]> code.delx.au - gnu-emacs/blob - src/alloc.c
Fix some more uses of int instead of EMACS_INT.
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22 #include <stdio.h>
23 #include <limits.h> /* For CHAR_BIT. */
24 #include <setjmp.h>
25
26 #ifdef ALLOC_DEBUG
27 #undef INLINE
28 #endif
29
30 #include <signal.h>
31
32 #ifdef HAVE_GTK_AND_PTHREAD
33 #include <pthread.h>
34 #endif
35
36 /* This file is part of the core Lisp implementation, and thus must
37 deal with the real data structures. If the Lisp implementation is
38 replaced, this file likely will not be used. */
39
40 #undef HIDE_LISP_IMPLEMENTATION
41 #include "lisp.h"
42 #include "process.h"
43 #include "intervals.h"
44 #include "puresize.h"
45 #include "buffer.h"
46 #include "window.h"
47 #include "keyboard.h"
48 #include "frame.h"
49 #include "blockinput.h"
50 #include "character.h"
51 #include "syssignal.h"
52 #include "termhooks.h" /* For struct terminal. */
53 #include <setjmp.h>
54
55 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
56 memory. Can do this only if using gmalloc.c. */
57
58 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
59 #undef GC_MALLOC_CHECK
60 #endif
61
62 #ifdef HAVE_UNISTD_H
63 #include <unistd.h>
64 #else
65 extern POINTER_TYPE *sbrk ();
66 #endif
67
68 #ifdef HAVE_FCNTL_H
69 #include <fcntl.h>
70 #endif
71 #ifndef O_WRONLY
72 #define O_WRONLY 1
73 #endif
74
75 #ifdef WINDOWSNT
76 #include <fcntl.h>
77 #include "w32.h"
78 #endif
79
80 #ifdef DOUG_LEA_MALLOC
81
82 #include <malloc.h>
83 /* malloc.h #defines this as size_t, at least in glibc2. */
84 #ifndef __malloc_size_t
85 #define __malloc_size_t int
86 #endif
87
88 /* Specify maximum number of areas to mmap. It would be nice to use a
89 value that explicitly means "no limit". */
90
91 #define MMAP_MAX_AREAS 100000000
92
93 #else /* not DOUG_LEA_MALLOC */
94
95 /* The following come from gmalloc.c. */
96
97 #define __malloc_size_t size_t
98 extern __malloc_size_t _bytes_used;
99 extern __malloc_size_t __malloc_extra_blocks;
100
101 #endif /* not DOUG_LEA_MALLOC */
102
103 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
104
105 /* When GTK uses the file chooser dialog, different backends can be loaded
106 dynamically. One such a backend is the Gnome VFS backend that gets loaded
107 if you run Gnome. That backend creates several threads and also allocates
108 memory with malloc.
109
110 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
111 functions below are called from malloc, there is a chance that one
112 of these threads preempts the Emacs main thread and the hook variables
113 end up in an inconsistent state. So we have a mutex to prevent that (note
114 that the backend handles concurrent access to malloc within its own threads
115 but Emacs code running in the main thread is not included in that control).
116
117 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
118 happens in one of the backend threads we will have two threads that tries
119 to run Emacs code at once, and the code is not prepared for that.
120 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
121
122 static pthread_mutex_t alloc_mutex;
123
124 #define BLOCK_INPUT_ALLOC \
125 do \
126 { \
127 if (pthread_equal (pthread_self (), main_thread)) \
128 BLOCK_INPUT; \
129 pthread_mutex_lock (&alloc_mutex); \
130 } \
131 while (0)
132 #define UNBLOCK_INPUT_ALLOC \
133 do \
134 { \
135 pthread_mutex_unlock (&alloc_mutex); \
136 if (pthread_equal (pthread_self (), main_thread)) \
137 UNBLOCK_INPUT; \
138 } \
139 while (0)
140
141 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
142
143 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
144 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
145
146 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
147
148 /* Value of _bytes_used, when spare_memory was freed. */
149
150 static __malloc_size_t bytes_used_when_full;
151
152 static __malloc_size_t bytes_used_when_reconsidered;
153
154 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
155 to a struct Lisp_String. */
156
157 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
158 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
159 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
160
161 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
162 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
163 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
164
165 /* Value is the number of bytes/chars of S, a pointer to a struct
166 Lisp_String. This must be used instead of STRING_BYTES (S) or
167 S->size during GC, because S->size contains the mark bit for
168 strings. */
169
170 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
171 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
172
173 /* Number of bytes of consing done since the last gc. */
174
175 int consing_since_gc;
176
177 /* Count the amount of consing of various sorts of space. */
178
179 EMACS_INT cons_cells_consed;
180 EMACS_INT floats_consed;
181 EMACS_INT vector_cells_consed;
182 EMACS_INT symbols_consed;
183 EMACS_INT string_chars_consed;
184 EMACS_INT misc_objects_consed;
185 EMACS_INT intervals_consed;
186 EMACS_INT strings_consed;
187
188 /* Minimum number of bytes of consing since GC before next GC. */
189
190 EMACS_INT gc_cons_threshold;
191
192 /* Similar minimum, computed from Vgc_cons_percentage. */
193
194 EMACS_INT gc_relative_threshold;
195
196 static Lisp_Object Vgc_cons_percentage;
197
198 /* Minimum number of bytes of consing since GC before next GC,
199 when memory is full. */
200
201 EMACS_INT memory_full_cons_threshold;
202
203 /* Nonzero during GC. */
204
205 int gc_in_progress;
206
207 /* Nonzero means abort if try to GC.
208 This is for code which is written on the assumption that
209 no GC will happen, so as to verify that assumption. */
210
211 int abort_on_gc;
212
213 /* Nonzero means display messages at beginning and end of GC. */
214
215 int garbage_collection_messages;
216
217 /* Number of live and free conses etc. */
218
219 static int total_conses, total_markers, total_symbols, total_vector_size;
220 static int total_free_conses, total_free_markers, total_free_symbols;
221 static int total_free_floats, total_floats;
222
223 /* Points to memory space allocated as "spare", to be freed if we run
224 out of memory. We keep one large block, four cons-blocks, and
225 two string blocks. */
226
227 static char *spare_memory[7];
228
229 /* Amount of spare memory to keep in large reserve block. */
230
231 #define SPARE_MEMORY (1 << 14)
232
233 /* Number of extra blocks malloc should get when it needs more core. */
234
235 static int malloc_hysteresis;
236
237 /* Non-nil means defun should do purecopy on the function definition. */
238
239 Lisp_Object Vpurify_flag;
240
241 /* Non-nil means we are handling a memory-full error. */
242
243 Lisp_Object Vmemory_full;
244
245 /* Initialize it to a nonzero value to force it into data space
246 (rather than bss space). That way unexec will remap it into text
247 space (pure), on some systems. We have not implemented the
248 remapping on more recent systems because this is less important
249 nowadays than in the days of small memories and timesharing. */
250
251 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
252 #define PUREBEG (char *) pure
253
254 /* Pointer to the pure area, and its size. */
255
256 static char *purebeg;
257 static size_t pure_size;
258
259 /* Number of bytes of pure storage used before pure storage overflowed.
260 If this is non-zero, this implies that an overflow occurred. */
261
262 static size_t pure_bytes_used_before_overflow;
263
264 /* Value is non-zero if P points into pure space. */
265
266 #define PURE_POINTER_P(P) \
267 (((PNTR_COMPARISON_TYPE) (P) \
268 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
269 && ((PNTR_COMPARISON_TYPE) (P) \
270 >= (PNTR_COMPARISON_TYPE) purebeg))
271
272 /* Total number of bytes allocated in pure storage. */
273
274 EMACS_INT pure_bytes_used;
275
276 /* Index in pure at which next pure Lisp object will be allocated.. */
277
278 static EMACS_INT pure_bytes_used_lisp;
279
280 /* Number of bytes allocated for non-Lisp objects in pure storage. */
281
282 static EMACS_INT pure_bytes_used_non_lisp;
283
284 /* If nonzero, this is a warning delivered by malloc and not yet
285 displayed. */
286
287 const char *pending_malloc_warning;
288
289 /* Pre-computed signal argument for use when memory is exhausted. */
290
291 Lisp_Object Vmemory_signal_data;
292
293 /* Maximum amount of C stack to save when a GC happens. */
294
295 #ifndef MAX_SAVE_STACK
296 #define MAX_SAVE_STACK 16000
297 #endif
298
299 /* Buffer in which we save a copy of the C stack at each GC. */
300
301 static char *stack_copy;
302 static int stack_copy_size;
303
304 /* Non-zero means ignore malloc warnings. Set during initialization.
305 Currently not used. */
306
307 static int ignore_warnings;
308
309 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
310
311 /* Hook run after GC has finished. */
312
313 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
314
315 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
316 EMACS_INT gcs_done; /* accumulated GCs */
317
318 static void mark_buffer (Lisp_Object);
319 static void mark_terminals (void);
320 extern void mark_kboards (void);
321 extern void mark_ttys (void);
322 extern void mark_backtrace (void);
323 static void gc_sweep (void);
324 static void mark_glyph_matrix (struct glyph_matrix *);
325 static void mark_face_cache (struct face_cache *);
326
327 #ifdef HAVE_WINDOW_SYSTEM
328 extern void mark_fringe_data (void);
329 #endif /* HAVE_WINDOW_SYSTEM */
330
331 static struct Lisp_String *allocate_string (void);
332 static void compact_small_strings (void);
333 static void free_large_strings (void);
334 static void sweep_strings (void);
335
336 extern int message_enable_multibyte;
337
338 /* When scanning the C stack for live Lisp objects, Emacs keeps track
339 of what memory allocated via lisp_malloc is intended for what
340 purpose. This enumeration specifies the type of memory. */
341
342 enum mem_type
343 {
344 MEM_TYPE_NON_LISP,
345 MEM_TYPE_BUFFER,
346 MEM_TYPE_CONS,
347 MEM_TYPE_STRING,
348 MEM_TYPE_MISC,
349 MEM_TYPE_SYMBOL,
350 MEM_TYPE_FLOAT,
351 /* We used to keep separate mem_types for subtypes of vectors such as
352 process, hash_table, frame, terminal, and window, but we never made
353 use of the distinction, so it only caused source-code complexity
354 and runtime slowdown. Minor but pointless. */
355 MEM_TYPE_VECTORLIKE
356 };
357
358 static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
359 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
360 void refill_memory_reserve (void);
361
362
363 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
364
365 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
366 #include <stdio.h> /* For fprintf. */
367 #endif
368
369 /* A unique object in pure space used to make some Lisp objects
370 on free lists recognizable in O(1). */
371
372 static Lisp_Object Vdead;
373
374 #ifdef GC_MALLOC_CHECK
375
376 enum mem_type allocated_mem_type;
377 static int dont_register_blocks;
378
379 #endif /* GC_MALLOC_CHECK */
380
381 /* A node in the red-black tree describing allocated memory containing
382 Lisp data. Each such block is recorded with its start and end
383 address when it is allocated, and removed from the tree when it
384 is freed.
385
386 A red-black tree is a balanced binary tree with the following
387 properties:
388
389 1. Every node is either red or black.
390 2. Every leaf is black.
391 3. If a node is red, then both of its children are black.
392 4. Every simple path from a node to a descendant leaf contains
393 the same number of black nodes.
394 5. The root is always black.
395
396 When nodes are inserted into the tree, or deleted from the tree,
397 the tree is "fixed" so that these properties are always true.
398
399 A red-black tree with N internal nodes has height at most 2
400 log(N+1). Searches, insertions and deletions are done in O(log N).
401 Please see a text book about data structures for a detailed
402 description of red-black trees. Any book worth its salt should
403 describe them. */
404
405 struct mem_node
406 {
407 /* Children of this node. These pointers are never NULL. When there
408 is no child, the value is MEM_NIL, which points to a dummy node. */
409 struct mem_node *left, *right;
410
411 /* The parent of this node. In the root node, this is NULL. */
412 struct mem_node *parent;
413
414 /* Start and end of allocated region. */
415 void *start, *end;
416
417 /* Node color. */
418 enum {MEM_BLACK, MEM_RED} color;
419
420 /* Memory type. */
421 enum mem_type type;
422 };
423
424 /* Base address of stack. Set in main. */
425
426 Lisp_Object *stack_base;
427
428 /* Root of the tree describing allocated Lisp memory. */
429
430 static struct mem_node *mem_root;
431
432 /* Lowest and highest known address in the heap. */
433
434 static void *min_heap_address, *max_heap_address;
435
436 /* Sentinel node of the tree. */
437
438 static struct mem_node mem_z;
439 #define MEM_NIL &mem_z
440
441 static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
442 static void lisp_free (POINTER_TYPE *);
443 static void mark_stack (void);
444 static int live_vector_p (struct mem_node *, void *);
445 static int live_buffer_p (struct mem_node *, void *);
446 static int live_string_p (struct mem_node *, void *);
447 static int live_cons_p (struct mem_node *, void *);
448 static int live_symbol_p (struct mem_node *, void *);
449 static int live_float_p (struct mem_node *, void *);
450 static int live_misc_p (struct mem_node *, void *);
451 static void mark_maybe_object (Lisp_Object);
452 static void mark_memory (void *, void *, int);
453 static void mem_init (void);
454 static struct mem_node *mem_insert (void *, void *, enum mem_type);
455 static void mem_insert_fixup (struct mem_node *);
456 static void mem_rotate_left (struct mem_node *);
457 static void mem_rotate_right (struct mem_node *);
458 static void mem_delete (struct mem_node *);
459 static void mem_delete_fixup (struct mem_node *);
460 static INLINE struct mem_node *mem_find (void *);
461
462
463 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
464 static void check_gcpros (void);
465 #endif
466
467 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
468
469 /* Recording what needs to be marked for gc. */
470
471 struct gcpro *gcprolist;
472
473 /* Addresses of staticpro'd variables. Initialize it to a nonzero
474 value; otherwise some compilers put it into BSS. */
475
476 #define NSTATICS 0x640
477 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
478
479 /* Index of next unused slot in staticvec. */
480
481 static int staticidx = 0;
482
483 static POINTER_TYPE *pure_alloc (size_t, int);
484
485
486 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
487 ALIGNMENT must be a power of 2. */
488
489 #define ALIGN(ptr, ALIGNMENT) \
490 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
491 & ~((ALIGNMENT) - 1)))
492
493
494 \f
495 /************************************************************************
496 Malloc
497 ************************************************************************/
498
499 /* Function malloc calls this if it finds we are near exhausting storage. */
500
501 void
502 malloc_warning (const char *str)
503 {
504 pending_malloc_warning = str;
505 }
506
507
508 /* Display an already-pending malloc warning. */
509
510 void
511 display_malloc_warning (void)
512 {
513 call3 (intern ("display-warning"),
514 intern ("alloc"),
515 build_string (pending_malloc_warning),
516 intern ("emergency"));
517 pending_malloc_warning = 0;
518 }
519
520
521 #ifdef DOUG_LEA_MALLOC
522 # define BYTES_USED (mallinfo ().uordblks)
523 #else
524 # define BYTES_USED _bytes_used
525 #endif
526 \f
527 /* Called if we can't allocate relocatable space for a buffer. */
528
529 void
530 buffer_memory_full (void)
531 {
532 /* If buffers use the relocating allocator, no need to free
533 spare_memory, because we may have plenty of malloc space left
534 that we could get, and if we don't, the malloc that fails will
535 itself cause spare_memory to be freed. If buffers don't use the
536 relocating allocator, treat this like any other failing
537 malloc. */
538
539 #ifndef REL_ALLOC
540 memory_full ();
541 #endif
542
543 /* This used to call error, but if we've run out of memory, we could
544 get infinite recursion trying to build the string. */
545 xsignal (Qnil, Vmemory_signal_data);
546 }
547
548
549 #ifdef XMALLOC_OVERRUN_CHECK
550
551 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
552 and a 16 byte trailer around each block.
553
554 The header consists of 12 fixed bytes + a 4 byte integer contaning the
555 original block size, while the trailer consists of 16 fixed bytes.
556
557 The header is used to detect whether this block has been allocated
558 through these functions -- as it seems that some low-level libc
559 functions may bypass the malloc hooks.
560 */
561
562
563 #define XMALLOC_OVERRUN_CHECK_SIZE 16
564
565 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
566 { 0x9a, 0x9b, 0xae, 0xaf,
567 0xbf, 0xbe, 0xce, 0xcf,
568 0xea, 0xeb, 0xec, 0xed };
569
570 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
571 { 0xaa, 0xab, 0xac, 0xad,
572 0xba, 0xbb, 0xbc, 0xbd,
573 0xca, 0xcb, 0xcc, 0xcd,
574 0xda, 0xdb, 0xdc, 0xdd };
575
576 /* Macros to insert and extract the block size in the header. */
577
578 #define XMALLOC_PUT_SIZE(ptr, size) \
579 (ptr[-1] = (size & 0xff), \
580 ptr[-2] = ((size >> 8) & 0xff), \
581 ptr[-3] = ((size >> 16) & 0xff), \
582 ptr[-4] = ((size >> 24) & 0xff))
583
584 #define XMALLOC_GET_SIZE(ptr) \
585 (size_t)((unsigned)(ptr[-1]) | \
586 ((unsigned)(ptr[-2]) << 8) | \
587 ((unsigned)(ptr[-3]) << 16) | \
588 ((unsigned)(ptr[-4]) << 24))
589
590
591 /* The call depth in overrun_check functions. For example, this might happen:
592 xmalloc()
593 overrun_check_malloc()
594 -> malloc -> (via hook)_-> emacs_blocked_malloc
595 -> overrun_check_malloc
596 call malloc (hooks are NULL, so real malloc is called).
597 malloc returns 10000.
598 add overhead, return 10016.
599 <- (back in overrun_check_malloc)
600 add overhead again, return 10032
601 xmalloc returns 10032.
602
603 (time passes).
604
605 xfree(10032)
606 overrun_check_free(10032)
607 decrease overhed
608 free(10016) <- crash, because 10000 is the original pointer. */
609
610 static int check_depth;
611
612 /* Like malloc, but wraps allocated block with header and trailer. */
613
614 POINTER_TYPE *
615 overrun_check_malloc (size)
616 size_t size;
617 {
618 register unsigned char *val;
619 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
620
621 val = (unsigned char *) malloc (size + overhead);
622 if (val && check_depth == 1)
623 {
624 memcpy (val, xmalloc_overrun_check_header,
625 XMALLOC_OVERRUN_CHECK_SIZE - 4);
626 val += XMALLOC_OVERRUN_CHECK_SIZE;
627 XMALLOC_PUT_SIZE(val, size);
628 memcpy (val + size, xmalloc_overrun_check_trailer,
629 XMALLOC_OVERRUN_CHECK_SIZE);
630 }
631 --check_depth;
632 return (POINTER_TYPE *)val;
633 }
634
635
636 /* Like realloc, but checks old block for overrun, and wraps new block
637 with header and trailer. */
638
639 POINTER_TYPE *
640 overrun_check_realloc (block, size)
641 POINTER_TYPE *block;
642 size_t size;
643 {
644 register unsigned char *val = (unsigned char *)block;
645 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
646
647 if (val
648 && check_depth == 1
649 && memcmp (xmalloc_overrun_check_header,
650 val - XMALLOC_OVERRUN_CHECK_SIZE,
651 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
652 {
653 size_t osize = XMALLOC_GET_SIZE (val);
654 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
655 XMALLOC_OVERRUN_CHECK_SIZE))
656 abort ();
657 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
658 val -= XMALLOC_OVERRUN_CHECK_SIZE;
659 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
660 }
661
662 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
663
664 if (val && check_depth == 1)
665 {
666 memcpy (val, xmalloc_overrun_check_header,
667 XMALLOC_OVERRUN_CHECK_SIZE - 4);
668 val += XMALLOC_OVERRUN_CHECK_SIZE;
669 XMALLOC_PUT_SIZE(val, size);
670 memcpy (val + size, xmalloc_overrun_check_trailer,
671 XMALLOC_OVERRUN_CHECK_SIZE);
672 }
673 --check_depth;
674 return (POINTER_TYPE *)val;
675 }
676
677 /* Like free, but checks block for overrun. */
678
679 void
680 overrun_check_free (block)
681 POINTER_TYPE *block;
682 {
683 unsigned char *val = (unsigned char *)block;
684
685 ++check_depth;
686 if (val
687 && check_depth == 1
688 && memcmp (xmalloc_overrun_check_header,
689 val - XMALLOC_OVERRUN_CHECK_SIZE,
690 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
691 {
692 size_t osize = XMALLOC_GET_SIZE (val);
693 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
694 XMALLOC_OVERRUN_CHECK_SIZE))
695 abort ();
696 #ifdef XMALLOC_CLEAR_FREE_MEMORY
697 val -= XMALLOC_OVERRUN_CHECK_SIZE;
698 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
699 #else
700 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
701 val -= XMALLOC_OVERRUN_CHECK_SIZE;
702 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
703 #endif
704 }
705
706 free (val);
707 --check_depth;
708 }
709
710 #undef malloc
711 #undef realloc
712 #undef free
713 #define malloc overrun_check_malloc
714 #define realloc overrun_check_realloc
715 #define free overrun_check_free
716 #endif
717
718 #ifdef SYNC_INPUT
719 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
720 there's no need to block input around malloc. */
721 #define MALLOC_BLOCK_INPUT ((void)0)
722 #define MALLOC_UNBLOCK_INPUT ((void)0)
723 #else
724 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
725 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
726 #endif
727
728 /* Like malloc but check for no memory and block interrupt input.. */
729
730 POINTER_TYPE *
731 xmalloc (size_t size)
732 {
733 register POINTER_TYPE *val;
734
735 MALLOC_BLOCK_INPUT;
736 val = (POINTER_TYPE *) malloc (size);
737 MALLOC_UNBLOCK_INPUT;
738
739 if (!val && size)
740 memory_full ();
741 return val;
742 }
743
744
745 /* Like realloc but check for no memory and block interrupt input.. */
746
747 POINTER_TYPE *
748 xrealloc (POINTER_TYPE *block, size_t size)
749 {
750 register POINTER_TYPE *val;
751
752 MALLOC_BLOCK_INPUT;
753 /* We must call malloc explicitly when BLOCK is 0, since some
754 reallocs don't do this. */
755 if (! block)
756 val = (POINTER_TYPE *) malloc (size);
757 else
758 val = (POINTER_TYPE *) realloc (block, size);
759 MALLOC_UNBLOCK_INPUT;
760
761 if (!val && size) memory_full ();
762 return val;
763 }
764
765
766 /* Like free but block interrupt input. */
767
768 void
769 xfree (POINTER_TYPE *block)
770 {
771 if (!block)
772 return;
773 MALLOC_BLOCK_INPUT;
774 free (block);
775 MALLOC_UNBLOCK_INPUT;
776 /* We don't call refill_memory_reserve here
777 because that duplicates doing so in emacs_blocked_free
778 and the criterion should go there. */
779 }
780
781
782 /* Like strdup, but uses xmalloc. */
783
784 char *
785 xstrdup (const char *s)
786 {
787 size_t len = strlen (s) + 1;
788 char *p = (char *) xmalloc (len);
789 memcpy (p, s, len);
790 return p;
791 }
792
793
794 /* Unwind for SAFE_ALLOCA */
795
796 Lisp_Object
797 safe_alloca_unwind (Lisp_Object arg)
798 {
799 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
800
801 p->dogc = 0;
802 xfree (p->pointer);
803 p->pointer = 0;
804 free_misc (arg);
805 return Qnil;
806 }
807
808
809 /* Like malloc but used for allocating Lisp data. NBYTES is the
810 number of bytes to allocate, TYPE describes the intended use of the
811 allcated memory block (for strings, for conses, ...). */
812
813 #ifndef USE_LSB_TAG
814 static void *lisp_malloc_loser;
815 #endif
816
817 static POINTER_TYPE *
818 lisp_malloc (size_t nbytes, enum mem_type type)
819 {
820 register void *val;
821
822 MALLOC_BLOCK_INPUT;
823
824 #ifdef GC_MALLOC_CHECK
825 allocated_mem_type = type;
826 #endif
827
828 val = (void *) malloc (nbytes);
829
830 #ifndef USE_LSB_TAG
831 /* If the memory just allocated cannot be addressed thru a Lisp
832 object's pointer, and it needs to be,
833 that's equivalent to running out of memory. */
834 if (val && type != MEM_TYPE_NON_LISP)
835 {
836 Lisp_Object tem;
837 XSETCONS (tem, (char *) val + nbytes - 1);
838 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
839 {
840 lisp_malloc_loser = val;
841 free (val);
842 val = 0;
843 }
844 }
845 #endif
846
847 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
848 if (val && type != MEM_TYPE_NON_LISP)
849 mem_insert (val, (char *) val + nbytes, type);
850 #endif
851
852 MALLOC_UNBLOCK_INPUT;
853 if (!val && nbytes)
854 memory_full ();
855 return val;
856 }
857
858 /* Free BLOCK. This must be called to free memory allocated with a
859 call to lisp_malloc. */
860
861 static void
862 lisp_free (POINTER_TYPE *block)
863 {
864 MALLOC_BLOCK_INPUT;
865 free (block);
866 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
867 mem_delete (mem_find (block));
868 #endif
869 MALLOC_UNBLOCK_INPUT;
870 }
871
872 /* Allocation of aligned blocks of memory to store Lisp data. */
873 /* The entry point is lisp_align_malloc which returns blocks of at most */
874 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
875
876 /* Use posix_memalloc if the system has it and we're using the system's
877 malloc (because our gmalloc.c routines don't have posix_memalign although
878 its memalloc could be used). */
879 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
880 #define USE_POSIX_MEMALIGN 1
881 #endif
882
883 /* BLOCK_ALIGN has to be a power of 2. */
884 #define BLOCK_ALIGN (1 << 10)
885
886 /* Padding to leave at the end of a malloc'd block. This is to give
887 malloc a chance to minimize the amount of memory wasted to alignment.
