]> code.delx.au - gnu-emacs/blob - src/fns.c
(string_char_to_byte): Optimize for ASCII only string.
[gnu-emacs] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985, 86, 87, 93, 94, 95, 97, 98, 99, 2000, 2001, 02, 2003
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <config.h>
23
24 #ifdef HAVE_UNISTD_H
25 #include <unistd.h>
26 #endif
27 #include <time.h>
28
29 #ifndef MAC_OSX
30 /* On Mac OS X, defining this conflicts with precompiled headers. */
31
32 /* Note on some machines this defines `vector' as a typedef,
33 so make sure we don't use that name in this file. */
34 #undef vector
35 #define vector *****
36
37 #endif /* ! MAC_OSX */
38
39 #include "lisp.h"
40 #include "commands.h"
41 #include "charset.h"
42 #include "coding.h"
43 #include "buffer.h"
44 #include "keyboard.h"
45 #include "keymap.h"
46 #include "intervals.h"
47 #include "frame.h"
48 #include "window.h"
49 #include "blockinput.h"
50 #if defined (HAVE_MENUS) && defined (HAVE_X_WINDOWS)
51 #include "xterm.h"
52 #endif
53
54 #ifndef NULL
55 #define NULL ((POINTER_TYPE *)0)
56 #endif
57
58 /* Nonzero enables use of dialog boxes for questions
59 asked by mouse commands. */
60 int use_dialog_box;
61
62 /* Nonzero enables use of a file dialog for file name
63 questions asked by mouse commands. */
64 int use_file_dialog;
65
66 extern int minibuffer_auto_raise;
67 extern Lisp_Object minibuf_window;
68 extern Lisp_Object Vlocale_coding_system;
69
70 Lisp_Object Qstring_lessp, Qprovide, Qrequire;
71 Lisp_Object Qyes_or_no_p_history;
72 Lisp_Object Qcursor_in_echo_area;
73 Lisp_Object Qwidget_type;
74 Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
75
76 extern Lisp_Object Qinput_method_function;
77
78 static int internal_equal ();
79
80 extern long get_random ();
81 extern void seed_random ();
82
83 #ifndef HAVE_UNISTD_H
84 extern long time ();
85 #endif
86 \f
87 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
88 doc: /* Return the argument unchanged. */)
89 (arg)
90 Lisp_Object arg;
91 {
92 return arg;
93 }
94
95 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
96 doc: /* Return a pseudo-random number.
97 All integers representable in Lisp are equally likely.
98 On most systems, this is 29 bits' worth.
99 With positive integer argument N, return random number in interval [0,N).
100 With argument t, set the random number seed from the current time and pid. */)
101 (n)
102 Lisp_Object n;
103 {
104 EMACS_INT val;
105 Lisp_Object lispy_val;
106 unsigned long denominator;
107
108 if (EQ (n, Qt))
109 seed_random (getpid () + time (NULL));
110 if (NATNUMP (n) && XFASTINT (n) != 0)
111 {
112 /* Try to take our random number from the higher bits of VAL,
113 not the lower, since (says Gentzel) the low bits of `random'
114 are less random than the higher ones. We do this by using the
115 quotient rather than the remainder. At the high end of the RNG
116 it's possible to get a quotient larger than n; discarding
117 these values eliminates the bias that would otherwise appear
118 when using a large n. */
119 denominator = ((unsigned long)1 << VALBITS) / XFASTINT (n);
120 do
121 val = get_random () / denominator;
122 while (val >= XFASTINT (n));
123 }
124 else
125 val = get_random ();
126 XSETINT (lispy_val, val);
127 return lispy_val;
128 }
129 \f
130 /* Random data-structure functions */
131
132 DEFUN ("length", Flength, Slength, 1, 1, 0,
133 doc: /* Return the length of vector, list or string SEQUENCE.
134 A byte-code function object is also allowed.
135 If the string contains multibyte characters, this is not necessarily
136 the number of bytes in the string; it is the number of characters.
137 To get the number of bytes, use `string-bytes'. */)
138 (sequence)
139 register Lisp_Object sequence;
140 {
141 register Lisp_Object val;
142 register int i;
143
144 retry:
145 if (STRINGP (sequence))
146 XSETFASTINT (val, SCHARS (sequence));
147 else if (VECTORP (sequence))
148 XSETFASTINT (val, XVECTOR (sequence)->size);
149 else if (SUB_CHAR_TABLE_P (sequence))
150 XSETFASTINT (val, SUB_CHAR_TABLE_ORDINARY_SLOTS);
151 else if (CHAR_TABLE_P (sequence))
152 XSETFASTINT (val, MAX_CHAR);
153 else if (BOOL_VECTOR_P (sequence))
154 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
155 else if (COMPILEDP (sequence))
156 XSETFASTINT (val, XVECTOR (sequence)->size & PSEUDOVECTOR_SIZE_MASK);
157 else if (CONSP (sequence))
158 {
159 i = 0;
160 while (CONSP (sequence))
161 {
162 sequence = XCDR (sequence);
163 ++i;
164
165 if (!CONSP (sequence))
166 break;
167
168 sequence = XCDR (sequence);
169 ++i;
170 QUIT;
171 }
172
173 if (!NILP (sequence))
174 wrong_type_argument (Qlistp, sequence);
175
176 val = make_number (i);
177 }
178 else if (NILP (sequence))
179 XSETFASTINT (val, 0);
180 else
181 {
182 sequence = wrong_type_argument (Qsequencep, sequence);
183 goto retry;
184 }
185 return val;
186 }
187
188 /* This does not check for quits. That is safe
189 since it must terminate. */
190
191 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
192 doc: /* Return the length of a list, but avoid error or infinite loop.
193 This function never gets an error. If LIST is not really a list,
194 it returns 0. If LIST is circular, it returns a finite value
195 which is at least the number of distinct elements. */)
196 (list)
197 Lisp_Object list;
198 {
199 Lisp_Object tail, halftail, length;
200 int len = 0;
201
202 /* halftail is used to detect circular lists. */
203 halftail = list;
204 for (tail = list; CONSP (tail); tail = XCDR (tail))
205 {
206 if (EQ (tail, halftail) && len != 0)
207 break;
208 len++;
209 if ((len & 1) == 0)
210 halftail = XCDR (halftail);
211 }
212
213 XSETINT (length, len);
214 return length;
215 }
216
217 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
218 doc: /* Return the number of bytes in STRING.
219 If STRING is a multibyte string, this is greater than the length of STRING. */)
220 (string)
221 Lisp_Object string;
222 {
223 CHECK_STRING (string);
224 return make_number (SBYTES (string));
225 }
226
227 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
228 doc: /* Return t if two strings have identical contents.
229 Case is significant, but text properties are ignored.
230 Symbols are also allowed; their print names are used instead. */)
231 (s1, s2)
232 register Lisp_Object s1, s2;
233 {
234 if (SYMBOLP (s1))
235 s1 = SYMBOL_NAME (s1);
236 if (SYMBOLP (s2))
237 s2 = SYMBOL_NAME (s2);
238 CHECK_STRING (s1);
239 CHECK_STRING (s2);
240
241 if (SCHARS (s1) != SCHARS (s2)
242 || SBYTES (s1) != SBYTES (s2)
243 || bcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
244 return Qnil;
245 return Qt;
246 }
247
248 DEFUN ("compare-strings", Fcompare_strings,
249 Scompare_strings, 6, 7, 0,
250 doc: /* Compare the contents of two strings, converting to multibyte if needed.
251 In string STR1, skip the first START1 characters and stop at END1.
252 In string STR2, skip the first START2 characters and stop at END2.
253 END1 and END2 default to the full lengths of the respective strings.
254
255 Case is significant in this comparison if IGNORE-CASE is nil.
256 Unibyte strings are converted to multibyte for comparison.
257
258 The value is t if the strings (or specified portions) match.
259 If string STR1 is less, the value is a negative number N;
260 - 1 - N is the number of characters that match at the beginning.
261 If string STR1 is greater, the value is a positive number N;
262 N - 1 is the number of characters that match at the beginning. */)
263 (str1, start1, end1, str2, start2, end2, ignore_case)
264 Lisp_Object str1, start1, end1, start2, str2, end2, ignore_case;
265 {
266 register int end1_char, end2_char;
267 register int i1, i1_byte, i2, i2_byte;
268
269 CHECK_STRING (str1);
270 CHECK_STRING (str2);
271 if (NILP (start1))
272 start1 = make_number (0);
273 if (NILP (start2))
274 start2 = make_number (0);
275 CHECK_NATNUM (start1);
276 CHECK_NATNUM (start2);
277 if (! NILP (end1))
278 CHECK_NATNUM (end1);
279 if (! NILP (end2))
280 CHECK_NATNUM (end2);
281
282 i1 = XINT (start1);
283 i2 = XINT (start2);
284
285 i1_byte = string_char_to_byte (str1, i1);
286 i2_byte = string_char_to_byte (str2, i2);
287
288 end1_char = SCHARS (str1);
289 if (! NILP (end1) && end1_char > XINT (end1))
290 end1_char = XINT (end1);
291
292 end2_char = SCHARS (str2);
293 if (! NILP (end2) && end2_char > XINT (end2))
294 end2_char = XINT (end2);
295
296 while (i1 < end1_char && i2 < end2_char)
297 {
298 /* When we find a mismatch, we must compare the
299 characters, not just the bytes. */
300 int c1, c2;
301
302 if (STRING_MULTIBYTE (str1))
303 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
304 else
305 {
306 c1 = SREF (str1, i1++);
307 c1 = unibyte_char_to_multibyte (c1);
308 }
309
310 if (STRING_MULTIBYTE (str2))
311 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
312 else
313 {
314 c2 = SREF (str2, i2++);
315 c2 = unibyte_char_to_multibyte (c2);
316 }
317
318 if (c1 == c2)
319 continue;
320
321 if (! NILP (ignore_case))
322 {
323 Lisp_Object tem;
324
325 tem = Fupcase (make_number (c1));
326 c1 = XINT (tem);
327 tem = Fupcase (make_number (c2));
328 c2 = XINT (tem);
329 }
330
331 if (c1 == c2)
332 continue;
333
334 /* Note that I1 has already been incremented
335 past the character that we are comparing;
336 hence we don't add or subtract 1 here. */
337 if (c1 < c2)
338 return make_number (- i1 + XINT (start1));
339 else
340 return make_number (i1 - XINT (start1));
341 }
342
343 if (i1 < end1_char)
344 return make_number (i1 - XINT (start1) + 1);
345 if (i2 < end2_char)
346 return make_number (- i1 + XINT (start1) - 1);
347
348 return Qt;
349 }
350
351 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
352 doc: /* Return t if first arg string is less than second in lexicographic order.
353 Case is significant.
354 Symbols are also allowed; their print names are used instead. */)
355 (s1, s2)
356 register Lisp_Object s1, s2;
357 {
358 register int end;
359 register int i1, i1_byte, i2, i2_byte;
360
361 if (SYMBOLP (s1))
362 s1 = SYMBOL_NAME (s1);
363 if (SYMBOLP (s2))
364 s2 = SYMBOL_NAME (s2);
365 CHECK_STRING (s1);
366 CHECK_STRING (s2);
367
368 i1 = i1_byte = i2 = i2_byte = 0;
369
370 end = SCHARS (s1);
371 if (end > SCHARS (s2))
372 end = SCHARS (s2);
373
374 while (i1 < end)
375 {
376 /* When we find a mismatch, we must compare the
377 characters, not just the bytes. */
378 int c1, c2;
379
380 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
381 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
382
383 if (c1 != c2)
384 return c1 < c2 ? Qt : Qnil;
385 }
386 return i1 < SCHARS (s2) ? Qt : Qnil;
387 }
388 \f
389 static Lisp_Object concat ();
390
391 /* ARGSUSED */
392 Lisp_Object
393 concat2 (s1, s2)
394 Lisp_Object s1, s2;
395 {
396 #ifdef NO_ARG_ARRAY
397 Lisp_Object args[2];
398 args[0] = s1;
399 args[1] = s2;
400 return concat (2, args, Lisp_String, 0);
401 #else
402 return concat (2, &s1, Lisp_String, 0);
403 #endif /* NO_ARG_ARRAY */
404 }
405
406 /* ARGSUSED */
407 Lisp_Object
408 concat3 (s1, s2, s3)
409 Lisp_Object s1, s2, s3;
410 {
411 #ifdef NO_ARG_ARRAY
412 Lisp_Object args[3];
413 args[0] = s1;
414 args[1] = s2;
415 args[2] = s3;
416 return concat (3, args, Lisp_String, 0);
417 #else
418 return concat (3, &s1, Lisp_String, 0);
419 #endif /* NO_ARG_ARRAY */
420 }
421
422 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
423 doc: /* Concatenate all the arguments and make the result a list.
424 The result is a list whose elements are the elements of all the arguments.
425 Each argument may be a list, vector or string.
426 The last argument is not copied, just used as the tail of the new list.
427 usage: (append &rest SEQUENCES) */)
428 (nargs, args)
429 int nargs;
430 Lisp_Object *args;
431 {
432 return concat (nargs, args, Lisp_Cons, 1);
433 }
434
435 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
436 doc: /* Concatenate all the arguments and make the result a string.
437 The result is a string whose elements are the elements of all the arguments.
438 Each argument may be a string or a list or vector of characters (integers).
439 usage: (concat &rest SEQUENCES) */)
440 (nargs, args)
441 int nargs;
442 Lisp_Object *args;
443 {
444 return concat (nargs, args, Lisp_String, 0);
445 }
446
447 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
448 doc: /* Concatenate all the arguments and make the result a vector.
449 The result is a vector whose elements are the elements of all the arguments.
450 Each argument may be a list, vector or string.
451 usage: (vconcat &rest SEQUENCES) */)
452 (nargs, args)
453 int nargs;
454 Lisp_Object *args;
455 {
456 return concat (nargs, args, Lisp_Vectorlike, 0);
457 }
458
459 /* Return a copy of a sub char table ARG. The elements except for a
460 nested sub char table are not copied. */
461 static Lisp_Object
462 copy_sub_char_table (arg)
463 Lisp_Object arg;
464 {
465 Lisp_Object copy = make_sub_char_table (XCHAR_TABLE (arg)->defalt);
466 int i;
467
468 /* Copy all the contents. */
469 bcopy (XCHAR_TABLE (arg)->contents, XCHAR_TABLE (copy)->contents,
470 SUB_CHAR_TABLE_ORDINARY_SLOTS * sizeof (Lisp_Object));
471 /* Recursively copy any sub char-tables in the ordinary slots. */
472 for (i = 32; i < SUB_CHAR_TABLE_ORDINARY_SLOTS; i++)
473 if (SUB_CHAR_TABLE_P (XCHAR_TABLE (arg)->contents[i]))
474 XCHAR_TABLE (copy)->contents[i]
475 = copy_sub_char_table (XCHAR_TABLE (copy)->contents[i]);
476
477 return copy;
478 }
479
480
481 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
482 doc: /* Return a copy of a list, vector, string or char-table.
483 The elements of a list or vector are not copied; they are shared
484 with the original. */)
485 (arg)
486 Lisp_Object arg;
487 {
488 if (NILP (arg)) return arg;
489
490 if (CHAR_TABLE_P (arg))
491 {
492 int i;
493 Lisp_Object copy;
494
495 copy = Fmake_char_table (XCHAR_TABLE (arg)->purpose, Qnil);
496 /* Copy all the slots, including the extra ones. */
497 bcopy (XVECTOR (arg)->contents, XVECTOR (copy)->contents,
498 ((XCHAR_TABLE (arg)->size & PSEUDOVECTOR_SIZE_MASK)
499 * sizeof (Lisp_Object)));
500
501 /* Recursively copy any sub char tables in the ordinary slots
502 for multibyte characters. */
503 for (i = CHAR_TABLE_SINGLE_BYTE_SLOTS;
504 i < CHAR_TABLE_ORDINARY_SLOTS; i++)
505 if (SUB_CHAR_TABLE_P (XCHAR_TABLE (arg)->contents[i]))
506 XCHAR_TABLE (copy)->contents[i]
507 = copy_sub_char_table (XCHAR_TABLE (copy)->contents[i]);
508
509 return copy;
510 }
511
512 if (BOOL_VECTOR_P (arg))
513 {
514 Lisp_Object val;
515 int size_in_chars
516 = (XBOOL_VECTOR (arg)->size + BITS_PER_CHAR - 1) / BITS_PER_CHAR;
517
518 val = Fmake_bool_vector (Flength (arg), Qnil);
519 bcopy (XBOOL_VECTOR (arg)->data, XBOOL_VECTOR (val)->data,
520 size_in_chars);
521 return val;
522 }
523
524 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
525 arg = wrong_type_argument (Qsequencep, arg);
526 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
527 }
528
529 /* In string STR of length LEN, see if bytes before STR[I] combine
530 with bytes after STR[I] to form a single character. If so, return
531 the number of bytes after STR[I] which combine in this way.
532 Otherwize, return 0. */
533
534 static int
535 count_combining (str, len, i)
536 unsigned char *str;
537 int len, i;
538 {
539 int j = i - 1, bytes;
540
541 if (i == 0 || i == len || CHAR_HEAD_P (str[i]))
542 return 0;
543 while (j >= 0 && !CHAR_HEAD_P (str[j])) j--;
544 if (j < 0 || ! BASE_LEADING_CODE_P (str[j]))
545 return 0;
546 PARSE_MULTIBYTE_SEQ (str + j, len - j, bytes);
547 return (bytes <= i - j ? 0 : bytes - (i - j));
548 }
549
550 /* This structure holds information of an argument of `concat' that is
551 a string and has text properties to be copied. */
552 struct textprop_rec
553 {
554 int argnum; /* refer to ARGS (arguments of `concat') */
555 int from; /* refer to ARGS[argnum] (argument string) */
556 int to; /* refer to VAL (the target string) */
557 };
558
559 static Lisp_Object
560 concat (nargs, args, target_type, last_special)
561 int nargs;
562 Lisp_Object *args;
563 enum Lisp_Type target_type;
564 int last_special;
565 {
566 Lisp_Object val;
567 register Lisp_Object tail;
568 register Lisp_Object this;
569 int toindex;
570 int toindex_byte = 0;
571 register int result_len;
572 register int result_len_byte;
573 register int argnum;
574 Lisp_Object last_tail;
575 Lisp_Object prev;
576 int some_multibyte;
577 /* When we make a multibyte string, we can't copy text properties
578 while concatinating each string because the length of resulting
579 string can't be decided until we finish the whole concatination.
580 So, we record strings that have text properties to be copied
581 here, and copy the text properties after the concatination. */
582 struct textprop_rec *textprops = NULL;
583 /* Number of elments in textprops. */
584 int num_textprops = 0;
585
586 tail = Qnil;
587
588 /* In append, the last arg isn't treated like the others */
589 if (last_special && nargs > 0)
590 {
591 nargs--;
592 last_tail = args[nargs];
593 }
594 else
595 last_tail = Qnil;
596
597 /* Canonicalize each argument. */
598 for (argnum = 0; argnum < nargs; argnum++)
599 {
600 this = args[argnum];
601 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
602 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
603 {
604 args[argnum] = wrong_type_argument (Qsequencep, this);
605 }
606 }
607
608 /* Compute total length in chars of arguments in RESULT_LEN.
