]> code.delx.au - gnu-emacs/blob - src/fns.c
merge trunk
[gnu-emacs] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985-1987, 1993-1995, 1997-2012
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21
22 #include <unistd.h>
23 #include <time.h>
24
25 #include <intprops.h>
26
27 #include "lisp.h"
28 #include "commands.h"
29 #include "character.h"
30 #include "coding.h"
31 #include "buffer.h"
32 #include "keyboard.h"
33 #include "keymap.h"
34 #include "intervals.h"
35 #include "frame.h"
36 #include "window.h"
37 #include "blockinput.h"
38 #ifdef HAVE_MENUS
39 #if defined (HAVE_X_WINDOWS)
40 #include "xterm.h"
41 #endif
42 #endif /* HAVE_MENUS */
43
44 Lisp_Object Qstring_lessp;
45 static Lisp_Object Qprovide, Qrequire;
46 static Lisp_Object Qyes_or_no_p_history;
47 Lisp_Object Qcursor_in_echo_area;
48 static Lisp_Object Qwidget_type;
49 static Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
50
51 static Lisp_Object Qmd5, Qsha1, Qsha224, Qsha256, Qsha384, Qsha512;
52
53 static bool internal_equal (Lisp_Object, Lisp_Object, int, bool);
54 \f
55 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
56 doc: /* Return the argument unchanged. */)
57 (Lisp_Object arg)
58 {
59 return arg;
60 }
61
62 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
63 doc: /* Return a pseudo-random number.
64 All integers representable in Lisp, i.e. between `most-negative-fixnum'
65 and `most-positive-fixnum', inclusive, are equally likely.
66
67 With positive integer LIMIT, return random number in interval [0,LIMIT).
68 With argument t, set the random number seed from the current time and pid.
69 Other values of LIMIT are ignored. */)
70 (Lisp_Object limit)
71 {
72 EMACS_INT val;
73
74 if (EQ (limit, Qt))
75 init_random ();
76 else if (STRINGP (limit))
77 seed_random (SSDATA (limit), SBYTES (limit));
78
79 val = get_random ();
80 if (NATNUMP (limit) && XFASTINT (limit) != 0)
81 val %= XFASTINT (limit);
82 return make_number (val);
83 }
84 \f
85 /* Heuristic on how many iterations of a tight loop can be safely done
86 before it's time to do a QUIT. This must be a power of 2. */
87 enum { QUIT_COUNT_HEURISTIC = 1 << 16 };
88
89 /* Random data-structure functions */
90
91 DEFUN ("length", Flength, Slength, 1, 1, 0,
92 doc: /* Return the length of vector, list or string SEQUENCE.
93 A byte-code function object is also allowed.
94 If the string contains multibyte characters, this is not necessarily
95 the number of bytes in the string; it is the number of characters.
96 To get the number of bytes, use `string-bytes'. */)
97 (register Lisp_Object sequence)
98 {
99 register Lisp_Object val;
100
101 if (STRINGP (sequence))
102 XSETFASTINT (val, SCHARS (sequence));
103 else if (VECTORP (sequence))
104 XSETFASTINT (val, ASIZE (sequence));
105 else if (CHAR_TABLE_P (sequence))
106 XSETFASTINT (val, MAX_CHAR);
107 else if (BOOL_VECTOR_P (sequence))
108 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
109 else if (COMPILEDP (sequence))
110 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
111 else if (CONSP (sequence))
112 {
113 EMACS_INT i = 0;
114
115 do
116 {
117 ++i;
118 if ((i & (QUIT_COUNT_HEURISTIC - 1)) == 0)
119 {
120 if (MOST_POSITIVE_FIXNUM < i)
121 error ("List too long");
122 QUIT;
123 }
124 sequence = XCDR (sequence);
125 }
126 while (CONSP (sequence));
127
128 CHECK_LIST_END (sequence, sequence);
129
130 val = make_number (i);
131 }
132 else if (NILP (sequence))
133 XSETFASTINT (val, 0);
134 else
135 wrong_type_argument (Qsequencep, sequence);
136
137 return val;
138 }
139
140 /* This does not check for quits. That is safe since it must terminate. */
141
142 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
143 doc: /* Return the length of a list, but avoid error or infinite loop.
144 This function never gets an error. If LIST is not really a list,
145 it returns 0. If LIST is circular, it returns a finite value
146 which is at least the number of distinct elements. */)
147 (Lisp_Object list)
148 {
149 Lisp_Object tail, halftail;
150 double hilen = 0;
151 uintmax_t lolen = 1;
152
153 if (! CONSP (list))
154 return make_number (0);
155
156 /* halftail is used to detect circular lists. */
157 for (tail = halftail = list; ; )
158 {
159 tail = XCDR (tail);
160 if (! CONSP (tail))
161 break;
162 if (EQ (tail, halftail))
163 break;
164 lolen++;
165 if ((lolen & 1) == 0)
166 {
167 halftail = XCDR (halftail);
168 if ((lolen & (QUIT_COUNT_HEURISTIC - 1)) == 0)
169 {
170 QUIT;
171 if (lolen == 0)
172 hilen += UINTMAX_MAX + 1.0;
173 }
174 }
175 }
176
177 /* If the length does not fit into a fixnum, return a float.
178 On all known practical machines this returns an upper bound on
179 the true length. */
180 return hilen ? make_float (hilen + lolen) : make_fixnum_or_float (lolen);
181 }
182
183 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
184 doc: /* Return the number of bytes in STRING.
185 If STRING is multibyte, this may be greater than the length of STRING. */)
186 (Lisp_Object string)
187 {
188 CHECK_STRING (string);
189 return make_number (SBYTES (string));
190 }
191
192 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
193 doc: /* Return t if two strings have identical contents.
194 Case is significant, but text properties are ignored.
195 Symbols are also allowed; their print names are used instead. */)
196 (register Lisp_Object s1, Lisp_Object s2)
197 {
198 if (SYMBOLP (s1))
199 s1 = SYMBOL_NAME (s1);
200 if (SYMBOLP (s2))
201 s2 = SYMBOL_NAME (s2);
202 CHECK_STRING (s1);
203 CHECK_STRING (s2);
204
205 if (SCHARS (s1) != SCHARS (s2)
206 || SBYTES (s1) != SBYTES (s2)
207 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
208 return Qnil;
209 return Qt;
210 }
211
212 DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
213 doc: /* Compare the contents of two strings, converting to multibyte if needed.
