]> code.delx.au - gnu-emacs/blob - src/fns.c
* src/fns.c (Fyes_or_no_p): Add usage.
[gnu-emacs] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985, 1986, 1987, 1993, 1994, 1995, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004,
4 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 This file is part of GNU Emacs.
8
9 GNU Emacs is free software: you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation, either version 3 of the License, or
12 (at your option) any later version.
13
14 GNU Emacs is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include <config.h>
23
24 #ifdef HAVE_UNISTD_H
25 #include <unistd.h>
26 #endif
27 #include <time.h>
28 #include <setjmp.h>
29
30 /* Note on some machines this defines `vector' as a typedef,
31 so make sure we don't use that name in this file. */
32 #undef vector
33 #define vector *****
34
35 #include "lisp.h"
36 #include "commands.h"
37 #include "character.h"
38 #include "coding.h"
39 #include "buffer.h"
40 #include "keyboard.h"
41 #include "keymap.h"
42 #include "intervals.h"
43 #include "frame.h"
44 #include "window.h"
45 #include "blockinput.h"
46 #ifdef HAVE_MENUS
47 #if defined (HAVE_X_WINDOWS)
48 #include "xterm.h"
49 #endif
50 #endif /* HAVE_MENUS */
51
52 #ifndef NULL
53 #define NULL ((POINTER_TYPE *)0)
54 #endif
55
56 /* Nonzero enables use of dialog boxes for questions
57 asked by mouse commands. */
58 int use_dialog_box;
59
60 /* Nonzero enables use of a file dialog for file name
61 questions asked by mouse commands. */
62 int use_file_dialog;
63
64 Lisp_Object Qstring_lessp, Qprovide, Qrequire;
65 Lisp_Object Qyes_or_no_p_history;
66 Lisp_Object Qcursor_in_echo_area;
67 Lisp_Object Qwidget_type;
68 Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
69
70 static int internal_equal (Lisp_Object , Lisp_Object, int, int);
71
72 extern long get_random (void);
73 extern void seed_random (long);
74
75 #ifndef HAVE_UNISTD_H
76 extern long time ();
77 #endif
78 \f
79 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
80 doc: /* Return the argument unchanged. */)
81 (Lisp_Object arg)
82 {
83 return arg;
84 }
85
86 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
87 doc: /* Return a pseudo-random number.
88 All integers representable in Lisp are equally likely.
89 On most systems, this is 29 bits' worth.
90 With positive integer LIMIT, return random number in interval [0,LIMIT).
91 With argument t, set the random number seed from the current time and pid.
92 Other values of LIMIT are ignored. */)
93 (Lisp_Object limit)
94 {
95 EMACS_INT val;
96 Lisp_Object lispy_val;
97 unsigned long denominator;
98
99 if (EQ (limit, Qt))
100 seed_random (getpid () + time (NULL));
101 if (NATNUMP (limit) && XFASTINT (limit) != 0)
102 {
103 /* Try to take our random number from the higher bits of VAL,
104 not the lower, since (says Gentzel) the low bits of `random'
105 are less random than the higher ones. We do this by using the
106 quotient rather than the remainder. At the high end of the RNG
107 it's possible to get a quotient larger than n; discarding
108 these values eliminates the bias that would otherwise appear
109 when using a large n. */
110 denominator = ((unsigned long)1 << VALBITS) / XFASTINT (limit);
111 do
112 val = get_random () / denominator;
113 while (val >= XFASTINT (limit));
114 }
115 else
116 val = get_random ();
117 XSETINT (lispy_val, val);
118 return lispy_val;
119 }
120 \f
121 /* Random data-structure functions */
122
123 DEFUN ("length", Flength, Slength, 1, 1, 0,
124 doc: /* Return the length of vector, list or string SEQUENCE.
125 A byte-code function object is also allowed.
126 If the string contains multibyte characters, this is not necessarily
127 the number of bytes in the string; it is the number of characters.
128 To get the number of bytes, use `string-bytes'. */)
129 (register Lisp_Object sequence)
130 {
131 register Lisp_Object val;
132 register int i;
133
134 if (STRINGP (sequence))
135 XSETFASTINT (val, SCHARS (sequence));
136 else if (VECTORP (sequence))
137 XSETFASTINT (val, ASIZE (sequence));
138 else if (CHAR_TABLE_P (sequence))
139 XSETFASTINT (val, MAX_CHAR);
140 else if (BOOL_VECTOR_P (sequence))
141 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
142 else if (COMPILEDP (sequence))
143 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
144 else if (CONSP (sequence))
145 {
146 i = 0;
147 while (CONSP (sequence))
148 {
149 sequence = XCDR (sequence);
150 ++i;
151
152 if (!CONSP (sequence))
153 break;
154
155 sequence = XCDR (sequence);
156 ++i;
157 QUIT;
158 }
159
160 CHECK_LIST_END (sequence, sequence);
161
162 val = make_number (i);
163 }
164 else if (NILP (sequence))
165 XSETFASTINT (val, 0);
166 else
167 wrong_type_argument (Qsequencep, sequence);
168
169 return val;
170 }
171
172 /* This does not check for quits. That is safe since it must terminate. */
173
174 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
175 doc: /* Return the length of a list, but avoid error or infinite loop.
176 This function never gets an error. If LIST is not really a list,
177 it returns 0. If LIST is circular, it returns a finite value
178 which is at least the number of distinct elements. */)
179 (Lisp_Object list)
180 {
181 Lisp_Object tail, halftail, length;
182 int len = 0;
183
184 /* halftail is used to detect circular lists. */
185 halftail = list;
186 for (tail = list; CONSP (tail); tail = XCDR (tail))
187 {
188 if (EQ (tail, halftail) && len != 0)
189 break;
190 len++;
191 if ((len & 1) == 0)
192 halftail = XCDR (halftail);
193 }
194
195 XSETINT (length, len);
196 return length;
197 }
198
199 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
200 doc: /* Return the number of bytes in STRING.
201 If STRING is multibyte, this may be greater than the length of STRING. */)
202 (Lisp_Object string)
203 {
204 CHECK_STRING (string);
205 return make_number (SBYTES (string));
206 }
207
208 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
209 doc: /* Return t if two strings have identical contents.
210 Case is significant, but text properties are ignored.
211 Symbols are also allowed; their print names are used instead. */)
212 (register Lisp_Object s1, Lisp_Object s2)
213 {
214 if (SYMBOLP (s1))
215 s1 = SYMBOL_NAME (s1);
216 if (SYMBOLP (s2))
217 s2 = SYMBOL_NAME (s2);
218 CHECK_STRING (s1);
219 CHECK_STRING (s2);
220
221 if (SCHARS (s1) != SCHARS (s2)
222 || SBYTES (s1) != SBYTES (s2)
223 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
224 return Qnil;
225 return Qt;
226 }
227
228 DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
229 doc: /* Compare the contents of two strings, converting to multibyte if needed.
230 In string STR1, skip the first START1 characters and stop at END1.
231 In string STR2, skip the first START2 characters and stop at END2.
232 END1 and END2 default to the full lengths of the respective strings.
233
234 Case is significant in this comparison if IGNORE-CASE is nil.
235 Unibyte strings are converted to multibyte for comparison.
236
237 The value is t if the strings (or specified portions) match.
238 If string STR1 is less, the value is a negative number N;
239 - 1 - N is the number of characters that match at the beginning.
240 If string STR1 is greater, the value is a positive number N;
241 N - 1 is the number of characters that match at the beginning. */)
242 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2, Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
243 {
244 register EMACS_INT end1_char, end2_char;
245 register EMACS_INT i1, i1_byte, i2, i2_byte;
246
247 CHECK_STRING (str1);
248 CHECK_STRING (str2);
249 if (NILP (start1))
250 start1 = make_number (0);
251 if (NILP (start2))
252 start2 = make_number (0);
253 CHECK_NATNUM (start1);
254 CHECK_NATNUM (start2);
255 if (! NILP (end1))
256 CHECK_NATNUM (end1);
257 if (! NILP (end2))
258 CHECK_NATNUM (end2);
259
260 i1 = XINT (start1);
261 i2 = XINT (start2);
262
263 i1_byte = string_char_to_byte (str1, i1);
264 i2_byte = string_char_to_byte (str2, i2);
265
266 end1_char = SCHARS (str1);
267 if (! NILP (end1) && end1_char > XINT (end1))
268 end1_char = XINT (end1);
269
270 end2_char = SCHARS (str2);
271 if (! NILP (end2) && end2_char > XINT (end2))
272 end2_char = XINT (end2);
273
274 while (i1 < end1_char && i2 < end2_char)
275 {
276 /* When we find a mismatch, we must compare the
277 characters, not just the bytes. */
278 int c1, c2;
279
280 if (STRING_MULTIBYTE (str1))
281 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
282 else
283 {
284 c1 = SREF (str1, i1++);
285 MAKE_CHAR_MULTIBYTE (c1);
286 }
287
288 if (STRING_MULTIBYTE (str2))
289 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
290 else
291 {
292 c2 = SREF (str2, i2++);
293 MAKE_CHAR_MULTIBYTE (c2);
294 }
295
296 if (c1 == c2)
297 continue;
298
299 if (! NILP (ignore_case))
300 {
301 Lisp_Object tem;
302
303 tem = Fupcase (make_number (c1));
304 c1 = XINT (tem);
305 tem = Fupcase (make_number (c2));
306 c2 = XINT (tem);
307 }
308
309 if (c1 == c2)
310 continue;
311
312 /* Note that I1 has already been incremented
313 past the character that we are comparing;
314 hence we don't add or subtract 1 here. */
315 if (c1 < c2)
316 return make_number (- i1 + XINT (start1));
317 else
318 return make_number (i1 - XINT (start1));
319 }
320
321 if (i1 < end1_char)
322 return make_number (i1 - XINT (start1) + 1);
323 if (i2 < end2_char)
324 return make_number (- i1 + XINT (start1) - 1);
325
326 return Qt;
327 }
328
329 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
330 doc: /* Return t if first arg string is less than second in lexicographic order.
331 Case is significant.
332 Symbols are also allowed; their print names are used instead. */)
333 (register Lisp_Object s1, Lisp_Object s2)
334 {
335 register EMACS_INT end;
336 register EMACS_INT i1, i1_byte, i2, i2_byte;
337
338 if (SYMBOLP (s1))
339 s1 = SYMBOL_NAME (s1);
340 if (SYMBOLP (s2))
341 s2 = SYMBOL_NAME (s2);
342 CHECK_STRING (s1);
343 CHECK_STRING (s2);
344
345 i1 = i1_byte = i2 = i2_byte = 0;
346
347 end = SCHARS (s1);
348 if (end > SCHARS (s2))
349 end = SCHARS (s2);
350
351 while (i1 < end)
352 {
353 /* When we find a mismatch, we must compare the
354 characters, not just the bytes. */
355 int c1, c2;
356
357 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
358 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
359
360 if (c1 != c2)
361 return c1 < c2 ? Qt : Qnil;
362 }
363 return i1 < SCHARS (s2) ? Qt : Qnil;
364 }
365 \f
366 static Lisp_Object concat (int nargs, Lisp_Object *args,
367 enum Lisp_Type target_type, int last_special);
368
369 /* ARGSUSED */
370 Lisp_Object
371 concat2 (Lisp_Object s1, Lisp_Object s2)
372 {
373 Lisp_Object args[2];
374 args[0] = s1;
375 args[1] = s2;
376 return concat (2, args, Lisp_String, 0);
377 }
378
379 /* ARGSUSED */
380 Lisp_Object
381 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
382 {
383 Lisp_Object args[3];
384 args[0] = s1;
385 args[1] = s2;
386 args[2] = s3;
387 return concat (3, args, Lisp_String, 0);
388 }
389
390 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
391 doc: /* Concatenate all the arguments and make the result a list.
392 The result is a list whose elements are the elements of all the arguments.
393 Each argument may be a list, vector or string.
394 The last argument is not copied, just used as the tail of the new list.
395 usage: (append &rest SEQUENCES) */)
396 (int nargs, Lisp_Object *args)
397 {
398 return concat (nargs, args, Lisp_Cons, 1);
399 }
400
401 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
402 doc: /* Concatenate all the arguments and make the result a string.
403 The result is a string whose elements are the elements of all the arguments.
404 Each argument may be a string or a list or vector of characters (integers).
405 usage: (concat &rest SEQUENCES) */)
406 (int nargs, Lisp_Object *args)
407 {
408 return concat (nargs, args, Lisp_String, 0);
409 }
410
411 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
412 doc: /* Concatenate all the arguments and make the result a vector.
413 The result is a vector whose elements are the elements of all the arguments.
414 Each argument may be a list, vector or string.
415 usage: (vconcat &rest SEQUENCES) */)
416 (int nargs, Lisp_Object *args)
417 {
418 return concat (nargs, args, Lisp_Vectorlike, 0);
419 }
420
421
422 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
423 doc: /* Return a copy of a list, vector, string or char-table.
424 The elements of a list or vector are not copied; they are shared
425 with the original. */)
426 (Lisp_Object arg)
427 {
428 if (NILP (arg)) return arg;
429
430 if (CHAR_TABLE_P (arg))
431 {
432 return copy_char_table (arg);
433 }
434
435 if (BOOL_VECTOR_P (arg))
436 {
437 Lisp_Object val;
438 int size_in_chars
439 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
440 / BOOL_VECTOR_BITS_PER_CHAR);
441
442 val = Fmake_bool_vector (Flength (arg), Qnil);
443 memcpy (XBOOL_VECTOR (val)->data, XBOOL_VECTOR (arg)->data,
444 size_in_chars);
445 return val;
446 }
447
448 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
449 wrong_type_argument (Qsequencep, arg);
450
451 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
452 }
453
454 /* This structure holds information of an argument of `concat' that is
455 a string and has text properties to be copied. */
456 struct textprop_rec
457 {
458 int argnum; /* refer to ARGS (arguments of `concat') */
459 EMACS_INT from; /* refer to ARGS[argnum] (argument string) */
460 EMACS_INT to; /* refer to VAL (the target string) */
461 };
462
463 static Lisp_Object
464 concat (int nargs, Lisp_Object *args, enum Lisp_Type target_type, int last_special)
465 {
466 Lisp_Object val;
467 register Lisp_Object tail;
468 register Lisp_Object this;
469 EMACS_INT toindex;
470 EMACS_INT toindex_byte = 0;
471 register EMACS_INT result_len;
472 register EMACS_INT result_len_byte;
473 register int argnum;
474 Lisp_Object last_tail;
475 Lisp_Object prev;
476 int some_multibyte;
477 /* When we make a multibyte string, we can't copy text properties
478 while concatinating each string because the length of resulting
479 string can't be decided until we finish the whole concatination.
480 So, we record strings that have text properties to be copied
481 here, and copy the text properties after the concatination. */
482 struct textprop_rec *textprops = NULL;
483 /* Number of elements in textprops. */
484 int num_textprops = 0;
485 USE_SAFE_ALLOCA;
486
487 tail = Qnil;
488
489 /* In append, the last arg isn't treated like the others */
490 if (last_special && nargs > 0)
491 {
492 nargs--;
493 last_tail = args[nargs];
494 }
495 else
496 last_tail = Qnil;
497
498 /* Check each argument. */
499 for (argnum = 0; argnum < nargs; argnum++)
500 {
501 this = args[argnum];
502 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
503 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
504 wrong_type_argument (Qsequencep, this);
505 }
506
507 /* Compute total length in chars of arguments in RESULT_LEN.