609 If desired output is a string, also compute length in bytes
610 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
611 whether the result should be a multibyte string. */
612 result_len_byte = 0;
613 result_len = 0;
614 some_multibyte = 0;
615 for (argnum = 0; argnum < nargs; argnum++)
616 {
617 int len;
618 this = args[argnum];
619 len = XFASTINT (Flength (this));
620 if (target_type == Lisp_String)
621 {
622 /* We must count the number of bytes needed in the string
623 as well as the number of characters. */
624 int i;
625 Lisp_Object ch;
626 int this_len_byte;
627
628 if (VECTORP (this))
629 for (i = 0; i < len; i++)
630 {
631 ch = XVECTOR (this)->contents[i];
632 if (! INTEGERP (ch))
633 wrong_type_argument (Qintegerp, ch);
634 this_len_byte = CHAR_BYTES (XINT (ch));
635 result_len_byte += this_len_byte;
636 if (!SINGLE_BYTE_CHAR_P (XINT (ch)))
637 some_multibyte = 1;
638 }
639 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
640 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
641 else if (CONSP (this))
642 for (; CONSP (this); this = XCDR (this))
643 {
644 ch = XCAR (this);
645 if (! INTEGERP (ch))
646 wrong_type_argument (Qintegerp, ch);
647 this_len_byte = CHAR_BYTES (XINT (ch));
648 result_len_byte += this_len_byte;
649 if (!SINGLE_BYTE_CHAR_P (XINT (ch)))
650 some_multibyte = 1;
651 }
652 else if (STRINGP (this))
653 {
654 if (STRING_MULTIBYTE (this))
655 {
656 some_multibyte = 1;
657 result_len_byte += SBYTES (this);
658 }
659 else
660 result_len_byte += count_size_as_multibyte (SDATA (this),
661 SCHARS (this));
662 }
663 }
664
665 result_len += len;
666 }
667
668 if (! some_multibyte)
669 result_len_byte = result_len;
670
671 /* Create the output object. */
672 if (target_type == Lisp_Cons)
673 val = Fmake_list (make_number (result_len), Qnil);
674 else if (target_type == Lisp_Vectorlike)
675 val = Fmake_vector (make_number (result_len), Qnil);
676 else if (some_multibyte)
677 val = make_uninit_multibyte_string (result_len, result_len_byte);
678 else
679 val = make_uninit_string (result_len);
680
681 /* In `append', if all but last arg are nil, return last arg. */
682 if (target_type == Lisp_Cons && EQ (val, Qnil))
683 return last_tail;
684
685 /* Copy the contents of the args into the result. */
686 if (CONSP (val))
687 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
688 else
689 toindex = 0, toindex_byte = 0;
690
691 prev = Qnil;
692 if (STRINGP (val))
693 textprops
694 = (struct textprop_rec *) alloca (sizeof (struct textprop_rec) * nargs);
695
696 for (argnum = 0; argnum < nargs; argnum++)
697 {
698 Lisp_Object thislen;
699 int thisleni = 0;
700 register unsigned int thisindex = 0;
701 register unsigned int thisindex_byte = 0;
702
703 this = args[argnum];
704 if (!CONSP (this))
705 thislen = Flength (this), thisleni = XINT (thislen);
706
707 /* Between strings of the same kind, copy fast. */
708 if (STRINGP (this) && STRINGP (val)
709 && STRING_MULTIBYTE (this) == some_multibyte)
710 {
711 int thislen_byte = SBYTES (this);
712 int combined;
713
714 bcopy (SDATA (this), SDATA (val) + toindex_byte,
715 SBYTES (this));
716 combined = (some_multibyte && toindex_byte > 0
717 ? count_combining (SDATA (val),
718 toindex_byte + thislen_byte,
719 toindex_byte)
720 : 0);
721 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
722 {
723 textprops[num_textprops].argnum = argnum;
724 /* We ignore text properties on characters being combined. */
725 textprops[num_textprops].from = combined;
726 textprops[num_textprops++].to = toindex;
727 }
728 toindex_byte += thislen_byte;
729 toindex += thisleni - combined;
730 STRING_SET_CHARS (val, SCHARS (val) - combined);
731 }
732 /* Copy a single-byte string to a multibyte string. */
733 else if (STRINGP (this) && STRINGP (val))
734 {
735 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
736 {
737 textprops[num_textprops].argnum = argnum;
738 textprops[num_textprops].from = 0;
739 textprops[num_textprops++].to = toindex;
740 }
741 toindex_byte += copy_text (SDATA (this),
742 SDATA (val) + toindex_byte,
743 SCHARS (this), 0, 1);
744 toindex += thisleni;
745 }
746 else
747 /* Copy element by element. */
748 while (1)
749 {
750 register Lisp_Object elt;
751
752 /* Fetch next element of `this' arg into `elt', or break if
753 `this' is exhausted. */
754 if (NILP (this)) break;
755 if (CONSP (this))
756 elt = XCAR (this), this = XCDR (this);
757 else if (thisindex >= thisleni)
758 break;
759 else if (STRINGP (this))
760 {
761 int c;
762 if (STRING_MULTIBYTE (this))
763 {
764 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
765 thisindex,
766 thisindex_byte);
767 XSETFASTINT (elt, c);
768 }
769 else
770 {
771 XSETFASTINT (elt, SREF (this, thisindex++));
772 if (some_multibyte
773 && (XINT (elt) >= 0240
774 || (XINT (elt) >= 0200
775 && ! NILP (Vnonascii_translation_table)))
776 && XINT (elt) < 0400)
777 {
778 c = unibyte_char_to_multibyte (XINT (elt));
779 XSETINT (elt, c);
780 }
781 }
782 }
783 else if (BOOL_VECTOR_P (this))
784 {
785 int byte;
786 byte = XBOOL_VECTOR (this)->data[thisindex / BITS_PER_CHAR];
787 if (byte & (1 << (thisindex % BITS_PER_CHAR)))
788 elt = Qt;
789 else
790 elt = Qnil;
791 thisindex++;
792 }
793 else
794 elt = XVECTOR (this)->contents[thisindex++];
795
796 /* Store this element into the result. */
797 if (toindex < 0)
798 {
799 XSETCAR (tail, elt);
800 prev = tail;
801 tail = XCDR (tail);
802 }
803 else if (VECTORP (val))
804 XVECTOR (val)->contents[toindex++] = elt;
805 else
806 {
807 CHECK_NUMBER (elt);
808 if (SINGLE_BYTE_CHAR_P (XINT (elt)))
809 {
810 if (some_multibyte)
811 toindex_byte
812 += CHAR_STRING (XINT (elt),
813 SDATA (val) + toindex_byte);
814 else
815 SSET (val, toindex_byte++, XINT (elt));
816 if (some_multibyte
817 && toindex_byte > 0
818 && count_combining (SDATA (val),
819 toindex_byte, toindex_byte - 1))
820 STRING_SET_CHARS (val, SCHARS (val) - 1);
821 else
822 toindex++;
823 }
824 else
825 /* If we have any multibyte characters,
826 we already decided to make a multibyte string. */
827 {
828 int c = XINT (elt);
829 /* P exists as a variable
830 to avoid a bug on the Masscomp C compiler. */
831 unsigned char *p = SDATA (val) + toindex_byte;
832
833 toindex_byte += CHAR_STRING (c, p);
834 toindex++;
835 }
836 }
837 }
838 }
839 if (!NILP (prev))
840 XSETCDR (prev, last_tail);
841
842 if (num_textprops > 0)
843 {
844 Lisp_Object props;
845 int last_to_end = -1;
846
847 for (argnum = 0; argnum < num_textprops; argnum++)
848 {
849 this = args[textprops[argnum].argnum];
850 props = text_property_list (this,
851 make_number (0),
852 make_number (SCHARS (this)),
853 Qnil);
854 /* If successive arguments have properites, be sure that the
855 value of `composition' property be the copy. */
856 if (last_to_end == textprops[argnum].to)
857 make_composition_value_copy (props);
858 add_text_properties_from_list (val, props,
859 make_number (textprops[argnum].to));
860 last_to_end = textprops[argnum].to + SCHARS (this);
861 }
862 }
863 return val;
864 }
865 \f
866 static Lisp_Object string_char_byte_cache_string;
867 static int string_char_byte_cache_charpos;
868 static int string_char_byte_cache_bytepos;
869
870 void
871 clear_string_char_byte_cache ()
872 {
873 string_char_byte_cache_string = Qnil;
874 }
875
876 /* Return the character index corresponding to CHAR_INDEX in STRING. */
877
878 int
879 string_char_to_byte (string, char_index)
880 Lisp_Object string;
881 int char_index;
882 {
883 int i, i_byte;
884 int best_below, best_below_byte;
885 int best_above, best_above_byte;
886
887 best_below = best_below_byte = 0;
888 best_above = SCHARS (string);
889 best_above_byte = SBYTES (string);
890 if (best_above == best_above_byte)
891 return char_index;
892
893 if (EQ (string, string_char_byte_cache_string))
894 {
895 if (string_char_byte_cache_charpos < char_index)
896 {
897 best_below = string_char_byte_cache_charpos;
898 best_below_byte = string_char_byte_cache_bytepos;
899 }
900 else
901 {
902 best_above = string_char_byte_cache_charpos;
903 best_above_byte = string_char_byte_cache_bytepos;
904 }
905 }
906
907 if (char_index - best_below < best_above - char_index)
908 {
909 while (best_below < char_index)
910 {
911 int c;
912 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, string,
913 best_below, best_below_byte);
914 }
915 i = best_below;
916 i_byte = best_below_byte;
917 }
918 else
919 {
920 while (best_above > char_index)
921 {
922 unsigned char *pend = SDATA (string) + best_above_byte;
923 unsigned char *pbeg = pend - best_above_byte;
924 unsigned char *p = pend - 1;
925 int bytes;
926
927 while (p > pbeg && !CHAR_HEAD_P (*p)) p--;
928 PARSE_MULTIBYTE_SEQ (p, pend - p, bytes);
929 if (bytes == pend - p)
930 best_above_byte -= bytes;
931 else if (bytes > pend - p)
932 best_above_byte -= (pend - p);
933 else
934 best_above_byte--;
935 best_above--;
936 }
937 i = best_above;
938 i_byte = best_above_byte;
939 }
940
941 string_char_byte_cache_bytepos = i_byte;
942 string_char_byte_cache_charpos = i;
943 string_char_byte_cache_string = string;
944
945 return i_byte;
946 }
947 \f
948 /* Return the character index corresponding to BYTE_INDEX in STRING. */
949
950 int
951 string_byte_to_char (string, byte_index)
952 Lisp_Object string;
953 int byte_index;
954 {
955 int i, i_byte;
956 int best_below, best_below_byte;
957 int best_above, best_above_byte;
958
959 best_below = best_below_byte = 0;
960 best_above = SCHARS (string);
961 best_above_byte = SBYTES (string);
962 if (best_above == best_above_byte)
963 return byte_index;
964
965 if (EQ (string, string_char_byte_cache_string))
966 {
967 if (string_char_byte_cache_bytepos < byte_index)
968 {
969 best_below = string_char_byte_cache_charpos;
970 best_below_byte = string_char_byte_cache_bytepos;
971 }
972 else
973 {
974 best_above = string_char_byte_cache_charpos;
975 best_above_byte = string_char_byte_cache_bytepos;
976 }
977 }
978
979 if (byte_index - best_below_byte < best_above_byte - byte_index)
980 {
981 while (best_below_byte < byte_index)
982 {
983 int c;
984 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, string,
985 best_below, best_below_byte);
986 }
987 i = best_below;
988 i_byte = best_below_byte;
989 }
990 else
991 {
992 while (best_above_byte > byte_index)
993 {
994 unsigned char *pend = SDATA (string) + best_above_byte;
995 unsigned char *pbeg = pend - best_above_byte;
996 unsigned char *p = pend - 1;
997 int bytes;
998
999 while (p > pbeg && !CHAR_HEAD_P (*p)) p--;
1000 PARSE_MULTIBYTE_SEQ (p, pend - p, bytes);
1001 if (bytes == pend - p)
1002 best_above_byte -= bytes;
1003 else if (bytes > pend - p)
1004 best_above_byte -= (pend - p);
1005 else
1006 best_above_byte--;
1007 best_above--;
1008 }
1009 i = best_above;
1010 i_byte = best_above_byte;
1011 }
1012
1013 string_char_byte_cache_bytepos = i_byte;
1014 string_char_byte_cache_charpos = i;
1015 string_char_byte_cache_string = string;
1016
1017 return i;
1018 }
1019 \f
1020 /* Convert STRING to a multibyte string.
1021 Single-byte characters 0240 through 0377 are converted
1022 by adding nonascii_insert_offset to each. */
1023
1024 Lisp_Object
1025 string_make_multibyte (string)
1026 Lisp_Object string;
1027 {
1028 unsigned char *buf;
1029 int nbytes;
1030
1031 if (STRING_MULTIBYTE (string))
1032 return string;
1033
1034 nbytes = count_size_as_multibyte (SDATA (string),
1035 SCHARS (string));
1036 /* If all the chars are ASCII, they won't need any more bytes
1037 once converted. In that case, we can return STRING itself. */
1038 if (nbytes == SBYTES (string))
1039 return string;
1040
1041 buf = (unsigned char *) alloca (nbytes);
1042 copy_text (SDATA (string), buf, SBYTES (string),
1043 0, 1);
1044
1045 return make_multibyte_string (buf, SCHARS (string), nbytes);
1046 }
1047
1048
1049 /* Convert STRING to a multibyte string without changing each
1050 character codes. Thus, characters 0200 trough 0237 are converted
1051 to eight-bit-control characters, and characters 0240 through 0377
1052 are converted eight-bit-graphic characters. */
1053
1054 Lisp_Object
1055 string_to_multibyte (string)
1056 Lisp_Object string;
1057 {
1058 unsigned char *buf;
1059 int nbytes;
1060
1061 if (STRING_MULTIBYTE (string))
1062 return string;
1063
1064 nbytes = parse_str_to_multibyte (SDATA (string), SBYTES (string));
1065 /* If all the chars are ASCII or eight-bit-graphic, they won't need
1066 any more bytes once converted. */
1067 if (nbytes == SBYTES (string))
1068 return make_multibyte_string (SDATA (string), nbytes, nbytes);
1069
1070 buf = (unsigned char *) alloca (nbytes);
1071 bcopy (SDATA (string), buf, SBYTES (string));
1072 str_to_multibyte (buf, nbytes, SBYTES (string));
1073
1074 return make_multibyte_string (buf, SCHARS (string), nbytes);
1075 }
1076
1077
1078 /* Convert STRING to a single-byte string. */
1079
1080 Lisp_Object
1081 string_make_unibyte (string)
1082 Lisp_Object string;
1083 {
1084 unsigned char *buf;
1085
1086 if (! STRING_MULTIBYTE (string))
1087 return string;
1088
1089 buf = (unsigned char *) alloca (SCHARS (string));
1090
1091 copy_text (SDATA (string), buf, SBYTES (string),
1092 1, 0);
1093
1094 return make_unibyte_string (buf, SCHARS (string));
1095 }
1096
1097 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
1098 1, 1, 0,
1099 doc: /* Return the multibyte equivalent of STRING.
1100 If STRING is unibyte and contains non-ASCII characters, the function
1101 `unibyte-char-to-multibyte' is used to convert each unibyte character
1102 to a multibyte character. In this case, the returned string is a
1103 newly created string with no text properties. If STRING is multibyte
1104 or entirely ASCII, it is returned unchanged. In particular, when
1105 STRING is unibyte and entirely ASCII, the returned string is unibyte.
1106 \(When the characters are all ASCII, Emacs primitives will treat the
1107 string the same way whether it is unibyte or multibyte.) */)
1108 (string)
1109 Lisp_Object string;
1110 {
1111 CHECK_STRING (string);
1112
1113 return string_make_multibyte (string);
1114 }
1115
1116 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
1117 1, 1, 0,
1118 doc: /* Return the unibyte equivalent of STRING.
1119 Multibyte character codes are converted to unibyte according to
1120 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
1121 If the lookup in the translation table fails, this function takes just
1122 the low 8 bits of each character. */)
1123 (string)
1124 Lisp_Object string;
1125 {
1126 CHECK_STRING (string);
1127
1128 return string_make_unibyte (string);
1129 }
1130
1131 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
1132 1, 1, 0,
1133 doc: /* Return a unibyte string with the same individual bytes as STRING.
1134 If STRING is unibyte, the result is STRING itself.
1135 Otherwise it is a newly created string, with no text properties.
1136 If STRING is multibyte and contains a character of charset
1137 `eight-bit-control' or `eight-bit-graphic', it is converted to the
1138 corresponding single byte. */)
1139 (string)
1140 Lisp_Object string;
1141 {
1142 CHECK_STRING (string);
1143
1144 if (STRING_MULTIBYTE (string))
1145 {
1146 int bytes = SBYTES (string);
1147 unsigned char *str = (unsigned char *) xmalloc (bytes);
1148
1149 bcopy (SDATA (string), str, bytes);
1150 bytes = str_as_unibyte (str, bytes);
1151 string = make_unibyte_string (str, bytes);
1152 xfree (str);
1153 }
1154 return string;
1155 }
1156
1157 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1158 1, 1, 0,
1159 doc: /* Return a multibyte string with the same individual bytes as STRING.
1160 If STRING is multibyte, the result is STRING itself.
1161 Otherwise it is a newly created string, with no text properties.
1162 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1163 part of a multibyte form), it is converted to the corresponding
1164 multibyte character of charset `eight-bit-control' or `eight-bit-graphic'. */)
1165 (string)
1166 Lisp_Object string;
1167 {
1168 CHECK_STRING (string);
1169
1170 if (! STRING_MULTIBYTE (string))
1171 {
1172 Lisp_Object new_string;
1173 int nchars, nbytes;
1174
1175 parse_str_as_multibyte (SDATA (string),
1176 SBYTES (string),
1177 &nchars, &nbytes);
1178 new_string = make_uninit_multibyte_string (nchars, nbytes);
1179 bcopy (SDATA (string), SDATA (new_string),
1180 SBYTES (string));
1181 if (nbytes != SBYTES (string))
1182 str_as_multibyte (SDATA (new_string), nbytes,
1183 SBYTES (string), NULL);
1184 string = new_string;
1185 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1186 }
1187 return string;
1188 }
1189
1190 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1191 1, 1, 0,
1192 doc: /* Return a multibyte string with the same individual chars as STRING.
1193 If STRING is multibyte, the result is STRING itself.
1194 Otherwise it is a newly created string, with no text properties.
1195 Characters 0200 through 0237 are converted to eight-bit-control
1196 characters of the same character code. Characters 0240 through 0377
1197 are converted to eight-bit-graphic characters of the same character
1198 codes. */)
1199 (string)
1200 Lisp_Object string;
1201 {
1202 CHECK_STRING (string);
1203
1204 return string_to_multibyte (string);
1205 }
1206
1207 \f
1208 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1209 doc: /* Return a copy of ALIST.
1210 This is an alist which represents the same mapping from objects to objects,
1211 but does not share the alist structure with ALIST.
1212 The objects mapped (cars and cdrs of elements of the alist)
1213 are shared, however.
1214 Elements of ALIST that are not conses are also shared. */)
1215 (alist)
1216 Lisp_Object alist;
1217 {
1218 register Lisp_Object tem;
1219
1220 CHECK_LIST (alist);
1221 if (NILP (alist))
1222 return alist;
1223 alist = concat (1, &alist, Lisp_Cons, 0);
1224 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1225 {
1226 register Lisp_Object car;
1227 car = XCAR (tem);
1228
1229 if (CONSP (car))
1230 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1231 }
1232 return alist;
1233 }
1234
1235 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1236 doc: /* Return a substring of STRING, starting at index FROM and ending before TO.
1237 TO may be nil or omitted; then the substring runs to the end of STRING.
1238 FROM and TO start at 0. If either is negative, it counts from the end.
1239
1240 This function allows vectors as well as strings. */)
1241 (string, from, to)
1242 Lisp_Object string;
1243 register Lisp_Object from, to;
1244 {
1245 Lisp_Object res;
1246 int size;
1247 int size_byte = 0;
1248 int from_char, to_char;
1249 int from_byte = 0, to_byte = 0;
1250
1251 if (! (STRINGP (string) || VECTORP (string)))
1252 wrong_type_argument (Qarrayp, string);
1253
1254 CHECK_NUMBER (from);
1255
1256 if (STRINGP (string))
1257 {
1258 size = SCHARS (string);
1259 size_byte = SBYTES (string);
1260 }
1261 else
1262 size = XVECTOR (string)->size;
1263
1264 if (NILP (to))
1265 {
1266 to_char = size;
1267 to_byte = size_byte;
1268 }
1269 else
1270 {
1271 CHECK_NUMBER (to);
1272
1273 to_char = XINT (to);
1274 if (to_char < 0)
1275 to_char += size;
1276
1277 if (STRINGP (string))
1278 to_byte = string_char_to_byte (string, to_char);
1279 }
1280
1281 from_char = XINT (from);
1282 if (from_char < 0)
1283 from_char += size;
1284 if (STRINGP (string))
1285 from_byte = string_char_to_byte (string, from_char);
1286
1287 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1288 args_out_of_range_3 (string, make_number (from_char),
1289 make_number (to_char));
1290
1291 if (STRINGP (string))
1292 {
1293 res = make_specified_string (SDATA (string) + from_byte,
1294 to_char - from_char, to_byte - from_byte,
1295 STRING_MULTIBYTE (string));
1296 copy_text_properties (make_number (from_char), make_number (to_char),
1297 string, make_number (0), res, Qnil);
1298 }
1299 else
1300 res = Fvector (to_char - from_char,
1301 XVECTOR (string)->contents + from_char);
1302
1303 return res;
1304 }
1305
1306
1307 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1308 doc: /* Return a substring of STRING, without text properties.
1309 It starts at index FROM and ending before TO.
1310 TO may be nil or omitted; then the substring runs to the end of STRING.
1311 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1312 If FROM or TO is negative, it counts from the end.
1313
1314 With one argument, just copy STRING without its properties. */)
1315 (string, from, to)
1316 Lisp_Object string;
1317 register Lisp_Object from, to;
1318 {
1319 int size, size_byte;
1320 int from_char, to_char;
1321 int from_byte, to_byte;
1322
1323 CHECK_STRING (string);
1324
1325 size = SCHARS (string);
1326 size_byte = SBYTES (string);
1327
1328 if (NILP (from))
1329 from_char = from_byte = 0;
1330 else
1331 {
1332 CHECK_NUMBER (from);
1333 from_char = XINT (from);
1334 if (from_char < 0)
1335 from_char += size;
1336
1337 from_byte = string_char_to_byte (string, from_char);
1338 }
1339
1340 if (NILP (to))
1341 {
1342 to_char = size;
1343 to_byte = size_byte;
1344 }
1345 else
1346 {
1347 CHECK_NUMBER (to);
1348
1349 to_char = XINT (to);
1350 if (to_char < 0)
1351 to_char += size;
1352
1353 to_byte = string_char_to_byte (string, to_char);
1354 }
1355
1356 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1357 args_out_of_range_3 (string, make_number (from_char),
1358 make_number (to_char));
1359
1360 return make_specified_string (SDATA (string) + from_byte,
1361 to_char - from_char, to_byte - from_byte,
1362 STRING_MULTIBYTE (string));
1363 }
1364
1365 /* Extract a substring of STRING, giving start and end positions
1366 both in characters and in bytes. */
1367
1368 Lisp_Object
1369 substring_both (string, from, from_byte, to, to_byte)
1370 Lisp_Object string;
1371 int from, from_byte, to, to_byte;
1372 {
1373 Lisp_Object res;
1374 int size;
1375 int size_byte;
1376
1377 if (! (STRINGP (string) || VECTORP (string)))
1378 wrong_type_argument (Qarrayp, string);
1379
1380 if (STRINGP (string))
1381 {
1382 size = SCHARS (string);
1383 size_byte = SBYTES (string);
1384 }
1385 else
1386 size = XVECTOR (string)->size;
1387
1388 if (!(0 <= from && from <= to && to <= size))
1389 args_out_of_range_3 (string, make_number (from), make_number (to));
1390
1391 if (STRINGP (string))
1392 {
1393 res = make_specified_string (SDATA (string) + from_byte,
1394 to - from, to_byte - from_byte,
1395 STRING_MULTIBYTE (string));
1396 copy_text_properties (make_number (from), make_number (to),
1397 string, make_number (0), res, Qnil);
1398 }
1399 else
1400 res = Fvector (to - from,
1401 XVECTOR (string)->contents + from);
1402
1403 return res;
1404 }
1405 \f
1406 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1407 doc: /* Take cdr N times on LIST, returns the result. */)
1408 (n, list)
1409 Lisp_Object n;
1410 register Lisp_Object list;
1411 {
1412 register int i, num;
1413 CHECK_NUMBER (n);
1414 num = XINT (n);
1415 for (i = 0; i < num && !NILP (list); i++)
1416 {
1417 QUIT;
1418 if (! CONSP (list))
1419 wrong_type_argument (Qlistp, list);
1420 list = XCDR (list);
1421 }
1422 return list;
1423 }
1424
1425 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1426 doc: /* Return the Nth element of LIST.
1427 N counts from zero. If LIST is not that long, nil is returned. */)
1428 (n, list)
1429 Lisp_Object n, list;
1430 {
1431 return Fcar (Fnthcdr (n, list));
1432 }
1433
1434 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1435 doc: /* Return element of SEQUENCE at index N. */)
1436 (sequence, n)
1437 register Lisp_Object sequence, n;
1438 {
1439 CHECK_NUMBER (n);
1440 while (1)
1441 {
1442 if (CONSP (sequence) || NILP (sequence))
1443 return Fcar (Fnthcdr (n, sequence));
1444 else if (STRINGP (sequence) || VECTORP (sequence)
1445 || BOOL_VECTOR_P (sequence) || CHAR_TABLE_P (sequence))
1446 return Faref (sequence, n);
1447 else
1448 sequence = wrong_type_argument (Qsequencep, sequence);
1449 }
1450 }
1451
1452 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1453 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1454 The value is actually the tail of LIST whose car is ELT. */)
1455 (elt, list)
1456 register Lisp_Object elt;
1457 Lisp_Object list;
1458 {
1459 register Lisp_Object tail;
1460 for (tail = list; !NILP (tail); tail = XCDR (tail))
1461 {
1462 register Lisp_Object tem;
1463 if (! CONSP (tail))
1464 wrong_type_argument (Qlistp, list);
1465 tem = XCAR (tail);
1466 if (! NILP (Fequal (elt, tem)))
1467 return tail;
1468 QUIT;
1469 }
1470 return Qnil;
1471 }
1472
1473 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1474 doc: /* Return non-nil if ELT is an element of LIST.