214 In string STR1, skip the first START1 characters and stop at END1.
215 In string STR2, skip the first START2 characters and stop at END2.
216 END1 and END2 default to the full lengths of the respective strings.
217
218 Case is significant in this comparison if IGNORE-CASE is nil.
219 Unibyte strings are converted to multibyte for comparison.
220
221 The value is t if the strings (or specified portions) match.
222 If string STR1 is less, the value is a negative number N;
223 - 1 - N is the number of characters that match at the beginning.
224 If string STR1 is greater, the value is a positive number N;
225 N - 1 is the number of characters that match at the beginning. */)
226 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2, Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
227 {
228 register ptrdiff_t end1_char, end2_char;
229 register ptrdiff_t i1, i1_byte, i2, i2_byte;
230
231 CHECK_STRING (str1);
232 CHECK_STRING (str2);
233 if (NILP (start1))
234 start1 = make_number (0);
235 if (NILP (start2))
236 start2 = make_number (0);
237 CHECK_NATNUM (start1);
238 CHECK_NATNUM (start2);
239 if (! NILP (end1))
240 CHECK_NATNUM (end1);
241 if (! NILP (end2))
242 CHECK_NATNUM (end2);
243
244 end1_char = SCHARS (str1);
245 if (! NILP (end1) && end1_char > XINT (end1))
246 end1_char = XINT (end1);
247 if (end1_char < XINT (start1))
248 args_out_of_range (str1, start1);
249
250 end2_char = SCHARS (str2);
251 if (! NILP (end2) && end2_char > XINT (end2))
252 end2_char = XINT (end2);
253 if (end2_char < XINT (start2))
254 args_out_of_range (str2, start2);
255
256 i1 = XINT (start1);
257 i2 = XINT (start2);
258
259 i1_byte = string_char_to_byte (str1, i1);
260 i2_byte = string_char_to_byte (str2, i2);
261
262 while (i1 < end1_char && i2 < end2_char)
263 {
264 /* When we find a mismatch, we must compare the
265 characters, not just the bytes. */
266 int c1, c2;
267
268 if (STRING_MULTIBYTE (str1))
269 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
270 else
271 {
272 c1 = SREF (str1, i1++);
273 MAKE_CHAR_MULTIBYTE (c1);
274 }
275
276 if (STRING_MULTIBYTE (str2))
277 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
278 else
279 {
280 c2 = SREF (str2, i2++);
281 MAKE_CHAR_MULTIBYTE (c2);
282 }
283
284 if (c1 == c2)
285 continue;
286
287 if (! NILP (ignore_case))
288 {
289 Lisp_Object tem;
290
291 tem = Fupcase (make_number (c1));
292 c1 = XINT (tem);
293 tem = Fupcase (make_number (c2));
294 c2 = XINT (tem);
295 }
296
297 if (c1 == c2)
298 continue;
299
300 /* Note that I1 has already been incremented
301 past the character that we are comparing;
302 hence we don't add or subtract 1 here. */
303 if (c1 < c2)
304 return make_number (- i1 + XINT (start1));
305 else
306 return make_number (i1 - XINT (start1));
307 }
308
309 if (i1 < end1_char)
310 return make_number (i1 - XINT (start1) + 1);
311 if (i2 < end2_char)
312 return make_number (- i1 + XINT (start1) - 1);
313
314 return Qt;
315 }
316
317 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
318 doc: /* Return t if first arg string is less than second in lexicographic order.
319 Case is significant.
320 Symbols are also allowed; their print names are used instead. */)
321 (register Lisp_Object s1, Lisp_Object s2)
322 {
323 register ptrdiff_t end;
324 register ptrdiff_t i1, i1_byte, i2, i2_byte;
325
326 if (SYMBOLP (s1))
327 s1 = SYMBOL_NAME (s1);
328 if (SYMBOLP (s2))
329 s2 = SYMBOL_NAME (s2);
330 CHECK_STRING (s1);
331 CHECK_STRING (s2);
332
333 i1 = i1_byte = i2 = i2_byte = 0;
334
335 end = SCHARS (s1);
336 if (end > SCHARS (s2))
337 end = SCHARS (s2);
338
339 while (i1 < end)
340 {
341 /* When we find a mismatch, we must compare the
342 characters, not just the bytes. */
343 int c1, c2;
344
345 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
346 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
347
348 if (c1 != c2)
349 return c1 < c2 ? Qt : Qnil;
350 }
351 return i1 < SCHARS (s2) ? Qt : Qnil;
352 }
353 \f
354 static Lisp_Object concat (ptrdiff_t nargs, Lisp_Object *args,
355 enum Lisp_Type target_type, bool last_special);
356
357 /* ARGSUSED */
358 Lisp_Object
359 concat2 (Lisp_Object s1, Lisp_Object s2)
360 {
361 Lisp_Object args[2];
362 args[0] = s1;
363 args[1] = s2;
364 return concat (2, args, Lisp_String, 0);
365 }
366
367 /* ARGSUSED */
368 Lisp_Object
369 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
370 {
371 Lisp_Object args[3];
372 args[0] = s1;
373 args[1] = s2;
374 args[2] = s3;
375 return concat (3, args, Lisp_String, 0);
376 }
377
378 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
379 doc: /* Concatenate all the arguments and make the result a list.
380 The result is a list whose elements are the elements of all the arguments.
381 Each argument may be a list, vector or string.
382 The last argument is not copied, just used as the tail of the new list.
383 usage: (append &rest SEQUENCES) */)
384 (ptrdiff_t nargs, Lisp_Object *args)
385 {
386 return concat (nargs, args, Lisp_Cons, 1);
387 }
388
389 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
390 doc: /* Concatenate all the arguments and make the result a string.
