3924 {
3925 struct cons_block *b = (struct cons_block *) m->start;
3926 int offset = (char *) p - (char *) &b->conses[0];
3927
3928 /* P must point to the start of a Lisp_Cons, not be
3929 one of the unused cells in the current cons block,
3930 and not be on the free-list. */
3931 return (offset >= 0
3932 && offset % sizeof b->conses[0] == 0
3933 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3934 && (b != cons_block
3935 || offset / sizeof b->conses[0] < cons_block_index)
3936 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3937 }
3938 else
3939 return 0;
3940 }
3941
3942
3943 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3944 the heap. M is a pointer to the mem_block for P. */
3945
3946 static INLINE int
3947 live_symbol_p (m, p)
3948 struct mem_node *m;
3949 void *p;
3950 {
3951 if (m->type == MEM_TYPE_SYMBOL)
3952 {
3953 struct symbol_block *b = (struct symbol_block *) m->start;
3954 int offset = (char *) p - (char *) &b->symbols[0];
3955
3956 /* P must point to the start of a Lisp_Symbol, not be
3957 one of the unused cells in the current symbol block,
3958 and not be on the free-list. */
3959 return (offset >= 0
3960 && offset % sizeof b->symbols[0] == 0
3961 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3962 && (b != symbol_block
3963 || offset / sizeof b->symbols[0] < symbol_block_index)
3964 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3965 }
3966 else
3967 return 0;
3968 }
3969
3970
3971 /* Value is non-zero if P is a pointer to a live Lisp float on
3972 the heap. M is a pointer to the mem_block for P. */
3973
3974 static INLINE int
3975 live_float_p (m, p)
3976 struct mem_node *m;
3977 void *p;
3978 {
3979 if (m->type == MEM_TYPE_FLOAT)
3980 {
3981 struct float_block *b = (struct float_block *) m->start;
3982 int offset = (char *) p - (char *) &b->floats[0];
3983
3984 /* P must point to the start of a Lisp_Float and not be
3985 one of the unused cells in the current float block. */
3986 return (offset >= 0
3987 && offset % sizeof b->floats[0] == 0
3988 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3989 && (b != float_block
3990 || offset / sizeof b->floats[0] < float_block_index));
3991 }
3992 else
3993 return 0;
3994 }
3995
3996
3997 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3998 the heap. M is a pointer to the mem_block for P. */
3999
4000 static INLINE int
4001 live_misc_p (m, p)
4002 struct mem_node *m;
4003 void *p;
4004 {
4005 if (m->type == MEM_TYPE_MISC)
4006 {
4007 struct marker_block *b = (struct marker_block *) m->start;
4008 int offset = (char *) p - (char *) &b->markers[0];
4009
4010 /* P must point to the start of a Lisp_Misc, not be
4011 one of the unused cells in the current misc block,
4012 and not be on the free-list. */
4013 return (offset >= 0
4014 && offset % sizeof b->markers[0] == 0
4015 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4016 && (b != marker_block
4017 || offset / sizeof b->markers[0] < marker_block_index)
4018 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4019 }
4020 else
4021 return 0;
4022 }
4023
4024
4025 /* Value is non-zero if P is a pointer to a live vector-like object.
4026 M is a pointer to the mem_block for P. */
4027
4028 static INLINE int
4029 live_vector_p (m, p)
4030 struct mem_node *m;
4031 void *p;
4032 {
4033 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
4034 }
4035
4036
4037 /* Value is non-zero if P is a pointer to a live buffer. M is a
4038 pointer to the mem_block for P. */
4039
4040 static INLINE int
4041 live_buffer_p (m, p)
4042 struct mem_node *m;
4043 void *p;
4044 {
4045 /* P must point to the start of the block, and the buffer
4046 must not have been killed. */
4047 return (m->type == MEM_TYPE_BUFFER
4048 && p == m->start
4049 && !NILP (((struct buffer *) p)->name));
4050 }
4051
4052 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4053
4054 #if GC_MARK_STACK
4055
4056 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4057
4058 /* Array of objects that are kept alive because the C stack contains
4059 a pattern that looks like a reference to them . */
4060
4061 #define MAX_ZOMBIES 10
4062 static Lisp_Object zombies[MAX_ZOMBIES];
4063
4064 /* Number of zombie objects. */
4065
4066 static int nzombies;
4067
4068 /* Number of garbage collections. */
4069
4070 static int ngcs;
4071
4072 /* Average percentage of zombies per collection. */
4073
4074 static double avg_zombies;
4075
4076 /* Max. number of live and zombie objects. */
4077
4078 static int max_live, max_zombies;
4079
4080 /* Average number of live objects per GC. */
4081
4082 static double avg_live;
4083
4084 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4085 doc: /* Show information about live and zombie objects. */)
4086 ()
4087 {
4088 Lisp_Object args[8], zombie_list = Qnil;
4089 int i;
4090 for (i = 0; i < nzombies; i++)
4091 zombie_list = Fcons (zombies[i], zombie_list);
4092 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4093 args[1] = make_number (ngcs);
4094 args[2] = make_float (avg_live);
4095 args[3] = make_float (avg_zombies);
4096 args[4] = make_float (avg_zombies / avg_live / 100);
4097 args[5] = make_number (max_live);
4098 args[6] = make_number (max_zombies);
4099 args[7] = zombie_list;
4100 return Fmessage (8, args);
4101 }
4102
4103 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4104
4105
4106 /* Mark OBJ if we can prove it's a Lisp_Object. */
4107
4108 static INLINE void
4109 mark_maybe_object (obj)
4110 Lisp_Object obj;
4111 {
4112 void *po = (void *) XPNTR (obj);
4113 struct mem_node *m = mem_find (po);
4114
4115 if (m != MEM_NIL)
4116 {
4117 int mark_p = 0;
4118
4119 switch (XTYPE (obj))
4120 {
4121 case Lisp_String:
4122 mark_p = (live_string_p (m, po)
4123 && !STRING_MARKED_P ((struct Lisp_String *) po));
4124 break;
4125
4126 case Lisp_Cons:
4127 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4128 break;
4129
4130 case Lisp_Symbol:
4131 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4132 break;
4133
4134 case Lisp_Float:
4135 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4136 break;
4137
4138 case Lisp_Vectorlike:
4139 /* Note: can't check BUFFERP before we know it's a
4140 buffer because checking that dereferences the pointer
4141 PO which might point anywhere. */
4142 if (live_vector_p (m, po))
4143 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4144 else if (live_buffer_p (m, po))
4145 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4146 break;
4147
4148 case Lisp_Misc:
4149 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4150 break;
4151
4152 case Lisp_Int:
4153 case Lisp_Type_Limit:
4154 break;
4155 }
4156
4157 if (mark_p)
4158 {
4159 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4160 if (nzombies < MAX_ZOMBIES)
4161 zombies[nzombies] = obj;
4162 ++nzombies;
4163 #endif
4164 mark_object (obj);
4165 }
4166 }
4167 }
4168
4169
4170 /* If P points to Lisp data, mark that as live if it isn't already
4171 marked. */
4172
4173 static INLINE void
4174 mark_maybe_pointer (p)
4175 void *p;
4176 {
4177 struct mem_node *m;
4178
4179 /* Quickly rule out some values which can't point to Lisp data. */
4180 if ((EMACS_INT) p %
4181 #ifdef USE_LSB_TAG
4182 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4183 #else
4184 2 /* We assume that Lisp data is aligned on even addresses. */
4185 #endif
4186 )
4187 return;
4188
4189 m = mem_find (p);
4190 if (m != MEM_NIL)
4191 {
4192 Lisp_Object obj = Qnil;
4193
4194 switch (m->type)
4195 {
4196 case MEM_TYPE_NON_LISP:
4197 /* Nothing to do; not a pointer to Lisp memory. */
4198 break;
4199
4200 case MEM_TYPE_BUFFER:
4201 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4202 XSETVECTOR (obj, p);
4203 break;
4204
4205 case MEM_TYPE_CONS:
4206 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4207 XSETCONS (obj, p);
4208 break;
4209
4210 case MEM_TYPE_STRING:
4211 if (live_string_p (m, p)
4212 && !STRING_MARKED_P ((struct Lisp_String *) p))
4213 XSETSTRING (obj, p);
4214 break;
4215
4216 case MEM_TYPE_MISC:
4217 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4218 XSETMISC (obj, p);
4219 break;
4220
4221 case MEM_TYPE_SYMBOL:
4222 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4223 XSETSYMBOL (obj, p);
4224 break;
4225
4226 case MEM_TYPE_FLOAT:
4227 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4228 XSETFLOAT (obj, p);
4229 break;
4230
4231 case MEM_TYPE_VECTORLIKE:
4232 if (live_vector_p (m, p))
4233 {
4234 Lisp_Object tem;
4235 XSETVECTOR (tem, p);
4236 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4237 obj = tem;
4238 }
4239 break;
4240
4241 default:
4242 abort ();
4243 }
4244
4245 if (!NILP (obj))
4246 mark_object (obj);
4247 }
4248 }
4249
4250
4251 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4252 or END+OFFSET..START. */
4253
4254 static void
4255 mark_memory (start, end, offset)
4256 void *start, *end;
4257 int offset;
4258 {
4259 Lisp_Object *p;
4260 void **pp;
4261
4262 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4263 nzombies = 0;
4264 #endif
4265
4266 /* Make START the pointer to the start of the memory region,
4267 if it isn't already. */
4268 if (end < start)
4269 {
4270 void *tem = start;
4271 start = end;
4272 end = tem;
4273 }
4274
4275 /* Mark Lisp_Objects. */
4276 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4277 mark_maybe_object (*p);
4278