508 If desired output is a string, also compute length in bytes
509 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
510 whether the result should be a multibyte string. */
511 result_len_byte = 0;
512 result_len = 0;
513 some_multibyte = 0;
514 for (argnum = 0; argnum < nargs; argnum++)
515 {
516 EMACS_INT len;
517 this = args[argnum];
518 len = XFASTINT (Flength (this));
519 if (target_type == Lisp_String)
520 {
521 /* We must count the number of bytes needed in the string
522 as well as the number of characters. */
523 EMACS_INT i;
524 Lisp_Object ch;
525 EMACS_INT this_len_byte;
526
527 if (VECTORP (this))
528 for (i = 0; i < len; i++)
529 {
530 ch = AREF (this, i);
531 CHECK_CHARACTER (ch);
532 this_len_byte = CHAR_BYTES (XINT (ch));
533 result_len_byte += this_len_byte;
534 if (! ASCII_CHAR_P (XINT (ch)) && ! CHAR_BYTE8_P (XINT (ch)))
535 some_multibyte = 1;
536 }
537 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
538 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
539 else if (CONSP (this))
540 for (; CONSP (this); this = XCDR (this))
541 {
542 ch = XCAR (this);
543 CHECK_CHARACTER (ch);
544 this_len_byte = CHAR_BYTES (XINT (ch));
545 result_len_byte += this_len_byte;
546 if (! ASCII_CHAR_P (XINT (ch)) && ! CHAR_BYTE8_P (XINT (ch)))
547 some_multibyte = 1;
548 }
549 else if (STRINGP (this))
550 {
551 if (STRING_MULTIBYTE (this))
552 {
553 some_multibyte = 1;
554 result_len_byte += SBYTES (this);
555 }
556 else
557 result_len_byte += count_size_as_multibyte (SDATA (this),
558 SCHARS (this));
559 }
560 }
561
562 result_len += len;
563 if (result_len < 0)
564 error ("String overflow");
565 }
566
567 if (! some_multibyte)
568 result_len_byte = result_len;
569
570 /* Create the output object. */
571 if (target_type == Lisp_Cons)
572 val = Fmake_list (make_number (result_len), Qnil);
573 else if (target_type == Lisp_Vectorlike)
574 val = Fmake_vector (make_number (result_len), Qnil);
575 else if (some_multibyte)
576 val = make_uninit_multibyte_string (result_len, result_len_byte);
577 else
578 val = make_uninit_string (result_len);
579
580 /* In `append', if all but last arg are nil, return last arg. */
581 if (target_type == Lisp_Cons && EQ (val, Qnil))
582 return last_tail;
583
584 /* Copy the contents of the args into the result. */
585 if (CONSP (val))
586 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
587 else
588 toindex = 0, toindex_byte = 0;
589
590 prev = Qnil;
591 if (STRINGP (val))
592 SAFE_ALLOCA (textprops, struct textprop_rec *, sizeof (struct textprop_rec) * nargs);
593
594 for (argnum = 0; argnum < nargs; argnum++)
595 {
596 Lisp_Object thislen;
597 EMACS_INT thisleni = 0;
598 register EMACS_INT thisindex = 0;
599 register EMACS_INT thisindex_byte = 0;
600
601 this = args[argnum];
602 if (!CONSP (this))
603 thislen = Flength (this), thisleni = XINT (thislen);
604
605 /* Between strings of the same kind, copy fast. */
606 if (STRINGP (this) && STRINGP (val)
607 && STRING_MULTIBYTE (this) == some_multibyte)
608 {
609 EMACS_INT thislen_byte = SBYTES (this);
610
611 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
612 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
613 {
614 textprops[num_textprops].argnum = argnum;
615 textprops[num_textprops].from = 0;
616 textprops[num_textprops++].to = toindex;
617 }
618 toindex_byte += thislen_byte;
619 toindex += thisleni;
620 }
621 /* Copy a single-byte string to a multibyte string. */
622 else if (STRINGP (this) && STRINGP (val))
623 {
624 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
625 {
626 textprops[num_textprops].argnum = argnum;
627 textprops[num_textprops].from = 0;
628 textprops[num_textprops++].to = toindex;
629 }
630 toindex_byte += copy_text (SDATA (this),
631 SDATA (val) + toindex_byte,
632 SCHARS (this), 0, 1);
633 toindex += thisleni;
634 }
635 else
636 /* Copy element by element. */
637 while (1)
638 {
639 register Lisp_Object elt;
640
641 /* Fetch next element of `this' arg into `elt', or break if
642 `this' is exhausted. */
643 if (NILP (this)) break;
644 if (CONSP (this))
645 elt = XCAR (this), this = XCDR (this);
646 else if (thisindex >= thisleni)
647 break;
648 else if (STRINGP (this))
649 {
650 int c;
651 if (STRING_MULTIBYTE (this))
652 {
653 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
654 thisindex,
655 thisindex_byte);
656 XSETFASTINT (elt, c);
657 }
658 else
659 {
660 XSETFASTINT (elt, SREF (this, thisindex)); thisindex++;
661 if (some_multibyte
662 && !ASCII_CHAR_P (XINT (elt))
663 && XINT (elt) < 0400)
664 {
665 c = BYTE8_TO_CHAR (XINT (elt));
666 XSETINT (elt, c);
667 }
668 }
669 }
670 else if (BOOL_VECTOR_P (this))
671 {
672 int byte;
673 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
674 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
675 elt = Qt;
676 else
677 elt = Qnil;
678 thisindex++;
679 }
680 else
681 {
682 elt = AREF (this, thisindex);
683 thisindex++;
684 }
685
686 /* Store this element into the result. */
687 if (toindex < 0)
688 {
689 XSETCAR (tail, elt);
690 prev = tail;
691 tail = XCDR (tail);
692 }
693 else if (VECTORP (val))
694 {
695 ASET (val, toindex, elt);
696 toindex++;
697 }
698 else
699 {
700 CHECK_NUMBER (elt);
701 if (some_multibyte)
702 toindex_byte += CHAR_STRING (XINT (elt),
703 SDATA (val) + toindex_byte);
704 else
705 SSET (val, toindex_byte++, XINT (elt));
706 toindex++;
707 }
708 }
709 }
710 if (!NILP (prev))
711 XSETCDR (prev, last_tail);
712
713 if (num_textprops > 0)
714 {
715 Lisp_Object props;
716 EMACS_INT last_to_end = -1;
717
718 for (argnum = 0; argnum < num_textprops; argnum++)
719 {
720 this = args[textprops[argnum].argnum];
721 props = text_property_list (this,
722 make_number (0),
723 make_number (SCHARS (this)),
724 Qnil);
725 /* If successive arguments have properites, be sure that the
726 value of `composition' property be the copy. */
727 if (last_to_end == textprops[argnum].to)
728 make_composition_value_copy (props);
729 add_text_properties_from_list (val, props,
730 make_number (textprops[argnum].to));
731 last_to_end = textprops[argnum].to + SCHARS (this);
732 }
733 }
734
735 SAFE_FREE ();
736 return val;
737 }
738 \f
739 static Lisp_Object string_char_byte_cache_string;
740 static EMACS_INT string_char_byte_cache_charpos;
741 static EMACS_INT string_char_byte_cache_bytepos;
742
743 void
744 clear_string_char_byte_cache (void)
745 {
746 string_char_byte_cache_string = Qnil;
747 }
748
749 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
750
751 EMACS_INT
752 string_char_to_byte (Lisp_Object string, EMACS_INT char_index)
753 {
754 EMACS_INT i_byte;
755 EMACS_INT best_below, best_below_byte;
756 EMACS_INT best_above, best_above_byte;
757
758 best_below = best_below_byte = 0;
759 best_above = SCHARS (string);
760 best_above_byte = SBYTES (string);
761 if (best_above == best_above_byte)
762 return char_index;
763
764 if (EQ (string, string_char_byte_cache_string))
765 {
766 if (string_char_byte_cache_charpos < char_index)
767 {
768 best_below = string_char_byte_cache_charpos;
769 best_below_byte = string_char_byte_cache_bytepos;
770 }
771 else
772 {
773 best_above = string_char_byte_cache_charpos;
774 best_above_byte = string_char_byte_cache_bytepos;
775 }
776 }
777
778 if (char_index - best_below < best_above - char_index)
779 {
780 unsigned char *p = SDATA (string) + best_below_byte;
781
782 while (best_below < char_index)
783 {
784 p += BYTES_BY_CHAR_HEAD (*p);
785 best_below++;
786 }
787 i_byte = p - SDATA (string);
788 }
789 else
790 {
791 unsigned char *p = SDATA (string) + best_above_byte;
792
793 while (best_above > char_index)
794 {
795 p--;
796 while (!CHAR_HEAD_P (*p)) p--;
797 best_above--;
798 }
799 i_byte = p - SDATA (string);
800 }
801
802 string_char_byte_cache_bytepos = i_byte;
803 string_char_byte_cache_charpos = char_index;
804 string_char_byte_cache_string = string;
805
806 return i_byte;
807 }
808 \f
809 /* Return the character index corresponding to BYTE_INDEX in STRING. */
810
811 EMACS_INT
812 string_byte_to_char (Lisp_Object string, EMACS_INT byte_index)
813 {
814 EMACS_INT i, i_byte;
815 EMACS_INT best_below, best_below_byte;
816 EMACS_INT best_above, best_above_byte;
817
818 best_below = best_below_byte = 0;
819 best_above = SCHARS (string);
820 best_above_byte = SBYTES (string);
821 if (best_above == best_above_byte)
822 return byte_index;
823
824 if (EQ (string, string_char_byte_cache_string))
825 {
826 if (string_char_byte_cache_bytepos < byte_index)
827 {
828 best_below = string_char_byte_cache_charpos;
829 best_below_byte = string_char_byte_cache_bytepos;
830 }
831 else
832 {
833 best_above = string_char_byte_cache_charpos;
834 best_above_byte = string_char_byte_cache_bytepos;
835 }
836 }
837
838 if (byte_index - best_below_byte < best_above_byte - byte_index)
839 {
840 unsigned char *p = SDATA (string) + best_below_byte;
841 unsigned char *pend = SDATA (string) + byte_index;
842
843 while (p < pend)
844 {
845 p += BYTES_BY_CHAR_HEAD (*p);
846 best_below++;
847 }
848 i = best_below;
849 i_byte = p - SDATA (string);
850 }
851 else
852 {
853 unsigned char *p = SDATA (string) + best_above_byte;
854 unsigned char *pbeg = SDATA (string) + byte_index;
855
856 while (p > pbeg)
857 {
858 p--;
859 while (!CHAR_HEAD_P (*p)) p--;
860 best_above--;
861 }
862 i = best_above;
863 i_byte = p - SDATA (string);
864 }
865
866 string_char_byte_cache_bytepos = i_byte;
867 string_char_byte_cache_charpos = i;
868 string_char_byte_cache_string = string;
869
870 return i;
871 }
872 \f
873 /* Convert STRING to a multibyte string. */
874
875 static Lisp_Object
876 string_make_multibyte (Lisp_Object string)
877 {
878 unsigned char *buf;
879 EMACS_INT nbytes;
880 Lisp_Object ret;
881 USE_SAFE_ALLOCA;
882
883 if (STRING_MULTIBYTE (string))
884 return string;
885
886 nbytes = count_size_as_multibyte (SDATA (string),
887 SCHARS (string));
888 /* If all the chars are ASCII, they won't need any more bytes
889 once converted. In that case, we can return STRING itself. */
890 if (nbytes == SBYTES (string))
891 return string;
892
893 SAFE_ALLOCA (buf, unsigned char *, nbytes);
894 copy_text (SDATA (string), buf, SBYTES (string),
895 0, 1);
896
897 ret = make_multibyte_string (buf, SCHARS (string), nbytes);
898 SAFE_FREE ();
899
900 return ret;
901 }
902
903
904 /* Convert STRING (if unibyte) to a multibyte string without changing
905 the number of characters. Characters 0200 trough 0237 are
906 converted to eight-bit characters. */
907
908 Lisp_Object
909 string_to_multibyte (Lisp_Object string)
910 {
911 unsigned char *buf;
912 EMACS_INT nbytes;
913 Lisp_Object ret;
914 USE_SAFE_ALLOCA;
915
916 if (STRING_MULTIBYTE (string))
917 return string;
918
919 nbytes = parse_str_to_multibyte (SDATA (string), SBYTES (string));
920 /* If all the chars are ASCII, they won't need any more bytes once
921 converted. */
922 if (nbytes == SBYTES (string))
923 return make_multibyte_string (SDATA (string), nbytes, nbytes);
924
925 SAFE_ALLOCA (buf, unsigned char *, nbytes);
926 memcpy (buf, SDATA (string), SBYTES (string));
927 str_to_multibyte (buf, nbytes, SBYTES (string));
928
929 ret = make_multibyte_string (buf, SCHARS (string), nbytes);
930 SAFE_FREE ();
931
932 return ret;
933 }
934
935
936 /* Convert STRING to a single-byte string. */
937
938 Lisp_Object
939 string_make_unibyte (Lisp_Object string)
940 {
941 EMACS_INT nchars;
942 unsigned char *buf;
943 Lisp_Object ret;
944 USE_SAFE_ALLOCA;
945
946 if (! STRING_MULTIBYTE (string))
947 return string;
948
949 nchars = SCHARS (string);
950
951 SAFE_ALLOCA (buf, unsigned char *, nchars);
952 copy_text (SDATA (string), buf, SBYTES (string),
953 1, 0);
954
955 ret = make_unibyte_string (buf, nchars);
956 SAFE_FREE ();
957
958 return ret;
959 }
960
961 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
962 1, 1, 0,
963 doc: /* Return the multibyte equivalent of STRING.
964 If STRING is unibyte and contains non-ASCII characters, the function
965 `unibyte-char-to-multibyte' is used to convert each unibyte character
966 to a multibyte character. In this case, the returned string is a
967 newly created string with no text properties. If STRING is multibyte
968 or entirely ASCII, it is returned unchanged. In particular, when
969 STRING is unibyte and entirely ASCII, the returned string is unibyte.
970 \(When the characters are all ASCII, Emacs primitives will treat the
971 string the same way whether it is unibyte or multibyte.) */)
972 (Lisp_Object string)
973 {
974 CHECK_STRING (string);
975
976 return string_make_multibyte (string);
977 }
978
979 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
980 1, 1, 0,
981 doc: /* Return the unibyte equivalent of STRING.
982 Multibyte character codes are converted to unibyte according to
983 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
984 If the lookup in the translation table fails, this function takes just
985 the low 8 bits of each character. */)
986 (Lisp_Object string)
987 {
988 CHECK_STRING (string);
989
990 return string_make_unibyte (string);
991 }
992
993 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
994 1, 1, 0,
995 doc: /* Return a unibyte string with the same individual bytes as STRING.
996 If STRING is unibyte, the result is STRING itself.
997 Otherwise it is a newly created string, with no text properties.
998 If STRING is multibyte and contains a character of charset
999 `eight-bit', it is converted to the corresponding single byte. */)
1000 (Lisp_Object string)
1001 {
1002 CHECK_STRING (string);
1003
1004 if (STRING_MULTIBYTE (string))
1005 {
1006 EMACS_INT bytes = SBYTES (string);
1007 unsigned char *str = (unsigned char *) xmalloc (bytes);
1008
1009 memcpy (str, SDATA (string), bytes);
1010 bytes = str_as_unibyte (str, bytes);
1011 string = make_unibyte_string (str, bytes);
1012 xfree (str);
1013 }
1014 return string;
1015 }
1016
1017 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1018 1, 1, 0,
1019 doc: /* Return a multibyte string with the same individual bytes as STRING.
1020 If STRING is multibyte, the result is STRING itself.
1021 Otherwise it is a newly created string, with no text properties.
1022
1023 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1024 part of a correct utf-8 sequence), it is converted to the corresponding
1025 multibyte character of charset `eight-bit'.
1026 See also `string-to-multibyte'.
1027
1028 Beware, this often doesn't really do what you think it does.
1029 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1030 If you're not sure, whether to use `string-as-multibyte' or
1031 `string-to-multibyte', use `string-to-multibyte'. */)
1032 (Lisp_Object string)
1033 {
1034 CHECK_STRING (string);
1035
1036 if (! STRING_MULTIBYTE (string))
1037 {
1038 Lisp_Object new_string;
1039 EMACS_INT nchars, nbytes;
1040
1041 parse_str_as_multibyte (SDATA (string),
1042 SBYTES (string),
1043 &nchars, &nbytes);
1044 new_string = make_uninit_multibyte_string (nchars, nbytes);
1045 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1046 if (nbytes != SBYTES (string))
1047 str_as_multibyte (SDATA (new_string), nbytes,
1048 SBYTES (string), NULL);
1049 string = new_string;
1050 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1051 }
1052 return string;
1053 }
1054
1055 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1056 1, 1, 0,
1057 doc: /* Return a multibyte string with the same individual chars as STRING.
1058 If STRING is multibyte, the result is STRING itself.
1059 Otherwise it is a newly created string, with no text properties.
1060
1061 If STRING is unibyte and contains an 8-bit byte, it is converted to
1062 the corresponding multibyte character of charset `eight-bit'.
1063
1064 This differs from `string-as-multibyte' by converting each byte of a correct
1065 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1066 correct sequence. */)
1067 (Lisp_Object string)
1068 {
1069 CHECK_STRING (string);
1070
1071 return string_to_multibyte (string);
1072 }
1073
1074 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1075 1, 1, 0,
1076 doc: /* Return a unibyte string with the same individual chars as STRING.
1077 If STRING is unibyte, the result is STRING itself.
1078 Otherwise it is a newly created string, with no text properties,
1079 where each `eight-bit' character is converted to the corresponding byte.
1080 If STRING contains a non-ASCII, non-`eight-bit' character,
1081 an error is signaled. */)
1082 (Lisp_Object string)
1083 {
1084 CHECK_STRING (string);
1085
1086 if (STRING_MULTIBYTE (string))
1087 {
1088 EMACS_INT chars = SCHARS (string);
1089 unsigned char *str = (unsigned char *) xmalloc (chars);
1090 EMACS_INT converted = str_to_unibyte (SDATA (string), str, chars, 0);
1091
1092 if (converted < chars)
1093 error ("Can't convert the %dth character to unibyte", converted);
1094 string = make_unibyte_string (str, chars);
1095 xfree (str);
1096 }
1097 return string;
1098 }
1099
1100 \f
1101 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1102 doc: /* Return a copy of ALIST.
1103 This is an alist which represents the same mapping from objects to objects,
1104 but does not share the alist structure with ALIST.
1105 The objects mapped (cars and cdrs of elements of the alist)
1106 are shared, however.
1107 Elements of ALIST that are not conses are also shared. */)
1108 (Lisp_Object alist)
1109 {
1110 register Lisp_Object tem;
1111
1112 CHECK_LIST (alist);
1113 if (NILP (alist))
1114 return alist;
1115 alist = concat (1, &alist, Lisp_Cons, 0);
1116 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1117 {
1118 register Lisp_Object car;
1119 car = XCAR (tem);
1120
1121 if (CONSP (car))
1122 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1123 }
1124 return alist;
1125 }
1126
1127 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1128 doc: /* Return a new string whose contents are a substring of STRING.
1129 The returned string consists of the characters between index FROM
1130 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1131 zero-indexed: 0 means the first character of STRING. Negative values
1132 are counted from the end of STRING. If TO is nil, the substring runs
1133 to the end of STRING.
1134
1135 The STRING argument may also be a vector. In that case, the return
1136 value is a new vector that contains the elements between index FROM
1137 \(inclusive) and index TO (exclusive) of that vector argument. */)
1138 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1139 {
1140 Lisp_Object res;
1141 EMACS_INT size;
1142 EMACS_INT size_byte = 0;
1143 EMACS_INT from_char, to_char;
1144 EMACS_INT from_byte = 0, to_byte = 0;
1145
1146 CHECK_VECTOR_OR_STRING (string);
1147 CHECK_NUMBER (from);
1148
1149 if (STRINGP (string))
1150 {
1151 size = SCHARS (string);
1152 size_byte = SBYTES (string);
1153 }
1154 else
1155 size = ASIZE (string);
1156
1157 if (NILP (to))
1158 {
1159 to_char = size;
1160 to_byte = size_byte;
1161 }
1162 else
1163 {
1164 CHECK_NUMBER (to);
1165
1166 to_char = XINT (to);
1167 if (to_char < 0)
1168 to_char += size;
1169
1170 if (STRINGP (string))
1171 to_byte = string_char_to_byte (string, to_char);
1172 }
1173
1174 from_char = XINT (from);
1175 if (from_char < 0)
1176 from_char += size;
1177 if (STRINGP (string))
1178 from_byte = string_char_to_byte (string, from_char);
1179
1180 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1181 args_out_of_range_3 (string, make_number (from_char),
1182 make_number (to_char));
1183
1184 if (STRINGP (string))
1185 {
1186 res = make_specified_string (SDATA (string) + from_byte,
1187 to_char - from_char, to_byte - from_byte,
1188 STRING_MULTIBYTE (string));
1189 copy_text_properties (make_number (from_char), make_number (to_char),
1190 string, make_number (0), res, Qnil);
1191 }
1192 else
1193 res = Fvector (to_char - from_char, &AREF (string, from_char));
1194
1195 return res;
1196 }
1197
1198
1199 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1200 doc: /* Return a substring of STRING, without text properties.
1201 It starts at index FROM and ends before TO.
1202 TO may be nil or omitted; then the substring runs to the end of STRING.
1203 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1204 If FROM or TO is negative, it counts from the end.
1205
1206 With one argument, just copy STRING without its properties. */)
1207 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1208 {
1209 EMACS_INT size, size_byte;
1210 EMACS_INT from_char, to_char;
1211 EMACS_INT from_byte, to_byte;
1212
1213 CHECK_STRING (string);
1214
1215 size = SCHARS (string);
1216 size_byte = SBYTES (string);
1217
1218 if (NILP (from))
1219 from_char = from_byte = 0;
1220 else
1221 {
1222 CHECK_NUMBER (from);
1223 from_char = XINT (from);
1224 if (from_char < 0)
1225 from_char += size;
1226
1227 from_byte = string_char_to_byte (string, from_char);
1228 }
1229
1230 if (NILP (to))
1231 {
1232 to_char = size;
1233 to_byte = size_byte;
1234 }
1235 else
1236 {
1237 CHECK_NUMBER (to);
1238
1239 to_char = XINT (to);
1240 if (to_char < 0)
1241 to_char += size;
1242
1243 to_byte = string_char_to_byte (string, to_char);
1244 }
1245
1246 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1247 args_out_of_range_3 (string, make_number (from_char),
1248 make_number (to_char));
1249
1250 return make_specified_string (SDATA (string) + from_byte,
1251 to_char - from_char, to_byte - from_byte,
1252 STRING_MULTIBYTE (string));
1253 }
1254
1255 /* Extract a substring of STRING, giving start and end positions
1256 both in characters and in bytes. */
1257
1258 Lisp_Object
1259 substring_both (Lisp_Object string, EMACS_INT from, EMACS_INT from_byte,
1260 EMACS_INT to, EMACS_INT to_byte)
1261 {
1262 Lisp_Object res;
1263 EMACS_INT size;
1264 EMACS_INT size_byte;
1265
1266 CHECK_VECTOR_OR_STRING (string);
1267
1268 if (STRINGP (string))
1269 {
1270 size = SCHARS (string);
1271 size_byte = SBYTES (string);
1272 }
1273 else
1274 size = ASIZE (string);
1275
1276 if (!(0 <= from && from <= to && to <= size))
1277 args_out_of_range_3 (string, make_number (from), make_number (to));
1278
1279 if (STRINGP (string))
1280 {
1281 res = make_specified_string (SDATA (string) + from_byte,
1282 to - from, to_byte - from_byte,
1283 STRING_MULTIBYTE (string));
1284 copy_text_properties (make_number (from), make_number (to),
1285 string, make_number (0), res, Qnil);
1286 }
1287 else
1288 res = Fvector (to - from, &AREF (string, from));
1289
1290 return res;
1291 }
1292 \f
1293 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1294 doc: /* Take cdr N times on LIST, return the result. */)
1295 (Lisp_Object n, Lisp_Object list)
1296 {
1297 register int i, num;
1298 CHECK_NUMBER (n);
1299 num = XINT (n);
1300 for (i = 0; i < num && !NILP (list); i++)
1301 {
1302 QUIT;
1303 CHECK_LIST_CONS (list, list);
1304 list = XCDR (list);
1305 }
1306 return list;
1307 }
1308
1309 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1310 doc: /* Return the Nth element of LIST.