888 It should be tuned to the particular malloc library used.
889 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
890 posix_memalign on the other hand would ideally prefer a value of 4
891 because otherwise, there's 1020 bytes wasted between each ablocks.
892 In Emacs, testing shows that those 1020 can most of the time be
893 efficiently used by malloc to place other objects, so a value of 0 can
894 still preferable unless you have a lot of aligned blocks and virtually
895 nothing else. */
896 #define BLOCK_PADDING 0
897 #define BLOCK_BYTES \
898 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
899
900 /* Internal data structures and constants. */
901
902 #define ABLOCKS_SIZE 16
903
904 /* An aligned block of memory. */
905 struct ablock
906 {
907 union
908 {
909 char payload[BLOCK_BYTES];
910 struct ablock *next_free;
911 } x;
912 /* `abase' is the aligned base of the ablocks. */
913 /* It is overloaded to hold the virtual `busy' field that counts
914 the number of used ablock in the parent ablocks.
915 The first ablock has the `busy' field, the others have the `abase'
916 field. To tell the difference, we assume that pointers will have
917 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
918 is used to tell whether the real base of the parent ablocks is `abase'
919 (if not, the word before the first ablock holds a pointer to the
920 real base). */
921 struct ablocks *abase;
922 /* The padding of all but the last ablock is unused. The padding of
923 the last ablock in an ablocks is not allocated. */
924 #if BLOCK_PADDING
925 char padding[BLOCK_PADDING];
926 #endif
927 };
928
929 /* A bunch of consecutive aligned blocks. */
930 struct ablocks
931 {
932 struct ablock blocks[ABLOCKS_SIZE];
933 };
934
935 /* Size of the block requested from malloc or memalign. */
936 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
937
938 #define ABLOCK_ABASE(block) \
939 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
940 ? (struct ablocks *)(block) \
941 : (block)->abase)
942
943 /* Virtual `busy' field. */
944 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
945
946 /* Pointer to the (not necessarily aligned) malloc block. */
947 #ifdef USE_POSIX_MEMALIGN
948 #define ABLOCKS_BASE(abase) (abase)
949 #else
950 #define ABLOCKS_BASE(abase) \
951 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
952 #endif
953
954 /* The list of free ablock. */
955 static struct ablock *free_ablock;
956
957 /* Allocate an aligned block of nbytes.
958 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
959 smaller or equal to BLOCK_BYTES. */
960 static POINTER_TYPE *
961 lisp_align_malloc (size_t nbytes, enum mem_type type)
962 {
963 void *base, *val;
964 struct ablocks *abase;
965
966 eassert (nbytes <= BLOCK_BYTES);
967
968 MALLOC_BLOCK_INPUT;
969
970 #ifdef GC_MALLOC_CHECK
971 allocated_mem_type = type;
972 #endif
973
974 if (!free_ablock)
975 {
976 int i;
977 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
978
979 #ifdef DOUG_LEA_MALLOC
980 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
981 because mapped region contents are not preserved in
982 a dumped Emacs. */
983 mallopt (M_MMAP_MAX, 0);
984 #endif
985
986 #ifdef USE_POSIX_MEMALIGN
987 {
988 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
989 if (err)
990 base = NULL;
991 abase = base;
992 }
993 #else
994 base = malloc (ABLOCKS_BYTES);
995 abase = ALIGN (base, BLOCK_ALIGN);
996 #endif
997
998 if (base == 0)
999 {
1000 MALLOC_UNBLOCK_INPUT;
1001 memory_full ();
1002 }
1003
1004 aligned = (base == abase);
1005 if (!aligned)
1006 ((void**)abase)[-1] = base;
1007
1008 #ifdef DOUG_LEA_MALLOC
1009 /* Back to a reasonable maximum of mmap'ed areas. */
1010 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1011 #endif
1012
1013 #ifndef USE_LSB_TAG
1014 /* If the memory just allocated cannot be addressed thru a Lisp
1015 object's pointer, and it needs to be, that's equivalent to
1016 running out of memory. */
1017 if (type != MEM_TYPE_NON_LISP)
1018 {
1019 Lisp_Object tem;
1020 char *end = (char *) base + ABLOCKS_BYTES - 1;
1021 XSETCONS (tem, end);
1022 if ((char *) XCONS (tem) != end)
1023 {
1024 lisp_malloc_loser = base;
1025 free (base);
1026 MALLOC_UNBLOCK_INPUT;
1027 memory_full ();
1028 }
1029 }
1030 #endif
1031
1032 /* Initialize the blocks and put them on the free list.
1033 Is `base' was not properly aligned, we can't use the last block. */
1034 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1035 {
1036 abase->blocks[i].abase = abase;
1037 abase->blocks[i].x.next_free = free_ablock;
1038 free_ablock = &abase->blocks[i];
1039 }
1040 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1041
1042 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1043 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1044 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1045 eassert (ABLOCKS_BASE (abase) == base);
1046 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1047 }
1048
1049 abase = ABLOCK_ABASE (free_ablock);
1050 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1051 val = free_ablock;
1052 free_ablock = free_ablock->x.next_free;
1053
1054 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1055 if (val && type != MEM_TYPE_NON_LISP)
1056 mem_insert (val, (char *) val + nbytes, type);
1057 #endif
1058
1059 MALLOC_UNBLOCK_INPUT;
1060 if (!val && nbytes)
1061 memory_full ();
1062
1063 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1064 return val;
1065 }
1066
1067 static void
1068 lisp_align_free (POINTER_TYPE *block)
1069 {
1070 struct ablock *ablock = block;
1071 struct ablocks *abase = ABLOCK_ABASE (ablock);
1072
1073 MALLOC_BLOCK_INPUT;
1074 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1075 mem_delete (mem_find (block));
1076 #endif
1077 /* Put on free list. */
1078 ablock->x.next_free = free_ablock;
1079 free_ablock = ablock;
1080 /* Update busy count. */
1081 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1082
1083 if (2 > (long) ABLOCKS_BUSY (abase))
1084 { /* All the blocks are free. */
1085 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1086 struct ablock **tem = &free_ablock;
1087 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1088
1089 while (*tem)
1090 {
1091 if (*tem >= (struct ablock *) abase && *tem < atop)
1092 {
1093 i++;
1094 *tem = (*tem)->x.next_free;
1095 }
1096 else
1097 tem = &(*tem)->x.next_free;
1098 }
1099 eassert ((aligned & 1) == aligned);
1100 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1101 #ifdef USE_POSIX_MEMALIGN
1102 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1103 #endif
1104 free (ABLOCKS_BASE (abase));
1105 }
1106 MALLOC_UNBLOCK_INPUT;
1107 }
1108
1109 /* Return a new buffer structure allocated from the heap with
1110 a call to lisp_malloc. */
1111
1112 struct buffer *
1113 allocate_buffer (void)
1114 {
1115 struct buffer *b
1116 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1117 MEM_TYPE_BUFFER);
1118 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1119 XSETPVECTYPE (b, PVEC_BUFFER);
1120 return b;
1121 }
1122
1123 \f
1124 #ifndef SYSTEM_MALLOC
1125
1126 /* Arranging to disable input signals while we're in malloc.
1127
1128 This only works with GNU malloc. To help out systems which can't
1129 use GNU malloc, all the calls to malloc, realloc, and free
1130 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1131 pair; unfortunately, we have no idea what C library functions
1132 might call malloc, so we can't really protect them unless you're
1133 using GNU malloc. Fortunately, most of the major operating systems
1134 can use GNU malloc. */
1135
1136 #ifndef SYNC_INPUT
1137 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1138 there's no need to block input around malloc. */
1139
1140 #ifndef DOUG_LEA_MALLOC
1141 extern void * (*__malloc_hook) (size_t, const void *);
1142 extern void * (*__realloc_hook) (void *, size_t, const void *);
1143 extern void (*__free_hook) (void *, const void *);
1144 /* Else declared in malloc.h, perhaps with an extra arg. */
1145 #endif /* DOUG_LEA_MALLOC */
1146 static void * (*old_malloc_hook) (size_t, const void *);
1147 static void * (*old_realloc_hook) (void *, size_t, const void*);
1148 static void (*old_free_hook) (void*, const void*);
1149
1150 /* This function is used as the hook for free to call. */
1151
1152 static void
1153 emacs_blocked_free (void *ptr, const void *ptr2)
1154 {
1155 BLOCK_INPUT_ALLOC;
1156
1157 #ifdef GC_MALLOC_CHECK
1158 if (ptr)
1159 {
1160 struct mem_node *m;
1161
1162 m = mem_find (ptr);
1163 if (m == MEM_NIL || m->start != ptr)
1164 {
1165 fprintf (stderr,
1166 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1167 abort ();
1168 }
1169 else
1170 {
1171 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1172 mem_delete (m);
1173 }
1174 }
1175 #endif /* GC_MALLOC_CHECK */
1176
1177 __free_hook = old_free_hook;
1178 free (ptr);
1179
1180 /* If we released our reserve (due to running out of memory),
1181 and we have a fair amount free once again,
1182 try to set aside another reserve in case we run out once more. */
1183 if (! NILP (Vmemory_full)
1184 /* Verify there is enough space that even with the malloc
1185 hysteresis this call won't run out again.
1186 The code here is correct as long as SPARE_MEMORY
1187 is substantially larger than the block size malloc uses. */
1188 && (bytes_used_when_full
1189 > ((bytes_used_when_reconsidered = BYTES_USED)
1190 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1191 refill_memory_reserve ();
1192
1193 __free_hook = emacs_blocked_free;
1194 UNBLOCK_INPUT_ALLOC;
1195 }
1196
1197
1198 /* This function is the malloc hook that Emacs uses. */
1199
1200 static void *
1201 emacs_blocked_malloc (size_t size, const void *ptr)
1202 {
1203 void *value;
1204
1205 BLOCK_INPUT_ALLOC;
1206 __malloc_hook = old_malloc_hook;
1207 #ifdef DOUG_LEA_MALLOC
1208 /* Segfaults on my system. --lorentey */
1209 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1210 #else
1211 __malloc_extra_blocks = malloc_hysteresis;
1212 #endif
1213
1214 value = (void *) malloc (size);
1215
1216 #ifdef GC_MALLOC_CHECK
1217 {
1218 struct mem_node *m = mem_find (value);
1219 if (m != MEM_NIL)
1220 {
1221 fprintf (stderr, "Malloc returned %p which is already in use\n",
1222 value);
1223 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1224 m->start, m->end, (char *) m->end - (char *) m->start,
1225 m->type);
1226 abort ();
1227 }
1228
1229 if (!dont_register_blocks)
1230 {
1231 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1232 allocated_mem_type = MEM_TYPE_NON_LISP;
1233 }
1234 }
1235 #endif /* GC_MALLOC_CHECK */
1236
1237 __malloc_hook = emacs_blocked_malloc;
1238 UNBLOCK_INPUT_ALLOC;
1239
1240 /* fprintf (stderr, "%p malloc\n", value); */
1241 return value;
1242 }
1243
1244
1245 /* This function is the realloc hook that Emacs uses. */
1246
1247 static void *
1248 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1249 {
1250 void *value;
1251
1252 BLOCK_INPUT_ALLOC;
1253 __realloc_hook = old_realloc_hook;
1254
1255 #ifdef GC_MALLOC_CHECK
1256 if (ptr)
1257 {
1258 struct mem_node *m = mem_find (ptr);
1259 if (m == MEM_NIL || m->start != ptr)
1260 {
1261 fprintf (stderr,
1262 "Realloc of %p which wasn't allocated with malloc\n",
1263 ptr);
1264 abort ();
1265 }
1266
1267 mem_delete (m);
1268 }
1269
1270 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1271
1272 /* Prevent malloc from registering blocks. */
1273 dont_register_blocks = 1;
1274 #endif /* GC_MALLOC_CHECK */
1275
1276 value = (void *) realloc (ptr, size);
1277
1278 #ifdef GC_MALLOC_CHECK
1279 dont_register_blocks = 0;
1280
1281 {
1282 struct mem_node *m = mem_find (value);
1283 if (m != MEM_NIL)
1284 {
1285 fprintf (stderr, "Realloc returns memory that is already in use\n");
1286 abort ();
1287 }
1288
1289 /* Can't handle zero size regions in the red-black tree. */
1290 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1291 }
1292
1293 /* fprintf (stderr, "%p <- realloc\n", value); */
1294 #endif /* GC_MALLOC_CHECK */
1295
1296 __realloc_hook = emacs_blocked_realloc;
1297 UNBLOCK_INPUT_ALLOC;
1298
1299 return value;
1300 }
1301
1302
1303 #ifdef HAVE_GTK_AND_PTHREAD
1304 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1305 normal malloc. Some thread implementations need this as they call
1306 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1307 calls malloc because it is the first call, and we have an endless loop. */
1308
1309 void
1310 reset_malloc_hooks ()
1311 {
1312 __free_hook = old_free_hook;
1313 __malloc_hook = old_malloc_hook;
1314 __realloc_hook = old_realloc_hook;
1315 }
1316 #endif /* HAVE_GTK_AND_PTHREAD */
1317
1318
1319 /* Called from main to set up malloc to use our hooks. */
1320
1321 void
1322 uninterrupt_malloc (void)
1323 {
1324 #ifdef HAVE_GTK_AND_PTHREAD
1325 #ifdef DOUG_LEA_MALLOC
1326 pthread_mutexattr_t attr;
1327
1328 /* GLIBC has a faster way to do this, but lets keep it portable.
1329 This is according to the Single UNIX Specification. */
1330 pthread_mutexattr_init (&attr);
1331 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1332 pthread_mutex_init (&alloc_mutex, &attr);
1333 #else /* !DOUG_LEA_MALLOC */
1334 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1335 and the bundled gmalloc.c doesn't require it. */
1336 pthread_mutex_init (&alloc_mutex, NULL);
1337 #endif /* !DOUG_LEA_MALLOC */
1338 #endif /* HAVE_GTK_AND_PTHREAD */
1339
1340 if (__free_hook != emacs_blocked_free)
1341 old_free_hook = __free_hook;
1342 __free_hook = emacs_blocked_free;
1343
1344 if (__malloc_hook != emacs_blocked_malloc)
1345 old_malloc_hook = __malloc_hook;
1346 __malloc_hook = emacs_blocked_malloc;
1347
1348 if (__realloc_hook != emacs_blocked_realloc)
1349 old_realloc_hook = __realloc_hook;
1350 __realloc_hook = emacs_blocked_realloc;
1351 }
1352
1353 #endif /* not SYNC_INPUT */
1354 #endif /* not SYSTEM_MALLOC */
1355
1356
1357 \f
1358 /***********************************************************************
1359 Interval Allocation
1360 ***********************************************************************/
1361
1362 /* Number of intervals allocated in an interval_block structure.
1363 The 1020 is 1024 minus malloc overhead. */
1364
1365 #define INTERVAL_BLOCK_SIZE \
1366 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1367
1368 /* Intervals are allocated in chunks in form of an interval_block
1369 structure. */
1370
1371 struct interval_block
1372 {
1373 /* Place `intervals' first, to preserve alignment. */
1374 struct interval intervals[INTERVAL_BLOCK_SIZE];
1375 struct interval_block *next;
1376 };
1377
1378 /* Current interval block. Its `next' pointer points to older
1379 blocks. */
1380
1381 static struct interval_block *interval_block;
1382
1383 /* Index in interval_block above of the next unused interval
1384 structure. */
1385
1386 static int interval_block_index;
1387
1388 /* Number of free and live intervals. */
1389
1390 static int total_free_intervals, total_intervals;
1391
1392 /* List of free intervals. */
1393
1394 INTERVAL interval_free_list;
1395
1396 /* Total number of interval blocks now in use. */
1397
1398 static int n_interval_blocks;
1399
1400
1401 /* Initialize interval allocation. */
1402
1403 static void
1404 init_intervals (void)
1405 {
1406 interval_block = NULL;
1407 interval_block_index = INTERVAL_BLOCK_SIZE;
1408 interval_free_list = 0;
1409 n_interval_blocks = 0;
1410 }
1411
1412
1413 /* Return a new interval. */
1414
1415 INTERVAL
1416 make_interval (void)
1417 {
1418 INTERVAL val;
1419
1420 /* eassert (!handling_signal); */
1421
1422 MALLOC_BLOCK_INPUT;
1423
1424 if (interval_free_list)
1425 {
1426 val = interval_free_list;
1427 interval_free_list = INTERVAL_PARENT (interval_free_list);
1428 }
1429 else
1430 {
1431 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1432 {
1433 register struct interval_block *newi;
1434
1435 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1436 MEM_TYPE_NON_LISP);
1437
1438 newi->next = interval_block;
1439 interval_block = newi;
1440 interval_block_index = 0;
1441 n_interval_blocks++;
1442 }
1443 val = &interval_block->intervals[interval_block_index++];
1444 }
1445
1446 MALLOC_UNBLOCK_INPUT;
1447
1448 consing_since_gc += sizeof (struct interval);
1449 intervals_consed++;
1450 RESET_INTERVAL (val);
1451 val->gcmarkbit = 0;
1452 return val;
1453 }
1454
1455
1456 /* Mark Lisp objects in interval I. */
1457
1458 static void
1459 mark_interval (register INTERVAL i, Lisp_Object dummy)
1460 {
1461 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1462 i->gcmarkbit = 1;
1463 mark_object (i->plist);
1464 }
1465
1466
1467 /* Mark the interval tree rooted in TREE. Don't call this directly;
1468 use the macro MARK_INTERVAL_TREE instead. */
1469
1470 static void
1471 mark_interval_tree (register INTERVAL tree)
1472 {
1473 /* No need to test if this tree has been marked already; this
1474 function is always called through the MARK_INTERVAL_TREE macro,
1475 which takes care of that. */
1476
1477 traverse_intervals_noorder (tree, mark_interval, Qnil);
1478 }
1479
1480
1481 /* Mark the interval tree rooted in I. */
1482
1483 #define MARK_INTERVAL_TREE(i) \
1484 do { \
1485 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1486 mark_interval_tree (i); \
1487 } while (0)
1488
1489
1490 #define UNMARK_BALANCE_INTERVALS(i) \
1491 do { \
1492 if (! NULL_INTERVAL_P (i)) \
1493 (i) = balance_intervals (i); \
1494 } while (0)
1495
1496 \f
1497 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1498 can't create number objects in macros. */
1499 #ifndef make_number
1500 Lisp_Object
1501 make_number (n)
1502 EMACS_INT n;
1503 {
1504 Lisp_Object obj;
1505 obj.s.val = n;
1506 obj.s.type = Lisp_Int;
1507 return obj;
1508 }
1509 #endif
1510 \f
1511 /***********************************************************************
1512 String Allocation
1513 ***********************************************************************/
1514
1515 /* Lisp_Strings are allocated in string_block structures. When a new
1516 string_block is allocated, all the Lisp_Strings it contains are
1517 added to a free-list string_free_list. When a new Lisp_String is
1518 needed, it is taken from that list. During the sweep phase of GC,
1519 string_blocks that are entirely free are freed, except two which
1520 we keep.
1521
1522 String data is allocated from sblock structures. Strings larger
1523 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1524 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1525
1526 Sblocks consist internally of sdata structures, one for each
1527 Lisp_String. The sdata structure points to the Lisp_String it
1528 belongs to. The Lisp_String points back to the `u.data' member of
1529 its sdata structure.