4279 /* Mark Lisp data pointed to. This is necessary because, in some
4280 situations, the C compiler optimizes Lisp objects away, so that
4281 only a pointer to them remains. Example:
4282
4283 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4284 ()
4285 {
4286 Lisp_Object obj = build_string ("test");
4287 struct Lisp_String *s = XSTRING (obj);
4288 Fgarbage_collect ();
4289 fprintf (stderr, "test `%s'\n", s->data);
4290 return Qnil;
4291 }
4292
4293 Here, `obj' isn't really used, and the compiler optimizes it
4294 away. The only reference to the life string is through the
4295 pointer `s'. */
4296
4297 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4298 mark_maybe_pointer (*pp);
4299 }
4300
4301 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4302 the GCC system configuration. In gcc 3.2, the only systems for
4303 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4304 by others?) and ns32k-pc532-min. */
4305
4306 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4307
4308 static int setjmp_tested_p, longjmps_done;
4309
4310 #define SETJMP_WILL_LIKELY_WORK "\
4311 \n\
4312 Emacs garbage collector has been changed to use conservative stack\n\
4313 marking. Emacs has determined that the method it uses to do the\n\
4314 marking will likely work on your system, but this isn't sure.\n\
4315 \n\
4316 If you are a system-programmer, or can get the help of a local wizard\n\
4317 who is, please take a look at the function mark_stack in alloc.c, and\n\
4318 verify that the methods used are appropriate for your system.\n\
4319 \n\
4320 Please mail the result to <emacs-devel@gnu.org>.\n\
4321 "
4322
4323 #define SETJMP_WILL_NOT_WORK "\
4324 \n\
4325 Emacs garbage collector has been changed to use conservative stack\n\
4326 marking. Emacs has determined that the default method it uses to do the\n\
4327 marking will not work on your system. We will need a system-dependent\n\
4328 solution for your system.\n\
4329 \n\
4330 Please take a look at the function mark_stack in alloc.c, and\n\
4331 try to find a way to make it work on your system.\n\
4332 \n\
4333 Note that you may get false negatives, depending on the compiler.\n\
4334 In particular, you need to use -O with GCC for this test.\n\
4335 \n\
4336 Please mail the result to <emacs-devel@gnu.org>.\n\
4337 "
4338
4339
4340 /* Perform a quick check if it looks like setjmp saves registers in a
4341 jmp_buf. Print a message to stderr saying so. When this test
4342 succeeds, this is _not_ a proof that setjmp is sufficient for
4343 conservative stack marking. Only the sources or a disassembly
4344 can prove that. */
4345
4346 static void
4347 test_setjmp ()
4348 {
4349 char buf[10];
4350 register int x;
4351 jmp_buf jbuf;
4352 int result = 0;
4353
4354 /* Arrange for X to be put in a register. */
4355 sprintf (buf, "1");
4356 x = strlen (buf);
4357 x = 2 * x - 1;
4358
4359 setjmp (jbuf);
4360 if (longjmps_done == 1)
4361 {
4362 /* Came here after the longjmp at the end of the function.
4363
4364 If x == 1, the longjmp has restored the register to its
4365 value before the setjmp, and we can hope that setjmp
4366 saves all such registers in the jmp_buf, although that
4367 isn't sure.
4368
4369 For other values of X, either something really strange is
4370 taking place, or the setjmp just didn't save the register. */
4371
4372 if (x == 1)
4373 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4374 else
4375 {
4376 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4377 exit (1);
4378 }
4379 }
4380
4381 ++longjmps_done;
4382 x = 2;
4383 if (longjmps_done == 1)
4384 longjmp (jbuf, 1);
4385 }
4386
4387 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4388
4389
4390 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4391
4392 /* Abort if anything GCPRO'd doesn't survive the GC. */
4393
4394 static void
4395 check_gcpros ()
4396 {
4397 struct gcpro *p;
4398 int i;
4399
4400 for (p = gcprolist; p; p = p->next)
4401 for (i = 0; i < p->nvars; ++i)
4402 if (!survives_gc_p (p->var[i]))
4403 /* FIXME: It's not necessarily a bug. It might just be that the
4404 GCPRO is unnecessary or should release the object sooner. */
4405 abort ();
4406 }
4407
4408 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4409
4410 static void
4411 dump_zombies ()
4412 {
4413 int i;
4414
4415 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4416 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4417 {
4418 fprintf (stderr, " %d = ", i);
4419 debug_print (zombies[i]);
4420 }
4421 }
4422
4423 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4424
4425
4426 /* Mark live Lisp objects on the C stack.
4427
4428 There are several system-dependent problems to consider when
4429 porting this to new architectures:
4430
4431 Processor Registers
4432
4433 We have to mark Lisp objects in CPU registers that can hold local
4434 variables or are used to pass parameters.
4435
4436 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4437 something that either saves relevant registers on the stack, or
4438 calls mark_maybe_object passing it each register's contents.
4439
4440 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4441 implementation assumes that calling setjmp saves registers we need
4442 to see in a jmp_buf which itself lies on the stack. This doesn't
4443 have to be true! It must be verified for each system, possibly
4444 by taking a look at the source code of setjmp.
4445
4446 Stack Layout
4447
4448 Architectures differ in the way their processor stack is organized.
4449 For example, the stack might look like this
4450
4451 +----------------+
4452 | Lisp_Object | size = 4
4453 +----------------+
4454 | something else | size = 2
4455 +----------------+
4456 | Lisp_Object | size = 4
4457 +----------------+
4458 | ... |
4459
4460 In such a case, not every Lisp_Object will be aligned equally. To
4461 find all Lisp_Object on the stack it won't be sufficient to walk
4462 the stack in steps of 4 bytes. Instead, two passes will be
4463 necessary, one starting at the start of the stack, and a second
4464 pass starting at the start of the stack + 2. Likewise, if the
4465 minimal alignment of Lisp_Objects on the stack is 1, four passes
4466 would be necessary, each one starting with one byte more offset
4467 from the stack start.
4468
4469 The current code assumes by default that Lisp_Objects are aligned
4470 equally on the stack. */
4471
4472 static void
4473 mark_stack ()
4474 {
4475 int i;
4476 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4477 union aligned_jmpbuf {
4478 Lisp_Object o;
4479 jmp_buf j;
4480 } j;
4481 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4482 void *end;
4483
4484 /* This trick flushes the register windows so that all the state of
4485 the process is contained in the stack. */
4486 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4487 needed on ia64 too. See mach_dep.c, where it also says inline
4488 assembler doesn't work with relevant proprietary compilers. */
4489 #ifdef sparc
4490 asm ("ta 3");
4491 #endif
4492
4493 /* Save registers that we need to see on the stack. We need to see
4494 registers used to hold register variables and registers used to
4495 pass parameters. */
4496 #ifdef GC_SAVE_REGISTERS_ON_STACK
4497 GC_SAVE_REGISTERS_ON_STACK (end);
4498 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4499
4500 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4501 setjmp will definitely work, test it
4502 and print a message with the result
4503 of the test. */
4504 if (!setjmp_tested_p)
4505 {
4506 setjmp_tested_p = 1;
4507 test_setjmp ();
4508 }
4509 #endif /* GC_SETJMP_WORKS */
4510
4511 setjmp (j.j);
4512 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4513 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4514
4515 /* This assumes that the stack is a contiguous region in memory. If
4516 that's not the case, something has to be done here to iterate
4517 over the stack segments. */
4518 #ifndef GC_LISP_OBJECT_ALIGNMENT
4519 #ifdef __GNUC__
4520 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4521 #else
4522 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4523 #endif
4524 #endif
4525 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4526 mark_memory (stack_base, end, i);
4527 /* Allow for marking a secondary stack, like the register stack on the
4528 ia64. */
4529 #ifdef GC_MARK_SECONDARY_STACK
4530 GC_MARK_SECONDARY_STACK ();
4531 #endif
4532
4533 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4534 check_gcpros ();
4535 #endif
4536 }
4537
4538 #endif /* GC_MARK_STACK != 0 */
4539
4540
4541 /* Determine whether it is safe to access memory at address P. */
4542 static int
4543 valid_pointer_p (p)
4544 void *p;
4545 {
4546 #ifdef WINDOWSNT
4547 return w32_valid_pointer_p (p, 16);
4548 #else
4549 int fd;
4550
4551 /* Obviously, we cannot just access it (we would SEGV trying), so we
4552 trick the o/s to tell us whether p is a valid pointer.
4553 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4554 not validate p in that case. */
4555
4556 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4557 {
4558 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4559 emacs_close (fd);
4560 unlink ("__Valid__Lisp__Object__");
4561 return valid;
4562 }
4563
4564 return -1;
4565 #endif
4566 }
4567
4568 /* Return 1 if OBJ is a valid lisp object.
