]> code.delx.au - gnu-emacs/blob - src/editfns.c
[!USE_TOOLKIT_SCROLL_BARS] (x_scroll_bar_expose): Use
[gnu-emacs] / src / editfns.c
1 /* Lisp functions pertaining to editing.
2 Copyright (C) 1985, 1986, 1987, 1989, 1993, 1994, 1995, 1996,
3 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
4 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs; see the file COPYING. If not, write to
20 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23
24 #include <config.h>
25 #include <sys/types.h>
26 #include <stdio.h>
27
28 #ifdef HAVE_PWD_H
29 #include <pwd.h>
30 #endif
31
32 #ifdef HAVE_UNISTD_H
33 #include <unistd.h>
34 #endif
35
36 #ifdef HAVE_SYS_UTSNAME_H
37 #include <sys/utsname.h>
38 #endif
39
40 #include "lisp.h"
41
42 /* systime.h includes <sys/time.h> which, on some systems, is required
43 for <sys/resource.h>; thus systime.h must be included before
44 <sys/resource.h> */
45 #include "systime.h"
46
47 #if defined HAVE_SYS_RESOURCE_H
48 #include <sys/resource.h>
49 #endif
50
51 #include <ctype.h>
52
53 #include "intervals.h"
54 #include "buffer.h"
55 #include "charset.h"
56 #include "coding.h"
57 #include "frame.h"
58 #include "window.h"
59 #include "blockinput.h"
60
61 #ifdef STDC_HEADERS
62 #include <float.h>
63 #define MAX_10_EXP DBL_MAX_10_EXP
64 #else
65 #define MAX_10_EXP 310
66 #endif
67
68 #ifndef NULL
69 #define NULL 0
70 #endif
71
72 #ifndef USE_CRT_DLL
73 extern char **environ;
74 #endif
75
76 #define TM_YEAR_BASE 1900
77
78 /* Nonzero if TM_YEAR is a struct tm's tm_year value that causes
79 asctime to have well-defined behavior. */
80 #ifndef TM_YEAR_IN_ASCTIME_RANGE
81 # define TM_YEAR_IN_ASCTIME_RANGE(tm_year) \
82 (1000 - TM_YEAR_BASE <= (tm_year) && (tm_year) <= 9999 - TM_YEAR_BASE)
83 #endif
84
85 extern size_t emacs_strftimeu P_ ((char *, size_t, const char *,
86 const struct tm *, int));
87 static int tm_diff P_ ((struct tm *, struct tm *));
88 static void find_field P_ ((Lisp_Object, Lisp_Object, Lisp_Object, int *, Lisp_Object, int *));
89 static void update_buffer_properties P_ ((int, int));
90 static Lisp_Object region_limit P_ ((int));
91 int lisp_time_argument P_ ((Lisp_Object, time_t *, int *));
92 static size_t emacs_memftimeu P_ ((char *, size_t, const char *,
93 size_t, const struct tm *, int));
94 static void general_insert_function P_ ((void (*) (const unsigned char *, int),
95 void (*) (Lisp_Object, int, int, int,
96 int, int),
97 int, int, Lisp_Object *));
98 static Lisp_Object subst_char_in_region_unwind P_ ((Lisp_Object));
99 static Lisp_Object subst_char_in_region_unwind_1 P_ ((Lisp_Object));
100 static void transpose_markers P_ ((int, int, int, int, int, int, int, int));
101
102 #ifdef HAVE_INDEX
103 extern char *index P_ ((const char *, int));
104 #endif
105
106 Lisp_Object Vbuffer_access_fontify_functions;
107 Lisp_Object Qbuffer_access_fontify_functions;
108 Lisp_Object Vbuffer_access_fontified_property;
109
110 Lisp_Object Fuser_full_name P_ ((Lisp_Object));
111
112 /* Non-nil means don't stop at field boundary in text motion commands. */
113
114 Lisp_Object Vinhibit_field_text_motion;
115
116 /* Some static data, and a function to initialize it for each run */
117
118 Lisp_Object Vsystem_name;
119 Lisp_Object Vuser_real_login_name; /* login name of current user ID */
120 Lisp_Object Vuser_full_name; /* full name of current user */
121 Lisp_Object Vuser_login_name; /* user name from LOGNAME or USER */
122 Lisp_Object Voperating_system_release; /* Operating System Release */
123
124 /* Symbol for the text property used to mark fields. */
125
126 Lisp_Object Qfield;
127
128 /* A special value for Qfield properties. */
129
130 Lisp_Object Qboundary;
131
132
133 void
134 init_editfns ()
135 {
136 char *user_name;
137 register unsigned char *p;
138 struct passwd *pw; /* password entry for the current user */
139 Lisp_Object tem;
140
141 /* Set up system_name even when dumping. */
142 init_system_name ();
143
144 #ifndef CANNOT_DUMP
145 /* Don't bother with this on initial start when just dumping out */
146 if (!initialized)
147 return;
148 #endif /* not CANNOT_DUMP */
149
150 pw = (struct passwd *) getpwuid (getuid ());
151 #ifdef MSDOS
152 /* We let the real user name default to "root" because that's quite
153 accurate on MSDOG and because it lets Emacs find the init file.
154 (The DVX libraries override the Djgpp libraries here.) */
155 Vuser_real_login_name = build_string (pw ? pw->pw_name : "root");
156 #else
157 Vuser_real_login_name = build_string (pw ? pw->pw_name : "unknown");
158 #endif
159
160 /* Get the effective user name, by consulting environment variables,
161 or the effective uid if those are unset. */
162 user_name = (char *) getenv ("LOGNAME");
163 if (!user_name)
164 #ifdef WINDOWSNT
165 user_name = (char *) getenv ("USERNAME"); /* it's USERNAME on NT */
166 #else /* WINDOWSNT */
167 user_name = (char *) getenv ("USER");
168 #endif /* WINDOWSNT */
169 if (!user_name)
170 {
171 pw = (struct passwd *) getpwuid (geteuid ());
172 user_name = (char *) (pw ? pw->pw_name : "unknown");
173 }
174 Vuser_login_name = build_string (user_name);
175
176 /* If the user name claimed in the environment vars differs from
177 the real uid, use the claimed name to find the full name. */
178 tem = Fstring_equal (Vuser_login_name, Vuser_real_login_name);
179 Vuser_full_name = Fuser_full_name (NILP (tem)? make_number (geteuid())
180 : Vuser_login_name);
181
182 p = (unsigned char *) getenv ("NAME");
183 if (p)
184 Vuser_full_name = build_string (p);
185 else if (NILP (Vuser_full_name))
186 Vuser_full_name = build_string ("unknown");
187
188 #ifdef HAVE_SYS_UTSNAME_H
189 {
190 struct utsname uts;
191 uname (&uts);
192 Voperating_system_release = build_string (uts.release);
193 }
194 #else
195 Voperating_system_release = Qnil;
196 #endif
197 }
198 \f
199 DEFUN ("char-to-string", Fchar_to_string, Schar_to_string, 1, 1, 0,
200 doc: /* Convert arg CHAR to a string containing that character.
201 usage: (char-to-string CHAR) */)
202 (character)
203 Lisp_Object character;
204 {
205 int len;
206 unsigned char str[MAX_MULTIBYTE_LENGTH];
207
208 CHECK_NUMBER (character);
209
210 len = (SINGLE_BYTE_CHAR_P (XFASTINT (character))
211 ? (*str = (unsigned char)(XFASTINT (character)), 1)
212 : char_to_string (XFASTINT (character), str));
213 return make_string_from_bytes (str, 1, len);
214 }
215
216 DEFUN ("string-to-char", Fstring_to_char, Sstring_to_char, 1, 1, 0,
217 doc: /* Convert arg STRING to a character, the first character of that string.
218 A multibyte character is handled correctly. */)
219 (string)
220 register Lisp_Object string;
221 {
222 register Lisp_Object val;
223 CHECK_STRING (string);
224 if (SCHARS (string))
225 {
226 if (STRING_MULTIBYTE (string))
227 XSETFASTINT (val, STRING_CHAR (SDATA (string), SBYTES (string)));
228 else
229 XSETFASTINT (val, SREF (string, 0));
230 }
231 else
232 XSETFASTINT (val, 0);
233 return val;
234 }
235 \f
236 static Lisp_Object
237 buildmark (charpos, bytepos)
238 int charpos, bytepos;
239 {
240 register Lisp_Object mark;
241 mark = Fmake_marker ();
242 set_marker_both (mark, Qnil, charpos, bytepos);
243 return mark;
244 }
245
246 DEFUN ("point", Fpoint, Spoint, 0, 0, 0,
247 doc: /* Return value of point, as an integer.
248 Beginning of buffer is position (point-min). */)
249 ()
250 {
251 Lisp_Object temp;
252 XSETFASTINT (temp, PT);
253 return temp;
254 }
255
256 DEFUN ("point-marker", Fpoint_marker, Spoint_marker, 0, 0, 0,
257 doc: /* Return value of point, as a marker object. */)
258 ()
259 {
260 return buildmark (PT, PT_BYTE);
261 }
262
263 int
264 clip_to_bounds (lower, num, upper)
265 int lower, num, upper;
266 {
267 if (num < lower)
268 return lower;
269 else if (num > upper)
270 return upper;
271 else
272 return num;
273 }
274
275 DEFUN ("goto-char", Fgoto_char, Sgoto_char, 1, 1, "NGoto char: ",
276 doc: /* Set point to POSITION, a number or marker.
277 Beginning of buffer is position (point-min), end is (point-max). */)
278 (position)
279 register Lisp_Object position;
280 {
281 int pos;
282
283 if (MARKERP (position)
284 && current_buffer == XMARKER (position)->buffer)
285 {
286 pos = marker_position (position);
287 if (pos < BEGV)
288 SET_PT_BOTH (BEGV, BEGV_BYTE);
289 else if (pos > ZV)
290 SET_PT_BOTH (ZV, ZV_BYTE);
291 else
292 SET_PT_BOTH (pos, marker_byte_position (position));
293
294 return position;
295 }
296
297 CHECK_NUMBER_COERCE_MARKER (position);
298
299 pos = clip_to_bounds (BEGV, XINT (position), ZV);
300 SET_PT (pos);
301 return position;
302 }
303
304
305 /* Return the start or end position of the region.
306 BEGINNINGP non-zero means return the start.
307 If there is no region active, signal an error. */
308
309 static Lisp_Object
310 region_limit (beginningp)
311 int beginningp;
312 {
313 extern Lisp_Object Vmark_even_if_inactive; /* Defined in callint.c. */
314 Lisp_Object m;
315
316 if (!NILP (Vtransient_mark_mode)
317 && NILP (Vmark_even_if_inactive)
318 && NILP (current_buffer->mark_active))
319 xsignal0 (Qmark_inactive);
320
321 m = Fmarker_position (current_buffer->mark);
322 if (NILP (m))
323 error ("The mark is not set now, so there is no region");
324
325 if ((PT < XFASTINT (m)) == (beginningp != 0))
326 m = make_number (PT);
327 return m;
328 }
329
330 DEFUN ("region-beginning", Fregion_beginning, Sregion_beginning, 0, 0, 0,
331 doc: /* Return position of beginning of region, as an integer. */)
332 ()
333 {
334 return region_limit (1);
335 }
336
337 DEFUN ("region-end", Fregion_end, Sregion_end, 0, 0, 0,
338 doc: /* Return position of end of region, as an integer. */)
339 ()
340 {
341 return region_limit (0);
342 }
343
344 DEFUN ("mark-marker", Fmark_marker, Smark_marker, 0, 0, 0,
345 doc: /* Return this buffer's mark, as a marker object.
346 Watch out! Moving this marker changes the mark position.
347 If you set the marker not to point anywhere, the buffer will have no mark. */)
348 ()
349 {
350 return current_buffer->mark;
351 }
352
353 \f
354 /* Find all the overlays in the current buffer that touch position POS.
355 Return the number found, and store them in a vector in VEC
356 of length LEN. */
357
358 static int
359 overlays_around (pos, vec, len)
360 int pos;
361 Lisp_Object *vec;
362 int len;
363 {
364 Lisp_Object overlay, start, end;
365 struct Lisp_Overlay *tail;
366 int startpos, endpos;
367 int idx = 0;
368
369 for (tail = current_buffer->overlays_before; tail; tail = tail->next)
370 {
371 XSETMISC (overlay, tail);
372
373 end = OVERLAY_END (overlay);
374 endpos = OVERLAY_POSITION (end);
375 if (endpos < pos)
376 break;
377 start = OVERLAY_START (overlay);
378 startpos = OVERLAY_POSITION (start);
379 if (startpos <= pos)
380 {
381 if (idx < len)
382 vec[idx] = overlay;
383 /* Keep counting overlays even if we can't return them all. */
384 idx++;
385 }
386 }
387
388 for (tail = current_buffer->overlays_after; tail; tail = tail->next)
389 {
390 XSETMISC (overlay, tail);
391
392 start = OVERLAY_START (overlay);
393 startpos = OVERLAY_POSITION (start);
394 if (pos < startpos)
395 break;
396 end = OVERLAY_END (overlay);
397 endpos = OVERLAY_POSITION (end);
398 if (pos <= endpos)
399 {
400 if (idx < len)
401 vec[idx] = overlay;
402 idx++;
403 }
404 }
405
406 return idx;
407 }
408
409 /* Return the value of property PROP, in OBJECT at POSITION.
410 It's the value of PROP that a char inserted at POSITION would get.
411 OBJECT is optional and defaults to the current buffer.
412 If OBJECT is a buffer, then overlay properties are considered as well as
413 text properties.
414 If OBJECT is a window, then that window's buffer is used, but
415 window-specific overlays are considered only if they are associated
416 with OBJECT. */
417 Lisp_Object
418 get_pos_property (position, prop, object)
419 Lisp_Object position, object;
420 register Lisp_Object prop;
421 {
422 CHECK_NUMBER_COERCE_MARKER (position);
423
424 if (NILP (object))
425 XSETBUFFER (object, current_buffer);
426 else if (WINDOWP (object))
427 object = XWINDOW (object)->buffer;
428
429 if (!BUFFERP (object))
430 /* pos-property only makes sense in buffers right now, since strings
431 have no overlays and no notion of insertion for which stickiness
432 could be obeyed. */
433 return Fget_text_property (position, prop, object);
434 else
435 {
436 int posn = XINT (position);
437 int noverlays;
438 Lisp_Object *overlay_vec, tem;
439 struct buffer *obuf = current_buffer;
440
441 set_buffer_temp (XBUFFER (object));
442
443 /* First try with room for 40 overlays. */
444 noverlays = 40;
445 overlay_vec = (Lisp_Object *) alloca (noverlays * sizeof (Lisp_Object));
446 noverlays = overlays_around (posn, overlay_vec, noverlays);
447
448 /* If there are more than 40,
449 make enough space for all, and try again. */
450 if (noverlays > 40)
451 {
452 overlay_vec = (Lisp_Object *) alloca (noverlays * sizeof (Lisp_Object));
453 noverlays = overlays_around (posn, overlay_vec, noverlays);
454 }
455 noverlays = sort_overlays (overlay_vec, noverlays, NULL);
456
457 set_buffer_temp (obuf);
458
459 /* Now check the overlays in order of decreasing priority. */
460 while (--noverlays >= 0)
461 {
462 Lisp_Object ol = overlay_vec[noverlays];
463 tem = Foverlay_get (ol, prop);
464 if (!NILP (tem))
465 {
466 /* Check the overlay is indeed active at point. */
467 Lisp_Object start = OVERLAY_START (ol), finish = OVERLAY_END (ol);
468 if ((OVERLAY_POSITION (start) == posn
469 && XMARKER (start)->insertion_type == 1)
470 || (OVERLAY_POSITION (finish) == posn
471 && XMARKER (finish)->insertion_type == 0))
472 ; /* The overlay will not cover a char inserted at point. */
473 else
474 {
475 return tem;
476 }
477 }
478 }
479
480 { /* Now check the text-properties. */
481 int stickiness = text_property_stickiness (prop, position, object);
482 if (stickiness > 0)
483 return Fget_text_property (position, prop, object);
484 else if (stickiness < 0
485 && XINT (position) > BUF_BEGV (XBUFFER (object)))
486 return Fget_text_property (make_number (XINT (position) - 1),
487 prop, object);
488 else
489 return Qnil;
490 }
491 }
492 }
493
494 /* Find the field surrounding POS in *BEG and *END. If POS is nil,
495 the value of point is used instead. If BEG or END is null,
496 means don't store the beginning or end of the field.
497
498 BEG_LIMIT and END_LIMIT serve to limit the ranged of the returned
499 results; they do not effect boundary behavior.
500
501 If MERGE_AT_BOUNDARY is nonzero, then if POS is at the very first
502 position of a field, then the beginning of the previous field is
503 returned instead of the beginning of POS's field (since the end of a
504 field is actually also the beginning of the next input field, this
505 behavior is sometimes useful). Additionally in the MERGE_AT_BOUNDARY
506 true case, if two fields are separated by a field with the special
507 value `boundary', and POS lies within it, then the two separated
508 fields are considered to be adjacent, and POS between them, when
509 finding the beginning and ending of the "merged" field.
510
511 Either BEG or END may be 0, in which case the corresponding value
512 is not stored. */
513
514 static void
515 find_field (pos, merge_at_boundary, beg_limit, beg, end_limit, end)
516 Lisp_Object pos;
517 Lisp_Object merge_at_boundary;
518 Lisp_Object beg_limit, end_limit;
519 int *beg, *end;
520 {
521 /* Fields right before and after the point. */
522 Lisp_Object before_field, after_field;
523 /* 1 if POS counts as the start of a field. */
524 int at_field_start = 0;
525 /* 1 if POS counts as the end of a field. */
526 int at_field_end = 0;
527
528 if (NILP (pos))
529 XSETFASTINT (pos, PT);
530 else
531 CHECK_NUMBER_COERCE_MARKER (pos);
532
533 after_field
534 = get_char_property_and_overlay (pos, Qfield, Qnil, NULL);
535 before_field
536 = (XFASTINT (pos) > BEGV
537 ? get_char_property_and_overlay (make_number (XINT (pos) - 1),
538 Qfield, Qnil, NULL)
539 /* Using nil here would be a more obvious choice, but it would
540 fail when the buffer starts with a non-sticky field. */
541 : after_field);
542
543 /* See if we need to handle the case where MERGE_AT_BOUNDARY is nil
544 and POS is at beginning of a field, which can also be interpreted
545 as the end of the previous field. Note that the case where if
546 MERGE_AT_BOUNDARY is non-nil (see function comment) is actually the
547 more natural one; then we avoid treating the beginning of a field
548 specially. */
549 if (NILP (merge_at_boundary))
550 {
551 Lisp_Object field = get_pos_property (pos, Qfield, Qnil);
552 if (!EQ (field, after_field))
553 at_field_end = 1;
554 if (!EQ (field, before_field))
555 at_field_start = 1;
556 if (NILP (field) && at_field_start && at_field_end)
557 /* If an inserted char would have a nil field while the surrounding
558 text is non-nil, we're probably not looking at a
559 zero-length field, but instead at a non-nil field that's
560 not intended for editing (such as comint's prompts). */
561 at_field_end = at_field_start = 0;
562 }
563
564 /* Note about special `boundary' fields:
565
566 Consider the case where the point (`.') is between the fields `x' and `y':
567
568 xxxx.yyyy
569
570 In this situation, if merge_at_boundary is true, we consider the
571 `x' and `y' fields as forming one big merged field, and so the end
572 of the field is the end of `y'.
573
574 However, if `x' and `y' are separated by a special `boundary' field
575 (a field with a `field' char-property of 'boundary), then we ignore
576 this special field when merging adjacent fields. Here's the same
577 situation, but with a `boundary' field between the `x' and `y' fields:
578
579 xxx.BBBByyyy
580
581 Here, if point is at the end of `x', the beginning of `y', or
582 anywhere in-between (within the `boundary' field), we merge all
583 three fields and consider the beginning as being the beginning of
584 the `x' field, and the end as being the end of the `y' field. */
585
586 if (beg)
587 {
588 if (at_field_start)
589 /* POS is at the edge of a field, and we should consider it as
590 the beginning of the following field. */
591 *beg = XFASTINT (pos);
592 else
593 /* Find the previous field boundary. */
594 {
595 Lisp_Object p = pos;
596 if (!NILP (merge_at_boundary) && EQ (before_field, Qboundary))
597 /* Skip a `boundary' field. */
598 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
599 beg_limit);
600
601 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
602 beg_limit);
603 *beg = NILP (p) ? BEGV : XFASTINT (p);
604 }
605 }
606
607 if (end)
608 {
609 if (at_field_end)
610 /* POS is at the edge of a field, and we should consider it as
611 the end of the previous field. */
612 *end = XFASTINT (pos);
613 else
614 /* Find the next field boundary. */
615 {
616 if (!NILP (merge_at_boundary) && EQ (after_field, Qboundary))
617 /* Skip a `boundary' field. */
618 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
619 end_limit);
620
621 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
622 end_limit);
623 *end = NILP (pos) ? ZV : XFASTINT (pos);
624 }
625 }
626 }
627
628 \f
629 DEFUN ("delete-field", Fdelete_field, Sdelete_field, 0, 1, 0,
630 doc: /* Delete the field surrounding POS.