391 The result is a string whose elements are the elements of all the arguments.
392 Each argument may be a string or a list or vector of characters (integers).
393 usage: (concat &rest SEQUENCES) */)
394 (ptrdiff_t nargs, Lisp_Object *args)
395 {
396 return concat (nargs, args, Lisp_String, 0);
397 }
398
399 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
400 doc: /* Concatenate all the arguments and make the result a vector.
401 The result is a vector whose elements are the elements of all the arguments.
402 Each argument may be a list, vector or string.
403 usage: (vconcat &rest SEQUENCES) */)
404 (ptrdiff_t nargs, Lisp_Object *args)
405 {
406 return concat (nargs, args, Lisp_Vectorlike, 0);
407 }
408
409
410 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
411 doc: /* Return a copy of a list, vector, string or char-table.
412 The elements of a list or vector are not copied; they are shared
413 with the original. */)
414 (Lisp_Object arg)
415 {
416 if (NILP (arg)) return arg;
417
418 if (CHAR_TABLE_P (arg))
419 {
420 return copy_char_table (arg);
421 }
422
423 if (BOOL_VECTOR_P (arg))
424 {
425 Lisp_Object val;
426 ptrdiff_t size_in_chars
427 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
428 / BOOL_VECTOR_BITS_PER_CHAR);
429
430 val = Fmake_bool_vector (Flength (arg), Qnil);
431 memcpy (XBOOL_VECTOR (val)->data, XBOOL_VECTOR (arg)->data,
432 size_in_chars);
433 return val;
434 }
435
436 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
437 wrong_type_argument (Qsequencep, arg);
438
439 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
440 }
441
442 /* This structure holds information of an argument of `concat' that is
443 a string and has text properties to be copied. */
444 struct textprop_rec
445 {
446 ptrdiff_t argnum; /* refer to ARGS (arguments of `concat') */
447 ptrdiff_t from; /* refer to ARGS[argnum] (argument string) */
448 ptrdiff_t to; /* refer to VAL (the target string) */
449 };
450
451 static Lisp_Object
452 concat (ptrdiff_t nargs, Lisp_Object *args,
453 enum Lisp_Type target_type, bool last_special)
454 {
455 Lisp_Object val;
456 Lisp_Object tail;
457 Lisp_Object this;
458 ptrdiff_t toindex;
459 ptrdiff_t toindex_byte = 0;
460 EMACS_INT result_len;
461 EMACS_INT result_len_byte;
462 ptrdiff_t argnum;
463 Lisp_Object last_tail;
464 Lisp_Object prev;
465 bool some_multibyte;
466 /* When we make a multibyte string, we can't copy text properties
467 while concatenating each string because the length of resulting
468 string can't be decided until we finish the whole concatenation.
469 So, we record strings that have text properties to be copied
470 here, and copy the text properties after the concatenation. */
471 struct textprop_rec *textprops = NULL;
472 /* Number of elements in textprops. */
473 ptrdiff_t num_textprops = 0;
474 USE_SAFE_ALLOCA;
475
476 tail = Qnil;
477
478 /* In append, the last arg isn't treated like the others */
479 if (last_special && nargs > 0)
480 {
481 nargs--;
482 last_tail = args[nargs];
483 }
484 else
485 last_tail = Qnil;
486
487 /* Check each argument. */
488 for (argnum = 0; argnum < nargs; argnum++)
489 {
490 this = args[argnum];
491 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
492 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
493 wrong_type_argument (Qsequencep, this);
494 }
495
496 /* Compute total length in chars of arguments in RESULT_LEN.
497 If desired output is a string, also compute length in bytes
498 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
499 whether the result should be a multibyte string. */
500 result_len_byte = 0;
501 result_len = 0;
502 some_multibyte = 0;
503 for (argnum = 0; argnum < nargs; argnum++)
504 {
505 EMACS_INT len;
506 this = args[argnum];
507 len = XFASTINT (Flength (this));
508 if (target_type == Lisp_String)
509 {
510 /* We must count the number of bytes needed in the string
511 as well as the number of characters. */
512 ptrdiff_t i;
513 Lisp_Object ch;
514 int c;
515 ptrdiff_t this_len_byte;
516
517 if (VECTORP (this) || COMPILEDP (this))
518 for (i = 0; i < len; i++)
519 {
520 ch = AREF (this, i);
521 CHECK_CHARACTER (ch);
522 c = XFASTINT (ch);
523 this_len_byte = CHAR_BYTES (c);
524 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
525 string_overflow ();
526 result_len_byte += this_len_byte;
527 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
528 some_multibyte = 1;
529 }
530 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
531 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
532 else if (CONSP (this))
533 for (; CONSP (this); this = XCDR (this))
534 {
535 ch = XCAR (this);
536 CHECK_CHARACTER (ch);
537 c = XFASTINT (ch);
538 this_len_byte = CHAR_BYTES (c);
539 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
540 string_overflow ();
541 result_len_byte += this_len_byte;
542 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
543 some_multibyte = 1;
544 }
545 else if (STRINGP (this))
546 {
547 if (STRING_MULTIBYTE (this))
548 {
549 some_multibyte = 1;
550 this_len_byte = SBYTES (this);
551 }
552 else
553 this_len_byte = count_size_as_multibyte (SDATA (this),
554 SCHARS (this));
555 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
556 string_overflow ();
557 result_len_byte += this_len_byte;
558 }
559 }
560
561 result_len += len;
562 if (MOST_POSITIVE_FIXNUM < result_len)
563 memory_full (SIZE_MAX);
564 }
565
566 if (! some_multibyte)
567 result_len_byte = result_len;
568
569 /* Create the output object. */
570 if (target_type == Lisp_Cons)
571 val = Fmake_list (make_number (result_len), Qnil);