1311 N counts from zero. If LIST is not that long, nil is returned. */)
1312 (Lisp_Object n, Lisp_Object list)
1313 {
1314 return Fcar (Fnthcdr (n, list));
1315 }
1316
1317 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1318 doc: /* Return element of SEQUENCE at index N. */)
1319 (register Lisp_Object sequence, Lisp_Object n)
1320 {
1321 CHECK_NUMBER (n);
1322 if (CONSP (sequence) || NILP (sequence))
1323 return Fcar (Fnthcdr (n, sequence));
1324
1325 /* Faref signals a "not array" error, so check here. */
1326 CHECK_ARRAY (sequence, Qsequencep);
1327 return Faref (sequence, n);
1328 }
1329
1330 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1331 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1332 The value is actually the tail of LIST whose car is ELT. */)
1333 (register Lisp_Object elt, Lisp_Object list)
1334 {
1335 register Lisp_Object tail;
1336 for (tail = list; CONSP (tail); tail = XCDR (tail))
1337 {
1338 register Lisp_Object tem;
1339 CHECK_LIST_CONS (tail, list);
1340 tem = XCAR (tail);
1341 if (! NILP (Fequal (elt, tem)))
1342 return tail;
1343 QUIT;
1344 }
1345 return Qnil;
1346 }
1347
1348 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1349 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1350 The value is actually the tail of LIST whose car is ELT. */)
1351 (register Lisp_Object elt, Lisp_Object list)
1352 {
1353 while (1)
1354 {
1355 if (!CONSP (list) || EQ (XCAR (list), elt))
1356 break;
1357
1358 list = XCDR (list);
1359 if (!CONSP (list) || EQ (XCAR (list), elt))
1360 break;
1361
1362 list = XCDR (list);
1363 if (!CONSP (list) || EQ (XCAR (list), elt))
1364 break;
1365
1366 list = XCDR (list);
1367 QUIT;
1368 }
1369
1370 CHECK_LIST (list);
1371 return list;
1372 }
1373
1374 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1375 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1376 The value is actually the tail of LIST whose car is ELT. */)
1377 (register Lisp_Object elt, Lisp_Object list)
1378 {
1379 register Lisp_Object tail;
1380
1381 if (!FLOATP (elt))
1382 return Fmemq (elt, list);
1383
1384 for (tail = list; CONSP (tail); tail = XCDR (tail))
1385 {
1386 register Lisp_Object tem;
1387 CHECK_LIST_CONS (tail, list);
1388 tem = XCAR (tail);
1389 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1390 return tail;
1391 QUIT;
1392 }
1393 return Qnil;
1394 }
1395
1396 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1397 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1398 The value is actually the first element of LIST whose car is KEY.
1399 Elements of LIST that are not conses are ignored. */)
1400 (Lisp_Object key, Lisp_Object list)
1401 {
1402 while (1)
1403 {
1404 if (!CONSP (list)
1405 || (CONSP (XCAR (list))
1406 && EQ (XCAR (XCAR (list)), key)))
1407 break;
1408
1409 list = XCDR (list);
1410 if (!CONSP (list)
1411 || (CONSP (XCAR (list))
1412 && EQ (XCAR (XCAR (list)), key)))
1413 break;
1414
1415 list = XCDR (list);
1416 if (!CONSP (list)
1417 || (CONSP (XCAR (list))
1418 && EQ (XCAR (XCAR (list)), key)))
1419 break;
1420
1421 list = XCDR (list);
1422 QUIT;
1423 }
1424
1425 return CAR (list);
1426 }
1427
1428 /* Like Fassq but never report an error and do not allow quits.
1429 Use only on lists known never to be circular. */
1430
1431 Lisp_Object
1432 assq_no_quit (Lisp_Object key, Lisp_Object list)
1433 {
1434 while (CONSP (list)
1435 && (!CONSP (XCAR (list))
1436 || !EQ (XCAR (XCAR (list)), key)))
1437 list = XCDR (list);
1438
1439 return CAR_SAFE (list);
1440 }
1441
1442 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1443 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1444 The value is actually the first element of LIST whose car equals KEY. */)
1445 (Lisp_Object key, Lisp_Object list)
1446 {
1447 Lisp_Object car;
1448
1449 while (1)
1450 {
1451 if (!CONSP (list)
1452 || (CONSP (XCAR (list))
1453 && (car = XCAR (XCAR (list)),
1454 EQ (car, key) || !NILP (Fequal (car, key)))))
1455 break;
1456
1457 list = XCDR (list);
1458 if (!CONSP (list)
1459 || (CONSP (XCAR (list))
1460 && (car = XCAR (XCAR (list)),
1461 EQ (car, key) || !NILP (Fequal (car, key)))))
1462 break;
1463
1464 list = XCDR (list);
1465 if (!CONSP (list)
1466 || (CONSP (XCAR (list))
1467 && (car = XCAR (XCAR (list)),
1468 EQ (car, key) || !NILP (Fequal (car, key)))))
1469 break;
1470
1471 list = XCDR (list);
1472 QUIT;
1473 }
1474
1475 return CAR (list);
1476 }
1477
1478 /* Like Fassoc but never report an error and do not allow quits.
1479 Use only on lists known never to be circular. */
1480
1481 Lisp_Object
1482 assoc_no_quit (Lisp_Object key, Lisp_Object list)
1483 {
1484 while (CONSP (list)
1485 && (!CONSP (XCAR (list))
1486 || (!EQ (XCAR (XCAR (list)), key)
1487 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1488 list = XCDR (list);
1489
1490 return CONSP (list) ? XCAR (list) : Qnil;
1491 }
1492
1493 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1494 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1495 The value is actually the first element of LIST whose cdr is KEY. */)
1496 (register Lisp_Object key, Lisp_Object list)
1497 {
1498 while (1)
1499 {
1500 if (!CONSP (list)
1501 || (CONSP (XCAR (list))
1502 && EQ (XCDR (XCAR (list)), key)))
1503 break;
1504
1505 list = XCDR (list);
1506 if (!CONSP (list)
1507 || (CONSP (XCAR (list))
1508 && EQ (XCDR (XCAR (list)), key)))
1509 break;
1510
1511 list = XCDR (list);
1512 if (!CONSP (list)
1513 || (CONSP (XCAR (list))
1514 && EQ (XCDR (XCAR (list)), key)))
1515 break;
1516
1517 list = XCDR (list);
1518 QUIT;
1519 }
1520
1521 return CAR (list);
1522 }
1523
1524 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1525 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1526 The value is actually the first element of LIST whose cdr equals KEY. */)
1527 (Lisp_Object key, Lisp_Object list)
1528 {
1529 Lisp_Object cdr;
1530
1531 while (1)
1532 {
1533 if (!CONSP (list)
1534 || (CONSP (XCAR (list))
1535 && (cdr = XCDR (XCAR (list)),
1536 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1537 break;
1538
1539 list = XCDR (list);
1540 if (!CONSP (list)
1541 || (CONSP (XCAR (list))
1542 && (cdr = XCDR (XCAR (list)),
1543 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1544 break;
1545
1546 list = XCDR (list);
1547 if (!CONSP (list)
1548 || (CONSP (XCAR (list))
1549 && (cdr = XCDR (XCAR (list)),
1550 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1551 break;
1552
1553 list = XCDR (list);
1554 QUIT;
1555 }
1556
1557 return CAR (list);
1558 }
1559 \f
1560 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1561 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1562 The modified LIST is returned. Comparison is done with `eq'.
1563 If the first member of LIST is ELT, there is no way to remove it by side effect;
1564 therefore, write `(setq foo (delq element foo))'
1565 to be sure of changing the value of `foo'. */)
1566 (register Lisp_Object elt, Lisp_Object list)
1567 {
1568 register Lisp_Object tail, prev;
1569 register Lisp_Object tem;
1570
1571 tail = list;
1572 prev = Qnil;
1573 while (!NILP (tail))
1574 {
1575 CHECK_LIST_CONS (tail, list);
1576 tem = XCAR (tail);
1577 if (EQ (elt, tem))
1578 {
1579 if (NILP (prev))
1580 list = XCDR (tail);
1581 else
1582 Fsetcdr (prev, XCDR (tail));
1583 }
1584 else
1585 prev = tail;
1586 tail = XCDR (tail);
1587 QUIT;
1588 }
1589 return list;
1590 }
1591
1592 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1593 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1594 SEQ must be a list, a vector, or a string.
1595 The modified SEQ is returned. Comparison is done with `equal'.
1596 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1597 is not a side effect; it is simply using a different sequence.
1598 Therefore, write `(setq foo (delete element foo))'
1599 to be sure of changing the value of `foo'. */)
1600 (Lisp_Object elt, Lisp_Object seq)
1601 {
1602 if (VECTORP (seq))
1603 {
1604 EMACS_INT i, n;
1605
1606 for (i = n = 0; i < ASIZE (seq); ++i)
1607 if (NILP (Fequal (AREF (seq, i), elt)))
1608 ++n;
1609
1610 if (n != ASIZE (seq))
1611 {
1612 struct Lisp_Vector *p = allocate_vector (n);
1613
1614 for (i = n = 0; i < ASIZE (seq); ++i)
1615 if (NILP (Fequal (AREF (seq, i), elt)))
1616 p->contents[n++] = AREF (seq, i);
1617
1618 XSETVECTOR (seq, p);
1619 }
1620 }
1621 else if (STRINGP (seq))
1622 {
1623 EMACS_INT i, ibyte, nchars, nbytes, cbytes;
1624 int c;
1625
1626 for (i = nchars = nbytes = ibyte = 0;
1627 i < SCHARS (seq);
1628 ++i, ibyte += cbytes)
1629 {
1630 if (STRING_MULTIBYTE (seq))
1631 {
1632 c = STRING_CHAR (SDATA (seq) + ibyte);
1633 cbytes = CHAR_BYTES (c);
1634 }
1635 else
1636 {
1637 c = SREF (seq, i);
1638 cbytes = 1;
1639 }
1640
1641 if (!INTEGERP (elt) || c != XINT (elt))
1642 {
1643 ++nchars;
1644 nbytes += cbytes;
1645 }
1646 }
1647
1648 if (nchars != SCHARS (seq))
1649 {
1650 Lisp_Object tem;
1651
1652 tem = make_uninit_multibyte_string (nchars, nbytes);
1653 if (!STRING_MULTIBYTE (seq))
1654 STRING_SET_UNIBYTE (tem);
1655
1656 for (i = nchars = nbytes = ibyte = 0;
1657 i < SCHARS (seq);
1658 ++i, ibyte += cbytes)
1659 {
1660 if (STRING_MULTIBYTE (seq))
1661 {
1662 c = STRING_CHAR (SDATA (seq) + ibyte);
1663 cbytes = CHAR_BYTES (c);
1664 }
1665 else
1666 {
1667 c = SREF (seq, i);
1668 cbytes = 1;
1669 }
1670
1671 if (!INTEGERP (elt) || c != XINT (elt))
1672 {
1673 unsigned char *from = SDATA (seq) + ibyte;
1674 unsigned char *to = SDATA (tem) + nbytes;
1675 EMACS_INT n;
1676
1677 ++nchars;
1678 nbytes += cbytes;
1679
1680 for (n = cbytes; n--; )
1681 *to++ = *from++;
1682 }
1683 }
1684
1685 seq = tem;
1686 }
1687 }
1688 else
1689 {
1690 Lisp_Object tail, prev;
1691
1692 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1693 {
1694 CHECK_LIST_CONS (tail, seq);
1695
1696 if (!NILP (Fequal (elt, XCAR (tail))))
1697 {
1698 if (NILP (prev))
1699 seq = XCDR (tail);
1700 else
1701 Fsetcdr (prev, XCDR (tail));
1702 }
1703 else
1704 prev = tail;
1705 QUIT;
1706 }
1707 }
1708
1709 return seq;
1710 }
1711
1712 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1713 doc: /* Reverse LIST by modifying cdr pointers.
1714 Return the reversed list. */)
1715 (Lisp_Object list)
1716 {
1717 register Lisp_Object prev, tail, next;
1718
1719 if (NILP (list)) return list;
1720 prev = Qnil;
1721 tail = list;
1722 while (!NILP (tail))
1723 {
1724 QUIT;
1725 CHECK_LIST_CONS (tail, list);
1726 next = XCDR (tail);
1727 Fsetcdr (tail, prev);
1728 prev = tail;
1729 tail = next;
1730 }
1731 return prev;
1732 }
1733
1734 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1735 doc: /* Reverse LIST, copying. Return the reversed list.
1736 See also the function `nreverse', which is used more often. */)
1737 (Lisp_Object list)
1738 {
1739 Lisp_Object new;
1740
1741 for (new = Qnil; CONSP (list); list = XCDR (list))
1742 {
1743 QUIT;
1744 new = Fcons (XCAR (list), new);
1745 }
1746 CHECK_LIST_END (list, list);
1747 return new;
1748 }
1749 \f
1750 Lisp_Object merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred);
1751
1752 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1753 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1754 Returns the sorted list. LIST is modified by side effects.
1755 PREDICATE is called with two elements of LIST, and should return non-nil
1756 if the first element should sort before the second. */)
1757 (Lisp_Object list, Lisp_Object predicate)
1758 {
1759 Lisp_Object front, back;
1760 register Lisp_Object len, tem;
1761 struct gcpro gcpro1, gcpro2;
1762 register int length;
1763
1764 front = list;
1765 len = Flength (list);
1766 length = XINT (len);
1767 if (length < 2)
1768 return list;
1769
1770 XSETINT (len, (length / 2) - 1);
1771 tem = Fnthcdr (len, list);
1772 back = Fcdr (tem);
1773 Fsetcdr (tem, Qnil);
1774
1775 GCPRO2 (front, back);
1776 front = Fsort (front, predicate);
1777 back = Fsort (back, predicate);
1778 UNGCPRO;
1779 return merge (front, back, predicate);
1780 }
1781
1782 Lisp_Object
1783 merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
1784 {
1785 Lisp_Object value;
1786 register Lisp_Object tail;
1787 Lisp_Object tem;
1788 register Lisp_Object l1, l2;
1789 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1790
1791 l1 = org_l1;
1792 l2 = org_l2;
1793 tail = Qnil;
1794 value = Qnil;
1795
1796 /* It is sufficient to protect org_l1 and org_l2.
1797 When l1 and l2 are updated, we copy the new values
1798 back into the org_ vars. */
1799 GCPRO4 (org_l1, org_l2, pred, value);
1800
1801 while (1)
1802 {
1803 if (NILP (l1))
1804 {
1805 UNGCPRO;
1806 if (NILP (tail))
1807 return l2;
1808 Fsetcdr (tail, l2);
1809 return value;
1810 }
1811 if (NILP (l2))
1812 {
1813 UNGCPRO;
1814 if (NILP (tail))
1815 return l1;
1816 Fsetcdr (tail, l1);
1817 return value;
1818 }
1819 tem = call2 (pred, Fcar (l2), Fcar (l1));
1820 if (NILP (tem))
1821 {
1822 tem = l1;
1823 l1 = Fcdr (l1);
1824 org_l1 = l1;
1825 }
1826 else
1827 {
1828 tem = l2;
1829 l2 = Fcdr (l2);
1830 org_l2 = l2;
1831 }
1832 if (NILP (tail))
1833 value = tem;
1834 else
1835 Fsetcdr (tail, tem);
1836 tail = tem;
1837 }
1838 }
1839
1840 \f
1841 /* This does not check for quits. That is safe since it must terminate. */
1842
1843 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1844 doc: /* Extract a value from a property list.
1845 PLIST is a property list, which is a list of the form
1846 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1847 corresponding to the given PROP, or nil if PROP is not one of the
1848 properties on the list. This function never signals an error. */)
1849 (Lisp_Object plist, Lisp_Object prop)
1850 {
1851 Lisp_Object tail, halftail;
1852
1853 /* halftail is used to detect circular lists. */
1854 tail = halftail = plist;
1855 while (CONSP (tail) && CONSP (XCDR (tail)))
1856 {
1857 if (EQ (prop, XCAR (tail)))
1858 return XCAR (XCDR (tail));
1859
1860 tail = XCDR (XCDR (tail));
1861 halftail = XCDR (halftail);
1862 if (EQ (tail, halftail))
1863 break;
1864
1865 #if 0 /* Unsafe version. */
1866 /* This function can be called asynchronously
1867 (setup_coding_system). Don't QUIT in that case. */
1868 if (!interrupt_input_blocked)
1869 QUIT;
1870 #endif
1871 }
1872
1873 return Qnil;
1874 }
1875
1876 DEFUN ("get", Fget, Sget, 2, 2, 0,
1877 doc: /* Return the value of SYMBOL's PROPNAME property.
1878 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1879 (Lisp_Object symbol, Lisp_Object propname)
1880 {
1881 CHECK_SYMBOL (symbol);
1882 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1883 }
1884
1885 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1886 doc: /* Change value in PLIST of PROP to VAL.
1887 PLIST is a property list, which is a list of the form
1888 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1889 If PROP is already a property on the list, its value is set to VAL,
1890 otherwise the new PROP VAL pair is added. The new plist is returned;
1891 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1892 The PLIST is modified by side effects. */)
1893 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1894 {
1895 register Lisp_Object tail, prev;
1896 Lisp_Object newcell;
1897 prev = Qnil;
1898 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1899 tail = XCDR (XCDR (tail)))
1900 {
1901 if (EQ (prop, XCAR (tail)))
1902 {
1903 Fsetcar (XCDR (tail), val);
1904 return plist;
1905 }
1906
1907 prev = tail;
1908 QUIT;
1909 }
1910 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
1911 if (NILP (prev))
1912 return newcell;
1913 else
1914 Fsetcdr (XCDR (prev), newcell);
1915 return plist;
1916 }
1917
1918 DEFUN ("put", Fput, Sput, 3, 3, 0,
1919 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
1920 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1921 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
1922 {
1923 CHECK_SYMBOL (symbol);
1924 XSYMBOL (symbol)->plist
1925 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
1926 return value;
1927 }
1928 \f
1929 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
1930 doc: /* Extract a value from a property list, comparing with `equal'.