631 A field is a region of text with the same `field' property.
632 If POS is nil, the value of point is used for POS. */)
633 (pos)
634 Lisp_Object pos;
635 {
636 int beg, end;
637 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
638 if (beg != end)
639 del_range (beg, end);
640 return Qnil;
641 }
642
643 DEFUN ("field-string", Ffield_string, Sfield_string, 0, 1, 0,
644 doc: /* Return the contents of the field surrounding POS as a string.
645 A field is a region of text with the same `field' property.
646 If POS is nil, the value of point is used for POS. */)
647 (pos)
648 Lisp_Object pos;
649 {
650 int beg, end;
651 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
652 return make_buffer_string (beg, end, 1);
653 }
654
655 DEFUN ("field-string-no-properties", Ffield_string_no_properties, Sfield_string_no_properties, 0, 1, 0,
656 doc: /* Return the contents of the field around POS, without text-properties.
657 A field is a region of text with the same `field' property.
658 If POS is nil, the value of point is used for POS. */)
659 (pos)
660 Lisp_Object pos;
661 {
662 int beg, end;
663 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
664 return make_buffer_string (beg, end, 0);
665 }
666
667 DEFUN ("field-beginning", Ffield_beginning, Sfield_beginning, 0, 3, 0,
668 doc: /* Return the beginning of the field surrounding POS.
669 A field is a region of text with the same `field' property.
670 If POS is nil, the value of point is used for POS.
671 If ESCAPE-FROM-EDGE is non-nil and POS is at the beginning of its
672 field, then the beginning of the *previous* field is returned.
673 If LIMIT is non-nil, it is a buffer position; if the beginning of the field
674 is before LIMIT, then LIMIT will be returned instead. */)
675 (pos, escape_from_edge, limit)
676 Lisp_Object pos, escape_from_edge, limit;
677 {
678 int beg;
679 find_field (pos, escape_from_edge, limit, &beg, Qnil, 0);
680 return make_number (beg);
681 }
682
683 DEFUN ("field-end", Ffield_end, Sfield_end, 0, 3, 0,
684 doc: /* Return the end of the field surrounding POS.
685 A field is a region of text with the same `field' property.
686 If POS is nil, the value of point is used for POS.
687 If ESCAPE-FROM-EDGE is non-nil and POS is at the end of its field,
688 then the end of the *following* field is returned.
689 If LIMIT is non-nil, it is a buffer position; if the end of the field
690 is after LIMIT, then LIMIT will be returned instead. */)
691 (pos, escape_from_edge, limit)
692 Lisp_Object pos, escape_from_edge, limit;
693 {
694 int end;
695 find_field (pos, escape_from_edge, Qnil, 0, limit, &end);
696 return make_number (end);
697 }
698
699 DEFUN ("constrain-to-field", Fconstrain_to_field, Sconstrain_to_field, 2, 5, 0,
700 doc: /* Return the position closest to NEW-POS that is in the same field as OLD-POS.
701
702 A field is a region of text with the same `field' property.
703 If NEW-POS is nil, then the current point is used instead, and set to the
704 constrained position if that is different.
705
706 If OLD-POS is at the boundary of two fields, then the allowable
707 positions for NEW-POS depends on the value of the optional argument
708 ESCAPE-FROM-EDGE: If ESCAPE-FROM-EDGE is nil, then NEW-POS is
709 constrained to the field that has the same `field' char-property
710 as any new characters inserted at OLD-POS, whereas if ESCAPE-FROM-EDGE
711 is non-nil, NEW-POS is constrained to the union of the two adjacent
712 fields. Additionally, if two fields are separated by another field with
713 the special value `boundary', then any point within this special field is
714 also considered to be `on the boundary'.
715
716 If the optional argument ONLY-IN-LINE is non-nil and constraining
717 NEW-POS would move it to a different line, NEW-POS is returned
718 unconstrained. This useful for commands that move by line, like
719 \\[next-line] or \\[beginning-of-line], which should generally respect field boundaries
720 only in the case where they can still move to the right line.
721
722 If the optional argument INHIBIT-CAPTURE-PROPERTY is non-nil, and OLD-POS has
723 a non-nil property of that name, then any field boundaries are ignored.
724
725 Field boundaries are not noticed if `inhibit-field-text-motion' is non-nil. */)
726 (new_pos, old_pos, escape_from_edge, only_in_line, inhibit_capture_property)
727 Lisp_Object new_pos, old_pos;
728 Lisp_Object escape_from_edge, only_in_line, inhibit_capture_property;
729 {
730 /* If non-zero, then the original point, before re-positioning. */
731 int orig_point = 0;
732 int fwd;
733 Lisp_Object prev_old, prev_new;
734
735 if (NILP (new_pos))
736 /* Use the current point, and afterwards, set it. */
737 {
738 orig_point = PT;
739 XSETFASTINT (new_pos, PT);
740 }
741
742 CHECK_NUMBER_COERCE_MARKER (new_pos);
743 CHECK_NUMBER_COERCE_MARKER (old_pos);
744
745 fwd = (XFASTINT (new_pos) > XFASTINT (old_pos));
746
747 prev_old = make_number (XFASTINT (old_pos) - 1);
748 prev_new = make_number (XFASTINT (new_pos) - 1);
749
750 if (NILP (Vinhibit_field_text_motion)
751 && !EQ (new_pos, old_pos)
752 && (!NILP (Fget_char_property (new_pos, Qfield, Qnil))
753 || !NILP (Fget_char_property (old_pos, Qfield, Qnil))
754 /* To recognize field boundaries, we must also look at the
755 previous positions; we could use `get_pos_property'
756 instead, but in itself that would fail inside non-sticky
757 fields (like comint prompts). */
758 || (XFASTINT (new_pos) > BEGV
759 && !NILP (Fget_char_property (prev_new, Qfield, Qnil)))
760 || (XFASTINT (old_pos) > BEGV
761 && !NILP (Fget_char_property (prev_old, Qfield, Qnil))))
762 && (NILP (inhibit_capture_property)
763 /* Field boundaries are again a problem; but now we must
764 decide the case exactly, so we need to call
765 `get_pos_property' as well. */
766 || (NILP (get_pos_property (old_pos, inhibit_capture_property, Qnil))
767 && (XFASTINT (old_pos) <= BEGV
768 || NILP (Fget_char_property (old_pos, inhibit_capture_property, Qnil))
769 || NILP (Fget_char_property (prev_old, inhibit_capture_property, Qnil))))))
770 /* It is possible that NEW_POS is not within the same field as
771 OLD_POS; try to move NEW_POS so that it is. */
772 {
773 int shortage;
774 Lisp_Object field_bound;
775
776 if (fwd)
777 field_bound = Ffield_end (old_pos, escape_from_edge, new_pos);
778 else
779 field_bound = Ffield_beginning (old_pos, escape_from_edge, new_pos);
780
781 if (/* See if ESCAPE_FROM_EDGE caused FIELD_BOUND to jump to the
782 other side of NEW_POS, which would mean that NEW_POS is
783 already acceptable, and it's not necessary to constrain it
784 to FIELD_BOUND. */
785 ((XFASTINT (field_bound) < XFASTINT (new_pos)) ? fwd : !fwd)
786 /* NEW_POS should be constrained, but only if either
787 ONLY_IN_LINE is nil (in which case any constraint is OK),
788 or NEW_POS and FIELD_BOUND are on the same line (in which
789 case the constraint is OK even if ONLY_IN_LINE is non-nil). */
790 && (NILP (only_in_line)
791 /* This is the ONLY_IN_LINE case, check that NEW_POS and
792 FIELD_BOUND are on the same line by seeing whether
793 there's an intervening newline or not. */
794 || (scan_buffer ('\n',
795 XFASTINT (new_pos), XFASTINT (field_bound),
796 fwd ? -1 : 1, &shortage, 1),
797 shortage != 0)))
798 /* Constrain NEW_POS to FIELD_BOUND. */
799 new_pos = field_bound;
800
801 if (orig_point && XFASTINT (new_pos) != orig_point)
802 /* The NEW_POS argument was originally nil, so automatically set PT. */
803 SET_PT (XFASTINT (new_pos));
804 }
805
806 return new_pos;
807 }
808
809 \f
810 DEFUN ("line-beginning-position",
811 Fline_beginning_position, Sline_beginning_position, 0, 1, 0,
812 doc: /* Return the character position of the first character on the current line.
813 With argument N not nil or 1, move forward N - 1 lines first.
814 If scan reaches end of buffer, return that position.
815
816 This function constrains the returned position to the current field
817 unless that would be on a different line than the original,
818 unconstrained result. If N is nil or 1, and a front-sticky field
819 starts at point, the scan stops as soon as it starts. To ignore field
820 boundaries bind `inhibit-field-text-motion' to t.
821
822 This function does not move point. */)
823 (n)
824 Lisp_Object n;
825 {
826 int orig, orig_byte, end;
827 int count = SPECPDL_INDEX ();
828 specbind (Qinhibit_point_motion_hooks, Qt);
829
830 if (NILP (n))
831 XSETFASTINT (n, 1);
832 else
833 CHECK_NUMBER (n);
834
835 orig = PT;
836 orig_byte = PT_BYTE;
837 Fforward_line (make_number (XINT (n) - 1));
838 end = PT;
839
840 SET_PT_BOTH (orig, orig_byte);
841
842 unbind_to (count, Qnil);
843
844 /* Return END constrained to the current input field. */
845 return Fconstrain_to_field (make_number (end), make_number (orig),
846 XINT (n) != 1 ? Qt : Qnil,
847 Qt, Qnil);
848 }
849
850 DEFUN ("line-end-position", Fline_end_position, Sline_end_position, 0, 1, 0,
851 doc: /* Return the character position of the last character on the current line.
852 With argument N not nil or 1, move forward N - 1 lines first.
853 If scan reaches end of buffer, return that position.
854
855 This function constrains the returned position to the current field
856 unless that would be on a different line than the original,
857 unconstrained result. If N is nil or 1, and a rear-sticky field ends
858 at point, the scan stops as soon as it starts. To ignore field
859 boundaries bind `inhibit-field-text-motion' to t.
860
861 This function does not move point. */)
862 (n)
863 Lisp_Object n;
864 {
865 int end_pos;
866 int orig = PT;
867
868 if (NILP (n))
869 XSETFASTINT (n, 1);
870 else
871 CHECK_NUMBER (n);
872
873 end_pos = find_before_next_newline (orig, 0, XINT (n) - (XINT (n) <= 0));
874
875 /* Return END_POS constrained to the current input field. */
876 return Fconstrain_to_field (make_number (end_pos), make_number (orig),
877 Qnil, Qt, Qnil);
878 }
879
880 \f
881 Lisp_Object
882 save_excursion_save ()
883 {
884 int visible = (XBUFFER (XWINDOW (selected_window)->buffer)
885 == current_buffer);
886
887 return Fcons (Fpoint_marker (),
888 Fcons (Fcopy_marker (current_buffer->mark, Qnil),
889 Fcons (visible ? Qt : Qnil,
890 Fcons (current_buffer->mark_active,
891 selected_window))));
892 }
893
894 Lisp_Object
895 save_excursion_restore (info)
896 Lisp_Object info;
897 {
898 Lisp_Object tem, tem1, omark, nmark;
899 struct gcpro gcpro1, gcpro2, gcpro3;
900 int visible_p;
901
902 tem = Fmarker_buffer (XCAR (info));
903 /* If buffer being returned to is now deleted, avoid error */
904 /* Otherwise could get error here while unwinding to top level
905 and crash */
906 /* In that case, Fmarker_buffer returns nil now. */
907 if (NILP (tem))
908 return Qnil;
909
910 omark = nmark = Qnil;
911 GCPRO3 (info, omark, nmark);
912
913 Fset_buffer (tem);
914
915 /* Point marker. */
916 tem = XCAR (info);
917 Fgoto_char (tem);
918 unchain_marker (XMARKER (tem));
919
920 /* Mark marker. */
921 info = XCDR (info);
922 tem = XCAR (info);
923 omark = Fmarker_position (current_buffer->mark);
924 Fset_marker (current_buffer->mark, tem, Fcurrent_buffer ());
925 nmark = Fmarker_position (tem);
926 unchain_marker (XMARKER (tem));
927
928 /* visible */
929 info = XCDR (info);
930 visible_p = !NILP (XCAR (info));
931
932 #if 0 /* We used to make the current buffer visible in the selected window
933 if that was true previously. That avoids some anomalies.
934 But it creates others, and it wasn't documented, and it is simpler
935 and cleaner never to alter the window/buffer connections. */
936 tem1 = Fcar (tem);
937 if (!NILP (tem1)
938 && current_buffer != XBUFFER (XWINDOW (selected_window)->buffer))
939 Fswitch_to_buffer (Fcurrent_buffer (), Qnil);
940 #endif /* 0 */
941
942 /* Mark active */
943 info = XCDR (info);
944 tem = XCAR (info);
945 tem1 = current_buffer->mark_active;
946 current_buffer->mark_active = tem;
947
948 if (!NILP (Vrun_hooks))
949 {
950 /* If mark is active now, and either was not active
951 or was at a different place, run the activate hook. */
952 if (! NILP (current_buffer->mark_active))
953 {
954 if (! EQ (omark, nmark))
955 call1 (Vrun_hooks, intern ("activate-mark-hook"));
956 }
957 /* If mark has ceased to be active, run deactivate hook. */
958 else if (! NILP (tem1))
959 call1 (Vrun_hooks, intern ("deactivate-mark-hook"));
960 }
961
962 /* If buffer was visible in a window, and a different window was
963 selected, and the old selected window is still showing this
964 buffer, restore point in that window. */
965 tem = XCDR (info);
966 if (visible_p
967 && !EQ (tem, selected_window)
968 && (tem1 = XWINDOW (tem)->buffer,
969 (/* Window is live... */
970 BUFFERP (tem1)
971 /* ...and it shows the current buffer. */
972 && XBUFFER (tem1) == current_buffer)))
973 Fset_window_point (tem, make_number (PT));
974
975 UNGCPRO;
976 return Qnil;
977 }
978
979 DEFUN ("save-excursion", Fsave_excursion, Ssave_excursion, 0, UNEVALLED, 0,
980 doc: /* Save point, mark, and current buffer; execute BODY; restore those things.
981 Executes BODY just like `progn'.
982 The values of point, mark and the current buffer are restored
983 even in case of abnormal exit (throw or error).
984 The state of activation of the mark is also restored.
985
986 This construct does not save `deactivate-mark', and therefore
987 functions that change the buffer will still cause deactivation
988 of the mark at the end of the command. To prevent that, bind
989 `deactivate-mark' with `let'.
990
991 usage: (save-excursion &rest BODY) */)
992 (args)
993 Lisp_Object args;
994 {
995 register Lisp_Object val;
996 int count = SPECPDL_INDEX ();
997
998 record_unwind_protect (save_excursion_restore, save_excursion_save ());
999
1000 val = Fprogn (args);
1001 return unbind_to (count, val);
1002 }
1003
1004 DEFUN ("save-current-buffer", Fsave_current_buffer, Ssave_current_buffer, 0, UNEVALLED, 0,
1005 doc: /* Save the current buffer; execute BODY; restore the current buffer.
1006 Executes BODY just like `progn'.
1007 usage: (save-current-buffer &rest BODY) */)
1008 (args)
1009 Lisp_Object args;
1010 {
1011 Lisp_Object val;
1012 int count = SPECPDL_INDEX ();
1013
1014 record_unwind_protect (set_buffer_if_live, Fcurrent_buffer ());
1015
1016 val = Fprogn (args);
1017 return unbind_to (count, val);
1018 }
1019 \f
1020 DEFUN ("buffer-size", Fbufsize, Sbufsize, 0, 1, 0,
1021 doc: /* Return the number of characters in the current buffer.
1022 If BUFFER, return the number of characters in that buffer instead. */)
1023 (buffer)
1024 Lisp_Object buffer;
1025 {
1026 if (NILP (buffer))
1027 return make_number (Z - BEG);
1028 else
1029 {
1030 CHECK_BUFFER (buffer);
1031 return make_number (BUF_Z (XBUFFER (buffer))
1032 - BUF_BEG (XBUFFER (buffer)));
1033 }
1034 }
1035
1036 DEFUN ("point-min", Fpoint_min, Spoint_min, 0, 0, 0,
1037 doc: /* Return the minimum permissible value of point in the current buffer.
1038 This is 1, unless narrowing (a buffer restriction) is in effect. */)
1039 ()
1040 {
1041 Lisp_Object temp;
1042 XSETFASTINT (temp, BEGV);
1043 return temp;
1044 }
1045
1046 DEFUN ("point-min-marker", Fpoint_min_marker, Spoint_min_marker, 0, 0, 0,
1047 doc: /* Return a marker to the minimum permissible value of point in this buffer.
1048 This is the beginning, unless narrowing (a buffer restriction) is in effect. */)
1049 ()
1050 {
1051 return buildmark (BEGV, BEGV_BYTE);
1052 }
1053
1054 DEFUN ("point-max", Fpoint_max, Spoint_max, 0, 0, 0,
1055 doc: /* Return the maximum permissible value of point in the current buffer.
1056 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1057 is in effect, in which case it is less. */)
1058 ()
1059 {
1060 Lisp_Object temp;
1061 XSETFASTINT (temp, ZV);
1062 return temp;
1063 }
1064
1065 DEFUN ("point-max-marker", Fpoint_max_marker, Spoint_max_marker, 0, 0, 0,
1066 doc: /* Return a marker to the maximum permissible value of point in this buffer.
1067 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1068 is in effect, in which case it is less. */)
1069 ()
1070 {
1071 return buildmark (ZV, ZV_BYTE);
1072 }
1073
1074 DEFUN ("gap-position", Fgap_position, Sgap_position, 0, 0, 0,
1075 doc: /* Return the position of the gap, in the current buffer.
1076 See also `gap-size'. */)
1077 ()
1078 {
1079 Lisp_Object temp;
1080 XSETFASTINT (temp, GPT);
1081 return temp;
1082 }
1083
1084 DEFUN ("gap-size", Fgap_size, Sgap_size, 0, 0, 0,
1085 doc: /* Return the size of the current buffer's gap.
1086 See also `gap-position'. */)
1087 ()
1088 {
1089 Lisp_Object temp;
1090 XSETFASTINT (temp, GAP_SIZE);
1091 return temp;
1092 }
1093
1094 DEFUN ("position-bytes", Fposition_bytes, Sposition_bytes, 1, 1, 0,
1095 doc: /* Return the byte position for character position POSITION.
1096 If POSITION is out of range, the value is nil. */)
1097 (position)
1098 Lisp_Object position;
1099 {
1100 CHECK_NUMBER_COERCE_MARKER (position);
1101 if (XINT (position) < BEG || XINT (position) > Z)
1102 return Qnil;
1103 return make_number (CHAR_TO_BYTE (XINT (position)));
1104 }
1105
1106 DEFUN ("byte-to-position", Fbyte_to_position, Sbyte_to_position, 1, 1, 0,
1107 doc: /* Return the character position for byte position BYTEPOS.
1108 If BYTEPOS is out of range, the value is nil. */)
1109 (bytepos)
1110 Lisp_Object bytepos;
1111 {
1112 CHECK_NUMBER (bytepos);
1113 if (XINT (bytepos) < BEG_BYTE || XINT (bytepos) > Z_BYTE)
1114 return Qnil;
1115 return make_number (BYTE_TO_CHAR (XINT (bytepos)));
1116 }
1117 \f
1118 DEFUN ("following-char", Ffollowing_char, Sfollowing_char, 0, 0, 0,
1119 doc: /* Return the character following point, as a number.
1120 At the end of the buffer or accessible region, return 0. */)
1121 ()
1122 {
1123 Lisp_Object temp;
1124 if (PT >= ZV)
1125 XSETFASTINT (temp, 0);
1126 else
1127 XSETFASTINT (temp, FETCH_CHAR (PT_BYTE));
1128 return temp;
1129 }
1130
1131 DEFUN ("preceding-char", Fprevious_char, Sprevious_char, 0, 0, 0,
1132 doc: /* Return the character preceding point, as a number.
1133 At the beginning of the buffer or accessible region, return 0. */)
1134 ()
1135 {
1136 Lisp_Object temp;
1137 if (PT <= BEGV)
1138 XSETFASTINT (temp, 0);
1139 else if (!NILP (current_buffer->enable_multibyte_characters))
1140 {
1141 int pos = PT_BYTE;
1142 DEC_POS (pos);
1143 XSETFASTINT (temp, FETCH_CHAR (pos));
1144 }
1145 else
1146 XSETFASTINT (temp, FETCH_BYTE (PT_BYTE - 1));
1147 return temp;
1148 }
1149
1150 DEFUN ("bobp", Fbobp, Sbobp, 0, 0, 0,
1151 doc: /* Return t if point is at the beginning of the buffer.