4569 Return 0 if OBJ is NOT a valid lisp object.
4570 Return -1 if we cannot validate OBJ.
4571 This function can be quite slow,
4572 so it should only be used in code for manual debugging. */
4573
4574 int
4575 valid_lisp_object_p (obj)
4576 Lisp_Object obj;
4577 {
4578 void *p;
4579 #if GC_MARK_STACK
4580 struct mem_node *m;
4581 #endif
4582
4583 if (INTEGERP (obj))
4584 return 1;
4585
4586 p = (void *) XPNTR (obj);
4587 if (PURE_POINTER_P (p))
4588 return 1;
4589
4590 #if !GC_MARK_STACK
4591 return valid_pointer_p (p);
4592 #else
4593
4594 m = mem_find (p);
4595
4596 if (m == MEM_NIL)
4597 {
4598 int valid = valid_pointer_p (p);
4599 if (valid <= 0)
4600 return valid;
4601
4602 if (SUBRP (obj))
4603 return 1;
4604
4605 return 0;
4606 }
4607
4608 switch (m->type)
4609 {
4610 case MEM_TYPE_NON_LISP:
4611 return 0;
4612
4613 case MEM_TYPE_BUFFER:
4614 return live_buffer_p (m, p);
4615
4616 case MEM_TYPE_CONS:
4617 return live_cons_p (m, p);
4618
4619 case MEM_TYPE_STRING:
4620 return live_string_p (m, p);
4621
4622 case MEM_TYPE_MISC:
4623 return live_misc_p (m, p);
4624
4625 case MEM_TYPE_SYMBOL:
4626 return live_symbol_p (m, p);
4627
4628 case MEM_TYPE_FLOAT:
4629 return live_float_p (m, p);
4630
4631 case MEM_TYPE_VECTORLIKE:
4632 return live_vector_p (m, p);
4633
4634 default:
4635 break;
4636 }
4637
4638 return 0;
4639 #endif
4640 }
4641
4642
4643
4644 \f
4645 /***********************************************************************
4646 Pure Storage Management
4647 ***********************************************************************/
4648
4649 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4650 pointer to it. TYPE is the Lisp type for which the memory is
4651 allocated. TYPE < 0 means it's not used for a Lisp object. */
4652
4653 static POINTER_TYPE *
4654 pure_alloc (size, type)
4655 size_t size;
4656 int type;
4657 {
4658 POINTER_TYPE *result;
4659 #ifdef USE_LSB_TAG
4660 size_t alignment = (1 << GCTYPEBITS);
4661 #else
4662 size_t alignment = sizeof (EMACS_INT);
4663
4664 /* Give Lisp_Floats an extra alignment. */
4665 if (type == Lisp_Float)
4666 {
4667 #if defined __GNUC__ && __GNUC__ >= 2
4668 alignment = __alignof (struct Lisp_Float);
4669 #else
4670 alignment = sizeof (struct Lisp_Float);
4671 #endif
4672 }
4673 #endif
4674
4675 again:
4676 if (type >= 0)
4677 {
4678 /* Allocate space for a Lisp object from the beginning of the free
4679 space with taking account of alignment. */
4680 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4681 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4682 }
4683 else
4684 {
4685 /* Allocate space for a non-Lisp object from the end of the free
4686 space. */
4687 pure_bytes_used_non_lisp += size;
4688 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4689 }
4690 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4691
4692 if (pure_bytes_used <= pure_size)
4693 return result;
4694
4695 /* Don't allocate a large amount here,
4696 because it might get mmap'd and then its address
4697 might not be usable. */
4698 purebeg = (char *) xmalloc (10000);
4699 pure_size = 10000;
4700 pure_bytes_used_before_overflow += pure_bytes_used - size;
4701 pure_bytes_used = 0;
4702 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4703 goto again;
4704 }
4705
4706
4707 /* Print a warning if PURESIZE is too small. */
4708
4709 void
4710 check_pure_size ()
4711 {
4712 if (pure_bytes_used_before_overflow)
4713 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4714 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4715 }
4716
4717
4718 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4719 the non-Lisp data pool of the pure storage, and return its start
4720 address. Return NULL if not found. */
4721
4722 static char *
4723 find_string_data_in_pure (data, nbytes)
4724 char *data;
4725 int nbytes;
4726 {
4727 int i, skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4728 unsigned char *p;
4729 char *non_lisp_beg;
4730
4731 if (pure_bytes_used_non_lisp < nbytes + 1)
4732 return NULL;
4733
4734 /* Set up the Boyer-Moore table. */
4735 skip = nbytes + 1;
4736 for (i = 0; i < 256; i++)
4737 bm_skip[i] = skip;
4738
4739 p = (unsigned char *) data;
4740 while (--skip > 0)
4741 bm_skip[*p++] = skip;
4742
4743 last_char_skip = bm_skip['\0'];
4744
4745 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4746 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4747
4748 /* See the comments in the function `boyer_moore' (search.c) for the
4749 use of `infinity'. */
4750 infinity = pure_bytes_used_non_lisp + 1;
4751 bm_skip['\0'] = infinity;
4752
4753 p = (unsigned char *) non_lisp_beg + nbytes;
4754 start = 0;
4755 do
4756 {
4757 /* Check the last character (== '\0'). */
4758 do
4759 {
4760 start += bm_skip[*(p + start)];
4761 }
4762 while (start <= start_max);
4763
4764 if (start < infinity)
4765 /* Couldn't find the last character. */
4766 return NULL;
4767
4768 /* No less than `infinity' means we could find the last
4769 character at `p[start - infinity]'. */
4770 start -= infinity;
4771
4772 /* Check the remaining characters. */
4773 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4774 /* Found. */
4775 return non_lisp_beg + start;
4776
4777 start += last_char_skip;
4778 }
4779 while (start <= start_max);
4780
4781 return NULL;
4782 }
4783
4784
4785 /* Return a string allocated in pure space. DATA is a buffer holding
4786 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4787 non-zero means make the result string multibyte.
4788
4789 Must get an error if pure storage is full, since if it cannot hold
4790 a large string it may be able to hold conses that point to that
4791 string; then the string is not protected from gc. */
4792
4793 Lisp_Object
4794 make_pure_string (data, nchars, nbytes, multibyte)
4795 char *data;
4796 int nchars, nbytes;
4797 int multibyte;
4798 {
4799 Lisp_Object string;
4800 struct Lisp_String *s;
4801
4802 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4803 s->data = find_string_data_in_pure (data, nbytes);
4804 if (s->data == NULL)
4805 {
4806 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4807 bcopy (data, s->data, nbytes);
4808 s->data[nbytes] = '\0';
4809 }
4810 s->size = nchars;
4811 s->size_byte = multibyte ? nbytes : -1;
4812 s->intervals = NULL_INTERVAL;
4813 XSETSTRING (string, s);
4814 return string;
4815 }
4816
4817
4818 /* Return a cons allocated from pure space. Give it pure copies
4819 of CAR as car and CDR as cdr. */
4820
4821 Lisp_Object
4822 pure_cons (car, cdr)
4823 Lisp_Object car, cdr;
4824 {
4825 register Lisp_Object new;
4826 struct Lisp_Cons *p;
4827
4828 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4829 XSETCONS (new, p);
4830 XSETCAR (new, Fpurecopy (car));
4831 XSETCDR (new, Fpurecopy (cdr));
4832 return new;
4833 }
4834
4835
4836 /* Value is a float object with value NUM allocated from pure space. */
4837
4838 static Lisp_Object
4839 make_pure_float (num)
4840 double num;
4841 {
4842 register Lisp_Object new;
4843 struct Lisp_Float *p;
4844
4845 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4846 XSETFLOAT (new, p);
4847 XFLOAT_DATA (new) = num;
4848 return new;
4849 }
4850
4851
4852 /* Return a vector with room for LEN Lisp_Objects allocated from
4853 pure space. */
4854
4855 Lisp_Object
4856 make_pure_vector (len)
4857 EMACS_INT len;
4858 {
4859 Lisp_Object new;
4860 struct Lisp_Vector *p;
4861 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4862
4863 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4864 XSETVECTOR (new, p);
4865 XVECTOR (new)->size = len;
4866 return new;
4867 }
4868
4869
4870 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4871 doc: /* Make a copy of object OBJ in pure storage.