1931 PLIST is a property list, which is a list of the form
1932 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1933 corresponding to the given PROP, or nil if PROP is not
1934 one of the properties on the list. */)
1935 (Lisp_Object plist, Lisp_Object prop)
1936 {
1937 Lisp_Object tail;
1938
1939 for (tail = plist;
1940 CONSP (tail) && CONSP (XCDR (tail));
1941 tail = XCDR (XCDR (tail)))
1942 {
1943 if (! NILP (Fequal (prop, XCAR (tail))))
1944 return XCAR (XCDR (tail));
1945
1946 QUIT;
1947 }
1948
1949 CHECK_LIST_END (tail, prop);
1950
1951 return Qnil;
1952 }
1953
1954 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
1955 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1956 PLIST is a property list, which is a list of the form
1957 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1958 If PROP is already a property on the list, its value is set to VAL,
1959 otherwise the new PROP VAL pair is added. The new plist is returned;
1960 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1961 The PLIST is modified by side effects. */)
1962 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1963 {
1964 register Lisp_Object tail, prev;
1965 Lisp_Object newcell;
1966 prev = Qnil;
1967 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1968 tail = XCDR (XCDR (tail)))
1969 {
1970 if (! NILP (Fequal (prop, XCAR (tail))))
1971 {
1972 Fsetcar (XCDR (tail), val);
1973 return plist;
1974 }
1975
1976 prev = tail;
1977 QUIT;
1978 }
1979 newcell = Fcons (prop, Fcons (val, Qnil));
1980 if (NILP (prev))
1981 return newcell;
1982 else
1983 Fsetcdr (XCDR (prev), newcell);
1984 return plist;
1985 }
1986 \f
1987 DEFUN ("eql", Feql, Seql, 2, 2, 0,
1988 doc: /* Return t if the two args are the same Lisp object.
1989 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
1990 (Lisp_Object obj1, Lisp_Object obj2)
1991 {
1992 if (FLOATP (obj1))
1993 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
1994 else
1995 return EQ (obj1, obj2) ? Qt : Qnil;
1996 }
1997
1998 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
1999 doc: /* Return t if two Lisp objects have similar structure and contents.
2000 They must have the same data type.
2001 Conses are compared by comparing the cars and the cdrs.
2002 Vectors and strings are compared element by element.
2003 Numbers are compared by value, but integers cannot equal floats.
2004 (Use `=' if you want integers and floats to be able to be equal.)
2005 Symbols must match exactly. */)
2006 (register Lisp_Object o1, Lisp_Object o2)
2007 {
2008 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
2009 }
2010
2011 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
2012 doc: /* Return t if two Lisp objects have similar structure and contents.
2013 This is like `equal' except that it compares the text properties
2014 of strings. (`equal' ignores text properties.) */)
2015 (register Lisp_Object o1, Lisp_Object o2)
2016 {
2017 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
2018 }
2019
2020 /* DEPTH is current depth of recursion. Signal an error if it
2021 gets too deep.
2022 PROPS, if non-nil, means compare string text properties too. */
2023
2024 static int
2025 internal_equal (register Lisp_Object o1, register Lisp_Object o2, int depth, int props)
2026 {
2027 if (depth > 200)
2028 error ("Stack overflow in equal");
2029
2030 tail_recurse:
2031 QUIT;
2032 if (EQ (o1, o2))
2033 return 1;
2034 if (XTYPE (o1) != XTYPE (o2))
2035 return 0;
2036
2037 switch (XTYPE (o1))
2038 {
2039 case Lisp_Float:
2040 {
2041 double d1, d2;
2042
2043 d1 = extract_float (o1);
2044 d2 = extract_float (o2);
2045 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2046 though they are not =. */
2047 return d1 == d2 || (d1 != d1 && d2 != d2);
2048 }
2049
2050 case Lisp_Cons:
2051 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2052 return 0;
2053 o1 = XCDR (o1);
2054 o2 = XCDR (o2);
2055 goto tail_recurse;
2056
2057 case Lisp_Misc:
2058 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2059 return 0;
2060 if (OVERLAYP (o1))
2061 {
2062 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2063 depth + 1, props)
2064 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2065 depth + 1, props))
2066 return 0;
2067 o1 = XOVERLAY (o1)->plist;
2068 o2 = XOVERLAY (o2)->plist;
2069 goto tail_recurse;
2070 }
2071 if (MARKERP (o1))
2072 {
2073 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2074 && (XMARKER (o1)->buffer == 0
2075 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2076 }
2077 break;
2078
2079 case Lisp_Vectorlike:
2080 {
2081 register int i;
2082 EMACS_INT size = ASIZE (o1);
2083 /* Pseudovectors have the type encoded in the size field, so this test
2084 actually checks that the objects have the same type as well as the
2085 same size. */
2086 if (ASIZE (o2) != size)
2087 return 0;
2088 /* Boolvectors are compared much like strings. */
2089 if (BOOL_VECTOR_P (o1))
2090 {
2091 int size_in_chars
2092 = ((XBOOL_VECTOR (o1)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2093 / BOOL_VECTOR_BITS_PER_CHAR);
2094
2095 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2096 return 0;
2097 if (memcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2098 size_in_chars))
2099 return 0;
2100 return 1;
2101 }
2102 if (WINDOW_CONFIGURATIONP (o1))
2103 return compare_window_configurations (o1, o2, 0);
2104
2105 /* Aside from them, only true vectors, char-tables, compiled
2106 functions, and fonts (font-spec, font-entity, font-ojbect)
2107 are sensible to compare, so eliminate the others now. */
2108 if (size & PSEUDOVECTOR_FLAG)
2109 {
2110 if (!(size & (PVEC_COMPILED
2111 | PVEC_CHAR_TABLE | PVEC_SUB_CHAR_TABLE | PVEC_FONT)))
2112 return 0;
2113 size &= PSEUDOVECTOR_SIZE_MASK;
2114 }
2115 for (i = 0; i < size; i++)
2116 {
2117 Lisp_Object v1, v2;
2118 v1 = AREF (o1, i);
2119 v2 = AREF (o2, i);
2120 if (!internal_equal (v1, v2, depth + 1, props))
2121 return 0;
2122 }
2123 return 1;
2124 }
2125 break;
2126
2127 case Lisp_String:
2128 if (SCHARS (o1) != SCHARS (o2))
2129 return 0;
2130 if (SBYTES (o1) != SBYTES (o2))
2131 return 0;
2132 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2133 return 0;
2134 if (props && !compare_string_intervals (o1, o2))
2135 return 0;
2136 return 1;
2137
2138 default:
2139 break;
2140 }
2141
2142 return 0;
2143 }
2144 \f
2145
2146 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2147 doc: /* Store each element of ARRAY with ITEM.
2148 ARRAY is a vector, string, char-table, or bool-vector. */)
2149 (Lisp_Object array, Lisp_Object item)
2150 {
2151 register EMACS_INT size, index;
2152 int charval;
2153
2154 if (VECTORP (array))
2155 {
2156 register Lisp_Object *p = XVECTOR (array)->contents;
2157 size = ASIZE (array);
2158 for (index = 0; index < size; index++)
2159 p[index] = item;
2160 }
2161 else if (CHAR_TABLE_P (array))
2162 {
2163 int i;
2164
2165 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2166 XCHAR_TABLE (array)->contents[i] = item;
2167 XCHAR_TABLE (array)->defalt = item;
2168 }
2169 else if (STRINGP (array))
2170 {
2171 register unsigned char *p = SDATA (array);
2172 CHECK_NUMBER (item);
2173 charval = XINT (item);
2174 size = SCHARS (array);
2175 if (STRING_MULTIBYTE (array))
2176 {
2177 unsigned char str[MAX_MULTIBYTE_LENGTH];
2178 int len = CHAR_STRING (charval, str);
2179 EMACS_INT size_byte = SBYTES (array);
2180 unsigned char *p1 = p, *endp = p + size_byte;
2181 int i;
2182
2183 if (size != size_byte)
2184 while (p1 < endp)
2185 {
2186 int this_len = BYTES_BY_CHAR_HEAD (*p1);
2187 if (len != this_len)
2188 error ("Attempt to change byte length of a string");
2189 p1 += this_len;
2190 }
2191 for (i = 0; i < size_byte; i++)
2192 *p++ = str[i % len];
2193 }
2194 else
2195 for (index = 0; index < size; index++)
2196 p[index] = charval;
2197 }
2198 else if (BOOL_VECTOR_P (array))
2199 {
2200 register unsigned char *p = XBOOL_VECTOR (array)->data;
2201 int size_in_chars
2202 = ((XBOOL_VECTOR (array)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2203 / BOOL_VECTOR_BITS_PER_CHAR);
2204
2205 charval = (! NILP (item) ? -1 : 0);
2206 for (index = 0; index < size_in_chars - 1; index++)
2207 p[index] = charval;
2208 if (index < size_in_chars)
2209 {
2210 /* Mask out bits beyond the vector size. */
2211 if (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)
2212 charval &= (1 << (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2213 p[index] = charval;
2214 }
2215 }
2216 else
2217 wrong_type_argument (Qarrayp, array);
2218 return array;
2219 }
2220
2221 DEFUN ("clear-string", Fclear_string, Sclear_string,
2222 1, 1, 0,
2223 doc: /* Clear the contents of STRING.
2224 This makes STRING unibyte and may change its length. */)
2225 (Lisp_Object string)
2226 {
2227 EMACS_INT len;
2228 CHECK_STRING (string);
2229 len = SBYTES (string);
2230 memset (SDATA (string), 0, len);
2231 STRING_SET_CHARS (string, len);
2232 STRING_SET_UNIBYTE (string);
2233 return Qnil;
2234 }
2235 \f
2236 /* ARGSUSED */
2237 Lisp_Object
2238 nconc2 (Lisp_Object s1, Lisp_Object s2)
2239 {
2240 Lisp_Object args[2];
2241 args[0] = s1;
2242 args[1] = s2;
2243 return Fnconc (2, args);
2244 }
2245
2246 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2247 doc: /* Concatenate any number of lists by altering them.
2248 Only the last argument is not altered, and need not be a list.
2249 usage: (nconc &rest LISTS) */)
2250 (int nargs, Lisp_Object *args)
2251 {
2252 register int argnum;
2253 register Lisp_Object tail, tem, val;
2254
2255 val = tail = Qnil;
2256
2257 for (argnum = 0; argnum < nargs; argnum++)
2258 {
2259 tem = args[argnum];
2260 if (NILP (tem)) continue;
2261
2262 if (NILP (val))
2263 val = tem;
2264
2265 if (argnum + 1 == nargs) break;
2266
2267 CHECK_LIST_CONS (tem, tem);
2268
2269 while (CONSP (tem))
2270 {
2271 tail = tem;
2272 tem = XCDR (tail);
2273 QUIT;
2274 }
2275
2276 tem = args[argnum + 1];
2277 Fsetcdr (tail, tem);
2278 if (NILP (tem))
2279 args[argnum + 1] = tail;
2280 }
2281
2282 return val;
2283 }
2284 \f
2285 /* This is the guts of all mapping functions.
2286 Apply FN to each element of SEQ, one by one,
2287 storing the results into elements of VALS, a C vector of Lisp_Objects.
2288 LENI is the length of VALS, which should also be the length of SEQ. */
2289
2290 static void
2291 mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2292 {
2293 register Lisp_Object tail;
2294 Lisp_Object dummy;
2295 register EMACS_INT i;
2296 struct gcpro gcpro1, gcpro2, gcpro3;
2297
2298 if (vals)
2299 {
2300 /* Don't let vals contain any garbage when GC happens. */
2301 for (i = 0; i < leni; i++)
2302 vals[i] = Qnil;
2303
2304 GCPRO3 (dummy, fn, seq);
2305 gcpro1.var = vals;
2306 gcpro1.nvars = leni;
2307 }
2308 else
2309 GCPRO2 (fn, seq);
2310 /* We need not explicitly protect `tail' because it is used only on lists, and
2311 1) lists are not relocated and 2) the list is marked via `seq' so will not
2312 be freed */
2313
2314 if (VECTORP (seq))
2315 {
2316 for (i = 0; i < leni; i++)
2317 {
2318 dummy = call1 (fn, AREF (seq, i));
2319 if (vals)
2320 vals[i] = dummy;
2321 }
2322 }
2323 else if (BOOL_VECTOR_P (seq))
2324 {
2325 for (i = 0; i < leni; i++)
2326 {
2327 int byte;
2328 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2329 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
2330 dummy = call1 (fn, dummy);
2331 if (vals)
2332 vals[i] = dummy;
2333 }
2334 }
2335 else if (STRINGP (seq))
2336 {
2337 EMACS_INT i_byte;
2338
2339 for (i = 0, i_byte = 0; i < leni;)
2340 {
2341 int c;
2342 EMACS_INT i_before = i;
2343
2344 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2345 XSETFASTINT (dummy, c);
2346 dummy = call1 (fn, dummy);
2347 if (vals)
2348 vals[i_before] = dummy;
2349 }
2350 }
2351 else /* Must be a list, since Flength did not get an error */
2352 {
2353 tail = seq;
2354 for (i = 0; i < leni && CONSP (tail); i++)
2355 {
2356 dummy = call1 (fn, XCAR (tail));
2357 if (vals)
2358 vals[i] = dummy;
2359 tail = XCDR (tail);
2360 }
2361 }
2362
2363 UNGCPRO;
2364 }
2365
2366 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2367 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2368 In between each pair of results, stick in SEPARATOR. Thus, " " as
2369 SEPARATOR results in spaces between the values returned by FUNCTION.
2370 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2371 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2372 {
2373 Lisp_Object len;
2374 register EMACS_INT leni;
2375 int nargs;
2376 register Lisp_Object *args;
2377 register EMACS_INT i;
2378 struct gcpro gcpro1;
2379 Lisp_Object ret;
2380 USE_SAFE_ALLOCA;
2381
2382 len = Flength (sequence);
2383 if (CHAR_TABLE_P (sequence))
2384 wrong_type_argument (Qlistp, sequence);
2385 leni = XINT (len);
2386 nargs = leni + leni - 1;
2387 if (nargs < 0) return empty_unibyte_string;
2388
2389 SAFE_ALLOCA_LISP (args, nargs);
2390
2391 GCPRO1 (separator);
2392 mapcar1 (leni, args, function, sequence);
2393 UNGCPRO;
2394
2395 for (i = leni - 1; i > 0; i--)
2396 args[i + i] = args[i];
2397
2398 for (i = 1; i < nargs; i += 2)
2399 args[i] = separator;
2400
2401 ret = Fconcat (nargs, args);
2402 SAFE_FREE ();
2403
2404 return ret;
2405 }
2406
2407 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2408 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2409 The result is a list just as long as SEQUENCE.
2410 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2411 (Lisp_Object function, Lisp_Object sequence)
2412 {
2413 register Lisp_Object len;
2414 register EMACS_INT leni;
2415 register Lisp_Object *args;
2416 Lisp_Object ret;
2417 USE_SAFE_ALLOCA;
2418
2419 len = Flength (sequence);
2420 if (CHAR_TABLE_P (sequence))
2421 wrong_type_argument (Qlistp, sequence);
2422 leni = XFASTINT (len);
2423
2424 SAFE_ALLOCA_LISP (args, leni);
2425
2426 mapcar1 (leni, args, function, sequence);
2427
2428 ret = Flist (leni, args);
2429 SAFE_FREE ();
2430
2431 return ret;
2432 }
2433
2434 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2435 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2436 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2437 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2438 (Lisp_Object function, Lisp_Object sequence)
2439 {
2440 register EMACS_INT leni;
2441
2442 leni = XFASTINT (Flength (sequence));
2443 if (CHAR_TABLE_P (sequence))
2444 wrong_type_argument (Qlistp, sequence);
2445 mapcar1 (leni, 0, function, sequence);
2446
2447 return sequence;
2448 }
2449 \f
2450 /* This is how C code calls `yes-or-no-p' and allows the user
2451 to redefined it.
2452
2453 Anything that calls this function must protect from GC! */
2454
2455 Lisp_Object
2456 do_yes_or_no_p (Lisp_Object prompt)
2457 {
2458 return call1 (intern ("yes-or-no-p"), prompt);
2459 }
2460
2461 /* Anything that calls this function must protect from GC! */
2462
2463 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, MANY, 0,
2464 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2465 Takes one argument, which is the string to display to ask the question.
2466 It should end in a space; `yes-or-no-p' adds `(yes or no) ' to it.
2467 The user must confirm the answer with RET,
2468 and can edit it until it has been confirmed.
2469
2470 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2471 is nil, and `use-dialog-box' is non-nil.
2472 usage: (yes-or-no-p PROMPT &rest ARGS) */)
2473 (int nargs, Lisp_Object *args)
2474 {
2475 register Lisp_Object ans;
2476 struct gcpro gcpro1;
2477 Lisp_Object prompt = Fformat (nargs, args);
2478
2479 #ifdef HAVE_MENUS
2480 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2481 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2482 && use_dialog_box
2483 && have_menus_p ())
2484 {
2485 Lisp_Object pane, menu, obj;
2486 redisplay_preserve_echo_area (4);
2487 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2488 Fcons (Fcons (build_string ("No"), Qnil),
2489 Qnil));
2490 GCPRO1 (pane);
2491 menu = Fcons (prompt, pane);
2492 obj = Fx_popup_dialog (Qt, menu, Qnil);
2493 UNGCPRO;
2494 return obj;
2495 }
2496 #endif /* HAVE_MENUS */
2497
2498 prompt = concat2 (prompt, build_string ("(yes or no) "));
2499 GCPRO1 (prompt);
2500
2501 while (1)
2502 {
2503 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2504 Qyes_or_no_p_history, Qnil,
2505 Qnil));
2506 if (SCHARS (ans) == 3 && !strcmp (SDATA (ans), "yes"))
2507 {
2508 UNGCPRO;
2509 return Qt;
2510 }
2511 if (SCHARS (ans) == 2 && !strcmp (SDATA (ans), "no"))
2512 {
2513 UNGCPRO;
2514 return Qnil;
2515 }
2516
2517 Fding (Qnil);
2518 Fdiscard_input ();
2519 message ("Please answer yes or no.");
2520 Fsleep_for (make_number (2), Qnil);
2521 }
2522 }
2523 \f
2524 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2525 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2526
2527 Each of the three load averages is multiplied by 100, then converted
2528 to integer.
2529
2530 When USE-FLOATS is non-nil, floats will be used instead of integers.
2531 These floats are not multiplied by 100.
2532
2533 If the 5-minute or 15-minute load averages are not available, return a
2534 shortened list, containing only those averages which are available.
2535
2536 An error is thrown if the load average can't be obtained. In some
2537 cases making it work would require Emacs being installed setuid or
2538 setgid so that it can read kernel information, and that usually isn't
2539 advisable. */)
2540 (Lisp_Object use_floats)
2541 {
2542 double load_ave[3];
2543 int loads = getloadavg (load_ave, 3);
2544 Lisp_Object ret = Qnil;
2545
2546 if (loads < 0)
2547 error ("load-average not implemented for this operating system");
2548
2549 while (loads-- > 0)
2550 {
2551 Lisp_Object load = (NILP (use_floats) ?
2552 make_number ((int) (100.0 * load_ave[loads]))
2553 : make_float (load_ave[loads]));
2554 ret = Fcons (load, ret);
2555 }
2556
2557 return ret;
2558 }
2559 \f
2560 Lisp_Object Vfeatures, Qsubfeatures;
2561
2562 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2563 doc: /* Return t if FEATURE is present in this Emacs.