1530
1531 When a Lisp_String is freed during GC, it is put back on
1532 string_free_list, and its `data' member and its sdata's `string'
1533 pointer is set to null. The size of the string is recorded in the
1534 `u.nbytes' member of the sdata. So, sdata structures that are no
1535 longer used, can be easily recognized, and it's easy to compact the
1536 sblocks of small strings which we do in compact_small_strings. */
1537
1538 /* Size in bytes of an sblock structure used for small strings. This
1539 is 8192 minus malloc overhead. */
1540
1541 #define SBLOCK_SIZE 8188
1542
1543 /* Strings larger than this are considered large strings. String data
1544 for large strings is allocated from individual sblocks. */
1545
1546 #define LARGE_STRING_BYTES 1024
1547
1548 /* Structure describing string memory sub-allocated from an sblock.
1549 This is where the contents of Lisp strings are stored. */
1550
1551 struct sdata
1552 {
1553 /* Back-pointer to the string this sdata belongs to. If null, this
1554 structure is free, and the NBYTES member of the union below
1555 contains the string's byte size (the same value that STRING_BYTES
1556 would return if STRING were non-null). If non-null, STRING_BYTES
1557 (STRING) is the size of the data, and DATA contains the string's
1558 contents. */
1559 struct Lisp_String *string;
1560
1561 #ifdef GC_CHECK_STRING_BYTES
1562
1563 EMACS_INT nbytes;
1564 unsigned char data[1];
1565
1566 #define SDATA_NBYTES(S) (S)->nbytes
1567 #define SDATA_DATA(S) (S)->data
1568
1569 #else /* not GC_CHECK_STRING_BYTES */
1570
1571 union
1572 {
1573 /* When STRING in non-null. */
1574 unsigned char data[1];
1575
1576 /* When STRING is null. */
1577 EMACS_INT nbytes;
1578 } u;
1579
1580
1581 #define SDATA_NBYTES(S) (S)->u.nbytes
1582 #define SDATA_DATA(S) (S)->u.data
1583
1584 #endif /* not GC_CHECK_STRING_BYTES */
1585 };
1586
1587
1588 /* Structure describing a block of memory which is sub-allocated to
1589 obtain string data memory for strings. Blocks for small strings
1590 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1591 as large as needed. */
1592
1593 struct sblock
1594 {
1595 /* Next in list. */
1596 struct sblock *next;
1597
1598 /* Pointer to the next free sdata block. This points past the end
1599 of the sblock if there isn't any space left in this block. */
1600 struct sdata *next_free;
1601
1602 /* Start of data. */
1603 struct sdata first_data;
1604 };
1605
1606 /* Number of Lisp strings in a string_block structure. The 1020 is
1607 1024 minus malloc overhead. */
1608
1609 #define STRING_BLOCK_SIZE \
1610 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1611
1612 /* Structure describing a block from which Lisp_String structures
1613 are allocated. */
1614
1615 struct string_block
1616 {
1617 /* Place `strings' first, to preserve alignment. */
1618 struct Lisp_String strings[STRING_BLOCK_SIZE];
1619 struct string_block *next;
1620 };
1621
1622 /* Head and tail of the list of sblock structures holding Lisp string
1623 data. We always allocate from current_sblock. The NEXT pointers
1624 in the sblock structures go from oldest_sblock to current_sblock. */
1625
1626 static struct sblock *oldest_sblock, *current_sblock;
1627
1628 /* List of sblocks for large strings. */
1629
1630 static struct sblock *large_sblocks;
1631
1632 /* List of string_block structures, and how many there are. */
1633
1634 static struct string_block *string_blocks;
1635 static int n_string_blocks;
1636
1637 /* Free-list of Lisp_Strings. */
1638
1639 static struct Lisp_String *string_free_list;
1640
1641 /* Number of live and free Lisp_Strings. */
1642
1643 static int total_strings, total_free_strings;
1644
1645 /* Number of bytes used by live strings. */
1646
1647 static EMACS_INT total_string_size;
1648
1649 /* Given a pointer to a Lisp_String S which is on the free-list
1650 string_free_list, return a pointer to its successor in the
1651 free-list. */
1652
1653 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1654
1655 /* Return a pointer to the sdata structure belonging to Lisp string S.
1656 S must be live, i.e. S->data must not be null. S->data is actually
1657 a pointer to the `u.data' member of its sdata structure; the
1658 structure starts at a constant offset in front of that. */
1659
1660 #ifdef GC_CHECK_STRING_BYTES
1661
1662 #define SDATA_OF_STRING(S) \
1663 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1664 - sizeof (EMACS_INT)))
1665
1666 #else /* not GC_CHECK_STRING_BYTES */
1667
1668 #define SDATA_OF_STRING(S) \
1669 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1670
1671 #endif /* not GC_CHECK_STRING_BYTES */
1672
1673
1674 #ifdef GC_CHECK_STRING_OVERRUN
1675
1676 /* We check for overrun in string data blocks by appending a small
1677 "cookie" after each allocated string data block, and check for the
1678 presence of this cookie during GC. */
1679
1680 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1681 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1682 { 0xde, 0xad, 0xbe, 0xef };
1683
1684 #else
1685 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1686 #endif
1687
1688 /* Value is the size of an sdata structure large enough to hold NBYTES
1689 bytes of string data. The value returned includes a terminating
1690 NUL byte, the size of the sdata structure, and padding. */
1691
1692 #ifdef GC_CHECK_STRING_BYTES
1693
1694 #define SDATA_SIZE(NBYTES) \
1695 ((sizeof (struct Lisp_String *) \
1696 + (NBYTES) + 1 \
1697 + sizeof (EMACS_INT) \
1698 + sizeof (EMACS_INT) - 1) \
1699 & ~(sizeof (EMACS_INT) - 1))
1700
1701 #else /* not GC_CHECK_STRING_BYTES */
1702
1703 #define SDATA_SIZE(NBYTES) \
1704 ((sizeof (struct Lisp_String *) \
1705 + (NBYTES) + 1 \
1706 + sizeof (EMACS_INT) - 1) \
1707 & ~(sizeof (EMACS_INT) - 1))
1708
1709 #endif /* not GC_CHECK_STRING_BYTES */
1710
1711 /* Extra bytes to allocate for each string. */
1712
1713 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1714
1715 /* Initialize string allocation. Called from init_alloc_once. */
1716
1717 static void
1718 init_strings (void)
1719 {
1720 total_strings = total_free_strings = total_string_size = 0;
1721 oldest_sblock = current_sblock = large_sblocks = NULL;
1722 string_blocks = NULL;
1723 n_string_blocks = 0;
1724 string_free_list = NULL;
1725 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1726 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1727 }
1728
1729
1730 #ifdef GC_CHECK_STRING_BYTES
1731
1732 static int check_string_bytes_count;
1733
1734 static void check_string_bytes (int);
1735 static void check_sblock (struct sblock *);
1736
1737 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1738
1739
1740 /* Like GC_STRING_BYTES, but with debugging check. */
1741
1742 EMACS_INT
1743 string_bytes (struct Lisp_String *s)
1744 {
1745 EMACS_INT nbytes =
1746 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1747
1748 if (!PURE_POINTER_P (s)
1749 && s->data
1750 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1751 abort ();
1752 return nbytes;
1753 }
1754
1755 /* Check validity of Lisp strings' string_bytes member in B. */
1756
1757 static void
1758 check_sblock (b)
1759 struct sblock *b;
1760 {
1761 struct sdata *from, *end, *from_end;
1762
1763 end = b->next_free;
1764
1765 for (from = &b->first_data; from < end; from = from_end)
1766 {
1767 /* Compute the next FROM here because copying below may
1768 overwrite data we need to compute it. */
1769 EMACS_INT nbytes;
1770
1771 /* Check that the string size recorded in the string is the
1772 same as the one recorded in the sdata structure. */
1773 if (from->string)
1774 CHECK_STRING_BYTES (from->string);
1775
1776 if (from->string)
1777 nbytes = GC_STRING_BYTES (from->string);
1778 else
1779 nbytes = SDATA_NBYTES (from);
1780
1781 nbytes = SDATA_SIZE (nbytes);
1782 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1783 }
1784 }
1785
1786
1787 /* Check validity of Lisp strings' string_bytes member. ALL_P
1788 non-zero means check all strings, otherwise check only most
1789 recently allocated strings. Used for hunting a bug. */
1790
1791 static void
1792 check_string_bytes (all_p)
1793 int all_p;
1794 {
1795 if (all_p)
1796 {
1797 struct sblock *b;
1798
1799 for (b = large_sblocks; b; b = b->next)
1800 {
1801 struct Lisp_String *s = b->first_data.string;
1802 if (s)
1803 CHECK_STRING_BYTES (s);
1804 }
1805
1806 for (b = oldest_sblock; b; b = b->next)
1807 check_sblock (b);
1808 }
1809 else
1810 check_sblock (current_sblock);
1811 }
1812
1813 #endif /* GC_CHECK_STRING_BYTES */
1814
1815 #ifdef GC_CHECK_STRING_FREE_LIST
1816
1817 /* Walk through the string free list looking for bogus next pointers.
1818 This may catch buffer overrun from a previous string. */
1819
1820 static void
1821 check_string_free_list ()
1822 {
1823 struct Lisp_String *s;
1824
1825 /* Pop a Lisp_String off the free-list. */
1826 s = string_free_list;
1827 while (s != NULL)
1828 {
1829 if ((unsigned long)s < 1024)
1830 abort();
1831 s = NEXT_FREE_LISP_STRING (s);
1832 }
1833 }
1834 #else
1835 #define check_string_free_list()
1836 #endif
1837
1838 /* Return a new Lisp_String. */
1839
1840 static struct Lisp_String *
1841 allocate_string (void)
1842 {
1843 struct Lisp_String *s;
1844
1845 /* eassert (!handling_signal); */
1846
1847 MALLOC_BLOCK_INPUT;
1848
1849 /* If the free-list is empty, allocate a new string_block, and
1850 add all the Lisp_Strings in it to the free-list. */
1851 if (string_free_list == NULL)
1852 {
1853 struct string_block *b;
1854 int i;
1855
1856 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1857 memset (b, 0, sizeof *b);
1858 b->next = string_blocks;
1859 string_blocks = b;
1860 ++n_string_blocks;
1861
1862 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1863 {
1864 s = b->strings + i;
1865 NEXT_FREE_LISP_STRING (s) = string_free_list;
1866 string_free_list = s;
1867 }
1868
1869 total_free_strings += STRING_BLOCK_SIZE;
1870 }
1871
1872 check_string_free_list ();
1873
1874 /* Pop a Lisp_String off the free-list. */
1875 s = string_free_list;
1876 string_free_list = NEXT_FREE_LISP_STRING (s);
1877
1878 MALLOC_UNBLOCK_INPUT;
1879
1880 /* Probably not strictly necessary, but play it safe. */
1881 memset (s, 0, sizeof *s);
1882
1883 --total_free_strings;
1884 ++total_strings;
1885 ++strings_consed;
1886 consing_since_gc += sizeof *s;
1887
1888 #ifdef GC_CHECK_STRING_BYTES
1889 if (!noninteractive)
1890 {
1891 if (++check_string_bytes_count == 200)
1892 {
1893 check_string_bytes_count = 0;
1894 check_string_bytes (1);
1895 }
1896 else
1897 check_string_bytes (0);
1898 }
1899 #endif /* GC_CHECK_STRING_BYTES */
1900
1901 return s;
1902 }
1903
1904
1905 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1906 plus a NUL byte at the end. Allocate an sdata structure for S, and
1907 set S->data to its `u.data' member. Store a NUL byte at the end of
1908 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1909 S->data if it was initially non-null. */
1910
1911 void
1912 allocate_string_data (struct Lisp_String *s,
1913 EMACS_INT nchars, EMACS_INT nbytes)
1914 {
1915 struct sdata *data, *old_data;
1916 struct sblock *b;
1917 EMACS_INT needed, old_nbytes;
1918
1919 /* Determine the number of bytes needed to store NBYTES bytes
1920 of string data. */
1921 needed = SDATA_SIZE (nbytes);
1922 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1923 old_nbytes = GC_STRING_BYTES (s);
1924
1925 MALLOC_BLOCK_INPUT;
1926
1927 if (nbytes > LARGE_STRING_BYTES)
1928 {
1929 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1930
1931 #ifdef DOUG_LEA_MALLOC
1932 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1933 because mapped region contents are not preserved in
1934 a dumped Emacs.
1935
1936 In case you think of allowing it in a dumped Emacs at the
1937 cost of not being able to re-dump, there's another reason:
1938 mmap'ed data typically have an address towards the top of the
1939 address space, which won't fit into an EMACS_INT (at least on
1940 32-bit systems with the current tagging scheme). --fx */
1941 mallopt (M_MMAP_MAX, 0);
1942 #endif
1943
1944 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1945
1946 #ifdef DOUG_LEA_MALLOC
1947 /* Back to a reasonable maximum of mmap'ed areas. */
1948 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1949 #endif
1950
1951 b->next_free = &b->first_data;
1952 b->first_data.string = NULL;
1953 b->next = large_sblocks;
1954 large_sblocks = b;
1955 }
1956 else if (current_sblock == NULL
1957 || (((char *) current_sblock + SBLOCK_SIZE
1958 - (char *) current_sblock->next_free)
1959 < (needed + GC_STRING_EXTRA)))
1960 {
1961 /* Not enough room in the current sblock. */
1962 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1963 b->next_free = &b->first_data;
1964 b->first_data.string = NULL;
1965 b->next = NULL;
1966
1967 if (current_sblock)
1968 current_sblock->next = b;
1969 else
1970 oldest_sblock = b;
1971 current_sblock = b;
1972 }
1973 else
1974 b = current_sblock;
1975
1976 data = b->next_free;
1977 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1978
1979 MALLOC_UNBLOCK_INPUT;
1980
1981 data->string = s;
1982 s->data = SDATA_DATA (data);
1983 #ifdef GC_CHECK_STRING_BYTES
1984 SDATA_NBYTES (data) = nbytes;
1985 #endif
1986 s->size = nchars;
1987 s->size_byte = nbytes;
1988 s->data[nbytes] = '\0';
1989 #ifdef GC_CHECK_STRING_OVERRUN
1990 memcpy (data + needed, string_overrun_cookie, GC_STRING_OVERRUN_COOKIE_SIZE);
1991 #endif
1992
1993 /* If S had already data assigned, mark that as free by setting its
1994 string back-pointer to null, and recording the size of the data
1995 in it. */
1996 if (old_data)
1997 {
1998 SDATA_NBYTES (old_data) = old_nbytes;
1999 old_data->string = NULL;
2000 }
2001
2002 consing_since_gc += needed;
2003 }
2004
2005
2006 /* Sweep and compact strings. */
2007
2008 static void
2009 sweep_strings (void)
2010 {
2011 struct string_block *b, *next;
2012 struct string_block *live_blocks = NULL;
2013
2014 string_free_list = NULL;
2015 total_strings = total_free_strings = 0;
2016 total_string_size = 0;
2017
2018 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2019 for (b = string_blocks; b; b = next)
2020 {
2021 int i, nfree = 0;
2022 struct Lisp_String *free_list_before = string_free_list;
2023
2024 next = b->next;
2025
2026 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2027 {
2028 struct Lisp_String *s = b->strings + i;
2029
2030 if (s->data)
2031 {
2032 /* String was not on free-list before. */
2033 if (STRING_MARKED_P (s))
2034 {
2035 /* String is live; unmark it and its intervals. */
2036 UNMARK_STRING (s);
2037
2038 if (!NULL_INTERVAL_P (s->intervals))
2039 UNMARK_BALANCE_INTERVALS (s->intervals);
2040
2041 ++total_strings;
2042 total_string_size += STRING_BYTES (s);
2043 }
2044 else
2045 {
2046 /* String is dead. Put it on the free-list. */
2047 struct sdata *data = SDATA_OF_STRING (s);
2048
2049 /* Save the size of S in its sdata so that we know
2050 how large that is. Reset the sdata's string
2051 back-pointer so that we know it's free. */
2052 #ifdef GC_CHECK_STRING_BYTES
2053 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2054 abort ();
2055 #else
2056 data->u.nbytes = GC_STRING_BYTES (s);
2057 #endif
2058 data->string = NULL;
2059
2060 /* Reset the strings's `data' member so that we
2061 know it's free. */
2062 s->data = NULL;
2063
2064 /* Put the string on the free-list. */
2065 NEXT_FREE_LISP_STRING (s) = string_free_list;
2066 string_free_list = s;
2067 ++nfree;
2068 }
2069 }
2070 else
2071 {
2072 /* S was on the free-list before. Put it there again. */
2073 NEXT_FREE_LISP_STRING (s) = string_free_list;
2074 string_free_list = s;
2075 ++nfree;
2076 }
2077 }
2078
2079 /* Free blocks that contain free Lisp_Strings only, except
2080 the first two of them. */
2081 if (nfree == STRING_BLOCK_SIZE
2082 && total_free_strings > STRING_BLOCK_SIZE)
2083 {
2084 lisp_free (b);
2085 --n_string_blocks;
2086 string_free_list = free_list_before;
2087 }
2088 else
2089 {
2090 total_free_strings += nfree;
2091 b->next = live_blocks;
2092 live_blocks = b;
2093 }
2094 }
2095
2096 check_string_free_list ();
2097
2098 string_blocks = live_blocks;
2099 free_large_strings ();
2100 compact_small_strings ();
2101
2102 check_string_free_list ();
2103 }
2104
2105
2106 /* Free dead large strings. */
2107
2108 static void
2109 free_large_strings (void)
2110 {
2111 struct sblock *b, *next;
2112 struct sblock *live_blocks = NULL;
2113
2114 for (b = large_sblocks; b; b = next)
2115 {
2116 next = b->next;
2117
2118 if (b->first_data.string == NULL)
2119 lisp_free (b);
2120 else
2121 {
2122 b->next = live_blocks;
2123 live_blocks = b;
2124 }
2125 }
2126
2127 large_sblocks = live_blocks;
2128 }
2129
2130
2131 /* Compact data of small strings. Free sblocks that don't contain
2132 data of live strings after compaction. */
2133
2134 static void
2135 compact_small_strings (void)
2136 {
2137 struct sblock *b, *tb, *next;
2138 struct sdata *from, *to, *end, *tb_end;
2139 struct sdata *to_end, *from_end;
2140
2141 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2142 to, and TB_END is the end of TB. */
2143 tb = oldest_sblock;
2144 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2145 to = &tb->first_data;
2146
2147 /* Step through the blocks from the oldest to the youngest. We
2148 expect that old blocks will stabilize over time, so that less
2149 copying will happen this way. */
2150 for (b = oldest_sblock; b; b = b->next)
2151 {
2152 end = b->next_free;
2153 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2154
2155 for (from = &b->first_data; from < end; from = from_end)
2156 {
2157 /* Compute the next FROM here because copying below may
2158 overwrite data we need to compute it. */
2159 EMACS_INT nbytes;
2160
2161 #ifdef GC_CHECK_STRING_BYTES
2162 /* Check that the string size recorded in the string is the
2163 same as the one recorded in the sdata structure. */
2164 if (from->string
2165 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2166 abort ();
2167 #endif /* GC_CHECK_STRING_BYTES */
2168
2169 if (from->string)
2170 nbytes = GC_STRING_BYTES (from->string);
2171 else
2172 nbytes = SDATA_NBYTES (from);
2173
2174 if (nbytes > LARGE_STRING_BYTES)
2175 abort ();
2176
2177 nbytes = SDATA_SIZE (nbytes);
2178 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2179
2180 #ifdef GC_CHECK_STRING_OVERRUN
2181 if (memcmp (string_overrun_cookie,
2182 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2183 GC_STRING_OVERRUN_COOKIE_SIZE))
2184 abort ();
2185 #endif
2186
2187 /* FROM->string non-null means it's alive. Copy its data. */
2188 if (from->string)
2189 {
2190 /* If TB is full, proceed with the next sblock. */
2191 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2192 if (to_end > tb_end)
2193 {
2194 tb->next_free = to;
2195 tb = tb->next;
2196 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2197 to = &tb->first_data;
2198 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2199 }
2200
2201 /* Copy, and update the string's `data' pointer. */
2202 if (from != to)
2203 {
2204 xassert (tb != b || to <= from);
2205 memmove (to, from, nbytes + GC_STRING_EXTRA);
2206 to->string->data = SDATA_DATA (to);
2207 }
2208
2209 /* Advance past the sdata we copied to. */
2210 to = to_end;
2211 }
2212 }
2213 }
2214
2215 /* The rest of the sblocks following TB don't contain live data, so
2216 we can free them. */
2217 for (b = tb->next; b; b = next)
2218 {
2219 next = b->next;
2220 lisp_free (b);
2221 }
2222
2223 tb->next_free = to;
2224 tb->next = NULL;
2225 current_sblock = tb;
2226 }
2227
2228
2229 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2230 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2231 LENGTH must be an integer.