4872 Recursively copies contents of vectors and cons cells.
4873 Does not copy symbols. Copies strings without text properties. */)
4874 (obj)
4875 register Lisp_Object obj;
4876 {
4877 if (NILP (Vpurify_flag))
4878 return obj;
4879
4880 if (PURE_POINTER_P (XPNTR (obj)))
4881 return obj;
4882
4883 if (CONSP (obj))
4884 return pure_cons (XCAR (obj), XCDR (obj));
4885 else if (FLOATP (obj))
4886 return make_pure_float (XFLOAT_DATA (obj));
4887 else if (STRINGP (obj))
4888 return make_pure_string (SDATA (obj), SCHARS (obj),
4889 SBYTES (obj),
4890 STRING_MULTIBYTE (obj));
4891 else if (COMPILEDP (obj) || VECTORP (obj))
4892 {
4893 register struct Lisp_Vector *vec;
4894 register int i;
4895 EMACS_INT size;
4896
4897 size = XVECTOR (obj)->size;
4898 if (size & PSEUDOVECTOR_FLAG)
4899 size &= PSEUDOVECTOR_SIZE_MASK;
4900 vec = XVECTOR (make_pure_vector (size));
4901 for (i = 0; i < size; i++)
4902 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4903 if (COMPILEDP (obj))
4904 {
4905 XSETPVECTYPE (vec, PVEC_COMPILED);
4906 XSETCOMPILED (obj, vec);
4907 }
4908 else
4909 XSETVECTOR (obj, vec);
4910 return obj;
4911 }
4912 else if (MARKERP (obj))
4913 error ("Attempt to copy a marker to pure storage");
4914
4915 return obj;
4916 }
4917
4918
4919 \f
4920 /***********************************************************************
4921 Protection from GC
4922 ***********************************************************************/
4923
4924 /* Put an entry in staticvec, pointing at the variable with address
4925 VARADDRESS. */
4926
4927 void
4928 staticpro (varaddress)
4929 Lisp_Object *varaddress;
4930 {
4931 staticvec[staticidx++] = varaddress;
4932 if (staticidx >= NSTATICS)
4933 abort ();
4934 }
4935
4936 struct catchtag
4937 {
4938 Lisp_Object tag;
4939 Lisp_Object val;
4940 struct catchtag *next;
4941 };
4942
4943 \f
4944 /***********************************************************************
4945 Protection from GC
4946 ***********************************************************************/
4947
4948 /* Temporarily prevent garbage collection. */
4949
4950 int
4951 inhibit_garbage_collection ()
4952 {
4953 int count = SPECPDL_INDEX ();
4954 int nbits = min (VALBITS, BITS_PER_INT);
4955
4956 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4957 return count;
4958 }
4959
4960
4961 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4962 doc: /* Reclaim storage for Lisp objects no longer needed.
4963 Garbage collection happens automatically if you cons more than
4964 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4965 `garbage-collect' normally returns a list with info on amount of space in use:
4966 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4967 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4968 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4969 (USED-STRINGS . FREE-STRINGS))
4970 However, if there was overflow in pure space, `garbage-collect'
4971 returns nil, because real GC can't be done. */)
4972 ()
4973 {
4974 register struct specbinding *bind;
4975 struct catchtag *catch;
4976 struct handler *handler;
4977 char stack_top_variable;
4978 register int i;
4979 int message_p;
4980 Lisp_Object total[8];
4981 int count = SPECPDL_INDEX ();
4982 EMACS_TIME t1, t2, t3;
4983
4984 if (abort_on_gc)
4985 abort ();
4986
4987 /* Can't GC if pure storage overflowed because we can't determine
4988 if something is a pure object or not. */
4989 if (pure_bytes_used_before_overflow)
4990 return Qnil;
4991
4992 CHECK_CONS_LIST ();
4993
4994 /* Don't keep undo information around forever.
4995 Do this early on, so it is no problem if the user quits. */
4996 {
4997 register struct buffer *nextb = all_buffers;
4998
4999 while (nextb)
5000 {
5001 /* If a buffer's undo list is Qt, that means that undo is
5002 turned off in that buffer. Calling truncate_undo_list on
5003 Qt tends to return NULL, which effectively turns undo back on.
5004 So don't call truncate_undo_list if undo_list is Qt. */
5005 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
5006 truncate_undo_list (nextb);
5007
5008 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5009 if (nextb->base_buffer == 0 && !NILP (nextb->name)
5010 && ! nextb->text->inhibit_shrinking)
5011 {
5012 /* If a buffer's gap size is more than 10% of the buffer
5013 size, or larger than 2000 bytes, then shrink it
5014 accordingly. Keep a minimum size of 20 bytes. */
5015 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5016
5017 if (nextb->text->gap_size > size)
5018 {
5019 struct buffer *save_current = current_buffer;
5020 current_buffer = nextb;
5021 make_gap (-(nextb->text->gap_size - size));
5022 current_buffer = save_current;
5023 }
5024 }
5025
5026 nextb = nextb->next;
5027 }
5028 }
5029
5030 EMACS_GET_TIME (t1);
5031
5032 /* In case user calls debug_print during GC,
5033 don't let that cause a recursive GC. */
5034 consing_since_gc = 0;
5035
5036 /* Save what's currently displayed in the echo area. */
5037 message_p = push_message ();
5038 record_unwind_protect (pop_message_unwind, Qnil);
5039
5040 /* Save a copy of the contents of the stack, for debugging. */
5041 #if MAX_SAVE_STACK > 0
5042 if (NILP (Vpurify_flag))
5043 {
5044 i = &stack_top_variable - stack_bottom;
5045 if (i < 0) i = -i;
5046 if (i < MAX_SAVE_STACK)
5047 {
5048 if (stack_copy == 0)
5049 stack_copy = (char *) xmalloc (stack_copy_size = i);
5050 else if (stack_copy_size < i)
5051 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
5052 if (stack_copy)
5053 {
5054 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
5055 bcopy (stack_bottom, stack_copy, i);
5056 else
5057 bcopy (&stack_top_variable, stack_copy, i);
5058 }
5059 }
5060 }
5061 #endif /* MAX_SAVE_STACK > 0 */
5062
5063 if (garbage_collection_messages)
5064 message1_nolog ("Garbage collecting...");
5065
5066 BLOCK_INPUT;
5067
5068 shrink_regexp_cache ();
5069
5070 gc_in_progress = 1;
5071
5072 /* clear_marks (); */
5073
5074 /* Mark all the special slots that serve as the roots of accessibility. */
5075
5076 for (i = 0; i < staticidx; i++)
5077 mark_object (*staticvec[i]);
5078
5079 for (bind = specpdl; bind != specpdl_ptr; bind++)
5080 {
5081 mark_object (bind->symbol);
5082 mark_object (bind->old_value);
5083 }
5084 mark_terminals ();
5085 mark_kboards ();
5086 mark_ttys ();
5087
5088 #ifdef USE_GTK
5089 {
5090 extern void xg_mark_data ();
5091 xg_mark_data ();
5092 }
5093 #endif
5094
5095 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5096 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5097 mark_stack ();
5098 #else
5099 {
5100 register struct gcpro *tail;
5101 for (tail = gcprolist; tail; tail = tail->next)
5102 for (i = 0; i < tail->nvars; i++)
5103 mark_object (tail->var[i]);
5104 }
5105 #endif
5106
5107 mark_byte_stack ();
5108 for (catch = catchlist; catch; catch = catch->next)
5109 {
5110 mark_object (catch->tag);
5111 mark_object (catch->val);
5112 }
5113 for (handler = handlerlist; handler; handler = handler->next)
5114 {
5115 mark_object (handler->handler);
5116 mark_object (handler->var);
5117 }
5118 mark_backtrace ();
5119
5120 #ifdef HAVE_WINDOW_SYSTEM
5121 mark_fringe_data ();
5122 #endif
5123
5124 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5125 mark_stack ();
5126 #endif
5127
5128 /* Everything is now marked, except for the things that require special
5129 finalization, i.e. the undo_list.
5130 Look thru every buffer's undo list
5131 for elements that update markers that were not marked,
5132 and delete them. */
5133 {
5134 register struct buffer *nextb = all_buffers;
5135
5136 while (nextb)