1475 Comparison done with EQ. The value is actually the tail of LIST
1476 whose car is ELT. */)
1477 (elt, list)
1478 Lisp_Object elt, list;
1479 {
1480 while (1)
1481 {
1482 if (!CONSP (list) || EQ (XCAR (list), elt))
1483 break;
1484
1485 list = XCDR (list);
1486 if (!CONSP (list) || EQ (XCAR (list), elt))
1487 break;
1488
1489 list = XCDR (list);
1490 if (!CONSP (list) || EQ (XCAR (list), elt))
1491 break;
1492
1493 list = XCDR (list);
1494 QUIT;
1495 }
1496
1497 if (!CONSP (list) && !NILP (list))
1498 list = wrong_type_argument (Qlistp, list);
1499
1500 return list;
1501 }
1502
1503 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1504 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1505 The value is actually the first element of LIST whose car is KEY.
1506 Elements of LIST that are not conses are ignored. */)
1507 (key, list)
1508 Lisp_Object key, list;
1509 {
1510 Lisp_Object result;
1511
1512 while (1)
1513 {
1514 if (!CONSP (list)
1515 || (CONSP (XCAR (list))
1516 && EQ (XCAR (XCAR (list)), key)))
1517 break;
1518
1519 list = XCDR (list);
1520 if (!CONSP (list)
1521 || (CONSP (XCAR (list))
1522 && EQ (XCAR (XCAR (list)), key)))
1523 break;
1524
1525 list = XCDR (list);
1526 if (!CONSP (list)
1527 || (CONSP (XCAR (list))
1528 && EQ (XCAR (XCAR (list)), key)))
1529 break;
1530
1531 list = XCDR (list);
1532 QUIT;
1533 }
1534
1535 if (CONSP (list))
1536 result = XCAR (list);
1537 else if (NILP (list))
1538 result = Qnil;
1539 else
1540 result = wrong_type_argument (Qlistp, list);
1541
1542 return result;
1543 }
1544
1545 /* Like Fassq but never report an error and do not allow quits.
1546 Use only on lists known never to be circular. */
1547
1548 Lisp_Object
1549 assq_no_quit (key, list)
1550 Lisp_Object key, list;
1551 {
1552 while (CONSP (list)
1553 && (!CONSP (XCAR (list))
1554 || !EQ (XCAR (XCAR (list)), key)))
1555 list = XCDR (list);
1556
1557 return CONSP (list) ? XCAR (list) : Qnil;
1558 }
1559
1560 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1561 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1562 The value is actually the first element of LIST whose car equals KEY. */)
1563 (key, list)
1564 Lisp_Object key, list;
1565 {
1566 Lisp_Object result, car;
1567
1568 while (1)
1569 {
1570 if (!CONSP (list)
1571 || (CONSP (XCAR (list))
1572 && (car = XCAR (XCAR (list)),
1573 EQ (car, key) || !NILP (Fequal (car, key)))))
1574 break;
1575
1576 list = XCDR (list);
1577 if (!CONSP (list)
1578 || (CONSP (XCAR (list))
1579 && (car = XCAR (XCAR (list)),
1580 EQ (car, key) || !NILP (Fequal (car, key)))))
1581 break;
1582
1583 list = XCDR (list);
1584 if (!CONSP (list)
1585 || (CONSP (XCAR (list))
1586 && (car = XCAR (XCAR (list)),
1587 EQ (car, key) || !NILP (Fequal (car, key)))))
1588 break;
1589
1590 list = XCDR (list);
1591 QUIT;
1592 }
1593
1594 if (CONSP (list))
1595 result = XCAR (list);
1596 else if (NILP (list))
1597 result = Qnil;
1598 else
1599 result = wrong_type_argument (Qlistp, list);
1600
1601 return result;
1602 }
1603
1604 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1605 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1606 The value is actually the first element of LIST whose cdr is KEY. */)
1607 (key, list)
1608 register Lisp_Object key;
1609 Lisp_Object list;
1610 {
1611 Lisp_Object result;
1612
1613 while (1)
1614 {
1615 if (!CONSP (list)
1616 || (CONSP (XCAR (list))
1617 && EQ (XCDR (XCAR (list)), key)))
1618 break;
1619
1620 list = XCDR (list);
1621 if (!CONSP (list)
1622 || (CONSP (XCAR (list))
1623 && EQ (XCDR (XCAR (list)), key)))
1624 break;
1625
1626 list = XCDR (list);
1627 if (!CONSP (list)
1628 || (CONSP (XCAR (list))
1629 && EQ (XCDR (XCAR (list)), key)))
1630 break;
1631
1632 list = XCDR (list);
1633 QUIT;
1634 }
1635
1636 if (NILP (list))
1637 result = Qnil;
1638 else if (CONSP (list))
1639 result = XCAR (list);
1640 else
1641 result = wrong_type_argument (Qlistp, list);
1642
1643 return result;
1644 }
1645
1646 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1647 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1648 The value is actually the first element of LIST whose cdr equals KEY. */)
1649 (key, list)
1650 Lisp_Object key, list;
1651 {
1652 Lisp_Object result, cdr;
1653
1654 while (1)
1655 {
1656 if (!CONSP (list)
1657 || (CONSP (XCAR (list))
1658 && (cdr = XCDR (XCAR (list)),
1659 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1660 break;
1661
1662 list = XCDR (list);
1663 if (!CONSP (list)
1664 || (CONSP (XCAR (list))
1665 && (cdr = XCDR (XCAR (list)),
1666 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1667 break;
1668
1669 list = XCDR (list);
1670 if (!CONSP (list)
1671 || (CONSP (XCAR (list))
1672 && (cdr = XCDR (XCAR (list)),
1673 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1674 break;
1675
1676 list = XCDR (list);
1677 QUIT;
1678 }
1679
1680 if (CONSP (list))
1681 result = XCAR (list);
1682 else if (NILP (list))
1683 result = Qnil;
1684 else
1685 result = wrong_type_argument (Qlistp, list);
1686
1687 return result;
1688 }
1689 \f
1690 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1691 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1692 The modified LIST is returned. Comparison is done with `eq'.
1693 If the first member of LIST is ELT, there is no way to remove it by side effect;
1694 therefore, write `(setq foo (delq element foo))'
1695 to be sure of changing the value of `foo'. */)
1696 (elt, list)
1697 register Lisp_Object elt;
1698 Lisp_Object list;
1699 {
1700 register Lisp_Object tail, prev;
1701 register Lisp_Object tem;
1702
1703 tail = list;
1704 prev = Qnil;
1705 while (!NILP (tail))
1706 {
1707 if (! CONSP (tail))
1708 wrong_type_argument (Qlistp, list);
1709 tem = XCAR (tail);
1710 if (EQ (elt, tem))
1711 {
1712 if (NILP (prev))
1713 list = XCDR (tail);
1714 else
1715 Fsetcdr (prev, XCDR (tail));
1716 }
1717 else
1718 prev = tail;
1719 tail = XCDR (tail);
1720 QUIT;
1721 }
1722 return list;
1723 }
1724
1725 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1726 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1727 SEQ must be a list, a vector, or a string.
1728 The modified SEQ is returned. Comparison is done with `equal'.
1729 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1730 is not a side effect; it is simply using a different sequence.
1731 Therefore, write `(setq foo (delete element foo))'
1732 to be sure of changing the value of `foo'. */)
1733 (elt, seq)
1734 Lisp_Object elt, seq;
1735 {
1736 if (VECTORP (seq))
1737 {
1738 EMACS_INT i, n;
1739
1740 for (i = n = 0; i < ASIZE (seq); ++i)
1741 if (NILP (Fequal (AREF (seq, i), elt)))
1742 ++n;
1743
1744 if (n != ASIZE (seq))
1745 {
1746 struct Lisp_Vector *p = allocate_vector (n);
1747
1748 for (i = n = 0; i < ASIZE (seq); ++i)
1749 if (NILP (Fequal (AREF (seq, i), elt)))
1750 p->contents[n++] = AREF (seq, i);
1751
1752 XSETVECTOR (seq, p);
1753 }
1754 }
1755 else if (STRINGP (seq))
1756 {
1757 EMACS_INT i, ibyte, nchars, nbytes, cbytes;
1758 int c;
1759
1760 for (i = nchars = nbytes = ibyte = 0;
1761 i < SCHARS (seq);
1762 ++i, ibyte += cbytes)
1763 {
1764 if (STRING_MULTIBYTE (seq))
1765 {
1766 c = STRING_CHAR (SDATA (seq) + ibyte,
1767 SBYTES (seq) - ibyte);
1768 cbytes = CHAR_BYTES (c);
1769 }
1770 else
1771 {
1772 c = SREF (seq, i);
1773 cbytes = 1;
1774 }
1775
1776 if (!INTEGERP (elt) || c != XINT (elt))
1777 {
1778 ++nchars;
1779 nbytes += cbytes;
1780 }
1781 }
1782
1783 if (nchars != SCHARS (seq))
1784 {
1785 Lisp_Object tem;
1786
1787 tem = make_uninit_multibyte_string (nchars, nbytes);
1788 if (!STRING_MULTIBYTE (seq))
1789 STRING_SET_UNIBYTE (tem);
1790
1791 for (i = nchars = nbytes = ibyte = 0;
1792 i < SCHARS (seq);
1793 ++i, ibyte += cbytes)
1794 {
1795 if (STRING_MULTIBYTE (seq))
1796 {
1797 c = STRING_CHAR (SDATA (seq) + ibyte,
1798 SBYTES (seq) - ibyte);
1799 cbytes = CHAR_BYTES (c);
1800 }
1801 else
1802 {
1803 c = SREF (seq, i);
1804 cbytes = 1;
1805 }
1806
1807 if (!INTEGERP (elt) || c != XINT (elt))
1808 {
1809 unsigned char *from = SDATA (seq) + ibyte;
1810 unsigned char *to = SDATA (tem) + nbytes;
1811 EMACS_INT n;
1812
1813 ++nchars;
1814 nbytes += cbytes;
1815
1816 for (n = cbytes; n--; )
1817 *to++ = *from++;
1818 }
1819 }
1820
1821 seq = tem;
1822 }
1823 }
1824 else
1825 {
1826 Lisp_Object tail, prev;
1827
1828 for (tail = seq, prev = Qnil; !NILP (tail); tail = XCDR (tail))
1829 {
1830 if (!CONSP (tail))
1831 wrong_type_argument (Qlistp, seq);
1832
1833 if (!NILP (Fequal (elt, XCAR (tail))))
1834 {
1835 if (NILP (prev))
1836 seq = XCDR (tail);
1837 else
1838 Fsetcdr (prev, XCDR (tail));
1839 }
1840 else
1841 prev = tail;
1842 QUIT;
1843 }
1844 }
1845
1846 return seq;
1847 }
1848
1849 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1850 doc: /* Reverse LIST by modifying cdr pointers.
1851 Return the reversed list. */)
1852 (list)
1853 Lisp_Object list;
1854 {
1855 register Lisp_Object prev, tail, next;
1856
1857 if (NILP (list)) return list;
1858 prev = Qnil;
1859 tail = list;
1860 while (!NILP (tail))
1861 {
1862 QUIT;
1863 if (! CONSP (tail))
1864 wrong_type_argument (Qlistp, list);
1865 next = XCDR (tail);
1866 Fsetcdr (tail, prev);
1867 prev = tail;
1868 tail = next;
1869 }
1870 return prev;
1871 }
1872
1873 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1874 doc: /* Reverse LIST, copying. Return the reversed list.
1875 See also the function `nreverse', which is used more often. */)
1876 (list)
1877 Lisp_Object list;
1878 {
1879 Lisp_Object new;
1880
1881 for (new = Qnil; CONSP (list); list = XCDR (list))
1882 {
1883 QUIT;
1884 new = Fcons (XCAR (list), new);
1885 }
1886 if (!NILP (list))
1887 wrong_type_argument (Qconsp, list);
1888 return new;
1889 }
1890 \f
1891 Lisp_Object merge ();
1892
1893 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1894 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1895 Returns the sorted list. LIST is modified by side effects.
1896 PREDICATE is called with two elements of LIST, and should return t
1897 if the first element is "less" than the second. */)
1898 (list, predicate)
1899 Lisp_Object list, predicate;
1900 {
1901 Lisp_Object front, back;
1902 register Lisp_Object len, tem;
1903 struct gcpro gcpro1, gcpro2;
1904 register int length;
1905
1906 front = list;
1907 len = Flength (list);
1908 length = XINT (len);
1909 if (length < 2)
1910 return list;
1911
1912 XSETINT (len, (length / 2) - 1);
1913 tem = Fnthcdr (len, list);
1914 back = Fcdr (tem);
1915 Fsetcdr (tem, Qnil);
1916
1917 GCPRO2 (front, back);
1918 front = Fsort (front, predicate);
1919 back = Fsort (back, predicate);
1920 UNGCPRO;
1921 return merge (front, back, predicate);
1922 }
1923
1924 Lisp_Object
1925 merge (org_l1, org_l2, pred)
1926 Lisp_Object org_l1, org_l2;
1927 Lisp_Object pred;
1928 {
1929 Lisp_Object value;
1930 register Lisp_Object tail;
1931 Lisp_Object tem;
1932 register Lisp_Object l1, l2;
1933 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1934
1935 l1 = org_l1;
1936 l2 = org_l2;
1937 tail = Qnil;
1938 value = Qnil;
1939
1940 /* It is sufficient to protect org_l1 and org_l2.
1941 When l1 and l2 are updated, we copy the new values
1942 back into the org_ vars. */
1943 GCPRO4 (org_l1, org_l2, pred, value);
1944
1945 while (1)
1946 {
1947 if (NILP (l1))
1948 {
1949 UNGCPRO;
1950 if (NILP (tail))
1951 return l2;
1952 Fsetcdr (tail, l2);
1953 return value;
1954 }
1955 if (NILP (l2))
1956 {
1957 UNGCPRO;
1958 if (NILP (tail))
1959 return l1;
1960 Fsetcdr (tail, l1);
1961 return value;
1962 }
1963 tem = call2 (pred, Fcar (l2), Fcar (l1));
1964 if (NILP (tem))
1965 {
1966 tem = l1;
1967 l1 = Fcdr (l1);
1968 org_l1 = l1;
1969 }
1970 else
1971 {
1972 tem = l2;
1973 l2 = Fcdr (l2);
1974 org_l2 = l2;
1975 }
1976 if (NILP (tail))
1977 value = tem;
1978 else
1979 Fsetcdr (tail, tem);
1980 tail = tem;
1981 }
1982 }
1983
1984 \f
1985 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1986 doc: /* Extract a value from a property list.
1987 PLIST is a property list, which is a list of the form
1988 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1989 corresponding to the given PROP, or nil if PROP is not
1990 one of the properties on the list. */)
1991 (plist, prop)
1992 Lisp_Object plist;
1993 Lisp_Object prop;
1994 {
1995 Lisp_Object tail;
1996
1997 for (tail = plist;
1998 CONSP (tail) && CONSP (XCDR (tail));
1999 tail = XCDR (XCDR (tail)))
2000 {
2001 if (EQ (prop, XCAR (tail)))
2002 return XCAR (XCDR (tail));
2003
2004 /* This function can be called asynchronously
2005 (setup_coding_system). Don't QUIT in that case. */
2006 if (!interrupt_input_blocked)
2007 QUIT;
2008 }
2009
2010 if (!NILP (tail))
2011 wrong_type_argument (Qlistp, prop);
2012
2013 return Qnil;
2014 }
2015
2016 DEFUN ("get", Fget, Sget, 2, 2, 0,
2017 doc: /* Return the value of SYMBOL's PROPNAME property.
2018 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
2019 (symbol, propname)
2020 Lisp_Object symbol, propname;
2021 {
2022 CHECK_SYMBOL (symbol);
2023 return Fplist_get (XSYMBOL (symbol)->plist, propname);
2024 }
2025
2026 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
2027 doc: /* Change value in PLIST of PROP to VAL.
2028 PLIST is a property list, which is a list of the form
2029 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
2030 If PROP is already a property on the list, its value is set to VAL,
2031 otherwise the new PROP VAL pair is added. The new plist is returned;
2032 use `(setq x (plist-put x prop val))' to be sure to use the new value.
2033 The PLIST is modified by side effects. */)
2034 (plist, prop, val)
2035 Lisp_Object plist;
2036 register Lisp_Object prop;
2037 Lisp_Object val;
2038 {
2039 register Lisp_Object tail, prev;
2040 Lisp_Object newcell;
2041 prev = Qnil;
2042 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2043 tail = XCDR (XCDR (tail)))
2044 {
2045 if (EQ (prop, XCAR (tail)))
2046 {
2047 Fsetcar (XCDR (tail), val);
2048 return plist;
2049 }
2050
2051 prev = tail;
2052 QUIT;
2053 }
2054 newcell = Fcons (prop, Fcons (val, Qnil));
2055 if (NILP (prev))
2056 return newcell;
2057 else
2058 Fsetcdr (XCDR (prev), newcell);
2059 return plist;
2060 }
2061
2062 DEFUN ("put", Fput, Sput, 3, 3, 0,
2063 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
2064 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
2065 (symbol, propname, value)
2066 Lisp_Object symbol, propname, value;
2067 {
2068 CHECK_SYMBOL (symbol);
2069 XSYMBOL (symbol)->plist
2070 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
2071 return value;
2072 }
2073 \f
2074 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
2075 doc: /* Extract a value from a property list, comparing with `equal'.
2076 PLIST is a property list, which is a list of the form
2077 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
2078 corresponding to the given PROP, or nil if PROP is not
2079 one of the properties on the list. */)
2080 (plist, prop)
2081 Lisp_Object plist;
2082 Lisp_Object prop;
2083 {
2084 Lisp_Object tail;
2085
2086 for (tail = plist;
2087 CONSP (tail) && CONSP (XCDR (tail));
2088 tail = XCDR (XCDR (tail)))
2089 {
2090 if (! NILP (Fequal (prop, XCAR (tail))))
2091 return XCAR (XCDR (tail));
2092
2093 QUIT;
2094 }
2095
2096 if (!NILP (tail))
2097 wrong_type_argument (Qlistp, prop);
2098
2099 return Qnil;
2100 }
2101
2102 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
2103 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
2104 PLIST is a property list, which is a list of the form
2105 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
2106 If PROP is already a property on the list, its value is set to VAL,
2107 otherwise the new PROP VAL pair is added. The new plist is returned;
2108 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
2109 The PLIST is modified by side effects. */)
2110 (plist, prop, val)
2111 Lisp_Object plist;
2112 register Lisp_Object prop;
2113 Lisp_Object val;
2114 {
2115 register Lisp_Object tail, prev;
2116 Lisp_Object newcell;
2117 prev = Qnil;
2118 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2119 tail = XCDR (XCDR (tail)))
2120 {
2121 if (! NILP (Fequal (prop, XCAR (tail))))
2122 {
2123 Fsetcar (XCDR (tail), val);
2124 return plist;
2125 }
2126
2127 prev = tail;
2128 QUIT;
2129 }
2130 newcell = Fcons (prop, Fcons (val, Qnil));
2131 if (NILP (prev))
2132 return newcell;
2133 else
2134 Fsetcdr (XCDR (prev), newcell);
2135 return plist;
2136 }
2137 \f
2138 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
2139 doc: /* Return t if two Lisp objects have similar structure and contents.
2140 They must have the same data type.
2141 Conses are compared by comparing the cars and the cdrs.
2142 Vectors and strings are compared element by element.
2143 Numbers are compared by value, but integers cannot equal floats.
2144 (Use `=' if you want integers and floats to be able to be equal.)
2145 Symbols must match exactly. */)
2146 (o1, o2)
2147 register Lisp_Object o1, o2;
2148 {
2149 return internal_equal (o1, o2, 0) ? Qt : Qnil;
2150 }
2151
2152 static int
2153 internal_equal (o1, o2, depth)
2154 register Lisp_Object o1, o2;
2155 int depth;
2156 {
2157 if (depth > 200)
2158 error ("Stack overflow in equal");
2159
2160 tail_recurse:
2161 QUIT;
2162 if (EQ (o1, o2))
2163 return 1;
2164 if (XTYPE (o1) != XTYPE (o2))
2165 return 0;
2166
2167 switch (XTYPE (o1))
2168 {
2169 case Lisp_Float:
2170 {
2171 double d1, d2;
2172
2173 d1 = extract_float (o1);
2174 d2 = extract_float (o2);
2175 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2176 though they are not =. */
2177 return d1 == d2 || (d1 != d1 && d2 != d2);
2178 }
2179
2180 case Lisp_Cons:
2181 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1))
2182 return 0;
2183 o1 = XCDR (o1);
2184 o2 = XCDR (o2);
2185 goto tail_recurse;
2186
2187 case Lisp_Misc:
2188 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2189 return 0;
2190 if (OVERLAYP (o1))
2191 {
2192 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2193 depth + 1)
2194 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2195 depth + 1))
2196 return 0;
2197 o1 = XOVERLAY (o1)->plist;
2198 o2 = XOVERLAY (o2)->plist;
2199 goto tail_recurse;
2200 }
2201 if (MARKERP (o1))
2202 {
2203 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2204 && (XMARKER (o1)->buffer == 0
2205 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2206 }
2207 break;
2208
2209 case Lisp_Vectorlike:
2210 {
2211 register int i;
2212 EMACS_INT size = XVECTOR (o1)->size;
2213 /* Pseudovectors have the type encoded in the size field, so this test
2214 actually checks that the objects have the same type as well as the
2215 same size. */
2216 if (XVECTOR (o2)->size != size)
2217 return 0;
2218 /* Boolvectors are compared much like strings. */
2219 if (BOOL_VECTOR_P (o1))
2220 {
2221 int size_in_chars
2222 = (XBOOL_VECTOR (o1)->size + BITS_PER_CHAR - 1) / BITS_PER_CHAR;
2223
2224 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2225 return 0;
2226 if (bcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2227 size_in_chars))
2228 return 0;
2229 return 1;
2230 }
2231 if (WINDOW_CONFIGURATIONP (o1))
2232 return compare_window_configurations (o1, o2, 0);
2233
2234 /* Aside from them, only true vectors, char-tables, and compiled
2235 functions are sensible to compare, so eliminate the others now. */
2236 if (size & PSEUDOVECTOR_FLAG)
2237 {
2238 if (!(size & (PVEC_COMPILED | PVEC_CHAR_TABLE)))
2239 return 0;
2240 size &= PSEUDOVECTOR_SIZE_MASK;
2241 }
2242 for (i = 0; i < size; i++)
2243 {
2244 Lisp_Object v1, v2;
2245 v1 = XVECTOR (o1)->contents [i];
2246 v2 = XVECTOR (o2)->contents [i];
2247 if (!internal_equal (v1, v2, depth + 1))
2248 return 0;
2249 }
2250 return 1;
2251 }
2252 break;
2253
2254 case Lisp_String:
2255 if (SCHARS (o1) != SCHARS (o2))
2256 return 0;
2257 if (SBYTES (o1) != SBYTES (o2))
2258 return 0;
2259 if (bcmp (SDATA (o1), SDATA (o2),
2260 SBYTES (o1)))
2261 return 0;
2262 return 1;
2263
2264 case Lisp_Int:
2265 case Lisp_Symbol:
2266 case Lisp_Type_Limit:
2267 break;
2268 }
2269
2270 return 0;
2271 }
2272 \f
2273 extern Lisp_Object Fmake_char_internal ();
2274
2275 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2276 doc: /* Store each element of ARRAY with ITEM.