2232 INIT must be an integer that represents a character. */)
2233 (Lisp_Object length, Lisp_Object init)
2234 {
2235 register Lisp_Object val;
2236 register unsigned char *p, *end;
2237 int c;
2238 EMACS_INT nbytes;
2239
2240 CHECK_NATNUM (length);
2241 CHECK_NUMBER (init);
2242
2243 c = XINT (init);
2244 if (ASCII_CHAR_P (c))
2245 {
2246 nbytes = XINT (length);
2247 val = make_uninit_string (nbytes);
2248 p = SDATA (val);
2249 end = p + SCHARS (val);
2250 while (p != end)
2251 *p++ = c;
2252 }
2253 else
2254 {
2255 unsigned char str[MAX_MULTIBYTE_LENGTH];
2256 int len = CHAR_STRING (c, str);
2257 EMACS_INT string_len = XINT (length);
2258
2259 if (string_len > MOST_POSITIVE_FIXNUM / len)
2260 error ("Maximum string size exceeded");
2261 nbytes = len * string_len;
2262 val = make_uninit_multibyte_string (string_len, nbytes);
2263 p = SDATA (val);
2264 end = p + nbytes;
2265 while (p != end)
2266 {
2267 memcpy (p, str, len);
2268 p += len;
2269 }
2270 }
2271
2272 *p = 0;
2273 return val;
2274 }
2275
2276
2277 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2278 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2279 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2280 (Lisp_Object length, Lisp_Object init)
2281 {
2282 register Lisp_Object val;
2283 struct Lisp_Bool_Vector *p;
2284 int real_init, i;
2285 EMACS_INT length_in_chars, length_in_elts;
2286 int bits_per_value;
2287
2288 CHECK_NATNUM (length);
2289
2290 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2291
2292 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2293 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2294 / BOOL_VECTOR_BITS_PER_CHAR);
2295
2296 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2297 slot `size' of the struct Lisp_Bool_Vector. */
2298 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2299
2300 /* Get rid of any bits that would cause confusion. */
2301 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2302 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2303 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2304
2305 p = XBOOL_VECTOR (val);
2306 p->size = XFASTINT (length);
2307
2308 real_init = (NILP (init) ? 0 : -1);
2309 for (i = 0; i < length_in_chars ; i++)
2310 p->data[i] = real_init;
2311
2312 /* Clear the extraneous bits in the last byte. */
2313 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2314 p->data[length_in_chars - 1]
2315 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2316
2317 return val;
2318 }
2319
2320
2321 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2322 of characters from the contents. This string may be unibyte or
2323 multibyte, depending on the contents. */
2324
2325 Lisp_Object
2326 make_string (const char *contents, EMACS_INT nbytes)
2327 {
2328 register Lisp_Object val;
2329 EMACS_INT nchars, multibyte_nbytes;
2330
2331 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2332 if (nbytes == nchars || nbytes != multibyte_nbytes)
2333 /* CONTENTS contains no multibyte sequences or contains an invalid
2334 multibyte sequence. We must make unibyte string. */
2335 val = make_unibyte_string (contents, nbytes);
2336 else
2337 val = make_multibyte_string (contents, nchars, nbytes);
2338 return val;
2339 }
2340
2341
2342 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2343
2344 Lisp_Object
2345 make_unibyte_string (const char *contents, EMACS_INT length)
2346 {
2347 register Lisp_Object val;
2348 val = make_uninit_string (length);
2349 memcpy (SDATA (val), contents, length);
2350 STRING_SET_UNIBYTE (val);
2351 return val;
2352 }
2353
2354
2355 /* Make a multibyte string from NCHARS characters occupying NBYTES
2356 bytes at CONTENTS. */
2357
2358 Lisp_Object
2359 make_multibyte_string (const char *contents,
2360 EMACS_INT nchars, EMACS_INT nbytes)
2361 {
2362 register Lisp_Object val;
2363 val = make_uninit_multibyte_string (nchars, nbytes);
2364 memcpy (SDATA (val), contents, nbytes);
2365 return val;
2366 }
2367
2368
2369 /* Make a string from NCHARS characters occupying NBYTES bytes at
2370 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2371
2372 Lisp_Object
2373 make_string_from_bytes (const char *contents,
2374 EMACS_INT nchars, EMACS_INT nbytes)
2375 {
2376 register Lisp_Object val;
2377 val = make_uninit_multibyte_string (nchars, nbytes);
2378 memcpy (SDATA (val), contents, nbytes);
2379 if (SBYTES (val) == SCHARS (val))
2380 STRING_SET_UNIBYTE (val);
2381 return val;
2382 }
2383
2384
2385 /* Make a string from NCHARS characters occupying NBYTES bytes at
2386 CONTENTS. The argument MULTIBYTE controls whether to label the
2387 string as multibyte. If NCHARS is negative, it counts the number of
2388 characters by itself. */
2389
2390 Lisp_Object
2391 make_specified_string (const char *contents,
2392 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
2393 {
2394 register Lisp_Object val;
2395
2396 if (nchars < 0)
2397 {
2398 if (multibyte)
2399 nchars = multibyte_chars_in_text (contents, nbytes);
2400 else
2401 nchars = nbytes;
2402 }
2403 val = make_uninit_multibyte_string (nchars, nbytes);
2404 memcpy (SDATA (val), contents, nbytes);
2405 if (!multibyte)
2406 STRING_SET_UNIBYTE (val);
2407 return val;
2408 }
2409
2410
2411 /* Make a string from the data at STR, treating it as multibyte if the
2412 data warrants. */
2413
2414 Lisp_Object
2415 build_string (const char *str)
2416 {
2417 return make_string (str, strlen (str));
2418 }
2419
2420
2421 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2422 occupying LENGTH bytes. */
2423
2424 Lisp_Object
2425 make_uninit_string (EMACS_INT length)
2426 {
2427 Lisp_Object val;
2428
2429 if (!length)
2430 return empty_unibyte_string;
2431 val = make_uninit_multibyte_string (length, length);
2432 STRING_SET_UNIBYTE (val);
2433 return val;
2434 }
2435
2436
2437 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2438 which occupy NBYTES bytes. */
2439
2440 Lisp_Object
2441 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2442 {
2443 Lisp_Object string;
2444 struct Lisp_String *s;
2445
2446 if (nchars < 0)
2447 abort ();
2448 if (!nbytes)
2449 return empty_multibyte_string;
2450
2451 s = allocate_string ();
2452 allocate_string_data (s, nchars, nbytes);
2453 XSETSTRING (string, s);
2454 string_chars_consed += nbytes;
2455 return string;
2456 }
2457
2458
2459 \f
2460 /***********************************************************************
2461 Float Allocation
2462 ***********************************************************************/
2463
2464 /* We store float cells inside of float_blocks, allocating a new
2465 float_block with malloc whenever necessary. Float cells reclaimed
2466 by GC are put on a free list to be reallocated before allocating
2467 any new float cells from the latest float_block. */
2468
2469 #define FLOAT_BLOCK_SIZE \
2470 (((BLOCK_BYTES - sizeof (struct float_block *) \
2471 /* The compiler might add padding at the end. */ \
2472 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2473 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2474
2475 #define GETMARKBIT(block,n) \
2476 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2477 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2478 & 1)
2479
2480 #define SETMARKBIT(block,n) \
2481 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2482 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2483
2484 #define UNSETMARKBIT(block,n) \
2485 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2486 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2487
2488 #define FLOAT_BLOCK(fptr) \
2489 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2490
2491 #define FLOAT_INDEX(fptr) \
2492 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2493
2494 struct float_block
2495 {
2496 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2497 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2498 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2499 struct float_block *next;
2500 };
2501
2502 #define FLOAT_MARKED_P(fptr) \
2503 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2504
2505 #define FLOAT_MARK(fptr) \
2506 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2507
2508 #define FLOAT_UNMARK(fptr) \
2509 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2510
2511 /* Current float_block. */
2512
2513 struct float_block *float_block;
2514
2515 /* Index of first unused Lisp_Float in the current float_block. */
2516
2517 int float_block_index;
2518
2519 /* Total number of float blocks now in use. */
2520
2521 int n_float_blocks;
2522
2523 /* Free-list of Lisp_Floats. */
2524
2525 struct Lisp_Float *float_free_list;
2526
2527
2528 /* Initialize float allocation. */
2529
2530 static void
2531 init_float (void)
2532 {
2533 float_block = NULL;
2534 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2535 float_free_list = 0;
2536 n_float_blocks = 0;
2537 }
2538
2539
2540 /* Return a new float object with value FLOAT_VALUE. */
2541
2542 Lisp_Object
2543 make_float (double float_value)
2544 {
2545 register Lisp_Object val;
2546
2547 /* eassert (!handling_signal); */
2548
2549 MALLOC_BLOCK_INPUT;
2550
2551 if (float_free_list)
2552 {
2553 /* We use the data field for chaining the free list
2554 so that we won't use the same field that has the mark bit. */
2555 XSETFLOAT (val, float_free_list);
2556 float_free_list = float_free_list->u.chain;
2557 }
2558 else
2559 {
2560 if (float_block_index == FLOAT_BLOCK_SIZE)
2561 {
2562 register struct float_block *new;
2563
2564 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2565 MEM_TYPE_FLOAT);
2566 new->next = float_block;
2567 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2568 float_block = new;
2569 float_block_index = 0;
2570 n_float_blocks++;
2571 }
2572 XSETFLOAT (val, &float_block->floats[float_block_index]);
2573 float_block_index++;
2574 }
2575
2576 MALLOC_UNBLOCK_INPUT;
2577
2578 XFLOAT_INIT (val, float_value);
2579 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2580 consing_since_gc += sizeof (struct Lisp_Float);
2581 floats_consed++;
2582 return val;
2583 }
2584
2585
2586 \f
2587 /***********************************************************************
2588 Cons Allocation
2589 ***********************************************************************/
2590
2591 /* We store cons cells inside of cons_blocks, allocating a new
2592 cons_block with malloc whenever necessary. Cons cells reclaimed by
2593 GC are put on a free list to be reallocated before allocating
2594 any new cons cells from the latest cons_block. */
2595
2596 #define CONS_BLOCK_SIZE \
2597 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2598 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2599
2600 #define CONS_BLOCK(fptr) \
2601 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2602
2603 #define CONS_INDEX(fptr) \
2604 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2605
2606 struct cons_block
2607 {
2608 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2609 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2610 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2611 struct cons_block *next;
2612 };
2613
2614 #define CONS_MARKED_P(fptr) \
2615 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2616
2617 #define CONS_MARK(fptr) \
2618 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2619
2620 #define CONS_UNMARK(fptr) \
2621 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2622
2623 /* Current cons_block. */
2624
2625 struct cons_block *cons_block;
2626
2627 /* Index of first unused Lisp_Cons in the current block. */
2628
2629 int cons_block_index;
2630
2631 /* Free-list of Lisp_Cons structures. */
2632
2633 struct Lisp_Cons *cons_free_list;
2634
2635 /* Total number of cons blocks now in use. */
2636
2637 static int n_cons_blocks;
2638
2639
2640 /* Initialize cons allocation. */
2641
2642 static void
2643 init_cons (void)
2644 {
2645 cons_block = NULL;
2646 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2647 cons_free_list = 0;
2648 n_cons_blocks = 0;
2649 }
2650
2651
2652 /* Explicitly free a cons cell by putting it on the free-list. */
2653
2654 void
2655 free_cons (struct Lisp_Cons *ptr)
2656 {
2657 ptr->u.chain = cons_free_list;
2658 #if GC_MARK_STACK
2659 ptr->car = Vdead;
2660 #endif
2661 cons_free_list = ptr;
2662 }
2663
2664 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2665 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2666 (Lisp_Object car, Lisp_Object cdr)
2667 {
2668 register Lisp_Object val;
2669
2670 /* eassert (!handling_signal); */
2671
2672 MALLOC_BLOCK_INPUT;
2673
2674 if (cons_free_list)
2675 {
2676 /* We use the cdr for chaining the free list
2677 so that we won't use the same field that has the mark bit. */
2678 XSETCONS (val, cons_free_list);
2679 cons_free_list = cons_free_list->u.chain;
2680 }
2681 else
2682 {
2683 if (cons_block_index == CONS_BLOCK_SIZE)
2684 {
2685 register struct cons_block *new;
2686 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2687 MEM_TYPE_CONS);
2688 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2689 new->next = cons_block;
2690 cons_block = new;
2691 cons_block_index = 0;
2692 n_cons_blocks++;
2693 }
2694 XSETCONS (val, &cons_block->conses[cons_block_index]);
2695 cons_block_index++;
2696 }
2697
2698 MALLOC_UNBLOCK_INPUT;
2699
2700 XSETCAR (val, car);
2701 XSETCDR (val, cdr);
2702 eassert (!CONS_MARKED_P (XCONS (val)));
2703 consing_since_gc += sizeof (struct Lisp_Cons);
2704 cons_cells_consed++;
2705 return val;
2706 }
2707
2708 /* Get an error now if there's any junk in the cons free list. */
2709 void
2710 check_cons_list (void)
2711 {
2712 #ifdef GC_CHECK_CONS_LIST
2713 struct Lisp_Cons *tail = cons_free_list;
2714
2715 while (tail)
2716 tail = tail->u.chain;
2717 #endif
2718 }
2719
2720 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2721
2722 Lisp_Object
2723 list1 (Lisp_Object arg1)
2724 {
2725 return Fcons (arg1, Qnil);
2726 }
2727
2728 Lisp_Object
2729 list2 (Lisp_Object arg1, Lisp_Object arg2)
2730 {
2731 return Fcons (arg1, Fcons (arg2, Qnil));
2732 }
2733
2734
2735 Lisp_Object
2736 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2737 {
2738 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2739 }
2740
2741
2742 Lisp_Object
2743 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2744 {
2745 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2746 }
2747
2748
2749 Lisp_Object
2750 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2751 {
2752 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2753 Fcons (arg5, Qnil)))));
2754 }
2755
2756
2757 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2758 doc: /* Return a newly created list with specified arguments as elements.
2759 Any number of arguments, even zero arguments, are allowed.
2760 usage: (list &rest OBJECTS) */)
2761 (int nargs, register Lisp_Object *args)
2762 {
2763 register Lisp_Object val;
2764 val = Qnil;
2765
2766 while (nargs > 0)
2767 {
2768 nargs--;
2769 val = Fcons (args[nargs], val);
2770 }
2771 return val;
2772 }
2773
2774
2775 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2776 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2777 (register Lisp_Object length, Lisp_Object init)
2778 {
2779 register Lisp_Object val;
2780 register EMACS_INT size;
2781
2782 CHECK_NATNUM (length);
2783 size = XFASTINT (length);
2784
2785 val = Qnil;
2786 while (size > 0)
2787 {
2788 val = Fcons (init, val);
2789 --size;
2790
2791 if (size > 0)
2792 {
2793 val = Fcons (init, val);
2794 --size;
2795
2796 if (size > 0)
2797 {
2798 val = Fcons (init, val);
2799 --size;
2800
2801 if (size > 0)
2802 {
2803 val = Fcons (init, val);
2804 --size;
2805
2806 if (size > 0)
2807 {
2808 val = Fcons (init, val);
2809 --size;
2810 }
2811 }
2812 }
2813 }
2814
2815 QUIT;
2816 }
2817
2818 return val;
2819 }
2820
2821
2822 \f
2823 /***********************************************************************
2824 Vector Allocation
2825 ***********************************************************************/
2826
2827 /* Singly-linked list of all vectors. */
2828
2829 static struct Lisp_Vector *all_vectors;
2830
2831 /* Total number of vector-like objects now in use. */
2832
2833 static int n_vectors;
2834
2835
2836 /* Value is a pointer to a newly allocated Lisp_Vector structure
2837 with room for LEN Lisp_Objects. */
2838
2839 static struct Lisp_Vector *
2840 allocate_vectorlike (EMACS_INT len)
2841 {
2842 struct Lisp_Vector *p;
2843 size_t nbytes;
2844
2845 MALLOC_BLOCK_INPUT;
2846
2847 #ifdef DOUG_LEA_MALLOC
2848 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2849 because mapped region contents are not preserved in
2850 a dumped Emacs. */
2851 mallopt (M_MMAP_MAX, 0);
2852 #endif
2853
2854 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2855 /* eassert (!handling_signal); */
2856
2857 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2858 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2859
2860 #ifdef DOUG_LEA_MALLOC
2861 /* Back to a reasonable maximum of mmap'ed areas. */
2862 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2863 #endif
2864
2865 consing_since_gc += nbytes;
2866 vector_cells_consed += len;
2867
2868 p->next = all_vectors;
2869 all_vectors = p;
2870
2871 MALLOC_UNBLOCK_INPUT;
2872
2873 ++n_vectors;
2874 return p;
2875 }
2876
2877
2878 /* Allocate a vector with NSLOTS slots. */
2879
2880 struct Lisp_Vector *
2881 allocate_vector (EMACS_INT nslots)
2882 {
2883 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2884 v->size = nslots;
2885 return v;
2886 }
2887
2888
2889 /* Allocate other vector-like structures. */
2890
2891 struct Lisp_Vector *
2892 allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
2893 {
2894 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2895 EMACS_INT i;
2896
2897 /* Only the first lisplen slots will be traced normally by the GC. */
2898 v->size = lisplen;
2899 for (i = 0; i < lisplen; ++i)
2900 v->contents[i] = Qnil;
2901
2902 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2903 return v;
2904 }
2905
2906 struct Lisp_Hash_Table *
2907 allocate_hash_table (void)
2908 {
2909 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2910 }
2911
2912
2913 struct window *
2914 allocate_window (void)
2915 {
2916 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2917 }
2918
2919
2920 struct terminal *
2921 allocate_terminal (void)
2922 {
2923 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2924 next_terminal, PVEC_TERMINAL);
2925 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2926 memset (&t->next_terminal, 0,
2927 (char*) (t + 1) - (char*) &t->next_terminal);
2928
2929 return t;
2930 }
2931
2932 struct frame *
2933 allocate_frame (void)
2934 {
2935 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
2936 face_cache, PVEC_FRAME);
2937 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2938 memset (&f->face_cache, 0,
2939 (char *) (f + 1) - (char *) &f->face_cache);
2940 return f;
2941 }
2942
2943
2944 struct Lisp_Process *
2945 allocate_process (void)
2946 {
2947 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
2948 }
2949
2950
2951 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2952 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2953 See also the function `vector'. */)
2954 (register Lisp_Object length, Lisp_Object init)
2955 {
2956 Lisp_Object vector;
2957 register EMACS_INT sizei;
2958 register EMACS_INT index;
2959 register struct Lisp_Vector *p;
2960
2961 CHECK_NATNUM (length);
2962 sizei = XFASTINT (length);
2963
2964 p = allocate_vector (sizei);
2965 for (index = 0; index < sizei; index++)
2966 p->contents[index] = init;
2967
2968 XSETVECTOR (vector, p);
2969 return vector;
2970 }
2971
2972
2973 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2974 doc: /* Return a newly created vector with specified arguments as elements.
2975 Any number of arguments, even zero arguments, are allowed.
2976 usage: (vector &rest OBJECTS) */)
2977 (register int nargs, Lisp_Object *args)
2978 {
2979 register Lisp_Object len, val;
2980 register int index;
2981 register struct Lisp_Vector *p;
2982
2983 XSETFASTINT (len, nargs);
2984 val = Fmake_vector (len, Qnil);
2985 p = XVECTOR (val);
2986 for (index = 0; index < nargs; index++)
2987 p->contents[index] = args[index];
2988 return val;
2989 }
2990
2991
2992 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2993 doc: /* Create a byte-code object with specified arguments as elements.
2994 The arguments should be the arglist, bytecode-string, constant vector,
2995 stack size, (optional) doc string, and (optional) interactive spec.
2996 The first four arguments are required; at most six have any
2997 significance.
2998 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2999 (register int nargs, Lisp_Object *args)
3000 {
3001 register Lisp_Object len, val;
3002 register int index;
3003 register struct Lisp_Vector *p;
3004
3005 XSETFASTINT (len, nargs);
3006 if (!NILP (Vpurify_flag))
3007 val = make_pure_vector ((EMACS_INT) nargs);
3008 else
3009 val = Fmake_vector (len, Qnil);
3010
3011 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3012 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3013 earlier because they produced a raw 8-bit string for byte-code
3014 and now such a byte-code string is loaded as multibyte while
3015 raw 8-bit characters converted to multibyte form. Thus, now we
3016 must convert them back to the original unibyte form. */
3017 args[1] = Fstring_as_unibyte (args[1]);
3018
3019 p = XVECTOR (val);
3020 for (index = 0; index < nargs; index++)
3021 {
3022 if (!NILP (Vpurify_flag))
3023 args[index] = Fpurecopy (args[index]);
3024 p->contents[index] = args[index];
3025 }
3026 XSETPVECTYPE (p, PVEC_COMPILED);
3027 XSETCOMPILED (val, p);
3028 return val;
3029 }
3030
3031
3032 \f
3033 /***********************************************************************
3034 Symbol Allocation
3035 ***********************************************************************/
3036
3037 /* Each symbol_block is just under 1020 bytes long, since malloc
3038 really allocates in units of powers of two and uses 4 bytes for its
3039 own overhead. */
3040
3041 #define SYMBOL_BLOCK_SIZE \
3042 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3043
3044 struct symbol_block
3045 {
3046 /* Place `symbols' first, to preserve alignment. */
3047 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3048 struct symbol_block *next;
3049 };
3050
3051 /* Current symbol block and index of first unused Lisp_Symbol
3052 structure in it. */
3053
3054 static struct symbol_block *symbol_block;
3055 static int symbol_block_index;
3056
3057 /* List of free symbols. */
3058
3059 static struct Lisp_Symbol *symbol_free_list;
3060
3061 /* Total number of symbol blocks now in use. */
3062
3063 static int n_symbol_blocks;
3064
3065
3066 /* Initialize symbol allocation. */
3067
3068 static void
3069 init_symbol (void)
3070 {
3071 symbol_block = NULL;
3072 symbol_block_index = SYMBOL_BLOCK_SIZE;
3073 symbol_free_list = 0;
3074 n_symbol_blocks = 0;
3075 }
3076
3077
3078 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3079 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3080 Its value and function definition are void, and its property list is nil. */)
3081 (Lisp_Object name)
3082 {
3083 register Lisp_Object val;
3084 register struct Lisp_Symbol *p;
3085
3086 CHECK_STRING (name);
3087
3088 /* eassert (!handling_signal); */
3089
3090 MALLOC_BLOCK_INPUT;
3091
3092 if (symbol_free_list)
3093 {
3094 XSETSYMBOL (val, symbol_free_list);
3095 symbol_free_list = symbol_free_list->next;
3096 }
3097 else
3098 {
3099 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3100 {
3101 struct symbol_block *new;
3102 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3103 MEM_TYPE_SYMBOL);
3104 new->next = symbol_block;
3105 symbol_block = new;
3106 symbol_block_index = 0;
3107 n_symbol_blocks++;
3108 }
3109 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3110 symbol_block_index++;
3111 }
3112
3113 MALLOC_UNBLOCK_INPUT;
3114
3115 p = XSYMBOL (val);
3116 p->xname = name;
3117 p->plist = Qnil;
3118 p->redirect = SYMBOL_PLAINVAL;
3119 SET_SYMBOL_VAL (p, Qunbound);
3120 p->function = Qunbound;
3121 p->next = NULL;
3122 p->gcmarkbit = 0;
3123 p->interned = SYMBOL_UNINTERNED;
3124 p->constant = 0;
3125 consing_since_gc += sizeof (struct Lisp_Symbol);
3126 symbols_consed++;
3127 return val;
3128 }
3129
3130
3131 \f
3132 /***********************************************************************
3133 Marker (Misc) Allocation
3134 ***********************************************************************/
3135
3136 /* Allocation of markers and other objects that share that structure.