1152 If the buffer is narrowed, this means the beginning of the narrowed part. */)
1153 ()
1154 {
1155 if (PT == BEGV)
1156 return Qt;
1157 return Qnil;
1158 }
1159
1160 DEFUN ("eobp", Feobp, Seobp, 0, 0, 0,
1161 doc: /* Return t if point is at the end of the buffer.
1162 If the buffer is narrowed, this means the end of the narrowed part. */)
1163 ()
1164 {
1165 if (PT == ZV)
1166 return Qt;
1167 return Qnil;
1168 }
1169
1170 DEFUN ("bolp", Fbolp, Sbolp, 0, 0, 0,
1171 doc: /* Return t if point is at the beginning of a line. */)
1172 ()
1173 {
1174 if (PT == BEGV || FETCH_BYTE (PT_BYTE - 1) == '\n')
1175 return Qt;
1176 return Qnil;
1177 }
1178
1179 DEFUN ("eolp", Feolp, Seolp, 0, 0, 0,
1180 doc: /* Return t if point is at the end of a line.
1181 `End of a line' includes point being at the end of the buffer. */)
1182 ()
1183 {
1184 if (PT == ZV || FETCH_BYTE (PT_BYTE) == '\n')
1185 return Qt;
1186 return Qnil;
1187 }
1188
1189 DEFUN ("char-after", Fchar_after, Schar_after, 0, 1, 0,
1190 doc: /* Return character in current buffer at position POS.
1191 POS is an integer or a marker and defaults to point.
1192 If POS is out of range, the value is nil. */)
1193 (pos)
1194 Lisp_Object pos;
1195 {
1196 register int pos_byte;
1197
1198 if (NILP (pos))
1199 {
1200 pos_byte = PT_BYTE;
1201 XSETFASTINT (pos, PT);
1202 }
1203
1204 if (MARKERP (pos))
1205 {
1206 pos_byte = marker_byte_position (pos);
1207 if (pos_byte < BEGV_BYTE || pos_byte >= ZV_BYTE)
1208 return Qnil;
1209 }
1210 else
1211 {
1212 CHECK_NUMBER_COERCE_MARKER (pos);
1213 if (XINT (pos) < BEGV || XINT (pos) >= ZV)
1214 return Qnil;
1215
1216 pos_byte = CHAR_TO_BYTE (XINT (pos));
1217 }
1218
1219 return make_number (FETCH_CHAR (pos_byte));
1220 }
1221
1222 DEFUN ("char-before", Fchar_before, Schar_before, 0, 1, 0,
1223 doc: /* Return character in current buffer preceding position POS.
1224 POS is an integer or a marker and defaults to point.
1225 If POS is out of range, the value is nil. */)
1226 (pos)
1227 Lisp_Object pos;
1228 {
1229 register Lisp_Object val;
1230 register int pos_byte;
1231
1232 if (NILP (pos))
1233 {
1234 pos_byte = PT_BYTE;
1235 XSETFASTINT (pos, PT);
1236 }
1237
1238 if (MARKERP (pos))
1239 {
1240 pos_byte = marker_byte_position (pos);
1241
1242 if (pos_byte <= BEGV_BYTE || pos_byte > ZV_BYTE)
1243 return Qnil;
1244 }
1245 else
1246 {
1247 CHECK_NUMBER_COERCE_MARKER (pos);
1248
1249 if (XINT (pos) <= BEGV || XINT (pos) > ZV)
1250 return Qnil;
1251
1252 pos_byte = CHAR_TO_BYTE (XINT (pos));
1253 }
1254
1255 if (!NILP (current_buffer->enable_multibyte_characters))
1256 {
1257 DEC_POS (pos_byte);
1258 XSETFASTINT (val, FETCH_CHAR (pos_byte));
1259 }
1260 else
1261 {
1262 pos_byte--;
1263 XSETFASTINT (val, FETCH_BYTE (pos_byte));
1264 }
1265 return val;
1266 }
1267 \f
1268 DEFUN ("user-login-name", Fuser_login_name, Suser_login_name, 0, 1, 0,
1269 doc: /* Return the name under which the user logged in, as a string.
1270 This is based on the effective uid, not the real uid.
1271 Also, if the environment variables LOGNAME or USER are set,
1272 that determines the value of this function.
1273
1274 If optional argument UID is an integer, return the login name of the user
1275 with that uid, or nil if there is no such user. */)
1276 (uid)
1277 Lisp_Object uid;
1278 {
1279 struct passwd *pw;
1280
1281 /* Set up the user name info if we didn't do it before.
1282 (That can happen if Emacs is dumpable
1283 but you decide to run `temacs -l loadup' and not dump. */
1284 if (INTEGERP (Vuser_login_name))
1285 init_editfns ();
1286
1287 if (NILP (uid))
1288 return Vuser_login_name;
1289
1290 CHECK_NUMBER (uid);
1291 BLOCK_INPUT;
1292 pw = (struct passwd *) getpwuid (XINT (uid));
1293 UNBLOCK_INPUT;
1294 return (pw ? build_string (pw->pw_name) : Qnil);
1295 }
1296
1297 DEFUN ("user-real-login-name", Fuser_real_login_name, Suser_real_login_name,
1298 0, 0, 0,
1299 doc: /* Return the name of the user's real uid, as a string.
1300 This ignores the environment variables LOGNAME and USER, so it differs from
1301 `user-login-name' when running under `su'. */)
1302 ()
1303 {
1304 /* Set up the user name info if we didn't do it before.
1305 (That can happen if Emacs is dumpable
1306 but you decide to run `temacs -l loadup' and not dump. */
1307 if (INTEGERP (Vuser_login_name))
1308 init_editfns ();
1309 return Vuser_real_login_name;
1310 }
1311
1312 DEFUN ("user-uid", Fuser_uid, Suser_uid, 0, 0, 0,
1313 doc: /* Return the effective uid of Emacs.
1314 Value is an integer or float, depending on the value. */)
1315 ()
1316 {
1317 /* Assignment to EMACS_INT stops GCC whining about limited range of
1318 data type. */
1319 EMACS_INT euid = geteuid ();
1320 return make_fixnum_or_float (euid);
1321 }
1322
1323 DEFUN ("user-real-uid", Fuser_real_uid, Suser_real_uid, 0, 0, 0,
1324 doc: /* Return the real uid of Emacs.
1325 Value is an integer or float, depending on the value. */)
1326 ()
1327 {
1328 /* Assignment to EMACS_INT stops GCC whining about limited range of
1329 data type. */
1330 EMACS_INT uid = getuid ();
1331 return make_fixnum_or_float (uid);
1332 }
1333
1334 DEFUN ("user-full-name", Fuser_full_name, Suser_full_name, 0, 1, 0,
1335 doc: /* Return the full name of the user logged in, as a string.
1336 If the full name corresponding to Emacs's userid is not known,
1337 return "unknown".
1338
1339 If optional argument UID is an integer or float, return the full name
1340 of the user with that uid, or nil if there is no such user.
1341 If UID is a string, return the full name of the user with that login
1342 name, or nil if there is no such user. */)
1343 (uid)
1344 Lisp_Object uid;
1345 {
1346 struct passwd *pw;
1347 register unsigned char *p, *q;
1348 Lisp_Object full;
1349
1350 if (NILP (uid))
1351 return Vuser_full_name;
1352 else if (NUMBERP (uid))
1353 {
1354 BLOCK_INPUT;
1355 pw = (struct passwd *) getpwuid ((uid_t) XFLOATINT (uid));
1356 UNBLOCK_INPUT;
1357 }
1358 else if (STRINGP (uid))
1359 {
1360 BLOCK_INPUT;
1361 pw = (struct passwd *) getpwnam (SDATA (uid));
1362 UNBLOCK_INPUT;
1363 }
1364 else
1365 error ("Invalid UID specification");
1366
1367 if (!pw)
1368 return Qnil;
1369
1370 p = (unsigned char *) USER_FULL_NAME;
1371 /* Chop off everything after the first comma. */
1372 q = (unsigned char *) index (p, ',');
1373 full = make_string (p, q ? q - p : strlen (p));
1374
1375 #ifdef AMPERSAND_FULL_NAME
1376 p = SDATA (full);
1377 q = (unsigned char *) index (p, '&');
1378 /* Substitute the login name for the &, upcasing the first character. */
1379 if (q)
1380 {
1381 register unsigned char *r;
1382 Lisp_Object login;
1383
1384 login = Fuser_login_name (make_number (pw->pw_uid));
1385 r = (unsigned char *) alloca (strlen (p) + SCHARS (login) + 1);
1386 bcopy (p, r, q - p);
1387 r[q - p] = 0;
1388 strcat (r, SDATA (login));
1389 r[q - p] = UPCASE (r[q - p]);
1390 strcat (r, q + 1);
1391 full = build_string (r);
1392 }
1393 #endif /* AMPERSAND_FULL_NAME */
1394
1395 return full;
1396 }
1397
1398 DEFUN ("system-name", Fsystem_name, Ssystem_name, 0, 0, 0,
1399 doc: /* Return the host name of the machine you are running on, as a string. */)
1400 ()
1401 {
1402 return Vsystem_name;
1403 }
1404
1405 /* For the benefit of callers who don't want to include lisp.h */
1406
1407 char *
1408 get_system_name ()
1409 {
1410 if (STRINGP (Vsystem_name))
1411 return (char *) SDATA (Vsystem_name);
1412 else
1413 return "";
1414 }
1415
1416 char *
1417 get_operating_system_release()
1418 {
1419 if (STRINGP (Voperating_system_release))
1420 return (char *) SDATA (Voperating_system_release);
1421 else
1422 return "";
1423 }
1424
1425 DEFUN ("emacs-pid", Femacs_pid, Semacs_pid, 0, 0, 0,
1426 doc: /* Return the process ID of Emacs, as an integer. */)
1427 ()
1428 {
1429 return make_number (getpid ());
1430 }
1431
1432 DEFUN ("current-time", Fcurrent_time, Scurrent_time, 0, 0, 0,
1433 doc: /* Return the current time, as the number of seconds since 1970-01-01 00:00:00.
1434 The time is returned as a list of three integers. The first has the
1435 most significant 16 bits of the seconds, while the second has the
1436 least significant 16 bits. The third integer gives the microsecond
1437 count.
1438
1439 The microsecond count is zero on systems that do not provide
1440 resolution finer than a second. */)
1441 ()
1442 {
1443 EMACS_TIME t;
1444
1445 EMACS_GET_TIME (t);
1446 return list3 (make_number ((EMACS_SECS (t) >> 16) & 0xffff),
1447 make_number ((EMACS_SECS (t) >> 0) & 0xffff),
1448 make_number (EMACS_USECS (t)));
1449 }
1450
1451 DEFUN ("get-internal-run-time", Fget_internal_run_time, Sget_internal_run_time,
1452 0, 0, 0,
1453 doc: /* Return the current run time used by Emacs.
1454 The time is returned as a list of three integers. The first has the
1455 most significant 16 bits of the seconds, while the second has the
1456 least significant 16 bits. The third integer gives the microsecond
1457 count.
1458
1459 On systems that can't determine the run time, `get-internal-run-time'
1460 does the same thing as `current-time'. The microsecond count is zero
1461 on systems that do not provide resolution finer than a second. */)
1462 ()
1463 {
1464 #ifdef HAVE_GETRUSAGE
1465 struct rusage usage;
1466 int secs, usecs;
1467
1468 if (getrusage (RUSAGE_SELF, &usage) < 0)
1469 /* This shouldn't happen. What action is appropriate? */
1470 xsignal0 (Qerror);
1471
1472 /* Sum up user time and system time. */
1473 secs = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
1474 usecs = usage.ru_utime.tv_usec + usage.ru_stime.tv_usec;
1475 if (usecs >= 1000000)
1476 {
1477 usecs -= 1000000;
1478 secs++;
1479 }
1480
1481 return list3 (make_number ((secs >> 16) & 0xffff),
1482 make_number ((secs >> 0) & 0xffff),
1483 make_number (usecs));
1484 #else
1485 return Fcurrent_time ();
1486 #endif
1487 }
1488 \f
1489
1490 int
1491 lisp_time_argument (specified_time, result, usec)
1492 Lisp_Object specified_time;
1493 time_t *result;
1494 int *usec;
1495 {
1496 if (NILP (specified_time))
1497 {
1498 if (usec)
1499 {
1500 EMACS_TIME t;
1501
1502 EMACS_GET_TIME (t);
1503 *usec = EMACS_USECS (t);
1504 *result = EMACS_SECS (t);
1505 return 1;
1506 }
1507 else
1508 return time (result) != -1;
1509 }
1510 else
1511 {
1512 Lisp_Object high, low;
1513 high = Fcar (specified_time);
1514 CHECK_NUMBER (high);
1515 low = Fcdr (specified_time);
1516 if (CONSP (low))
1517 {
1518 if (usec)
1519 {
1520 Lisp_Object usec_l = Fcdr (low);
1521 if (CONSP (usec_l))
1522 usec_l = Fcar (usec_l);
1523 if (NILP (usec_l))
1524 *usec = 0;
1525 else
1526 {
1527 CHECK_NUMBER (usec_l);
1528 *usec = XINT (usec_l);
1529 }
1530 }
1531 low = Fcar (low);
1532 }
1533 else if (usec)
1534 *usec = 0;
1535 CHECK_NUMBER (low);
1536 *result = (XINT (high) << 16) + (XINT (low) & 0xffff);
1537 return *result >> 16 == XINT (high);
1538 }
1539 }
1540
1541 DEFUN ("float-time", Ffloat_time, Sfloat_time, 0, 1, 0,
1542 doc: /* Return the current time, as a float number of seconds since the epoch.
1543 If SPECIFIED-TIME is given, it is the time to convert to float
1544 instead of the current time. The argument should have the form
1545 (HIGH LOW . IGNORED). Thus, you can use times obtained from
1546 `current-time' and from `file-attributes'. SPECIFIED-TIME can also
1547 have the form (HIGH . LOW), but this is considered obsolete.
1548
1549 WARNING: Since the result is floating point, it may not be exact.
1550 Do not use this function if precise time stamps are required. */)
1551 (specified_time)
1552 Lisp_Object specified_time;
1553 {
1554 time_t sec;
1555 int usec;
1556
1557 if (! lisp_time_argument (specified_time, &sec, &usec))
1558 error ("Invalid time specification");
1559
1560 return make_float ((sec * 1e6 + usec) / 1e6);
1561 }
1562
1563 /* Write information into buffer S of size MAXSIZE, according to the
1564 FORMAT of length FORMAT_LEN, using time information taken from *TP.
1565 Default to Universal Time if UT is nonzero, local time otherwise.
1566 Return the number of bytes written, not including the terminating
1567 '\0'. If S is NULL, nothing will be written anywhere; so to
1568 determine how many bytes would be written, use NULL for S and
1569 ((size_t) -1) for MAXSIZE.
1570
1571 This function behaves like emacs_strftimeu, except it allows null
1572 bytes in FORMAT. */
1573 static size_t
1574 emacs_memftimeu (s, maxsize, format, format_len, tp, ut)
1575 char *s;
1576 size_t maxsize;
1577 const char *format;
1578 size_t format_len;
1579 const struct tm *tp;
1580 int ut;
1581 {
1582 size_t total = 0;
1583
1584 /* Loop through all the null-terminated strings in the format
1585 argument. Normally there's just one null-terminated string, but
1586 there can be arbitrarily many, concatenated together, if the
1587 format contains '\0' bytes. emacs_strftimeu stops at the first
1588 '\0' byte so we must invoke it separately for each such string. */
1589 for (;;)
1590 {
1591 size_t len;
1592 size_t result;
1593
1594 if (s)
1595 s[0] = '\1';
1596
1597 result = emacs_strftimeu (s, maxsize, format, tp, ut);
1598
1599 if (s)
1600 {
1601 if (result == 0 && s[0] != '\0')
1602 return 0;
1603 s += result + 1;
1604 }
1605
1606 maxsize -= result + 1;
1607 total += result;
1608 len = strlen (format);
1609 if (len == format_len)
1610 return total;
1611 total++;
1612 format += len + 1;
1613 format_len -= len + 1;
1614 }
1615 }
1616
1617 DEFUN ("format-time-string", Fformat_time_string, Sformat_time_string, 1, 3, 0,
1618 doc: /* Use FORMAT-STRING to format the time TIME, or now if omitted.
1619 TIME is specified as (HIGH LOW . IGNORED), as returned by
1620 `current-time' or `file-attributes'. The obsolete form (HIGH . LOW)
1621 is also still accepted.
1622 The third, optional, argument UNIVERSAL, if non-nil, means describe TIME
1623 as Universal Time; nil means describe TIME in the local time zone.
1624 The value is a copy of FORMAT-STRING, but with certain constructs replaced
1625 by text that describes the specified date and time in TIME:
1626
1627 %Y is the year, %y within the century, %C the century.
1628 %G is the year corresponding to the ISO week, %g within the century.
1629 %m is the numeric month.
1630 %b and %h are the locale's abbreviated month name, %B the full name.
1631 %d is the day of the month, zero-padded, %e is blank-padded.
1632 %u is the numeric day of week from 1 (Monday) to 7, %w from 0 (Sunday) to 6.
1633 %a is the locale's abbreviated name of the day of week, %A the full name.
1634 %U is the week number starting on Sunday, %W starting on Monday,
1635 %V according to ISO 8601.
1636 %j is the day of the year.
1637
1638 %H is the hour on a 24-hour clock, %I is on a 12-hour clock, %k is like %H
1639 only blank-padded, %l is like %I blank-padded.
1640 %p is the locale's equivalent of either AM or PM.
1641 %M is the minute.
1642 %S is the second.
1643 %Z is the time zone name, %z is the numeric form.
1644 %s is the number of seconds since 1970-01-01 00:00:00 +0000.
1645
1646 %c is the locale's date and time format.
1647 %x is the locale's "preferred" date format.
1648 %D is like "%m/%d/%y".
1649
1650 %R is like "%H:%M", %T is like "%H:%M:%S", %r is like "%I:%M:%S %p".
1651 %X is the locale's "preferred" time format.
1652
1653 Finally, %n is a newline, %t is a tab, %% is a literal %.
1654
1655 Certain flags and modifiers are available with some format controls.
1656 The flags are `_', `-', `^' and `#'. For certain characters X,
1657 %_X is like %X, but padded with blanks; %-X is like %X,
1658 but without padding. %^X is like %X, but with all textual
1659 characters up-cased; %#X is like %X, but with letter-case of
1660 all textual characters reversed.
1661 %NX (where N stands for an integer) is like %X,
1662 but takes up at least N (a number) positions.
1663 The modifiers are `E' and `O'. For certain characters X,
1664 %EX is a locale's alternative version of %X;
1665 %OX is like %X, but uses the locale's number symbols.
1666
1667 For example, to produce full ISO 8601 format, use "%Y-%m-%dT%T%z". */)
1668 (format_string, time, universal)
1669 Lisp_Object format_string, time, universal;
1670 {
1671 time_t value;
1672 int size;
1673 struct tm *tm;
1674 int ut = ! NILP (universal);
1675
1676 CHECK_STRING (format_string);
1677
1678 if (! lisp_time_argument (time, &value, NULL))
1679 error ("Invalid time specification");
1680
1681 format_string = code_convert_string_norecord (format_string,
1682 Vlocale_coding_system, 1);
1683
1684 /* This is probably enough. */
1685 size = SBYTES (format_string) * 6 + 50;
1686
1687 BLOCK_INPUT;
1688 tm = ut ? gmtime (&value) : localtime (&value);
1689 UNBLOCK_INPUT;
1690 if (! tm)
1691 error ("Specified time is not representable");
1692
1693 synchronize_system_time_locale ();
1694
1695 while (1)
1696 {
1697 char *buf = (char *) alloca (size + 1);
1698 int result;
1699
1700 buf[0] = '\1';
1701 BLOCK_INPUT;
1702 result = emacs_memftimeu (buf, size, SDATA (format_string),
1703 SBYTES (format_string),
1704 tm, ut);
1705 UNBLOCK_INPUT;
1706 if ((result > 0 && result < size) || (result == 0 && buf[0] == '\0'))
1707 return code_convert_string_norecord (make_unibyte_string (buf, result),
1708 Vlocale_coding_system, 0);
1709
1710 /* If buffer was too small, make it bigger and try again. */
1711 BLOCK_INPUT;
1712 result = emacs_memftimeu (NULL, (size_t) -1,
1713 SDATA (format_string),
1714 SBYTES (format_string),
1715 tm, ut);
1716 UNBLOCK_INPUT;
1717 size = result + 1;
1718 }
1719 }
1720
1721 DEFUN ("decode-time", Fdecode_time, Sdecode_time, 0, 1, 0,
1722 doc: /* Decode a time value as (SEC MINUTE HOUR DAY MONTH YEAR DOW DST ZONE).
1723 The optional SPECIFIED-TIME should be a list of (HIGH LOW . IGNORED),
1724 as from `current-time' and `file-attributes', or nil to use the
1725 current time. The obsolete form (HIGH . LOW) is also still accepted.