2277 ARRAY is a vector, string, char-table, or bool-vector. */)
2278 (array, item)
2279 Lisp_Object array, item;
2280 {
2281 register int size, index, charval;
2282 retry:
2283 if (VECTORP (array))
2284 {
2285 register Lisp_Object *p = XVECTOR (array)->contents;
2286 size = XVECTOR (array)->size;
2287 for (index = 0; index < size; index++)
2288 p[index] = item;
2289 }
2290 else if (CHAR_TABLE_P (array))
2291 {
2292 register Lisp_Object *p = XCHAR_TABLE (array)->contents;
2293 size = CHAR_TABLE_ORDINARY_SLOTS;
2294 for (index = 0; index < size; index++)
2295 p[index] = item;
2296 XCHAR_TABLE (array)->defalt = Qnil;
2297 }
2298 else if (STRINGP (array))
2299 {
2300 register unsigned char *p = SDATA (array);
2301 CHECK_NUMBER (item);
2302 charval = XINT (item);
2303 size = SCHARS (array);
2304 if (STRING_MULTIBYTE (array))
2305 {
2306 unsigned char str[MAX_MULTIBYTE_LENGTH];
2307 int len = CHAR_STRING (charval, str);
2308 int size_byte = SBYTES (array);
2309 unsigned char *p1 = p, *endp = p + size_byte;
2310 int i;
2311
2312 if (size != size_byte)
2313 while (p1 < endp)
2314 {
2315 int this_len = MULTIBYTE_FORM_LENGTH (p1, endp - p1);
2316 if (len != this_len)
2317 error ("Attempt to change byte length of a string");
2318 p1 += this_len;
2319 }
2320 for (i = 0; i < size_byte; i++)
2321 *p++ = str[i % len];
2322 }
2323 else
2324 for (index = 0; index < size; index++)
2325 p[index] = charval;
2326 }
2327 else if (BOOL_VECTOR_P (array))
2328 {
2329 register unsigned char *p = XBOOL_VECTOR (array)->data;
2330 int size_in_chars
2331 = (XBOOL_VECTOR (array)->size + BITS_PER_CHAR - 1) / BITS_PER_CHAR;
2332
2333 charval = (! NILP (item) ? -1 : 0);
2334 for (index = 0; index < size_in_chars - 1; index++)
2335 p[index] = charval;
2336 if (index < size_in_chars)
2337 {
2338 /* Mask out bits beyond the vector size. */
2339 if (XBOOL_VECTOR (array)->size % BITS_PER_CHAR)
2340 charval &= (1 << (XBOOL_VECTOR (array)->size % BITS_PER_CHAR)) - 1;
2341 p[index] = charval;
2342 }
2343 }
2344 else
2345 {
2346 array = wrong_type_argument (Qarrayp, array);
2347 goto retry;
2348 }
2349 return array;
2350 }
2351
2352 DEFUN ("clear-string", Fclear_string, Sclear_string,
2353 1, 1, 0,
2354 doc: /* Clear the contents of STRING.
2355 This makes STRING unibyte and may change its length. */)
2356 (string)
2357 Lisp_Object string;
2358 {
2359 int len = SBYTES (string);
2360 bzero (SDATA (string), len);
2361 STRING_SET_CHARS (string, len);
2362 STRING_SET_UNIBYTE (string);
2363 return Qnil;
2364 }
2365 \f
2366 DEFUN ("char-table-subtype", Fchar_table_subtype, Schar_table_subtype,
2367 1, 1, 0,
2368 doc: /* Return the subtype of char-table CHAR-TABLE. The value is a symbol. */)
2369 (char_table)
2370 Lisp_Object char_table;
2371 {
2372 CHECK_CHAR_TABLE (char_table);
2373
2374 return XCHAR_TABLE (char_table)->purpose;
2375 }
2376
2377 DEFUN ("char-table-parent", Fchar_table_parent, Schar_table_parent,
2378 1, 1, 0,
2379 doc: /* Return the parent char-table of CHAR-TABLE.
2380 The value is either nil or another char-table.
2381 If CHAR-TABLE holds nil for a given character,
2382 then the actual applicable value is inherited from the parent char-table
2383 \(or from its parents, if necessary). */)
2384 (char_table)
2385 Lisp_Object char_table;
2386 {
2387 CHECK_CHAR_TABLE (char_table);
2388
2389 return XCHAR_TABLE (char_table)->parent;
2390 }
2391
2392 DEFUN ("set-char-table-parent", Fset_char_table_parent, Sset_char_table_parent,
2393 2, 2, 0,
2394 doc: /* Set the parent char-table of CHAR-TABLE to PARENT.
2395 Return PARENT. PARENT must be either nil or another char-table. */)
2396 (char_table, parent)
2397 Lisp_Object char_table, parent;
2398 {
2399 Lisp_Object temp;
2400
2401 CHECK_CHAR_TABLE (char_table);
2402
2403 if (!NILP (parent))
2404 {
2405 CHECK_CHAR_TABLE (parent);
2406
2407 for (temp = parent; !NILP (temp); temp = XCHAR_TABLE (temp)->parent)
2408 if (EQ (temp, char_table))
2409 error ("Attempt to make a chartable be its own parent");
2410 }
2411
2412 XCHAR_TABLE (char_table)->parent = parent;
2413
2414 return parent;
2415 }
2416
2417 DEFUN ("char-table-extra-slot", Fchar_table_extra_slot, Schar_table_extra_slot,
2418 2, 2, 0,
2419 doc: /* Return the value of CHAR-TABLE's extra-slot number N. */)
2420 (char_table, n)
2421 Lisp_Object char_table, n;
2422 {
2423 CHECK_CHAR_TABLE (char_table);
2424 CHECK_NUMBER (n);
2425 if (XINT (n) < 0
2426 || XINT (n) >= CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (char_table)))
2427 args_out_of_range (char_table, n);
2428
2429 return XCHAR_TABLE (char_table)->extras[XINT (n)];
2430 }
2431
2432 DEFUN ("set-char-table-extra-slot", Fset_char_table_extra_slot,
2433 Sset_char_table_extra_slot,
2434 3, 3, 0,
2435 doc: /* Set CHAR-TABLE's extra-slot number N to VALUE. */)
2436 (char_table, n, value)
2437 Lisp_Object char_table, n, value;
2438 {
2439 CHECK_CHAR_TABLE (char_table);
2440 CHECK_NUMBER (n);
2441 if (XINT (n) < 0
2442 || XINT (n) >= CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (char_table)))
2443 args_out_of_range (char_table, n);
2444
2445 return XCHAR_TABLE (char_table)->extras[XINT (n)] = value;
2446 }
2447 \f
2448 DEFUN ("char-table-range", Fchar_table_range, Schar_table_range,
2449 2, 2, 0,
2450 doc: /* Return the value in CHAR-TABLE for a range of characters RANGE.
2451 RANGE should be nil (for the default value)
2452 a vector which identifies a character set or a row of a character set,
2453 a character set name, or a character code. */)
2454 (char_table, range)
2455 Lisp_Object char_table, range;
2456 {
2457 CHECK_CHAR_TABLE (char_table);
2458
2459 if (EQ (range, Qnil))
2460 return XCHAR_TABLE (char_table)->defalt;
2461 else if (INTEGERP (range))
2462 return Faref (char_table, range);
2463 else if (SYMBOLP (range))
2464 {
2465 Lisp_Object charset_info;
2466
2467 charset_info = Fget (range, Qcharset);
2468 CHECK_VECTOR (charset_info);
2469
2470 return Faref (char_table,
2471 make_number (XINT (XVECTOR (charset_info)->contents[0])
2472 + 128));
2473 }
2474 else if (VECTORP (range))
2475 {
2476 if (XVECTOR (range)->size == 1)
2477 return Faref (char_table,
2478 make_number (XINT (XVECTOR (range)->contents[0]) + 128));
2479 else
2480 {
2481 int size = XVECTOR (range)->size;
2482 Lisp_Object *val = XVECTOR (range)->contents;
2483 Lisp_Object ch = Fmake_char_internal (size <= 0 ? Qnil : val[0],
2484 size <= 1 ? Qnil : val[1],
2485 size <= 2 ? Qnil : val[2]);
2486 return Faref (char_table, ch);
2487 }
2488 }
2489 else
2490 error ("Invalid RANGE argument to `char-table-range'");
2491 return Qt;
2492 }
2493
2494 DEFUN ("set-char-table-range", Fset_char_table_range, Sset_char_table_range,
2495 3, 3, 0,
2496 doc: /* Set the value in CHAR-TABLE for a range of characters RANGE to VALUE.
2497 RANGE should be t (for all characters), nil (for the default value),
2498 a character set, a vector which identifies a character set, a row of a
2499 character set, or a character code. Return VALUE. */)
2500 (char_table, range, value)
2501 Lisp_Object char_table, range, value;
2502 {
2503 int i;
2504
2505 CHECK_CHAR_TABLE (char_table);
2506
2507 if (EQ (range, Qt))
2508 for (i = 0; i < CHAR_TABLE_ORDINARY_SLOTS; i++)
2509 XCHAR_TABLE (char_table)->contents[i] = value;
2510 else if (EQ (range, Qnil))
2511 XCHAR_TABLE (char_table)->defalt = value;
2512 else if (SYMBOLP (range))
2513 {
2514 Lisp_Object charset_info;
2515
2516 charset_info = Fget (range, Qcharset);
2517 CHECK_VECTOR (charset_info);
2518
2519 return Faset (char_table,
2520 make_number (XINT (XVECTOR (charset_info)->contents[0])
2521 + 128),
2522 value);
2523 }
2524 else if (INTEGERP (range))
2525 Faset (char_table, range, value);
2526 else if (VECTORP (range))
2527 {
2528 if (XVECTOR (range)->size == 1)
2529 return Faset (char_table,
2530 make_number (XINT (XVECTOR (range)->contents[0]) + 128),
2531 value);
2532 else
2533 {
2534 int size = XVECTOR (range)->size;
2535 Lisp_Object *val = XVECTOR (range)->contents;
2536 Lisp_Object ch = Fmake_char_internal (size <= 0 ? Qnil : val[0],
2537 size <= 1 ? Qnil : val[1],
2538 size <= 2 ? Qnil : val[2]);
2539 return Faset (char_table, ch, value);
2540 }
2541 }
2542 else
2543 error ("Invalid RANGE argument to `set-char-table-range'");
2544
2545 return value;
2546 }
2547
2548 DEFUN ("set-char-table-default", Fset_char_table_default,
2549 Sset_char_table_default, 3, 3, 0,
2550 doc: /* Set the default value in CHAR-TABLE for generic character CH to VALUE.
2551 The generic character specifies the group of characters.
2552 See also the documentation of `make-char'. */)
2553 (char_table, ch, value)
2554 Lisp_Object char_table, ch, value;
2555 {
2556 int c, charset, code1, code2;
2557 Lisp_Object temp;
2558
2559 CHECK_CHAR_TABLE (char_table);
2560 CHECK_NUMBER (ch);
2561
2562 c = XINT (ch);
2563 SPLIT_CHAR (c, charset, code1, code2);
2564
2565 /* Since we may want to set the default value for a character set
2566 not yet defined, we check only if the character set is in the
2567 valid range or not, instead of it is already defined or not. */
2568 if (! CHARSET_VALID_P (charset))
2569 invalid_character (c);
2570
2571 if (charset == CHARSET_ASCII)
2572 return (XCHAR_TABLE (char_table)->defalt = value);
2573
2574 /* Even if C is not a generic char, we had better behave as if a
2575 generic char is specified. */
2576 if (!CHARSET_DEFINED_P (charset) || CHARSET_DIMENSION (charset) == 1)
2577 code1 = 0;
2578 temp = XCHAR_TABLE (char_table)->contents[charset + 128];
2579 if (!code1)
2580 {
2581 if (SUB_CHAR_TABLE_P (temp))
2582 XCHAR_TABLE (temp)->defalt = value;
2583 else
2584 XCHAR_TABLE (char_table)->contents[charset + 128] = value;
2585 return value;
2586 }
2587 if (SUB_CHAR_TABLE_P (temp))
2588 char_table = temp;
2589 else
2590 char_table = (XCHAR_TABLE (char_table)->contents[charset + 128]
2591 = make_sub_char_table (temp));
2592 temp = XCHAR_TABLE (char_table)->contents[code1];
2593 if (SUB_CHAR_TABLE_P (temp))
2594 XCHAR_TABLE (temp)->defalt = value;
2595 else
2596 XCHAR_TABLE (char_table)->contents[code1] = value;
2597 return value;
2598 }
2599
2600 /* Look up the element in TABLE at index CH,
2601 and return it as an integer.
2602 If the element is nil, return CH itself.
2603 (Actually we do that for any non-integer.) */
2604
2605 int
2606 char_table_translate (table, ch)
2607 Lisp_Object table;
2608 int ch;
2609 {
2610 Lisp_Object value;
2611 value = Faref (table, make_number (ch));
2612 if (! INTEGERP (value))
2613 return ch;
2614 return XINT (value);
2615 }
2616
2617 static void
2618 optimize_sub_char_table (table, chars)
2619 Lisp_Object *table;
2620 int chars;
2621 {
2622 Lisp_Object elt;
2623 int from, to;
2624
2625 if (chars == 94)
2626 from = 33, to = 127;
2627 else
2628 from = 32, to = 128;
2629
2630 if (!SUB_CHAR_TABLE_P (*table))
2631 return;
2632 elt = XCHAR_TABLE (*table)->contents[from++];
2633 for (; from < to; from++)
2634 if (NILP (Fequal (elt, XCHAR_TABLE (*table)->contents[from])))
2635 return;
2636 *table = elt;
2637 }
2638
2639 DEFUN ("optimize-char-table", Foptimize_char_table, Soptimize_char_table,
2640 1, 1, 0, doc: /* Optimize char table TABLE. */)
2641 (table)
2642 Lisp_Object table;
2643 {
2644 Lisp_Object elt;
2645 int dim;
2646 int i, j;
2647
2648 CHECK_CHAR_TABLE (table);
2649
2650 for (i = CHAR_TABLE_SINGLE_BYTE_SLOTS; i < CHAR_TABLE_ORDINARY_SLOTS; i++)
2651 {
2652 elt = XCHAR_TABLE (table)->contents[i];
2653 if (!SUB_CHAR_TABLE_P (elt))
2654 continue;
2655 dim = CHARSET_DIMENSION (i - 128);
2656 if (dim == 2)
2657 for (j = 32; j < SUB_CHAR_TABLE_ORDINARY_SLOTS; j++)
2658 optimize_sub_char_table (XCHAR_TABLE (elt)->contents + j, dim);
2659 optimize_sub_char_table (XCHAR_TABLE (table)->contents + i, dim);
2660 }
2661 return Qnil;
2662 }
2663
2664 \f
2665 /* Map C_FUNCTION or FUNCTION over SUBTABLE, calling it for each
2666 character or group of characters that share a value.
2667 DEPTH is the current depth in the originally specified
2668 chartable, and INDICES contains the vector indices
2669 for the levels our callers have descended.
2670
2671 ARG is passed to C_FUNCTION when that is called. */
2672
2673 void
2674 map_char_table (c_function, function, table, subtable, arg, depth, indices)
2675 void (*c_function) P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
2676 Lisp_Object function, table, subtable, arg, *indices;
2677 int depth;
2678 {
2679 int i, to;
2680
2681 if (depth == 0)
2682 {
2683 /* At first, handle ASCII and 8-bit European characters. */
2684 for (i = 0; i < CHAR_TABLE_SINGLE_BYTE_SLOTS; i++)
2685 {
2686 Lisp_Object elt= XCHAR_TABLE (subtable)->contents[i];
2687 if (NILP (elt))
2688 elt = XCHAR_TABLE (subtable)->defalt;
2689 if (NILP (elt))
2690 elt = Faref (subtable, make_number (i));
2691 if (c_function)
2692 (*c_function) (arg, make_number (i), elt);
2693 else
2694 call2 (function, make_number (i), elt);
2695 }
2696 #if 0 /* If the char table has entries for higher characters,
2697 we should report them. */
2698 if (NILP (current_buffer->enable_multibyte_characters))
2699 return;
2700 #endif
2701 to = CHAR_TABLE_ORDINARY_SLOTS;
2702 }
2703 else
2704 {
2705 int charset = XFASTINT (indices[0]) - 128;
2706
2707 i = 32;
2708 to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
2709 if (CHARSET_CHARS (charset) == 94)
2710 i++, to--;
2711 }
2712
2713 for (; i < to; i++)
2714 {
2715 Lisp_Object elt;
2716 int charset;
2717
2718 elt = XCHAR_TABLE (subtable)->contents[i];
2719 XSETFASTINT (indices[depth], i);
2720 charset = XFASTINT (indices[0]) - 128;
2721 if (depth == 0
2722 && (!CHARSET_DEFINED_P (charset)
2723 || charset == CHARSET_8_BIT_CONTROL
2724 || charset == CHARSET_8_BIT_GRAPHIC))
2725 continue;
2726
2727 if (SUB_CHAR_TABLE_P (elt))
2728 {
2729 if (depth >= 3)
2730 error ("Too deep char table");
2731 map_char_table (c_function, function, table, elt, arg, depth + 1, indices);
2732 }
2733 else
2734 {
2735 int c1, c2, c;
2736
2737 c1 = depth >= 1 ? XFASTINT (indices[1]) : 0;
2738 c2 = depth >= 2 ? XFASTINT (indices[2]) : 0;
2739 c = MAKE_CHAR (charset, c1, c2);
2740
2741 if (NILP (elt))
2742 elt = XCHAR_TABLE (subtable)->defalt;
2743 if (NILP (elt))
2744 elt = Faref (table, make_number (c));
2745
2746 if (c_function)
2747 (*c_function) (arg, make_number (c), elt);
2748 else
2749 call2 (function, make_number (c), elt);
2750 }
2751 }
2752 }
2753
2754 static void void_call2 P_ ((Lisp_Object a, Lisp_Object b, Lisp_Object c));
2755 static void
2756 void_call2 (a, b, c)
2757 Lisp_Object a, b, c;
2758 {
2759 call2 (a, b, c);
2760 }
2761
2762 DEFUN ("map-char-table", Fmap_char_table, Smap_char_table,
2763 2, 2, 0,
2764 doc: /* Call FUNCTION for each (normal and generic) characters in CHAR-TABLE.
2765 FUNCTION is called with two arguments--a key and a value.
2766 The key is always a possible IDX argument to `aref'. */)
2767 (function, char_table)
2768 Lisp_Object function, char_table;
2769 {
2770 /* The depth of char table is at most 3. */
2771 Lisp_Object indices[3];
2772
2773 CHECK_CHAR_TABLE (char_table);
2774
2775 /* When Lisp_Object is represented as a union, `call2' cannot directly
2776 be passed to map_char_table because it returns a Lisp_Object rather
2777 than returning nothing.
2778 Casting leads to crashes on some architectures. -stef */
2779 map_char_table (void_call2, Qnil, char_table, char_table, function, 0, indices);
2780 return Qnil;
2781 }
2782
2783 /* Return a value for character C in char-table TABLE. Store the
2784 actual index for that value in *IDX. Ignore the default value of
2785 TABLE. */
2786
2787 Lisp_Object
2788 char_table_ref_and_index (table, c, idx)
2789 Lisp_Object table;
2790 int c, *idx;
2791 {
2792 int charset, c1, c2;
2793 Lisp_Object elt;
2794
2795 if (SINGLE_BYTE_CHAR_P (c))
2796 {
2797 *idx = c;
2798 return XCHAR_TABLE (table)->contents[c];
2799 }
2800 SPLIT_CHAR (c, charset, c1, c2);
2801 elt = XCHAR_TABLE (table)->contents[charset + 128];
2802 *idx = MAKE_CHAR (charset, 0, 0);
2803 if (!SUB_CHAR_TABLE_P (elt))
2804 return elt;
2805 if (c1 < 32 || NILP (XCHAR_TABLE (elt)->contents[c1]))
2806 return XCHAR_TABLE (elt)->defalt;
2807 elt = XCHAR_TABLE (elt)->contents[c1];
2808 *idx = MAKE_CHAR (charset, c1, 0);
2809 if (!SUB_CHAR_TABLE_P (elt))
2810 return elt;
2811 if (c2 < 32 || NILP (XCHAR_TABLE (elt)->contents[c2]))
2812 return XCHAR_TABLE (elt)->defalt;
2813 *idx = c;
2814 return XCHAR_TABLE (elt)->contents[c2];
2815 }
2816
2817 \f
2818 /* ARGSUSED */
2819 Lisp_Object
2820 nconc2 (s1, s2)
2821 Lisp_Object s1, s2;
2822 {
2823 #ifdef NO_ARG_ARRAY
2824 Lisp_Object args[2];
2825 args[0] = s1;
2826 args[1] = s2;
2827 return Fnconc (2, args);
2828 #else
2829 return Fnconc (2, &s1);
2830 #endif /* NO_ARG_ARRAY */
2831 }
2832
2833 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2834 doc: /* Concatenate any number of lists by altering them.
2835 Only the last argument is not altered, and need not be a list.
2836 usage: (nconc &rest LISTS) */)
2837 (nargs, args)
2838 int nargs;
2839 Lisp_Object *args;
2840 {
2841 register int argnum;
2842 register Lisp_Object tail, tem, val;
2843
2844 val = tail = Qnil;
2845
2846 for (argnum = 0; argnum < nargs; argnum++)
2847 {
2848 tem = args[argnum];
2849 if (NILP (tem)) continue;
2850
2851 if (NILP (val))
2852 val = tem;
2853
2854 if (argnum + 1 == nargs) break;
2855
2856 if (!CONSP (tem))
2857 tem = wrong_type_argument (Qlistp, tem);
2858
2859 while (CONSP (tem))
2860 {
2861 tail = tem;
2862 tem = XCDR (tail);
2863 QUIT;
2864 }
2865
2866 tem = args[argnum + 1];
2867 Fsetcdr (tail, tem);
2868 if (NILP (tem))
2869 args[argnum + 1] = tail;
2870 }
2871
2872 return val;
2873 }
2874 \f
2875 /* This is the guts of all mapping functions.
2876 Apply FN to each element of SEQ, one by one,
2877 storing the results into elements of VALS, a C vector of Lisp_Objects.