3137 Works like allocation of conses. */
3138
3139 #define MARKER_BLOCK_SIZE \
3140 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3141
3142 struct marker_block
3143 {
3144 /* Place `markers' first, to preserve alignment. */
3145 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3146 struct marker_block *next;
3147 };
3148
3149 static struct marker_block *marker_block;
3150 static int marker_block_index;
3151
3152 static union Lisp_Misc *marker_free_list;
3153
3154 /* Total number of marker blocks now in use. */
3155
3156 static int n_marker_blocks;
3157
3158 static void
3159 init_marker (void)
3160 {
3161 marker_block = NULL;
3162 marker_block_index = MARKER_BLOCK_SIZE;
3163 marker_free_list = 0;
3164 n_marker_blocks = 0;
3165 }
3166
3167 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3168
3169 Lisp_Object
3170 allocate_misc (void)
3171 {
3172 Lisp_Object val;
3173
3174 /* eassert (!handling_signal); */
3175
3176 MALLOC_BLOCK_INPUT;
3177
3178 if (marker_free_list)
3179 {
3180 XSETMISC (val, marker_free_list);
3181 marker_free_list = marker_free_list->u_free.chain;
3182 }
3183 else
3184 {
3185 if (marker_block_index == MARKER_BLOCK_SIZE)
3186 {
3187 struct marker_block *new;
3188 new = (struct marker_block *) lisp_malloc (sizeof *new,
3189 MEM_TYPE_MISC);
3190 new->next = marker_block;
3191 marker_block = new;
3192 marker_block_index = 0;
3193 n_marker_blocks++;
3194 total_free_markers += MARKER_BLOCK_SIZE;
3195 }
3196 XSETMISC (val, &marker_block->markers[marker_block_index]);
3197 marker_block_index++;
3198 }
3199
3200 MALLOC_UNBLOCK_INPUT;
3201
3202 --total_free_markers;
3203 consing_since_gc += sizeof (union Lisp_Misc);
3204 misc_objects_consed++;
3205 XMISCANY (val)->gcmarkbit = 0;
3206 return val;
3207 }
3208
3209 /* Free a Lisp_Misc object */
3210
3211 void
3212 free_misc (Lisp_Object misc)
3213 {
3214 XMISCTYPE (misc) = Lisp_Misc_Free;
3215 XMISC (misc)->u_free.chain = marker_free_list;
3216 marker_free_list = XMISC (misc);
3217
3218 total_free_markers++;
3219 }
3220
3221 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3222 INTEGER. This is used to package C values to call record_unwind_protect.
3223 The unwind function can get the C values back using XSAVE_VALUE. */
3224
3225 Lisp_Object
3226 make_save_value (void *pointer, int integer)
3227 {
3228 register Lisp_Object val;
3229 register struct Lisp_Save_Value *p;
3230
3231 val = allocate_misc ();
3232 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3233 p = XSAVE_VALUE (val);
3234 p->pointer = pointer;
3235 p->integer = integer;
3236 p->dogc = 0;
3237 return val;
3238 }
3239
3240 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3241 doc: /* Return a newly allocated marker which does not point at any place. */)
3242 (void)
3243 {
3244 register Lisp_Object val;
3245 register struct Lisp_Marker *p;
3246
3247 val = allocate_misc ();
3248 XMISCTYPE (val) = Lisp_Misc_Marker;
3249 p = XMARKER (val);
3250 p->buffer = 0;
3251 p->bytepos = 0;
3252 p->charpos = 0;
3253 p->next = NULL;
3254 p->insertion_type = 0;
3255 return val;
3256 }
3257
3258 /* Put MARKER back on the free list after using it temporarily. */
3259
3260 void
3261 free_marker (Lisp_Object marker)
3262 {
3263 unchain_marker (XMARKER (marker));
3264 free_misc (marker);
3265 }
3266
3267 \f
3268 /* Return a newly created vector or string with specified arguments as
3269 elements. If all the arguments are characters that can fit
3270 in a string of events, make a string; otherwise, make a vector.
3271
3272 Any number of arguments, even zero arguments, are allowed. */
3273
3274 Lisp_Object
3275 make_event_array (register int nargs, Lisp_Object *args)
3276 {
3277 int i;
3278
3279 for (i = 0; i < nargs; i++)
3280 /* The things that fit in a string
3281 are characters that are in 0...127,
3282 after discarding the meta bit and all the bits above it. */
3283 if (!INTEGERP (args[i])
3284 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3285 return Fvector (nargs, args);
3286
3287 /* Since the loop exited, we know that all the things in it are
3288 characters, so we can make a string. */
3289 {
3290 Lisp_Object result;
3291
3292 result = Fmake_string (make_number (nargs), make_number (0));
3293 for (i = 0; i < nargs; i++)
3294 {
3295 SSET (result, i, XINT (args[i]));
3296 /* Move the meta bit to the right place for a string char. */
3297 if (XINT (args[i]) & CHAR_META)
3298 SSET (result, i, SREF (result, i) | 0x80);
3299 }
3300
3301 return result;
3302 }
3303 }
3304
3305
3306 \f
3307 /************************************************************************
3308 Memory Full Handling
3309 ************************************************************************/
3310
3311
3312 /* Called if malloc returns zero. */
3313
3314 void
3315 memory_full (void)
3316 {
3317 int i;
3318
3319 Vmemory_full = Qt;
3320
3321 memory_full_cons_threshold = sizeof (struct cons_block);
3322
3323 /* The first time we get here, free the spare memory. */
3324 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3325 if (spare_memory[i])
3326 {
3327 if (i == 0)
3328 free (spare_memory[i]);
3329 else if (i >= 1 && i <= 4)
3330 lisp_align_free (spare_memory[i]);
3331 else
3332 lisp_free (spare_memory[i]);
3333 spare_memory[i] = 0;
3334 }
3335
3336 /* Record the space now used. When it decreases substantially,
3337 we can refill the memory reserve. */
3338 #ifndef SYSTEM_MALLOC
3339 bytes_used_when_full = BYTES_USED;
3340 #endif
3341
3342 /* This used to call error, but if we've run out of memory, we could
3343 get infinite recursion trying to build the string. */
3344 xsignal (Qnil, Vmemory_signal_data);
3345 }
3346
3347 /* If we released our reserve (due to running out of memory),
3348 and we have a fair amount free once again,
3349 try to set aside another reserve in case we run out once more.
3350
3351 This is called when a relocatable block is freed in ralloc.c,
3352 and also directly from this file, in case we're not using ralloc.c. */
3353
3354 void
3355 refill_memory_reserve (void)
3356 {
3357 #ifndef SYSTEM_MALLOC
3358 if (spare_memory[0] == 0)
3359 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3360 if (spare_memory[1] == 0)
3361 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3362 MEM_TYPE_CONS);
3363 if (spare_memory[2] == 0)
3364 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3365 MEM_TYPE_CONS);
3366 if (spare_memory[3] == 0)
3367 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3368 MEM_TYPE_CONS);
3369 if (spare_memory[4] == 0)
3370 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3371 MEM_TYPE_CONS);
3372 if (spare_memory[5] == 0)
3373 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3374 MEM_TYPE_STRING);
3375 if (spare_memory[6] == 0)
3376 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3377 MEM_TYPE_STRING);
3378 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3379 Vmemory_full = Qnil;
3380 #endif
3381 }
3382 \f
3383 /************************************************************************
3384 C Stack Marking
3385 ************************************************************************/
3386
3387 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3388
3389 /* Conservative C stack marking requires a method to identify possibly
3390 live Lisp objects given a pointer value. We do this by keeping
3391 track of blocks of Lisp data that are allocated in a red-black tree
3392 (see also the comment of mem_node which is the type of nodes in
3393 that tree). Function lisp_malloc adds information for an allocated
3394 block to the red-black tree with calls to mem_insert, and function
3395 lisp_free removes it with mem_delete. Functions live_string_p etc
3396 call mem_find to lookup information about a given pointer in the
3397 tree, and use that to determine if the pointer points to a Lisp
3398 object or not. */
3399
3400 /* Initialize this part of alloc.c. */
3401
3402 static void
3403 mem_init (void)
3404 {
3405 mem_z.left = mem_z.right = MEM_NIL;
3406 mem_z.parent = NULL;
3407 mem_z.color = MEM_BLACK;
3408 mem_z.start = mem_z.end = NULL;
3409 mem_root = MEM_NIL;
3410 }
3411
3412
3413 /* Value is a pointer to the mem_node containing START. Value is
3414 MEM_NIL if there is no node in the tree containing START. */
3415
3416 static INLINE struct mem_node *
3417 mem_find (void *start)
3418 {
3419 struct mem_node *p;
3420
3421 if (start < min_heap_address || start > max_heap_address)
3422 return MEM_NIL;
3423
3424 /* Make the search always successful to speed up the loop below. */
3425 mem_z.start = start;
3426 mem_z.end = (char *) start + 1;
3427
3428 p = mem_root;
3429 while (start < p->start || start >= p->end)
3430 p = start < p->start ? p->left : p->right;
3431 return p;
3432 }
3433
3434
3435 /* Insert a new node into the tree for a block of memory with start
3436 address START, end address END, and type TYPE. Value is a
3437 pointer to the node that was inserted. */
3438
3439 static struct mem_node *
3440 mem_insert (void *start, void *end, enum mem_type type)
3441 {
3442 struct mem_node *c, *parent, *x;
3443
3444 if (min_heap_address == NULL || start < min_heap_address)
3445 min_heap_address = start;
3446 if (max_heap_address == NULL || end > max_heap_address)
3447 max_heap_address = end;
3448
3449 /* See where in the tree a node for START belongs. In this
3450 particular application, it shouldn't happen that a node is already
3451 present. For debugging purposes, let's check that. */
3452 c = mem_root;
3453 parent = NULL;
3454
3455 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3456
3457 while (c != MEM_NIL)
3458 {
3459 if (start >= c->start && start < c->end)
3460 abort ();
3461 parent = c;
3462 c = start < c->start ? c->left : c->right;
3463 }
3464
3465 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3466
3467 while (c != MEM_NIL)
3468 {
3469 parent = c;
3470 c = start < c->start ? c->left : c->right;
3471 }
3472
3473 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3474
3475 /* Create a new node. */
3476 #ifdef GC_MALLOC_CHECK
3477 x = (struct mem_node *) _malloc_internal (sizeof *x);
3478 if (x == NULL)
3479 abort ();
3480 #else
3481 x = (struct mem_node *) xmalloc (sizeof *x);
3482 #endif
3483 x->start = start;
3484 x->end = end;
3485 x->type = type;
3486 x->parent = parent;
3487 x->left = x->right = MEM_NIL;
3488 x->color = MEM_RED;
3489
3490 /* Insert it as child of PARENT or install it as root. */
3491 if (parent)
3492 {
3493 if (start < parent->start)
3494 parent->left = x;
3495 else
3496 parent->right = x;
3497 }
3498 else
3499 mem_root = x;
3500
3501 /* Re-establish red-black tree properties. */
3502 mem_insert_fixup (x);
3503
3504 return x;
3505 }
3506
3507
3508 /* Re-establish the red-black properties of the tree, and thereby
3509 balance the tree, after node X has been inserted; X is always red. */
3510
3511 static void
3512 mem_insert_fixup (struct mem_node *x)
3513 {
3514 while (x != mem_root && x->parent->color == MEM_RED)
3515 {
3516 /* X is red and its parent is red. This is a violation of
3517 red-black tree property #3. */
3518
3519 if (x->parent == x->parent->parent->left)
3520 {
3521 /* We're on the left side of our grandparent, and Y is our
3522 "uncle". */
3523 struct mem_node *y = x->parent->parent->right;
3524
3525 if (y->color == MEM_RED)
3526 {
3527 /* Uncle and parent are red but should be black because
3528 X is red. Change the colors accordingly and proceed
3529 with the grandparent. */
3530 x->parent->color = MEM_BLACK;
3531 y->color = MEM_BLACK;
3532 x->parent->parent->color = MEM_RED;
3533 x = x->parent->parent;
3534 }
3535 else
3536 {
3537 /* Parent and uncle have different colors; parent is
3538 red, uncle is black. */
3539 if (x == x->parent->right)
3540 {
3541 x = x->parent;
3542 mem_rotate_left (x);
3543 }
3544
3545 x->parent->color = MEM_BLACK;
3546 x->parent->parent->color = MEM_RED;
3547 mem_rotate_right (x->parent->parent);
3548 }
3549 }
3550 else
3551 {
3552 /* This is the symmetrical case of above. */
3553 struct mem_node *y = x->parent->parent->left;
3554
3555 if (y->color == MEM_RED)
3556 {
3557 x->parent->color = MEM_BLACK;
3558 y->color = MEM_BLACK;
3559 x->parent->parent->color = MEM_RED;
3560 x = x->parent->parent;
3561 }
3562 else
3563 {
3564 if (x == x->parent->left)
3565 {
3566 x = x->parent;
3567 mem_rotate_right (x);
3568 }
3569
3570 x->parent->color = MEM_BLACK;
3571 x->parent->parent->color = MEM_RED;
3572 mem_rotate_left (x->parent->parent);
3573 }
3574 }
3575 }
3576
3577 /* The root may have been changed to red due to the algorithm. Set
3578 it to black so that property #5 is satisfied. */
3579 mem_root->color = MEM_BLACK;
3580 }
3581
3582
3583 /* (x) (y)
3584 / \ / \
3585 a (y) ===> (x) c
3586 / \ / \
3587 b c a b */
3588
3589 static void
3590 mem_rotate_left (struct mem_node *x)
3591 {
3592 struct mem_node *y;
3593
3594 /* Turn y's left sub-tree into x's right sub-tree. */
3595 y = x->right;
3596 x->right = y->left;
3597 if (y->left != MEM_NIL)
3598 y->left->parent = x;
3599
3600 /* Y's parent was x's parent. */
3601 if (y != MEM_NIL)
3602 y->parent = x->parent;
3603
3604 /* Get the parent to point to y instead of x. */
3605 if (x->parent)
3606 {
3607 if (x == x->parent->left)
3608 x->parent->left = y;
3609 else
3610 x->parent->right = y;
3611 }
3612 else
3613 mem_root = y;
3614
3615 /* Put x on y's left. */
3616 y->left = x;
3617 if (x != MEM_NIL)
3618 x->parent = y;
3619 }
3620
3621
3622 /* (x) (Y)
3623 / \ / \
3624 (y) c ===> a (x)
3625 / \ / \
3626 a b b c */
3627
3628 static void
3629 mem_rotate_right (struct mem_node *x)
3630 {
3631 struct mem_node *y = x->left;
3632
3633 x->left = y->right;
3634 if (y->right != MEM_NIL)
3635 y->right->parent = x;
3636
3637 if (y != MEM_NIL)
3638 y->parent = x->parent;
3639 if (x->parent)
3640 {
3641 if (x == x->parent->right)
3642 x->parent->right = y;
3643 else
3644 x->parent->left = y;
3645 }
3646 else
3647 mem_root = y;
3648
3649 y->right = x;
3650 if (x != MEM_NIL)
3651 x->parent = y;
3652 }
3653
3654
3655 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3656
3657 static void
3658 mem_delete (struct mem_node *z)
3659 {
3660 struct mem_node *x, *y;
3661
3662 if (!z || z == MEM_NIL)
3663 return;
3664
3665 if (z->left == MEM_NIL || z->right == MEM_NIL)
3666 y = z;
3667 else
3668 {
3669 y = z->right;
3670 while (y->left != MEM_NIL)
3671 y = y->left;
3672 }
3673
3674 if (y->left != MEM_NIL)
3675 x = y->left;
3676 else
3677 x = y->right;
3678
3679 x->parent = y->parent;
3680 if (y->parent)
3681 {
3682 if (y == y->parent->left)
3683 y->parent->left = x;
3684 else
3685 y->parent->right = x;
3686 }
3687 else
3688 mem_root = x;
3689
3690 if (y != z)
3691 {
3692 z->start = y->start;
3693 z->end = y->end;
3694 z->type = y->type;
3695 }
3696
3697 if (y->color == MEM_BLACK)
3698 mem_delete_fixup (x);
3699
3700 #ifdef GC_MALLOC_CHECK
3701 _free_internal (y);
3702 #else
3703 xfree (y);
3704 #endif
3705 }
3706
3707
3708 /* Re-establish the red-black properties of the tree, after a
3709 deletion. */
3710
3711 static void
3712 mem_delete_fixup (struct mem_node *x)
3713 {
3714 while (x != mem_root && x->color == MEM_BLACK)
3715 {
3716 if (x == x->parent->left)
3717 {
3718 struct mem_node *w = x->parent->right;
3719
3720 if (w->color == MEM_RED)
3721 {
3722 w->color = MEM_BLACK;
3723 x->parent->color = MEM_RED;
3724 mem_rotate_left (x->parent);
3725 w = x->parent->right;
3726 }
3727
3728 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3729 {
3730 w->color = MEM_RED;
3731 x = x->parent;
3732 }
3733 else
3734 {
3735 if (w->right->color == MEM_BLACK)
3736 {
3737 w->left->color = MEM_BLACK;
3738 w->color = MEM_RED;
3739 mem_rotate_right (w);
3740 w = x->parent->right;
3741 }
3742 w->color = x->parent->color;
3743 x->parent->color = MEM_BLACK;
3744 w->right->color = MEM_BLACK;
3745 mem_rotate_left (x->parent);
3746 x = mem_root;
3747 }
3748 }
3749 else
3750 {
3751 struct mem_node *w = x->parent->left;
3752
3753 if (w->color == MEM_RED)
3754 {
3755 w->color = MEM_BLACK;
3756 x->parent->color = MEM_RED;
3757 mem_rotate_right (x->parent);
3758 w = x->parent->left;
3759 }
3760
3761 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3762 {
3763 w->color = MEM_RED;
3764 x = x->parent;
3765 }
3766 else
3767 {
3768 if (w->left->color == MEM_BLACK)
3769 {
3770 w->right->color = MEM_BLACK;
3771 w->color = MEM_RED;
3772 mem_rotate_left (w);
3773 w = x->parent->left;
3774 }
3775
3776 w->color = x->parent->color;
3777 x->parent->color = MEM_BLACK;
3778 w->left->color = MEM_BLACK;
3779 mem_rotate_right (x->parent);
3780 x = mem_root;
3781 }
3782 }
3783 }
3784
3785 x->color = MEM_BLACK;
3786 }
3787
3788
3789 /* Value is non-zero if P is a pointer to a live Lisp string on
3790 the heap. M is a pointer to the mem_block for P. */
3791
3792 static INLINE int
3793 live_string_p (struct mem_node *m, void *p)
3794 {
3795 if (m->type == MEM_TYPE_STRING)
3796 {
3797 struct string_block *b = (struct string_block *) m->start;
3798 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
3799
3800 /* P must point to the start of a Lisp_String structure, and it
3801 must not be on the free-list. */
3802 return (offset >= 0
3803 && offset % sizeof b->strings[0] == 0
3804 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3805 && ((struct Lisp_String *) p)->data != NULL);
3806 }
3807 else
3808 return 0;
3809 }
3810
3811
3812 /* Value is non-zero if P is a pointer to a live Lisp cons on
3813 the heap. M is a pointer to the mem_block for P. */
3814
3815 static INLINE int
3816 live_cons_p (struct mem_node *m, void *p)
3817 {
3818 if (m->type == MEM_TYPE_CONS)
3819 {
3820 struct cons_block *b = (struct cons_block *) m->start;
3821 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
3822
3823 /* P must point to the start of a Lisp_Cons, not be
3824 one of the unused cells in the current cons block,
3825 and not be on the free-list. */
3826 return (offset >= 0
3827 && offset % sizeof b->conses[0] == 0
3828 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3829 && (b != cons_block
3830 || offset / sizeof b->conses[0] < cons_block_index)
3831 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3832 }
3833 else
3834 return 0;
3835 }
3836
3837
3838 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3839 the heap. M is a pointer to the mem_block for P. */
3840
3841 static INLINE int
3842 live_symbol_p (struct mem_node *m, void *p)
3843 {
3844 if (m->type == MEM_TYPE_SYMBOL)
3845 {
3846 struct symbol_block *b = (struct symbol_block *) m->start;
3847 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
3848
3849 /* P must point to the start of a Lisp_Symbol, not be
3850 one of the unused cells in the current symbol block,
3851 and not be on the free-list. */
3852 return (offset >= 0
3853 && offset % sizeof b->symbols[0] == 0
3854 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3855 && (b != symbol_block
3856 || offset / sizeof b->symbols[0] < symbol_block_index)
3857 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3858 }
3859 else
3860 return 0;
3861 }
3862
3863
3864 /* Value is non-zero if P is a pointer to a live Lisp float on
3865 the heap. M is a pointer to the mem_block for P. */
3866
3867 static INLINE int
3868 live_float_p (struct mem_node *m, void *p)
3869 {
3870 if (m->type == MEM_TYPE_FLOAT)
3871 {
3872 struct float_block *b = (struct float_block *) m->start;
3873 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
3874
3875 /* P must point to the start of a Lisp_Float and not be
3876 one of the unused cells in the current float block. */
3877 return (offset >= 0
3878 && offset % sizeof b->floats[0] == 0
3879 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3880 && (b != float_block
3881 || offset / sizeof b->floats[0] < float_block_index));
3882 }
3883 else
3884 return 0;
3885 }
3886
3887
3888 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3889 the heap. M is a pointer to the mem_block for P. */
3890
3891 static INLINE int
3892 live_misc_p (struct mem_node *m, void *p)
3893 {
3894 if (m->type == MEM_TYPE_MISC)
3895 {
3896 struct marker_block *b = (struct marker_block *) m->start;
3897 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
3898
3899 /* P must point to the start of a Lisp_Misc, not be
3900 one of the unused cells in the current misc block,
3901 and not be on the free-list. */
3902 return (offset >= 0
3903 && offset % sizeof b->markers[0] == 0
3904 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3905 && (b != marker_block
3906 || offset / sizeof b->markers[0] < marker_block_index)
3907 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
3908 }
3909 else
3910 return 0;
3911 }
3912
3913
3914 /* Value is non-zero if P is a pointer to a live vector-like object.