1726 The list has the following nine members: SEC is an integer between 0
1727 and 60; SEC is 60 for a leap second, which only some operating systems
1728 support. MINUTE is an integer between 0 and 59. HOUR is an integer
1729 between 0 and 23. DAY is an integer between 1 and 31. MONTH is an
1730 integer between 1 and 12. YEAR is an integer indicating the
1731 four-digit year. DOW is the day of week, an integer between 0 and 6,
1732 where 0 is Sunday. DST is t if daylight savings time is effect,
1733 otherwise nil. ZONE is an integer indicating the number of seconds
1734 east of Greenwich. (Note that Common Lisp has different meanings for
1735 DOW and ZONE.) */)
1736 (specified_time)
1737 Lisp_Object specified_time;
1738 {
1739 time_t time_spec;
1740 struct tm save_tm;
1741 struct tm *decoded_time;
1742 Lisp_Object list_args[9];
1743
1744 if (! lisp_time_argument (specified_time, &time_spec, NULL))
1745 error ("Invalid time specification");
1746
1747 BLOCK_INPUT;
1748 decoded_time = localtime (&time_spec);
1749 UNBLOCK_INPUT;
1750 if (! decoded_time)
1751 error ("Specified time is not representable");
1752 XSETFASTINT (list_args[0], decoded_time->tm_sec);
1753 XSETFASTINT (list_args[1], decoded_time->tm_min);
1754 XSETFASTINT (list_args[2], decoded_time->tm_hour);
1755 XSETFASTINT (list_args[3], decoded_time->tm_mday);
1756 XSETFASTINT (list_args[4], decoded_time->tm_mon + 1);
1757 /* On 64-bit machines an int is narrower than EMACS_INT, thus the
1758 cast below avoids overflow in int arithmetics. */
1759 XSETINT (list_args[5], TM_YEAR_BASE + (EMACS_INT) decoded_time->tm_year);
1760 XSETFASTINT (list_args[6], decoded_time->tm_wday);
1761 list_args[7] = (decoded_time->tm_isdst)? Qt : Qnil;
1762
1763 /* Make a copy, in case gmtime modifies the struct. */
1764 save_tm = *decoded_time;
1765 BLOCK_INPUT;
1766 decoded_time = gmtime (&time_spec);
1767 UNBLOCK_INPUT;
1768 if (decoded_time == 0)
1769 list_args[8] = Qnil;
1770 else
1771 XSETINT (list_args[8], tm_diff (&save_tm, decoded_time));
1772 return Flist (9, list_args);
1773 }
1774
1775 DEFUN ("encode-time", Fencode_time, Sencode_time, 6, MANY, 0,
1776 doc: /* Convert SECOND, MINUTE, HOUR, DAY, MONTH, YEAR and ZONE to internal time.
1777 This is the reverse operation of `decode-time', which see.
1778 ZONE defaults to the current time zone rule. This can
1779 be a string or t (as from `set-time-zone-rule'), or it can be a list
1780 \(as from `current-time-zone') or an integer (as from `decode-time')
1781 applied without consideration for daylight savings time.
1782
1783 You can pass more than 7 arguments; then the first six arguments
1784 are used as SECOND through YEAR, and the *last* argument is used as ZONE.
1785 The intervening arguments are ignored.
1786 This feature lets (apply 'encode-time (decode-time ...)) work.
1787
1788 Out-of-range values for SECOND, MINUTE, HOUR, DAY, or MONTH are allowed;
1789 for example, a DAY of 0 means the day preceding the given month.
1790 Year numbers less than 100 are treated just like other year numbers.
1791 If you want them to stand for years in this century, you must do that yourself.
1792
1793 Years before 1970 are not guaranteed to work. On some systems,
1794 year values as low as 1901 do work.
1795
1796 usage: (encode-time SECOND MINUTE HOUR DAY MONTH YEAR &optional ZONE) */)
1797 (nargs, args)
1798 int nargs;
1799 register Lisp_Object *args;
1800 {
1801 time_t time;
1802 struct tm tm;
1803 Lisp_Object zone = (nargs > 6 ? args[nargs - 1] : Qnil);
1804
1805 CHECK_NUMBER (args[0]); /* second */
1806 CHECK_NUMBER (args[1]); /* minute */
1807 CHECK_NUMBER (args[2]); /* hour */
1808 CHECK_NUMBER (args[3]); /* day */
1809 CHECK_NUMBER (args[4]); /* month */
1810 CHECK_NUMBER (args[5]); /* year */
1811
1812 tm.tm_sec = XINT (args[0]);
1813 tm.tm_min = XINT (args[1]);
1814 tm.tm_hour = XINT (args[2]);
1815 tm.tm_mday = XINT (args[3]);
1816 tm.tm_mon = XINT (args[4]) - 1;
1817 tm.tm_year = XINT (args[5]) - TM_YEAR_BASE;
1818 tm.tm_isdst = -1;
1819
1820 if (CONSP (zone))
1821 zone = Fcar (zone);
1822 if (NILP (zone))
1823 {
1824 BLOCK_INPUT;
1825 time = mktime (&tm);
1826 UNBLOCK_INPUT;
1827 }
1828 else
1829 {
1830 char tzbuf[100];
1831 char *tzstring;
1832 char **oldenv = environ, **newenv;
1833
1834 if (EQ (zone, Qt))
1835 tzstring = "UTC0";
1836 else if (STRINGP (zone))
1837 tzstring = (char *) SDATA (zone);
1838 else if (INTEGERP (zone))
1839 {
1840 int abszone = abs (XINT (zone));
1841 sprintf (tzbuf, "XXX%s%d:%02d:%02d", "-" + (XINT (zone) < 0),
1842 abszone / (60*60), (abszone/60) % 60, abszone % 60);
1843 tzstring = tzbuf;
1844 }
1845 else
1846 error ("Invalid time zone specification");
1847
1848 /* Set TZ before calling mktime; merely adjusting mktime's returned
1849 value doesn't suffice, since that would mishandle leap seconds. */
1850 set_time_zone_rule (tzstring);
1851
1852 BLOCK_INPUT;
1853 time = mktime (&tm);
1854 UNBLOCK_INPUT;
1855
1856 /* Restore TZ to previous value. */
1857 newenv = environ;
1858 environ = oldenv;
1859 xfree (newenv);
1860 #ifdef LOCALTIME_CACHE
1861 tzset ();
1862 #endif
1863 }
1864
1865 if (time == (time_t) -1)
1866 error ("Specified time is not representable");
1867
1868 return make_time (time);
1869 }
1870
1871 DEFUN ("current-time-string", Fcurrent_time_string, Scurrent_time_string, 0, 1, 0,
1872 doc: /* Return the current time, as a human-readable string.
1873 Programs can use this function to decode a time,
1874 since the number of columns in each field is fixed
1875 if the year is in the range 1000-9999.
1876 The format is `Sun Sep 16 01:03:52 1973'.
1877 However, see also the functions `decode-time' and `format-time-string'
1878 which provide a much more powerful and general facility.
1879
1880 If SPECIFIED-TIME is given, it is a time to format instead of the
1881 current time. The argument should have the form (HIGH LOW . IGNORED).
1882 Thus, you can use times obtained from `current-time' and from
1883 `file-attributes'. SPECIFIED-TIME can also have the form (HIGH . LOW),
1884 but this is considered obsolete. */)
1885 (specified_time)
1886 Lisp_Object specified_time;
1887 {
1888 time_t value;
1889 struct tm *tm;
1890 register char *tem;
1891
1892 if (! lisp_time_argument (specified_time, &value, NULL))
1893 error ("Invalid time specification");
1894
1895 /* Convert to a string, checking for out-of-range time stamps.
1896 Don't use 'ctime', as that might dump core if VALUE is out of
1897 range. */
1898 BLOCK_INPUT;
1899 tm = localtime (&value);
1900 UNBLOCK_INPUT;
1901 if (! (tm && TM_YEAR_IN_ASCTIME_RANGE (tm->tm_year) && (tem = asctime (tm))))
1902 error ("Specified time is not representable");
1903
1904 /* Remove the trailing newline. */
1905 tem[strlen (tem) - 1] = '\0';
1906
1907 return build_string (tem);
1908 }
1909
1910 /* Yield A - B, measured in seconds.
1911 This function is copied from the GNU C Library. */
1912 static int
1913 tm_diff (a, b)
1914 struct tm *a, *b;
1915 {
1916 /* Compute intervening leap days correctly even if year is negative.
1917 Take care to avoid int overflow in leap day calculations,
1918 but it's OK to assume that A and B are close to each other. */
1919 int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3);
1920 int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3);
1921 int a100 = a4 / 25 - (a4 % 25 < 0);
1922 int b100 = b4 / 25 - (b4 % 25 < 0);
1923 int a400 = a100 >> 2;
1924 int b400 = b100 >> 2;
1925 int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
1926 int years = a->tm_year - b->tm_year;
1927 int days = (365 * years + intervening_leap_days
1928 + (a->tm_yday - b->tm_yday));
1929 return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
1930 + (a->tm_min - b->tm_min))
1931 + (a->tm_sec - b->tm_sec));
1932 }
1933
1934 DEFUN ("current-time-zone", Fcurrent_time_zone, Scurrent_time_zone, 0, 1, 0,
1935 doc: /* Return the offset and name for the local time zone.
1936 This returns a list of the form (OFFSET NAME).
1937 OFFSET is an integer number of seconds ahead of UTC (east of Greenwich).
1938 A negative value means west of Greenwich.
1939 NAME is a string giving the name of the time zone.
1940 If SPECIFIED-TIME is given, the time zone offset is determined from it
1941 instead of using the current time. The argument should have the form
1942 (HIGH LOW . IGNORED). Thus, you can use times obtained from
1943 `current-time' and from `file-attributes'. SPECIFIED-TIME can also
1944 have the form (HIGH . LOW), but this is considered obsolete.
1945
1946 Some operating systems cannot provide all this information to Emacs;
1947 in this case, `current-time-zone' returns a list containing nil for
1948 the data it can't find. */)
1949 (specified_time)
1950 Lisp_Object specified_time;
1951 {
1952 time_t value;
1953 struct tm *t;
1954 struct tm gmt;
1955
1956 if (!lisp_time_argument (specified_time, &value, NULL))
1957 t = NULL;
1958 else
1959 {
1960 BLOCK_INPUT;
1961 t = gmtime (&value);
1962 if (t)
1963 {
1964 gmt = *t;
1965 t = localtime (&value);
1966 }
1967 UNBLOCK_INPUT;
1968 }
1969
1970 if (t)
1971 {
1972 int offset = tm_diff (t, &gmt);
1973 char *s = 0;
1974 char buf[6];
1975 #ifdef HAVE_TM_ZONE
1976 if (t->tm_zone)
1977 s = (char *)t->tm_zone;
1978 #else /* not HAVE_TM_ZONE */
1979 #ifdef HAVE_TZNAME
1980 if (t->tm_isdst == 0 || t->tm_isdst == 1)
1981 s = tzname[t->tm_isdst];
1982 #endif
1983 #endif /* not HAVE_TM_ZONE */
1984
1985 #if defined HAVE_TM_ZONE || defined HAVE_TZNAME
1986 if (s)
1987 {
1988 /* On Japanese w32, we can get a Japanese string as time
1989 zone name. Don't accept that. */
1990 char *p;
1991 for (p = s; *p && (isalnum ((unsigned char)*p) || *p == ' '); ++p)
1992 ;
1993 if (p == s || *p)
1994 s = NULL;
1995 }
1996 #endif
1997
1998 if (!s)
1999 {
2000 /* No local time zone name is available; use "+-NNNN" instead. */
2001 int am = (offset < 0 ? -offset : offset) / 60;
2002 sprintf (buf, "%c%02d%02d", (offset < 0 ? '-' : '+'), am/60, am%60);
2003 s = buf;
2004 }
2005 return Fcons (make_number (offset), Fcons (build_string (s), Qnil));
2006 }
2007 else
2008 return Fmake_list (make_number (2), Qnil);
2009 }
2010
2011 /* This holds the value of `environ' produced by the previous
2012 call to Fset_time_zone_rule, or 0 if Fset_time_zone_rule
2013 has never been called. */
2014 static char **environbuf;
2015
2016 DEFUN ("set-time-zone-rule", Fset_time_zone_rule, Sset_time_zone_rule, 1, 1, 0,
2017 doc: /* Set the local time zone using TZ, a string specifying a time zone rule.
2018 If TZ is nil, use implementation-defined default time zone information.
2019 If TZ is t, use Universal Time. */)
2020 (tz)
2021 Lisp_Object tz;
2022 {
2023 char *tzstring;
2024
2025 if (NILP (tz))
2026 tzstring = 0;
2027 else if (EQ (tz, Qt))
2028 tzstring = "UTC0";
2029 else
2030 {
2031 CHECK_STRING (tz);
2032 tzstring = (char *) SDATA (tz);
2033 }
2034
2035 set_time_zone_rule (tzstring);
2036 if (environbuf)
2037 free (environbuf);
2038 environbuf = environ;
2039
2040 return Qnil;
2041 }
2042
2043 #ifdef LOCALTIME_CACHE
2044
2045 /* These two values are known to load tz files in buggy implementations,
2046 i.e. Solaris 1 executables running under either Solaris 1 or Solaris 2.
2047 Their values shouldn't matter in non-buggy implementations.
2048 We don't use string literals for these strings,
2049 since if a string in the environment is in readonly
2050 storage, it runs afoul of bugs in SVR4 and Solaris 2.3.
2051 See Sun bugs 1113095 and 1114114, ``Timezone routines
2052 improperly modify environment''. */
2053
2054 static char set_time_zone_rule_tz1[] = "TZ=GMT+0";
2055 static char set_time_zone_rule_tz2[] = "TZ=GMT+1";
2056
2057 #endif
2058
2059 /* Set the local time zone rule to TZSTRING.
2060 This allocates memory into `environ', which it is the caller's
2061 responsibility to free. */
2062
2063 void
2064 set_time_zone_rule (tzstring)
2065 char *tzstring;
2066 {
2067 int envptrs;
2068 char **from, **to, **newenv;
2069
2070 /* Make the ENVIRON vector longer with room for TZSTRING. */
2071 for (from = environ; *from; from++)
2072 continue;
2073 envptrs = from - environ + 2;
2074 newenv = to = (char **) xmalloc (envptrs * sizeof (char *)
2075 + (tzstring ? strlen (tzstring) + 4 : 0));
2076
2077 /* Add TZSTRING to the end of environ, as a value for TZ. */
2078 if (tzstring)
2079 {
2080 char *t = (char *) (to + envptrs);
2081 strcpy (t, "TZ=");
2082 strcat (t, tzstring);
2083 *to++ = t;
2084 }
2085
2086 /* Copy the old environ vector elements into NEWENV,
2087 but don't copy the TZ variable.
2088 So we have only one definition of TZ, which came from TZSTRING. */
2089 for (from = environ; *from; from++)
2090 if (strncmp (*from, "TZ=", 3) != 0)
2091 *to++ = *from;
2092 *to = 0;
2093
2094 environ = newenv;
2095
2096 /* If we do have a TZSTRING, NEWENV points to the vector slot where
2097 the TZ variable is stored. If we do not have a TZSTRING,
2098 TO points to the vector slot which has the terminating null. */
2099
2100 #ifdef LOCALTIME_CACHE
2101 {
2102 /* In SunOS 4.1.3_U1 and 4.1.4, if TZ has a value like
2103 "US/Pacific" that loads a tz file, then changes to a value like
2104 "XXX0" that does not load a tz file, and then changes back to
2105 its original value, the last change is (incorrectly) ignored.
2106 Also, if TZ changes twice in succession to values that do
2107 not load a tz file, tzset can dump core (see Sun bug#1225179).
2108 The following code works around these bugs. */
2109
2110 if (tzstring)
2111 {
2112 /* Temporarily set TZ to a value that loads a tz file
2113 and that differs from tzstring. */
2114 char *tz = *newenv;
2115 *newenv = (strcmp (tzstring, set_time_zone_rule_tz1 + 3) == 0
2116 ? set_time_zone_rule_tz2 : set_time_zone_rule_tz1);
2117 tzset ();
2118 *newenv = tz;
2119 }
2120 else
2121 {
2122 /* The implied tzstring is unknown, so temporarily set TZ to
2123 two different values that each load a tz file. */
2124 *to = set_time_zone_rule_tz1;
2125 to[1] = 0;
2126 tzset ();
2127 *to = set_time_zone_rule_tz2;
2128 tzset ();
2129 *to = 0;
2130 }
2131
2132 /* Now TZ has the desired value, and tzset can be invoked safely. */
2133 }
2134
2135 tzset ();
2136 #endif
2137 }
2138 \f
2139 /* Insert NARGS Lisp objects in the array ARGS by calling INSERT_FUNC
2140 (if a type of object is Lisp_Int) or INSERT_FROM_STRING_FUNC (if a
2141 type of object is Lisp_String). INHERIT is passed to
2142 INSERT_FROM_STRING_FUNC as the last argument. */
2143
2144 static void
2145 general_insert_function (insert_func, insert_from_string_func,
2146 inherit, nargs, args)
2147 void (*insert_func) P_ ((const unsigned char *, int));
2148 void (*insert_from_string_func) P_ ((Lisp_Object, int, int, int, int, int));
2149 int inherit, nargs;
2150 register Lisp_Object *args;
2151 {
2152 register int argnum;
2153 register Lisp_Object val;
2154
2155 for (argnum = 0; argnum < nargs; argnum++)
2156 {
2157 val = args[argnum];
2158 if (INTEGERP (val))
2159 {
2160 unsigned char str[MAX_MULTIBYTE_LENGTH];
2161 int len;
2162
2163 if (!NILP (current_buffer->enable_multibyte_characters))
2164 len = CHAR_STRING (XFASTINT (val), str);
2165 else
2166 {
2167 str[0] = (SINGLE_BYTE_CHAR_P (XINT (val))
2168 ? XINT (val)
2169 : multibyte_char_to_unibyte (XINT (val), Qnil));
2170 len = 1;
2171 }
2172 (*insert_func) (str, len);
2173 }
2174 else if (STRINGP (val))
2175 {
2176 (*insert_from_string_func) (val, 0, 0,
2177 SCHARS (val),
2178 SBYTES (val),
2179 inherit);
2180 }
2181 else
2182 wrong_type_argument (Qchar_or_string_p, val);
2183 }
2184 }
2185
2186 void
2187 insert1 (arg)
2188 Lisp_Object arg;
2189 {
2190 Finsert (1, &arg);
2191 }
2192
2193
2194 /* Callers passing one argument to Finsert need not gcpro the
2195 argument "array", since the only element of the array will
2196 not be used after calling insert or insert_from_string, so
2197 we don't care if it gets trashed. */
2198
2199 DEFUN ("insert", Finsert, Sinsert, 0, MANY, 0,
2200 doc: /* Insert the arguments, either strings or characters, at point.
2201 Point and before-insertion markers move forward to end up
2202 after the inserted text.
2203 Any other markers at the point of insertion remain before the text.
2204
2205 If the current buffer is multibyte, unibyte strings are converted
2206 to multibyte for insertion (see `string-make-multibyte').
2207 If the current buffer is unibyte, multibyte strings are converted
2208 to unibyte for insertion (see `string-make-unibyte').
2209
2210 When operating on binary data, it may be necessary to preserve the
2211 original bytes of a unibyte string when inserting it into a multibyte
2212 buffer; to accomplish this, apply `string-as-multibyte' to the string
2213 and insert the result.
2214
2215 usage: (insert &rest ARGS) */)
2216 (nargs, args)
2217 int nargs;
2218 register Lisp_Object *args;
2219 {
2220 general_insert_function (insert, insert_from_string, 0, nargs, args);
2221 return Qnil;
2222 }
2223
2224 DEFUN ("insert-and-inherit", Finsert_and_inherit, Sinsert_and_inherit,
2225 0, MANY, 0,
2226 doc: /* Insert the arguments at point, inheriting properties from adjoining text.
2227 Point and before-insertion markers move forward to end up
2228 after the inserted text.
2229 Any other markers at the point of insertion remain before the text.
2230
2231 If the current buffer is multibyte, unibyte strings are converted
2232 to multibyte for insertion (see `unibyte-char-to-multibyte').
2233 If the current buffer is unibyte, multibyte strings are converted
2234 to unibyte for insertion.
2235
2236 usage: (insert-and-inherit &rest ARGS) */)
2237 (nargs, args)
2238 int nargs;
2239 register Lisp_Object *args;
2240 {
2241 general_insert_function (insert_and_inherit, insert_from_string, 1,
2242 nargs, args);
2243 return Qnil;
2244 }
2245
2246 DEFUN ("insert-before-markers", Finsert_before_markers, Sinsert_before_markers, 0, MANY, 0,
2247 doc: /* Insert strings or characters at point, relocating markers after the text.
2248 Point and markers move forward to end up after the inserted text.
2249
2250 If the current buffer is multibyte, unibyte strings are converted
2251 to multibyte for insertion (see `unibyte-char-to-multibyte').