2878 LENI is the length of VALS, which should also be the length of SEQ. */
2879
2880 static void
2881 mapcar1 (leni, vals, fn, seq)
2882 int leni;
2883 Lisp_Object *vals;
2884 Lisp_Object fn, seq;
2885 {
2886 register Lisp_Object tail;
2887 Lisp_Object dummy;
2888 register int i;
2889 struct gcpro gcpro1, gcpro2, gcpro3;
2890
2891 if (vals)
2892 {
2893 /* Don't let vals contain any garbage when GC happens. */
2894 for (i = 0; i < leni; i++)
2895 vals[i] = Qnil;
2896
2897 GCPRO3 (dummy, fn, seq);
2898 gcpro1.var = vals;
2899 gcpro1.nvars = leni;
2900 }
2901 else
2902 GCPRO2 (fn, seq);
2903 /* We need not explicitly protect `tail' because it is used only on lists, and
2904 1) lists are not relocated and 2) the list is marked via `seq' so will not be freed */
2905
2906 if (VECTORP (seq))
2907 {
2908 for (i = 0; i < leni; i++)
2909 {
2910 dummy = XVECTOR (seq)->contents[i];
2911 dummy = call1 (fn, dummy);
2912 if (vals)
2913 vals[i] = dummy;
2914 }
2915 }
2916 else if (BOOL_VECTOR_P (seq))
2917 {
2918 for (i = 0; i < leni; i++)
2919 {
2920 int byte;
2921 byte = XBOOL_VECTOR (seq)->data[i / BITS_PER_CHAR];
2922 if (byte & (1 << (i % BITS_PER_CHAR)))
2923 dummy = Qt;
2924 else
2925 dummy = Qnil;
2926
2927 dummy = call1 (fn, dummy);
2928 if (vals)
2929 vals[i] = dummy;
2930 }
2931 }
2932 else if (STRINGP (seq))
2933 {
2934 int i_byte;
2935
2936 for (i = 0, i_byte = 0; i < leni;)
2937 {
2938 int c;
2939 int i_before = i;
2940
2941 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2942 XSETFASTINT (dummy, c);
2943 dummy = call1 (fn, dummy);
2944 if (vals)
2945 vals[i_before] = dummy;
2946 }
2947 }
2948 else /* Must be a list, since Flength did not get an error */
2949 {
2950 tail = seq;
2951 for (i = 0; i < leni; i++)
2952 {
2953 dummy = call1 (fn, Fcar (tail));
2954 if (vals)
2955 vals[i] = dummy;
2956 tail = XCDR (tail);
2957 }
2958 }
2959
2960 UNGCPRO;
2961 }
2962
2963 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2964 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2965 In between each pair of results, stick in SEPARATOR. Thus, " " as
2966 SEPARATOR results in spaces between the values returned by FUNCTION.
2967 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2968 (function, sequence, separator)
2969 Lisp_Object function, sequence, separator;
2970 {
2971 Lisp_Object len;
2972 register int leni;
2973 int nargs;
2974 register Lisp_Object *args;
2975 register int i;
2976 struct gcpro gcpro1;
2977
2978 len = Flength (sequence);
2979 leni = XINT (len);
2980 nargs = leni + leni - 1;
2981 if (nargs < 0) return build_string ("");
2982
2983 args = (Lisp_Object *) alloca (nargs * sizeof (Lisp_Object));
2984
2985 GCPRO1 (separator);
2986 mapcar1 (leni, args, function, sequence);
2987 UNGCPRO;
2988
2989 for (i = leni - 1; i >= 0; i--)
2990 args[i + i] = args[i];
2991
2992 for (i = 1; i < nargs; i += 2)
2993 args[i] = separator;
2994
2995 return Fconcat (nargs, args);
2996 }
2997
2998 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2999 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
3000 The result is a list just as long as SEQUENCE.
3001 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
3002 (function, sequence)
3003 Lisp_Object function, sequence;
3004 {
3005 register Lisp_Object len;
3006 register int leni;
3007 register Lisp_Object *args;
3008
3009 len = Flength (sequence);
3010 leni = XFASTINT (len);
3011 args = (Lisp_Object *) alloca (leni * sizeof (Lisp_Object));
3012
3013 mapcar1 (leni, args, function, sequence);
3014
3015 return Flist (leni, args);
3016 }
3017
3018 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
3019 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
3020 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
3021 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
3022 (function, sequence)
3023 Lisp_Object function, sequence;
3024 {
3025 register int leni;
3026
3027 leni = XFASTINT (Flength (sequence));
3028 mapcar1 (leni, 0, function, sequence);
3029
3030 return sequence;
3031 }
3032 \f
3033 /* Anything that calls this function must protect from GC! */
3034
3035 DEFUN ("y-or-n-p", Fy_or_n_p, Sy_or_n_p, 1, 1, 0,
3036 doc: /* Ask user a "y or n" question. Return t if answer is "y".
3037 Takes one argument, which is the string to display to ask the question.
3038 It should end in a space; `y-or-n-p' adds `(y or n) ' to it.
3039 No confirmation of the answer is requested; a single character is enough.
3040 Also accepts Space to mean yes, or Delete to mean no. \(Actually, it uses
3041 the bindings in `query-replace-map'; see the documentation of that variable
3042 for more information. In this case, the useful bindings are `act', `skip',
3043 `recenter', and `quit'.\)
3044
3045 Under a windowing system a dialog box will be used if `last-nonmenu-event'
3046 is nil and `use-dialog-box' is non-nil. */)
3047 (prompt)
3048 Lisp_Object prompt;
3049 {
3050 register Lisp_Object obj, key, def, map;
3051 register int answer;
3052 Lisp_Object xprompt;
3053 Lisp_Object args[2];
3054 struct gcpro gcpro1, gcpro2;
3055 int count = SPECPDL_INDEX ();
3056
3057 specbind (Qcursor_in_echo_area, Qt);
3058
3059 map = Fsymbol_value (intern ("query-replace-map"));
3060
3061 CHECK_STRING (prompt);
3062 xprompt = prompt;
3063 GCPRO2 (prompt, xprompt);
3064
3065 #ifdef HAVE_X_WINDOWS
3066 if (display_hourglass_p)
3067 cancel_hourglass ();
3068 #endif
3069
3070 while (1)
3071 {
3072
3073 #ifdef HAVE_MENUS
3074 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3075 && use_dialog_box
3076 && have_menus_p ())
3077 {
3078 Lisp_Object pane, menu;
3079 redisplay_preserve_echo_area (3);
3080 pane = Fcons (Fcons (build_string ("Yes"), Qt),
3081 Fcons (Fcons (build_string ("No"), Qnil),
3082 Qnil));
3083 menu = Fcons (prompt, pane);
3084 obj = Fx_popup_dialog (Qt, menu);
3085 answer = !NILP (obj);
3086 break;
3087 }
3088 #endif /* HAVE_MENUS */
3089 cursor_in_echo_area = 1;
3090 choose_minibuf_frame ();
3091
3092 {
3093 Lisp_Object pargs[3];
3094
3095 /* Colorize prompt according to `minibuffer-prompt' face. */
3096 pargs[0] = build_string ("%s(y or n) ");
3097 pargs[1] = intern ("face");
3098 pargs[2] = intern ("minibuffer-prompt");
3099 args[0] = Fpropertize (3, pargs);
3100 args[1] = xprompt;
3101 Fmessage (2, args);
3102 }
3103
3104 if (minibuffer_auto_raise)
3105 {
3106 Lisp_Object mini_frame;
3107
3108 mini_frame = WINDOW_FRAME (XWINDOW (minibuf_window));
3109
3110 Fraise_frame (mini_frame);
3111 }
3112
3113 obj = read_filtered_event (1, 0, 0, 0);
3114 cursor_in_echo_area = 0;
3115 /* If we need to quit, quit with cursor_in_echo_area = 0. */
3116 QUIT;
3117
3118 key = Fmake_vector (make_number (1), obj);
3119 def = Flookup_key (map, key, Qt);
3120
3121 if (EQ (def, intern ("skip")))
3122 {
3123 answer = 0;
3124 break;
3125 }
3126 else if (EQ (def, intern ("act")))
3127 {
3128 answer = 1;
3129 break;
3130 }
3131 else if (EQ (def, intern ("recenter")))
3132 {
3133 Frecenter (Qnil);
3134 xprompt = prompt;
3135 continue;
3136 }
3137 else if (EQ (def, intern ("quit")))
3138 Vquit_flag = Qt;
3139 /* We want to exit this command for exit-prefix,
3140 and this is the only way to do it. */
3141 else if (EQ (def, intern ("exit-prefix")))
3142 Vquit_flag = Qt;
3143
3144 QUIT;
3145
3146 /* If we don't clear this, then the next call to read_char will
3147 return quit_char again, and we'll enter an infinite loop. */
3148 Vquit_flag = Qnil;
3149
3150 Fding (Qnil);
3151 Fdiscard_input ();
3152 if (EQ (xprompt, prompt))
3153 {
3154 args[0] = build_string ("Please answer y or n. ");
3155 args[1] = prompt;
3156 xprompt = Fconcat (2, args);
3157 }
3158 }
3159 UNGCPRO;
3160
3161 if (! noninteractive)
3162 {
3163 cursor_in_echo_area = -1;
3164 message_with_string (answer ? "%s(y or n) y" : "%s(y or n) n",
3165 xprompt, 0);
3166 }
3167
3168 unbind_to (count, Qnil);
3169 return answer ? Qt : Qnil;
3170 }
3171 \f
3172 /* This is how C code calls `yes-or-no-p' and allows the user
3173 to redefined it.
3174
3175 Anything that calls this function must protect from GC! */
3176
3177 Lisp_Object
3178 do_yes_or_no_p (prompt)
3179 Lisp_Object prompt;
3180 {
3181 return call1 (intern ("yes-or-no-p"), prompt);
3182 }
3183
3184 /* Anything that calls this function must protect from GC! */
3185
3186 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
3187 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
3188 Takes one argument, which is the string to display to ask the question.
3189 It should end in a space; `yes-or-no-p' adds `(yes or no) ' to it.
3190 The user must confirm the answer with RET,
3191 and can edit it until it has been confirmed.
3192
3193 Under a windowing system a dialog box will be used if `last-nonmenu-event'
3194 is nil, and `use-dialog-box' is non-nil. */)
3195 (prompt)
3196 Lisp_Object prompt;
3197 {
3198 register Lisp_Object ans;
3199 Lisp_Object args[2];
3200 struct gcpro gcpro1;
3201
3202 CHECK_STRING (prompt);
3203
3204 #ifdef HAVE_MENUS
3205 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3206 && use_dialog_box
3207 && have_menus_p ())
3208 {
3209 Lisp_Object pane, menu, obj;
3210 redisplay_preserve_echo_area (4);
3211 pane = Fcons (Fcons (build_string ("Yes"), Qt),
3212 Fcons (Fcons (build_string ("No"), Qnil),
3213 Qnil));
3214 GCPRO1 (pane);
3215 menu = Fcons (prompt, pane);
3216 obj = Fx_popup_dialog (Qt, menu);
3217 UNGCPRO;
3218 return obj;
3219 }
3220 #endif /* HAVE_MENUS */
3221
3222 args[0] = prompt;
3223 args[1] = build_string ("(yes or no) ");
3224 prompt = Fconcat (2, args);
3225
3226 GCPRO1 (prompt);
3227
3228 while (1)
3229 {
3230 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
3231 Qyes_or_no_p_history, Qnil,
3232 Qnil));
3233 if (SCHARS (ans) == 3 && !strcmp (SDATA (ans), "yes"))
3234 {
3235 UNGCPRO;
3236 return Qt;
3237 }
3238 if (SCHARS (ans) == 2 && !strcmp (SDATA (ans), "no"))
3239 {
3240 UNGCPRO;
3241 return Qnil;
3242 }
3243
3244 Fding (Qnil);
3245 Fdiscard_input ();
3246 message ("Please answer yes or no.");
3247 Fsleep_for (make_number (2), Qnil);
3248 }
3249 }
3250 \f
3251 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
3252 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
3253
3254 Each of the three load averages is multiplied by 100, then converted
3255 to integer.
3256
3257 When USE-FLOATS is non-nil, floats will be used instead of integers.
3258 These floats are not multiplied by 100.
3259
3260 If the 5-minute or 15-minute load averages are not available, return a
3261 shortened list, containing only those averages which are available.
3262
3263 An error is thrown if the load average can't be obtained. In some
3264 cases making it work would require Emacs being installed setuid or
3265 setgid so that it can read kernel information, and that usually isn't
3266 advisable. */)
3267 (use_floats)
3268 Lisp_Object use_floats;
3269 {
3270 double load_ave[3];
3271 int loads = getloadavg (load_ave, 3);
3272 Lisp_Object ret = Qnil;
3273
3274 if (loads < 0)
3275 error ("load-average not implemented for this operating system");
3276
3277 while (loads-- > 0)
3278 {
3279 Lisp_Object load = (NILP (use_floats) ?
3280 make_number ((int) (100.0 * load_ave[loads]))
3281 : make_float (load_ave[loads]));
3282 ret = Fcons (load, ret);
3283 }
3284
3285 return ret;
3286 }
3287 \f
3288 Lisp_Object Vfeatures, Qsubfeatures;
3289 extern Lisp_Object Vafter_load_alist;
3290
3291 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
3292 doc: /* Returns t if FEATURE is present in this Emacs.
3293
3294 Use this to conditionalize execution of lisp code based on the
3295 presence or absence of emacs or environment extensions.
3296 Use `provide' to declare that a feature is available. This function
3297 looks at the value of the variable `features'. The optional argument
3298 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
3299 (feature, subfeature)
3300 Lisp_Object feature, subfeature;
3301 {
3302 register Lisp_Object tem;
3303 CHECK_SYMBOL (feature);
3304 tem = Fmemq (feature, Vfeatures);
3305 if (!NILP (tem) && !NILP (subfeature))
3306 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
3307 return (NILP (tem)) ? Qnil : Qt;
3308 }
3309
3310 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
3311 doc: /* Announce that FEATURE is a feature of the current Emacs.
3312 The optional argument SUBFEATURES should be a list of symbols listing
3313 particular subfeatures supported in this version of FEATURE. */)
3314 (feature, subfeatures)
3315 Lisp_Object feature, subfeatures;
3316 {
3317 register Lisp_Object tem;
3318 CHECK_SYMBOL (feature);
3319 CHECK_LIST (subfeatures);
3320 if (!NILP (Vautoload_queue))
3321 Vautoload_queue = Fcons (Fcons (Vfeatures, Qnil), Vautoload_queue);
3322 tem = Fmemq (feature, Vfeatures);
3323 if (NILP (tem))
3324 Vfeatures = Fcons (feature, Vfeatures);
3325 if (!NILP (subfeatures))
3326 Fput (feature, Qsubfeatures, subfeatures);
3327 LOADHIST_ATTACH (Fcons (Qprovide, feature));
3328
3329 /* Run any load-hooks for this file. */
3330 tem = Fassq (feature, Vafter_load_alist);
3331 if (CONSP (tem))
3332 Fprogn (XCDR (tem));
3333
3334 return feature;
3335 }
3336 \f
3337 /* `require' and its subroutines. */
3338
3339 /* List of features currently being require'd, innermost first. */
3340
3341 Lisp_Object require_nesting_list;
3342
3343 Lisp_Object
3344 require_unwind (old_value)
3345 Lisp_Object old_value;
3346 {
3347 return require_nesting_list = old_value;
3348 }
3349
3350 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
3351 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
3352 If FEATURE is not a member of the list `features', then the feature
3353 is not loaded; so load the file FILENAME.
3354 If FILENAME is omitted, the printname of FEATURE is used as the file name,
3355 and `load' will try to load this name appended with the suffix `.elc' or
3356 `.el', in that order. The name without appended suffix will not be used.
3357 If the optional third argument NOERROR is non-nil,
3358 then return nil if the file is not found instead of signaling an error.
3359 Normally the return value is FEATURE.
3360 The normal messages at start and end of loading FILENAME are suppressed. */)
3361 (feature, filename, noerror)
3362 Lisp_Object feature, filename, noerror;
3363 {
3364 register Lisp_Object tem;
3365 struct gcpro gcpro1, gcpro2;
3366
3367 CHECK_SYMBOL (feature);
3368
3369 tem = Fmemq (feature, Vfeatures);
3370
3371 if (NILP (tem))
3372 {
3373 int count = SPECPDL_INDEX ();
3374 int nesting = 0;
3375
3376 LOADHIST_ATTACH (Fcons (Qrequire, feature));
3377
3378 /* This is to make sure that loadup.el gives a clear picture
3379 of what files are preloaded and when. */
3380 if (! NILP (Vpurify_flag))
3381 error ("(require %s) while preparing to dump",
3382 SDATA (SYMBOL_NAME (feature)));
3383
3384 /* A certain amount of recursive `require' is legitimate,
3385 but if we require the same feature recursively 3 times,
3386 signal an error. */
3387 tem = require_nesting_list;
3388 while (! NILP (tem))
3389 {
3390 if (! NILP (Fequal (feature, XCAR (tem))))
3391 nesting++;
3392 tem = XCDR (tem);
3393 }
3394 if (nesting > 3)
3395 error ("Recursive `require' for feature `%s'",
3396 SDATA (SYMBOL_NAME (feature)));
3397
3398 /* Update the list for any nested `require's that occur. */
3399 record_unwind_protect (require_unwind, require_nesting_list);
3400 require_nesting_list = Fcons (feature, require_nesting_list);
3401
3402 /* Value saved here is to be restored into Vautoload_queue */
3403 record_unwind_protect (un_autoload, Vautoload_queue);
3404 Vautoload_queue = Qt;
3405
3406 /* Load the file. */
3407 GCPRO2 (feature, filename);
3408 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
3409 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
3410 UNGCPRO;
3411
3412 /* If load failed entirely, return nil. */
3413 if (NILP (tem))
3414 return unbind_to (count, Qnil);
3415
3416 tem = Fmemq (feature, Vfeatures);
3417 if (NILP (tem))
3418 error ("Required feature `%s' was not provided",
3419 SDATA (SYMBOL_NAME (feature)));
3420
3421 /* Once loading finishes, don't undo it. */
3422 Vautoload_queue = Qt;
3423 feature = unbind_to (count, feature);
3424 }
3425
3426 return feature;
3427 }
3428 \f
3429 /* Primitives for work of the "widget" library.
3430 In an ideal world, this section would not have been necessary.
3431 However, lisp function calls being as slow as they are, it turns
3432 out that some functions in the widget library (wid-edit.el) are the
3433 bottleneck of Widget operation. Here is their translation to C,
3434 for the sole reason of efficiency. */
3435
3436 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
3437 doc: /* Return non-nil if PLIST has the property PROP.
3438 PLIST is a property list, which is a list of the form
3439 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
3440 Unlike `plist-get', this allows you to distinguish between a missing
3441 property and a property with the value nil.
3442 The value is actually the tail of PLIST whose car is PROP. */)
3443 (plist, prop)
3444 Lisp_Object plist, prop;
3445 {
3446 while (CONSP (plist) && !EQ (XCAR (plist), prop))
3447 {
3448 QUIT;
3449 plist = XCDR (plist);
3450 plist = CDR (plist);
3451 }
3452 return plist;
3453 }
3454
3455 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
3456 doc: /* In WIDGET, set PROPERTY to VALUE.
3457 The value can later be retrieved with `widget-get'. */)
3458 (widget, property, value)
3459 Lisp_Object widget, property, value;
3460 {
3461 CHECK_CONS (widget);
3462 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
3463 return value;
3464 }
3465
3466 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
3467 doc: /* In WIDGET, get the value of PROPERTY.
3468 The value could either be specified when the widget was created, or
3469 later with `widget-put'. */)
3470 (widget, property)
3471 Lisp_Object widget, property;
3472 {
3473 Lisp_Object tmp;
3474
3475 while (1)
3476 {
3477 if (NILP (widget))
3478 return Qnil;
3479 CHECK_CONS (widget);
3480 tmp = Fplist_member (XCDR (widget), property);
3481 if (CONSP (tmp))
3482 {
3483 tmp = XCDR (tmp);
3484 return CAR (tmp);
3485 }
3486 tmp = XCAR (widget);
3487 if (NILP (tmp))
3488 return Qnil;
3489 widget = Fget (tmp, Qwidget_type);
3490 }
3491 }
3492
3493 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
3494 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
3495 ARGS are passed as extra arguments to the function.
3496 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
3497 (nargs, args)
3498 int nargs;
3499 Lisp_Object *args;
3500 {
3501 /* This function can GC. */
3502 Lisp_Object newargs[3];
3503 struct gcpro gcpro1, gcpro2;
3504 Lisp_Object result;
3505
3506 newargs[0] = Fwidget_get (args[0], args[1]);
3507 newargs[1] = args[0];
3508 newargs[2] = Flist (nargs - 2, args + 2);
3509 GCPRO2 (newargs[0], newargs[2]);
3510 result = Fapply (3, newargs);
3511 UNGCPRO;
3512 return result;
3513 }
3514
3515 #ifdef HAVE_LANGINFO_CODESET
3516 #include <langinfo.h>
3517 #endif
3518
3519 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
3520 doc: /* Access locale data ITEM for the current C locale, if available.
3521 ITEM should be one of the following:
3522
3523 `codeset', returning the character set as a string (locale item CODESET);
3524
3525 `days', returning a 7-element vector of day names (locale items DAY_n);
3526
3527 `months', returning a 12-element vector of month names (locale items MON_n);
3528
3529 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
3530 both measured in milimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
3531
3532 If the system can't provide such information through a call to
3533 `nl_langinfo', or if ITEM isn't from the list above, return nil.
3534
3535 See also Info node `(libc)Locales'.
3536
3537 The data read from the system are decoded using `locale-coding-system'. */)
3538 (item)
3539 Lisp_Object item;
3540 {
3541 char *str = NULL;
3542 #ifdef HAVE_LANGINFO_CODESET
3543 Lisp_Object val;
3544 if (EQ (item, Qcodeset))
3545 {
3546 str = nl_langinfo (CODESET);
3547 return build_string (str);
3548 }
3549 #ifdef DAY_1
3550 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
3551 {
3552 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
3553 int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
3554 int i;
3555 synchronize_system_time_locale ();
3556 for (i = 0; i < 7; i++)
3557 {
3558 str = nl_langinfo (days[i]);
3559 val = make_unibyte_string (str, strlen (str));
3560 /* Fixme: Is this coding system necessarily right, even if
3561 it is consistent with CODESET? If not, what to do? */
3562 Faset (v, make_number (i),
3563 code_convert_string_norecord (val, Vlocale_coding_system,
3564 0));
3565 }
3566 return v;
3567 }
3568 #endif /* DAY_1 */
3569 #ifdef MON_1
3570 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
3571 {
3572 struct Lisp_Vector *p = allocate_vector (12);
3573 int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
3574 MON_8, MON_9, MON_10, MON_11, MON_12};
3575 int i;
3576 synchronize_system_time_locale ();
3577 for (i = 0; i < 12; i++)
3578 {
3579 str = nl_langinfo (months[i]);
3580 val = make_unibyte_string (str, strlen (str));
3581 p->contents[i] =
3582 code_convert_string_norecord (val, Vlocale_coding_system, 0);
3583 }
3584 XSETVECTOR (val, p);
3585 return val;
3586 }
3587 #endif /* MON_1 */
3588 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
3589 but is in the locale files. This could be used by ps-print. */
3590 #ifdef PAPER_WIDTH
3591 else if (EQ (item, Qpaper))
3592 {
3593 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
3594 make_number (nl_langinfo (PAPER_HEIGHT)));
3595 }
3596 #endif /* PAPER_WIDTH */
3597 #endif /* HAVE_LANGINFO_CODESET*/
3598 return Qnil;
3599 }
3600 \f
3601 /* base64 encode/decode functions (RFC 2045).