2564
2565 Use this to conditionalize execution of lisp code based on the
2566 presence or absence of Emacs or environment extensions.
2567 Use `provide' to declare that a feature is available. This function
2568 looks at the value of the variable `features'. The optional argument
2569 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2570 (Lisp_Object feature, Lisp_Object subfeature)
2571 {
2572 register Lisp_Object tem;
2573 CHECK_SYMBOL (feature);
2574 tem = Fmemq (feature, Vfeatures);
2575 if (!NILP (tem) && !NILP (subfeature))
2576 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2577 return (NILP (tem)) ? Qnil : Qt;
2578 }
2579
2580 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2581 doc: /* Announce that FEATURE is a feature of the current Emacs.
2582 The optional argument SUBFEATURES should be a list of symbols listing
2583 particular subfeatures supported in this version of FEATURE. */)
2584 (Lisp_Object feature, Lisp_Object subfeatures)
2585 {
2586 register Lisp_Object tem;
2587 CHECK_SYMBOL (feature);
2588 CHECK_LIST (subfeatures);
2589 if (!NILP (Vautoload_queue))
2590 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2591 Vautoload_queue);
2592 tem = Fmemq (feature, Vfeatures);
2593 if (NILP (tem))
2594 Vfeatures = Fcons (feature, Vfeatures);
2595 if (!NILP (subfeatures))
2596 Fput (feature, Qsubfeatures, subfeatures);
2597 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2598
2599 /* Run any load-hooks for this file. */
2600 tem = Fassq (feature, Vafter_load_alist);
2601 if (CONSP (tem))
2602 Fprogn (XCDR (tem));
2603
2604 return feature;
2605 }
2606 \f
2607 /* `require' and its subroutines. */
2608
2609 /* List of features currently being require'd, innermost first. */
2610
2611 Lisp_Object require_nesting_list;
2612
2613 Lisp_Object
2614 require_unwind (Lisp_Object old_value)
2615 {
2616 return require_nesting_list = old_value;
2617 }
2618
2619 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2620 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2621 If FEATURE is not a member of the list `features', then the feature
2622 is not loaded; so load the file FILENAME.
2623 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2624 and `load' will try to load this name appended with the suffix `.elc' or
2625 `.el', in that order. The name without appended suffix will not be used.
2626 If the optional third argument NOERROR is non-nil,
2627 then return nil if the file is not found instead of signaling an error.
2628 Normally the return value is FEATURE.
2629 The normal messages at start and end of loading FILENAME are suppressed. */)
2630 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2631 {
2632 register Lisp_Object tem;
2633 struct gcpro gcpro1, gcpro2;
2634 int from_file = load_in_progress;
2635
2636 CHECK_SYMBOL (feature);
2637
2638 /* Record the presence of `require' in this file
2639 even if the feature specified is already loaded.
2640 But not more than once in any file,
2641 and not when we aren't loading or reading from a file. */
2642 if (!from_file)
2643 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2644 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2645 from_file = 1;
2646
2647 if (from_file)
2648 {
2649 tem = Fcons (Qrequire, feature);
2650 if (NILP (Fmember (tem, Vcurrent_load_list)))
2651 LOADHIST_ATTACH (tem);
2652 }
2653 tem = Fmemq (feature, Vfeatures);
2654
2655 if (NILP (tem))
2656 {
2657 int count = SPECPDL_INDEX ();
2658 int nesting = 0;
2659
2660 /* This is to make sure that loadup.el gives a clear picture
2661 of what files are preloaded and when. */
2662 if (! NILP (Vpurify_flag))
2663 error ("(require %s) while preparing to dump",
2664 SDATA (SYMBOL_NAME (feature)));
2665
2666 /* A certain amount of recursive `require' is legitimate,
2667 but if we require the same feature recursively 3 times,
2668 signal an error. */
2669 tem = require_nesting_list;
2670 while (! NILP (tem))
2671 {
2672 if (! NILP (Fequal (feature, XCAR (tem))))
2673 nesting++;
2674 tem = XCDR (tem);
2675 }
2676 if (nesting > 3)
2677 error ("Recursive `require' for feature `%s'",
2678 SDATA (SYMBOL_NAME (feature)));
2679
2680 /* Update the list for any nested `require's that occur. */
2681 record_unwind_protect (require_unwind, require_nesting_list);
2682 require_nesting_list = Fcons (feature, require_nesting_list);
2683
2684 /* Value saved here is to be restored into Vautoload_queue */
2685 record_unwind_protect (un_autoload, Vautoload_queue);
2686 Vautoload_queue = Qt;
2687
2688 /* Load the file. */
2689 GCPRO2 (feature, filename);
2690 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2691 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2692 UNGCPRO;
2693
2694 /* If load failed entirely, return nil. */
2695 if (NILP (tem))
2696 return unbind_to (count, Qnil);
2697
2698 tem = Fmemq (feature, Vfeatures);
2699 if (NILP (tem))
2700 error ("Required feature `%s' was not provided",
2701 SDATA (SYMBOL_NAME (feature)));
2702
2703 /* Once loading finishes, don't undo it. */
2704 Vautoload_queue = Qt;
2705 feature = unbind_to (count, feature);
2706 }
2707
2708 return feature;
2709 }
2710 \f
2711 /* Primitives for work of the "widget" library.
2712 In an ideal world, this section would not have been necessary.
2713 However, lisp function calls being as slow as they are, it turns
2714 out that some functions in the widget library (wid-edit.el) are the
2715 bottleneck of Widget operation. Here is their translation to C,
2716 for the sole reason of efficiency. */
2717
2718 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2719 doc: /* Return non-nil if PLIST has the property PROP.
2720 PLIST is a property list, which is a list of the form
2721 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2722 Unlike `plist-get', this allows you to distinguish between a missing
2723 property and a property with the value nil.
2724 The value is actually the tail of PLIST whose car is PROP. */)
2725 (Lisp_Object plist, Lisp_Object prop)
2726 {
2727 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2728 {
2729 QUIT;
2730 plist = XCDR (plist);
2731 plist = CDR (plist);
2732 }
2733 return plist;
2734 }
2735
2736 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2737 doc: /* In WIDGET, set PROPERTY to VALUE.
2738 The value can later be retrieved with `widget-get'. */)
2739 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2740 {
2741 CHECK_CONS (widget);
2742 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2743 return value;
2744 }
2745
2746 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2747 doc: /* In WIDGET, get the value of PROPERTY.
2748 The value could either be specified when the widget was created, or
2749 later with `widget-put'. */)
2750 (Lisp_Object widget, Lisp_Object property)
2751 {
2752 Lisp_Object tmp;
2753
2754 while (1)
2755 {
2756 if (NILP (widget))
2757 return Qnil;
2758 CHECK_CONS (widget);
2759 tmp = Fplist_member (XCDR (widget), property);
2760 if (CONSP (tmp))
2761 {
2762 tmp = XCDR (tmp);
2763 return CAR (tmp);
2764 }
2765 tmp = XCAR (widget);
2766 if (NILP (tmp))
2767 return Qnil;
2768 widget = Fget (tmp, Qwidget_type);
2769 }
2770 }
2771
2772 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2773 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2774 ARGS are passed as extra arguments to the function.
2775 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2776 (int nargs, Lisp_Object *args)
2777 {
2778 /* This function can GC. */
2779 Lisp_Object newargs[3];
2780 struct gcpro gcpro1, gcpro2;
2781 Lisp_Object result;
2782
2783 newargs[0] = Fwidget_get (args[0], args[1]);
2784 newargs[1] = args[0];
2785 newargs[2] = Flist (nargs - 2, args + 2);
2786 GCPRO2 (newargs[0], newargs[2]);
2787 result = Fapply (3, newargs);
2788 UNGCPRO;
2789 return result;
2790 }
2791
2792 #ifdef HAVE_LANGINFO_CODESET
2793 #include <langinfo.h>
2794 #endif
2795
2796 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2797 doc: /* Access locale data ITEM for the current C locale, if available.
2798 ITEM should be one of the following:
2799
2800 `codeset', returning the character set as a string (locale item CODESET);
2801
2802 `days', returning a 7-element vector of day names (locale items DAY_n);
2803
2804 `months', returning a 12-element vector of month names (locale items MON_n);
2805
2806 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2807 both measured in milimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2808
2809 If the system can't provide such information through a call to
2810 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2811
2812 See also Info node `(libc)Locales'.
2813
2814 The data read from the system are decoded using `locale-coding-system'. */)
2815 (Lisp_Object item)
2816 {
2817 char *str = NULL;
2818 #ifdef HAVE_LANGINFO_CODESET
2819 Lisp_Object val;
2820 if (EQ (item, Qcodeset))
2821 {
2822 str = nl_langinfo (CODESET);
2823 return build_string (str);
2824 }
2825 #ifdef DAY_1
2826 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
2827 {
2828 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
2829 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
2830 int i;
2831 struct gcpro gcpro1;
2832 GCPRO1 (v);
2833 synchronize_system_time_locale ();
2834 for (i = 0; i < 7; i++)
2835 {
2836 str = nl_langinfo (days[i]);
2837 val = make_unibyte_string (str, strlen (str));
2838 /* Fixme: Is this coding system necessarily right, even if
2839 it is consistent with CODESET? If not, what to do? */
2840 Faset (v, make_number (i),
2841 code_convert_string_norecord (val, Vlocale_coding_system,
2842 0));
2843 }
2844 UNGCPRO;
2845 return v;
2846 }
2847 #endif /* DAY_1 */
2848 #ifdef MON_1
2849 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
2850 {
2851 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
2852 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
2853 MON_8, MON_9, MON_10, MON_11, MON_12};
2854 int i;
2855 struct gcpro gcpro1;
2856 GCPRO1 (v);
2857 synchronize_system_time_locale ();
2858 for (i = 0; i < 12; i++)
2859 {
2860 str = nl_langinfo (months[i]);
2861 val = make_unibyte_string (str, strlen (str));
2862 Faset (v, make_number (i),
2863 code_convert_string_norecord (val, Vlocale_coding_system, 0));
2864 }
2865 UNGCPRO;
2866 return v;
2867 }
2868 #endif /* MON_1 */
2869 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2870 but is in the locale files. This could be used by ps-print. */
2871 #ifdef PAPER_WIDTH
2872 else if (EQ (item, Qpaper))
2873 {
2874 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
2875 make_number (nl_langinfo (PAPER_HEIGHT)));
2876 }
2877 #endif /* PAPER_WIDTH */
2878 #endif /* HAVE_LANGINFO_CODESET*/
2879 return Qnil;
2880 }
2881 \f
2882 /* base64 encode/decode functions (RFC 2045).
2883 Based on code from GNU recode. */
2884
2885 #define MIME_LINE_LENGTH 76
2886
2887 #define IS_ASCII(Character) \
2888 ((Character) < 128)
2889 #define IS_BASE64(Character) \
2890 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2891 #define IS_BASE64_IGNORABLE(Character) \
2892 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2893 || (Character) == '\f' || (Character) == '\r')
2894
2895 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2896 character or return retval if there are no characters left to
2897 process. */
2898 #define READ_QUADRUPLET_BYTE(retval) \
2899 do \
2900 { \
2901 if (i == length) \
2902 { \
2903 if (nchars_return) \
2904 *nchars_return = nchars; \
2905 return (retval); \
2906 } \
2907 c = from[i++]; \
2908 } \
2909 while (IS_BASE64_IGNORABLE (c))
2910
2911 /* Table of characters coding the 64 values. */
2912 static const char base64_value_to_char[64] =
2913 {
2914 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2915 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2916 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2917 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2918 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2919 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2920 '8', '9', '+', '/' /* 60-63 */
2921 };
2922
2923 /* Table of base64 values for first 128 characters. */
2924 static const short base64_char_to_value[128] =
2925 {
2926 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2927 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2928 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2929 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2930 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2931 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2932 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2933 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2934 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2935 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2936 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2937 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2938 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2939 };
2940
2941 /* The following diagram shows the logical steps by which three octets
2942 get transformed into four base64 characters.
2943
2944 .--------. .--------. .--------.
2945 |aaaaaabb| |bbbbcccc| |ccdddddd|
2946 `--------' `--------' `--------'
2947 6 2 4 4 2 6
2948 .--------+--------+--------+--------.
2949 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2950 `--------+--------+--------+--------'
2951
2952 .--------+--------+--------+--------.
2953 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2954 `--------+--------+--------+--------'
2955
2956 The octets are divided into 6 bit chunks, which are then encoded into
2957 base64 characters. */
2958
2959
2960 static EMACS_INT base64_encode_1 (const char *, char *, EMACS_INT, int, int);
2961 static EMACS_INT base64_decode_1 (const char *, char *, EMACS_INT, int,
2962 EMACS_INT *);
2963
2964 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
2965 2, 3, "r",
2966 doc: /* Base64-encode the region between BEG and END.
2967 Return the length of the encoded text.
2968 Optional third argument NO-LINE-BREAK means do not break long lines
2969 into shorter lines. */)
2970 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
2971 {
2972 char *encoded;
2973 EMACS_INT allength, length;
2974 EMACS_INT ibeg, iend, encoded_length;
2975 EMACS_INT old_pos = PT;
2976 USE_SAFE_ALLOCA;
2977
2978 validate_region (&beg, &end);
2979
2980 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
2981 iend = CHAR_TO_BYTE (XFASTINT (end));
2982 move_gap_both (XFASTINT (beg), ibeg);
2983
2984 /* We need to allocate enough room for encoding the text.
2985 We need 33 1/3% more space, plus a newline every 76
2986 characters, and then we round up. */
2987 length = iend - ibeg;
2988 allength = length + length/3 + 1;
2989 allength += allength / MIME_LINE_LENGTH + 1 + 6;
2990
2991 SAFE_ALLOCA (encoded, char *, allength);
2992 encoded_length = base64_encode_1 (BYTE_POS_ADDR (ibeg), encoded, length,
2993 NILP (no_line_break),
2994 !NILP (current_buffer->enable_multibyte_characters));
2995 if (encoded_length > allength)
2996 abort ();
2997
2998 if (encoded_length < 0)
2999 {
3000 /* The encoding wasn't possible. */
3001 SAFE_FREE ();
3002 error ("Multibyte character in data for base64 encoding");
3003 }
3004
3005 /* Now we have encoded the region, so we insert the new contents
3006 and delete the old. (Insert first in order to preserve markers.) */
3007 SET_PT_BOTH (XFASTINT (beg), ibeg);
3008 insert (encoded, encoded_length);
3009 SAFE_FREE ();
3010 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
3011
3012 /* If point was outside of the region, restore it exactly; else just
3013 move to the beginning of the region. */
3014 if (old_pos >= XFASTINT (end))
3015 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3016 else if (old_pos > XFASTINT (beg))
3017 old_pos = XFASTINT (beg);
3018 SET_PT (old_pos);
3019
3020 /* We return the length of the encoded text. */
3021 return make_number (encoded_length);
3022 }
3023
3024 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3025 1, 2, 0,
3026 doc: /* Base64-encode STRING and return the result.
3027 Optional second argument NO-LINE-BREAK means do not break long lines
3028 into shorter lines. */)
3029 (Lisp_Object string, Lisp_Object no_line_break)
3030 {
3031 EMACS_INT allength, length, encoded_length;
3032 char *encoded;
3033 Lisp_Object encoded_string;
3034 USE_SAFE_ALLOCA;
3035
3036 CHECK_STRING (string);
3037
3038 /* We need to allocate enough room for encoding the text.
3039 We need 33 1/3% more space, plus a newline every 76
3040 characters, and then we round up. */
3041 length = SBYTES (string);
3042 allength = length + length/3 + 1;
3043 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3044
3045 /* We need to allocate enough room for decoding the text. */
3046 SAFE_ALLOCA (encoded, char *, allength);
3047
3048 encoded_length = base64_encode_1 (SDATA (string),
3049 encoded, length, NILP (no_line_break),
3050 STRING_MULTIBYTE (string));
3051 if (encoded_length > allength)
3052 abort ();
3053
3054 if (encoded_length < 0)
3055 {
3056 /* The encoding wasn't possible. */
3057 SAFE_FREE ();
3058 error ("Multibyte character in data for base64 encoding");
3059 }
3060
3061 encoded_string = make_unibyte_string (encoded, encoded_length);
3062 SAFE_FREE ();
3063
3064 return encoded_string;
3065 }
3066
3067 static EMACS_INT
3068 base64_encode_1 (const char *from, char *to, EMACS_INT length,
3069 int line_break, int multibyte)
3070 {
3071 int counter = 0;
3072 EMACS_INT i = 0;
3073 char *e = to;
3074 int c;
3075 unsigned int value;
3076 int bytes;
3077
3078 while (i < length)
3079 {
3080 if (multibyte)
3081 {
3082 c = STRING_CHAR_AND_LENGTH (from + i, bytes);
3083 if (CHAR_BYTE8_P (c))
3084 c = CHAR_TO_BYTE8 (c);
3085 else if (c >= 256)
3086 return -1;
3087 i += bytes;
3088 }
3089 else
3090 c = from[i++];
3091
3092 /* Wrap line every 76 characters. */
3093
3094 if (line_break)
3095 {
3096 if (counter < MIME_LINE_LENGTH / 4)
3097 counter++;
3098 else
3099 {
3100 *e++ = '\n';
3101 counter = 1;
3102 }
3103 }
3104
3105 /* Process first byte of a triplet. */
3106
3107 *e++ = base64_value_to_char[0x3f & c >> 2];
3108 value = (0x03 & c) << 4;
3109
3110 /* Process second byte of a triplet. */
3111
3112 if (i == length)
3113 {
3114 *e++ = base64_value_to_char[value];
3115 *e++ = '=';
3116 *e++ = '=';
3117 break;
3118 }
3119
3120 if (multibyte)
3121 {
3122 c = STRING_CHAR_AND_LENGTH (from + i, bytes);
3123 if (CHAR_BYTE8_P (c))
3124 c = CHAR_TO_BYTE8 (c);
3125 else if (c >= 256)
3126 return -1;
3127 i += bytes;
3128 }
3129 else
3130 c = from[i++];
3131
3132 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3133 value = (0x0f & c) << 2;
3134
3135 /* Process third byte of a triplet. */
3136
3137 if (i == length)
3138 {
3139 *e++ = base64_value_to_char[value];
3140 *e++ = '=';
3141 break;
3142 }
3143
3144 if (multibyte)
3145 {
3146 c = STRING_CHAR_AND_LENGTH (from + i, bytes);
3147 if (CHAR_BYTE8_P (c))
3148 c = CHAR_TO_BYTE8 (c);
3149 else if (c >= 256)
3150 return -1;
3151 i += bytes;
3152 }
3153 else
3154 c = from[i++];
3155
3156 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3157 *e++ = base64_value_to_char[0x3f & c];
3158 }
3159
3160 return e - to;
3161 }
3162
3163
3164 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3165 2, 2, "r",
3166 doc: /* Base64-decode the region between BEG and END.