2252 If the current buffer is unibyte, multibyte strings are converted
2253 to unibyte for insertion.
2254
2255 usage: (insert-before-markers &rest ARGS) */)
2256 (nargs, args)
2257 int nargs;
2258 register Lisp_Object *args;
2259 {
2260 general_insert_function (insert_before_markers,
2261 insert_from_string_before_markers, 0,
2262 nargs, args);
2263 return Qnil;
2264 }
2265
2266 DEFUN ("insert-before-markers-and-inherit", Finsert_and_inherit_before_markers,
2267 Sinsert_and_inherit_before_markers, 0, MANY, 0,
2268 doc: /* Insert text at point, relocating markers and inheriting properties.
2269 Point and markers move forward to end up after the inserted text.
2270
2271 If the current buffer is multibyte, unibyte strings are converted
2272 to multibyte for insertion (see `unibyte-char-to-multibyte').
2273 If the current buffer is unibyte, multibyte strings are converted
2274 to unibyte for insertion.
2275
2276 usage: (insert-before-markers-and-inherit &rest ARGS) */)
2277 (nargs, args)
2278 int nargs;
2279 register Lisp_Object *args;
2280 {
2281 general_insert_function (insert_before_markers_and_inherit,
2282 insert_from_string_before_markers, 1,
2283 nargs, args);
2284 return Qnil;
2285 }
2286 \f
2287 DEFUN ("insert-char", Finsert_char, Sinsert_char, 2, 3, 0,
2288 doc: /* Insert COUNT copies of CHARACTER.
2289 Point, and before-insertion markers, are relocated as in the function `insert'.
2290 The optional third arg INHERIT, if non-nil, says to inherit text properties
2291 from adjoining text, if those properties are sticky. */)
2292 (character, count, inherit)
2293 Lisp_Object character, count, inherit;
2294 {
2295 register unsigned char *string;
2296 register int strlen;
2297 register int i, n;
2298 int len;
2299 unsigned char str[MAX_MULTIBYTE_LENGTH];
2300
2301 CHECK_NUMBER (character);
2302 CHECK_NUMBER (count);
2303
2304 if (!NILP (current_buffer->enable_multibyte_characters))
2305 len = CHAR_STRING (XFASTINT (character), str);
2306 else
2307 str[0] = XFASTINT (character), len = 1;
2308 n = XINT (count) * len;
2309 if (n <= 0)
2310 return Qnil;
2311 strlen = min (n, 256 * len);
2312 string = (unsigned char *) alloca (strlen);
2313 for (i = 0; i < strlen; i++)
2314 string[i] = str[i % len];
2315 while (n >= strlen)
2316 {
2317 QUIT;
2318 if (!NILP (inherit))
2319 insert_and_inherit (string, strlen);
2320 else
2321 insert (string, strlen);
2322 n -= strlen;
2323 }
2324 if (n > 0)
2325 {
2326 if (!NILP (inherit))
2327 insert_and_inherit (string, n);
2328 else
2329 insert (string, n);
2330 }
2331 return Qnil;
2332 }
2333
2334 \f
2335 /* Making strings from buffer contents. */
2336
2337 /* Return a Lisp_String containing the text of the current buffer from
2338 START to END. If text properties are in use and the current buffer
2339 has properties in the range specified, the resulting string will also
2340 have them, if PROPS is nonzero.
2341
2342 We don't want to use plain old make_string here, because it calls
2343 make_uninit_string, which can cause the buffer arena to be
2344 compacted. make_string has no way of knowing that the data has
2345 been moved, and thus copies the wrong data into the string. This
2346 doesn't effect most of the other users of make_string, so it should
2347 be left as is. But we should use this function when conjuring
2348 buffer substrings. */
2349
2350 Lisp_Object
2351 make_buffer_string (start, end, props)
2352 int start, end;
2353 int props;
2354 {
2355 int start_byte = CHAR_TO_BYTE (start);
2356 int end_byte = CHAR_TO_BYTE (end);
2357
2358 return make_buffer_string_both (start, start_byte, end, end_byte, props);
2359 }
2360
2361 /* Return a Lisp_String containing the text of the current buffer from
2362 START / START_BYTE to END / END_BYTE.
2363
2364 If text properties are in use and the current buffer
2365 has properties in the range specified, the resulting string will also
2366 have them, if PROPS is nonzero.
2367
2368 We don't want to use plain old make_string here, because it calls
2369 make_uninit_string, which can cause the buffer arena to be
2370 compacted. make_string has no way of knowing that the data has
2371 been moved, and thus copies the wrong data into the string. This
2372 doesn't effect most of the other users of make_string, so it should
2373 be left as is. But we should use this function when conjuring
2374 buffer substrings. */
2375
2376 Lisp_Object
2377 make_buffer_string_both (start, start_byte, end, end_byte, props)
2378 int start, start_byte, end, end_byte;
2379 int props;
2380 {
2381 Lisp_Object result, tem, tem1;
2382
2383 if (start < GPT && GPT < end)
2384 move_gap (start);
2385
2386 if (! NILP (current_buffer->enable_multibyte_characters))
2387 result = make_uninit_multibyte_string (end - start, end_byte - start_byte);
2388 else
2389 result = make_uninit_string (end - start);
2390 bcopy (BYTE_POS_ADDR (start_byte), SDATA (result),
2391 end_byte - start_byte);
2392
2393 /* If desired, update and copy the text properties. */
2394 if (props)
2395 {
2396 update_buffer_properties (start, end);
2397
2398 tem = Fnext_property_change (make_number (start), Qnil, make_number (end));
2399 tem1 = Ftext_properties_at (make_number (start), Qnil);
2400
2401 if (XINT (tem) != end || !NILP (tem1))
2402 copy_intervals_to_string (result, current_buffer, start,
2403 end - start);
2404 }
2405
2406 return result;
2407 }
2408
2409 /* Call Vbuffer_access_fontify_functions for the range START ... END
2410 in the current buffer, if necessary. */
2411
2412 static void
2413 update_buffer_properties (start, end)
2414 int start, end;
2415 {
2416 /* If this buffer has some access functions,
2417 call them, specifying the range of the buffer being accessed. */
2418 if (!NILP (Vbuffer_access_fontify_functions))
2419 {
2420 Lisp_Object args[3];
2421 Lisp_Object tem;
2422
2423 args[0] = Qbuffer_access_fontify_functions;
2424 XSETINT (args[1], start);
2425 XSETINT (args[2], end);
2426
2427 /* But don't call them if we can tell that the work
2428 has already been done. */
2429 if (!NILP (Vbuffer_access_fontified_property))
2430 {
2431 tem = Ftext_property_any (args[1], args[2],
2432 Vbuffer_access_fontified_property,
2433 Qnil, Qnil);
2434 if (! NILP (tem))
2435 Frun_hook_with_args (3, args);
2436 }
2437 else
2438 Frun_hook_with_args (3, args);
2439 }
2440 }
2441
2442 DEFUN ("buffer-substring", Fbuffer_substring, Sbuffer_substring, 2, 2, 0,
2443 doc: /* Return the contents of part of the current buffer as a string.
2444 The two arguments START and END are character positions;
2445 they can be in either order.
2446 The string returned is multibyte if the buffer is multibyte.
2447
2448 This function copies the text properties of that part of the buffer
2449 into the result string; if you don't want the text properties,
2450 use `buffer-substring-no-properties' instead. */)
2451 (start, end)
2452 Lisp_Object start, end;
2453 {
2454 register int b, e;
2455
2456 validate_region (&start, &end);
2457 b = XINT (start);
2458 e = XINT (end);
2459
2460 return make_buffer_string (b, e, 1);
2461 }
2462
2463 DEFUN ("buffer-substring-no-properties", Fbuffer_substring_no_properties,
2464 Sbuffer_substring_no_properties, 2, 2, 0,
2465 doc: /* Return the characters of part of the buffer, without the text properties.
2466 The two arguments START and END are character positions;
2467 they can be in either order. */)
2468 (start, end)
2469 Lisp_Object start, end;
2470 {
2471 register int b, e;
2472
2473 validate_region (&start, &end);
2474 b = XINT (start);
2475 e = XINT (end);
2476
2477 return make_buffer_string (b, e, 0);
2478 }
2479
2480 DEFUN ("buffer-string", Fbuffer_string, Sbuffer_string, 0, 0, 0,
2481 doc: /* Return the contents of the current buffer as a string.
2482 If narrowing is in effect, this function returns only the visible part
2483 of the buffer. */)
2484 ()
2485 {
2486 return make_buffer_string (BEGV, ZV, 1);
2487 }
2488
2489 DEFUN ("insert-buffer-substring", Finsert_buffer_substring, Sinsert_buffer_substring,
2490 1, 3, 0,
2491 doc: /* Insert before point a substring of the contents of BUFFER.
2492 BUFFER may be a buffer or a buffer name.
2493 Arguments START and END are character positions specifying the substring.
2494 They default to the values of (point-min) and (point-max) in BUFFER. */)
2495 (buffer, start, end)
2496 Lisp_Object buffer, start, end;
2497 {
2498 register int b, e, temp;
2499 register struct buffer *bp, *obuf;
2500 Lisp_Object buf;
2501
2502 buf = Fget_buffer (buffer);
2503 if (NILP (buf))
2504 nsberror (buffer);
2505 bp = XBUFFER (buf);
2506 if (NILP (bp->name))
2507 error ("Selecting deleted buffer");
2508
2509 if (NILP (start))
2510 b = BUF_BEGV (bp);
2511 else
2512 {
2513 CHECK_NUMBER_COERCE_MARKER (start);
2514 b = XINT (start);
2515 }
2516 if (NILP (end))
2517 e = BUF_ZV (bp);
2518 else
2519 {
2520 CHECK_NUMBER_COERCE_MARKER (end);
2521 e = XINT (end);
2522 }
2523
2524 if (b > e)
2525 temp = b, b = e, e = temp;
2526
2527 if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp)))
2528 args_out_of_range (start, end);
2529
2530 obuf = current_buffer;
2531 set_buffer_internal_1 (bp);
2532 update_buffer_properties (b, e);
2533 set_buffer_internal_1 (obuf);
2534
2535 insert_from_buffer (bp, b, e - b, 0);
2536 return Qnil;
2537 }
2538
2539 DEFUN ("compare-buffer-substrings", Fcompare_buffer_substrings, Scompare_buffer_substrings,
2540 6, 6, 0,
2541 doc: /* Compare two substrings of two buffers; return result as number.
2542 the value is -N if first string is less after N-1 chars,
2543 +N if first string is greater after N-1 chars, or 0 if strings match.
2544 Each substring is represented as three arguments: BUFFER, START and END.
2545 That makes six args in all, three for each substring.
2546
2547 The value of `case-fold-search' in the current buffer
2548 determines whether case is significant or ignored. */)
2549 (buffer1, start1, end1, buffer2, start2, end2)
2550 Lisp_Object buffer1, start1, end1, buffer2, start2, end2;
2551 {
2552 register int begp1, endp1, begp2, endp2, temp;
2553 register struct buffer *bp1, *bp2;
2554 register Lisp_Object trt
2555 = (!NILP (current_buffer->case_fold_search)
2556 ? current_buffer->case_canon_table : Qnil);
2557 int chars = 0;
2558 int i1, i2, i1_byte, i2_byte;
2559
2560 /* Find the first buffer and its substring. */
2561
2562 if (NILP (buffer1))
2563 bp1 = current_buffer;
2564 else
2565 {
2566 Lisp_Object buf1;
2567 buf1 = Fget_buffer (buffer1);
2568 if (NILP (buf1))
2569 nsberror (buffer1);
2570 bp1 = XBUFFER (buf1);
2571 if (NILP (bp1->name))
2572 error ("Selecting deleted buffer");
2573 }
2574
2575 if (NILP (start1))
2576 begp1 = BUF_BEGV (bp1);
2577 else
2578 {
2579 CHECK_NUMBER_COERCE_MARKER (start1);
2580 begp1 = XINT (start1);
2581 }
2582 if (NILP (end1))
2583 endp1 = BUF_ZV (bp1);
2584 else
2585 {
2586 CHECK_NUMBER_COERCE_MARKER (end1);
2587 endp1 = XINT (end1);
2588 }
2589
2590 if (begp1 > endp1)
2591 temp = begp1, begp1 = endp1, endp1 = temp;
2592
2593 if (!(BUF_BEGV (bp1) <= begp1
2594 && begp1 <= endp1
2595 && endp1 <= BUF_ZV (bp1)))
2596 args_out_of_range (start1, end1);
2597
2598 /* Likewise for second substring. */
2599
2600 if (NILP (buffer2))
2601 bp2 = current_buffer;
2602 else
2603 {
2604 Lisp_Object buf2;
2605 buf2 = Fget_buffer (buffer2);
2606 if (NILP (buf2))
2607 nsberror (buffer2);
2608 bp2 = XBUFFER (buf2);
2609 if (NILP (bp2->name))
2610 error ("Selecting deleted buffer");
2611 }
2612
2613 if (NILP (start2))
2614 begp2 = BUF_BEGV (bp2);
2615 else
2616 {
2617 CHECK_NUMBER_COERCE_MARKER (start2);
2618 begp2 = XINT (start2);
2619 }
2620 if (NILP (end2))
2621 endp2 = BUF_ZV (bp2);
2622 else
2623 {
2624 CHECK_NUMBER_COERCE_MARKER (end2);
2625 endp2 = XINT (end2);
2626 }
2627
2628 if (begp2 > endp2)
2629 temp = begp2, begp2 = endp2, endp2 = temp;
2630
2631 if (!(BUF_BEGV (bp2) <= begp2
2632 && begp2 <= endp2
2633 && endp2 <= BUF_ZV (bp2)))
2634 args_out_of_range (start2, end2);
2635
2636 i1 = begp1;
2637 i2 = begp2;
2638 i1_byte = buf_charpos_to_bytepos (bp1, i1);
2639 i2_byte = buf_charpos_to_bytepos (bp2, i2);
2640
2641 while (i1 < endp1 && i2 < endp2)
2642 {
2643 /* When we find a mismatch, we must compare the
2644 characters, not just the bytes. */
2645 int c1, c2;
2646
2647 QUIT;
2648
2649 if (! NILP (bp1->enable_multibyte_characters))
2650 {
2651 c1 = BUF_FETCH_MULTIBYTE_CHAR (bp1, i1_byte);
2652 BUF_INC_POS (bp1, i1_byte);
2653 i1++;
2654 }
2655 else
2656 {
2657 c1 = BUF_FETCH_BYTE (bp1, i1);
2658 c1 = unibyte_char_to_multibyte (c1);
2659 i1++;
2660 }
2661
2662 if (! NILP (bp2->enable_multibyte_characters))
2663 {
2664 c2 = BUF_FETCH_MULTIBYTE_CHAR (bp2, i2_byte);
2665 BUF_INC_POS (bp2, i2_byte);
2666 i2++;
2667 }
2668 else
2669 {
2670 c2 = BUF_FETCH_BYTE (bp2, i2);
2671 c2 = unibyte_char_to_multibyte (c2);
2672 i2++;
2673 }
2674
2675 if (!NILP (trt))
2676 {
2677 c1 = CHAR_TABLE_TRANSLATE (trt, c1);
2678 c2 = CHAR_TABLE_TRANSLATE (trt, c2);
2679 }
2680 if (c1 < c2)
2681 return make_number (- 1 - chars);
2682 if (c1 > c2)
2683 return make_number (chars + 1);
2684
2685 chars++;
2686 }
2687
2688 /* The strings match as far as they go.
2689 If one is shorter, that one is less. */
2690 if (chars < endp1 - begp1)
2691 return make_number (chars + 1);
2692 else if (chars < endp2 - begp2)
2693 return make_number (- chars - 1);
2694
2695 /* Same length too => they are equal. */
2696 return make_number (0);
2697 }
2698 \f
2699 static Lisp_Object
2700 subst_char_in_region_unwind (arg)
2701 Lisp_Object arg;
2702 {
2703 return current_buffer->undo_list = arg;
2704 }
2705
2706 static Lisp_Object
2707 subst_char_in_region_unwind_1 (arg)
2708 Lisp_Object arg;
2709 {
2710 return current_buffer->filename = arg;
2711 }
2712
2713 DEFUN ("subst-char-in-region", Fsubst_char_in_region,
2714 Ssubst_char_in_region, 4, 5, 0,
2715 doc: /* From START to END, replace FROMCHAR with TOCHAR each time it occurs.
2716 If optional arg NOUNDO is non-nil, don't record this change for undo
2717 and don't mark the buffer as really changed.
2718 Both characters must have the same length of multi-byte form. */)
2719 (start, end, fromchar, tochar, noundo)
2720 Lisp_Object start, end, fromchar, tochar, noundo;
2721 {
2722 register int pos, pos_byte, stop, i, len, end_byte;
2723 /* Keep track of the first change in the buffer:
2724 if 0 we haven't found it yet.
2725 if < 0 we've found it and we've run the before-change-function.
2726 if > 0 we've actually performed it and the value is its position. */
2727 int changed = 0;
2728 unsigned char fromstr[MAX_MULTIBYTE_LENGTH], tostr[MAX_MULTIBYTE_LENGTH];
2729 unsigned char *p;
2730 int count = SPECPDL_INDEX ();
2731 #define COMBINING_NO 0
2732 #define COMBINING_BEFORE 1
2733 #define COMBINING_AFTER 2
2734 #define COMBINING_BOTH (COMBINING_BEFORE | COMBINING_AFTER)
2735 int maybe_byte_combining = COMBINING_NO;
2736 int last_changed = 0;
2737 int multibyte_p = !NILP (current_buffer->enable_multibyte_characters);
2738
2739 restart:
2740
2741 validate_region (&start, &end);
2742 CHECK_NUMBER (fromchar);
2743 CHECK_NUMBER (tochar);
2744
2745 if (multibyte_p)
2746 {
2747 len = CHAR_STRING (XFASTINT (fromchar), fromstr);
2748 if (CHAR_STRING (XFASTINT (tochar), tostr) != len)
2749 error ("Characters in `subst-char-in-region' have different byte-lengths");
2750 if (!ASCII_BYTE_P (*tostr))
2751 {
2752 /* If *TOSTR is in the range 0x80..0x9F and TOCHAR is not a
2753 complete multibyte character, it may be combined with the
2754 after bytes. If it is in the range 0xA0..0xFF, it may be
2755 combined with the before and after bytes. */
2756 if (!CHAR_HEAD_P (*tostr))
2757 maybe_byte_combining = COMBINING_BOTH;
2758 else if (BYTES_BY_CHAR_HEAD (*tostr) > len)
2759 maybe_byte_combining = COMBINING_AFTER;
2760 }
2761 }
2762 else
2763 {
2764 len = 1;
2765 fromstr[0] = XFASTINT (fromchar);
2766 tostr[0] = XFASTINT (tochar);
2767 }
2768
2769 pos = XINT (start);
2770 pos_byte = CHAR_TO_BYTE (pos);
2771 stop = CHAR_TO_BYTE (XINT (end));
2772 end_byte = stop;
2773
2774 /* If we don't want undo, turn off putting stuff on the list.
2775 That's faster than getting rid of things,
2776 and it prevents even the entry for a first change.