3602 Based on code from GNU recode. */
3603
3604 #define MIME_LINE_LENGTH 76
3605
3606 #define IS_ASCII(Character) \
3607 ((Character) < 128)
3608 #define IS_BASE64(Character) \
3609 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
3610 #define IS_BASE64_IGNORABLE(Character) \
3611 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
3612 || (Character) == '\f' || (Character) == '\r')
3613
3614 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
3615 character or return retval if there are no characters left to
3616 process. */
3617 #define READ_QUADRUPLET_BYTE(retval) \
3618 do \
3619 { \
3620 if (i == length) \
3621 { \
3622 if (nchars_return) \
3623 *nchars_return = nchars; \
3624 return (retval); \
3625 } \
3626 c = from[i++]; \
3627 } \
3628 while (IS_BASE64_IGNORABLE (c))
3629
3630 /* Don't use alloca for regions larger than this, lest we overflow
3631 their stack. */
3632 #define MAX_ALLOCA 16*1024
3633
3634 /* Table of characters coding the 64 values. */
3635 static char base64_value_to_char[64] =
3636 {
3637 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
3638 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
3639 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
3640 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
3641 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
3642 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
3643 '8', '9', '+', '/' /* 60-63 */
3644 };
3645
3646 /* Table of base64 values for first 128 characters. */
3647 static short base64_char_to_value[128] =
3648 {
3649 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
3650 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
3651 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
3652 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
3653 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
3654 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
3655 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
3656 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
3657 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
3658 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
3659 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
3660 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
3661 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
3662 };
3663
3664 /* The following diagram shows the logical steps by which three octets
3665 get transformed into four base64 characters.
3666
3667 .--------. .--------. .--------.
3668 |aaaaaabb| |bbbbcccc| |ccdddddd|
3669 `--------' `--------' `--------'
3670 6 2 4 4 2 6
3671 .--------+--------+--------+--------.
3672 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
3673 `--------+--------+--------+--------'
3674
3675 .--------+--------+--------+--------.
3676 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
3677 `--------+--------+--------+--------'
3678
3679 The octets are divided into 6 bit chunks, which are then encoded into
3680 base64 characters. */
3681
3682
3683 static int base64_encode_1 P_ ((const char *, char *, int, int, int));
3684 static int base64_decode_1 P_ ((const char *, char *, int, int, int *));
3685
3686 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
3687 2, 3, "r",
3688 doc: /* Base64-encode the region between BEG and END.
3689 Return the length of the encoded text.
3690 Optional third argument NO-LINE-BREAK means do not break long lines
3691 into shorter lines. */)
3692 (beg, end, no_line_break)
3693 Lisp_Object beg, end, no_line_break;
3694 {
3695 char *encoded;
3696 int allength, length;
3697 int ibeg, iend, encoded_length;
3698 int old_pos = PT;
3699
3700 validate_region (&beg, &end);
3701
3702 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3703 iend = CHAR_TO_BYTE (XFASTINT (end));
3704 move_gap_both (XFASTINT (beg), ibeg);
3705
3706 /* We need to allocate enough room for encoding the text.
3707 We need 33 1/3% more space, plus a newline every 76
3708 characters, and then we round up. */
3709 length = iend - ibeg;
3710 allength = length + length/3 + 1;
3711 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3712
3713 if (allength <= MAX_ALLOCA)
3714 encoded = (char *) alloca (allength);
3715 else
3716 encoded = (char *) xmalloc (allength);
3717 encoded_length = base64_encode_1 (BYTE_POS_ADDR (ibeg), encoded, length,
3718 NILP (no_line_break),
3719 !NILP (current_buffer->enable_multibyte_characters));
3720 if (encoded_length > allength)
3721 abort ();
3722
3723 if (encoded_length < 0)
3724 {
3725 /* The encoding wasn't possible. */
3726 if (length > MAX_ALLOCA)
3727 xfree (encoded);
3728 error ("Multibyte character in data for base64 encoding");
3729 }
3730
3731 /* Now we have encoded the region, so we insert the new contents
3732 and delete the old. (Insert first in order to preserve markers.) */
3733 SET_PT_BOTH (XFASTINT (beg), ibeg);
3734 insert (encoded, encoded_length);
3735 if (allength > MAX_ALLOCA)
3736 xfree (encoded);
3737 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
3738
3739 /* If point was outside of the region, restore it exactly; else just
3740 move to the beginning of the region. */
3741 if (old_pos >= XFASTINT (end))
3742 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3743 else if (old_pos > XFASTINT (beg))
3744 old_pos = XFASTINT (beg);
3745 SET_PT (old_pos);
3746
3747 /* We return the length of the encoded text. */
3748 return make_number (encoded_length);
3749 }
3750
3751 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3752 1, 2, 0,
3753 doc: /* Base64-encode STRING and return the result.
3754 Optional second argument NO-LINE-BREAK means do not break long lines
3755 into shorter lines. */)
3756 (string, no_line_break)
3757 Lisp_Object string, no_line_break;
3758 {
3759 int allength, length, encoded_length;
3760 char *encoded;
3761 Lisp_Object encoded_string;
3762
3763 CHECK_STRING (string);
3764
3765 /* We need to allocate enough room for encoding the text.
3766 We need 33 1/3% more space, plus a newline every 76
3767 characters, and then we round up. */
3768 length = SBYTES (string);
3769 allength = length + length/3 + 1;
3770 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3771
3772 /* We need to allocate enough room for decoding the text. */
3773 if (allength <= MAX_ALLOCA)
3774 encoded = (char *) alloca (allength);
3775 else
3776 encoded = (char *) xmalloc (allength);
3777
3778 encoded_length = base64_encode_1 (SDATA (string),
3779 encoded, length, NILP (no_line_break),
3780 STRING_MULTIBYTE (string));
3781 if (encoded_length > allength)
3782 abort ();
3783
3784 if (encoded_length < 0)
3785 {
3786 /* The encoding wasn't possible. */
3787 if (length > MAX_ALLOCA)
3788 xfree (encoded);
3789 error ("Multibyte character in data for base64 encoding");
3790 }
3791
3792 encoded_string = make_unibyte_string (encoded, encoded_length);
3793 if (allength > MAX_ALLOCA)
3794 xfree (encoded);
3795
3796 return encoded_string;
3797 }
3798
3799 static int
3800 base64_encode_1 (from, to, length, line_break, multibyte)
3801 const char *from;
3802 char *to;
3803 int length;
3804 int line_break;
3805 int multibyte;
3806 {
3807 int counter = 0, i = 0;
3808 char *e = to;
3809 int c;
3810 unsigned int value;
3811 int bytes;
3812
3813 while (i < length)
3814 {
3815 if (multibyte)
3816 {
3817 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3818 if (c >= 256)
3819 return -1;
3820 i += bytes;
3821 }
3822 else
3823 c = from[i++];
3824
3825 /* Wrap line every 76 characters. */
3826
3827 if (line_break)
3828 {
3829 if (counter < MIME_LINE_LENGTH / 4)
3830 counter++;
3831 else
3832 {
3833 *e++ = '\n';
3834 counter = 1;
3835 }
3836 }
3837
3838 /* Process first byte of a triplet. */
3839
3840 *e++ = base64_value_to_char[0x3f & c >> 2];
3841 value = (0x03 & c) << 4;
3842
3843 /* Process second byte of a triplet. */
3844
3845 if (i == length)
3846 {
3847 *e++ = base64_value_to_char[value];
3848 *e++ = '=';
3849 *e++ = '=';
3850 break;
3851 }
3852
3853 if (multibyte)
3854 {
3855 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3856 if (c >= 256)
3857 return -1;
3858 i += bytes;
3859 }
3860 else
3861 c = from[i++];
3862
3863 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3864 value = (0x0f & c) << 2;
3865
3866 /* Process third byte of a triplet. */
3867
3868 if (i == length)
3869 {
3870 *e++ = base64_value_to_char[value];
3871 *e++ = '=';
3872 break;
3873 }
3874
3875 if (multibyte)
3876 {
3877 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3878 if (c >= 256)
3879 return -1;
3880 i += bytes;
3881 }
3882 else
3883 c = from[i++];
3884
3885 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3886 *e++ = base64_value_to_char[0x3f & c];
3887 }
3888
3889 return e - to;
3890 }
3891
3892
3893 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3894 2, 2, "r",
3895 doc: /* Base64-decode the region between BEG and END.
3896 Return the length of the decoded text.
3897 If the region can't be decoded, signal an error and don't modify the buffer. */)
3898 (beg, end)
3899 Lisp_Object beg, end;
3900 {
3901 int ibeg, iend, length, allength;
3902 char *decoded;
3903 int old_pos = PT;
3904 int decoded_length;
3905 int inserted_chars;
3906 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
3907
3908 validate_region (&beg, &end);
3909
3910 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3911 iend = CHAR_TO_BYTE (XFASTINT (end));
3912
3913 length = iend - ibeg;
3914
3915 /* We need to allocate enough room for decoding the text. If we are
3916 working on a multibyte buffer, each decoded code may occupy at
3917 most two bytes. */
3918 allength = multibyte ? length * 2 : length;
3919 if (allength <= MAX_ALLOCA)
3920 decoded = (char *) alloca (allength);
3921 else
3922 decoded = (char *) xmalloc (allength);
3923
3924 move_gap_both (XFASTINT (beg), ibeg);
3925 decoded_length = base64_decode_1 (BYTE_POS_ADDR (ibeg), decoded, length,
3926 multibyte, &inserted_chars);
3927 if (decoded_length > allength)
3928 abort ();
3929
3930 if (decoded_length < 0)
3931 {
3932 /* The decoding wasn't possible. */
3933 if (allength > MAX_ALLOCA)
3934 xfree (decoded);
3935 error ("Invalid base64 data");
3936 }
3937
3938 /* Now we have decoded the region, so we insert the new contents
3939 and delete the old. (Insert first in order to preserve markers.) */
3940 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3941 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3942 if (allength > MAX_ALLOCA)
3943 xfree (decoded);
3944 /* Delete the original text. */
3945 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3946 iend + decoded_length, 1);
3947
3948 /* If point was outside of the region, restore it exactly; else just
3949 move to the beginning of the region. */
3950 if (old_pos >= XFASTINT (end))
3951 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3952 else if (old_pos > XFASTINT (beg))
3953 old_pos = XFASTINT (beg);
3954 SET_PT (old_pos > ZV ? ZV : old_pos);
3955
3956 return make_number (inserted_chars);
3957 }
3958
3959 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3960 1, 1, 0,
3961 doc: /* Base64-decode STRING and return the result. */)
3962 (string)
3963 Lisp_Object string;
3964 {
3965 char *decoded;
3966 int length, decoded_length;
3967 Lisp_Object decoded_string;
3968
3969 CHECK_STRING (string);
3970
3971 length = SBYTES (string);
3972 /* We need to allocate enough room for decoding the text. */
3973 if (length <= MAX_ALLOCA)
3974 decoded = (char *) alloca (length);
3975 else
3976 decoded = (char *) xmalloc (length);
3977
3978 /* The decoded result should be unibyte. */
3979 decoded_length = base64_decode_1 (SDATA (string), decoded, length,
3980 0, NULL);
3981 if (decoded_length > length)
3982 abort ();
3983 else if (decoded_length >= 0)
3984 decoded_string = make_unibyte_string (decoded, decoded_length);
3985 else
3986 decoded_string = Qnil;
3987
3988 if (length > MAX_ALLOCA)
3989 xfree (decoded);
3990 if (!STRINGP (decoded_string))
3991 error ("Invalid base64 data");
3992
3993 return decoded_string;
3994 }
3995
3996 /* Base64-decode the data at FROM of LENGHT bytes into TO. If
3997 MULTIBYTE is nonzero, the decoded result should be in multibyte
3998 form. If NCHARS_RETRUN is not NULL, store the number of produced
3999 characters in *NCHARS_RETURN. */
4000
4001 static int
4002 base64_decode_1 (from, to, length, multibyte, nchars_return)
4003 const char *from;
4004 char *to;
4005 int length;
4006 int multibyte;
4007 int *nchars_return;
4008 {
4009 int i = 0;
4010 char *e = to;
4011 unsigned char c;
4012 unsigned long value;
4013 int nchars = 0;
4014
4015 while (1)
4016 {
4017 /* Process first byte of a quadruplet. */
4018
4019 READ_QUADRUPLET_BYTE (e-to);
4020
4021 if (!IS_BASE64 (c))
4022 return -1;
4023 value = base64_char_to_value[c] << 18;
4024
4025 /* Process second byte of a quadruplet. */
4026
4027 READ_QUADRUPLET_BYTE (-1);
4028
4029 if (!IS_BASE64 (c))
4030 return -1;
4031 value |= base64_char_to_value[c] << 12;
4032
4033 c = (unsigned char) (value >> 16);
4034 if (multibyte)
4035 e += CHAR_STRING (c, e);
4036 else
4037 *e++ = c;
4038 nchars++;
4039
4040 /* Process third byte of a quadruplet. */
4041
4042 READ_QUADRUPLET_BYTE (-1);
4043
4044 if (c == '=')
4045 {
4046 READ_QUADRUPLET_BYTE (-1);
4047
4048 if (c != '=')
4049 return -1;
4050 continue;
4051 }
4052
4053 if (!IS_BASE64 (c))
4054 return -1;
4055 value |= base64_char_to_value[c] << 6;
4056
4057 c = (unsigned char) (0xff & value >> 8);
4058 if (multibyte)
4059 e += CHAR_STRING (c, e);
4060 else
4061 *e++ = c;
4062 nchars++;
4063
4064 /* Process fourth byte of a quadruplet. */
4065
4066 READ_QUADRUPLET_BYTE (-1);
4067
4068 if (c == '=')
4069 continue;
4070
4071 if (!IS_BASE64 (c))
4072 return -1;
4073 value |= base64_char_to_value[c];
4074
4075 c = (unsigned char) (0xff & value);
4076 if (multibyte)
4077 e += CHAR_STRING (c, e);
4078 else
4079 *e++ = c;
4080 nchars++;
4081 }
4082 }
4083
4084
4085 \f
4086 /***********************************************************************
4087 ***** *****
4088 ***** Hash Tables *****
4089 ***** *****
4090 ***********************************************************************/
4091
4092 /* Implemented by gerd@gnu.org. This hash table implementation was
4093 inspired by CMUCL hash tables. */
4094
4095 /* Ideas:
4096
4097 1. For small tables, association lists are probably faster than
4098 hash tables because they have lower overhead.
4099
4100 For uses of hash tables where the O(1) behavior of table
4101 operations is not a requirement, it might therefore be a good idea
4102 not to hash. Instead, we could just do a linear search in the
4103 key_and_value vector of the hash table. This could be done
4104 if a `:linear-search t' argument is given to make-hash-table. */
4105
4106
4107 /* The list of all weak hash tables. Don't staticpro this one. */
4108
4109 Lisp_Object Vweak_hash_tables;
4110
4111 /* Various symbols. */
4112
4113 Lisp_Object Qhash_table_p, Qeq, Qeql, Qequal, Qkey, Qvalue;
4114 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
4115 Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
4116
4117 /* Function prototypes. */
4118
4119 static struct Lisp_Hash_Table *check_hash_table P_ ((Lisp_Object));
4120 static int get_key_arg P_ ((Lisp_Object, int, Lisp_Object *, char *));
4121 static void maybe_resize_hash_table P_ ((struct Lisp_Hash_Table *));
4122 static int cmpfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
4123 Lisp_Object, unsigned));
4124 static int cmpfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
4125 Lisp_Object, unsigned));
4126 static int cmpfn_user_defined P_ ((struct Lisp_Hash_Table *, Lisp_Object,
4127 unsigned, Lisp_Object, unsigned));
4128 static unsigned hashfn_eq P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4129 static unsigned hashfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4130 static unsigned hashfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4131 static unsigned hashfn_user_defined P_ ((struct Lisp_Hash_Table *,
4132 Lisp_Object));
4133 static unsigned sxhash_string P_ ((unsigned char *, int));
4134 static unsigned sxhash_list P_ ((Lisp_Object, int));
4135 static unsigned sxhash_vector P_ ((Lisp_Object, int));
4136 static unsigned sxhash_bool_vector P_ ((Lisp_Object));
4137 static int sweep_weak_table P_ ((struct Lisp_Hash_Table *, int));
4138
4139
4140 \f
4141 /***********************************************************************
4142 Utilities
4143 ***********************************************************************/
4144
4145 /* If OBJ is a Lisp hash table, return a pointer to its struct
4146 Lisp_Hash_Table. Otherwise, signal an error. */
4147
4148 static struct Lisp_Hash_Table *
4149 check_hash_table (obj)
4150 Lisp_Object obj;
4151 {
4152 CHECK_HASH_TABLE (obj);
4153 return XHASH_TABLE (obj);
4154 }
4155
4156
4157 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
4158 number. */
4159
4160 int
4161 next_almost_prime (n)
4162 int n;
4163 {
4164 if (n % 2 == 0)
4165 n += 1;
4166 if (n % 3 == 0)
4167 n += 2;
4168 if (n % 7 == 0)
4169 n += 4;
4170 return n;
4171 }
4172
4173
4174 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
4175 which USED[I] is non-zero. If found at index I in ARGS, set
4176 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
4177 -1. This function is used to extract a keyword/argument pair from
4178 a DEFUN parameter list. */
4179
4180 static int
4181 get_key_arg (key, nargs, args, used)
4182 Lisp_Object key;
4183 int nargs;
4184 Lisp_Object *args;
4185 char *used;
4186 {
4187 int i;
4188
4189 for (i = 0; i < nargs - 1; ++i)
4190 if (!used[i] && EQ (args[i], key))
4191 break;
4192
4193 if (i >= nargs - 1)
4194 i = -1;
4195 else
4196 {
4197 used[i++] = 1;
4198 used[i] = 1;
4199 }
4200
4201 return i;
4202 }
4203
4204
4205 /* Return a Lisp vector which has the same contents as VEC but has
4206 size NEW_SIZE, NEW_SIZE >= VEC->size. Entries in the resulting
4207 vector that are not copied from VEC are set to INIT. */
4208
4209 Lisp_Object
4210 larger_vector (vec, new_size, init)
4211 Lisp_Object vec;
4212 int new_size;
4213 Lisp_Object init;
4214 {
4215 struct Lisp_Vector *v;
4216 int i, old_size;
4217
4218 xassert (VECTORP (vec));
4219 old_size = XVECTOR (vec)->size;
4220 xassert (new_size >= old_size);
4221
4222 v = allocate_vector (new_size);
4223 bcopy (XVECTOR (vec)->contents, v->contents,
4224 old_size * sizeof *v->contents);
4225 for (i = old_size; i < new_size; ++i)
4226 v->contents[i] = init;
4227 XSETVECTOR (vec, v);
4228 return vec;
4229 }
4230
4231
4232 /***********************************************************************
4233 Low-level Functions
4234 ***********************************************************************/
4235
4236 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
4237 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
4238 KEY2 are the same. */
4239
4240 static int
4241 cmpfn_eql (h, key1, hash1, key2, hash2)
4242 struct Lisp_Hash_Table *h;
4243 Lisp_Object key1, key2;
4244 unsigned hash1, hash2;
4245 {
4246 return (FLOATP (key1)
4247 && FLOATP (key2)
4248 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
4249 }
4250
4251
4252 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
4253 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
4254 KEY2 are the same. */
4255
4256 static int
4257 cmpfn_equal (h, key1, hash1, key2, hash2)
4258 struct Lisp_Hash_Table *h;
4259 Lisp_Object key1, key2;
4260 unsigned hash1, hash2;
4261 {
4262 return hash1 == hash2 && !NILP (Fequal (key1, key2));
4263 }
4264
4265
4266 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
4267 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
4268 if KEY1 and KEY2 are the same. */
4269
4270 static int
4271 cmpfn_user_defined (h, key1, hash1, key2, hash2)
4272 struct Lisp_Hash_Table *h;
4273 Lisp_Object key1, key2;
4274 unsigned hash1, hash2;
4275 {
4276 if (hash1 == hash2)
4277 {
4278 Lisp_Object args[3];
4279
4280 args[0] = h->user_cmp_function;
4281 args[1] = key1;
4282 args[2] = key2;
4283 return !NILP (Ffuncall (3, args));
4284 }
4285 else
4286 return 0;
4287 }
4288
4289
4290 /* Value is a hash code for KEY for use in hash table H which uses
4291 `eq' to compare keys. The hash code returned is guaranteed to fit
4292 in a Lisp integer. */
4293
4294 static unsigned
4295 hashfn_eq (h, key)
4296 struct Lisp_Hash_Table *h;
4297 Lisp_Object key;
4298 {
4299 unsigned hash = XUINT (key) ^ XGCTYPE (key);
4300 xassert ((hash & ~INTMASK) == 0);
4301 return hash;
4302 }
4303
4304
4305 /* Value is a hash code for KEY for use in hash table H which uses
4306 `eql' to compare keys. The hash code returned is guaranteed to fit
4307 in a Lisp integer. */
4308
4309 static unsigned
4310 hashfn_eql (h, key)
4311 struct Lisp_Hash_Table *h;
4312 Lisp_Object key;
4313 {
4314 unsigned hash;
4315 if (FLOATP (key))
4316 hash = sxhash (key, 0);
4317 else
4318 hash = XUINT (key) ^ XGCTYPE (key);
4319 xassert ((hash & ~INTMASK) == 0);
4320 return hash;
4321 }
4322
4323
4324 /* Value is a hash code for KEY for use in hash table H which uses
4325 `equal' to compare keys. The hash code returned is guaranteed to fit
4326 in a Lisp integer. */
4327
4328 static unsigned
4329 hashfn_equal (h, key)
4330 struct Lisp_Hash_Table *h;
4331 Lisp_Object key;
4332 {
4333 unsigned hash = sxhash (key, 0);
4334 xassert ((hash & ~INTMASK) == 0);
4335 return hash;
4336 }
4337
4338
4339 /* Value is a hash code for KEY for use in hash table H which uses as
4340 user-defined function to compare keys. The hash code returned is
4341 guaranteed to fit in a Lisp integer. */
4342
4343 static unsigned
4344 hashfn_user_defined (h, key)
4345 struct Lisp_Hash_Table *h;
4346 Lisp_Object key;
4347 {
4348 Lisp_Object args[2], hash;
4349
4350 args[0] = h->user_hash_function;
4351 args[1] = key;
4352 hash = Ffuncall (2, args);
4353 if (!INTEGERP (hash))
4354 Fsignal (Qerror,
4355 list2 (build_string ("Invalid hash code returned from \
4356 user-supplied hash function"),
4357 hash));
4358 return XUINT (hash);
4359 }
4360
4361
4362 /* Create and initialize a new hash table.