572 else if (target_type == Lisp_Vectorlike)
573 val = Fmake_vector (make_number (result_len), Qnil);
574 else if (some_multibyte)
575 val = make_uninit_multibyte_string (result_len, result_len_byte);
576 else
577 val = make_uninit_string (result_len);
578
579 /* In `append', if all but last arg are nil, return last arg. */
580 if (target_type == Lisp_Cons && EQ (val, Qnil))
581 return last_tail;
582
583 /* Copy the contents of the args into the result. */
584 if (CONSP (val))
585 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
586 else
587 toindex = 0, toindex_byte = 0;
588
589 prev = Qnil;
590 if (STRINGP (val))
591 SAFE_NALLOCA (textprops, 1, nargs);
592
593 for (argnum = 0; argnum < nargs; argnum++)
594 {
595 Lisp_Object thislen;
596 ptrdiff_t thisleni = 0;
597 register ptrdiff_t thisindex = 0;
598 register ptrdiff_t thisindex_byte = 0;
599
600 this = args[argnum];
601 if (!CONSP (this))
602 thislen = Flength (this), thisleni = XINT (thislen);
603
604 /* Between strings of the same kind, copy fast. */
605 if (STRINGP (this) && STRINGP (val)
606 && STRING_MULTIBYTE (this) == some_multibyte)
607 {
608 ptrdiff_t thislen_byte = SBYTES (this);
609
610 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
611 if (string_intervals (this))
612 {
613 textprops[num_textprops].argnum = argnum;
614 textprops[num_textprops].from = 0;
615 textprops[num_textprops++].to = toindex;
616 }
617 toindex_byte += thislen_byte;
618 toindex += thisleni;
619 }
620 /* Copy a single-byte string to a multibyte string. */
621 else if (STRINGP (this) && STRINGP (val))
622 {
623 if (string_intervals (this))
624 {
625 textprops[num_textprops].argnum = argnum;
626 textprops[num_textprops].from = 0;
627 textprops[num_textprops++].to = toindex;
628 }
629 toindex_byte += copy_text (SDATA (this),
630 SDATA (val) + toindex_byte,
631 SCHARS (this), 0, 1);
632 toindex += thisleni;
633 }
634 else
635 /* Copy element by element. */
636 while (1)
637 {
638 register Lisp_Object elt;
639
640 /* Fetch next element of `this' arg into `elt', or break if
641 `this' is exhausted. */
642 if (NILP (this)) break;
643 if (CONSP (this))
644 elt = XCAR (this), this = XCDR (this);
645 else if (thisindex >= thisleni)
646 break;
647 else if (STRINGP (this))
648 {
649 int c;
650 if (STRING_MULTIBYTE (this))
651 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
652 thisindex,
653 thisindex_byte);
654 else
655 {
656 c = SREF (this, thisindex); thisindex++;
657 if (some_multibyte && !ASCII_CHAR_P (c))
658 c = BYTE8_TO_CHAR (c);
659 }
660 XSETFASTINT (elt, c);
661 }
662 else if (BOOL_VECTOR_P (this))
663 {
664 int byte;
665 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
666 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
667 elt = Qt;
668 else
669 elt = Qnil;
670 thisindex++;
671 }
672 else
673 {
674 elt = AREF (this, thisindex);
675 thisindex++;
676 }
677
678 /* Store this element into the result. */
679 if (toindex < 0)
680 {
681 XSETCAR (tail, elt);
682 prev = tail;
683 tail = XCDR (tail);
684 }
685 else if (VECTORP (val))
686 {
687 ASET (val, toindex, elt);
688 toindex++;
689 }
690 else
691 {
692 int c;
693 CHECK_CHARACTER (elt);
694 c = XFASTINT (elt);
695 if (some_multibyte)
696 toindex_byte += CHAR_STRING (c, SDATA (val) + toindex_byte);
697 else
698 SSET (val, toindex_byte++, c);
699 toindex++;
700 }
701 }
702 }
703 if (!NILP (prev))
704 XSETCDR (prev, last_tail);
705
706 if (num_textprops > 0)
707 {
708 Lisp_Object props;
709 ptrdiff_t last_to_end = -1;
710
711 for (argnum = 0; argnum < num_textprops; argnum++)
712 {
713 this = args[textprops[argnum].argnum];
714 props = text_property_list (this,
715 make_number (0),
716 make_number (SCHARS (this)),
717 Qnil);
718 /* If successive arguments have properties, be sure that the
719 value of `composition' property be the copy. */
720 if (last_to_end == textprops[argnum].to)
721 make_composition_value_copy (props);
722 add_text_properties_from_list (val, props,
723 make_number (textprops[argnum].to));
724 last_to_end = textprops[argnum].to + SCHARS (this);
725 }
726 }
727
728 SAFE_FREE ();
729 return val;
730 }
731 \f
732 static Lisp_Object string_char_byte_cache_string;
733 static ptrdiff_t string_char_byte_cache_charpos;
734 static ptrdiff_t string_char_byte_cache_bytepos;
735
736 void
737 clear_string_char_byte_cache (void)
738 {
739 string_char_byte_cache_string = Qnil;
740 }
741
742 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
743
744 ptrdiff_t
745 string_char_to_byte (Lisp_Object string, ptrdiff_t char_index)
746 {
747 ptrdiff_t i_byte;
748 ptrdiff_t best_below, best_below_byte;
749 ptrdiff_t best_above, best_above_byte;
750
751 best_below = best_below_byte = 0;
752 best_above = SCHARS (string);
753 best_above_byte = SBYTES (string);
754 if (best_above == best_above_byte)
755 return char_index;
756
757 if (EQ (string, string_char_byte_cache_string))
758 {
759 if (string_char_byte_cache_charpos < char_index)
760 {
761 best_below = string_char_byte_cache_charpos;
762 best_below_byte = string_char_byte_cache_bytepos;
763 }
764 else
765 {
766 best_above = string_char_byte_cache_charpos;
767 best_above_byte = string_char_byte_cache_bytepos;
768 }
769 }
770
771 if (char_index - best_below < best_above - char_index)
772 {
773 unsigned char *p = SDATA (string) + best_below_byte;
774
775 while (best_below < char_index)
776 {
777 p += BYTES_BY_CHAR_HEAD (*p);
778 best_below++;
779 }
780 i_byte = p - SDATA (string);
781 }
782 else
783 {
784 unsigned char *p = SDATA (string) + best_above_byte;
785