5137 {
5138 /* If a buffer's undo list is Qt, that means that undo is
5139 turned off in that buffer. Calling truncate_undo_list on
5140 Qt tends to return NULL, which effectively turns undo back on.
5141 So don't call truncate_undo_list if undo_list is Qt. */
5142 if (! EQ (nextb->undo_list, Qt))
5143 {
5144 Lisp_Object tail, prev;
5145 tail = nextb->undo_list;
5146 prev = Qnil;
5147 while (CONSP (tail))
5148 {
5149 if (CONSP (XCAR (tail))
5150 && MARKERP (XCAR (XCAR (tail)))
5151 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5152 {
5153 if (NILP (prev))
5154 nextb->undo_list = tail = XCDR (tail);
5155 else
5156 {
5157 tail = XCDR (tail);
5158 XSETCDR (prev, tail);
5159 }
5160 }
5161 else
5162 {
5163 prev = tail;
5164 tail = XCDR (tail);
5165 }
5166 }
5167 }
5168 /* Now that we have stripped the elements that need not be in the
5169 undo_list any more, we can finally mark the list. */
5170 mark_object (nextb->undo_list);
5171
5172 nextb = nextb->next;
5173 }
5174 }
5175
5176 gc_sweep ();
5177
5178 /* Clear the mark bits that we set in certain root slots. */
5179
5180 unmark_byte_stack ();
5181 VECTOR_UNMARK (&buffer_defaults);
5182 VECTOR_UNMARK (&buffer_local_symbols);
5183
5184 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5185 dump_zombies ();
5186 #endif
5187
5188 UNBLOCK_INPUT;
5189
5190 CHECK_CONS_LIST ();
5191
5192 /* clear_marks (); */
5193 gc_in_progress = 0;
5194
5195 consing_since_gc = 0;
5196 if (gc_cons_threshold < 10000)
5197 gc_cons_threshold = 10000;
5198
5199 if (FLOATP (Vgc_cons_percentage))
5200 { /* Set gc_cons_combined_threshold. */
5201 EMACS_INT total = 0;
5202
5203 total += total_conses * sizeof (struct Lisp_Cons);
5204 total += total_symbols * sizeof (struct Lisp_Symbol);
5205 total += total_markers * sizeof (union Lisp_Misc);
5206 total += total_string_size;
5207 total += total_vector_size * sizeof (Lisp_Object);
5208 total += total_floats * sizeof (struct Lisp_Float);
5209 total += total_intervals * sizeof (struct interval);
5210 total += total_strings * sizeof (struct Lisp_String);
5211
5212 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5213 }
5214 else
5215 gc_relative_threshold = 0;
5216
5217 if (garbage_collection_messages)
5218 {
5219 if (message_p || minibuf_level > 0)
5220 restore_message ();
5221 else
5222 message1_nolog ("Garbage collecting...done");
5223 }
5224
5225 unbind_to (count, Qnil);
5226
5227 total[0] = Fcons (make_number (total_conses),
5228 make_number (total_free_conses));
5229 total[1] = Fcons (make_number (total_symbols),
5230 make_number (total_free_symbols));
5231 total[2] = Fcons (make_number (total_markers),
5232 make_number (total_free_markers));
5233 total[3] = make_number (total_string_size);
5234 total[4] = make_number (total_vector_size);
5235 total[5] = Fcons (make_number (total_floats),
5236 make_number (total_free_floats));
5237 total[6] = Fcons (make_number (total_intervals),
5238 make_number (total_free_intervals));
5239 total[7] = Fcons (make_number (total_strings),
5240 make_number (total_free_strings));
5241
5242 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5243 {
5244 /* Compute average percentage of zombies. */
5245 double nlive = 0;
5246
5247 for (i = 0; i < 7; ++i)
5248 if (CONSP (total[i]))
5249 nlive += XFASTINT (XCAR (total[i]));
5250
5251 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5252 max_live = max (nlive, max_live);
5253 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5254 max_zombies = max (nzombies, max_zombies);
5255 ++ngcs;
5256 }
5257 #endif
5258
5259 if (!NILP (Vpost_gc_hook))
5260 {
5261 int count = inhibit_garbage_collection ();
5262 safe_run_hooks (Qpost_gc_hook);
5263 unbind_to (count, Qnil);
5264 }
5265
5266 /* Accumulate statistics. */
5267 EMACS_GET_TIME (t2);
5268 EMACS_SUB_TIME (t3, t2, t1);
5269 if (FLOATP (Vgc_elapsed))
5270 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5271 EMACS_SECS (t3) +
5272 EMACS_USECS (t3) * 1.0e-6);
5273 gcs_done++;
5274
5275 return Flist (sizeof total / sizeof *total, total);
5276 }
5277
5278
5279 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5280 only interesting objects referenced from glyphs are strings. */
5281
5282 static void
5283 mark_glyph_matrix (matrix)
5284 struct glyph_matrix *matrix;
5285 {
5286 struct glyph_row *row = matrix->rows;
5287 struct glyph_row *end = row + matrix->nrows;
5288
5289 for (; row < end; ++row)
5290 if (row->enabled_p)
5291 {
5292 int area;
5293 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5294 {
5295 struct glyph *glyph = row->glyphs[area];
5296 struct glyph *end_glyph = glyph + row->used[area];
5297
5298 for (; glyph < end_glyph; ++glyph)
5299 if (STRINGP (glyph->object)
5300 && !STRING_MARKED_P (XSTRING (glyph->object)))
5301 mark_object (glyph->object);
5302 }
5303 }
5304 }
5305
5306
5307 /* Mark Lisp faces in the face cache C. */
5308
5309 static void
5310 mark_face_cache (c)
5311 struct face_cache *c;
5312 {
5313 if (c)
5314 {
5315 int i, j;
5316 for (i = 0; i < c->used; ++i)
5317 {
5318 struct face *face = FACE_FROM_ID (c->f, i);
5319
5320 if (face)
5321 {
5322 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5323 mark_object (face->lface[j]);
5324 }
5325 }
5326 }
5327 }
5328
5329
5330 #ifdef HAVE_WINDOW_SYSTEM
5331
5332 /* Mark Lisp objects in image IMG. */
5333
5334 static void
5335 mark_image (img)
5336 struct image *img;
5337 {
5338 mark_object (img->spec);
5339
5340 if (!NILP (img->data.lisp_val))
5341 mark_object (img->data.lisp_val);
5342 }
5343
5344
5345 /* Mark Lisp objects in image cache of frame F. It's done this way so
5346 that we don't have to include xterm.h here. */
5347
5348 static void
5349 mark_image_cache (f)
5350 struct frame *f;
5351 {
5352 forall_images_in_image_cache (f, mark_image);
5353 }
5354
5355 #endif /* HAVE_X_WINDOWS */
5356
5357
5358 \f
5359 /* Mark reference to a Lisp_Object.
5360 If the object referred to has not been seen yet, recursively mark
5361 all the references contained in it. */
5362
5363 #define LAST_MARKED_SIZE 500
5364 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5365 int last_marked_index;
5366
5367 /* For debugging--call abort when we cdr down this many
5368 links of a list, in mark_object. In debugging,
5369 the call to abort will hit a breakpoint.
5370 Normally this is zero and the check never goes off. */
5371 static int mark_object_loop_halt;
5372
5373 /* Return non-zero if the object was not yet marked. */
5374 static int
5375 mark_vectorlike (ptr)
5376 struct Lisp_Vector *ptr;
5377 {
5378 register EMACS_INT size = ptr->size;
5379 register int i;
5380
5381 if (VECTOR_MARKED_P (ptr))
5382 return 0; /* Already marked */
5383 VECTOR_MARK (ptr); /* Else mark it */
5384 if (size & PSEUDOVECTOR_FLAG)
5385 size &= PSEUDOVECTOR_SIZE_MASK;
5386
5387 /* Note that this size is not the memory-footprint size, but only
5388 the number of Lisp_Object fields that we should trace.
5389 The distinction is used e.g. by Lisp_Process which places extra
5390 non-Lisp_Object fields at the end of the structure. */
5391 for (i = 0; i < size; i++) /* and then mark its elements */
5392 mark_object (ptr->contents[i]);
5393 return 1;
5394 }
5395
5396 void
5397 mark_object (arg)
5398 Lisp_Object arg;
5399 {
5400 register Lisp_Object obj = arg;
5401 #ifdef GC_CHECK_MARKED_OBJECTS
5402 void *po;
5403 struct mem_node *m;
5404 #endif
5405 int cdr_count = 0;
5406
5407 loop:
5408
5409 if (PURE_POINTER_P (XPNTR (obj)))
5410 return;
5411
5412 last_marked[last_marked_index++] = obj;
5413 if (last_marked_index == LAST_MARKED_SIZE)
5414 last_marked_index = 0;
5415
5416 /* Perform some sanity checks on the objects marked here. Abort if
5417 we encounter an object we know is bogus. This increases GC time
5418 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5419 #ifdef GC_CHECK_MARKED_OBJECTS
5420
5421 po = (void *) XPNTR (obj);
5422
5423 /* Check that the object pointed to by PO is known to be a Lisp
5424 structure allocated from the heap. */
5425 #define CHECK_ALLOCATED() \
5426 do { \
5427 m = mem_find (po); \
5428 if (m == MEM_NIL) \
5429 abort (); \
5430 } while (0)
5431
5432 /* Check that the object pointed to by PO is live, using predicate
5433 function LIVEP. */
5434 #define CHECK_LIVE(LIVEP) \
5435 do { \
5436 if (!LIVEP (m, po)) \
5437 abort (); \
5438 } while (0)
5439
5440 /* Check both of the above conditions. */
5441 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5442 do { \
5443 CHECK_ALLOCATED (); \
5444 CHECK_LIVE (LIVEP); \
5445 } while (0) \
5446
5447 #else /* not GC_CHECK_MARKED_OBJECTS */
5448
5449 #define CHECK_ALLOCATED() (void) 0
5450 #define CHECK_LIVE(LIVEP) (void) 0
5451 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5452
5453 #endif /* not GC_CHECK_MARKED_OBJECTS */
5454
5455 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5456 {
5457 case Lisp_String:
5458 {
5459 register struct Lisp_String *ptr = XSTRING (obj);
5460 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5461 MARK_INTERVAL_TREE (ptr->intervals);
5462 MARK_STRING (ptr);
5463 #ifdef GC_CHECK_STRING_BYTES
5464 /* Check that the string size recorded in the string is the
5465 same as the one recorded in the sdata structure. */
5466 CHECK_STRING_BYTES (ptr);
5467 #endif /* GC_CHECK_STRING_BYTES */
5468 }
5469 break;
5470
5471 case Lisp_Vectorlike:
5472 #ifdef GC_CHECK_MARKED_OBJECTS
5473 m = mem_find (po);
5474 if (m == MEM_NIL && !SUBRP (obj)
5475 && po != &buffer_defaults
5476 && po != &buffer_local_symbols)
5477 abort ();
5478 #endif /* GC_CHECK_MARKED_OBJECTS */
5479
5480 if (BUFFERP (obj))
5481 {
5482 if (!VECTOR_MARKED_P (XBUFFER (obj)))
5483 {
5484 #ifdef GC_CHECK_MARKED_OBJECTS
5485 if (po != &buffer_defaults && po != &buffer_local_symbols)
5486 {
5487 struct buffer *b;
5488 for (b = all_buffers; b && b != po; b = b->next)
5489 ;
5490 if (b == NULL)
5491 abort ();
5492 }
5493 #endif /* GC_CHECK_MARKED_OBJECTS */
5494 mark_buffer (obj);
5495 }
5496 }
5497 else if (SUBRP (obj))
5498 break;
5499 else if (COMPILEDP (obj))
5500 /* We could treat this just like a vector, but it is better to
5501 save the COMPILED_CONSTANTS element for last and avoid
5502 recursion there. */
5503 {
5504 register struct Lisp_Vector *ptr = XVECTOR (obj);
5505 register EMACS_INT size = ptr->size;
5506 register int i;
5507
5508 if (VECTOR_MARKED_P (ptr))
5509 break; /* Already marked */
5510
5511 CHECK_LIVE (live_vector_p);
5512 VECTOR_MARK (ptr); /* Else mark it */
5513 size &= PSEUDOVECTOR_SIZE_MASK;
5514 for (i = 0; i < size; i++) /* and then mark its elements */
5515 {
5516 if (i != COMPILED_CONSTANTS)
5517 mark_object (ptr->contents[i]);
5518 }
5519 obj = ptr->contents[COMPILED_CONSTANTS];
5520 goto loop;
5521 }
5522 else if (FRAMEP (obj))
5523 {
5524 register struct frame *ptr = XFRAME (obj);
5525 if (mark_vectorlike (XVECTOR (obj)))
5526 {
5527 mark_face_cache (ptr->face_cache);
5528 #ifdef HAVE_WINDOW_SYSTEM
5529 mark_image_cache (ptr);
5530 #endif /* HAVE_WINDOW_SYSTEM */
5531 }
5532 }
5533 else if (WINDOWP (obj))
5534 {
5535 register struct Lisp_Vector *ptr = XVECTOR (obj);
5536 struct window *w = XWINDOW (obj);
5537 if (mark_vectorlike (ptr))
5538 {
5539 /* Mark glyphs for leaf windows. Marking window matrices is
5540 sufficient because frame matrices use the same glyph
5541 memory. */
5542 if (NILP (w->hchild)
5543 && NILP (w->vchild)
5544 && w->current_matrix)
5545 {
5546 mark_glyph_matrix (w->current_matrix);
5547 mark_glyph_matrix (w->desired_matrix);
5548 }
5549 }
5550 }
5551 else if (HASH_TABLE_P (obj))
5552 {
5553 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5554 if (mark_vectorlike ((struct Lisp_Vector *)h))
5555 { /* If hash table is not weak, mark all keys and values.