3915 M is a pointer to the mem_block for P. */
3916
3917 static INLINE int
3918 live_vector_p (struct mem_node *m, void *p)
3919 {
3920 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
3921 }
3922
3923
3924 /* Value is non-zero if P is a pointer to a live buffer. M is a
3925 pointer to the mem_block for P. */
3926
3927 static INLINE int
3928 live_buffer_p (struct mem_node *m, void *p)
3929 {
3930 /* P must point to the start of the block, and the buffer
3931 must not have been killed. */
3932 return (m->type == MEM_TYPE_BUFFER
3933 && p == m->start
3934 && !NILP (((struct buffer *) p)->name));
3935 }
3936
3937 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3938
3939 #if GC_MARK_STACK
3940
3941 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3942
3943 /* Array of objects that are kept alive because the C stack contains
3944 a pattern that looks like a reference to them . */
3945
3946 #define MAX_ZOMBIES 10
3947 static Lisp_Object zombies[MAX_ZOMBIES];
3948
3949 /* Number of zombie objects. */
3950
3951 static int nzombies;
3952
3953 /* Number of garbage collections. */
3954
3955 static int ngcs;
3956
3957 /* Average percentage of zombies per collection. */
3958
3959 static double avg_zombies;
3960
3961 /* Max. number of live and zombie objects. */
3962
3963 static int max_live, max_zombies;
3964
3965 /* Average number of live objects per GC. */
3966
3967 static double avg_live;
3968
3969 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3970 doc: /* Show information about live and zombie objects. */)
3971 (void)
3972 {
3973 Lisp_Object args[8], zombie_list = Qnil;
3974 int i;
3975 for (i = 0; i < nzombies; i++)
3976 zombie_list = Fcons (zombies[i], zombie_list);
3977 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3978 args[1] = make_number (ngcs);
3979 args[2] = make_float (avg_live);
3980 args[3] = make_float (avg_zombies);
3981 args[4] = make_float (avg_zombies / avg_live / 100);
3982 args[5] = make_number (max_live);
3983 args[6] = make_number (max_zombies);
3984 args[7] = zombie_list;
3985 return Fmessage (8, args);
3986 }
3987
3988 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3989
3990
3991 /* Mark OBJ if we can prove it's a Lisp_Object. */
3992
3993 static INLINE void
3994 mark_maybe_object (Lisp_Object obj)
3995 {
3996 void *po = (void *) XPNTR (obj);
3997 struct mem_node *m = mem_find (po);
3998
3999 if (m != MEM_NIL)
4000 {
4001 int mark_p = 0;
4002
4003 switch (XTYPE (obj))
4004 {
4005 case Lisp_String:
4006 mark_p = (live_string_p (m, po)
4007 && !STRING_MARKED_P ((struct Lisp_String *) po));
4008 break;
4009
4010 case Lisp_Cons:
4011 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4012 break;
4013
4014 case Lisp_Symbol:
4015 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4016 break;
4017
4018 case Lisp_Float:
4019 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4020 break;
4021
4022 case Lisp_Vectorlike:
4023 /* Note: can't check BUFFERP before we know it's a
4024 buffer because checking that dereferences the pointer
4025 PO which might point anywhere. */
4026 if (live_vector_p (m, po))
4027 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4028 else if (live_buffer_p (m, po))
4029 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4030 break;
4031
4032 case Lisp_Misc:
4033 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4034 break;
4035
4036 default:
4037 break;
4038 }
4039
4040 if (mark_p)
4041 {
4042 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4043 if (nzombies < MAX_ZOMBIES)
4044 zombies[nzombies] = obj;
4045 ++nzombies;
4046 #endif
4047 mark_object (obj);
4048 }
4049 }
4050 }
4051
4052
4053 /* If P points to Lisp data, mark that as live if it isn't already
4054 marked. */
4055
4056 static INLINE void
4057 mark_maybe_pointer (void *p)
4058 {
4059 struct mem_node *m;
4060
4061 /* Quickly rule out some values which can't point to Lisp data. */
4062 if ((EMACS_INT) p %
4063 #ifdef USE_LSB_TAG
4064 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4065 #else
4066 2 /* We assume that Lisp data is aligned on even addresses. */
4067 #endif
4068 )
4069 return;
4070
4071 m = mem_find (p);
4072 if (m != MEM_NIL)
4073 {
4074 Lisp_Object obj = Qnil;
4075
4076 switch (m->type)
4077 {
4078 case MEM_TYPE_NON_LISP:
4079 /* Nothing to do; not a pointer to Lisp memory. */
4080 break;
4081
4082 case MEM_TYPE_BUFFER:
4083 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4084 XSETVECTOR (obj, p);
4085 break;
4086
4087 case MEM_TYPE_CONS:
4088 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4089 XSETCONS (obj, p);
4090 break;
4091
4092 case MEM_TYPE_STRING:
4093 if (live_string_p (m, p)
4094 && !STRING_MARKED_P ((struct Lisp_String *) p))
4095 XSETSTRING (obj, p);
4096 break;
4097
4098 case MEM_TYPE_MISC:
4099 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4100 XSETMISC (obj, p);
4101 break;
4102
4103 case MEM_TYPE_SYMBOL:
4104 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4105 XSETSYMBOL (obj, p);
4106 break;
4107
4108 case MEM_TYPE_FLOAT:
4109 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4110 XSETFLOAT (obj, p);
4111 break;
4112
4113 case MEM_TYPE_VECTORLIKE:
4114 if (live_vector_p (m, p))
4115 {
4116 Lisp_Object tem;
4117 XSETVECTOR (tem, p);
4118 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4119 obj = tem;
4120 }
4121 break;
4122
4123 default:
4124 abort ();
4125 }
4126
4127 if (!NILP (obj))
4128 mark_object (obj);
4129 }
4130 }
4131
4132
4133 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4134 or END+OFFSET..START. */
4135
4136 static void
4137 mark_memory (void *start, void *end, int offset)
4138 {
4139 Lisp_Object *p;
4140 void **pp;
4141
4142 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4143 nzombies = 0;
4144 #endif
4145
4146 /* Make START the pointer to the start of the memory region,
4147 if it isn't already. */
4148 if (end < start)
4149 {
4150 void *tem = start;
4151 start = end;
4152 end = tem;
4153 }
4154
4155 /* Mark Lisp_Objects. */
4156 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4157 mark_maybe_object (*p);
4158
4159 /* Mark Lisp data pointed to. This is necessary because, in some
4160 situations, the C compiler optimizes Lisp objects away, so that
4161 only a pointer to them remains. Example:
4162
4163 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4164 ()
4165 {
4166 Lisp_Object obj = build_string ("test");
4167 struct Lisp_String *s = XSTRING (obj);
4168 Fgarbage_collect ();
4169 fprintf (stderr, "test `%s'\n", s->data);
4170 return Qnil;
4171 }
4172
4173 Here, `obj' isn't really used, and the compiler optimizes it
4174 away. The only reference to the life string is through the
4175 pointer `s'. */
4176
4177 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4178 mark_maybe_pointer (*pp);
4179 }
4180
4181 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4182 the GCC system configuration. In gcc 3.2, the only systems for
4183 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4184 by others?) and ns32k-pc532-min. */
4185
4186 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4187
4188 static int setjmp_tested_p, longjmps_done;
4189
4190 #define SETJMP_WILL_LIKELY_WORK "\
4191 \n\
4192 Emacs garbage collector has been changed to use conservative stack\n\
4193 marking. Emacs has determined that the method it uses to do the\n\
4194 marking will likely work on your system, but this isn't sure.\n\
4195 \n\
4196 If you are a system-programmer, or can get the help of a local wizard\n\
4197 who is, please take a look at the function mark_stack in alloc.c, and\n\
4198 verify that the methods used are appropriate for your system.\n\
4199 \n\
4200 Please mail the result to <emacs-devel@gnu.org>.\n\
4201 "
4202
4203 #define SETJMP_WILL_NOT_WORK "\
4204 \n\
4205 Emacs garbage collector has been changed to use conservative stack\n\
4206 marking. Emacs has determined that the default method it uses to do the\n\
4207 marking will not work on your system. We will need a system-dependent\n\
4208 solution for your system.\n\
4209 \n\
4210 Please take a look at the function mark_stack in alloc.c, and\n\
4211 try to find a way to make it work on your system.\n\
4212 \n\
4213 Note that you may get false negatives, depending on the compiler.\n\
4214 In particular, you need to use -O with GCC for this test.\n\
4215 \n\
4216 Please mail the result to <emacs-devel@gnu.org>.\n\
4217 "
4218
4219
4220 /* Perform a quick check if it looks like setjmp saves registers in a
4221 jmp_buf. Print a message to stderr saying so. When this test
4222 succeeds, this is _not_ a proof that setjmp is sufficient for
4223 conservative stack marking. Only the sources or a disassembly
4224 can prove that. */
4225
4226 static void
4227 test_setjmp ()
4228 {
4229 char buf[10];
4230 register int x;
4231 jmp_buf jbuf;
4232 int result = 0;
4233
4234 /* Arrange for X to be put in a register. */
4235 sprintf (buf, "1");
4236 x = strlen (buf);
4237 x = 2 * x - 1;
4238
4239 setjmp (jbuf);
4240 if (longjmps_done == 1)
4241 {
4242 /* Came here after the longjmp at the end of the function.
4243
4244 If x == 1, the longjmp has restored the register to its
4245 value before the setjmp, and we can hope that setjmp
4246 saves all such registers in the jmp_buf, although that
4247 isn't sure.
4248
4249 For other values of X, either something really strange is
4250 taking place, or the setjmp just didn't save the register. */
4251
4252 if (x == 1)
4253 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4254 else
4255 {
4256 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4257 exit (1);
4258 }
4259 }
4260
4261 ++longjmps_done;
4262 x = 2;
4263 if (longjmps_done == 1)
4264 longjmp (jbuf, 1);
4265 }
4266
4267 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4268
4269
4270 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4271
4272 /* Abort if anything GCPRO'd doesn't survive the GC. */
4273
4274 static void
4275 check_gcpros ()
4276 {
4277 struct gcpro *p;
4278 int i;
4279
4280 for (p = gcprolist; p; p = p->next)
4281 for (i = 0; i < p->nvars; ++i)
4282 if (!survives_gc_p (p->var[i]))
4283 /* FIXME: It's not necessarily a bug. It might just be that the
4284 GCPRO is unnecessary or should release the object sooner. */
4285 abort ();
4286 }
4287
4288 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4289
4290 static void
4291 dump_zombies ()
4292 {
4293 int i;
4294
4295 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4296 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4297 {
4298 fprintf (stderr, " %d = ", i);
4299 debug_print (zombies[i]);
4300 }
4301 }
4302
4303 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4304
4305
4306 /* Mark live Lisp objects on the C stack.
4307
4308 There are several system-dependent problems to consider when
4309 porting this to new architectures:
4310
4311 Processor Registers
4312
4313 We have to mark Lisp objects in CPU registers that can hold local
4314 variables or are used to pass parameters.
4315
4316 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4317 something that either saves relevant registers on the stack, or
4318 calls mark_maybe_object passing it each register's contents.
4319
4320 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4321 implementation assumes that calling setjmp saves registers we need
4322 to see in a jmp_buf which itself lies on the stack. This doesn't
4323 have to be true! It must be verified for each system, possibly
4324 by taking a look at the source code of setjmp.
4325
4326 Stack Layout
4327
4328 Architectures differ in the way their processor stack is organized.
4329 For example, the stack might look like this
4330
4331 +----------------+
4332 | Lisp_Object | size = 4
4333 +----------------+
4334 | something else | size = 2
4335 +----------------+
4336 | Lisp_Object | size = 4
4337 +----------------+
4338 | ... |
4339
4340 In such a case, not every Lisp_Object will be aligned equally. To
4341 find all Lisp_Object on the stack it won't be sufficient to walk
4342 the stack in steps of 4 bytes. Instead, two passes will be
4343 necessary, one starting at the start of the stack, and a second
4344 pass starting at the start of the stack + 2. Likewise, if the
4345 minimal alignment of Lisp_Objects on the stack is 1, four passes
4346 would be necessary, each one starting with one byte more offset
4347 from the stack start.
4348
4349 The current code assumes by default that Lisp_Objects are aligned
4350 equally on the stack. */
4351
4352 static void
4353 mark_stack (void)
4354 {
4355 int i;
4356 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4357 union aligned_jmpbuf {
4358 Lisp_Object o;
4359 jmp_buf j;
4360 } j;
4361 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4362 void *end;
4363
4364 /* This trick flushes the register windows so that all the state of
4365 the process is contained in the stack. */
4366 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4367 needed on ia64 too. See mach_dep.c, where it also says inline
4368 assembler doesn't work with relevant proprietary compilers. */
4369 #ifdef __sparc__
4370 #if defined (__sparc64__) && defined (__FreeBSD__)
4371 /* FreeBSD does not have a ta 3 handler. */
4372 asm ("flushw");
4373 #else
4374 asm ("ta 3");
4375 #endif
4376 #endif
4377
4378 /* Save registers that we need to see on the stack. We need to see
4379 registers used to hold register variables and registers used to
4380 pass parameters. */
4381 #ifdef GC_SAVE_REGISTERS_ON_STACK
4382 GC_SAVE_REGISTERS_ON_STACK (end);
4383 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4384
4385 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4386 setjmp will definitely work, test it
4387 and print a message with the result
4388 of the test. */
4389 if (!setjmp_tested_p)
4390 {
4391 setjmp_tested_p = 1;
4392 test_setjmp ();
4393 }
4394 #endif /* GC_SETJMP_WORKS */
4395
4396 setjmp (j.j);
4397 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4398 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4399
4400 /* This assumes that the stack is a contiguous region in memory. If
4401 that's not the case, something has to be done here to iterate
4402 over the stack segments. */
4403 #ifndef GC_LISP_OBJECT_ALIGNMENT
4404 #ifdef __GNUC__
4405 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4406 #else
4407 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4408 #endif
4409 #endif
4410 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4411 mark_memory (stack_base, end, i);
4412 /* Allow for marking a secondary stack, like the register stack on the
4413 ia64. */
4414 #ifdef GC_MARK_SECONDARY_STACK
4415 GC_MARK_SECONDARY_STACK ();
4416 #endif
4417
4418 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4419 check_gcpros ();
4420 #endif
4421 }
4422
4423 #endif /* GC_MARK_STACK != 0 */
4424
4425
4426 /* Determine whether it is safe to access memory at address P. */
4427 static int
4428 valid_pointer_p (void *p)
4429 {
4430 #ifdef WINDOWSNT
4431 return w32_valid_pointer_p (p, 16);
4432 #else
4433 int fd;
4434
4435 /* Obviously, we cannot just access it (we would SEGV trying), so we
4436 trick the o/s to tell us whether p is a valid pointer.
4437 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4438 not validate p in that case. */
4439
4440 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4441 {
4442 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4443 emacs_close (fd);
4444 unlink ("__Valid__Lisp__Object__");
4445 return valid;
4446 }
4447
4448 return -1;
4449 #endif
4450 }
4451
4452 /* Return 1 if OBJ is a valid lisp object.
4453 Return 0 if OBJ is NOT a valid lisp object.
4454 Return -1 if we cannot validate OBJ.
4455 This function can be quite slow,
4456 so it should only be used in code for manual debugging. */
4457
4458 int
4459 valid_lisp_object_p (Lisp_Object obj)
4460 {
4461 void *p;
4462 #if GC_MARK_STACK
4463 struct mem_node *m;
4464 #endif
4465
4466 if (INTEGERP (obj))
4467 return 1;
4468
4469 p = (void *) XPNTR (obj);
4470 if (PURE_POINTER_P (p))
4471 return 1;
4472
4473 #if !GC_MARK_STACK
4474 return valid_pointer_p (p);
4475 #else
4476
4477 m = mem_find (p);
4478
4479 if (m == MEM_NIL)
4480 {
4481 int valid = valid_pointer_p (p);
4482 if (valid <= 0)
4483 return valid;
4484
4485 if (SUBRP (obj))
4486 return 1;
4487
4488 return 0;
4489 }
4490
4491 switch (m->type)
4492 {
4493 case MEM_TYPE_NON_LISP:
4494 return 0;
4495
4496 case MEM_TYPE_BUFFER:
4497 return live_buffer_p (m, p);
4498
4499 case MEM_TYPE_CONS:
4500 return live_cons_p (m, p);
4501
4502 case MEM_TYPE_STRING:
4503 return live_string_p (m, p);
4504
4505 case MEM_TYPE_MISC:
4506 return live_misc_p (m, p);
4507
4508 case MEM_TYPE_SYMBOL:
4509 return live_symbol_p (m, p);
4510
4511 case MEM_TYPE_FLOAT:
4512 return live_float_p (m, p);
4513
4514 case MEM_TYPE_VECTORLIKE:
4515 return live_vector_p (m, p);
4516
4517 default:
4518 break;
4519 }
4520
4521 return 0;
4522 #endif
4523 }
4524
4525
4526
4527 \f
4528 /***********************************************************************
4529 Pure Storage Management
4530 ***********************************************************************/
4531
4532 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4533 pointer to it. TYPE is the Lisp type for which the memory is
4534 allocated. TYPE < 0 means it's not used for a Lisp object. */
4535
4536 static POINTER_TYPE *
4537 pure_alloc (size_t size, int type)
4538 {
4539 POINTER_TYPE *result;
4540 #ifdef USE_LSB_TAG
4541 size_t alignment = (1 << GCTYPEBITS);
4542 #else
4543 size_t alignment = sizeof (EMACS_INT);
4544
4545 /* Give Lisp_Floats an extra alignment. */
4546 if (type == Lisp_Float)
4547 {
4548 #if defined __GNUC__ && __GNUC__ >= 2
4549 alignment = __alignof (struct Lisp_Float);
4550 #else
4551 alignment = sizeof (struct Lisp_Float);
4552 #endif
4553 }
4554 #endif
4555
4556 again:
4557 if (type >= 0)
4558 {
4559 /* Allocate space for a Lisp object from the beginning of the free
4560 space with taking account of alignment. */
4561 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4562 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4563 }
4564 else
4565 {
4566 /* Allocate space for a non-Lisp object from the end of the free
4567 space. */
4568 pure_bytes_used_non_lisp += size;
4569 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4570 }
4571 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4572
4573 if (pure_bytes_used <= pure_size)
4574 return result;
4575
4576 /* Don't allocate a large amount here,
4577 because it might get mmap'd and then its address
4578 might not be usable. */
4579 purebeg = (char *) xmalloc (10000);
4580 pure_size = 10000;
4581 pure_bytes_used_before_overflow += pure_bytes_used - size;
4582 pure_bytes_used = 0;
4583 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4584 goto again;
4585 }
4586
4587
4588 /* Print a warning if PURESIZE is too small. */
4589
4590 void
4591 check_pure_size (void)
4592 {
4593 if (pure_bytes_used_before_overflow)
4594 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4595 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4596 }
4597
4598
4599 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4600 the non-Lisp data pool of the pure storage, and return its start
4601 address. Return NULL if not found. */
4602
4603 static char *
4604 find_string_data_in_pure (const char *data, EMACS_INT nbytes)
4605 {
4606 int i;
4607 EMACS_INT skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4608 const unsigned char *p;
4609 char *non_lisp_beg;
4610
4611 if (pure_bytes_used_non_lisp < nbytes + 1)
4612 return NULL;
4613
4614 /* Set up the Boyer-Moore table. */
4615 skip = nbytes + 1;
4616 for (i = 0; i < 256; i++)
4617 bm_skip[i] = skip;
4618
4619 p = (const unsigned char *) data;
4620 while (--skip > 0)
4621 bm_skip[*p++] = skip;
4622
4623 last_char_skip = bm_skip['\0'];
4624
4625 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4626 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4627
4628 /* See the comments in the function `boyer_moore' (search.c) for the
4629 use of `infinity'. */
4630 infinity = pure_bytes_used_non_lisp + 1;
4631 bm_skip['\0'] = infinity;
4632
4633 p = (const unsigned char *) non_lisp_beg + nbytes;
4634 start = 0;
4635 do
4636 {
4637 /* Check the last character (== '\0'). */
4638 do
4639 {
4640 start += bm_skip[*(p + start)];
4641 }
4642 while (start <= start_max);
4643
4644 if (start < infinity)
4645 /* Couldn't find the last character. */
4646 return NULL;
4647
4648 /* No less than `infinity' means we could find the last
4649 character at `p[start - infinity]'. */
4650 start -= infinity;
4651
4652 /* Check the remaining characters. */
4653 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4654 /* Found. */
4655 return non_lisp_beg + start;
4656
4657 start += last_char_skip;
4658 }
4659 while (start <= start_max);
4660
4661 return NULL;
4662 }
4663
4664
4665 /* Return a string allocated in pure space. DATA is a buffer holding
4666 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4667 non-zero means make the result string multibyte.
4668
4669 Must get an error if pure storage is full, since if it cannot hold
4670 a large string it may be able to hold conses that point to that
4671 string; then the string is not protected from gc. */
4672
4673 Lisp_Object
4674 make_pure_string (const char *data,
4675 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
4676 {
4677 Lisp_Object string;
4678 struct Lisp_String *s;
4679
4680 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4681 s->data = find_string_data_in_pure (data, nbytes);
4682 if (s->data == NULL)
4683 {
4684 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4685 memcpy (s->data, data, nbytes);
4686 s->data[nbytes] = '\0';
4687 }
4688 s->size = nchars;
4689 s->size_byte = multibyte ? nbytes : -1;
4690 s->intervals = NULL_INTERVAL;
4691 XSETSTRING (string, s);
4692 return string;
4693 }
4694
4695 /* Return a string a string allocated in pure space. Do not allocate
4696 the string data, just point to DATA. */
4697
4698 Lisp_Object
4699 make_pure_c_string (const char *data)
4700 {
4701 Lisp_Object string;
4702 struct Lisp_String *s;
4703 EMACS_INT nchars = strlen (data);
4704
4705 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4706 s->size = nchars;
4707 s->size_byte = -1;
4708 s->data = (unsigned char *) data;
4709 s->intervals = NULL_INTERVAL;
4710 XSETSTRING (string, s);
4711 return string;
4712 }
4713
4714 /* Return a cons allocated from pure space. Give it pure copies
4715 of CAR as car and CDR as cdr. */
4716
4717 Lisp_Object
4718 pure_cons (Lisp_Object car, Lisp_Object cdr)
4719 {
4720 register Lisp_Object new;
4721 struct Lisp_Cons *p;
4722
4723 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4724 XSETCONS (new, p);
4725 XSETCAR (new, Fpurecopy (car));
4726 XSETCDR (new, Fpurecopy (cdr));
4727 return new;
4728 }
4729
4730
4731 /* Value is a float object with value NUM allocated from pure space. */
4732
4733 static Lisp_Object
4734 make_pure_float (double num)
4735 {
4736 register Lisp_Object new;
4737 struct Lisp_Float *p;
4738
4739 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4740 XSETFLOAT (new, p);
4741 XFLOAT_INIT (new, num);
4742 return new;
4743 }
4744
4745
4746 /* Return a vector with room for LEN Lisp_Objects allocated from
4747 pure space. */
4748
4749 Lisp_Object
4750 make_pure_vector (EMACS_INT len)
4751 {
4752 Lisp_Object new;
4753 struct Lisp_Vector *p;
4754 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4755
4756 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4757 XSETVECTOR (new, p);
4758 XVECTOR (new)->size = len;
4759 return new;
4760 }
4761
4762
4763 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4764 doc: /* Make a copy of object OBJ in pure storage.