786 while (best_above > char_index)
787 {
788 p--;
789 while (!CHAR_HEAD_P (*p)) p--;
790 best_above--;
791 }
792 i_byte = p - SDATA (string);
793 }
794
795 string_char_byte_cache_bytepos = i_byte;
796 string_char_byte_cache_charpos = char_index;
797 string_char_byte_cache_string = string;
798
799 return i_byte;
800 }
801 \f
802 /* Return the character index corresponding to BYTE_INDEX in STRING. */
803
804 ptrdiff_t
805 string_byte_to_char (Lisp_Object string, ptrdiff_t byte_index)
806 {
807 ptrdiff_t i, i_byte;
808 ptrdiff_t best_below, best_below_byte;
809 ptrdiff_t best_above, best_above_byte;
810
811 best_below = best_below_byte = 0;
812 best_above = SCHARS (string);
813 best_above_byte = SBYTES (string);
814 if (best_above == best_above_byte)
815 return byte_index;
816
817 if (EQ (string, string_char_byte_cache_string))
818 {
819 if (string_char_byte_cache_bytepos < byte_index)
820 {
821 best_below = string_char_byte_cache_charpos;
822 best_below_byte = string_char_byte_cache_bytepos;
823 }
824 else
825 {
826 best_above = string_char_byte_cache_charpos;
827 best_above_byte = string_char_byte_cache_bytepos;
828 }
829 }
830
831 if (byte_index - best_below_byte < best_above_byte - byte_index)
832 {
833 unsigned char *p = SDATA (string) + best_below_byte;
834 unsigned char *pend = SDATA (string) + byte_index;
835
836 while (p < pend)
837 {
838 p += BYTES_BY_CHAR_HEAD (*p);
839 best_below++;
840 }
841 i = best_below;
842 i_byte = p - SDATA (string);
843 }
844 else
845 {
846 unsigned char *p = SDATA (string) + best_above_byte;
847 unsigned char *pbeg = SDATA (string) + byte_index;
848
849 while (p > pbeg)
850 {
851 p--;
852 while (!CHAR_HEAD_P (*p)) p--;
853 best_above--;
854 }
855 i = best_above;
856 i_byte = p - SDATA (string);
857 }
858
859 string_char_byte_cache_bytepos = i_byte;
860 string_char_byte_cache_charpos = i;
861 string_char_byte_cache_string = string;
862
863 return i;
864 }
865 \f
866 /* Convert STRING to a multibyte string. */
867
868 static Lisp_Object
869 string_make_multibyte (Lisp_Object string)
870 {
871 unsigned char *buf;
872 ptrdiff_t nbytes;
873 Lisp_Object ret;
874 USE_SAFE_ALLOCA;
875
876 if (STRING_MULTIBYTE (string))
877 return string;
878
879 nbytes = count_size_as_multibyte (SDATA (string),
880 SCHARS (string));
881 /* If all the chars are ASCII, they won't need any more bytes
882 once converted. In that case, we can return STRING itself. */
883 if (nbytes == SBYTES (string))
884 return string;
885
886 buf = SAFE_ALLOCA (nbytes);
887 copy_text (SDATA (string), buf, SBYTES (string),
888 0, 1);
889
890 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
891 SAFE_FREE ();
892
893 return ret;
894 }
895
896
897 /* Convert STRING (if unibyte) to a multibyte string without changing
898 the number of characters. Characters 0200 trough 0237 are
899 converted to eight-bit characters. */
900
901 Lisp_Object
902 string_to_multibyte (Lisp_Object string)
903 {
904 unsigned char *buf;
905 ptrdiff_t nbytes;
906 Lisp_Object ret;
907 USE_SAFE_ALLOCA;
908
909 if (STRING_MULTIBYTE (string))
910 return string;
911
912 nbytes = count_size_as_multibyte (SDATA (string), SBYTES (string));
913 /* If all the chars are ASCII, they won't need any more bytes once
914 converted. */
915 if (nbytes == SBYTES (string))
916 return make_multibyte_string (SSDATA (string), nbytes, nbytes);
917
918 buf = SAFE_ALLOCA (nbytes);
919 memcpy (buf, SDATA (string), SBYTES (string));
920 str_to_multibyte (buf, nbytes, SBYTES (string));
921
922 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
923 SAFE_FREE ();
924
925 return ret;
926 }
927
928
929 /* Convert STRING to a single-byte string. */
930
931 Lisp_Object
932 string_make_unibyte (Lisp_Object string)
933 {
934 ptrdiff_t nchars;
935 unsigned char *buf;
936 Lisp_Object ret;
937 USE_SAFE_ALLOCA;
938
939 if (! STRING_MULTIBYTE (string))
940 return string;
941
942 nchars = SCHARS (string);
943
944 buf = SAFE_ALLOCA (nchars);
945 copy_text (SDATA (string), buf, SBYTES (string),
946 1, 0);
947
948 ret = make_unibyte_string ((char *) buf, nchars);
949 SAFE_FREE ();
950
951 return ret;
952 }
953
954 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
955 1, 1, 0,
956 doc: /* Return the multibyte equivalent of STRING.
957 If STRING is unibyte and contains non-ASCII characters, the function
958 `unibyte-char-to-multibyte' is used to convert each unibyte character
959 to a multibyte character. In this case, the returned string is a
960 newly created string with no text properties. If STRING is multibyte
961 or entirely ASCII, it is returned unchanged. In particular, when
962 STRING is unibyte and entirely ASCII, the returned string is unibyte.
963 \(When the characters are all ASCII, Emacs primitives will treat the
964 string the same way whether it is unibyte or multibyte.) */)
965 (Lisp_Object string)
966 {
967 CHECK_STRING (string);
968
969 return string_make_multibyte (string);
970 }
971
972 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
973 1, 1, 0,
974 doc: /* Return the unibyte equivalent of STRING.
975 Multibyte character codes are converted to unibyte according to
976 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
977 If the lookup in the translation table fails, this function takes just
978 the low 8 bits of each character. */)
979 (Lisp_Object string)
980 {
981 CHECK_STRING (string);
982
983 return string_make_unibyte (string);
984 }
985
986 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
987 1, 1, 0,
988 doc: /* Return a unibyte string with the same individual bytes as STRING.