4363
4364 TEST specifies the test the hash table will use to compare keys.
4365 It must be either one of the predefined tests `eq', `eql' or
4366 `equal' or a symbol denoting a user-defined test named TEST with
4367 test and hash functions USER_TEST and USER_HASH.
4368
4369 Give the table initial capacity SIZE, SIZE >= 0, an integer.
4370
4371 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
4372 new size when it becomes full is computed by adding REHASH_SIZE to
4373 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
4374 table's new size is computed by multiplying its old size with
4375 REHASH_SIZE.
4376
4377 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
4378 be resized when the ratio of (number of entries in the table) /
4379 (table size) is >= REHASH_THRESHOLD.
4380
4381 WEAK specifies the weakness of the table. If non-nil, it must be
4382 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
4383
4384 Lisp_Object
4385 make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4386 user_test, user_hash)
4387 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4388 Lisp_Object user_test, user_hash;
4389 {
4390 struct Lisp_Hash_Table *h;
4391 Lisp_Object table;
4392 int index_size, i, sz;
4393
4394 /* Preconditions. */
4395 xassert (SYMBOLP (test));
4396 xassert (INTEGERP (size) && XINT (size) >= 0);
4397 xassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
4398 || (FLOATP (rehash_size) && XFLOATINT (rehash_size) > 1.0));
4399 xassert (FLOATP (rehash_threshold)
4400 && XFLOATINT (rehash_threshold) > 0
4401 && XFLOATINT (rehash_threshold) <= 1.0);
4402
4403 if (XFASTINT (size) == 0)
4404 size = make_number (1);
4405
4406 /* Allocate a table and initialize it. */
4407 h = allocate_hash_table ();
4408
4409 /* Initialize hash table slots. */
4410 sz = XFASTINT (size);
4411
4412 h->test = test;
4413 if (EQ (test, Qeql))
4414 {
4415 h->cmpfn = cmpfn_eql;
4416 h->hashfn = hashfn_eql;
4417 }
4418 else if (EQ (test, Qeq))
4419 {
4420 h->cmpfn = NULL;
4421 h->hashfn = hashfn_eq;
4422 }
4423 else if (EQ (test, Qequal))
4424 {
4425 h->cmpfn = cmpfn_equal;
4426 h->hashfn = hashfn_equal;
4427 }
4428 else
4429 {
4430 h->user_cmp_function = user_test;
4431 h->user_hash_function = user_hash;
4432 h->cmpfn = cmpfn_user_defined;
4433 h->hashfn = hashfn_user_defined;
4434 }
4435
4436 h->weak = weak;
4437 h->rehash_threshold = rehash_threshold;
4438 h->rehash_size = rehash_size;
4439 h->count = make_number (0);
4440 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
4441 h->hash = Fmake_vector (size, Qnil);
4442 h->next = Fmake_vector (size, Qnil);
4443 /* Cast to int here avoids losing with gcc 2.95 on Tru64/Alpha... */
4444 index_size = next_almost_prime ((int) (sz / XFLOATINT (rehash_threshold)));
4445 h->index = Fmake_vector (make_number (index_size), Qnil);
4446
4447 /* Set up the free list. */
4448 for (i = 0; i < sz - 1; ++i)
4449 HASH_NEXT (h, i) = make_number (i + 1);
4450 h->next_free = make_number (0);
4451
4452 XSET_HASH_TABLE (table, h);
4453 xassert (HASH_TABLE_P (table));
4454 xassert (XHASH_TABLE (table) == h);
4455
4456 /* Maybe add this hash table to the list of all weak hash tables. */
4457 if (NILP (h->weak))
4458 h->next_weak = Qnil;
4459 else
4460 {
4461 h->next_weak = Vweak_hash_tables;
4462 Vweak_hash_tables = table;
4463 }
4464
4465 return table;
4466 }
4467
4468
4469 /* Return a copy of hash table H1. Keys and values are not copied,
4470 only the table itself is. */
4471
4472 Lisp_Object
4473 copy_hash_table (h1)
4474 struct Lisp_Hash_Table *h1;
4475 {
4476 Lisp_Object table;
4477 struct Lisp_Hash_Table *h2;
4478 struct Lisp_Vector *next;
4479
4480 h2 = allocate_hash_table ();
4481 next = h2->vec_next;
4482 bcopy (h1, h2, sizeof *h2);
4483 h2->vec_next = next;
4484 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
4485 h2->hash = Fcopy_sequence (h1->hash);
4486 h2->next = Fcopy_sequence (h1->next);
4487 h2->index = Fcopy_sequence (h1->index);
4488 XSET_HASH_TABLE (table, h2);
4489
4490 /* Maybe add this hash table to the list of all weak hash tables. */
4491 if (!NILP (h2->weak))
4492 {
4493 h2->next_weak = Vweak_hash_tables;
4494 Vweak_hash_tables = table;
4495 }
4496
4497 return table;
4498 }
4499
4500
4501 /* Resize hash table H if it's too full. If H cannot be resized
4502 because it's already too large, throw an error. */
4503
4504 static INLINE void
4505 maybe_resize_hash_table (h)
4506 struct Lisp_Hash_Table *h;
4507 {
4508 if (NILP (h->next_free))
4509 {
4510 int old_size = HASH_TABLE_SIZE (h);
4511 int i, new_size, index_size;
4512
4513 if (INTEGERP (h->rehash_size))
4514 new_size = old_size + XFASTINT (h->rehash_size);
4515 else
4516 new_size = old_size * XFLOATINT (h->rehash_size);
4517 new_size = max (old_size + 1, new_size);
4518 index_size = next_almost_prime ((int)
4519 (new_size
4520 / XFLOATINT (h->rehash_threshold)));
4521 if (max (index_size, 2 * new_size) > MOST_POSITIVE_FIXNUM)
4522 error ("Hash table too large to resize");
4523
4524 h->key_and_value = larger_vector (h->key_and_value, 2 * new_size, Qnil);
4525 h->next = larger_vector (h->next, new_size, Qnil);
4526 h->hash = larger_vector (h->hash, new_size, Qnil);
4527 h->index = Fmake_vector (make_number (index_size), Qnil);
4528
4529 /* Update the free list. Do it so that new entries are added at
4530 the end of the free list. This makes some operations like
4531 maphash faster. */
4532 for (i = old_size; i < new_size - 1; ++i)
4533 HASH_NEXT (h, i) = make_number (i + 1);
4534
4535 if (!NILP (h->next_free))
4536 {
4537 Lisp_Object last, next;
4538
4539 last = h->next_free;
4540 while (next = HASH_NEXT (h, XFASTINT (last)),
4541 !NILP (next))
4542 last = next;
4543
4544 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
4545 }
4546 else
4547 XSETFASTINT (h->next_free, old_size);
4548
4549 /* Rehash. */
4550 for (i = 0; i < old_size; ++i)
4551 if (!NILP (HASH_HASH (h, i)))
4552 {
4553 unsigned hash_code = XUINT (HASH_HASH (h, i));
4554 int start_of_bucket = hash_code % XVECTOR (h->index)->size;
4555 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4556 HASH_INDEX (h, start_of_bucket) = make_number (i);
4557 }
4558 }
4559 }
4560
4561
4562 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
4563 the hash code of KEY. Value is the index of the entry in H
4564 matching KEY, or -1 if not found. */
4565
4566 int
4567 hash_lookup (h, key, hash)
4568 struct Lisp_Hash_Table *h;
4569 Lisp_Object key;
4570 unsigned *hash;
4571 {
4572 unsigned hash_code;
4573 int start_of_bucket;
4574 Lisp_Object idx;
4575
4576 hash_code = h->hashfn (h, key);
4577 if (hash)
4578 *hash = hash_code;
4579
4580 start_of_bucket = hash_code % XVECTOR (h->index)->size;
4581 idx = HASH_INDEX (h, start_of_bucket);
4582
4583 /* We need not gcpro idx since it's either an integer or nil. */
4584 while (!NILP (idx))
4585 {
4586 int i = XFASTINT (idx);
4587 if (EQ (key, HASH_KEY (h, i))
4588 || (h->cmpfn
4589 && h->cmpfn (h, key, hash_code,
4590 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4591 break;
4592 idx = HASH_NEXT (h, i);
4593 }
4594
4595 return NILP (idx) ? -1 : XFASTINT (idx);
4596 }
4597
4598
4599 /* Put an entry into hash table H that associates KEY with VALUE.
4600 HASH is a previously computed hash code of KEY.
4601 Value is the index of the entry in H matching KEY. */
4602
4603 int
4604 hash_put (h, key, value, hash)
4605 struct Lisp_Hash_Table *h;
4606 Lisp_Object key, value;
4607 unsigned hash;
4608 {
4609 int start_of_bucket, i;
4610
4611 xassert ((hash & ~INTMASK) == 0);
4612
4613 /* Increment count after resizing because resizing may fail. */
4614 maybe_resize_hash_table (h);
4615 h->count = make_number (XFASTINT (h->count) + 1);
4616
4617 /* Store key/value in the key_and_value vector. */
4618 i = XFASTINT (h->next_free);
4619 h->next_free = HASH_NEXT (h, i);
4620 HASH_KEY (h, i) = key;
4621 HASH_VALUE (h, i) = value;
4622
4623 /* Remember its hash code. */
4624 HASH_HASH (h, i) = make_number (hash);
4625
4626 /* Add new entry to its collision chain. */
4627 start_of_bucket = hash % XVECTOR (h->index)->size;
4628 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4629 HASH_INDEX (h, start_of_bucket) = make_number (i);
4630 return i;
4631 }
4632
4633
4634 /* Remove the entry matching KEY from hash table H, if there is one. */
4635
4636 void
4637 hash_remove (h, key)
4638 struct Lisp_Hash_Table *h;
4639 Lisp_Object key;
4640 {
4641 unsigned hash_code;
4642 int start_of_bucket;
4643 Lisp_Object idx, prev;
4644
4645 hash_code = h->hashfn (h, key);
4646 start_of_bucket = hash_code % XVECTOR (h->index)->size;
4647 idx = HASH_INDEX (h, start_of_bucket);
4648 prev = Qnil;
4649
4650 /* We need not gcpro idx, prev since they're either integers or nil. */
4651 while (!NILP (idx))
4652 {
4653 int i = XFASTINT (idx);
4654
4655 if (EQ (key, HASH_KEY (h, i))
4656 || (h->cmpfn
4657 && h->cmpfn (h, key, hash_code,
4658 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4659 {
4660 /* Take entry out of collision chain. */
4661 if (NILP (prev))
4662 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
4663 else
4664 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
4665
4666 /* Clear slots in key_and_value and add the slots to
4667 the free list. */
4668 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
4669 HASH_NEXT (h, i) = h->next_free;
4670 h->next_free = make_number (i);
4671 h->count = make_number (XFASTINT (h->count) - 1);
4672 xassert (XINT (h->count) >= 0);
4673 break;
4674 }
4675 else
4676 {
4677 prev = idx;
4678 idx = HASH_NEXT (h, i);
4679 }
4680 }
4681 }
4682
4683
4684 /* Clear hash table H. */
4685
4686 void
4687 hash_clear (h)
4688 struct Lisp_Hash_Table *h;
4689 {
4690 if (XFASTINT (h->count) > 0)
4691 {
4692 int i, size = HASH_TABLE_SIZE (h);
4693
4694 for (i = 0; i < size; ++i)
4695 {
4696 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
4697 HASH_KEY (h, i) = Qnil;
4698 HASH_VALUE (h, i) = Qnil;
4699 HASH_HASH (h, i) = Qnil;
4700 }
4701
4702 for (i = 0; i < XVECTOR (h->index)->size; ++i)
4703 XVECTOR (h->index)->contents[i] = Qnil;
4704
4705 h->next_free = make_number (0);
4706 h->count = make_number (0);
4707 }
4708 }
4709
4710
4711 \f
4712 /************************************************************************
4713 Weak Hash Tables
4714 ************************************************************************/
4715
4716 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
4717 entries from the table that don't survive the current GC.
4718 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
4719 non-zero if anything was marked. */
4720
4721 static int
4722 sweep_weak_table (h, remove_entries_p)
4723 struct Lisp_Hash_Table *h;
4724 int remove_entries_p;
4725 {
4726 int bucket, n, marked;
4727
4728 n = XVECTOR (h->index)->size & ~ARRAY_MARK_FLAG;
4729 marked = 0;
4730
4731 for (bucket = 0; bucket < n; ++bucket)
4732 {
4733 Lisp_Object idx, next, prev;
4734
4735 /* Follow collision chain, removing entries that
4736 don't survive this garbage collection. */
4737 prev = Qnil;
4738 for (idx = HASH_INDEX (h, bucket); !GC_NILP (idx); idx = next)
4739 {
4740 int i = XFASTINT (idx);
4741 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
4742 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
4743 int remove_p;
4744
4745 if (EQ (h->weak, Qkey))
4746 remove_p = !key_known_to_survive_p;
4747 else if (EQ (h->weak, Qvalue))
4748 remove_p = !value_known_to_survive_p;
4749 else if (EQ (h->weak, Qkey_or_value))
4750 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
4751 else if (EQ (h->weak, Qkey_and_value))
4752 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
4753 else
4754 abort ();
4755
4756 next = HASH_NEXT (h, i);
4757
4758 if (remove_entries_p)
4759 {
4760 if (remove_p)
4761 {
4762 /* Take out of collision chain. */
4763 if (GC_NILP (prev))
4764 HASH_INDEX (h, bucket) = next;
4765 else
4766 HASH_NEXT (h, XFASTINT (prev)) = next;
4767
4768 /* Add to free list. */
4769 HASH_NEXT (h, i) = h->next_free;
4770 h->next_free = idx;
4771
4772 /* Clear key, value, and hash. */
4773 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
4774 HASH_HASH (h, i) = Qnil;
4775
4776 h->count = make_number (XFASTINT (h->count) - 1);
4777 }
4778 }
4779 else
4780 {
4781 if (!remove_p)
4782 {
4783 /* Make sure key and value survive. */
4784 if (!key_known_to_survive_p)
4785 {
4786 mark_object (HASH_KEY (h, i));
4787 marked = 1;
4788 }
4789
4790 if (!value_known_to_survive_p)
4791 {
4792 mark_object (HASH_VALUE (h, i));
4793 marked = 1;
4794 }
4795 }
4796 }
4797 }
4798 }
4799
4800 return marked;
4801 }
4802
4803 /* Remove elements from weak hash tables that don't survive the
4804 current garbage collection. Remove weak tables that don't survive
4805 from Vweak_hash_tables. Called from gc_sweep. */
4806
4807 void
4808 sweep_weak_hash_tables ()
4809 {
4810 Lisp_Object table, used, next;
4811 struct Lisp_Hash_Table *h;
4812 int marked;
4813
4814 /* Mark all keys and values that are in use. Keep on marking until
4815 there is no more change. This is necessary for cases like
4816 value-weak table A containing an entry X -> Y, where Y is used in a
4817 key-weak table B, Z -> Y. If B comes after A in the list of weak
4818 tables, X -> Y might be removed from A, although when looking at B
4819 one finds that it shouldn't. */
4820 do
4821 {
4822 marked = 0;
4823 for (table = Vweak_hash_tables; !GC_NILP (table); table = h->next_weak)
4824 {
4825 h = XHASH_TABLE (table);
4826 if (h->size & ARRAY_MARK_FLAG)
4827 marked |= sweep_weak_table (h, 0);
4828 }
4829 }
4830 while (marked);
4831
4832 /* Remove tables and entries that aren't used. */
4833 for (table = Vweak_hash_tables, used = Qnil; !GC_NILP (table); table = next)
4834 {
4835 h = XHASH_TABLE (table);
4836 next = h->next_weak;
4837
4838 if (h->size & ARRAY_MARK_FLAG)
4839 {
4840 /* TABLE is marked as used. Sweep its contents. */
4841 if (XFASTINT (h->count) > 0)
4842 sweep_weak_table (h, 1);
4843
4844 /* Add table to the list of used weak hash tables. */
4845 h->next_weak = used;
4846 used = table;
4847 }
4848 }
4849
4850 Vweak_hash_tables = used;
4851 }
4852
4853
4854 \f
4855 /***********************************************************************
4856 Hash Code Computation
4857 ***********************************************************************/
4858
4859 /* Maximum depth up to which to dive into Lisp structures. */
4860
4861 #define SXHASH_MAX_DEPTH 3
4862
4863 /* Maximum length up to which to take list and vector elements into
4864 account. */
4865
4866 #define SXHASH_MAX_LEN 7
4867
4868 /* Combine two integers X and Y for hashing. */
4869
4870 #define SXHASH_COMBINE(X, Y) \
4871 ((((unsigned)(X) << 4) + (((unsigned)(X) >> 24) & 0x0fffffff)) \
4872 + (unsigned)(Y))
4873
4874
4875 /* Return a hash for string PTR which has length LEN. The hash
4876 code returned is guaranteed to fit in a Lisp integer. */
4877
4878 static unsigned
4879 sxhash_string (ptr, len)
4880 unsigned char *ptr;
4881 int len;
4882 {
4883 unsigned char *p = ptr;
4884 unsigned char *end = p + len;
4885 unsigned char c;
4886 unsigned hash = 0;
4887
4888 while (p != end)
4889 {
4890 c = *p++;
4891 if (c >= 0140)
4892 c -= 40;
4893 hash = ((hash << 3) + (hash >> 28) + c);
4894 }
4895
4896 return hash & INTMASK;
4897 }
4898
4899
4900 /* Return a hash for list LIST. DEPTH is the current depth in the
4901 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4902
4903 static unsigned
4904 sxhash_list (list, depth)
4905 Lisp_Object list;
4906 int depth;
4907 {
4908 unsigned hash = 0;
4909 int i;
4910
4911 if (depth < SXHASH_MAX_DEPTH)
4912 for (i = 0;
4913 CONSP (list) && i < SXHASH_MAX_LEN;
4914 list = XCDR (list), ++i)
4915 {
4916 unsigned hash2 = sxhash (XCAR (list), depth + 1);
4917 hash = SXHASH_COMBINE (hash, hash2);
4918 }
4919
4920 return hash;
4921 }
4922
4923
4924 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4925 the Lisp structure. */
4926
4927 static unsigned
4928 sxhash_vector (vec, depth)
4929 Lisp_Object vec;
4930 int depth;
4931 {
4932 unsigned hash = XVECTOR (vec)->size;
4933 int i, n;
4934
4935 n = min (SXHASH_MAX_LEN, XVECTOR (vec)->size);
4936 for (i = 0; i < n; ++i)
4937 {
4938 unsigned hash2 = sxhash (XVECTOR (vec)->contents[i], depth + 1);
4939 hash = SXHASH_COMBINE (hash, hash2);
4940 }
4941
4942 return hash;
4943 }
4944
4945
4946 /* Return a hash for bool-vector VECTOR. */
4947
4948 static unsigned
4949 sxhash_bool_vector (vec)
4950 Lisp_Object vec;
4951 {
4952 unsigned hash = XBOOL_VECTOR (vec)->size;
4953 int i, n;
4954
4955 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->vector_size);
4956 for (i = 0; i < n; ++i)
4957 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4958
4959 return hash;
4960 }
4961
4962
4963 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4964 structure. Value is an unsigned integer clipped to INTMASK. */
4965
4966 unsigned
4967 sxhash (obj, depth)
4968 Lisp_Object obj;
4969 int depth;
4970 {
4971 unsigned hash;
4972
4973 if (depth > SXHASH_MAX_DEPTH)
4974 return 0;
4975
4976 switch (XTYPE (obj))
4977 {
4978 case Lisp_Int:
4979 hash = XUINT (obj);
4980 break;
4981
4982 case Lisp_Symbol:
4983 hash = sxhash_string (SDATA (SYMBOL_NAME (obj)),
4984 SCHARS (SYMBOL_NAME (obj)));
4985 break;
4986
4987 case Lisp_Misc:
4988 hash = XUINT (obj);
4989 break;
4990
4991 case Lisp_String:
4992 hash = sxhash_string (SDATA (obj), SCHARS (obj));
4993 break;
4994
4995 /* This can be everything from a vector to an overlay. */
4996 case Lisp_Vectorlike:
4997 if (VECTORP (obj))
4998 /* According to the CL HyperSpec, two arrays are equal only if
4999 they are `eq', except for strings and bit-vectors. In
5000 Emacs, this works differently. We have to compare element
5001 by element. */
5002 hash = sxhash_vector (obj, depth);
5003 else if (BOOL_VECTOR_P (obj))
5004 hash = sxhash_bool_vector (obj);
5005 else
5006 /* Others are `equal' if they are `eq', so let's take their
5007 address as hash. */
5008 hash = XUINT (obj);
5009 break;
5010
5011 case Lisp_Cons:
5012 hash = sxhash_list (obj, depth);
5013 break;
5014
5015 case Lisp_Float:
5016 {
5017 unsigned char *p = (unsigned char *) &XFLOAT_DATA (obj);
5018 unsigned char *e = p + sizeof XFLOAT_DATA (obj);
5019 for (hash = 0; p < e; ++p)
5020 hash = SXHASH_COMBINE (hash, *p);
5021 break;
5022 }
5023
5024 default:
5025 abort ();
5026 }
5027
5028 return hash & INTMASK;
5029 }
5030
5031
5032 \f
5033 /***********************************************************************
5034 Lisp Interface
5035 ***********************************************************************/
5036
5037
5038 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
5039 doc: /* Compute a hash code for OBJ and return it as integer. */)
5040 (obj)
5041 Lisp_Object obj;
5042 {
5043 unsigned hash = sxhash (obj, 0);;
5044 return make_number (hash);
5045 }
5046
5047
5048 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
5049 doc: /* Create and return a new hash table.
5050
5051 Arguments are specified as keyword/argument pairs. The following
5052 arguments are defined:
5053
5054 :test TEST -- TEST must be a symbol that specifies how to compare
5055 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
5056 `equal'. User-supplied test and hash functions can be specified via
5057 `define-hash-table-test'.
5058
5059 :size SIZE -- A hint as to how many elements will be put in the table.
5060 Default is 65.
5061
5062 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
5063 fills up. If REHASH-SIZE is an integer, add that many space. If it
5064 is a float, it must be > 1.0, and the new size is computed by
5065 multiplying the old size with that factor. Default is 1.5.
5066
5067 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
5068 Resize the hash table when ratio of the number of entries in the
5069 table. Default is 0.8.
5070
5071 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
5072 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
5073 returned is a weak table. Key/value pairs are removed from a weak
5074 hash table when there are no non-weak references pointing to their
5075 key, value, one of key or value, or both key and value, depending on
5076 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
5077 is nil.