2777 Also inhibit locking the file. */
2778 if (!changed && !NILP (noundo))
2779 {
2780 record_unwind_protect (subst_char_in_region_unwind,
2781 current_buffer->undo_list);
2782 current_buffer->undo_list = Qt;
2783 /* Don't do file-locking. */
2784 record_unwind_protect (subst_char_in_region_unwind_1,
2785 current_buffer->filename);
2786 current_buffer->filename = Qnil;
2787 }
2788
2789 if (pos_byte < GPT_BYTE)
2790 stop = min (stop, GPT_BYTE);
2791 while (1)
2792 {
2793 int pos_byte_next = pos_byte;
2794
2795 if (pos_byte >= stop)
2796 {
2797 if (pos_byte >= end_byte) break;
2798 stop = end_byte;
2799 }
2800 p = BYTE_POS_ADDR (pos_byte);
2801 if (multibyte_p)
2802 INC_POS (pos_byte_next);
2803 else
2804 ++pos_byte_next;
2805 if (pos_byte_next - pos_byte == len
2806 && p[0] == fromstr[0]
2807 && (len == 1
2808 || (p[1] == fromstr[1]
2809 && (len == 2 || (p[2] == fromstr[2]
2810 && (len == 3 || p[3] == fromstr[3]))))))
2811 {
2812 if (changed < 0)
2813 /* We've already seen this and run the before-change-function;
2814 this time we only need to record the actual position. */
2815 changed = pos;
2816 else if (!changed)
2817 {
2818 changed = -1;
2819 modify_region (current_buffer, pos, XINT (end), 0);
2820
2821 if (! NILP (noundo))
2822 {
2823 if (MODIFF - 1 == SAVE_MODIFF)
2824 SAVE_MODIFF++;
2825 if (MODIFF - 1 == current_buffer->auto_save_modified)
2826 current_buffer->auto_save_modified++;
2827 }
2828
2829 /* The before-change-function may have moved the gap
2830 or even modified the buffer so we should start over. */
2831 goto restart;
2832 }
2833
2834 /* Take care of the case where the new character
2835 combines with neighboring bytes. */
2836 if (maybe_byte_combining
2837 && (maybe_byte_combining == COMBINING_AFTER
2838 ? (pos_byte_next < Z_BYTE
2839 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2840 : ((pos_byte_next < Z_BYTE
2841 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2842 || (pos_byte > BEG_BYTE
2843 && ! ASCII_BYTE_P (FETCH_BYTE (pos_byte - 1))))))
2844 {
2845 Lisp_Object tem, string;
2846
2847 struct gcpro gcpro1;
2848
2849 tem = current_buffer->undo_list;
2850 GCPRO1 (tem);
2851
2852 /* Make a multibyte string containing this single character. */
2853 string = make_multibyte_string (tostr, 1, len);
2854 /* replace_range is less efficient, because it moves the gap,
2855 but it handles combining correctly. */
2856 replace_range (pos, pos + 1, string,
2857 0, 0, 1);
2858 pos_byte_next = CHAR_TO_BYTE (pos);
2859 if (pos_byte_next > pos_byte)
2860 /* Before combining happened. We should not increment
2861 POS. So, to cancel the later increment of POS,
2862 decrease it now. */
2863 pos--;
2864 else
2865 INC_POS (pos_byte_next);
2866
2867 if (! NILP (noundo))
2868 current_buffer->undo_list = tem;
2869
2870 UNGCPRO;
2871 }
2872 else
2873 {
2874 if (NILP (noundo))
2875 record_change (pos, 1);
2876 for (i = 0; i < len; i++) *p++ = tostr[i];
2877 }
2878 last_changed = pos + 1;
2879 }
2880 pos_byte = pos_byte_next;
2881 pos++;
2882 }
2883
2884 if (changed > 0)
2885 {
2886 signal_after_change (changed,
2887 last_changed - changed, last_changed - changed);
2888 update_compositions (changed, last_changed, CHECK_ALL);
2889 }
2890
2891 unbind_to (count, Qnil);
2892 return Qnil;
2893 }
2894
2895 DEFUN ("translate-region-internal", Ftranslate_region_internal,
2896 Stranslate_region_internal, 3, 3, 0,
2897 doc: /* Internal use only.
2898 From START to END, translate characters according to TABLE.
2899 TABLE is a string; the Nth character in it is the mapping
2900 for the character with code N.
2901 It returns the number of characters changed. */)
2902 (start, end, table)
2903 Lisp_Object start;
2904 Lisp_Object end;
2905 register Lisp_Object table;
2906 {
2907 register unsigned char *tt; /* Trans table. */
2908 register int nc; /* New character. */
2909 int cnt; /* Number of changes made. */
2910 int size; /* Size of translate table. */
2911 int pos, pos_byte, end_pos;
2912 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
2913 int string_multibyte;
2914
2915 validate_region (&start, &end);
2916 if (CHAR_TABLE_P (table))
2917 {
2918 size = MAX_CHAR;
2919 tt = NULL;
2920 }
2921 else
2922 {
2923 CHECK_STRING (table);
2924
2925 if (! multibyte && (SCHARS (table) < SBYTES (table)))
2926 table = string_make_unibyte (table);
2927 string_multibyte = SCHARS (table) < SBYTES (table);
2928 size = SCHARS (table);
2929 tt = SDATA (table);
2930 }
2931
2932 pos = XINT (start);
2933 pos_byte = CHAR_TO_BYTE (pos);
2934 end_pos = XINT (end);
2935 modify_region (current_buffer, pos, XINT (end), 0);
2936
2937 cnt = 0;
2938 for (; pos < end_pos; )
2939 {
2940 register unsigned char *p = BYTE_POS_ADDR (pos_byte);
2941 unsigned char *str, buf[MAX_MULTIBYTE_LENGTH];
2942 int len, str_len;
2943 int oc;
2944
2945 if (multibyte)
2946 oc = STRING_CHAR_AND_LENGTH (p, MAX_MULTIBYTE_LENGTH, len);
2947 else
2948 oc = *p, len = 1;
2949 if (oc < size)
2950 {
2951 if (tt)
2952 {
2953 /* Reload as signal_after_change in last iteration may GC. */
2954 tt = SDATA (table);
2955 if (string_multibyte)
2956 {
2957 str = tt + string_char_to_byte (table, oc);
2958 nc = STRING_CHAR_AND_LENGTH (str, MAX_MULTIBYTE_LENGTH,
2959 str_len);
2960 }
2961 else
2962 {
2963 nc = tt[oc];
2964 if (! ASCII_BYTE_P (nc) && multibyte)
2965 {
2966 str_len = CHAR_STRING (nc, buf);
2967 str = buf;
2968 }
2969 else
2970 {
2971 str_len = 1;
2972 str = tt + oc;
2973 }
2974 }
2975 }
2976 else
2977 {
2978 Lisp_Object val;
2979 int c;
2980
2981 nc = oc;
2982 val = CHAR_TABLE_REF (table, oc);
2983 if (INTEGERP (val)
2984 && (c = XINT (val), CHAR_VALID_P (c, 0)))
2985 {
2986 nc = c;
2987 str_len = CHAR_STRING (nc, buf);
2988 str = buf;
2989 }
2990 }
2991
2992 if (nc != oc)
2993 {
2994 if (len != str_len)
2995 {
2996 Lisp_Object string;
2997
2998 /* This is less efficient, because it moves the gap,
2999 but it should multibyte characters correctly. */
3000 string = make_multibyte_string (str, 1, str_len);
3001 replace_range (pos, pos + 1, string, 1, 0, 1);
3002 len = str_len;
3003 }
3004 else
3005 {
3006 record_change (pos, 1);
3007 while (str_len-- > 0)
3008 *p++ = *str++;
3009 signal_after_change (pos, 1, 1);
3010 update_compositions (pos, pos + 1, CHECK_BORDER);
3011 }
3012 ++cnt;
3013 }
3014 }
3015 pos_byte += len;
3016 pos++;
3017 }
3018
3019 return make_number (cnt);
3020 }
3021
3022 DEFUN ("delete-region", Fdelete_region, Sdelete_region, 2, 2, "r",
3023 doc: /* Delete the text between point and mark.
3024
3025 When called from a program, expects two arguments,
3026 positions (integers or markers) specifying the stretch to be deleted. */)
3027 (start, end)
3028 Lisp_Object start, end;
3029 {
3030 validate_region (&start, &end);
3031 del_range (XINT (start), XINT (end));
3032 return Qnil;
3033 }
3034
3035 DEFUN ("delete-and-extract-region", Fdelete_and_extract_region,
3036 Sdelete_and_extract_region, 2, 2, 0,
3037 doc: /* Delete the text between START and END and return it. */)
3038 (start, end)
3039 Lisp_Object start, end;
3040 {
3041 validate_region (&start, &end);
3042 if (XINT (start) == XINT (end))
3043 return build_string ("");
3044 return del_range_1 (XINT (start), XINT (end), 1, 1);
3045 }
3046 \f
3047 DEFUN ("widen", Fwiden, Swiden, 0, 0, "",
3048 doc: /* Remove restrictions (narrowing) from current buffer.
3049 This allows the buffer's full text to be seen and edited. */)
3050 ()
3051 {
3052 if (BEG != BEGV || Z != ZV)
3053 current_buffer->clip_changed = 1;
3054 BEGV = BEG;
3055 BEGV_BYTE = BEG_BYTE;
3056 SET_BUF_ZV_BOTH (current_buffer, Z, Z_BYTE);
3057 /* Changing the buffer bounds invalidates any recorded current column. */
3058 invalidate_current_column ();
3059 return Qnil;
3060 }
3061
3062 DEFUN ("narrow-to-region", Fnarrow_to_region, Snarrow_to_region, 2, 2, "r",
3063 doc: /* Restrict editing in this buffer to the current region.
3064 The rest of the text becomes temporarily invisible and untouchable
3065 but is not deleted; if you save the buffer in a file, the invisible
3066 text is included in the file. \\[widen] makes all visible again.
3067 See also `save-restriction'.
3068
3069 When calling from a program, pass two arguments; positions (integers
3070 or markers) bounding the text that should remain visible. */)
3071 (start, end)
3072 register Lisp_Object start, end;
3073 {
3074 CHECK_NUMBER_COERCE_MARKER (start);
3075 CHECK_NUMBER_COERCE_MARKER (end);
3076
3077 if (XINT (start) > XINT (end))
3078 {
3079 Lisp_Object tem;
3080 tem = start; start = end; end = tem;
3081 }
3082
3083 if (!(BEG <= XINT (start) && XINT (start) <= XINT (end) && XINT (end) <= Z))
3084 args_out_of_range (start, end);
3085
3086 if (BEGV != XFASTINT (start) || ZV != XFASTINT (end))
3087 current_buffer->clip_changed = 1;
3088
3089 SET_BUF_BEGV (current_buffer, XFASTINT (start));
3090 SET_BUF_ZV (current_buffer, XFASTINT (end));
3091 if (PT < XFASTINT (start))
3092 SET_PT (XFASTINT (start));
3093 if (PT > XFASTINT (end))
3094 SET_PT (XFASTINT (end));
3095 /* Changing the buffer bounds invalidates any recorded current column. */
3096 invalidate_current_column ();
3097 return Qnil;
3098 }
3099
3100 Lisp_Object
3101 save_restriction_save ()
3102 {
3103 if (BEGV == BEG && ZV == Z)
3104 /* The common case that the buffer isn't narrowed.
3105 We return just the buffer object, which save_restriction_restore
3106 recognizes as meaning `no restriction'. */
3107 return Fcurrent_buffer ();
3108 else
3109 /* We have to save a restriction, so return a pair of markers, one
3110 for the beginning and one for the end. */
3111 {
3112 Lisp_Object beg, end;
3113
3114 beg = buildmark (BEGV, BEGV_BYTE);
3115 end = buildmark (ZV, ZV_BYTE);
3116
3117 /* END must move forward if text is inserted at its exact location. */
3118 XMARKER(end)->insertion_type = 1;
3119
3120 return Fcons (beg, end);
3121 }
3122 }
3123
3124 Lisp_Object
3125 save_restriction_restore (data)
3126 Lisp_Object data;
3127 {
3128 if (CONSP (data))
3129 /* A pair of marks bounding a saved restriction. */
3130 {
3131 struct Lisp_Marker *beg = XMARKER (XCAR (data));
3132 struct Lisp_Marker *end = XMARKER (XCDR (data));
3133 struct buffer *buf = beg->buffer; /* END should have the same buffer. */
3134
3135 if (buf /* Verify marker still points to a buffer. */
3136 && (beg->charpos != BUF_BEGV (buf) || end->charpos != BUF_ZV (buf)))
3137 /* The restriction has changed from the saved one, so restore
3138 the saved restriction. */
3139 {
3140 int pt = BUF_PT (buf);
3141
3142 SET_BUF_BEGV_BOTH (buf, beg->charpos, beg->bytepos);
3143 SET_BUF_ZV_BOTH (buf, end->charpos, end->bytepos);
3144
3145 if (pt < beg->charpos || pt > end->charpos)
3146 /* The point is outside the new visible range, move it inside. */
3147 SET_BUF_PT_BOTH (buf,
3148 clip_to_bounds (beg->charpos, pt, end->charpos),
3149 clip_to_bounds (beg->bytepos, BUF_PT_BYTE (buf),
3150 end->bytepos));
3151
3152 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3153 }
3154 }
3155 else
3156 /* A buffer, which means that there was no old restriction. */
3157 {
3158 struct buffer *buf = XBUFFER (data);
3159
3160 if (buf /* Verify marker still points to a buffer. */
3161 && (BUF_BEGV (buf) != BUF_BEG (buf) || BUF_ZV (buf) != BUF_Z (buf)))
3162 /* The buffer has been narrowed, get rid of the narrowing. */
3163 {
3164 SET_BUF_BEGV_BOTH (buf, BUF_BEG (buf), BUF_BEG_BYTE (buf));
3165 SET_BUF_ZV_BOTH (buf, BUF_Z (buf), BUF_Z_BYTE (buf));
3166
3167 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3168 }
3169 }
3170
3171 return Qnil;
3172 }
3173
3174 DEFUN ("save-restriction", Fsave_restriction, Ssave_restriction, 0, UNEVALLED, 0,
3175 doc: /* Execute BODY, saving and restoring current buffer's restrictions.
3176 The buffer's restrictions make parts of the beginning and end invisible.
3177 \(They are set up with `narrow-to-region' and eliminated with `widen'.)
3178 This special form, `save-restriction', saves the current buffer's restrictions
3179 when it is entered, and restores them when it is exited.
3180 So any `narrow-to-region' within BODY lasts only until the end of the form.
3181 The old restrictions settings are restored
3182 even in case of abnormal exit (throw or error).
3183
3184 The value returned is the value of the last form in BODY.
3185
3186 Note: if you are using both `save-excursion' and `save-restriction',
3187 use `save-excursion' outermost:
3188 (save-excursion (save-restriction ...))
3189
3190 usage: (save-restriction &rest BODY) */)
3191 (body)
3192 Lisp_Object body;
3193 {
3194 register Lisp_Object val;
3195 int count = SPECPDL_INDEX ();
3196
3197 record_unwind_protect (save_restriction_restore, save_restriction_save ());
3198 val = Fprogn (body);
3199 return unbind_to (count, val);
3200 }
3201 \f
3202 /* Buffer for the most recent text displayed by Fmessage_box. */
3203 static char *message_text;
3204
3205 /* Allocated length of that buffer. */
3206 static int message_length;
3207
3208 DEFUN ("message", Fmessage, Smessage, 1, MANY, 0,
3209 doc: /* Display a message at the bottom of the screen.
3210 The message also goes into the `*Messages*' buffer.
3211 \(In keyboard macros, that's all it does.)
3212 Return the message.
3213
3214 The first argument is a format control string, and the rest are data
3215 to be formatted under control of the string. See `format' for details.
3216
3217 Note: Use (message "%s" VALUE) to print the value of expressions and
3218 variables to avoid accidentally interpreting `%' as format specifiers.
3219
3220 If the first argument is nil or the empty string, the function clears
3221 any existing message; this lets the minibuffer contents show. See
3222 also `current-message'.
3223
3224 usage: (message FORMAT-STRING &rest ARGS) */)
3225 (nargs, args)
3226 int nargs;
3227 Lisp_Object *args;
3228 {
3229 if (NILP (args[0])
3230 || (STRINGP (args[0])
3231 && SBYTES (args[0]) == 0))
3232 {
3233 message (0);
3234 return args[0];
3235 }
3236 else
3237 {
3238 register Lisp_Object val;
3239 val = Fformat (nargs, args);
3240 message3 (val, SBYTES (val), STRING_MULTIBYTE (val));
3241 return val;
3242 }
3243 }
3244
3245 DEFUN ("message-box", Fmessage_box, Smessage_box, 1, MANY, 0,
3246 doc: /* Display a message, in a dialog box if possible.
3247 If a dialog box is not available, use the echo area.
3248 The first argument is a format control string, and the rest are data
3249 to be formatted under control of the string. See `format' for details.
3250
3251 If the first argument is nil or the empty string, clear any existing
3252 message; let the minibuffer contents show.
3253
3254 usage: (message-box FORMAT-STRING &rest ARGS) */)
3255 (nargs, args)
3256 int nargs;
3257 Lisp_Object *args;
3258 {
3259 if (NILP (args[0]))
3260 {
3261 message (0);
3262 return Qnil;
3263 }
3264 else
3265 {
3266 register Lisp_Object val;
3267 val = Fformat (nargs, args);
3268 #ifdef HAVE_MENUS
3269 /* The MS-DOS frames support popup menus even though they are
3270 not FRAME_WINDOW_P. */
3271 if (FRAME_WINDOW_P (XFRAME (selected_frame))
3272 || FRAME_MSDOS_P (XFRAME (selected_frame)))
3273 {
3274 Lisp_Object pane, menu, obj;
3275 struct gcpro gcpro1;
3276 pane = Fcons (Fcons (build_string ("OK"), Qt), Qnil);
3277 GCPRO1 (pane);
3278 menu = Fcons (val, pane);
3279 obj = Fx_popup_dialog (Qt, menu, Qt);
3280 UNGCPRO;
3281 return val;
3282 }
3283 #endif /* HAVE_MENUS */
3284 /* Copy the data so that it won't move when we GC. */
3285 if (! message_text)
3286 {
3287 message_text = (char *)xmalloc (80);
3288 message_length = 80;
3289 }
3290 if (SBYTES (val) > message_length)
3291 {
3292 message_length = SBYTES (val);
3293 message_text = (char *)xrealloc (message_text, message_length);
3294 }
3295 bcopy (SDATA (val), message_text, SBYTES (val));
3296 message2 (message_text, SBYTES (val),
3297 STRING_MULTIBYTE (val));
3298 return val;
3299 }
3300 }
3301 #ifdef HAVE_MENUS
3302 extern Lisp_Object last_nonmenu_event;
3303 #endif
3304
3305 DEFUN ("message-or-box", Fmessage_or_box, Smessage_or_box, 1, MANY, 0,
3306 doc: /* Display a message in a dialog box or in the echo area.
3307 If this command was invoked with the mouse, use a dialog box if
3308 `use-dialog-box' is non-nil.
3309 Otherwise, use the echo area.
3310 The first argument is a format control string, and the rest are data
3311 to be formatted under control of the string. See `format' for details.
3312
3313 If the first argument is nil or the empty string, clear any existing
3314 message; let the minibuffer contents show.
3315
3316 usage: (message-or-box FORMAT-STRING &rest ARGS) */)
3317 (nargs, args)
3318 int nargs;
3319 Lisp_Object *args;
3320 {
3321 #ifdef HAVE_MENUS
3322 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3323 && use_dialog_box)
3324 return Fmessage_box (nargs, args);
3325 #endif
3326 return Fmessage (nargs, args);
3327 }
3328
3329 DEFUN ("current-message", Fcurrent_message, Scurrent_message, 0, 0, 0,
3330 doc: /* Return the string currently displayed in the echo area, or nil if none. */)
3331 ()
3332 {
3333 return current_message ();
3334 }
3335
3336
3337 DEFUN ("propertize", Fpropertize, Spropertize, 1, MANY, 0,
3338 doc: /* Return a copy of STRING with text properties added.
3339 First argument is the string to copy.
3340 Remaining arguments form a sequence of PROPERTY VALUE pairs for text
3341 properties to add to the result.
3342 usage: (propertize STRING &rest PROPERTIES) */)
3343 (nargs, args)
3344 int nargs;
3345 Lisp_Object *args;
3346 {
3347 Lisp_Object properties, string;
3348 struct gcpro gcpro1, gcpro2;
3349 int i;
3350
3351 /* Number of args must be odd. */
3352 if ((nargs & 1) == 0 || nargs < 1)
3353 error ("Wrong number of arguments");
3354
3355 properties = string = Qnil;
3356 GCPRO2 (properties, string);
3357
3358 /* First argument must be a string. */
3359 CHECK_STRING (args[0]);
3360 string = Fcopy_sequence (args[0]);
3361
3362 for (i = 1; i < nargs; i += 2)
3363 properties = Fcons (args[i], Fcons (args[i + 1], properties));
3364
3365 Fadd_text_properties (make_number (0),
3366 make_number (SCHARS (string)),
3367 properties, string);
3368 RETURN_UNGCPRO (string);
3369 }
3370
3371
3372 /* Number of bytes that STRING will occupy when put into the result.
3373 MULTIBYTE is nonzero if the result should be multibyte. */
3374
3375 #define CONVERTED_BYTE_SIZE(MULTIBYTE, STRING) \
3376 (((MULTIBYTE) && ! STRING_MULTIBYTE (STRING)) \
3377 ? count_size_as_multibyte (SDATA (STRING), SBYTES (STRING)) \
3378 : SBYTES (STRING))
3379
3380 DEFUN ("format", Fformat, Sformat, 1, MANY, 0,
3381 doc: /* Format a string out of a format-string and arguments.
3382 The first argument is a format control string.
3383 The other arguments are substituted into it to make the result, a string.
3384 It may contain %-sequences meaning to substitute the next argument.
3385 %s means print a string argument. Actually, prints any object, with `princ'.
3386 %d means print as number in decimal (%o octal, %x hex).
3387 %X is like %x, but uses upper case.
3388 %e means print a number in exponential notation.
3389 %f means print a number in decimal-point notation.
3390 %g means print a number in exponential notation
3391 or decimal-point notation, whichever uses fewer characters.
3392 %c means print a number as a single character.
3393 %S means print any object as an s-expression (using `prin1').