989 If STRING is unibyte, the result is STRING itself.
990 Otherwise it is a newly created string, with no text properties.
991 If STRING is multibyte and contains a character of charset
992 `eight-bit', it is converted to the corresponding single byte. */)
993 (Lisp_Object string)
994 {
995 CHECK_STRING (string);
996
997 if (STRING_MULTIBYTE (string))
998 {
999 ptrdiff_t bytes = SBYTES (string);
1000 unsigned char *str = xmalloc (bytes);
1001
1002 memcpy (str, SDATA (string), bytes);
1003 bytes = str_as_unibyte (str, bytes);
1004 string = make_unibyte_string ((char *) str, bytes);
1005 xfree (str);
1006 }
1007 return string;
1008 }
1009
1010 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1011 1, 1, 0,
1012 doc: /* Return a multibyte string with the same individual bytes as STRING.
1013 If STRING is multibyte, the result is STRING itself.
1014 Otherwise it is a newly created string, with no text properties.
1015
1016 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1017 part of a correct utf-8 sequence), it is converted to the corresponding
1018 multibyte character of charset `eight-bit'.
1019 See also `string-to-multibyte'.
1020
1021 Beware, this often doesn't really do what you think it does.
1022 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1023 If you're not sure, whether to use `string-as-multibyte' or
1024 `string-to-multibyte', use `string-to-multibyte'. */)
1025 (Lisp_Object string)
1026 {
1027 CHECK_STRING (string);
1028
1029 if (! STRING_MULTIBYTE (string))
1030 {
1031 Lisp_Object new_string;
1032 ptrdiff_t nchars, nbytes;
1033
1034 parse_str_as_multibyte (SDATA (string),
1035 SBYTES (string),
1036 &nchars, &nbytes);
1037 new_string = make_uninit_multibyte_string (nchars, nbytes);
1038 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1039 if (nbytes != SBYTES (string))
1040 str_as_multibyte (SDATA (new_string), nbytes,
1041 SBYTES (string), NULL);
1042 string = new_string;
1043 set_string_intervals (string, NULL);
1044 }
1045 return string;
1046 }
1047
1048 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1049 1, 1, 0,
1050 doc: /* Return a multibyte string with the same individual chars as STRING.
1051 If STRING is multibyte, the result is STRING itself.
1052 Otherwise it is a newly created string, with no text properties.
1053
1054 If STRING is unibyte and contains an 8-bit byte, it is converted to
1055 the corresponding multibyte character of charset `eight-bit'.
1056
1057 This differs from `string-as-multibyte' by converting each byte of a correct
1058 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1059 correct sequence. */)
1060 (Lisp_Object string)
1061 {
1062 CHECK_STRING (string);
1063
1064 return string_to_multibyte (string);
1065 }
1066
1067 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1068 1, 1, 0,
1069 doc: /* Return a unibyte string with the same individual chars as STRING.
1070 If STRING is unibyte, the result is STRING itself.
1071 Otherwise it is a newly created string, with no text properties,
1072 where each `eight-bit' character is converted to the corresponding byte.
1073 If STRING contains a non-ASCII, non-`eight-bit' character,
1074 an error is signaled. */)
1075 (Lisp_Object string)
1076 {
1077 CHECK_STRING (string);
1078
1079 if (STRING_MULTIBYTE (string))
1080 {
1081 ptrdiff_t chars = SCHARS (string);
1082 unsigned char *str = xmalloc (chars);
1083 ptrdiff_t converted = str_to_unibyte (SDATA (string), str, chars);
1084
1085 if (converted < chars)
1086 error ("Can't convert the %"pD"dth character to unibyte", converted);
1087 string = make_unibyte_string ((char *) str, chars);
1088 xfree (str);
1089 }
1090 return string;
1091 }
1092
1093 \f
1094 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1095 doc: /* Return a copy of ALIST.
1096 This is an alist which represents the same mapping from objects to objects,
1097 but does not share the alist structure with ALIST.
1098 The objects mapped (cars and cdrs of elements of the alist)
1099 are shared, however.
1100 Elements of ALIST that are not conses are also shared. */)
1101 (Lisp_Object alist)
1102 {
1103 register Lisp_Object tem;
1104
1105 CHECK_LIST (alist);
1106 if (NILP (alist))
1107 return alist;
1108 alist = concat (1, &alist, Lisp_Cons, 0);
1109 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1110 {
1111 register Lisp_Object car;
1112 car = XCAR (tem);
1113
1114 if (CONSP (car))
1115 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1116 }
1117 return alist;
1118 }
1119
1120 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1121 doc: /* Return a new string whose contents are a substring of STRING.
1122 The returned string consists of the characters between index FROM
1123 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1124 zero-indexed: 0 means the first character of STRING. Negative values
1125 are counted from the end of STRING. If TO is nil, the substring runs
1126 to the end of STRING.
1127
1128 The STRING argument may also be a vector. In that case, the return
1129 value is a new vector that contains the elements between index FROM
1130 \(inclusive) and index TO (exclusive) of that vector argument. */)
1131 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1132 {
1133 Lisp_Object res;
1134 ptrdiff_t size;
1135 EMACS_INT from_char, to_char;
1136
1137 CHECK_VECTOR_OR_STRING (string);
1138 CHECK_NUMBER (from);
1139
1140 if (STRINGP (string))
1141 size = SCHARS (string);
1142 else
1143 size = ASIZE (string);
1144
1145 if (NILP (to))
1146 to_char = size;
1147 else
1148 {
1149 CHECK_NUMBER (to);
1150
1151 to_char = XINT (to);
1152 if (to_char < 0)
1153 to_char += size;
1154 }
1155
1156 from_char = XINT (from);
1157 if (from_char < 0)
1158 from_char += size;
1159 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1160 args_out_of_range_3 (string, make_number (from_char),
1161 make_number (to_char));
1162
1163 if (STRINGP (string))
1164 {
1165 ptrdiff_t to_byte =
1166 (NILP (to) ? SBYTES (string) : string_char_to_byte (string, to_char));
1167 ptrdiff_t from_byte = string_char_to_byte (string, from_char);
1168 res = make_specified_string (SSDATA (string) + from_byte,
1169 to_char - from_char, to_byte - from_byte,
1170 STRING_MULTIBYTE (string));
1171 copy_text_properties (make_number (from_char), make_number (to_char),
1172 string, make_number (0), res, Qnil);
1173 }
1174 else
1175 res = Fvector (to_char - from_char, aref_addr (string, from_char));
1176
1177 return res;
1178 }
1179
1180
1181 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1182 doc: /* Return a substring of STRING, without text properties.