4765 Recursively copies contents of vectors and cons cells.
4766 Does not copy symbols. Copies strings without text properties. */)
4767 (register Lisp_Object obj)
4768 {
4769 if (NILP (Vpurify_flag))
4770 return obj;
4771
4772 if (PURE_POINTER_P (XPNTR (obj)))
4773 return obj;
4774
4775 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4776 {
4777 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4778 if (!NILP (tmp))
4779 return tmp;
4780 }
4781
4782 if (CONSP (obj))
4783 obj = pure_cons (XCAR (obj), XCDR (obj));
4784 else if (FLOATP (obj))
4785 obj = make_pure_float (XFLOAT_DATA (obj));
4786 else if (STRINGP (obj))
4787 obj = make_pure_string (SDATA (obj), SCHARS (obj),
4788 SBYTES (obj),
4789 STRING_MULTIBYTE (obj));
4790 else if (COMPILEDP (obj) || VECTORP (obj))
4791 {
4792 register struct Lisp_Vector *vec;
4793 register EMACS_INT i;
4794 EMACS_INT size;
4795
4796 size = XVECTOR (obj)->size;
4797 if (size & PSEUDOVECTOR_FLAG)
4798 size &= PSEUDOVECTOR_SIZE_MASK;
4799 vec = XVECTOR (make_pure_vector (size));
4800 for (i = 0; i < size; i++)
4801 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4802 if (COMPILEDP (obj))
4803 {
4804 XSETPVECTYPE (vec, PVEC_COMPILED);
4805 XSETCOMPILED (obj, vec);
4806 }
4807 else
4808 XSETVECTOR (obj, vec);
4809 }
4810 else if (MARKERP (obj))
4811 error ("Attempt to copy a marker to pure storage");
4812 else
4813 /* Not purified, don't hash-cons. */
4814 return obj;
4815
4816 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4817 Fputhash (obj, obj, Vpurify_flag);
4818
4819 return obj;
4820 }
4821
4822
4823 \f
4824 /***********************************************************************
4825 Protection from GC
4826 ***********************************************************************/
4827
4828 /* Put an entry in staticvec, pointing at the variable with address
4829 VARADDRESS. */
4830
4831 void
4832 staticpro (Lisp_Object *varaddress)
4833 {
4834 staticvec[staticidx++] = varaddress;
4835 if (staticidx >= NSTATICS)
4836 abort ();
4837 }
4838
4839 \f
4840 /***********************************************************************
4841 Protection from GC
4842 ***********************************************************************/
4843
4844 /* Temporarily prevent garbage collection. */
4845
4846 int
4847 inhibit_garbage_collection (void)
4848 {
4849 int count = SPECPDL_INDEX ();
4850 int nbits = min (VALBITS, BITS_PER_INT);
4851
4852 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4853 return count;
4854 }
4855
4856
4857 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4858 doc: /* Reclaim storage for Lisp objects no longer needed.
4859 Garbage collection happens automatically if you cons more than
4860 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4861 `garbage-collect' normally returns a list with info on amount of space in use:
4862 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4863 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4864 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4865 (USED-STRINGS . FREE-STRINGS))
4866 However, if there was overflow in pure space, `garbage-collect'
4867 returns nil, because real GC can't be done. */)
4868 (void)
4869 {
4870 register struct specbinding *bind;
4871 struct catchtag *catch;
4872 struct handler *handler;
4873 char stack_top_variable;
4874 register int i;
4875 int message_p;
4876 Lisp_Object total[8];
4877 int count = SPECPDL_INDEX ();
4878 EMACS_TIME t1, t2, t3;
4879
4880 if (abort_on_gc)
4881 abort ();
4882
4883 /* Can't GC if pure storage overflowed because we can't determine
4884 if something is a pure object or not. */
4885 if (pure_bytes_used_before_overflow)
4886 return Qnil;
4887
4888 CHECK_CONS_LIST ();
4889
4890 /* Don't keep undo information around forever.
4891 Do this early on, so it is no problem if the user quits. */
4892 {
4893 register struct buffer *nextb = all_buffers;
4894
4895 while (nextb)
4896 {
4897 /* If a buffer's undo list is Qt, that means that undo is
4898 turned off in that buffer. Calling truncate_undo_list on
4899 Qt tends to return NULL, which effectively turns undo back on.
4900 So don't call truncate_undo_list if undo_list is Qt. */
4901 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
4902 truncate_undo_list (nextb);
4903
4904 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4905 if (nextb->base_buffer == 0 && !NILP (nextb->name)
4906 && ! nextb->text->inhibit_shrinking)
4907 {
4908 /* If a buffer's gap size is more than 10% of the buffer
4909 size, or larger than 2000 bytes, then shrink it
4910 accordingly. Keep a minimum size of 20 bytes. */
4911 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4912
4913 if (nextb->text->gap_size > size)
4914 {
4915 struct buffer *save_current = current_buffer;
4916 current_buffer = nextb;
4917 make_gap (-(nextb->text->gap_size - size));
4918 current_buffer = save_current;
4919 }
4920 }
4921
4922 nextb = nextb->next;
4923 }
4924 }
4925
4926 EMACS_GET_TIME (t1);
4927
4928 /* In case user calls debug_print during GC,
4929 don't let that cause a recursive GC. */
4930 consing_since_gc = 0;
4931
4932 /* Save what's currently displayed in the echo area. */
4933 message_p = push_message ();
4934 record_unwind_protect (pop_message_unwind, Qnil);
4935
4936 /* Save a copy of the contents of the stack, for debugging. */
4937 #if MAX_SAVE_STACK > 0
4938 if (NILP (Vpurify_flag))
4939 {
4940 i = &stack_top_variable - stack_bottom;
4941 if (i < 0) i = -i;
4942 if (i < MAX_SAVE_STACK)
4943 {
4944 if (stack_copy == 0)
4945 stack_copy = (char *) xmalloc (stack_copy_size = i);
4946 else if (stack_copy_size < i)
4947 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4948 if (stack_copy)
4949 {
4950 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4951 memcpy (stack_copy, stack_bottom, i);
4952 else
4953 memcpy (stack_copy, &stack_top_variable, i);
4954 }
4955 }
4956 }
4957 #endif /* MAX_SAVE_STACK > 0 */
4958
4959 if (garbage_collection_messages)
4960 message1_nolog ("Garbage collecting...");
4961
4962 BLOCK_INPUT;
4963
4964 shrink_regexp_cache ();
4965
4966 gc_in_progress = 1;
4967
4968 /* clear_marks (); */
4969
4970 /* Mark all the special slots that serve as the roots of accessibility. */
4971
4972 for (i = 0; i < staticidx; i++)
4973 mark_object (*staticvec[i]);
4974
4975 for (bind = specpdl; bind != specpdl_ptr; bind++)
4976 {
4977 mark_object (bind->symbol);
4978 mark_object (bind->old_value);
4979 }
4980 mark_terminals ();
4981 mark_kboards ();
4982 mark_ttys ();
4983
4984 #ifdef USE_GTK
4985 {
4986 extern void xg_mark_data (void);
4987 xg_mark_data ();
4988 }
4989 #endif
4990
4991 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4992 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4993 mark_stack ();
4994 #else
4995 {
4996 register struct gcpro *tail;
4997 for (tail = gcprolist; tail; tail = tail->next)
4998 for (i = 0; i < tail->nvars; i++)
4999 mark_object (tail->var[i]);
5000 }
5001 #endif
5002
5003 mark_byte_stack ();
5004 for (catch = catchlist; catch; catch = catch->next)
5005 {
5006 mark_object (catch->tag);
5007 mark_object (catch->val);
5008 }
5009 for (handler = handlerlist; handler; handler = handler->next)
5010 {
5011 mark_object (handler->handler);
5012 mark_object (handler->var);
5013 }
5014 mark_backtrace ();
5015
5016 #ifdef HAVE_WINDOW_SYSTEM
5017 mark_fringe_data ();
5018 #endif
5019
5020 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5021 mark_stack ();
5022 #endif
5023
5024 /* Everything is now marked, except for the things that require special
5025 finalization, i.e. the undo_list.
5026 Look thru every buffer's undo list
5027 for elements that update markers that were not marked,
5028 and delete them. */
5029 {
5030 register struct buffer *nextb = all_buffers;
5031
5032 while (nextb)
5033 {
5034 /* If a buffer's undo list is Qt, that means that undo is
5035 turned off in that buffer. Calling truncate_undo_list on
5036 Qt tends to return NULL, which effectively turns undo back on.
5037 So don't call truncate_undo_list if undo_list is Qt. */
5038 if (! EQ (nextb->undo_list, Qt))
5039 {
5040 Lisp_Object tail, prev;
5041 tail = nextb->undo_list;
5042 prev = Qnil;
5043 while (CONSP (tail))
5044 {
5045 if (CONSP (XCAR (tail))
5046 && MARKERP (XCAR (XCAR (tail)))
5047 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5048 {
5049 if (NILP (prev))
5050 nextb->undo_list = tail = XCDR (tail);
5051 else
5052 {
5053 tail = XCDR (tail);
5054 XSETCDR (prev, tail);
5055 }
5056 }
5057 else
5058 {
5059 prev = tail;
5060 tail = XCDR (tail);
5061 }
5062 }
5063 }
5064 /* Now that we have stripped the elements that need not be in the
5065 undo_list any more, we can finally mark the list. */
5066 mark_object (nextb->undo_list);
5067
5068 nextb = nextb->next;
5069 }
5070 }
5071
5072 gc_sweep ();
5073
5074 /* Clear the mark bits that we set in certain root slots. */
5075
5076 unmark_byte_stack ();
5077 VECTOR_UNMARK (&buffer_defaults);
5078 VECTOR_UNMARK (&buffer_local_symbols);
5079
5080 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5081 dump_zombies ();
5082 #endif
5083
5084 UNBLOCK_INPUT;
5085
5086 CHECK_CONS_LIST ();
5087
5088 /* clear_marks (); */
5089 gc_in_progress = 0;
5090
5091 consing_since_gc = 0;
5092 if (gc_cons_threshold < 10000)
5093 gc_cons_threshold = 10000;
5094
5095 if (FLOATP (Vgc_cons_percentage))
5096 { /* Set gc_cons_combined_threshold. */
5097 EMACS_INT total = 0;
5098
5099 total += total_conses * sizeof (struct Lisp_Cons);
5100 total += total_symbols * sizeof (struct Lisp_Symbol);
5101 total += total_markers * sizeof (union Lisp_Misc);
5102 total += total_string_size;
5103 total += total_vector_size * sizeof (Lisp_Object);
5104 total += total_floats * sizeof (struct Lisp_Float);
5105 total += total_intervals * sizeof (struct interval);
5106 total += total_strings * sizeof (struct Lisp_String);
5107
5108 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5109 }
5110 else
5111 gc_relative_threshold = 0;
5112
5113 if (garbage_collection_messages)
5114 {
5115 if (message_p || minibuf_level > 0)
5116 restore_message ();
5117 else
5118 message1_nolog ("Garbage collecting...done");
5119 }
5120
5121 unbind_to (count, Qnil);
5122
5123 total[0] = Fcons (make_number (total_conses),
5124 make_number (total_free_conses));
5125 total[1] = Fcons (make_number (total_symbols),
5126 make_number (total_free_symbols));
5127 total[2] = Fcons (make_number (total_markers),
5128 make_number (total_free_markers));
5129 total[3] = make_number (total_string_size);
5130 total[4] = make_number (total_vector_size);
5131 total[5] = Fcons (make_number (total_floats),
5132 make_number (total_free_floats));
5133 total[6] = Fcons (make_number (total_intervals),
5134 make_number (total_free_intervals));
5135 total[7] = Fcons (make_number (total_strings),
5136 make_number (total_free_strings));
5137
5138 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5139 {
5140 /* Compute average percentage of zombies. */
5141 double nlive = 0;
5142
5143 for (i = 0; i < 7; ++i)
5144 if (CONSP (total[i]))
5145 nlive += XFASTINT (XCAR (total[i]));
5146
5147 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5148 max_live = max (nlive, max_live);
5149 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5150 max_zombies = max (nzombies, max_zombies);
5151 ++ngcs;
5152 }
5153 #endif
5154
5155 if (!NILP (Vpost_gc_hook))
5156 {
5157 int count = inhibit_garbage_collection ();
5158 safe_run_hooks (Qpost_gc_hook);
5159 unbind_to (count, Qnil);
5160 }
5161
5162 /* Accumulate statistics. */
5163 EMACS_GET_TIME (t2);
5164 EMACS_SUB_TIME (t3, t2, t1);
5165 if (FLOATP (Vgc_elapsed))
5166 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5167 EMACS_SECS (t3) +
5168 EMACS_USECS (t3) * 1.0e-6);
5169 gcs_done++;
5170
5171 return Flist (sizeof total / sizeof *total, total);
5172 }
5173
5174
5175 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5176 only interesting objects referenced from glyphs are strings. */
5177
5178 static void
5179 mark_glyph_matrix (struct glyph_matrix *matrix)
5180 {
5181 struct glyph_row *row = matrix->rows;
5182 struct glyph_row *end = row + matrix->nrows;
5183
5184 for (; row < end; ++row)
5185 if (row->enabled_p)
5186 {
5187 int area;
5188 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5189 {
5190 struct glyph *glyph = row->glyphs[area];
5191 struct glyph *end_glyph = glyph + row->used[area];
5192
5193 for (; glyph < end_glyph; ++glyph)
5194 if (STRINGP (glyph->object)
5195 && !STRING_MARKED_P (XSTRING (glyph->object)))
5196 mark_object (glyph->object);
5197 }
5198 }
5199 }
5200
5201
5202 /* Mark Lisp faces in the face cache C. */
5203
5204 static void
5205 mark_face_cache (struct face_cache *c)
5206 {
5207 if (c)
5208 {
5209 int i, j;
5210 for (i = 0; i < c->used; ++i)
5211 {
5212 struct face *face = FACE_FROM_ID (c->f, i);
5213
5214 if (face)
5215 {
5216 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5217 mark_object (face->lface[j]);
5218 }
5219 }
5220 }
5221 }
5222
5223
5224 \f
5225 /* Mark reference to a Lisp_Object.
5226 If the object referred to has not been seen yet, recursively mark
5227 all the references contained in it. */
5228
5229 #define LAST_MARKED_SIZE 500
5230 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5231 int last_marked_index;
5232
5233 /* For debugging--call abort when we cdr down this many
5234 links of a list, in mark_object. In debugging,
5235 the call to abort will hit a breakpoint.
5236 Normally this is zero and the check never goes off. */
5237 static int mark_object_loop_halt;
5238
5239 static void
5240 mark_vectorlike (struct Lisp_Vector *ptr)
5241 {
5242 register EMACS_UINT size = ptr->size;
5243 register EMACS_UINT i;
5244
5245 eassert (!VECTOR_MARKED_P (ptr));
5246 VECTOR_MARK (ptr); /* Else mark it */
5247 if (size & PSEUDOVECTOR_FLAG)
5248 size &= PSEUDOVECTOR_SIZE_MASK;
5249
5250 /* Note that this size is not the memory-footprint size, but only
5251 the number of Lisp_Object fields that we should trace.
5252 The distinction is used e.g. by Lisp_Process which places extra
5253 non-Lisp_Object fields at the end of the structure. */
5254 for (i = 0; i < size; i++) /* and then mark its elements */
5255 mark_object (ptr->contents[i]);
5256 }
5257
5258 /* Like mark_vectorlike but optimized for char-tables (and
5259 sub-char-tables) assuming that the contents are mostly integers or
5260 symbols. */
5261
5262 static void
5263 mark_char_table (struct Lisp_Vector *ptr)
5264 {
5265 register EMACS_UINT size = ptr->size & PSEUDOVECTOR_SIZE_MASK;
5266 register EMACS_UINT i;
5267
5268 eassert (!VECTOR_MARKED_P (ptr));
5269 VECTOR_MARK (ptr);
5270 for (i = 0; i < size; i++)
5271 {
5272 Lisp_Object val = ptr->contents[i];
5273
5274 if (INTEGERP (val) || SYMBOLP (val) && XSYMBOL (val)->gcmarkbit)
5275 continue;
5276 if (SUB_CHAR_TABLE_P (val))
5277 {
5278 if (! VECTOR_MARKED_P (XVECTOR (val)))
5279 mark_char_table (XVECTOR (val));
5280 }
5281 else
5282 mark_object (val);
5283 }
5284 }
5285
5286 void
5287 mark_object (Lisp_Object arg)
5288 {
5289 register Lisp_Object obj = arg;
5290 #ifdef GC_CHECK_MARKED_OBJECTS
5291 void *po;
5292 struct mem_node *m;
5293 #endif
5294 int cdr_count = 0;
5295
5296 loop:
5297
5298 if (PURE_POINTER_P (XPNTR (obj)))
5299 return;
5300
5301 last_marked[last_marked_index++] = obj;
5302 if (last_marked_index == LAST_MARKED_SIZE)
5303 last_marked_index = 0;
5304
5305 /* Perform some sanity checks on the objects marked here. Abort if
5306 we encounter an object we know is bogus. This increases GC time
5307 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5308 #ifdef GC_CHECK_MARKED_OBJECTS
5309
5310 po = (void *) XPNTR (obj);
5311
5312 /* Check that the object pointed to by PO is known to be a Lisp
5313 structure allocated from the heap. */
5314 #define CHECK_ALLOCATED() \
5315 do { \
5316 m = mem_find (po); \
5317 if (m == MEM_NIL) \
5318 abort (); \
5319 } while (0)
5320
5321 /* Check that the object pointed to by PO is live, using predicate
5322 function LIVEP. */
5323 #define CHECK_LIVE(LIVEP) \
5324 do { \
5325 if (!LIVEP (m, po)) \
5326 abort (); \
5327 } while (0)
5328
5329 /* Check both of the above conditions. */
5330 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5331 do { \
5332 CHECK_ALLOCATED (); \
5333 CHECK_LIVE (LIVEP); \
5334 } while (0) \
5335
5336 #else /* not GC_CHECK_MARKED_OBJECTS */
5337
5338 #define CHECK_ALLOCATED() (void) 0
5339 #define CHECK_LIVE(LIVEP) (void) 0
5340 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5341
5342 #endif /* not GC_CHECK_MARKED_OBJECTS */
5343
5344 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5345 {
5346 case Lisp_String:
5347 {
5348 register struct Lisp_String *ptr = XSTRING (obj);
5349 if (STRING_MARKED_P (ptr))
5350 break;
5351 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5352 MARK_INTERVAL_TREE (ptr->intervals);
5353 MARK_STRING (ptr);
5354 #ifdef GC_CHECK_STRING_BYTES
5355 /* Check that the string size recorded in the string is the
5356 same as the one recorded in the sdata structure. */
5357 CHECK_STRING_BYTES (ptr);
5358 #endif /* GC_CHECK_STRING_BYTES */
5359 }
5360 break;
5361
5362 case Lisp_Vectorlike:
5363 if (VECTOR_MARKED_P (XVECTOR (obj)))
5364 break;
5365 #ifdef GC_CHECK_MARKED_OBJECTS
5366 m = mem_find (po);
5367 if (m == MEM_NIL && !SUBRP (obj)
5368 && po != &buffer_defaults
5369 && po != &buffer_local_symbols)
5370 abort ();
5371 #endif /* GC_CHECK_MARKED_OBJECTS */
5372
5373 if (BUFFERP (obj))
5374 {
5375 #ifdef GC_CHECK_MARKED_OBJECTS
5376 if (po != &buffer_defaults && po != &buffer_local_symbols)
5377 {
5378 struct buffer *b;
5379 for (b = all_buffers; b && b != po; b = b->next)
5380 ;
5381 if (b == NULL)
5382 abort ();
5383 }
5384 #endif /* GC_CHECK_MARKED_OBJECTS */
5385 mark_buffer (obj);
5386 }
5387 else if (SUBRP (obj))
5388 break;
5389 else if (COMPILEDP (obj))
5390 /* We could treat this just like a vector, but it is better to
5391 save the COMPILED_CONSTANTS element for last and avoid
5392 recursion there. */
5393 {
5394 register struct Lisp_Vector *ptr = XVECTOR (obj);
5395 register EMACS_UINT size = ptr->size;
5396 register EMACS_UINT i;
5397
5398 CHECK_LIVE (live_vector_p);
5399 VECTOR_MARK (ptr); /* Else mark it */
5400 size &= PSEUDOVECTOR_SIZE_MASK;
5401 for (i = 0; i < size; i++) /* and then mark its elements */
5402 {
5403 if (i != COMPILED_CONSTANTS)
5404 mark_object (ptr->contents[i]);
5405 }
5406 obj = ptr->contents[COMPILED_CONSTANTS];
5407 goto loop;
5408 }
5409 else if (FRAMEP (obj))
5410 {
5411 register struct frame *ptr = XFRAME (obj);
5412 mark_vectorlike (XVECTOR (obj));
5413 mark_face_cache (ptr->face_cache);
5414 }
5415 else if (WINDOWP (obj))
5416 {
5417 register struct Lisp_Vector *ptr = XVECTOR (obj);
5418 struct window *w = XWINDOW (obj);
5419 mark_vectorlike (ptr);
5420 /* Mark glyphs for leaf windows. Marking window matrices is
5421 sufficient because frame matrices use the same glyph
5422 memory. */
5423 if (NILP (w->hchild)
5424 && NILP (w->vchild)
5425 && w->current_matrix)
5426 {
5427 mark_glyph_matrix (w->current_matrix);
5428 mark_glyph_matrix (w->desired_matrix);
5429 }
5430 }
5431 else if (HASH_TABLE_P (obj))
5432 {
5433 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5434 mark_vectorlike ((struct Lisp_Vector *)h);
5435 /* If hash table is not weak, mark all keys and values.
5436 For weak tables, mark only the vector. */
5437 if (NILP (h->weak))
5438 mark_object (h->key_and_value);
5439 else
5440 VECTOR_MARK (XVECTOR (h->key_and_value));
5441 }
5442 else if (CHAR_TABLE_P (obj))
5443 mark_char_table (XVECTOR (obj));
5444 else
5445 mark_vectorlike (XVECTOR (obj));
5446 break;
5447
5448 case Lisp_Symbol:
5449 {
5450 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5451 struct Lisp_Symbol *ptrx;
5452
5453 if (ptr->gcmarkbit)
5454 break;
5455 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5456 ptr->gcmarkbit = 1;
5457 mark_object (ptr->function);
5458 mark_object (ptr->plist);
5459 switch (ptr->redirect)
5460 {
5461 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5462 case SYMBOL_VARALIAS:
5463 {
5464 Lisp_Object tem;
5465 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5466 mark_object (tem);
5467 break;
5468 }
5469 case SYMBOL_LOCALIZED:
5470 {
5471 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5472 /* If the value is forwarded to a buffer or keyboard field,
5473 these are marked when we see the corresponding object.
5474 And if it's forwarded to a C variable, either it's not
5475 a Lisp_Object var, or it's staticpro'd already. */
5476 mark_object (blv->where);
5477 mark_object (blv->valcell);
5478 mark_object (blv->defcell);
5479 break;
5480 }
5481 case SYMBOL_FORWARDED:
5482 /* If the value is forwarded to a buffer or keyboard field,
5483 these are marked when we see the corresponding object.
5484 And if it's forwarded to a C variable, either it's not
5485 a Lisp_Object var, or it's staticpro'd already. */
5486 break;
5487 default: abort ();
5488 }
5489 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5490 MARK_STRING (XSTRING (ptr->xname));
5491 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5492
5493 ptr = ptr->next;
5494 if (ptr)
5495 {
5496 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5497 XSETSYMBOL (obj, ptrx);
5498 goto loop;
5499 }
5500 }
5501 break;
5502
5503 case Lisp_Misc:
5504 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5505 if (XMISCANY (obj)->gcmarkbit)
5506 break;
5507 XMISCANY (obj)->gcmarkbit = 1;
5508
5509 switch (XMISCTYPE (obj))
5510 {
5511
5512 case Lisp_Misc_Marker:
5513 /* DO NOT mark thru the marker's chain.