5556 For weak tables, mark only the vector. */
5557 if (NILP (h->weak))
5558 mark_object (h->key_and_value);
5559 else
5560 VECTOR_MARK (XVECTOR (h->key_and_value));
5561 }
5562 }
5563 else
5564 mark_vectorlike (XVECTOR (obj));
5565 break;
5566
5567 case Lisp_Symbol:
5568 {
5569 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5570 struct Lisp_Symbol *ptrx;
5571
5572 if (ptr->gcmarkbit) break;
5573 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5574 ptr->gcmarkbit = 1;
5575 mark_object (ptr->value);
5576 mark_object (ptr->function);
5577 mark_object (ptr->plist);
5578
5579 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5580 MARK_STRING (XSTRING (ptr->xname));
5581 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5582
5583 /* Note that we do not mark the obarray of the symbol.
5584 It is safe not to do so because nothing accesses that
5585 slot except to check whether it is nil. */
5586 ptr = ptr->next;
5587 if (ptr)
5588 {
5589 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5590 XSETSYMBOL (obj, ptrx);
5591 goto loop;
5592 }
5593 }
5594 break;
5595
5596 case Lisp_Misc:
5597 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5598 if (XMISCANY (obj)->gcmarkbit)
5599 break;
5600 XMISCANY (obj)->gcmarkbit = 1;
5601
5602 switch (XMISCTYPE (obj))
5603 {
5604 case Lisp_Misc_Buffer_Local_Value:
5605 {
5606 register struct Lisp_Buffer_Local_Value *ptr
5607 = XBUFFER_LOCAL_VALUE (obj);
5608 /* If the cdr is nil, avoid recursion for the car. */
5609 if (EQ (ptr->cdr, Qnil))
5610 {
5611 obj = ptr->realvalue;
5612 goto loop;
5613 }
5614 mark_object (ptr->realvalue);
5615 mark_object (ptr->buffer);
5616 mark_object (ptr->frame);
5617 obj = ptr->cdr;
5618 goto loop;
5619 }
5620
5621 case Lisp_Misc_Marker:
5622 /* DO NOT mark thru the marker's chain.
5623 The buffer's markers chain does not preserve markers from gc;
5624 instead, markers are removed from the chain when freed by gc. */
5625 break;
5626
5627 case Lisp_Misc_Intfwd:
5628 case Lisp_Misc_Boolfwd:
5629 case Lisp_Misc_Objfwd:
5630 case Lisp_Misc_Buffer_Objfwd:
5631 case Lisp_Misc_Kboard_Objfwd:
5632 /* Don't bother with Lisp_Buffer_Objfwd,
5633 since all markable slots in current buffer marked anyway. */
5634 /* Don't need to do Lisp_Objfwd, since the places they point
5635 are protected with staticpro. */
5636 break;
5637
5638 case Lisp_Misc_Save_Value:
5639 #if GC_MARK_STACK
5640 {
5641 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5642 /* If DOGC is set, POINTER is the address of a memory
5643 area containing INTEGER potential Lisp_Objects. */
5644 if (ptr->dogc)
5645 {
5646 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5647 int nelt;
5648 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5649 mark_maybe_object (*p);
5650 }
5651 }
5652 #endif
5653 break;
5654
5655 case Lisp_Misc_Overlay:
5656 {
5657 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5658 mark_object (ptr->start);
5659 mark_object (ptr->end);
5660 mark_object (ptr->plist);
5661 if (ptr->next)
5662 {
5663 XSETMISC (obj, ptr->next);
5664 goto loop;
5665 }
5666 }
5667 break;
5668
5669 default:
5670 abort ();
5671 }
5672 break;
5673
5674 case Lisp_Cons:
5675 {
5676 register struct Lisp_Cons *ptr = XCONS (obj);
5677 if (CONS_MARKED_P (ptr)) break;
5678 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5679 CONS_MARK (ptr);
5680 /* If the cdr is nil, avoid recursion for the car. */
5681 if (EQ (ptr->u.cdr, Qnil))
5682 {
5683 obj = ptr->car;
5684 cdr_count = 0;
5685 goto loop;
5686 }
5687 mark_object (ptr->car);
5688 obj = ptr->u.cdr;
5689 cdr_count++;
5690 if (cdr_count == mark_object_loop_halt)
5691 abort ();
5692 goto loop;
5693 }
5694
5695 case Lisp_Float:
5696 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5697 FLOAT_MARK (XFLOAT (obj));
5698 break;
5699
5700 case Lisp_Int:
5701 break;
5702
5703 default:
5704 abort ();
5705 }
5706
5707 #undef CHECK_LIVE
5708 #undef CHECK_ALLOCATED
5709 #undef CHECK_ALLOCATED_AND_LIVE
5710 }
5711
5712 /* Mark the pointers in a buffer structure. */
5713
5714 static void
5715 mark_buffer (buf)
5716 Lisp_Object buf;
5717 {
5718 register struct buffer *buffer = XBUFFER (buf);
5719 register Lisp_Object *ptr, tmp;
5720 Lisp_Object base_buffer;
5721
5722 VECTOR_MARK (buffer);
5723
5724 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5725
5726 /* For now, we just don't mark the undo_list. It's done later in
5727 a special way just before the sweep phase, and after stripping
5728 some of its elements that are not needed any more. */
5729
5730 if (buffer->overlays_before)
5731 {
5732 XSETMISC (tmp, buffer->overlays_before);
5733 mark_object (tmp);
5734 }
5735 if (buffer->overlays_after)
5736 {
5737 XSETMISC (tmp, buffer->overlays_after);
5738 mark_object (tmp);
5739 }
5740
5741 for (ptr = &buffer->name;
5742 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5743 ptr++)
5744 mark_object (*ptr);
5745
5746 /* If this is an indirect buffer, mark its base buffer. */
5747 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5748 {
5749 XSETBUFFER (base_buffer, buffer->base_buffer);
5750 mark_buffer (base_buffer);
5751 }
5752 }
5753
5754 /* Mark the Lisp pointers in the terminal objects.