1183 It starts at index FROM and ends before TO.
1184 TO may be nil or omitted; then the substring runs to the end of STRING.
1185 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1186 If FROM or TO is negative, it counts from the end.
1187
1188 With one argument, just copy STRING without its properties. */)
1189 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1190 {
1191 ptrdiff_t size;
1192 EMACS_INT from_char, to_char;
1193 ptrdiff_t from_byte, to_byte;
1194
1195 CHECK_STRING (string);
1196
1197 size = SCHARS (string);
1198
1199 if (NILP (from))
1200 from_char = 0;
1201 else
1202 {
1203 CHECK_NUMBER (from);
1204 from_char = XINT (from);
1205 if (from_char < 0)
1206 from_char += size;
1207 }
1208
1209 if (NILP (to))
1210 to_char = size;
1211 else
1212 {
1213 CHECK_NUMBER (to);
1214 to_char = XINT (to);
1215 if (to_char < 0)
1216 to_char += size;
1217 }
1218
1219 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1220 args_out_of_range_3 (string, make_number (from_char),
1221 make_number (to_char));
1222
1223 from_byte = NILP (from) ? 0 : string_char_to_byte (string, from_char);
1224 to_byte =
1225 NILP (to) ? SBYTES (string) : string_char_to_byte (string, to_char);
1226 return make_specified_string (SSDATA (string) + from_byte,
1227 to_char - from_char, to_byte - from_byte,
1228 STRING_MULTIBYTE (string));
1229 }
1230
1231 /* Extract a substring of STRING, giving start and end positions
1232 both in characters and in bytes. */
1233
1234 Lisp_Object
1235 substring_both (Lisp_Object string, ptrdiff_t from, ptrdiff_t from_byte,
1236 ptrdiff_t to, ptrdiff_t to_byte)
1237 {
1238 Lisp_Object res;
1239 ptrdiff_t size;
1240
1241 CHECK_VECTOR_OR_STRING (string);
1242
1243 size = STRINGP (string) ? SCHARS (string) : ASIZE (string);
1244
1245 if (!(0 <= from && from <= to && to <= size))
1246 args_out_of_range_3 (string, make_number (from), make_number (to));
1247
1248 if (STRINGP (string))
1249 {
1250 res = make_specified_string (SSDATA (string) + from_byte,
1251 to - from, to_byte - from_byte,
1252 STRING_MULTIBYTE (string));
1253 copy_text_properties (make_number (from), make_number (to),
1254 string, make_number (0), res, Qnil);
1255 }
1256 else
1257 res = Fvector (to - from, aref_addr (string, from));
1258
1259 return res;
1260 }
1261 \f
1262 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1263 doc: /* Take cdr N times on LIST, return the result. */)
1264 (Lisp_Object n, Lisp_Object list)
1265 {
1266 EMACS_INT i, num;
1267 CHECK_NUMBER (n);
1268 num = XINT (n);
1269 for (i = 0; i < num && !NILP (list); i++)
1270 {
1271 QUIT;
1272 CHECK_LIST_CONS (list, list);
1273 list = XCDR (list);
1274 }
1275 return list;
1276 }
1277
1278 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1279 doc: /* Return the Nth element of LIST.
1280 N counts from zero. If LIST is not that long, nil is returned. */)
1281 (Lisp_Object n, Lisp_Object list)
1282 {
1283 return Fcar (Fnthcdr (n, list));
1284 }
1285
1286 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1287 doc: /* Return element of SEQUENCE at index N. */)
1288 (register Lisp_Object sequence, Lisp_Object n)
1289 {
1290 CHECK_NUMBER (n);
1291 if (CONSP (sequence) || NILP (sequence))
1292 return Fcar (Fnthcdr (n, sequence));
1293
1294 /* Faref signals a "not array" error, so check here. */
1295 CHECK_ARRAY (sequence, Qsequencep);
1296 return Faref (sequence, n);
1297 }
1298
1299 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1300 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1301 The value is actually the tail of LIST whose car is ELT. */)
1302 (register Lisp_Object elt, Lisp_Object list)
1303 {
1304 register Lisp_Object tail;
1305 for (tail = list; CONSP (tail); tail = XCDR (tail))
1306 {
1307 register Lisp_Object tem;
1308 CHECK_LIST_CONS (tail, list);
1309 tem = XCAR (tail);
1310 if (! NILP (Fequal (elt, tem)))
1311 return tail;
1312 QUIT;
1313 }
1314 return Qnil;
1315 }
1316
1317 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1318 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1319 The value is actually the tail of LIST whose car is ELT. */)
1320 (register Lisp_Object elt, Lisp_Object list)
1321 {
1322 while (1)
1323 {
1324 if (!CONSP (list) || EQ (XCAR (list), elt))
1325 break;
1326
1327 list = XCDR (list);
1328 if (!CONSP (list) || EQ (XCAR (list), elt))
1329 break;
1330
1331 list = XCDR (list);
1332 if (!CONSP (list) || EQ (XCAR (list), elt))
1333 break;
1334
1335 list = XCDR (list);
1336 QUIT;
1337 }
1338
1339 CHECK_LIST (list);
1340 return list;
1341 }
1342
1343 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1344 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1345 The value is actually the tail of LIST whose car is ELT. */)
1346 (register Lisp_Object elt, Lisp_Object list)
1347 {
1348 register Lisp_Object tail;
1349
1350 if (!FLOATP (elt))
1351 return Fmemq (elt, list);
1352
1353 for (tail = list; CONSP (tail); tail = XCDR (tail))
1354 {
1355 register Lisp_Object tem;
1356 CHECK_LIST_CONS (tail, list);
1357 tem = XCAR (tail);
1358 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1359 return tail;
1360 QUIT;
1361 }
1362 return Qnil;
1363 }
1364
1365 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1366 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1367 The value is actually the first element of LIST whose car is KEY.