5514 The buffer's markers chain does not preserve markers from gc;
5515 instead, markers are removed from the chain when freed by gc. */
5516 break;
5517
5518 case Lisp_Misc_Save_Value:
5519 #if GC_MARK_STACK
5520 {
5521 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5522 /* If DOGC is set, POINTER is the address of a memory
5523 area containing INTEGER potential Lisp_Objects. */
5524 if (ptr->dogc)
5525 {
5526 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5527 int nelt;
5528 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5529 mark_maybe_object (*p);
5530 }
5531 }
5532 #endif
5533 break;
5534
5535 case Lisp_Misc_Overlay:
5536 {
5537 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5538 mark_object (ptr->start);
5539 mark_object (ptr->end);
5540 mark_object (ptr->plist);
5541 if (ptr->next)
5542 {
5543 XSETMISC (obj, ptr->next);
5544 goto loop;
5545 }
5546 }
5547 break;
5548
5549 default:
5550 abort ();
5551 }
5552 break;
5553
5554 case Lisp_Cons:
5555 {
5556 register struct Lisp_Cons *ptr = XCONS (obj);
5557 if (CONS_MARKED_P (ptr))
5558 break;
5559 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5560 CONS_MARK (ptr);
5561 /* If the cdr is nil, avoid recursion for the car. */
5562 if (EQ (ptr->u.cdr, Qnil))
5563 {
5564 obj = ptr->car;
5565 cdr_count = 0;
5566 goto loop;
5567 }
5568 mark_object (ptr->car);
5569 obj = ptr->u.cdr;
5570 cdr_count++;
5571 if (cdr_count == mark_object_loop_halt)
5572 abort ();
5573 goto loop;
5574 }
5575
5576 case Lisp_Float:
5577 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5578 FLOAT_MARK (XFLOAT (obj));
5579 break;
5580
5581 case_Lisp_Int:
5582 break;
5583
5584 default:
5585 abort ();
5586 }
5587
5588 #undef CHECK_LIVE
5589 #undef CHECK_ALLOCATED
5590 #undef CHECK_ALLOCATED_AND_LIVE
5591 }
5592
5593 /* Mark the pointers in a buffer structure. */
5594
5595 static void
5596 mark_buffer (Lisp_Object buf)
5597 {
5598 register struct buffer *buffer = XBUFFER (buf);
5599 register Lisp_Object *ptr, tmp;
5600 Lisp_Object base_buffer;
5601
5602 eassert (!VECTOR_MARKED_P (buffer));
5603 VECTOR_MARK (buffer);
5604
5605 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5606
5607 /* For now, we just don't mark the undo_list. It's done later in
5608 a special way just before the sweep phase, and after stripping
5609 some of its elements that are not needed any more. */
5610
5611 if (buffer->overlays_before)
5612 {
5613 XSETMISC (tmp, buffer->overlays_before);
5614 mark_object (tmp);
5615 }
5616 if (buffer->overlays_after)
5617 {
5618 XSETMISC (tmp, buffer->overlays_after);
5619 mark_object (tmp);
5620 }
5621
5622 /* buffer-local Lisp variables start at `undo_list',
5623 tho only the ones from `name' on are GC'd normally. */
5624 for (ptr = &buffer->name;
5625 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5626 ptr++)
5627 mark_object (*ptr);
5628
5629 /* If this is an indirect buffer, mark its base buffer. */
5630 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5631 {
5632 XSETBUFFER (base_buffer, buffer->base_buffer);
5633 mark_buffer (base_buffer);
5634 }
5635 }
5636
5637 /* Mark the Lisp pointers in the terminal objects.
5638 Called by the Fgarbage_collector. */
5639
5640 static void
5641 mark_terminals (void)
5642 {
5643 struct terminal *t;
5644 for (t = terminal_list; t; t = t->next_terminal)
5645 {
5646 eassert (t->name != NULL);
5647 if (!VECTOR_MARKED_P (t))
5648 {
5649 #ifdef HAVE_WINDOW_SYSTEM
5650 mark_image_cache (t->image_cache);
5651 #endif /* HAVE_WINDOW_SYSTEM */
5652 mark_vectorlike ((struct Lisp_Vector *)t);
5653 }
5654 }
5655 }
5656
5657
5658
5659 /* Value is non-zero if OBJ will survive the current GC because it's
5660 either marked or does not need to be marked to survive. */
5661
5662 int
5663 survives_gc_p (Lisp_Object obj)
5664 {
5665 int survives_p;
5666
5667 switch (XTYPE (obj))
5668 {
5669 case_Lisp_Int:
5670 survives_p = 1;
5671 break;
5672
5673 case Lisp_Symbol:
5674 survives_p = XSYMBOL (obj)->gcmarkbit;
5675 break;
5676
5677 case Lisp_Misc:
5678 survives_p = XMISCANY (obj)->gcmarkbit;
5679 break;
5680
5681 case Lisp_String:
5682 survives_p = STRING_MARKED_P (XSTRING (obj));
5683 break;
5684
5685 case Lisp_Vectorlike:
5686 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5687 break;
5688
5689 case Lisp_Cons:
5690 survives_p = CONS_MARKED_P (XCONS (obj));
5691 break;
5692
5693 case Lisp_Float:
5694 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5695 break;
5696
5697 default:
5698 abort ();
5699 }
5700
5701 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5702 }
5703
5704
5705 \f
5706 /* Sweep: find all structures not marked, and free them. */
5707
5708 static void
5709 gc_sweep (void)
5710 {
5711 /* Remove or mark entries in weak hash tables.
5712 This must be done before any object is unmarked. */
5713 sweep_weak_hash_tables ();
5714
5715 sweep_strings ();
5716 #ifdef GC_CHECK_STRING_BYTES
5717 if (!noninteractive)
5718 check_string_bytes (1);
5719 #endif
5720
5721 /* Put all unmarked conses on free list */
5722 {
5723 register struct cons_block *cblk;
5724 struct cons_block **cprev = &cons_block;
5725 register int lim = cons_block_index;
5726 register int num_free = 0, num_used = 0;
5727
5728 cons_free_list = 0;
5729
5730 for (cblk = cons_block; cblk; cblk = *cprev)
5731 {
5732 register int i = 0;
5733 int this_free = 0;
5734 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5735
5736 /* Scan the mark bits an int at a time. */
5737 for (i = 0; i <= ilim; i++)
5738 {
5739 if (cblk->gcmarkbits[i] == -1)
5740 {
5741 /* Fast path - all cons cells for this int are marked. */
5742 cblk->gcmarkbits[i] = 0;
5743 num_used += BITS_PER_INT;
5744 }
5745 else
5746 {
5747 /* Some cons cells for this int are not marked.
5748 Find which ones, and free them. */
5749 int start, pos, stop;
5750
5751 start = i * BITS_PER_INT;
5752 stop = lim - start;
5753 if (stop > BITS_PER_INT)
5754 stop = BITS_PER_INT;
5755 stop += start;
5756
5757 for (pos = start; pos < stop; pos++)
5758 {
5759 if (!CONS_MARKED_P (&cblk->conses[pos]))
5760 {
5761 this_free++;
5762 cblk->conses[pos].u.chain = cons_free_list;
5763 cons_free_list = &cblk->conses[pos];
5764 #if GC_MARK_STACK
5765 cons_free_list->car = Vdead;
5766 #endif
5767 }
5768 else
5769 {
5770 num_used++;
5771 CONS_UNMARK (&cblk->conses[pos]);
5772 }
5773 }
5774 }
5775 }
5776
5777 lim = CONS_BLOCK_SIZE;
5778 /* If this block contains only free conses and we have already
5779 seen more than two blocks worth of free conses then deallocate
5780 this block. */
5781 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5782 {
5783 *cprev = cblk->next;
5784 /* Unhook from the free list. */
5785 cons_free_list = cblk->conses[0].u.chain;
5786 lisp_align_free (cblk);
5787 n_cons_blocks--;
5788 }
5789 else
5790 {
5791 num_free += this_free;
5792 cprev = &cblk->next;
5793 }
5794 }
5795 total_conses = num_used;
5796 total_free_conses = num_free;
5797 }
5798
5799 /* Put all unmarked floats on free list */
5800 {
5801 register struct float_block *fblk;
5802 struct float_block **fprev = &float_block;
5803 register int lim = float_block_index;
5804 register int num_free = 0, num_used = 0;
5805
5806 float_free_list = 0;
5807
5808 for (fblk = float_block; fblk; fblk = *fprev)
5809 {
5810 register int i;
5811 int this_free = 0;
5812 for (i = 0; i < lim; i++)
5813 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5814 {
5815 this_free++;
5816 fblk->floats[i].u.chain = float_free_list;
5817 float_free_list = &fblk->floats[i];
5818 }
5819 else
5820 {
5821 num_used++;
5822 FLOAT_UNMARK (&fblk->floats[i]);
5823 }
5824 lim = FLOAT_BLOCK_SIZE;
5825 /* If this block contains only free floats and we have already
5826 seen more than two blocks worth of free floats then deallocate
5827 this block. */
5828 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5829 {
5830 *fprev = fblk->next;
5831 /* Unhook from the free list. */
5832 float_free_list = fblk->floats[0].u.chain;
5833 lisp_align_free (fblk);
5834 n_float_blocks--;
5835 }
5836 else
5837 {
5838 num_free += this_free;
5839 fprev = &fblk->next;
5840 }
5841 }
5842 total_floats = num_used;
5843 total_free_floats = num_free;
5844 }
5845
5846 /* Put all unmarked intervals on free list */
5847 {
5848 register struct interval_block *iblk;
5849 struct interval_block **iprev = &interval_block;
5850 register int lim = interval_block_index;
5851 register int num_free = 0, num_used = 0;
5852
5853 interval_free_list = 0;
5854
5855 for (iblk = interval_block; iblk; iblk = *iprev)
5856 {
5857 register int i;
5858 int this_free = 0;
5859
5860 for (i = 0; i < lim; i++)
5861 {
5862 if (!iblk->intervals[i].gcmarkbit)
5863 {
5864 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5865 interval_free_list = &iblk->intervals[i];
5866 this_free++;
5867 }
5868 else
5869 {
5870 num_used++;
5871 iblk->intervals[i].gcmarkbit = 0;
5872 }
5873 }
5874 lim = INTERVAL_BLOCK_SIZE;
5875 /* If this block contains only free intervals and we have already
5876 seen more than two blocks worth of free intervals then
5877 deallocate this block. */
5878 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5879 {
5880 *iprev = iblk->next;
5881 /* Unhook from the free list. */
5882 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5883 lisp_free (iblk);
5884 n_interval_blocks--;
5885 }
5886 else
5887 {
5888 num_free += this_free;
5889 iprev = &iblk->next;
5890 }
5891 }
5892 total_intervals = num_used;
5893 total_free_intervals = num_free;
5894 }
5895
5896 /* Put all unmarked symbols on free list */
5897 {
5898 register struct symbol_block *sblk;
5899 struct symbol_block **sprev = &symbol_block;
5900 register int lim = symbol_block_index;
5901 register int num_free = 0, num_used = 0;
5902
5903 symbol_free_list = NULL;
5904
5905 for (sblk = symbol_block; sblk; sblk = *sprev)
5906 {
5907 int this_free = 0;
5908 struct Lisp_Symbol *sym = sblk->symbols;
5909 struct Lisp_Symbol *end = sym + lim;
5910
5911 for (; sym < end; ++sym)
5912 {
5913 /* Check if the symbol was created during loadup. In such a case
5914 it might be pointed to by pure bytecode which we don't trace,
5915 so we conservatively assume that it is live. */
5916 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5917
5918 if (!sym->gcmarkbit && !pure_p)
5919 {
5920 if (sym->redirect == SYMBOL_LOCALIZED)
5921 xfree (SYMBOL_BLV (sym));
5922 sym->next = symbol_free_list;
5923 symbol_free_list = sym;
5924 #if GC_MARK_STACK
5925 symbol_free_list->function = Vdead;
5926 #endif
5927 ++this_free;
5928 }
5929 else
5930 {
5931 ++num_used;
5932 if (!pure_p)
5933 UNMARK_STRING (XSTRING (sym->xname));
5934 sym->gcmarkbit = 0;
5935 }
5936 }
5937
5938 lim = SYMBOL_BLOCK_SIZE;
5939 /* If this block contains only free symbols and we have already
5940 seen more than two blocks worth of free symbols then deallocate
5941 this block. */
5942 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5943 {
5944 *sprev = sblk->next;
5945 /* Unhook from the free list. */
5946 symbol_free_list = sblk->symbols[0].next;
5947 lisp_free (sblk);
5948 n_symbol_blocks--;
5949 }
5950 else
5951 {
5952 num_free += this_free;
5953 sprev = &sblk->next;
5954 }
5955 }
5956 total_symbols = num_used;
5957 total_free_symbols = num_free;
5958 }
5959
5960 /* Put all unmarked misc's on free list.
5961 For a marker, first unchain it from the buffer it points into. */
5962 {
5963 register struct marker_block *mblk;
5964 struct marker_block **mprev = &marker_block;
5965 register int lim = marker_block_index;
5966 register int num_free = 0, num_used = 0;
5967
5968 marker_free_list = 0;
5969
5970 for (mblk = marker_block; mblk; mblk = *mprev)
5971 {
5972 register int i;
5973 int this_free = 0;
5974
5975 for (i = 0; i < lim; i++)
5976 {
5977 if (!mblk->markers[i].u_any.gcmarkbit)
5978 {
5979 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
5980 unchain_marker (&mblk->markers[i].u_marker);
5981 /* Set the type of the freed object to Lisp_Misc_Free.
5982 We could leave the type alone, since nobody checks it,
5983 but this might catch bugs faster. */
5984 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5985 mblk->markers[i].u_free.chain = marker_free_list;
5986 marker_free_list = &mblk->markers[i];
5987 this_free++;
5988 }
5989 else
5990 {
5991 num_used++;
5992 mblk->markers[i].u_any.gcmarkbit = 0;
5993 }
5994 }
5995 lim = MARKER_BLOCK_SIZE;
5996 /* If this block contains only free markers and we have already
5997 seen more than two blocks worth of free markers then deallocate
5998 this block. */
5999 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6000 {
6001 *mprev = mblk->next;
6002 /* Unhook from the free list. */
6003 marker_free_list = mblk->markers[0].u_free.chain;
6004 lisp_free (mblk);
6005 n_marker_blocks--;
6006 }
6007 else
6008 {
6009 num_free += this_free;
6010 mprev = &mblk->next;
6011 }
6012 }
6013
6014 total_markers = num_used;
6015 total_free_markers = num_free;
6016 }
6017
6018 /* Free all unmarked buffers */
6019 {
6020 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6021
6022 while (buffer)
6023 if (!VECTOR_MARKED_P (buffer))
6024 {
6025 if (prev)
6026 prev->next = buffer->next;
6027 else
6028 all_buffers = buffer->next;
6029 next = buffer->next;
6030 lisp_free (buffer);
6031 buffer = next;
6032 }
6033 else
6034 {
6035 VECTOR_UNMARK (buffer);
6036 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6037 prev = buffer, buffer = buffer->next;
6038 }
6039 }
6040
6041 /* Free all unmarked vectors */
6042 {
6043 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6044 total_vector_size = 0;
6045
6046 while (vector)
6047 if (!VECTOR_MARKED_P (vector))
6048 {
6049 if (prev)
6050 prev->next = vector->next;
6051 else
6052 all_vectors = vector->next;
6053 next = vector->next;
6054 lisp_free (vector);
6055 n_vectors--;
6056 vector = next;
6057
6058 }
6059 else
6060 {
6061 VECTOR_UNMARK (vector);
6062 if (vector->size & PSEUDOVECTOR_FLAG)
6063 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6064 else
6065 total_vector_size += vector->size;
6066 prev = vector, vector = vector->next;
6067 }
6068 }
6069
6070 #ifdef GC_CHECK_STRING_BYTES
6071 if (!noninteractive)
6072 check_string_bytes (1);
6073 #endif
6074 }
6075
6076
6077
6078 \f
6079 /* Debugging aids. */
6080
6081 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6082 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6083 This may be helpful in debugging Emacs's memory usage.
6084 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6085 (void)
6086 {
6087 Lisp_Object end;
6088
6089 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6090
6091 return end;
6092 }
6093
6094 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6095 doc: /* Return a list of counters that measure how much consing there has been.
6096 Each of these counters increments for a certain kind of object.
6097 The counters wrap around from the largest positive integer to zero.
6098 Garbage collection does not decrease them.
6099 The elements of the value are as follows:
6100 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6101 All are in units of 1 = one object consed
6102 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6103 objects consed.
6104 MISCS include overlays, markers, and some internal types.
6105 Frames, windows, buffers, and subprocesses count as vectors
6106 (but the contents of a buffer's text do not count here). */)
6107 (void)
6108 {
6109 Lisp_Object consed[8];
6110
6111 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6112 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6113 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6114 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6115 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6116 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6117 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6118 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6119
6120 return Flist (8, consed);
6121 }
6122
6123 int suppress_checking;
6124
6125 void
6126 die (const char *msg, const char *file, int line)
6127 {
6128 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6129 file, line, msg);
6130 abort ();
6131 }
6132 \f
6133 /* Initialization */
6134
6135 void
6136 init_alloc_once (void)
6137 {
6138 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6139 purebeg = PUREBEG;
6140 pure_size = PURESIZE;
6141 pure_bytes_used = 0;
6142 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6143 pure_bytes_used_before_overflow = 0;
6144
6145 /* Initialize the list of free aligned blocks. */
6146 free_ablock = NULL;
6147
6148 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6149 mem_init ();
6150 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6151 #endif
6152
6153 all_vectors = 0;
6154 ignore_warnings = 1;
6155 #ifdef DOUG_LEA_MALLOC
6156 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6157 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6158 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6159 #endif
6160 init_strings ();
6161 init_cons ();
6162 init_symbol ();
6163 init_marker ();
6164 init_float ();
6165 init_intervals ();
6166 init_weak_hash_tables ();
6167
6168 #ifdef REL_ALLOC
6169 malloc_hysteresis = 32;
6170 #else
6171 malloc_hysteresis = 0;
6172 #endif
6173
6174 refill_memory_reserve ();
6175
6176 ignore_warnings = 0;
6177 gcprolist = 0;
6178 byte_stack_list = 0;
6179 staticidx = 0;
6180 consing_since_gc = 0;
6181 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6182 gc_relative_threshold = 0;
6183 }
6184
6185 void
6186 init_alloc (void)
6187 {
6188 gcprolist = 0;
6189 byte_stack_list = 0;
6190 #if GC_MARK_STACK
6191 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6192 setjmp_tested_p = longjmps_done = 0;
6193 #endif
6194 #endif
6195 Vgc_elapsed = make_float (0.0);
6196 gcs_done = 0;
6197 }
6198
6199 void
6200 syms_of_alloc (void)
6201 {
6202 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6203 doc: /* *Number of bytes of consing between garbage collections.
6204 Garbage collection can happen automatically once this many bytes have been
6205 allocated since the last garbage collection. All data types count.
6206
6207 Garbage collection happens automatically only when `eval' is called.
6208
6209 By binding this temporarily to a large number, you can effectively
6210 prevent garbage collection during a part of the program.
6211 See also `gc-cons-percentage'. */);
6212
6213 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6214 doc: /* *Portion of the heap used for allocation.
6215 Garbage collection can happen automatically once this portion of the heap
6216 has been allocated since the last garbage collection.
6217 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6218 Vgc_cons_percentage = make_float (0.1);
6219
6220 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6221 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6222
6223 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6224 doc: /* Number of cons cells that have been consed so far. */);
6225
6226 DEFVAR_INT ("floats-consed", &floats_consed,
6227 doc: /* Number of floats that have been consed so far. */);
6228
6229 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6230 doc: /* Number of vector cells that have been consed so far. */);
6231
6232 DEFVAR_INT ("symbols-consed", &symbols_consed,
6233 doc: /* Number of symbols that have been consed so far. */);
6234
6235 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6236 doc: /* Number of string characters that have been consed so far. */);
6237
6238 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6239 doc: /* Number of miscellaneous objects that have been consed so far. */);
6240
6241 DEFVAR_INT ("intervals-consed", &intervals_consed,
6242 doc: /* Number of intervals that have been consed so far. */);
6243
6244 DEFVAR_INT ("strings-consed", &strings_consed,
6245 doc: /* Number of strings that have been consed so far. */);
6246
6247 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6248 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6249 This means that certain objects should be allocated in shared (pure) space.
6250 It can also be set to a hash-table, in which case this table is used to
6251 do hash-consing of the objects allocated to pure space. */);
6252
6253 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6254 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6255 garbage_collection_messages = 0;
6256
6257 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6258 doc: /* Hook run after garbage collection has finished. */);
6259 Vpost_gc_hook = Qnil;
6260 Qpost_gc_hook = intern_c_string ("post-gc-hook");
6261 staticpro (&Qpost_gc_hook);
6262
6263 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6264 doc: /* Precomputed `signal' argument for memory-full error. */);
6265 /* We build this in advance because if we wait until we need it, we might
6266 not be able to allocate the memory to hold it. */
6267 Vmemory_signal_data
6268 = pure_cons (Qerror,
6269 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6270
6271 DEFVAR_LISP ("memory-full", &Vmemory_full,
6272 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6273 Vmemory_full = Qnil;
6274
6275 staticpro (&Qgc_cons_threshold);
6276 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
6277
6278 staticpro (&Qchar_table_extra_slots);
6279 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
6280
6281 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6282 doc: /* Accumulated time elapsed in garbage collections.
6283 The time is in seconds as a floating point value. */);
6284 DEFVAR_INT ("gcs-done", &gcs_done,
6285 doc: /* Accumulated number of garbage collections done. */);
6286
6287 defsubr (&Scons);
6288 defsubr (&Slist);
6289 defsubr (&Svector);
6290 defsubr (&Smake_byte_code);
6291 defsubr (&Smake_list);
6292 defsubr (&Smake_vector);
6293 defsubr (&Smake_string);
6294 defsubr (&Smake_bool_vector);
6295 defsubr (&Smake_symbol);
6296 defsubr (&Smake_marker);
6297 defsubr (&Spurecopy);
6298 defsubr (&Sgarbage_collect);
6299 defsubr (&Smemory_limit);
6300 defsubr (&Smemory_use_counts);
6301
6302 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6303 defsubr (&Sgc_status);
6304 #endif
6305 }
6306
6307 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6308 (do not change this comment) */