3394 The argument used for %d, %o, %x, %e, %f, %g or %c must be a number.
3395 Use %% to put a single % into the output.
3396
3397 The basic structure of a %-sequence is
3398 % <flags> <width> <precision> character
3399 where flags is [- #0]+, width is [0-9]+, and precision is .[0-9]+
3400
3401 usage: (format STRING &rest OBJECTS) */)
3402 (nargs, args)
3403 int nargs;
3404 register Lisp_Object *args;
3405 {
3406 register int n; /* The number of the next arg to substitute */
3407 register int total; /* An estimate of the final length */
3408 char *buf, *p;
3409 register unsigned char *format, *end, *format_start;
3410 int nchars;
3411 /* Nonzero if the output should be a multibyte string,
3412 which is true if any of the inputs is one. */
3413 int multibyte = 0;
3414 /* When we make a multibyte string, we must pay attention to the
3415 byte combining problem, i.e., a byte may be combined with a
3416 multibyte charcter of the previous string. This flag tells if we
3417 must consider such a situation or not. */
3418 int maybe_combine_byte;
3419 unsigned char *this_format;
3420 /* Precision for each spec, or -1, a flag value meaning no precision
3421 was given in that spec. Element 0, corresonding to the format
3422 string itself, will not be used. Element NARGS, corresponding to
3423 no argument, *will* be assigned to in the case that a `%' and `.'
3424 occur after the final format specifier. */
3425 int *precision = (int *) (alloca((nargs + 1) * sizeof (int)));
3426 int longest_format;
3427 Lisp_Object val;
3428 int arg_intervals = 0;
3429 USE_SAFE_ALLOCA;
3430
3431 /* discarded[I] is 1 if byte I of the format
3432 string was not copied into the output.
3433 It is 2 if byte I was not the first byte of its character. */
3434 char *discarded = 0;
3435
3436 /* Each element records, for one argument,
3437 the start and end bytepos in the output string,
3438 and whether the argument is a string with intervals.
3439 info[0] is unused. Unused elements have -1 for start. */
3440 struct info
3441 {
3442 int start, end, intervals;
3443 } *info = 0;
3444
3445 /* It should not be necessary to GCPRO ARGS, because
3446 the caller in the interpreter should take care of that. */
3447
3448 /* Try to determine whether the result should be multibyte.
3449 This is not always right; sometimes the result needs to be multibyte
3450 because of an object that we will pass through prin1,
3451 and in that case, we won't know it here. */
3452 for (n = 0; n < nargs; n++)
3453 {
3454 if (STRINGP (args[n]) && STRING_MULTIBYTE (args[n]))
3455 multibyte = 1;
3456 /* Piggyback on this loop to initialize precision[N]. */
3457 precision[n] = -1;
3458 }
3459 precision[nargs] = -1;
3460
3461 CHECK_STRING (args[0]);
3462 /* We may have to change "%S" to "%s". */
3463 args[0] = Fcopy_sequence (args[0]);
3464
3465 /* GC should never happen here, so abort if it does. */
3466 abort_on_gc++;
3467
3468 /* If we start out planning a unibyte result,
3469 then discover it has to be multibyte, we jump back to retry.
3470 That can only happen from the first large while loop below. */
3471 retry:
3472
3473 format = SDATA (args[0]);
3474 format_start = format;
3475 end = format + SBYTES (args[0]);
3476 longest_format = 0;
3477
3478 /* Make room in result for all the non-%-codes in the control string. */
3479 total = 5 + CONVERTED_BYTE_SIZE (multibyte, args[0]) + 1;
3480
3481 /* Allocate the info and discarded tables. */
3482 {
3483 int nbytes = (nargs+1) * sizeof *info;
3484 int i;
3485 if (!info)
3486 info = (struct info *) alloca (nbytes);
3487 bzero (info, nbytes);
3488 for (i = 0; i <= nargs; i++)
3489 info[i].start = -1;
3490 if (!discarded)
3491 SAFE_ALLOCA (discarded, char *, SBYTES (args[0]));
3492 bzero (discarded, SBYTES (args[0]));
3493 }
3494
3495 /* Add to TOTAL enough space to hold the converted arguments. */
3496
3497 n = 0;
3498 while (format != end)
3499 if (*format++ == '%')
3500 {
3501 int thissize = 0;
3502 int actual_width = 0;
3503 unsigned char *this_format_start = format - 1;
3504 int field_width = 0;
3505
3506 /* General format specifications look like
3507
3508 '%' [flags] [field-width] [precision] format
3509
3510 where
3511
3512 flags ::= [- #0]+
3513 field-width ::= [0-9]+
3514 precision ::= '.' [0-9]*
3515
3516 If a field-width is specified, it specifies to which width
3517 the output should be padded with blanks, iff the output
3518 string is shorter than field-width.
3519
3520 If precision is specified, it specifies the number of
3521 digits to print after the '.' for floats, or the max.
3522 number of chars to print from a string. */
3523
3524 while (format != end
3525 && (*format == '-' || *format == '0' || *format == '#'
3526 || * format == ' '))
3527 ++format;
3528
3529 if (*format >= '0' && *format <= '9')
3530 {
3531 for (field_width = 0; *format >= '0' && *format <= '9'; ++format)
3532 field_width = 10 * field_width + *format - '0';
3533 }
3534
3535 /* N is not incremented for another few lines below, so refer to
3536 element N+1 (which might be precision[NARGS]). */
3537 if (*format == '.')
3538 {
3539 ++format;
3540 for (precision[n+1] = 0; *format >= '0' && *format <= '9'; ++format)
3541 precision[n+1] = 10 * precision[n+1] + *format - '0';
3542 }
3543
3544 if (format - this_format_start + 1 > longest_format)
3545 longest_format = format - this_format_start + 1;
3546
3547 if (format == end)
3548 error ("Format string ends in middle of format specifier");
3549 if (*format == '%')
3550 format++;
3551 else if (++n >= nargs)
3552 error ("Not enough arguments for format string");
3553 else if (*format == 'S')
3554 {
3555 /* For `S', prin1 the argument and then treat like a string. */
3556 register Lisp_Object tem;
3557 tem = Fprin1_to_string (args[n], Qnil);
3558 if (STRING_MULTIBYTE (tem) && ! multibyte)
3559 {
3560 multibyte = 1;
3561 goto retry;
3562 }
3563 args[n] = tem;
3564 /* If we restart the loop, we should not come here again
3565 because args[n] is now a string and calling
3566 Fprin1_to_string on it produces superflous double
3567 quotes. So, change "%S" to "%s" now. */
3568 *format = 's';
3569 goto string;
3570 }
3571 else if (SYMBOLP (args[n]))
3572 {
3573 args[n] = SYMBOL_NAME (args[n]);
3574 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3575 {
3576 multibyte = 1;
3577 goto retry;
3578 }
3579 goto string;
3580 }
3581 else if (STRINGP (args[n]))
3582 {
3583 string:
3584 if (*format != 's' && *format != 'S')
3585 error ("Format specifier doesn't match argument type");
3586 /* In the case (PRECISION[N] > 0), THISSIZE may not need
3587 to be as large as is calculated here. Easy check for
3588 the case PRECISION = 0. */
3589 thissize = precision[n] ? CONVERTED_BYTE_SIZE (multibyte, args[n]) : 0;
3590 actual_width = lisp_string_width (args[n], -1, NULL, NULL);
3591 }
3592 /* Would get MPV otherwise, since Lisp_Int's `point' to low memory. */
3593 else if (INTEGERP (args[n]) && *format != 's')
3594 {
3595 /* The following loop assumes the Lisp type indicates
3596 the proper way to pass the argument.
3597 So make sure we have a flonum if the argument should
3598 be a double. */
3599 if (*format == 'e' || *format == 'f' || *format == 'g')
3600 args[n] = Ffloat (args[n]);
3601 else
3602 if (*format != 'd' && *format != 'o' && *format != 'x'
3603 && *format != 'i' && *format != 'X' && *format != 'c')
3604 error ("Invalid format operation %%%c", *format);
3605
3606 thissize = 30;
3607 if (*format == 'c')
3608 {
3609 if (! SINGLE_BYTE_CHAR_P (XINT (args[n]))
3610 /* Note: No one can remember why we have to treat
3611 the character 0 as a multibyte character here.
3612 But, until it causes a real problem, let's
3613 don't change it. */
3614 || XINT (args[n]) == 0)
3615 {
3616 if (! multibyte)
3617 {
3618 multibyte = 1;
3619 goto retry;
3620 }
3621 args[n] = Fchar_to_string (args[n]);
3622 thissize = SBYTES (args[n]);
3623 }
3624 else if (! ASCII_BYTE_P (XINT (args[n])) && multibyte)
3625 {
3626 args[n]
3627 = Fchar_to_string (Funibyte_char_to_multibyte (args[n]));
3628 thissize = SBYTES (args[n]);
3629 }
3630 }
3631 }
3632 else if (FLOATP (args[n]) && *format != 's')
3633 {
3634 if (! (*format == 'e' || *format == 'f' || *format == 'g'))
3635 {
3636 if (*format != 'd' && *format != 'o' && *format != 'x'
3637 && *format != 'i' && *format != 'X' && *format != 'c')
3638 error ("Invalid format operation %%%c", *format);
3639 /* This fails unnecessarily if args[n] is bigger than
3640 most-positive-fixnum but smaller than MAXINT.
3641 These cases are important because we sometimes use floats
3642 to represent such integer values (typically such values
3643 come from UIDs or PIDs). */
3644 /* args[n] = Ftruncate (args[n], Qnil); */
3645 }
3646
3647 /* Note that we're using sprintf to print floats,
3648 so we have to take into account what that function
3649 prints. */
3650 /* Filter out flag value of -1. */
3651 thissize = (MAX_10_EXP + 100
3652 + (precision[n] > 0 ? precision[n] : 0));
3653 }
3654 else
3655 {
3656 /* Anything but a string, convert to a string using princ. */
3657 register Lisp_Object tem;
3658 tem = Fprin1_to_string (args[n], Qt);
3659 if (STRING_MULTIBYTE (tem) && ! multibyte)
3660 {
3661 multibyte = 1;
3662 goto retry;
3663 }
3664 args[n] = tem;
3665 goto string;
3666 }
3667
3668 thissize += max (0, field_width - actual_width);
3669 total += thissize + 4;
3670 }
3671
3672 abort_on_gc--;
3673
3674 /* Now we can no longer jump to retry.
3675 TOTAL and LONGEST_FORMAT are known for certain. */
3676
3677 this_format = (unsigned char *) alloca (longest_format + 1);
3678
3679 /* Allocate the space for the result.
3680 Note that TOTAL is an overestimate. */
3681 SAFE_ALLOCA (buf, char *, total);
3682
3683 p = buf;
3684 nchars = 0;
3685 n = 0;
3686
3687 /* Scan the format and store result in BUF. */
3688 format = SDATA (args[0]);
3689 format_start = format;
3690 end = format + SBYTES (args[0]);
3691 maybe_combine_byte = 0;
3692 while (format != end)
3693 {
3694 if (*format == '%')
3695 {
3696 int minlen;
3697 int negative = 0;
3698 unsigned char *this_format_start = format;
3699
3700 discarded[format - format_start] = 1;
3701 format++;
3702
3703 while (index("-0# ", *format))
3704 {
3705 if (*format == '-')
3706 {
3707 negative = 1;
3708 }
3709 discarded[format - format_start] = 1;
3710 ++format;
3711 }
3712
3713 minlen = atoi (format);
3714
3715 while ((*format >= '0' && *format <= '9') || *format == '.')
3716 {
3717 discarded[format - format_start] = 1;
3718 format++;
3719 }
3720
3721 if (*format++ == '%')
3722 {
3723 *p++ = '%';
3724 nchars++;
3725 continue;
3726 }
3727
3728 ++n;
3729
3730 discarded[format - format_start - 1] = 1;
3731 info[n].start = nchars;
3732
3733 if (STRINGP (args[n]))
3734 {
3735 /* handle case (precision[n] >= 0) */
3736
3737 int width, padding;
3738 int nbytes, start, end;
3739 int nchars_string;
3740
3741 /* lisp_string_width ignores a precision of 0, but GNU
3742 libc functions print 0 characters when the precision
3743 is 0. Imitate libc behavior here. Changing
3744 lisp_string_width is the right thing, and will be
3745 done, but meanwhile we work with it. */
3746
3747 if (precision[n] == 0)
3748 width = nchars_string = nbytes = 0;
3749 else if (precision[n] > 0)
3750 width = lisp_string_width (args[n], precision[n], &nchars_string, &nbytes);
3751 else
3752 { /* no precision spec given for this argument */
3753 width = lisp_string_width (args[n], -1, NULL, NULL);
3754 nbytes = SBYTES (args[n]);
3755 nchars_string = SCHARS (args[n]);
3756 }
3757
3758 /* If spec requires it, pad on right with spaces. */
3759 padding = minlen - width;
3760 if (! negative)
3761 while (padding-- > 0)
3762 {
3763 *p++ = ' ';
3764 ++nchars;
3765 }
3766
3767 info[n].start = start = nchars;
3768 nchars += nchars_string;
3769 end = nchars;
3770
3771 if (p > buf
3772 && multibyte
3773 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3774 && STRING_MULTIBYTE (args[n])
3775 && !CHAR_HEAD_P (SREF (args[n], 0)))
3776 maybe_combine_byte = 1;
3777
3778 p += copy_text (SDATA (args[n]), p,
3779 nbytes,
3780 STRING_MULTIBYTE (args[n]), multibyte);
3781
3782 info[n].end = nchars;
3783
3784 if (negative)
3785 while (padding-- > 0)
3786 {
3787 *p++ = ' ';
3788 nchars++;
3789 }
3790
3791 /* If this argument has text properties, record where
3792 in the result string it appears. */
3793 if (STRING_INTERVALS (args[n]))
3794 info[n].intervals = arg_intervals = 1;
3795 }
3796 else if (INTEGERP (args[n]) || FLOATP (args[n]))
3797 {
3798 int this_nchars;
3799
3800 bcopy (this_format_start, this_format,
3801 format - this_format_start);
3802 this_format[format - this_format_start] = 0;
3803
3804 if (INTEGERP (args[n]))
3805 {
3806 if (format[-1] == 'd')
3807 sprintf (p, this_format, XINT (args[n]));
3808 /* Don't sign-extend for octal or hex printing. */
3809 else
3810 sprintf (p, this_format, XUINT (args[n]));
3811 }
3812 else if (format[-1] == 'e' || format[-1] == 'f' || format[-1] == 'g')
3813 sprintf (p, this_format, XFLOAT_DATA (args[n]));
3814 else if (format[-1] == 'd')
3815 /* Maybe we should use "%1.0f" instead so it also works
3816 for values larger than MAXINT. */
3817 sprintf (p, this_format, (EMACS_INT) XFLOAT_DATA (args[n]));
3818 else
3819 /* Don't sign-extend for octal or hex printing. */
3820 sprintf (p, this_format, (EMACS_UINT) XFLOAT_DATA (args[n]));
3821
3822 if (p > buf
3823 && multibyte
3824 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3825 && !CHAR_HEAD_P (*((unsigned char *) p)))
3826 maybe_combine_byte = 1;
3827 this_nchars = strlen (p);
3828 if (multibyte)
3829 p += str_to_multibyte (p, buf + total - 1 - p, this_nchars);
3830 else
3831 p += this_nchars;
3832 nchars += this_nchars;
3833 info[n].end = nchars;
3834 }
3835
3836 }
3837 else if (STRING_MULTIBYTE (args[0]))
3838 {
3839 /* Copy a whole multibyte character. */
3840 if (p > buf
3841 && multibyte
3842 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3843 && !CHAR_HEAD_P (*format))
3844 maybe_combine_byte = 1;
3845 *p++ = *format++;
3846 while (! CHAR_HEAD_P (*format))
3847 {
3848 discarded[format - format_start] = 2;
3849 *p++ = *format++;
3850 }
3851 nchars++;
3852 }
3853 else if (multibyte)
3854 {
3855 /* Convert a single-byte character to multibyte. */
3856 int len = copy_text (format, p, 1, 0, 1);
3857
3858 p += len;
3859 format++;
3860 nchars++;
3861 }
3862 else
3863 *p++ = *format++, nchars++;
3864 }
3865
3866 if (p > buf + total)
3867 abort ();
3868
3869 if (maybe_combine_byte)
3870 nchars = multibyte_chars_in_text (buf, p - buf);
3871 val = make_specified_string (buf, nchars, p - buf, multibyte);
3872
3873 /* If we allocated BUF with malloc, free it too. */
3874 SAFE_FREE ();
3875
3876 /* If the format string has text properties, or any of the string
3877 arguments has text properties, set up text properties of the
3878 result string. */
3879
3880 if (STRING_INTERVALS (args[0]) || arg_intervals)
3881 {
3882 Lisp_Object len, new_len, props;
3883 struct gcpro gcpro1;
3884
3885 /* Add text properties from the format string. */
3886 len = make_number (SCHARS (args[0]));
3887 props = text_property_list (args[0], make_number (0), len, Qnil);
3888 GCPRO1 (props);
3889
3890 if (CONSP (props))
3891 {
3892 int bytepos = 0, position = 0, translated = 0, argn = 1;
3893 Lisp_Object list;
3894
3895 /* Adjust the bounds of each text property
3896 to the proper start and end in the output string. */
3897
3898 /* Put the positions in PROPS in increasing order, so that
3899 we can do (effectively) one scan through the position
3900 space of the format string. */
3901 props = Fnreverse (props);
3902
3903 /* BYTEPOS is the byte position in the format string,
3904 POSITION is the untranslated char position in it,
3905 TRANSLATED is the translated char position in BUF,
3906 and ARGN is the number of the next arg we will come to. */
3907 for (list = props; CONSP (list); list = XCDR (list))
3908 {
3909 Lisp_Object item;
3910 int pos;
3911
3912 item = XCAR (list);
3913
3914 /* First adjust the property start position. */
3915 pos = XINT (XCAR (item));
3916
3917 /* Advance BYTEPOS, POSITION, TRANSLATED and ARGN
3918 up to this position. */
3919 for (; position < pos; bytepos++)
3920 {
3921 if (! discarded[bytepos])
3922 position++, translated++;
3923 else if (discarded[bytepos] == 1)
3924 {
3925 position++;
3926 if (translated == info[argn].start)
3927 {
3928 translated += info[argn].end - info[argn].start;
3929 argn++;
3930 }
3931 }
3932 }
3933
3934 XSETCAR (item, make_number (translated));
3935
3936 /* Likewise adjust the property end position. */
3937 pos = XINT (XCAR (XCDR (item)));
3938
3939 for (; position < pos; bytepos++)
3940 {
3941 if (! discarded[bytepos])
3942 position++, translated++;
3943 else if (discarded[bytepos] == 1)
3944 {
3945 position++;
3946 if (translated == info[argn].start)
3947 {
3948 translated += info[argn].end - info[argn].start;
3949 argn++;
3950 }
3951 }
3952 }
3953
3954 XSETCAR (XCDR (item), make_number (translated));
3955 }
3956
3957 add_text_properties_from_list (val, props, make_number (0));
3958 }
3959
3960 /* Add text properties from arguments. */
3961 if (arg_intervals)
3962 for (n = 1; n < nargs; ++n)
3963 if (info[n].intervals)
3964 {
3965 len = make_number (SCHARS (args[n]));
3966 new_len = make_number (info[n].end - info[n].start);
3967 props = text_property_list (args[n], make_number (0), len, Qnil);
3968 extend_property_ranges (props, len, new_len);
3969 /* If successive arguments have properites, be sure that
3970 the value of `composition' property be the copy. */
3971 if (n > 1 && info[n - 1].end)
3972 make_composition_value_copy (props);
3973 add_text_properties_from_list (val, props,
3974 make_number (info[n].start));
3975 }
3976
3977 UNGCPRO;
3978 }
3979
3980 return val;
3981 }
3982
3983 Lisp_Object
3984 format2 (string1, arg0, arg1)
3985 char *string1;
3986 Lisp_Object arg0, arg1;
3987 {
3988 Lisp_Object args[3];
3989 args[0] = build_string (string1);
3990 args[1] = arg0;
3991 args[2] = arg1;
3992 return Fformat (3, args);
3993 }
3994 \f
3995 DEFUN ("char-equal", Fchar_equal, Schar_equal, 2, 2, 0,
3996 doc: /* Return t if two characters match, optionally ignoring case.
3997 Both arguments must be characters (i.e. integers).
3998 Case is ignored if `case-fold-search' is non-nil in the current buffer. */)
3999 (c1, c2)
4000 register Lisp_Object c1, c2;
4001 {
4002 int i1, i2;
4003 CHECK_NUMBER (c1);
4004 CHECK_NUMBER (c2);
4005
4006 if (XINT (c1) == XINT (c2))
4007 return Qt;
4008 if (NILP (current_buffer->case_fold_search))
4009 return Qnil;
4010
4011 /* Do these in separate statements,
4012 then compare the variables.
4013 because of the way DOWNCASE uses temp variables. */
4014 i1 = DOWNCASE (XFASTINT (c1));
4015 i2 = DOWNCASE (XFASTINT (c2));
4016 return (i1 == i2 ? Qt : Qnil);
4017 }
4018 \f
4019 /* Transpose the markers in two regions of the current buffer, and
4020 adjust the ones between them if necessary (i.e.: if the regions
4021 differ in size).