3167 Return the length of the decoded text.
3168 If the region can't be decoded, signal an error and don't modify the buffer. */)
3169 (Lisp_Object beg, Lisp_Object end)
3170 {
3171 EMACS_INT ibeg, iend, length, allength;
3172 char *decoded;
3173 EMACS_INT old_pos = PT;
3174 EMACS_INT decoded_length;
3175 EMACS_INT inserted_chars;
3176 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
3177 USE_SAFE_ALLOCA;
3178
3179 validate_region (&beg, &end);
3180
3181 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3182 iend = CHAR_TO_BYTE (XFASTINT (end));
3183
3184 length = iend - ibeg;
3185
3186 /* We need to allocate enough room for decoding the text. If we are
3187 working on a multibyte buffer, each decoded code may occupy at
3188 most two bytes. */
3189 allength = multibyte ? length * 2 : length;
3190 SAFE_ALLOCA (decoded, char *, allength);
3191
3192 move_gap_both (XFASTINT (beg), ibeg);
3193 decoded_length = base64_decode_1 (BYTE_POS_ADDR (ibeg), decoded, length,
3194 multibyte, &inserted_chars);
3195 if (decoded_length > allength)
3196 abort ();
3197
3198 if (decoded_length < 0)
3199 {
3200 /* The decoding wasn't possible. */
3201 SAFE_FREE ();
3202 error ("Invalid base64 data");
3203 }
3204
3205 /* Now we have decoded the region, so we insert the new contents
3206 and delete the old. (Insert first in order to preserve markers.) */
3207 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3208 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3209 SAFE_FREE ();
3210
3211 /* Delete the original text. */
3212 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3213 iend + decoded_length, 1);
3214
3215 /* If point was outside of the region, restore it exactly; else just
3216 move to the beginning of the region. */
3217 if (old_pos >= XFASTINT (end))
3218 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3219 else if (old_pos > XFASTINT (beg))
3220 old_pos = XFASTINT (beg);
3221 SET_PT (old_pos > ZV ? ZV : old_pos);
3222
3223 return make_number (inserted_chars);
3224 }
3225
3226 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3227 1, 1, 0,
3228 doc: /* Base64-decode STRING and return the result. */)
3229 (Lisp_Object string)
3230 {
3231 char *decoded;
3232 EMACS_INT length, decoded_length;
3233 Lisp_Object decoded_string;
3234 USE_SAFE_ALLOCA;
3235
3236 CHECK_STRING (string);
3237
3238 length = SBYTES (string);
3239 /* We need to allocate enough room for decoding the text. */
3240 SAFE_ALLOCA (decoded, char *, length);
3241
3242 /* The decoded result should be unibyte. */
3243 decoded_length = base64_decode_1 (SDATA (string), decoded, length,
3244 0, NULL);
3245 if (decoded_length > length)
3246 abort ();
3247 else if (decoded_length >= 0)
3248 decoded_string = make_unibyte_string (decoded, decoded_length);
3249 else
3250 decoded_string = Qnil;
3251
3252 SAFE_FREE ();
3253 if (!STRINGP (decoded_string))
3254 error ("Invalid base64 data");
3255
3256 return decoded_string;
3257 }
3258
3259 /* Base64-decode the data at FROM of LENGHT bytes into TO. If
3260 MULTIBYTE is nonzero, the decoded result should be in multibyte
3261 form. If NCHARS_RETRUN is not NULL, store the number of produced
3262 characters in *NCHARS_RETURN. */
3263
3264 static EMACS_INT
3265 base64_decode_1 (const char *from, char *to, EMACS_INT length,
3266 int multibyte, EMACS_INT *nchars_return)
3267 {
3268 EMACS_INT i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3269 char *e = to;
3270 unsigned char c;
3271 unsigned long value;
3272 EMACS_INT nchars = 0;
3273
3274 while (1)
3275 {
3276 /* Process first byte of a quadruplet. */
3277
3278 READ_QUADRUPLET_BYTE (e-to);
3279
3280 if (!IS_BASE64 (c))
3281 return -1;
3282 value = base64_char_to_value[c] << 18;
3283
3284 /* Process second byte of a quadruplet. */
3285
3286 READ_QUADRUPLET_BYTE (-1);
3287
3288 if (!IS_BASE64 (c))
3289 return -1;
3290 value |= base64_char_to_value[c] << 12;
3291
3292 c = (unsigned char) (value >> 16);
3293 if (multibyte && c >= 128)
3294 e += BYTE8_STRING (c, e);
3295 else
3296 *e++ = c;
3297 nchars++;
3298
3299 /* Process third byte of a quadruplet. */
3300
3301 READ_QUADRUPLET_BYTE (-1);
3302
3303 if (c == '=')
3304 {
3305 READ_QUADRUPLET_BYTE (-1);
3306
3307 if (c != '=')
3308 return -1;
3309 continue;
3310 }
3311
3312 if (!IS_BASE64 (c))
3313 return -1;
3314 value |= base64_char_to_value[c] << 6;
3315
3316 c = (unsigned char) (0xff & value >> 8);
3317 if (multibyte && c >= 128)
3318 e += BYTE8_STRING (c, e);
3319 else
3320 *e++ = c;
3321 nchars++;
3322
3323 /* Process fourth byte of a quadruplet. */
3324
3325 READ_QUADRUPLET_BYTE (-1);
3326
3327 if (c == '=')
3328 continue;
3329
3330 if (!IS_BASE64 (c))
3331 return -1;
3332 value |= base64_char_to_value[c];
3333
3334 c = (unsigned char) (0xff & value);
3335 if (multibyte && c >= 128)
3336 e += BYTE8_STRING (c, e);
3337 else
3338 *e++ = c;
3339 nchars++;
3340 }
3341 }
3342
3343
3344 \f
3345 /***********************************************************************
3346 ***** *****
3347 ***** Hash Tables *****
3348 ***** *****
3349 ***********************************************************************/
3350
3351 /* Implemented by gerd@gnu.org. This hash table implementation was
3352 inspired by CMUCL hash tables. */
3353
3354 /* Ideas:
3355
3356 1. For small tables, association lists are probably faster than
3357 hash tables because they have lower overhead.
3358
3359 For uses of hash tables where the O(1) behavior of table
3360 operations is not a requirement, it might therefore be a good idea
3361 not to hash. Instead, we could just do a linear search in the
3362 key_and_value vector of the hash table. This could be done
3363 if a `:linear-search t' argument is given to make-hash-table. */
3364
3365
3366 /* The list of all weak hash tables. Don't staticpro this one. */
3367
3368 struct Lisp_Hash_Table *weak_hash_tables;
3369
3370 /* Various symbols. */
3371
3372 Lisp_Object Qhash_table_p, Qeq, Qeql, Qequal, Qkey, Qvalue;
3373 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3374 Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3375
3376 /* Function prototypes. */
3377
3378 static struct Lisp_Hash_Table *check_hash_table (Lisp_Object);
3379 static int get_key_arg (Lisp_Object, int, Lisp_Object *, char *);
3380 static void maybe_resize_hash_table (struct Lisp_Hash_Table *);
3381 static int cmpfn_eql (struct Lisp_Hash_Table *, Lisp_Object, unsigned,
3382 Lisp_Object, unsigned);
3383 static int cmpfn_equal (struct Lisp_Hash_Table *, Lisp_Object, unsigned,
3384 Lisp_Object, unsigned);
3385 static int cmpfn_user_defined (struct Lisp_Hash_Table *, Lisp_Object,
3386 unsigned, Lisp_Object, unsigned);
3387 static unsigned hashfn_eq (struct Lisp_Hash_Table *, Lisp_Object);
3388 static unsigned hashfn_eql (struct Lisp_Hash_Table *, Lisp_Object);
3389 static unsigned hashfn_equal (struct Lisp_Hash_Table *, Lisp_Object);
3390 static unsigned hashfn_user_defined (struct Lisp_Hash_Table *,
3391 Lisp_Object);
3392 static unsigned sxhash_string (unsigned char *, int);
3393 static unsigned sxhash_list (Lisp_Object, int);
3394 static unsigned sxhash_vector (Lisp_Object, int);
3395 static unsigned sxhash_bool_vector (Lisp_Object);
3396 static int sweep_weak_table (struct Lisp_Hash_Table *, int);
3397
3398
3399 \f
3400 /***********************************************************************
3401 Utilities
3402 ***********************************************************************/
3403
3404 /* If OBJ is a Lisp hash table, return a pointer to its struct
3405 Lisp_Hash_Table. Otherwise, signal an error. */
3406
3407 static struct Lisp_Hash_Table *
3408 check_hash_table (Lisp_Object obj)
3409 {
3410 CHECK_HASH_TABLE (obj);
3411 return XHASH_TABLE (obj);
3412 }
3413
3414
3415 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3416 number. */
3417
3418 int
3419 next_almost_prime (int n)
3420 {
3421 if (n % 2 == 0)
3422 n += 1;
3423 if (n % 3 == 0)
3424 n += 2;
3425 if (n % 7 == 0)
3426 n += 4;
3427 return n;
3428 }
3429
3430
3431 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3432 which USED[I] is non-zero. If found at index I in ARGS, set
3433 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3434 -1. This function is used to extract a keyword/argument pair from
3435 a DEFUN parameter list. */
3436
3437 static int
3438 get_key_arg (Lisp_Object key, int nargs, Lisp_Object *args, char *used)
3439 {
3440 int i;
3441
3442 for (i = 0; i < nargs - 1; ++i)
3443 if (!used[i] && EQ (args[i], key))
3444 break;
3445
3446 if (i >= nargs - 1)
3447 i = -1;
3448 else
3449 {
3450 used[i++] = 1;
3451 used[i] = 1;
3452 }
3453
3454 return i;
3455 }
3456
3457
3458 /* Return a Lisp vector which has the same contents as VEC but has
3459 size NEW_SIZE, NEW_SIZE >= VEC->size. Entries in the resulting
3460 vector that are not copied from VEC are set to INIT. */
3461
3462 Lisp_Object
3463 larger_vector (Lisp_Object vec, int new_size, Lisp_Object init)
3464 {
3465 struct Lisp_Vector *v;
3466 int i, old_size;
3467
3468 xassert (VECTORP (vec));
3469 old_size = ASIZE (vec);
3470 xassert (new_size >= old_size);
3471
3472 v = allocate_vector (new_size);
3473 memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
3474 for (i = old_size; i < new_size; ++i)
3475 v->contents[i] = init;
3476 XSETVECTOR (vec, v);
3477 return vec;
3478 }
3479
3480
3481 /***********************************************************************
3482 Low-level Functions
3483 ***********************************************************************/
3484
3485 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3486 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
3487 KEY2 are the same. */
3488
3489 static int
3490 cmpfn_eql (struct Lisp_Hash_Table *h, Lisp_Object key1, unsigned int hash1, Lisp_Object key2, unsigned int hash2)
3491 {
3492 return (FLOATP (key1)
3493 && FLOATP (key2)
3494 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3495 }
3496
3497
3498 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3499 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
3500 KEY2 are the same. */
3501
3502 static int
3503 cmpfn_equal (struct Lisp_Hash_Table *h, Lisp_Object key1, unsigned int hash1, Lisp_Object key2, unsigned int hash2)
3504 {
3505 return hash1 == hash2 && !NILP (Fequal (key1, key2));
3506 }
3507
3508
3509 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3510 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
3511 if KEY1 and KEY2 are the same. */
3512
3513 static int
3514 cmpfn_user_defined (struct Lisp_Hash_Table *h, Lisp_Object key1, unsigned int hash1, Lisp_Object key2, unsigned int hash2)
3515 {
3516 if (hash1 == hash2)
3517 {
3518 Lisp_Object args[3];
3519
3520 args[0] = h->user_cmp_function;
3521 args[1] = key1;
3522 args[2] = key2;
3523 return !NILP (Ffuncall (3, args));
3524 }
3525 else
3526 return 0;
3527 }
3528
3529
3530 /* Value is a hash code for KEY for use in hash table H which uses
3531 `eq' to compare keys. The hash code returned is guaranteed to fit
3532 in a Lisp integer. */
3533
3534 static unsigned
3535 hashfn_eq (struct Lisp_Hash_Table *h, Lisp_Object key)
3536 {
3537 unsigned hash = XUINT (key) ^ XTYPE (key);
3538 xassert ((hash & ~INTMASK) == 0);
3539 return hash;
3540 }
3541
3542
3543 /* Value is a hash code for KEY for use in hash table H which uses
3544 `eql' to compare keys. The hash code returned is guaranteed to fit
3545 in a Lisp integer. */
3546
3547 static unsigned
3548 hashfn_eql (struct Lisp_Hash_Table *h, Lisp_Object key)
3549 {
3550 unsigned hash;
3551 if (FLOATP (key))
3552 hash = sxhash (key, 0);
3553 else
3554 hash = XUINT (key) ^ XTYPE (key);
3555 xassert ((hash & ~INTMASK) == 0);
3556 return hash;
3557 }
3558
3559
3560 /* Value is a hash code for KEY for use in hash table H which uses
3561 `equal' to compare keys. The hash code returned is guaranteed to fit
3562 in a Lisp integer. */
3563
3564 static unsigned
3565 hashfn_equal (struct Lisp_Hash_Table *h, Lisp_Object key)
3566 {
3567 unsigned hash = sxhash (key, 0);
3568 xassert ((hash & ~INTMASK) == 0);
3569 return hash;
3570 }
3571
3572
3573 /* Value is a hash code for KEY for use in hash table H which uses as
3574 user-defined function to compare keys. The hash code returned is
3575 guaranteed to fit in a Lisp integer. */
3576
3577 static unsigned
3578 hashfn_user_defined (struct Lisp_Hash_Table *h, Lisp_Object key)
3579 {
3580 Lisp_Object args[2], hash;
3581
3582 args[0] = h->user_hash_function;
3583 args[1] = key;
3584 hash = Ffuncall (2, args);
3585 if (!INTEGERP (hash))
3586 signal_error ("Invalid hash code returned from user-supplied hash function", hash);
3587 return XUINT (hash);
3588 }
3589
3590
3591 /* Create and initialize a new hash table.
3592
3593 TEST specifies the test the hash table will use to compare keys.
3594 It must be either one of the predefined tests `eq', `eql' or
3595 `equal' or a symbol denoting a user-defined test named TEST with
3596 test and hash functions USER_TEST and USER_HASH.
3597
3598 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3599
3600 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3601 new size when it becomes full is computed by adding REHASH_SIZE to
3602 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3603 table's new size is computed by multiplying its old size with
3604 REHASH_SIZE.
3605
3606 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3607 be resized when the ratio of (number of entries in the table) /
3608 (table size) is >= REHASH_THRESHOLD.
3609
3610 WEAK specifies the weakness of the table. If non-nil, it must be
3611 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3612
3613 Lisp_Object
3614 make_hash_table (Lisp_Object test, Lisp_Object size, Lisp_Object rehash_size,
3615 Lisp_Object rehash_threshold, Lisp_Object weak,
3616 Lisp_Object user_test, Lisp_Object user_hash)
3617 {
3618 struct Lisp_Hash_Table *h;
3619 Lisp_Object table;
3620 int index_size, i, sz;
3621
3622 /* Preconditions. */
3623 xassert (SYMBOLP (test));
3624 xassert (INTEGERP (size) && XINT (size) >= 0);
3625 xassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3626 || (FLOATP (rehash_size) && XFLOATINT (rehash_size) > 1.0));
3627 xassert (FLOATP (rehash_threshold)
3628 && XFLOATINT (rehash_threshold) > 0
3629 && XFLOATINT (rehash_threshold) <= 1.0);
3630
3631 if (XFASTINT (size) == 0)
3632 size = make_number (1);
3633
3634 /* Allocate a table and initialize it. */
3635 h = allocate_hash_table ();
3636
3637 /* Initialize hash table slots. */
3638 sz = XFASTINT (size);
3639
3640 h->test = test;
3641 if (EQ (test, Qeql))
3642 {
3643 h->cmpfn = cmpfn_eql;
3644 h->hashfn = hashfn_eql;
3645 }
3646 else if (EQ (test, Qeq))
3647 {
3648 h->cmpfn = NULL;
3649 h->hashfn = hashfn_eq;
3650 }
3651 else if (EQ (test, Qequal))
3652 {
3653 h->cmpfn = cmpfn_equal;
3654 h->hashfn = hashfn_equal;
3655 }
3656 else
3657 {
3658 h->user_cmp_function = user_test;
3659 h->user_hash_function = user_hash;
3660 h->cmpfn = cmpfn_user_defined;
3661 h->hashfn = hashfn_user_defined;
3662 }
3663
3664 h->weak = weak;
3665 h->rehash_threshold = rehash_threshold;
3666 h->rehash_size = rehash_size;
3667 h->count = 0;
3668 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3669 h->hash = Fmake_vector (size, Qnil);
3670 h->next = Fmake_vector (size, Qnil);
3671 /* Cast to int here avoids losing with gcc 2.95 on Tru64/Alpha... */
3672 index_size = next_almost_prime ((int) (sz / XFLOATINT (rehash_threshold)));
3673 h->index = Fmake_vector (make_number (index_size), Qnil);
3674
3675 /* Set up the free list. */
3676 for (i = 0; i < sz - 1; ++i)
3677 HASH_NEXT (h, i) = make_number (i + 1);
3678 h->next_free = make_number (0);
3679
3680 XSET_HASH_TABLE (table, h);
3681 xassert (HASH_TABLE_P (table));
3682 xassert (XHASH_TABLE (table) == h);
3683
3684 /* Maybe add this hash table to the list of all weak hash tables. */
3685 if (NILP (h->weak))
3686 h->next_weak = NULL;
3687 else
3688 {
3689 h->next_weak = weak_hash_tables;
3690 weak_hash_tables = h;
3691 }
3692
3693 return table;
3694 }
3695
3696
3697 /* Return a copy of hash table H1. Keys and values are not copied,
3698 only the table itself is. */
3699
3700 static Lisp_Object
3701 copy_hash_table (struct Lisp_Hash_Table *h1)
3702 {
3703 Lisp_Object table;
3704 struct Lisp_Hash_Table *h2;
3705 struct Lisp_Vector *next;
3706
3707 h2 = allocate_hash_table ();
3708 next = h2->vec_next;
3709 memcpy (h2, h1, sizeof *h2);
3710 h2->vec_next = next;
3711 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3712 h2->hash = Fcopy_sequence (h1->hash);
3713 h2->next = Fcopy_sequence (h1->next);
3714 h2->index = Fcopy_sequence (h1->index);
3715 XSET_HASH_TABLE (table, h2);
3716
3717 /* Maybe add this hash table to the list of all weak hash tables. */
3718 if (!NILP (h2->weak))
3719 {
3720 h2->next_weak = weak_hash_tables;
3721 weak_hash_tables = h2;
3722 }
3723
3724 return table;
3725 }
3726
3727
3728 /* Resize hash table H if it's too full. If H cannot be resized
3729 because it's already too large, throw an error. */
3730
3731 static INLINE void
3732 maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3733 {
3734 if (NILP (h->next_free))
3735 {
3736 int old_size = HASH_TABLE_SIZE (h);
3737 int i, new_size, index_size;
3738 EMACS_INT nsize;
3739
3740 if (INTEGERP (h->rehash_size))
3741 new_size = old_size + XFASTINT (h->rehash_size);
3742 else
3743 new_size = old_size * XFLOATINT (h->rehash_size);
3744 new_size = max (old_size + 1, new_size);
3745 index_size = next_almost_prime ((int)
3746 (new_size
3747 / XFLOATINT (h->rehash_threshold)));
3748 /* Assignment to EMACS_INT stops GCC whining about limited range
3749 of data type. */
3750 nsize = max (index_size, 2 * new_size);
3751 if (nsize > MOST_POSITIVE_FIXNUM)
3752 error ("Hash table too large to resize");
3753
3754 h->key_and_value = larger_vector (h->key_and_value, 2 * new_size, Qnil);
3755 h->next = larger_vector (h->next, new_size, Qnil);
3756 h->hash = larger_vector (h->hash, new_size, Qnil);
3757 h->index = Fmake_vector (make_number (index_size), Qnil);
3758
3759 /* Update the free list. Do it so that new entries are added at
3760 the end of the free list. This makes some operations like
3761 maphash faster. */
3762 for (i = old_size; i < new_size - 1; ++i)
3763 HASH_NEXT (h, i) = make_number (i + 1);
3764
3765 if (!NILP (h->next_free))
3766 {
3767 Lisp_Object last, next;
3768
3769 last = h->next_free;
3770 while (next = HASH_NEXT (h, XFASTINT (last)),
3771 !NILP (next))
3772 last = next;
3773
3774 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
3775 }
3776 else
3777 XSETFASTINT (h->next_free, old_size);
3778
3779 /* Rehash. */
3780 for (i = 0; i < old_size; ++i)
3781 if (!NILP (HASH_HASH (h, i)))
3782 {
3783 unsigned hash_code = XUINT (HASH_HASH (h, i));
3784 int start_of_bucket = hash_code % ASIZE (h->index);
3785 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
3786 HASH_INDEX (h, start_of_bucket) = make_number (i);
3787 }
3788 }
3789 }
3790
3791
3792 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3793 the hash code of KEY. Value is the index of the entry in H
3794 matching KEY, or -1 if not found. */
3795
3796 int
3797 hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, unsigned int *hash)
3798 {
3799 unsigned hash_code;
3800 int start_of_bucket;
3801 Lisp_Object idx;
3802
3803 hash_code = h->hashfn (h, key);
3804 if (hash)
3805 *hash = hash_code;
3806
3807 start_of_bucket = hash_code % ASIZE (h->index);
3808 idx = HASH_INDEX (h, start_of_bucket);
3809
3810 /* We need not gcpro idx since it's either an integer or nil. */
3811 while (!NILP (idx))
3812 {
3813 int i = XFASTINT (idx);
3814 if (EQ (key, HASH_KEY (h, i))
3815 || (h->cmpfn
3816 && h->cmpfn (h, key, hash_code,
3817 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3818 break;
3819 idx = HASH_NEXT (h, i);
3820 }
3821
3822 return NILP (idx) ? -1 : XFASTINT (idx);
3823 }
3824
3825
3826 /* Put an entry into hash table H that associates KEY with VALUE.