5755 Called by the Fgarbage_collector. */
5756
5757 static void
5758 mark_terminals (void)
5759 {
5760 struct terminal *t;
5761 for (t = terminal_list; t; t = t->next_terminal)
5762 {
5763 eassert (t->name != NULL);
5764 mark_vectorlike ((struct Lisp_Vector *)t);
5765 }
5766 }
5767
5768
5769
5770 /* Value is non-zero if OBJ will survive the current GC because it's
5771 either marked or does not need to be marked to survive. */
5772
5773 int
5774 survives_gc_p (obj)
5775 Lisp_Object obj;
5776 {
5777 int survives_p;
5778
5779 switch (XTYPE (obj))
5780 {
5781 case Lisp_Int:
5782 survives_p = 1;
5783 break;
5784
5785 case Lisp_Symbol:
5786 survives_p = XSYMBOL (obj)->gcmarkbit;
5787 break;
5788
5789 case Lisp_Misc:
5790 survives_p = XMISCANY (obj)->gcmarkbit;
5791 break;
5792
5793 case Lisp_String:
5794 survives_p = STRING_MARKED_P (XSTRING (obj));
5795 break;
5796
5797 case Lisp_Vectorlike:
5798 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5799 break;
5800
5801 case Lisp_Cons:
5802 survives_p = CONS_MARKED_P (XCONS (obj));
5803 break;
5804
5805 case Lisp_Float:
5806 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5807 break;
5808
5809 default:
5810 abort ();
5811 }
5812
5813 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5814 }
5815
5816
5817 \f
5818 /* Sweep: find all structures not marked, and free them. */
5819
5820 static void
5821 gc_sweep ()
5822 {
5823 /* Remove or mark entries in weak hash tables.
5824 This must be done before any object is unmarked. */
5825 sweep_weak_hash_tables ();
5826
5827 sweep_strings ();
5828 #ifdef GC_CHECK_STRING_BYTES
5829 if (!noninteractive)
5830 check_string_bytes (1);
5831 #endif
5832
5833 /* Put all unmarked conses on free list */
5834 {
5835 register struct cons_block *cblk;
5836 struct cons_block **cprev = &cons_block;
5837 register int lim = cons_block_index;
5838 register int num_free = 0, num_used = 0;
5839
5840 cons_free_list = 0;
5841
5842 for (cblk = cons_block; cblk; cblk = *cprev)
5843 {
5844 register int i = 0;
5845 int this_free = 0;
5846 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5847
5848 /* Scan the mark bits an int at a time. */
5849 for (i = 0; i <= ilim; i++)
5850 {
5851 if (cblk->gcmarkbits[i] == -1)
5852 {
5853 /* Fast path - all cons cells for this int are marked. */
5854 cblk->gcmarkbits[i] = 0;
5855 num_used += BITS_PER_INT;
5856 }
5857 else
5858 {
5859 /* Some cons cells for this int are not marked.
5860 Find which ones, and free them. */
5861 int start, pos, stop;
5862
5863 start = i * BITS_PER_INT;
5864 stop = lim - start;
5865 if (stop > BITS_PER_INT)
5866 stop = BITS_PER_INT;
5867 stop += start;
5868
5869 for (pos = start; pos < stop; pos++)
5870 {
5871 if (!CONS_MARKED_P (&cblk->conses[pos]))
5872 {
5873 this_free++;
5874 cblk->conses[pos].u.chain = cons_free_list;
5875 cons_free_list = &cblk->conses[pos];
5876 #if GC_MARK_STACK
5877 cons_free_list->car = Vdead;
5878 #endif
5879 }
5880 else
5881 {
5882 num_used++;
5883 CONS_UNMARK (&cblk->conses[pos]);
5884 }
5885 }
5886 }
5887 }
5888
5889 lim = CONS_BLOCK_SIZE;
5890 /* If this block contains only free conses and we have already
5891 seen more than two blocks worth of free conses then deallocate
5892 this block. */
5893 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5894 {
5895 *cprev = cblk->next;
5896 /* Unhook from the free list. */
5897 cons_free_list = cblk->conses[0].u.chain;
5898 lisp_align_free (cblk);
5899 n_cons_blocks--;
5900 }
5901 else
5902 {
5903 num_free += this_free;
5904 cprev = &cblk->next;
5905 }
5906 }
5907 total_conses = num_used;
5908 total_free_conses = num_free;
5909 }
5910
5911 /* Put all unmarked floats on free list */
5912 {
5913 register struct float_block *fblk;
5914 struct float_block **fprev = &float_block;
5915 register int lim = float_block_index;
5916 register int num_free = 0, num_used = 0;
5917
5918 float_free_list = 0;
5919
5920 for (fblk = float_block; fblk; fblk = *fprev)
5921 {
5922 register int i;
5923 int this_free = 0;
5924 for (i = 0; i < lim; i++)
5925 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5926 {
5927 this_free++;
5928 fblk->floats[i].u.chain = float_free_list;
5929 float_free_list = &fblk->floats[i];
5930 }
5931 else
5932 {
5933 num_used++;
5934 FLOAT_UNMARK (&fblk->floats[i]);
5935 }
5936 lim = FLOAT_BLOCK_SIZE;
5937 /* If this block contains only free floats and we have already
5938 seen more than two blocks worth of free floats then deallocate
5939 this block. */
5940 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5941 {
5942 *fprev = fblk->next;
5943 /* Unhook from the free list. */
5944 float_free_list = fblk->floats[0].u.chain;
5945 lisp_align_free (fblk);
5946 n_float_blocks--;
5947 }
5948 else
5949 {
5950 num_free += this_free;
5951 fprev = &fblk->next;
5952 }
5953 }
5954 total_floats = num_used;
5955 total_free_floats = num_free;
5956 }
5957
5958 /* Put all unmarked intervals on free list */
5959 {
5960 register struct interval_block *iblk;
5961 struct interval_block **iprev = &interval_block;
5962 register int lim = interval_block_index;
5963 register int num_free = 0, num_used = 0;
5964
5965 interval_free_list = 0;
5966
5967 for (iblk = interval_block; iblk; iblk = *iprev)
5968 {
5969 register int i;
5970 int this_free = 0;
5971
5972 for (i = 0; i < lim; i++)
5973 {
5974 if (!iblk->intervals[i].gcmarkbit)
5975 {
5976 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5977 interval_free_list = &iblk->intervals[i];
5978 this_free++;
5979 }
5980 else
5981 {
5982 num_used++;
5983 iblk->intervals[i].gcmarkbit = 0;
5984 }
5985 }
5986 lim = INTERVAL_BLOCK_SIZE;
5987 /* If this block contains only free intervals and we have already
5988 seen more than two blocks worth of free intervals then
5989 deallocate this block. */
5990 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5991 {
5992 *iprev = iblk->next;
5993 /* Unhook from the free list. */
5994 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5995 lisp_free (iblk);
5996 n_interval_blocks--;
5997 }
5998 else
5999 {
6000 num_free += this_free;
6001 iprev = &iblk->next;
6002 }
6003 }
6004 total_intervals = num_used;
6005 total_free_intervals = num_free;
6006 }
6007
6008 /* Put all unmarked symbols on free list */
6009 {
6010 register struct symbol_block *sblk;
6011 struct symbol_block **sprev = &symbol_block;
6012 register int lim = symbol_block_index;
6013 register int num_free = 0, num_used = 0;
6014
6015 symbol_free_list = NULL;
6016
6017 for (sblk = symbol_block; sblk; sblk = *sprev)
6018 {
6019 int this_free = 0;
6020 struct Lisp_Symbol *sym = sblk->symbols;
6021 struct Lisp_Symbol *end = sym + lim;
6022
6023 for (; sym < end; ++sym)
6024 {
6025 /* Check if the symbol was created during loadup. In such a case
6026 it might be pointed to by pure bytecode which we don't trace,
6027 so we conservatively assume that it is live. */
6028 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
6029
6030 if (!sym->gcmarkbit && !pure_p)
6031 {
6032 sym->next = symbol_free_list;
6033 symbol_free_list = sym;
6034 #if GC_MARK_STACK
6035 symbol_free_list->function = Vdead;
6036 #endif
6037 ++this_free;
6038 }
6039 else
6040 {
6041 ++num_used;
6042 if (!pure_p)
6043 UNMARK_STRING (XSTRING (sym->xname));
6044 sym->gcmarkbit = 0;
6045 }
6046 }
6047
6048 lim = SYMBOL_BLOCK_SIZE;
6049 /* If this block contains only free symbols and we have already
6050 seen more than two blocks worth of free symbols then deallocate
6051 this block. */
6052 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6053 {
6054 *sprev = sblk->next;
6055 /* Unhook from the free list. */
6056 symbol_free_list = sblk->symbols[0].next;
6057 lisp_free (sblk);
6058 n_symbol_blocks--;
6059 }
6060 else
6061 {
6062 num_free += this_free;
6063 sprev = &sblk->next;
6064 }
6065 }
6066 total_symbols = num_used;
6067 total_free_symbols = num_free;
6068 }
6069
6070 /* Put all unmarked misc's on free list.
6071 For a marker, first unchain it from the buffer it points into. */
6072 {
6073 register struct marker_block *mblk;
6074 struct marker_block **mprev = &marker_block;
6075 register int lim = marker_block_index;
6076 register int num_free = 0, num_used = 0;
6077
6078 marker_free_list = 0;
6079
6080 for (mblk = marker_block; mblk; mblk = *mprev)
6081 {
6082 register int i;
6083 int this_free = 0;
6084
6085 for (i = 0; i < lim; i++)
6086 {
6087 if (!mblk->markers[i].u_any.gcmarkbit)
6088 {
6089 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
6090 unchain_marker (&mblk->markers[i].u_marker);
6091 /* Set the type of the freed object to Lisp_Misc_Free.