4022
4023 START1, END1 are the character positions of the first region.
4024 START1_BYTE, END1_BYTE are the byte positions.
4025 START2, END2 are the character positions of the second region.
4026 START2_BYTE, END2_BYTE are the byte positions.
4027
4028 Traverses the entire marker list of the buffer to do so, adding an
4029 appropriate amount to some, subtracting from some, and leaving the
4030 rest untouched. Most of this is copied from adjust_markers in insdel.c.
4031
4032 It's the caller's job to ensure that START1 <= END1 <= START2 <= END2. */
4033
4034 static void
4035 transpose_markers (start1, end1, start2, end2,
4036 start1_byte, end1_byte, start2_byte, end2_byte)
4037 register int start1, end1, start2, end2;
4038 register int start1_byte, end1_byte, start2_byte, end2_byte;
4039 {
4040 register int amt1, amt1_byte, amt2, amt2_byte, diff, diff_byte, mpos;
4041 register struct Lisp_Marker *marker;
4042
4043 /* Update point as if it were a marker. */
4044 if (PT < start1)
4045 ;
4046 else if (PT < end1)
4047 TEMP_SET_PT_BOTH (PT + (end2 - end1),
4048 PT_BYTE + (end2_byte - end1_byte));
4049 else if (PT < start2)
4050 TEMP_SET_PT_BOTH (PT + (end2 - start2) - (end1 - start1),
4051 (PT_BYTE + (end2_byte - start2_byte)
4052 - (end1_byte - start1_byte)));
4053 else if (PT < end2)
4054 TEMP_SET_PT_BOTH (PT - (start2 - start1),
4055 PT_BYTE - (start2_byte - start1_byte));
4056
4057 /* We used to adjust the endpoints here to account for the gap, but that
4058 isn't good enough. Even if we assume the caller has tried to move the
4059 gap out of our way, it might still be at start1 exactly, for example;
4060 and that places it `inside' the interval, for our purposes. The amount
4061 of adjustment is nontrivial if there's a `denormalized' marker whose
4062 position is between GPT and GPT + GAP_SIZE, so it's simpler to leave
4063 the dirty work to Fmarker_position, below. */
4064
4065 /* The difference between the region's lengths */
4066 diff = (end2 - start2) - (end1 - start1);
4067 diff_byte = (end2_byte - start2_byte) - (end1_byte - start1_byte);
4068
4069 /* For shifting each marker in a region by the length of the other
4070 region plus the distance between the regions. */
4071 amt1 = (end2 - start2) + (start2 - end1);
4072 amt2 = (end1 - start1) + (start2 - end1);
4073 amt1_byte = (end2_byte - start2_byte) + (start2_byte - end1_byte);
4074 amt2_byte = (end1_byte - start1_byte) + (start2_byte - end1_byte);
4075
4076 for (marker = BUF_MARKERS (current_buffer); marker; marker = marker->next)
4077 {
4078 mpos = marker->bytepos;
4079 if (mpos >= start1_byte && mpos < end2_byte)
4080 {
4081 if (mpos < end1_byte)
4082 mpos += amt1_byte;
4083 else if (mpos < start2_byte)
4084 mpos += diff_byte;
4085 else
4086 mpos -= amt2_byte;
4087 marker->bytepos = mpos;
4088 }
4089 mpos = marker->charpos;
4090 if (mpos >= start1 && mpos < end2)
4091 {
4092 if (mpos < end1)
4093 mpos += amt1;
4094 else if (mpos < start2)
4095 mpos += diff;
4096 else
4097 mpos -= amt2;
4098 }
4099 marker->charpos = mpos;
4100 }
4101 }
4102
4103 DEFUN ("transpose-regions", Ftranspose_regions, Stranspose_regions, 4, 5, 0,
4104 doc: /* Transpose region STARTR1 to ENDR1 with STARTR2 to ENDR2.
4105 The regions may not be overlapping, because the size of the buffer is
4106 never changed in a transposition.
4107
4108 Optional fifth arg LEAVE-MARKERS, if non-nil, means don't update
4109 any markers that happen to be located in the regions.
4110
4111 Transposing beyond buffer boundaries is an error. */)
4112 (startr1, endr1, startr2, endr2, leave_markers)
4113 Lisp_Object startr1, endr1, startr2, endr2, leave_markers;
4114 {
4115 register int start1, end1, start2, end2;
4116 int start1_byte, start2_byte, len1_byte, len2_byte;
4117 int gap, len1, len_mid, len2;
4118 unsigned char *start1_addr, *start2_addr, *temp;
4119
4120 INTERVAL cur_intv, tmp_interval1, tmp_interval_mid, tmp_interval2;
4121 cur_intv = BUF_INTERVALS (current_buffer);
4122
4123 validate_region (&startr1, &endr1);
4124 validate_region (&startr2, &endr2);
4125
4126 start1 = XFASTINT (startr1);
4127 end1 = XFASTINT (endr1);
4128 start2 = XFASTINT (startr2);
4129 end2 = XFASTINT (endr2);
4130 gap = GPT;
4131
4132 /* Swap the regions if they're reversed. */
4133 if (start2 < end1)
4134 {
4135 register int glumph = start1;
4136 start1 = start2;
4137 start2 = glumph;
4138 glumph = end1;
4139 end1 = end2;
4140 end2 = glumph;
4141 }
4142
4143 len1 = end1 - start1;
4144 len2 = end2 - start2;
4145
4146 if (start2 < end1)
4147 error ("Transposed regions overlap");
4148 else if (start1 == end1 || start2 == end2)
4149 error ("Transposed region has length 0");
4150
4151 /* The possibilities are:
4152 1. Adjacent (contiguous) regions, or separate but equal regions
4153 (no, really equal, in this case!), or
4154 2. Separate regions of unequal size.
4155
4156 The worst case is usually No. 2. It means that (aside from
4157 potential need for getting the gap out of the way), there also
4158 needs to be a shifting of the text between the two regions. So
4159 if they are spread far apart, we are that much slower... sigh. */
4160
4161 /* It must be pointed out that the really studly thing to do would
4162 be not to move the gap at all, but to leave it in place and work
4163 around it if necessary. This would be extremely efficient,
4164 especially considering that people are likely to do
4165 transpositions near where they are working interactively, which
4166 is exactly where the gap would be found. However, such code
4167 would be much harder to write and to read. So, if you are
4168 reading this comment and are feeling squirrely, by all means have
4169 a go! I just didn't feel like doing it, so I will simply move
4170 the gap the minimum distance to get it out of the way, and then
4171 deal with an unbroken array. */
4172
4173 /* Make sure the gap won't interfere, by moving it out of the text
4174 we will operate on. */
4175 if (start1 < gap && gap < end2)
4176 {
4177 if (gap - start1 < end2 - gap)
4178 move_gap (start1);
4179 else
4180 move_gap (end2);
4181 }
4182
4183 start1_byte = CHAR_TO_BYTE (start1);
4184 start2_byte = CHAR_TO_BYTE (start2);
4185 len1_byte = CHAR_TO_BYTE (end1) - start1_byte;
4186 len2_byte = CHAR_TO_BYTE (end2) - start2_byte;
4187
4188 #ifdef BYTE_COMBINING_DEBUG
4189 if (end1 == start2)
4190 {
4191 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4192 len2_byte, start1, start1_byte)
4193 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4194 len1_byte, end2, start2_byte + len2_byte)
4195 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4196 len1_byte, end2, start2_byte + len2_byte))
4197 abort ();
4198 }
4199 else
4200 {
4201 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4202 len2_byte, start1, start1_byte)
4203 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4204 len1_byte, start2, start2_byte)
4205 || count_combining_after (BYTE_POS_ADDR (start2_byte),
4206 len2_byte, end1, start1_byte + len1_byte)
4207 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4208 len1_byte, end2, start2_byte + len2_byte))
4209 abort ();
4210 }
4211 #endif
4212
4213 /* Hmmm... how about checking to see if the gap is large
4214 enough to use as the temporary storage? That would avoid an
4215 allocation... interesting. Later, don't fool with it now. */
4216
4217 /* Working without memmove, for portability (sigh), so must be
4218 careful of overlapping subsections of the array... */
4219
4220 if (end1 == start2) /* adjacent regions */
4221 {
4222 modify_region (current_buffer, start1, end2, 0);
4223 record_change (start1, len1 + len2);
4224
4225 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4226 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4227 Fset_text_properties (make_number (start1), make_number (end2),
4228 Qnil, Qnil);
4229
4230 /* First region smaller than second. */
4231 if (len1_byte < len2_byte)
4232 {
4233 USE_SAFE_ALLOCA;
4234
4235 SAFE_ALLOCA (temp, unsigned char *, len2_byte);
4236
4237 /* Don't precompute these addresses. We have to compute them
4238 at the last minute, because the relocating allocator might
4239 have moved the buffer around during the xmalloc. */
4240 start1_addr = BYTE_POS_ADDR (start1_byte);
4241 start2_addr = BYTE_POS_ADDR (start2_byte);
4242
4243 bcopy (start2_addr, temp, len2_byte);
4244 bcopy (start1_addr, start1_addr + len2_byte, len1_byte);
4245 bcopy (temp, start1_addr, len2_byte);
4246 SAFE_FREE ();
4247 }
4248 else
4249 /* First region not smaller than second. */
4250 {
4251 USE_SAFE_ALLOCA;
4252
4253 SAFE_ALLOCA (temp, unsigned char *, len1_byte);
4254 start1_addr = BYTE_POS_ADDR (start1_byte);
4255 start2_addr = BYTE_POS_ADDR (start2_byte);
4256 bcopy (start1_addr, temp, len1_byte);
4257 bcopy (start2_addr, start1_addr, len2_byte);
4258 bcopy (temp, start1_addr + len2_byte, len1_byte);
4259 SAFE_FREE ();
4260 }
4261 graft_intervals_into_buffer (tmp_interval1, start1 + len2,
4262 len1, current_buffer, 0);
4263 graft_intervals_into_buffer (tmp_interval2, start1,
4264 len2, current_buffer, 0);
4265 update_compositions (start1, start1 + len2, CHECK_BORDER);
4266 update_compositions (start1 + len2, end2, CHECK_TAIL);
4267 }
4268 /* Non-adjacent regions, because end1 != start2, bleagh... */
4269 else
4270 {
4271 len_mid = start2_byte - (start1_byte + len1_byte);
4272
4273 if (len1_byte == len2_byte)
4274 /* Regions are same size, though, how nice. */
4275 {
4276 USE_SAFE_ALLOCA;
4277
4278 modify_region (current_buffer, start1, end1, 0);
4279 modify_region (current_buffer, start2, end2, 0);
4280 record_change (start1, len1);
4281 record_change (start2, len2);
4282 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4283 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4284 Fset_text_properties (make_number (start1), make_number (end1),
4285 Qnil, Qnil);
4286 Fset_text_properties (make_number (start2), make_number (end2),
4287 Qnil, Qnil);
4288
4289 SAFE_ALLOCA (temp, unsigned char *, len1_byte);
4290 start1_addr = BYTE_POS_ADDR (start1_byte);
4291 start2_addr = BYTE_POS_ADDR (start2_byte);
4292 bcopy (start1_addr, temp, len1_byte);
4293 bcopy (start2_addr, start1_addr, len2_byte);
4294 bcopy (temp, start2_addr, len1_byte);
4295 SAFE_FREE ();
4296
4297 graft_intervals_into_buffer (tmp_interval1, start2,
4298 len1, current_buffer, 0);
4299 graft_intervals_into_buffer (tmp_interval2, start1,
4300 len2, current_buffer, 0);
4301 }
4302
4303 else if (len1_byte < len2_byte) /* Second region larger than first */
4304 /* Non-adjacent & unequal size, area between must also be shifted. */
4305 {
4306 USE_SAFE_ALLOCA;
4307
4308 modify_region (current_buffer, start1, end2, 0);
4309 record_change (start1, (end2 - start1));
4310 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4311 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4312 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4313 Fset_text_properties (make_number (start1), make_number (end2),
4314 Qnil, Qnil);
4315
4316 /* holds region 2 */
4317 SAFE_ALLOCA (temp, unsigned char *, len2_byte);
4318 start1_addr = BYTE_POS_ADDR (start1_byte);
4319 start2_addr = BYTE_POS_ADDR (start2_byte);
4320 bcopy (start2_addr, temp, len2_byte);
4321 bcopy (start1_addr, start1_addr + len_mid + len2_byte, len1_byte);
4322 safe_bcopy (start1_addr + len1_byte, start1_addr + len2_byte, len_mid);
4323 bcopy (temp, start1_addr, len2_byte);
4324 SAFE_FREE ();
4325
4326 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4327 len1, current_buffer, 0);
4328 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4329 len_mid, current_buffer, 0);
4330 graft_intervals_into_buffer (tmp_interval2, start1,
4331 len2, current_buffer, 0);
4332 }
4333 else
4334 /* Second region smaller than first. */
4335 {
4336 USE_SAFE_ALLOCA;
4337
4338 record_change (start1, (end2 - start1));
4339 modify_region (current_buffer, start1, end2, 0);
4340
4341 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4342 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4343 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4344 Fset_text_properties (make_number (start1), make_number (end2),
4345 Qnil, Qnil);
4346
4347 /* holds region 1 */
4348 SAFE_ALLOCA (temp, unsigned char *, len1_byte);
4349 start1_addr = BYTE_POS_ADDR (start1_byte);
4350 start2_addr = BYTE_POS_ADDR (start2_byte);
4351 bcopy (start1_addr, temp, len1_byte);
4352 bcopy (start2_addr, start1_addr, len2_byte);
4353 bcopy (start1_addr + len1_byte, start1_addr + len2_byte, len_mid);
4354 bcopy (temp, start1_addr + len2_byte + len_mid, len1_byte);
4355 SAFE_FREE ();
4356
4357 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4358 len1, current_buffer, 0);
4359 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4360 len_mid, current_buffer, 0);
4361 graft_intervals_into_buffer (tmp_interval2, start1,
4362 len2, current_buffer, 0);
4363 }
4364
4365 update_compositions (start1, start1 + len2, CHECK_BORDER);
4366 update_compositions (end2 - len1, end2, CHECK_BORDER);
4367 }
4368
4369 /* When doing multiple transpositions, it might be nice
4370 to optimize this. Perhaps the markers in any one buffer
4371 should be organized in some sorted data tree. */
4372 if (NILP (leave_markers))
4373 {
4374 transpose_markers (start1, end1, start2, end2,
4375 start1_byte, start1_byte + len1_byte,
4376 start2_byte, start2_byte + len2_byte);
4377 fix_start_end_in_overlays (start1, end2);
4378 }
4379
4380 return Qnil;
4381 }
4382
4383 \f
4384 void
4385 syms_of_editfns ()
4386 {
4387 environbuf = 0;
4388
4389 Qbuffer_access_fontify_functions
4390 = intern ("buffer-access-fontify-functions");
4391 staticpro (&Qbuffer_access_fontify_functions);
4392
4393 DEFVAR_LISP ("inhibit-field-text-motion", &Vinhibit_field_text_motion,
4394 doc: /* Non-nil means text motion commands don't notice fields. */);
4395 Vinhibit_field_text_motion = Qnil;
4396
4397 DEFVAR_LISP ("buffer-access-fontify-functions",
4398 &Vbuffer_access_fontify_functions,
4399 doc: /* List of functions called by `buffer-substring' to fontify if necessary.
4400 Each function is called with two arguments which specify the range
4401 of the buffer being accessed. */);
4402 Vbuffer_access_fontify_functions = Qnil;
4403
4404 {
4405 Lisp_Object obuf;
4406 extern Lisp_Object Vprin1_to_string_buffer;
4407 obuf = Fcurrent_buffer ();
4408 /* Do this here, because init_buffer_once is too early--it won't work. */
4409 Fset_buffer (Vprin1_to_string_buffer);
4410 /* Make sure buffer-access-fontify-functions is nil in this buffer. */
4411 Fset (Fmake_local_variable (intern ("buffer-access-fontify-functions")),
4412 Qnil);
4413 Fset_buffer (obuf);
4414 }
4415
4416 DEFVAR_LISP ("buffer-access-fontified-property",
4417 &Vbuffer_access_fontified_property,
4418 doc: /* Property which (if non-nil) indicates text has been fontified.
4419 `buffer-substring' need not call the `buffer-access-fontify-functions'
4420 functions if all the text being accessed has this property. */);
4421 Vbuffer_access_fontified_property = Qnil;
4422
4423 DEFVAR_LISP ("system-name", &Vsystem_name,
4424 doc: /* The host name of the machine Emacs is running on. */);
4425
4426 DEFVAR_LISP ("user-full-name", &Vuser_full_name,
4427 doc: /* The full name of the user logged in. */);
4428
4429 DEFVAR_LISP ("user-login-name", &Vuser_login_name,
4430 doc: /* The user's name, taken from environment variables if possible. */);
4431
4432 DEFVAR_LISP ("user-real-login-name", &Vuser_real_login_name,
4433 doc: /* The user's name, based upon the real uid only. */);
4434
4435 DEFVAR_LISP ("operating-system-release", &Voperating_system_release,
4436 doc: /* The release of the operating system Emacs is running on. */);
4437
4438 defsubr (&Spropertize);
4439 defsubr (&Schar_equal);
4440 defsubr (&Sgoto_char);
4441 defsubr (&Sstring_to_char);
4442 defsubr (&Schar_to_string);
4443 defsubr (&Sbuffer_substring);
4444 defsubr (&Sbuffer_substring_no_properties);
4445 defsubr (&Sbuffer_string);
4446
4447 defsubr (&Spoint_marker);
4448 defsubr (&Smark_marker);
4449 defsubr (&Spoint);
4450 defsubr (&Sregion_beginning);
4451 defsubr (&Sregion_end);
4452
4453 staticpro (&Qfield);
4454 Qfield = intern ("field");
4455 staticpro (&Qboundary);
4456 Qboundary = intern ("boundary");
4457 defsubr (&Sfield_beginning);
4458 defsubr (&Sfield_end);
4459 defsubr (&Sfield_string);
4460 defsubr (&Sfield_string_no_properties);
4461 defsubr (&Sdelete_field);
4462 defsubr (&Sconstrain_to_field);
4463
4464 defsubr (&Sline_beginning_position);
4465 defsubr (&Sline_end_position);
4466
4467 /* defsubr (&Smark); */
4468 /* defsubr (&Sset_mark); */
4469 defsubr (&Ssave_excursion);
4470 defsubr (&Ssave_current_buffer);
4471
4472 defsubr (&Sbufsize);
4473 defsubr (&Spoint_max);
4474 defsubr (&Spoint_min);
4475 defsubr (&Spoint_min_marker);
4476 defsubr (&Spoint_max_marker);
4477 defsubr (&Sgap_position);
4478 defsubr (&Sgap_size);
4479 defsubr (&Sposition_bytes);
4480 defsubr (&Sbyte_to_position);
4481
4482 defsubr (&Sbobp);
4483 defsubr (&Seobp);
4484 defsubr (&Sbolp);
4485 defsubr (&Seolp);
4486 defsubr (&Sfollowing_char);
4487 defsubr (&Sprevious_char);
4488 defsubr (&Schar_after);
4489 defsubr (&Schar_before);
4490 defsubr (&Sinsert);
4491 defsubr (&Sinsert_before_markers);
4492 defsubr (&Sinsert_and_inherit);
4493 defsubr (&Sinsert_and_inherit_before_markers);
4494 defsubr (&Sinsert_char);
4495
4496 defsubr (&Suser_login_name);
4497 defsubr (&Suser_real_login_name);
4498 defsubr (&Suser_uid);
4499 defsubr (&Suser_real_uid);
4500 defsubr (&Suser_full_name);
4501 defsubr (&Semacs_pid);
4502 defsubr (&Scurrent_time);
4503 defsubr (&Sget_internal_run_time);
4504 defsubr (&Sformat_time_string);
4505 defsubr (&Sfloat_time);
4506 defsubr (&Sdecode_time);
4507 defsubr (&Sencode_time);
4508 defsubr (&Scurrent_time_string);
4509 defsubr (&Scurrent_time_zone);
4510 defsubr (&Sset_time_zone_rule);
4511 defsubr (&Ssystem_name);
4512 defsubr (&Smessage);
4513 defsubr (&Smessage_box);
4514 defsubr (&Smessage_or_box);
4515 defsubr (&Scurrent_message);
4516 defsubr (&Sformat);
4517
4518 defsubr (&Sinsert_buffer_substring);
4519 defsubr (&Scompare_buffer_substrings);
4520 defsubr (&Ssubst_char_in_region);
4521 defsubr (&Stranslate_region_internal);
4522 defsubr (&Sdelete_region);
4523 defsubr (&Sdelete_and_extract_region);
4524 defsubr (&Swiden);
4525 defsubr (&Snarrow_to_region);
4526 defsubr (&Ssave_restriction);
4527 defsubr (&Stranspose_regions);
4528 }
4529
4530 /* arch-tag: fc3827d8-6f60-4067-b11e-c3218031b018
4531 (do not change this comment) */