3827 HASH is a previously computed hash code of KEY.
3828 Value is the index of the entry in H matching KEY. */
3829
3830 int
3831 hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value, unsigned int hash)
3832 {
3833 int start_of_bucket, i;
3834
3835 xassert ((hash & ~INTMASK) == 0);
3836
3837 /* Increment count after resizing because resizing may fail. */
3838 maybe_resize_hash_table (h);
3839 h->count++;
3840
3841 /* Store key/value in the key_and_value vector. */
3842 i = XFASTINT (h->next_free);
3843 h->next_free = HASH_NEXT (h, i);
3844 HASH_KEY (h, i) = key;
3845 HASH_VALUE (h, i) = value;
3846
3847 /* Remember its hash code. */
3848 HASH_HASH (h, i) = make_number (hash);
3849
3850 /* Add new entry to its collision chain. */
3851 start_of_bucket = hash % ASIZE (h->index);
3852 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
3853 HASH_INDEX (h, start_of_bucket) = make_number (i);
3854 return i;
3855 }
3856
3857
3858 /* Remove the entry matching KEY from hash table H, if there is one. */
3859
3860 static void
3861 hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
3862 {
3863 unsigned hash_code;
3864 int start_of_bucket;
3865 Lisp_Object idx, prev;
3866
3867 hash_code = h->hashfn (h, key);
3868 start_of_bucket = hash_code % ASIZE (h->index);
3869 idx = HASH_INDEX (h, start_of_bucket);
3870 prev = Qnil;
3871
3872 /* We need not gcpro idx, prev since they're either integers or nil. */
3873 while (!NILP (idx))
3874 {
3875 int i = XFASTINT (idx);
3876
3877 if (EQ (key, HASH_KEY (h, i))
3878 || (h->cmpfn
3879 && h->cmpfn (h, key, hash_code,
3880 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3881 {
3882 /* Take entry out of collision chain. */
3883 if (NILP (prev))
3884 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
3885 else
3886 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
3887
3888 /* Clear slots in key_and_value and add the slots to
3889 the free list. */
3890 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
3891 HASH_NEXT (h, i) = h->next_free;
3892 h->next_free = make_number (i);
3893 h->count--;
3894 xassert (h->count >= 0);
3895 break;
3896 }
3897 else
3898 {
3899 prev = idx;
3900 idx = HASH_NEXT (h, i);
3901 }
3902 }
3903 }
3904
3905
3906 /* Clear hash table H. */
3907
3908 static void
3909 hash_clear (struct Lisp_Hash_Table *h)
3910 {
3911 if (h->count > 0)
3912 {
3913 int i, size = HASH_TABLE_SIZE (h);
3914
3915 for (i = 0; i < size; ++i)
3916 {
3917 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
3918 HASH_KEY (h, i) = Qnil;
3919 HASH_VALUE (h, i) = Qnil;
3920 HASH_HASH (h, i) = Qnil;
3921 }
3922
3923 for (i = 0; i < ASIZE (h->index); ++i)
3924 ASET (h->index, i, Qnil);
3925
3926 h->next_free = make_number (0);
3927 h->count = 0;
3928 }
3929 }
3930
3931
3932 \f
3933 /************************************************************************
3934 Weak Hash Tables
3935 ************************************************************************/
3936
3937 void
3938 init_weak_hash_tables (void)
3939 {
3940 weak_hash_tables = NULL;
3941 }
3942
3943 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
3944 entries from the table that don't survive the current GC.
3945 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
3946 non-zero if anything was marked. */
3947
3948 static int
3949 sweep_weak_table (struct Lisp_Hash_Table *h, int remove_entries_p)
3950 {
3951 int bucket, n, marked;
3952
3953 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
3954 marked = 0;
3955
3956 for (bucket = 0; bucket < n; ++bucket)
3957 {
3958 Lisp_Object idx, next, prev;
3959
3960 /* Follow collision chain, removing entries that
3961 don't survive this garbage collection. */
3962 prev = Qnil;
3963 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
3964 {
3965 int i = XFASTINT (idx);
3966 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
3967 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
3968 int remove_p;
3969
3970 if (EQ (h->weak, Qkey))
3971 remove_p = !key_known_to_survive_p;
3972 else if (EQ (h->weak, Qvalue))
3973 remove_p = !value_known_to_survive_p;
3974 else if (EQ (h->weak, Qkey_or_value))
3975 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
3976 else if (EQ (h->weak, Qkey_and_value))
3977 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
3978 else
3979 abort ();
3980
3981 next = HASH_NEXT (h, i);
3982
3983 if (remove_entries_p)
3984 {
3985 if (remove_p)
3986 {
3987 /* Take out of collision chain. */
3988 if (NILP (prev))
3989 HASH_INDEX (h, bucket) = next;
3990 else
3991 HASH_NEXT (h, XFASTINT (prev)) = next;
3992
3993 /* Add to free list. */
3994 HASH_NEXT (h, i) = h->next_free;
3995 h->next_free = idx;
3996
3997 /* Clear key, value, and hash. */
3998 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
3999 HASH_HASH (h, i) = Qnil;
4000
4001 h->count--;
4002 }
4003 else
4004 {
4005 prev = idx;
4006 }
4007 }
4008 else
4009 {
4010 if (!remove_p)
4011 {
4012 /* Make sure key and value survive. */
4013 if (!key_known_to_survive_p)
4014 {
4015 mark_object (HASH_KEY (h, i));
4016 marked = 1;
4017 }
4018
4019 if (!value_known_to_survive_p)
4020 {
4021 mark_object (HASH_VALUE (h, i));
4022 marked = 1;
4023 }
4024 }
4025 }
4026 }
4027 }
4028
4029 return marked;
4030 }
4031
4032 /* Remove elements from weak hash tables that don't survive the
4033 current garbage collection. Remove weak tables that don't survive
4034 from Vweak_hash_tables. Called from gc_sweep. */
4035
4036 void
4037 sweep_weak_hash_tables (void)
4038 {
4039 struct Lisp_Hash_Table *h, *used, *next;
4040 int marked;
4041
4042 /* Mark all keys and values that are in use. Keep on marking until
4043 there is no more change. This is necessary for cases like
4044 value-weak table A containing an entry X -> Y, where Y is used in a
4045 key-weak table B, Z -> Y. If B comes after A in the list of weak
4046 tables, X -> Y might be removed from A, although when looking at B
4047 one finds that it shouldn't. */
4048 do
4049 {
4050 marked = 0;
4051 for (h = weak_hash_tables; h; h = h->next_weak)
4052 {
4053 if (h->size & ARRAY_MARK_FLAG)
4054 marked |= sweep_weak_table (h, 0);
4055 }
4056 }
4057 while (marked);
4058
4059 /* Remove tables and entries that aren't used. */
4060 for (h = weak_hash_tables, used = NULL; h; h = next)
4061 {
4062 next = h->next_weak;
4063
4064 if (h->size & ARRAY_MARK_FLAG)
4065 {
4066 /* TABLE is marked as used. Sweep its contents. */
4067 if (h->count > 0)
4068 sweep_weak_table (h, 1);
4069
4070 /* Add table to the list of used weak hash tables. */
4071 h->next_weak = used;
4072 used = h;
4073 }
4074 }
4075
4076 weak_hash_tables = used;
4077 }
4078
4079
4080 \f
4081 /***********************************************************************
4082 Hash Code Computation
4083 ***********************************************************************/
4084
4085 /* Maximum depth up to which to dive into Lisp structures. */
4086
4087 #define SXHASH_MAX_DEPTH 3
4088
4089 /* Maximum length up to which to take list and vector elements into
4090 account. */
4091
4092 #define SXHASH_MAX_LEN 7
4093
4094 /* Combine two integers X and Y for hashing. */
4095
4096 #define SXHASH_COMBINE(X, Y) \
4097 ((((unsigned)(X) << 4) + (((unsigned)(X) >> 24) & 0x0fffffff)) \
4098 + (unsigned)(Y))
4099
4100
4101 /* Return a hash for string PTR which has length LEN. The hash
4102 code returned is guaranteed to fit in a Lisp integer. */
4103
4104 static unsigned
4105 sxhash_string (unsigned char *ptr, int len)
4106 {
4107 unsigned char *p = ptr;
4108 unsigned char *end = p + len;
4109 unsigned char c;
4110 unsigned hash = 0;
4111
4112 while (p != end)
4113 {
4114 c = *p++;
4115 if (c >= 0140)
4116 c -= 40;
4117 hash = ((hash << 4) + (hash >> 28) + c);
4118 }
4119
4120 return hash & INTMASK;
4121 }
4122
4123
4124 /* Return a hash for list LIST. DEPTH is the current depth in the
4125 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4126
4127 static unsigned
4128 sxhash_list (Lisp_Object list, int depth)
4129 {
4130 unsigned hash = 0;
4131 int i;
4132
4133 if (depth < SXHASH_MAX_DEPTH)
4134 for (i = 0;
4135 CONSP (list) && i < SXHASH_MAX_LEN;
4136 list = XCDR (list), ++i)
4137 {
4138 unsigned hash2 = sxhash (XCAR (list), depth + 1);
4139 hash = SXHASH_COMBINE (hash, hash2);
4140 }
4141
4142 if (!NILP (list))
4143 {
4144 unsigned hash2 = sxhash (list, depth + 1);
4145 hash = SXHASH_COMBINE (hash, hash2);
4146 }
4147
4148 return hash;
4149 }
4150
4151
4152 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4153 the Lisp structure. */
4154
4155 static unsigned
4156 sxhash_vector (Lisp_Object vec, int depth)
4157 {
4158 unsigned hash = ASIZE (vec);
4159 int i, n;
4160
4161 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4162 for (i = 0; i < n; ++i)
4163 {
4164 unsigned hash2 = sxhash (AREF (vec, i), depth + 1);
4165 hash = SXHASH_COMBINE (hash, hash2);
4166 }
4167
4168 return hash;
4169 }
4170
4171
4172 /* Return a hash for bool-vector VECTOR. */
4173
4174 static unsigned
4175 sxhash_bool_vector (Lisp_Object vec)
4176 {
4177 unsigned hash = XBOOL_VECTOR (vec)->size;
4178 int i, n;
4179
4180 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->vector_size);
4181 for (i = 0; i < n; ++i)
4182 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4183
4184 return hash;
4185 }
4186
4187
4188 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4189 structure. Value is an unsigned integer clipped to INTMASK. */
4190
4191 unsigned
4192 sxhash (Lisp_Object obj, int depth)
4193 {
4194 unsigned hash;
4195
4196 if (depth > SXHASH_MAX_DEPTH)
4197 return 0;
4198
4199 switch (XTYPE (obj))
4200 {
4201 case_Lisp_Int:
4202 hash = XUINT (obj);
4203 break;
4204
4205 case Lisp_Misc:
4206 hash = XUINT (obj);
4207 break;
4208
4209 case Lisp_Symbol:
4210 obj = SYMBOL_NAME (obj);
4211 /* Fall through. */
4212
4213 case Lisp_String:
4214 hash = sxhash_string (SDATA (obj), SCHARS (obj));
4215 break;
4216
4217 /* This can be everything from a vector to an overlay. */
4218 case Lisp_Vectorlike:
4219 if (VECTORP (obj))
4220 /* According to the CL HyperSpec, two arrays are equal only if
4221 they are `eq', except for strings and bit-vectors. In
4222 Emacs, this works differently. We have to compare element
4223 by element. */
4224 hash = sxhash_vector (obj, depth);
4225 else if (BOOL_VECTOR_P (obj))
4226 hash = sxhash_bool_vector (obj);
4227 else
4228 /* Others are `equal' if they are `eq', so let's take their
4229 address as hash. */
4230 hash = XUINT (obj);
4231 break;
4232
4233 case Lisp_Cons:
4234 hash = sxhash_list (obj, depth);
4235 break;
4236
4237 case Lisp_Float:
4238 {
4239 double val = XFLOAT_DATA (obj);
4240 unsigned char *p = (unsigned char *) &val;
4241 unsigned char *e = p + sizeof val;
4242 for (hash = 0; p < e; ++p)
4243 hash = SXHASH_COMBINE (hash, *p);
4244 break;
4245 }
4246
4247 default:
4248 abort ();
4249 }
4250
4251 return hash & INTMASK;
4252 }
4253
4254
4255 \f
4256 /***********************************************************************
4257 Lisp Interface
4258 ***********************************************************************/
4259
4260
4261 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4262 doc: /* Compute a hash code for OBJ and return it as integer. */)
4263 (Lisp_Object obj)
4264 {
4265 unsigned hash = sxhash (obj, 0);
4266 return make_number (hash);
4267 }
4268
4269
4270 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4271 doc: /* Create and return a new hash table.
4272
4273 Arguments are specified as keyword/argument pairs. The following
4274 arguments are defined:
4275
4276 :test TEST -- TEST must be a symbol that specifies how to compare
4277 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4278 `equal'. User-supplied test and hash functions can be specified via
4279 `define-hash-table-test'.
4280
4281 :size SIZE -- A hint as to how many elements will be put in the table.
4282 Default is 65.
4283
4284 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4285 fills up. If REHASH-SIZE is an integer, increase the size by that
4286 amount. If it is a float, it must be > 1.0, and the new size is the
4287 old size multiplied by that factor. Default is 1.5.
4288
4289 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4290 Resize the hash table when the ratio (number of entries / table size)
4291 is greater than or equal to THRESHOLD. Default is 0.8.
4292
4293 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4294 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4295 returned is a weak table. Key/value pairs are removed from a weak
4296 hash table when there are no non-weak references pointing to their
4297 key, value, one of key or value, or both key and value, depending on
4298 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4299 is nil.
4300
4301 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4302 (int nargs, Lisp_Object *args)
4303 {
4304 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4305 Lisp_Object user_test, user_hash;
4306 char *used;
4307 int i;
4308
4309 /* The vector `used' is used to keep track of arguments that
4310 have been consumed. */
4311 used = (char *) alloca (nargs * sizeof *used);
4312 memset (used, 0, nargs * sizeof *used);
4313
4314 /* See if there's a `:test TEST' among the arguments. */
4315 i = get_key_arg (QCtest, nargs, args, used);
4316 test = i < 0 ? Qeql : args[i];
4317 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
4318 {
4319 /* See if it is a user-defined test. */
4320 Lisp_Object prop;
4321
4322 prop = Fget (test, Qhash_table_test);
4323 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4324 signal_error ("Invalid hash table test", test);
4325 user_test = XCAR (prop);
4326 user_hash = XCAR (XCDR (prop));
4327 }
4328 else
4329 user_test = user_hash = Qnil;
4330
4331 /* See if there's a `:size SIZE' argument. */
4332 i = get_key_arg (QCsize, nargs, args, used);
4333 size = i < 0 ? Qnil : args[i];
4334 if (NILP (size))
4335 size = make_number (DEFAULT_HASH_SIZE);
4336 else if (!INTEGERP (size) || XINT (size) < 0)
4337 signal_error ("Invalid hash table size", size);
4338
4339 /* Look for `:rehash-size SIZE'. */
4340 i = get_key_arg (QCrehash_size, nargs, args, used);
4341 rehash_size = i < 0 ? make_float (DEFAULT_REHASH_SIZE) : args[i];
4342 if (!NUMBERP (rehash_size)
4343 || (INTEGERP (rehash_size) && XINT (rehash_size) <= 0)
4344 || XFLOATINT (rehash_size) <= 1.0)
4345 signal_error ("Invalid hash table rehash size", rehash_size);
4346
4347 /* Look for `:rehash-threshold THRESHOLD'. */
4348 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4349 rehash_threshold = i < 0 ? make_float (DEFAULT_REHASH_THRESHOLD) : args[i];
4350 if (!FLOATP (rehash_threshold)
4351 || XFLOATINT (rehash_threshold) <= 0.0
4352 || XFLOATINT (rehash_threshold) > 1.0)
4353 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4354
4355 /* Look for `:weakness WEAK'. */
4356 i = get_key_arg (QCweakness, nargs, args, used);
4357 weak = i < 0 ? Qnil : args[i];
4358 if (EQ (weak, Qt))
4359 weak = Qkey_and_value;
4360 if (!NILP (weak)
4361 && !EQ (weak, Qkey)
4362 && !EQ (weak, Qvalue)
4363 && !EQ (weak, Qkey_or_value)
4364 && !EQ (weak, Qkey_and_value))
4365 signal_error ("Invalid hash table weakness", weak);
4366
4367 /* Now, all args should have been used up, or there's a problem. */
4368 for (i = 0; i < nargs; ++i)
4369 if (!used[i])
4370 signal_error ("Invalid argument list", args[i]);
4371
4372 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4373 user_test, user_hash);
4374 }
4375
4376
4377 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4378 doc: /* Return a copy of hash table TABLE. */)
4379 (Lisp_Object table)
4380 {
4381 return copy_hash_table (check_hash_table (table));
4382 }
4383
4384
4385 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4386 doc: /* Return the number of elements in TABLE. */)
4387 (Lisp_Object table)
4388 {
4389 return make_number (check_hash_table (table)->count);
4390 }
4391
4392
4393 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4394 Shash_table_rehash_size, 1, 1, 0,
4395 doc: /* Return the current rehash size of TABLE. */)
4396 (Lisp_Object table)
4397 {
4398 return check_hash_table (table)->rehash_size;
4399 }
4400
4401
4402 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4403 Shash_table_rehash_threshold, 1, 1, 0,
4404 doc: /* Return the current rehash threshold of TABLE. */)
4405 (Lisp_Object table)
4406 {
4407 return check_hash_table (table)->rehash_threshold;
4408 }
4409
4410
4411 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4412 doc: /* Return the size of TABLE.