6092 We could leave the type alone, since nobody checks it,
6093 but this might catch bugs faster. */
6094 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
6095 mblk->markers[i].u_free.chain = marker_free_list;
6096 marker_free_list = &mblk->markers[i];
6097 this_free++;
6098 }
6099 else
6100 {
6101 num_used++;
6102 mblk->markers[i].u_any.gcmarkbit = 0;
6103 }
6104 }
6105 lim = MARKER_BLOCK_SIZE;
6106 /* If this block contains only free markers and we have already
6107 seen more than two blocks worth of free markers then deallocate
6108 this block. */
6109 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6110 {
6111 *mprev = mblk->next;
6112 /* Unhook from the free list. */
6113 marker_free_list = mblk->markers[0].u_free.chain;
6114 lisp_free (mblk);
6115 n_marker_blocks--;
6116 }
6117 else
6118 {
6119 num_free += this_free;
6120 mprev = &mblk->next;
6121 }
6122 }
6123
6124 total_markers = num_used;
6125 total_free_markers = num_free;
6126 }
6127
6128 /* Free all unmarked buffers */
6129 {
6130 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6131
6132 while (buffer)
6133 if (!VECTOR_MARKED_P (buffer))
6134 {
6135 if (prev)
6136 prev->next = buffer->next;
6137 else
6138 all_buffers = buffer->next;
6139 next = buffer->next;
6140 lisp_free (buffer);
6141 buffer = next;
6142 }
6143 else
6144 {
6145 VECTOR_UNMARK (buffer);
6146 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6147 prev = buffer, buffer = buffer->next;
6148 }
6149 }
6150
6151 /* Free all unmarked vectors */
6152 {
6153 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6154 total_vector_size = 0;
6155
6156 while (vector)
6157 if (!VECTOR_MARKED_P (vector))
6158 {
6159 if (prev)
6160 prev->next = vector->next;
6161 else
6162 all_vectors = vector->next;
6163 next = vector->next;
6164 lisp_free (vector);
6165 n_vectors--;
6166 vector = next;
6167
6168 }
6169 else
6170 {
6171 VECTOR_UNMARK (vector);
6172 if (vector->size & PSEUDOVECTOR_FLAG)
6173 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6174 else
6175 total_vector_size += vector->size;
6176 prev = vector, vector = vector->next;
6177 }
6178 }
6179
6180 #ifdef GC_CHECK_STRING_BYTES
6181 if (!noninteractive)
6182 check_string_bytes (1);
6183 #endif
6184 }
6185
6186
6187
6188 \f
6189 /* Debugging aids. */
6190
6191 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6192 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6193 This may be helpful in debugging Emacs's memory usage.
6194 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6195 ()
6196 {
6197 Lisp_Object end;
6198
6199 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6200
6201 return end;
6202 }
6203
6204 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6205 doc: /* Return a list of counters that measure how much consing there has been.
6206 Each of these counters increments for a certain kind of object.
6207 The counters wrap around from the largest positive integer to zero.
6208 Garbage collection does not decrease them.
6209 The elements of the value are as follows:
6210 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6211 All are in units of 1 = one object consed
6212 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6213 objects consed.
6214 MISCS include overlays, markers, and some internal types.
6215 Frames, windows, buffers, and subprocesses count as vectors
6216 (but the contents of a buffer's text do not count here). */)
6217 ()
6218 {
6219 Lisp_Object consed[8];
6220
6221 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6222 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6223 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6224 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6225 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6226 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6227 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6228 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6229
6230 return Flist (8, consed);
6231 }
6232
6233 int suppress_checking;
6234
6235 void
6236 die (msg, file, line)
6237 const char *msg;
6238 const char *file;
6239 int line;
6240 {
6241 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6242 file, line, msg);
6243 abort ();
6244 }
6245 \f
6246 /* Initialization */
6247
6248 void
6249 init_alloc_once ()
6250 {
6251 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6252 purebeg = PUREBEG;
6253 pure_size = PURESIZE;
6254 pure_bytes_used = 0;
6255 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6256 pure_bytes_used_before_overflow = 0;
6257
6258 /* Initialize the list of free aligned blocks. */
6259 free_ablock = NULL;
6260
6261 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6262 mem_init ();
6263 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6264 #endif
6265
6266 all_vectors = 0;
6267 ignore_warnings = 1;
6268 #ifdef DOUG_LEA_MALLOC
6269 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6270 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6271 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6272 #endif
6273 init_strings ();
6274 init_cons ();
6275 init_symbol ();
6276 init_marker ();
6277 init_float ();
6278 init_intervals ();
6279
6280 #ifdef REL_ALLOC
6281 malloc_hysteresis = 32;
6282 #else
6283 malloc_hysteresis = 0;
6284 #endif
6285
6286 refill_memory_reserve ();
6287
6288 ignore_warnings = 0;
6289 gcprolist = 0;
6290 byte_stack_list = 0;
6291 staticidx = 0;
6292 consing_since_gc = 0;
6293 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6294 gc_relative_threshold = 0;
6295
6296 #ifdef VIRT_ADDR_VARIES
6297 malloc_sbrk_unused = 1<<22; /* A large number */
6298 malloc_sbrk_used = 100000; /* as reasonable as any number */
6299 #endif /* VIRT_ADDR_VARIES */
6300 }
6301
6302 void
6303 init_alloc ()
6304 {
6305 gcprolist = 0;
6306 byte_stack_list = 0;
6307 #if GC_MARK_STACK
6308 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6309 setjmp_tested_p = longjmps_done = 0;
6310 #endif
6311 #endif
6312 Vgc_elapsed = make_float (0.0);
6313 gcs_done = 0;
6314 }
6315
6316 void
6317 syms_of_alloc ()
6318 {
6319 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6320 doc: /* *Number of bytes of consing between garbage collections.
6321 Garbage collection can happen automatically once this many bytes have been
6322 allocated since the last garbage collection. All data types count.
6323
6324 Garbage collection happens automatically only when `eval' is called.
6325
6326 By binding this temporarily to a large number, you can effectively
6327 prevent garbage collection during a part of the program.
6328 See also `gc-cons-percentage'. */);
6329
6330 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6331 doc: /* *Portion of the heap used for allocation.
6332 Garbage collection can happen automatically once this portion of the heap
6333 has been allocated since the last garbage collection.
6334 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6335 Vgc_cons_percentage = make_float (0.1);
6336
6337 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6338 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6339
6340 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6341 doc: /* Number of cons cells that have been consed so far. */);
6342
6343 DEFVAR_INT ("floats-consed", &floats_consed,
6344 doc: /* Number of floats that have been consed so far. */);
6345
6346 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6347 doc: /* Number of vector cells that have been consed so far. */);
6348
6349 DEFVAR_INT ("symbols-consed", &symbols_consed,
6350 doc: /* Number of symbols that have been consed so far. */);
6351
6352 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6353 doc: /* Number of string characters that have been consed so far. */);
6354
6355 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6356 doc: /* Number of miscellaneous objects that have been consed so far. */);
6357
6358 DEFVAR_INT ("intervals-consed", &intervals_consed,
6359 doc: /* Number of intervals that have been consed so far. */);
6360
6361 DEFVAR_INT ("strings-consed", &strings_consed,
6362 doc: /* Number of strings that have been consed so far. */);
6363
6364 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6365 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6366 This means that certain objects should be allocated in shared (pure) space. */);
6367
6368 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6369 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6370 garbage_collection_messages = 0;
6371
6372 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6373 doc: /* Hook run after garbage collection has finished. */);
6374 Vpost_gc_hook = Qnil;
6375 Qpost_gc_hook = intern ("post-gc-hook");
6376 staticpro (&Qpost_gc_hook);
6377
6378 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6379 doc: /* Precomputed `signal' argument for memory-full error. */);
6380 /* We build this in advance because if we wait until we need it, we might
6381 not be able to allocate the memory to hold it. */
6382 Vmemory_signal_data
6383 = list2 (Qerror,
6384 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6385
6386 DEFVAR_LISP ("memory-full", &Vmemory_full,
6387 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6388 Vmemory_full = Qnil;
6389
6390 staticpro (&Qgc_cons_threshold);
6391 Qgc_cons_threshold = intern ("gc-cons-threshold");
6392
6393 staticpro (&Qchar_table_extra_slots);
6394 Qchar_table_extra_slots = intern ("char-table-extra-slots");
6395
6396 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6397 doc: /* Accumulated time elapsed in garbage collections.
6398 The time is in seconds as a floating point value. */);
6399 DEFVAR_INT ("gcs-done", &gcs_done,
6400 doc: /* Accumulated number of garbage collections done. */);
6401
6402 defsubr (&Scons);
6403 defsubr (&Slist);
6404 defsubr (&Svector);
6405 defsubr (&Smake_byte_code);
6406 defsubr (&Smake_list);
6407 defsubr (&Smake_vector);
6408 defsubr (&Smake_string);
6409 defsubr (&Smake_bool_vector);
6410 defsubr (&Smake_symbol);
6411 defsubr (&Smake_marker);
6412 defsubr (&Spurecopy);
6413 defsubr (&Sgarbage_collect);
6414 defsubr (&Smemory_limit);
6415 defsubr (&Smemory_use_counts);
6416
6417 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6418 defsubr (&Sgc_status);
6419 #endif
6420 }
6421
6422 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6423 (do not change this comment) */