5078
5079 usage: (make-hash-table &rest KEYWORD-ARGS) */)
5080 (nargs, args)
5081 int nargs;
5082 Lisp_Object *args;
5083 {
5084 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
5085 Lisp_Object user_test, user_hash;
5086 char *used;
5087 int i;
5088
5089 /* The vector `used' is used to keep track of arguments that
5090 have been consumed. */
5091 used = (char *) alloca (nargs * sizeof *used);
5092 bzero (used, nargs * sizeof *used);
5093
5094 /* See if there's a `:test TEST' among the arguments. */
5095 i = get_key_arg (QCtest, nargs, args, used);
5096 test = i < 0 ? Qeql : args[i];
5097 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
5098 {
5099 /* See if it is a user-defined test. */
5100 Lisp_Object prop;
5101
5102 prop = Fget (test, Qhash_table_test);
5103 if (!CONSP (prop) || !CONSP (XCDR (prop)))
5104 Fsignal (Qerror, list2 (build_string ("Invalid hash table test"),
5105 test));
5106 user_test = XCAR (prop);
5107 user_hash = XCAR (XCDR (prop));
5108 }
5109 else
5110 user_test = user_hash = Qnil;
5111
5112 /* See if there's a `:size SIZE' argument. */
5113 i = get_key_arg (QCsize, nargs, args, used);
5114 size = i < 0 ? Qnil : args[i];
5115 if (NILP (size))
5116 size = make_number (DEFAULT_HASH_SIZE);
5117 else if (!INTEGERP (size) || XINT (size) < 0)
5118 Fsignal (Qerror,
5119 list2 (build_string ("Invalid hash table size"),
5120 size));
5121
5122 /* Look for `:rehash-size SIZE'. */
5123 i = get_key_arg (QCrehash_size, nargs, args, used);
5124 rehash_size = i < 0 ? make_float (DEFAULT_REHASH_SIZE) : args[i];
5125 if (!NUMBERP (rehash_size)
5126 || (INTEGERP (rehash_size) && XINT (rehash_size) <= 0)
5127 || XFLOATINT (rehash_size) <= 1.0)
5128 Fsignal (Qerror,
5129 list2 (build_string ("Invalid hash table rehash size"),
5130 rehash_size));
5131
5132 /* Look for `:rehash-threshold THRESHOLD'. */
5133 i = get_key_arg (QCrehash_threshold, nargs, args, used);
5134 rehash_threshold = i < 0 ? make_float (DEFAULT_REHASH_THRESHOLD) : args[i];
5135 if (!FLOATP (rehash_threshold)
5136 || XFLOATINT (rehash_threshold) <= 0.0
5137 || XFLOATINT (rehash_threshold) > 1.0)
5138 Fsignal (Qerror,
5139 list2 (build_string ("Invalid hash table rehash threshold"),
5140 rehash_threshold));
5141
5142 /* Look for `:weakness WEAK'. */
5143 i = get_key_arg (QCweakness, nargs, args, used);
5144 weak = i < 0 ? Qnil : args[i];
5145 if (EQ (weak, Qt))
5146 weak = Qkey_and_value;
5147 if (!NILP (weak)
5148 && !EQ (weak, Qkey)
5149 && !EQ (weak, Qvalue)
5150 && !EQ (weak, Qkey_or_value)
5151 && !EQ (weak, Qkey_and_value))
5152 Fsignal (Qerror, list2 (build_string ("Invalid hash table weakness"),
5153 weak));
5154
5155 /* Now, all args should have been used up, or there's a problem. */
5156 for (i = 0; i < nargs; ++i)
5157 if (!used[i])
5158 Fsignal (Qerror,
5159 list2 (build_string ("Invalid argument list"), args[i]));
5160
5161 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
5162 user_test, user_hash);
5163 }
5164
5165
5166 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
5167 doc: /* Return a copy of hash table TABLE. */)
5168 (table)
5169 Lisp_Object table;
5170 {
5171 return copy_hash_table (check_hash_table (table));
5172 }
5173
5174
5175 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
5176 doc: /* Return the number of elements in TABLE. */)
5177 (table)
5178 Lisp_Object table;
5179 {
5180 return check_hash_table (table)->count;
5181 }
5182
5183
5184 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
5185 Shash_table_rehash_size, 1, 1, 0,
5186 doc: /* Return the current rehash size of TABLE. */)
5187 (table)
5188 Lisp_Object table;
5189 {
5190 return check_hash_table (table)->rehash_size;
5191 }
5192
5193
5194 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
5195 Shash_table_rehash_threshold, 1, 1, 0,
5196 doc: /* Return the current rehash threshold of TABLE. */)
5197 (table)
5198 Lisp_Object table;
5199 {
5200 return check_hash_table (table)->rehash_threshold;
5201 }
5202
5203
5204 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
5205 doc: /* Return the size of TABLE.
5206 The size can be used as an argument to `make-hash-table' to create
5207 a hash table than can hold as many elements of TABLE holds
5208 without need for resizing. */)
5209 (table)
5210 Lisp_Object table;
5211 {
5212 struct Lisp_Hash_Table *h = check_hash_table (table);
5213 return make_number (HASH_TABLE_SIZE (h));
5214 }
5215
5216
5217 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
5218 doc: /* Return the test TABLE uses. */)
5219 (table)
5220 Lisp_Object table;
5221 {
5222 return check_hash_table (table)->test;
5223 }
5224
5225
5226 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
5227 1, 1, 0,
5228 doc: /* Return the weakness of TABLE. */)
5229 (table)
5230 Lisp_Object table;
5231 {
5232 return check_hash_table (table)->weak;
5233 }
5234
5235
5236 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
5237 doc: /* Return t if OBJ is a Lisp hash table object. */)
5238 (obj)
5239 Lisp_Object obj;
5240 {
5241 return HASH_TABLE_P (obj) ? Qt : Qnil;
5242 }
5243
5244
5245 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
5246 doc: /* Clear hash table TABLE. */)
5247 (table)
5248 Lisp_Object table;
5249 {
5250 hash_clear (check_hash_table (table));
5251 return Qnil;
5252 }
5253
5254
5255 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
5256 doc: /* Look up KEY in TABLE and return its associated value.
5257 If KEY is not found, return DFLT which defaults to nil. */)
5258 (key, table, dflt)
5259 Lisp_Object key, table, dflt;
5260 {
5261 struct Lisp_Hash_Table *h = check_hash_table (table);
5262 int i = hash_lookup (h, key, NULL);
5263 return i >= 0 ? HASH_VALUE (h, i) : dflt;
5264 }
5265
5266
5267 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
5268 doc: /* Associate KEY with VALUE in hash table TABLE.
5269 If KEY is already present in table, replace its current value with
5270 VALUE. */)
5271 (key, value, table)
5272 Lisp_Object key, value, table;
5273 {
5274 struct Lisp_Hash_Table *h = check_hash_table (table);
5275 int i;
5276 unsigned hash;
5277
5278 i = hash_lookup (h, key, &hash);
5279 if (i >= 0)
5280 HASH_VALUE (h, i) = value;
5281 else
5282 hash_put (h, key, value, hash);
5283
5284 return value;
5285 }
5286
5287
5288 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
5289 doc: /* Remove KEY from TABLE. */)
5290 (key, table)
5291 Lisp_Object key, table;
5292 {
5293 struct Lisp_Hash_Table *h = check_hash_table (table);
5294 hash_remove (h, key);
5295 return Qnil;
5296 }
5297
5298
5299 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
5300 doc: /* Call FUNCTION for all entries in hash table TABLE.
5301 FUNCTION is called with 2 arguments KEY and VALUE. */)
5302 (function, table)
5303 Lisp_Object function, table;
5304 {
5305 struct Lisp_Hash_Table *h = check_hash_table (table);
5306 Lisp_Object args[3];
5307 int i;
5308
5309 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
5310 if (!NILP (HASH_HASH (h, i)))
5311 {
5312 args[0] = function;
5313 args[1] = HASH_KEY (h, i);
5314 args[2] = HASH_VALUE (h, i);
5315 Ffuncall (3, args);
5316 }
5317
5318 return Qnil;
5319 }
5320
5321
5322 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
5323 Sdefine_hash_table_test, 3, 3, 0,
5324 doc: /* Define a new hash table test with name NAME, a symbol.
5325
5326 In hash tables created with NAME specified as test, use TEST to
5327 compare keys, and HASH for computing hash codes of keys.
5328
5329 TEST must be a function taking two arguments and returning non-nil if
5330 both arguments are the same. HASH must be a function taking one
5331 argument and return an integer that is the hash code of the argument.
5332 Hash code computation should use the whole value range of integers,
5333 including negative integers. */)
5334 (name, test, hash)
5335 Lisp_Object name, test, hash;
5336 {
5337 return Fput (name, Qhash_table_test, list2 (test, hash));
5338 }
5339
5340
5341 \f
5342 /************************************************************************
5343 MD5
5344 ************************************************************************/
5345
5346 #include "md5.h"
5347 #include "coding.h"
5348
5349 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
5350 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
5351
5352 A message digest is a cryptographic checksum of a document, and the
5353 algorithm to calculate it is defined in RFC 1321.
5354
5355 The two optional arguments START and END are character positions
5356 specifying for which part of OBJECT the message digest should be
5357 computed. If nil or omitted, the digest is computed for the whole
5358 OBJECT.
5359
5360 The MD5 message digest is computed from the result of encoding the
5361 text in a coding system, not directly from the internal Emacs form of
5362 the text. The optional fourth argument CODING-SYSTEM specifies which
5363 coding system to encode the text with. It should be the same coding
5364 system that you used or will use when actually writing the text into a
5365 file.
5366
5367 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
5368 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
5369 system would be chosen by default for writing this text into a file.
5370
5371 If OBJECT is a string, the most preferred coding system (see the
5372 command `prefer-coding-system') is used.
5373
5374 If NOERROR is non-nil, silently assume the `raw-text' coding if the
5375 guesswork fails. Normally, an error is signaled in such case. */)
5376 (object, start, end, coding_system, noerror)
5377 Lisp_Object object, start, end, coding_system, noerror;
5378 {
5379 unsigned char digest[16];
5380 unsigned char value[33];
5381 int i;
5382 int size;
5383 int size_byte = 0;
5384 int start_char = 0, end_char = 0;
5385 int start_byte = 0, end_byte = 0;
5386 register int b, e;
5387 register struct buffer *bp;
5388 int temp;
5389
5390 if (STRINGP (object))
5391 {
5392 if (NILP (coding_system))
5393 {
5394 /* Decide the coding-system to encode the data with. */
5395
5396 if (STRING_MULTIBYTE (object))
5397 /* use default, we can't guess correct value */
5398 coding_system = SYMBOL_VALUE (XCAR (Vcoding_category_list));
5399 else
5400 coding_system = Qraw_text;
5401 }
5402
5403 if (NILP (Fcoding_system_p (coding_system)))
5404 {
5405 /* Invalid coding system. */
5406
5407 if (!NILP (noerror))
5408 coding_system = Qraw_text;
5409 else
5410 while (1)
5411 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
5412 }
5413
5414 if (STRING_MULTIBYTE (object))
5415 object = code_convert_string1 (object, coding_system, Qnil, 1);
5416
5417 size = SCHARS (object);
5418 size_byte = SBYTES (object);
5419
5420 if (!NILP (start))
5421 {
5422 CHECK_NUMBER (start);
5423
5424 start_char = XINT (start);
5425
5426 if (start_char < 0)
5427 start_char += size;
5428
5429 start_byte = string_char_to_byte (object, start_char);
5430 }
5431
5432 if (NILP (end))
5433 {
5434 end_char = size;
5435 end_byte = size_byte;
5436 }
5437 else
5438 {
5439 CHECK_NUMBER (end);
5440
5441 end_char = XINT (end);
5442
5443 if (end_char < 0)
5444 end_char += size;
5445
5446 end_byte = string_char_to_byte (object, end_char);
5447 }
5448
5449 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
5450 args_out_of_range_3 (object, make_number (start_char),
5451 make_number (end_char));
5452 }
5453 else
5454 {
5455 struct buffer *prev = current_buffer;
5456
5457 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
5458
5459 CHECK_BUFFER (object);
5460
5461 bp = XBUFFER (object);
5462 if (bp != current_buffer)
5463 set_buffer_internal (bp);
5464
5465 if (NILP (start))
5466 b = BEGV;
5467 else
5468 {
5469 CHECK_NUMBER_COERCE_MARKER (start);
5470 b = XINT (start);
5471 }
5472
5473 if (NILP (end))
5474 e = ZV;
5475 else
5476 {
5477 CHECK_NUMBER_COERCE_MARKER (end);
5478 e = XINT (end);
5479 }
5480
5481 if (b > e)
5482 temp = b, b = e, e = temp;
5483
5484 if (!(BEGV <= b && e <= ZV))
5485 args_out_of_range (start, end);
5486
5487 if (NILP (coding_system))
5488 {
5489 /* Decide the coding-system to encode the data with.
5490 See fileio.c:Fwrite-region */
5491
5492 if (!NILP (Vcoding_system_for_write))
5493 coding_system = Vcoding_system_for_write;
5494 else
5495 {
5496 int force_raw_text = 0;
5497
5498 coding_system = XBUFFER (object)->buffer_file_coding_system;
5499 if (NILP (coding_system)
5500 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
5501 {
5502 coding_system = Qnil;
5503 if (NILP (current_buffer->enable_multibyte_characters))
5504 force_raw_text = 1;
5505 }
5506
5507 if (NILP (coding_system) && !NILP (Fbuffer_file_name(object)))
5508 {
5509 /* Check file-coding-system-alist. */
5510 Lisp_Object args[4], val;
5511
5512 args[0] = Qwrite_region; args[1] = start; args[2] = end;
5513 args[3] = Fbuffer_file_name(object);
5514 val = Ffind_operation_coding_system (4, args);
5515 if (CONSP (val) && !NILP (XCDR (val)))
5516 coding_system = XCDR (val);
5517 }
5518
5519 if (NILP (coding_system)
5520 && !NILP (XBUFFER (object)->buffer_file_coding_system))
5521 {
5522 /* If we still have not decided a coding system, use the
5523 default value of buffer-file-coding-system. */
5524 coding_system = XBUFFER (object)->buffer_file_coding_system;
5525 }
5526
5527 if (!force_raw_text
5528 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
5529 /* Confirm that VAL can surely encode the current region. */
5530 coding_system = call4 (Vselect_safe_coding_system_function,
5531 make_number (b), make_number (e),
5532 coding_system, Qnil);
5533
5534 if (force_raw_text)
5535 coding_system = Qraw_text;
5536 }
5537
5538 if (NILP (Fcoding_system_p (coding_system)))
5539 {
5540 /* Invalid coding system. */
5541
5542 if (!NILP (noerror))
5543 coding_system = Qraw_text;
5544 else
5545 while (1)
5546 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
5547 }
5548 }
5549
5550 object = make_buffer_string (b, e, 0);
5551 if (prev != current_buffer)
5552 set_buffer_internal (prev);
5553 /* Discard the unwind protect for recovering the current
5554 buffer. */
5555 specpdl_ptr--;
5556
5557 if (STRING_MULTIBYTE (object))
5558 object = code_convert_string1 (object, coding_system, Qnil, 1);
5559 }
5560
5561 md5_buffer (SDATA (object) + start_byte,
5562 SBYTES (object) - (size_byte - end_byte),
5563 digest);
5564
5565 for (i = 0; i < 16; i++)
5566 sprintf (&value[2 * i], "%02x", digest[i]);
5567 value[32] = '\0';
5568
5569 return make_string (value, 32);
5570 }
5571
5572 \f
5573 void
5574 syms_of_fns ()
5575 {
5576 /* Hash table stuff. */
5577 Qhash_table_p = intern ("hash-table-p");
5578 staticpro (&Qhash_table_p);
5579 Qeq = intern ("eq");
5580 staticpro (&Qeq);
5581 Qeql = intern ("eql");
5582 staticpro (&Qeql);
5583 Qequal = intern ("equal");
5584 staticpro (&Qequal);
5585 QCtest = intern (":test");
5586 staticpro (&QCtest);
5587 QCsize = intern (":size");
5588 staticpro (&QCsize);
5589 QCrehash_size = intern (":rehash-size");
5590 staticpro (&QCrehash_size);
5591 QCrehash_threshold = intern (":rehash-threshold");
5592 staticpro (&QCrehash_threshold);
5593 QCweakness = intern (":weakness");
5594 staticpro (&QCweakness);
5595 Qkey = intern ("key");
5596 staticpro (&Qkey);
5597 Qvalue = intern ("value");
5598 staticpro (&Qvalue);
5599 Qhash_table_test = intern ("hash-table-test");
5600 staticpro (&Qhash_table_test);
5601 Qkey_or_value = intern ("key-or-value");
5602 staticpro (&Qkey_or_value);
5603 Qkey_and_value = intern ("key-and-value");
5604 staticpro (&Qkey_and_value);
5605
5606 defsubr (&Ssxhash);
5607 defsubr (&Smake_hash_table);
5608 defsubr (&Scopy_hash_table);
5609 defsubr (&Shash_table_count);
5610 defsubr (&Shash_table_rehash_size);
5611 defsubr (&Shash_table_rehash_threshold);
5612 defsubr (&Shash_table_size);
5613 defsubr (&Shash_table_test);
5614 defsubr (&Shash_table_weakness);
5615 defsubr (&Shash_table_p);
5616 defsubr (&Sclrhash);
5617 defsubr (&Sgethash);
5618 defsubr (&Sputhash);
5619 defsubr (&Sremhash);
5620 defsubr (&Smaphash);
5621 defsubr (&Sdefine_hash_table_test);
5622
5623 Qstring_lessp = intern ("string-lessp");
5624 staticpro (&Qstring_lessp);
5625 Qprovide = intern ("provide");
5626 staticpro (&Qprovide);
5627 Qrequire = intern ("require");
5628 staticpro (&Qrequire);
5629 Qyes_or_no_p_history = intern ("yes-or-no-p-history");
5630 staticpro (&Qyes_or_no_p_history);
5631 Qcursor_in_echo_area = intern ("cursor-in-echo-area");
5632 staticpro (&Qcursor_in_echo_area);
5633 Qwidget_type = intern ("widget-type");
5634 staticpro (&Qwidget_type);
5635
5636 staticpro (&string_char_byte_cache_string);
5637 string_char_byte_cache_string = Qnil;
5638
5639 require_nesting_list = Qnil;
5640 staticpro (&require_nesting_list);
5641
5642 Fset (Qyes_or_no_p_history, Qnil);
5643
5644 DEFVAR_LISP ("features", &Vfeatures,
5645 doc: /* A list of symbols which are the features of the executing emacs.
5646 Used by `featurep' and `require', and altered by `provide'. */);
5647 Vfeatures = Qnil;
5648 Qsubfeatures = intern ("subfeatures");
5649 staticpro (&Qsubfeatures);
5650
5651 #ifdef HAVE_LANGINFO_CODESET
5652 Qcodeset = intern ("codeset");
5653 staticpro (&Qcodeset);
5654 Qdays = intern ("days");
5655 staticpro (&Qdays);
5656 Qmonths = intern ("months");
5657 staticpro (&Qmonths);
5658 Qpaper = intern ("paper");
5659 staticpro (&Qpaper);
5660 #endif /* HAVE_LANGINFO_CODESET */
5661
5662 DEFVAR_BOOL ("use-dialog-box", &use_dialog_box,
5663 doc: /* *Non-nil means mouse commands use dialog boxes to ask questions.
5664 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
5665 invoked by mouse clicks and mouse menu items. */);
5666 use_dialog_box = 1;
5667
5668 DEFVAR_BOOL ("use-file-dialog", &use_file_dialog,
5669 doc: /* *Non-nil means mouse commands use a file dialog to ask for files.
5670 This applies to commands from menus and tool bar buttons. The value of
5671 `use-dialog-box' takes precedence over this variable, so a file dialog is only
5672 used if both `use-dialog-box' and this variable are non-nil. */);
5673 use_file_dialog = 1;
5674
5675 defsubr (&Sidentity);
5676 defsubr (&Srandom);
5677 defsubr (&Slength);
5678 defsubr (&Ssafe_length);
5679 defsubr (&Sstring_bytes);
5680 defsubr (&Sstring_equal);
5681 defsubr (&Scompare_strings);
5682 defsubr (&Sstring_lessp);
5683 defsubr (&Sappend);
5684 defsubr (&Sconcat);
5685 defsubr (&Svconcat);
5686 defsubr (&Scopy_sequence);
5687 defsubr (&Sstring_make_multibyte);
5688 defsubr (&Sstring_make_unibyte);
5689 defsubr (&Sstring_as_multibyte);
5690 defsubr (&Sstring_as_unibyte);
5691 defsubr (&Sstring_to_multibyte);
5692 defsubr (&Scopy_alist);
5693 defsubr (&Ssubstring);
5694 defsubr (&Ssubstring_no_properties);
5695 defsubr (&Snthcdr);
5696 defsubr (&Snth);
5697 defsubr (&Selt);
5698 defsubr (&Smember);
5699 defsubr (&Smemq);
5700 defsubr (&Sassq);
5701 defsubr (&Sassoc);
5702 defsubr (&Srassq);
5703 defsubr (&Srassoc);
5704 defsubr (&Sdelq);
5705 defsubr (&Sdelete);
5706 defsubr (&Snreverse);
5707 defsubr (&Sreverse);
5708 defsubr (&Ssort);
5709 defsubr (&Splist_get);
5710 defsubr (&Sget);
5711 defsubr (&Splist_put);
5712 defsubr (&Sput);
5713 defsubr (&Slax_plist_get);
5714 defsubr (&Slax_plist_put);
5715 defsubr (&Sequal);
5716 defsubr (&Sfillarray);
5717 defsubr (&Sclear_string);
5718 defsubr (&Schar_table_subtype);
5719 defsubr (&Schar_table_parent);
5720 defsubr (&Sset_char_table_parent);
5721 defsubr (&Schar_table_extra_slot);
5722 defsubr (&Sset_char_table_extra_slot);
5723 defsubr (&Schar_table_range);
5724 defsubr (&Sset_char_table_range);
5725 defsubr (&Sset_char_table_default);
5726 defsubr (&Soptimize_char_table);
5727 defsubr (&Smap_char_table);
5728 defsubr (&Snconc);
5729 defsubr (&Smapcar);
5730 defsubr (&Smapc);
5731 defsubr (&Smapconcat);
5732 defsubr (&Sy_or_n_p);
5733 defsubr (&Syes_or_no_p);
5734 defsubr (&Sload_average);
5735 defsubr (&Sfeaturep);
5736 defsubr (&Srequire);
5737 defsubr (&Sprovide);
5738 defsubr (&Splist_member);
5739 defsubr (&Swidget_put);
5740 defsubr (&Swidget_get);
5741 defsubr (&Swidget_apply);
5742 defsubr (&Sbase64_encode_region);
5743 defsubr (&Sbase64_decode_region);
5744 defsubr (&Sbase64_encode_string);
5745 defsubr (&Sbase64_decode_string);
5746 defsubr (&Smd5);
5747 defsubr (&Slocale_info);
5748 }
5749
5750
5751 void
5752 init_fns ()
5753 {
5754 Vweak_hash_tables = Qnil;
5755 }
5756
5757 /* arch-tag: 787f8219-5b74-46bd-8469-7e1cc475fa31
5758 (do not change this comment) */