4413 The size can be used as an argument to `make-hash-table' to create
4414 a hash table than can hold as many elements as TABLE holds
4415 without need for resizing. */)
4416 (Lisp_Object table)
4417 {
4418 struct Lisp_Hash_Table *h = check_hash_table (table);
4419 return make_number (HASH_TABLE_SIZE (h));
4420 }
4421
4422
4423 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4424 doc: /* Return the test TABLE uses. */)
4425 (Lisp_Object table)
4426 {
4427 return check_hash_table (table)->test;
4428 }
4429
4430
4431 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4432 1, 1, 0,
4433 doc: /* Return the weakness of TABLE. */)
4434 (Lisp_Object table)
4435 {
4436 return check_hash_table (table)->weak;
4437 }
4438
4439
4440 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4441 doc: /* Return t if OBJ is a Lisp hash table object. */)
4442 (Lisp_Object obj)
4443 {
4444 return HASH_TABLE_P (obj) ? Qt : Qnil;
4445 }
4446
4447
4448 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4449 doc: /* Clear hash table TABLE and return it. */)
4450 (Lisp_Object table)
4451 {
4452 hash_clear (check_hash_table (table));
4453 /* Be compatible with XEmacs. */
4454 return table;
4455 }
4456
4457
4458 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4459 doc: /* Look up KEY in TABLE and return its associated value.
4460 If KEY is not found, return DFLT which defaults to nil. */)
4461 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4462 {
4463 struct Lisp_Hash_Table *h = check_hash_table (table);
4464 int i = hash_lookup (h, key, NULL);
4465 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4466 }
4467
4468
4469 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4470 doc: /* Associate KEY with VALUE in hash table TABLE.
4471 If KEY is already present in table, replace its current value with
4472 VALUE. */)
4473 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4474 {
4475 struct Lisp_Hash_Table *h = check_hash_table (table);
4476 int i;
4477 unsigned hash;
4478
4479 i = hash_lookup (h, key, &hash);
4480 if (i >= 0)
4481 HASH_VALUE (h, i) = value;
4482 else
4483 hash_put (h, key, value, hash);
4484
4485 return value;
4486 }
4487
4488
4489 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4490 doc: /* Remove KEY from TABLE. */)
4491 (Lisp_Object key, Lisp_Object table)
4492 {
4493 struct Lisp_Hash_Table *h = check_hash_table (table);
4494 hash_remove_from_table (h, key);
4495 return Qnil;
4496 }
4497
4498
4499 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4500 doc: /* Call FUNCTION for all entries in hash table TABLE.
4501 FUNCTION is called with two arguments, KEY and VALUE. */)
4502 (Lisp_Object function, Lisp_Object table)
4503 {
4504 struct Lisp_Hash_Table *h = check_hash_table (table);
4505 Lisp_Object args[3];
4506 int i;
4507
4508 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4509 if (!NILP (HASH_HASH (h, i)))
4510 {
4511 args[0] = function;
4512 args[1] = HASH_KEY (h, i);
4513 args[2] = HASH_VALUE (h, i);
4514 Ffuncall (3, args);
4515 }
4516
4517 return Qnil;
4518 }
4519
4520
4521 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4522 Sdefine_hash_table_test, 3, 3, 0,
4523 doc: /* Define a new hash table test with name NAME, a symbol.
4524
4525 In hash tables created with NAME specified as test, use TEST to
4526 compare keys, and HASH for computing hash codes of keys.
4527
4528 TEST must be a function taking two arguments and returning non-nil if
4529 both arguments are the same. HASH must be a function taking one
4530 argument and return an integer that is the hash code of the argument.
4531 Hash code computation should use the whole value range of integers,
4532 including negative integers. */)
4533 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4534 {
4535 return Fput (name, Qhash_table_test, list2 (test, hash));
4536 }
4537
4538
4539 \f
4540 /************************************************************************
4541 MD5
4542 ************************************************************************/
4543
4544 #include "md5.h"
4545
4546 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4547 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4548
4549 A message digest is a cryptographic checksum of a document, and the
4550 algorithm to calculate it is defined in RFC 1321.
4551
4552 The two optional arguments START and END are character positions
4553 specifying for which part of OBJECT the message digest should be
4554 computed. If nil or omitted, the digest is computed for the whole
4555 OBJECT.
4556
4557 The MD5 message digest is computed from the result of encoding the
4558 text in a coding system, not directly from the internal Emacs form of
4559 the text. The optional fourth argument CODING-SYSTEM specifies which
4560 coding system to encode the text with. It should be the same coding
4561 system that you used or will use when actually writing the text into a
4562 file.
4563
4564 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4565 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4566 system would be chosen by default for writing this text into a file.
4567
4568 If OBJECT is a string, the most preferred coding system (see the
4569 command `prefer-coding-system') is used.
4570
4571 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4572 guesswork fails. Normally, an error is signaled in such case. */)
4573 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
4574 {
4575 unsigned char digest[16];
4576 unsigned char value[33];
4577 int i;
4578 EMACS_INT size;
4579 EMACS_INT size_byte = 0;
4580 EMACS_INT start_char = 0, end_char = 0;
4581 EMACS_INT start_byte = 0, end_byte = 0;
4582 register EMACS_INT b, e;
4583 register struct buffer *bp;
4584 EMACS_INT temp;
4585
4586 if (STRINGP (object))
4587 {
4588 if (NILP (coding_system))
4589 {
4590 /* Decide the coding-system to encode the data with. */
4591
4592 if (STRING_MULTIBYTE (object))
4593 /* use default, we can't guess correct value */
4594 coding_system = preferred_coding_system ();
4595 else
4596 coding_system = Qraw_text;
4597 }
4598
4599 if (NILP (Fcoding_system_p (coding_system)))
4600 {
4601 /* Invalid coding system. */
4602
4603 if (!NILP (noerror))
4604 coding_system = Qraw_text;
4605 else
4606 xsignal1 (Qcoding_system_error, coding_system);
4607 }
4608
4609 if (STRING_MULTIBYTE (object))
4610 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4611
4612 size = SCHARS (object);
4613 size_byte = SBYTES (object);
4614
4615 if (!NILP (start))
4616 {
4617 CHECK_NUMBER (start);
4618
4619 start_char = XINT (start);
4620
4621 if (start_char < 0)
4622 start_char += size;
4623
4624 start_byte = string_char_to_byte (object, start_char);
4625 }
4626
4627 if (NILP (end))
4628 {
4629 end_char = size;
4630 end_byte = size_byte;
4631 }
4632 else
4633 {
4634 CHECK_NUMBER (end);
4635
4636 end_char = XINT (end);
4637
4638 if (end_char < 0)
4639 end_char += size;
4640
4641 end_byte = string_char_to_byte (object, end_char);
4642 }
4643
4644 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
4645 args_out_of_range_3 (object, make_number (start_char),
4646 make_number (end_char));
4647 }
4648 else
4649 {
4650 struct buffer *prev = current_buffer;
4651
4652 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
4653
4654 CHECK_BUFFER (object);
4655
4656 bp = XBUFFER (object);
4657 if (bp != current_buffer)
4658 set_buffer_internal (bp);
4659
4660 if (NILP (start))
4661 b = BEGV;
4662 else
4663 {
4664 CHECK_NUMBER_COERCE_MARKER (start);
4665 b = XINT (start);
4666 }
4667
4668 if (NILP (end))
4669 e = ZV;
4670 else
4671 {
4672 CHECK_NUMBER_COERCE_MARKER (end);
4673 e = XINT (end);
4674 }
4675
4676 if (b > e)
4677 temp = b, b = e, e = temp;
4678
4679 if (!(BEGV <= b && e <= ZV))
4680 args_out_of_range (start, end);
4681
4682 if (NILP (coding_system))
4683 {
4684 /* Decide the coding-system to encode the data with.
4685 See fileio.c:Fwrite-region */
4686
4687 if (!NILP (Vcoding_system_for_write))
4688 coding_system = Vcoding_system_for_write;
4689 else
4690 {
4691 int force_raw_text = 0;
4692
4693 coding_system = XBUFFER (object)->buffer_file_coding_system;
4694 if (NILP (coding_system)
4695 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4696 {
4697 coding_system = Qnil;
4698 if (NILP (current_buffer->enable_multibyte_characters))
4699 force_raw_text = 1;
4700 }
4701
4702 if (NILP (coding_system) && !NILP (Fbuffer_file_name(object)))
4703 {
4704 /* Check file-coding-system-alist. */
4705 Lisp_Object args[4], val;
4706
4707 args[0] = Qwrite_region; args[1] = start; args[2] = end;
4708 args[3] = Fbuffer_file_name(object);
4709 val = Ffind_operation_coding_system (4, args);
4710 if (CONSP (val) && !NILP (XCDR (val)))
4711 coding_system = XCDR (val);
4712 }
4713
4714 if (NILP (coding_system)
4715 && !NILP (XBUFFER (object)->buffer_file_coding_system))
4716 {
4717 /* If we still have not decided a coding system, use the
4718 default value of buffer-file-coding-system. */
4719 coding_system = XBUFFER (object)->buffer_file_coding_system;
4720 }
4721
4722 if (!force_raw_text
4723 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4724 /* Confirm that VAL can surely encode the current region. */
4725 coding_system = call4 (Vselect_safe_coding_system_function,
4726 make_number (b), make_number (e),
4727 coding_system, Qnil);
4728
4729 if (force_raw_text)
4730 coding_system = Qraw_text;
4731 }
4732
4733 if (NILP (Fcoding_system_p (coding_system)))
4734 {
4735 /* Invalid coding system. */
4736
4737 if (!NILP (noerror))
4738 coding_system = Qraw_text;
4739 else
4740 xsignal1 (Qcoding_system_error, coding_system);
4741 }
4742 }
4743
4744 object = make_buffer_string (b, e, 0);
4745 if (prev != current_buffer)
4746 set_buffer_internal (prev);
4747 /* Discard the unwind protect for recovering the current
4748 buffer. */
4749 specpdl_ptr--;
4750
4751 if (STRING_MULTIBYTE (object))
4752 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4753 }
4754
4755 md5_buffer (SDATA (object) + start_byte,
4756 SBYTES (object) - (size_byte - end_byte),
4757 digest);
4758
4759 for (i = 0; i < 16; i++)
4760 sprintf (&value[2 * i], "%02x", digest[i]);
4761 value[32] = '\0';
4762
4763 return make_string (value, 32);
4764 }
4765
4766 \f
4767 void
4768 syms_of_fns (void)
4769 {
4770 /* Hash table stuff. */
4771 Qhash_table_p = intern_c_string ("hash-table-p");
4772 staticpro (&Qhash_table_p);
4773 Qeq = intern_c_string ("eq");
4774 staticpro (&Qeq);
4775 Qeql = intern_c_string ("eql");
4776 staticpro (&Qeql);
4777 Qequal = intern_c_string ("equal");
4778 staticpro (&Qequal);
4779 QCtest = intern_c_string (":test");
4780 staticpro (&QCtest);
4781 QCsize = intern_c_string (":size");
4782 staticpro (&QCsize);
4783 QCrehash_size = intern_c_string (":rehash-size");
4784 staticpro (&QCrehash_size);
4785 QCrehash_threshold = intern_c_string (":rehash-threshold");
4786 staticpro (&QCrehash_threshold);
4787 QCweakness = intern_c_string (":weakness");
4788 staticpro (&QCweakness);
4789 Qkey = intern_c_string ("key");
4790 staticpro (&Qkey);
4791 Qvalue = intern_c_string ("value");
4792 staticpro (&Qvalue);
4793 Qhash_table_test = intern_c_string ("hash-table-test");
4794 staticpro (&Qhash_table_test);
4795 Qkey_or_value = intern_c_string ("key-or-value");
4796 staticpro (&Qkey_or_value);
4797 Qkey_and_value = intern_c_string ("key-and-value");
4798 staticpro (&Qkey_and_value);
4799
4800 defsubr (&Ssxhash);
4801 defsubr (&Smake_hash_table);
4802 defsubr (&Scopy_hash_table);
4803 defsubr (&Shash_table_count);
4804 defsubr (&Shash_table_rehash_size);
4805 defsubr (&Shash_table_rehash_threshold);
4806 defsubr (&Shash_table_size);
4807 defsubr (&Shash_table_test);
4808 defsubr (&Shash_table_weakness);
4809 defsubr (&Shash_table_p);
4810 defsubr (&Sclrhash);
4811 defsubr (&Sgethash);
4812 defsubr (&Sputhash);
4813 defsubr (&Sremhash);
4814 defsubr (&Smaphash);
4815 defsubr (&Sdefine_hash_table_test);
4816
4817 Qstring_lessp = intern_c_string ("string-lessp");
4818 staticpro (&Qstring_lessp);
4819 Qprovide = intern_c_string ("provide");
4820 staticpro (&Qprovide);
4821 Qrequire = intern_c_string ("require");
4822 staticpro (&Qrequire);
4823 Qyes_or_no_p_history = intern_c_string ("yes-or-no-p-history");
4824 staticpro (&Qyes_or_no_p_history);
4825 Qcursor_in_echo_area = intern_c_string ("cursor-in-echo-area");
4826 staticpro (&Qcursor_in_echo_area);
4827 Qwidget_type = intern_c_string ("widget-type");
4828 staticpro (&Qwidget_type);
4829
4830 staticpro (&string_char_byte_cache_string);
4831 string_char_byte_cache_string = Qnil;
4832
4833 require_nesting_list = Qnil;
4834 staticpro (&require_nesting_list);
4835
4836 Fset (Qyes_or_no_p_history, Qnil);
4837
4838 DEFVAR_LISP ("features", &Vfeatures,
4839 doc: /* A list of symbols which are the features of the executing Emacs.
4840 Used by `featurep' and `require', and altered by `provide'. */);
4841 Vfeatures = Fcons (intern_c_string ("emacs"), Qnil);
4842 Qsubfeatures = intern_c_string ("subfeatures");
4843 staticpro (&Qsubfeatures);
4844
4845 #ifdef HAVE_LANGINFO_CODESET
4846 Qcodeset = intern_c_string ("codeset");
4847 staticpro (&Qcodeset);
4848 Qdays = intern_c_string ("days");
4849 staticpro (&Qdays);
4850 Qmonths = intern_c_string ("months");
4851 staticpro (&Qmonths);
4852 Qpaper = intern_c_string ("paper");
4853 staticpro (&Qpaper);
4854 #endif /* HAVE_LANGINFO_CODESET */
4855
4856 DEFVAR_BOOL ("use-dialog-box", &use_dialog_box,
4857 doc: /* *Non-nil means mouse commands use dialog boxes to ask questions.
4858 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4859 invoked by mouse clicks and mouse menu items.
4860
4861 On some platforms, file selection dialogs are also enabled if this is
4862 non-nil. */);
4863 use_dialog_box = 1;
4864
4865 DEFVAR_BOOL ("use-file-dialog", &use_file_dialog,
4866 doc: /* *Non-nil means mouse commands use a file dialog to ask for files.
4867 This applies to commands from menus and tool bar buttons even when
4868 they are initiated from the keyboard. If `use-dialog-box' is nil,
4869 that disables the use of a file dialog, regardless of the value of
4870 this variable. */);
4871 use_file_dialog = 1;
4872
4873 defsubr (&Sidentity);
4874 defsubr (&Srandom);
4875 defsubr (&Slength);
4876 defsubr (&Ssafe_length);
4877 defsubr (&Sstring_bytes);
4878 defsubr (&Sstring_equal);
4879 defsubr (&Scompare_strings);
4880 defsubr (&Sstring_lessp);
4881 defsubr (&Sappend);
4882 defsubr (&Sconcat);
4883 defsubr (&Svconcat);
4884 defsubr (&Scopy_sequence);
4885 defsubr (&Sstring_make_multibyte);
4886 defsubr (&Sstring_make_unibyte);
4887 defsubr (&Sstring_as_multibyte);
4888 defsubr (&Sstring_as_unibyte);
4889 defsubr (&Sstring_to_multibyte);
4890 defsubr (&Sstring_to_unibyte);
4891 defsubr (&Scopy_alist);
4892 defsubr (&Ssubstring);
4893 defsubr (&Ssubstring_no_properties);
4894 defsubr (&Snthcdr);
4895 defsubr (&Snth);
4896 defsubr (&Selt);
4897 defsubr (&Smember);
4898 defsubr (&Smemq);
4899 defsubr (&Smemql);
4900 defsubr (&Sassq);
4901 defsubr (&Sassoc);
4902 defsubr (&Srassq);
4903 defsubr (&Srassoc);
4904 defsubr (&Sdelq);
4905 defsubr (&Sdelete);
4906 defsubr (&Snreverse);
4907 defsubr (&Sreverse);
4908 defsubr (&Ssort);
4909 defsubr (&Splist_get);
4910 defsubr (&Sget);
4911 defsubr (&Splist_put);
4912 defsubr (&Sput);
4913 defsubr (&Slax_plist_get);
4914 defsubr (&Slax_plist_put);
4915 defsubr (&Seql);
4916 defsubr (&Sequal);
4917 defsubr (&Sequal_including_properties);
4918 defsubr (&Sfillarray);
4919 defsubr (&Sclear_string);
4920 defsubr (&Snconc);
4921 defsubr (&Smapcar);
4922 defsubr (&Smapc);
4923 defsubr (&Smapconcat);
4924 defsubr (&Syes_or_no_p);
4925 defsubr (&Sload_average);
4926 defsubr (&Sfeaturep);
4927 defsubr (&Srequire);
4928 defsubr (&Sprovide);
4929 defsubr (&Splist_member);
4930 defsubr (&Swidget_put);
4931 defsubr (&Swidget_get);
4932 defsubr (&Swidget_apply);
4933 defsubr (&Sbase64_encode_region);
4934 defsubr (&Sbase64_decode_region);
4935 defsubr (&Sbase64_encode_string);
4936 defsubr (&Sbase64_decode_string);
4937 defsubr (&Smd5);
4938 defsubr (&Slocale_info);
4939 }
4940
4941
4942 void
4943 init_fns (void)
4944 {
4945 }
4946
4947 /* arch-tag: 787f8219-5b74-46bd-8469-7e1cc475fa31
4948 (do not change this comment) */