1368 Elements of LIST that are not conses are ignored. */)
1369 (Lisp_Object key, Lisp_Object list)
1370 {
1371 while (1)
1372 {
1373 if (!CONSP (list)
1374 || (CONSP (XCAR (list))
1375 && EQ (XCAR (XCAR (list)), key)))
1376 break;
1377
1378 list = XCDR (list);
1379 if (!CONSP (list)
1380 || (CONSP (XCAR (list))
1381 && EQ (XCAR (XCAR (list)), key)))
1382 break;
1383
1384 list = XCDR (list);
1385 if (!CONSP (list)
1386 || (CONSP (XCAR (list))
1387 && EQ (XCAR (XCAR (list)), key)))
1388 break;
1389
1390 list = XCDR (list);
1391 QUIT;
1392 }
1393
1394 return CAR (list);
1395 }
1396
1397 /* Like Fassq but never report an error and do not allow quits.
1398 Use only on lists known never to be circular. */
1399
1400 Lisp_Object
1401 assq_no_quit (Lisp_Object key, Lisp_Object list)
1402 {
1403 while (CONSP (list)
1404 && (!CONSP (XCAR (list))
1405 || !EQ (XCAR (XCAR (list)), key)))
1406 list = XCDR (list);
1407
1408 return CAR_SAFE (list);
1409 }
1410
1411 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1412 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1413 The value is actually the first element of LIST whose car equals KEY. */)
1414 (Lisp_Object key, Lisp_Object list)
1415 {
1416 Lisp_Object car;
1417
1418 while (1)
1419 {
1420 if (!CONSP (list)
1421 || (CONSP (XCAR (list))
1422 && (car = XCAR (XCAR (list)),
1423 EQ (car, key) || !NILP (Fequal (car, key)))))
1424 break;
1425
1426 list = XCDR (list);
1427 if (!CONSP (list)
1428 || (CONSP (XCAR (list))
1429 && (car = XCAR (XCAR (list)),
1430 EQ (car, key) || !NILP (Fequal (car, key)))))
1431 break;
1432
1433 list = XCDR (list);
1434 if (!CONSP (list)
1435 || (CONSP (XCAR (list))
1436 && (car = XCAR (XCAR (list)),
1437 EQ (car, key) || !NILP (Fequal (car, key)))))
1438 break;
1439
1440 list = XCDR (list);
1441 QUIT;
1442 }
1443
1444 return CAR (list);
1445 }
1446
1447 /* Like Fassoc but never report an error and do not allow quits.
1448 Use only on lists known never to be circular. */
1449
1450 Lisp_Object
1451 assoc_no_quit (Lisp_Object key, Lisp_Object list)
1452 {
1453 while (CONSP (list)
1454 && (!CONSP (XCAR (list))
1455 || (!EQ (XCAR (XCAR (list)), key)
1456 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1457 list = XCDR (list);
1458
1459 return CONSP (list) ? XCAR (list) : Qnil;
1460 }
1461
1462 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1463 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1464 The value is actually the first element of LIST whose cdr is KEY. */)
1465 (register Lisp_Object key, Lisp_Object list)
1466 {
1467 while (1)
1468 {
1469 if (!CONSP (list)
1470 || (CONSP (XCAR (list))
1471 && EQ (XCDR (XCAR (list)), key)))
1472 break;
1473
1474 list = XCDR (list);
1475 if (!CONSP (list)
1476 || (CONSP (XCAR (list))
1477 && EQ (XCDR (XCAR (list)), key)))
1478 break;
1479
1480 list = XCDR (list);
1481 if (!CONSP (list)
1482 || (CONSP (XCAR (list))
1483 && EQ (XCDR (XCAR (list)), key)))
1484 break;
1485
1486 list = XCDR (list);
1487 QUIT;
1488 }
1489
1490 return CAR (list);
1491 }
1492
1493 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1494 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1495 The value is actually the first element of LIST whose cdr equals KEY. */)
1496 (Lisp_Object key, Lisp_Object list)
1497 {
1498 Lisp_Object cdr;
1499
1500 while (1)
1501 {
1502 if (!CONSP (list)
1503 || (CONSP (XCAR (list))
1504 && (cdr = XCDR (XCAR (list)),
1505 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1506 break;
1507
1508 list = XCDR (list);
1509 if (!CONSP (list)
1510 || (CONSP (XCAR (list))
1511 && (cdr = XCDR (XCAR (list)),
1512 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1513 break;
1514
1515 list = XCDR (list);
1516 if (!CONSP (list)
1517 || (CONSP (XCAR (list))
1518 && (cdr = XCDR (XCAR (list)),
1519 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1520 break;
1521
1522 list = XCDR (list);
1523 QUIT;
1524 }
1525
1526 return CAR (list);
1527 }
1528 \f
1529 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1530 doc: /* Delete members of LIST which are `eq' to ELT, and return the result.
1531 More precisely, this function skips any members `eq' to ELT at the
1532 front of LIST, then removes members `eq' to ELT from the remaining
1533 sublist by modifying its list structure, then returns the resulting
1534 list.
1535
1536 Write `(setq foo (delq element foo))' to be sure of correctly changing
1537 the value of a list `foo'. */)
1538 (register Lisp_Object elt, Lisp_Object list)
1539 {
1540 register Lisp_Object tail, prev;
1541 register Lisp_Object tem;
1542
1543 tail = list;
1544 prev = Qnil;
1545 while (!NILP (tail))
1546 {
1547 CHECK_LIST_CONS (tail, list);
1548 tem = XCAR (tail);
1549 if (EQ (elt, tem))
1550 {
1551 if (NILP (prev))
1552 list = XCDR (tail);
1553 else
1554 Fsetcdr (prev, XCDR (tail));
1555 }
1556 else
1557 prev = tail;
1558 tail = XCDR (tail);
1559 QUIT;
1560 }
1561 return list;
1562 }
1563
1564 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1565 doc: /* Delete members of SEQ which are `equal' to ELT, and return the result.
1566 SEQ must be a sequence (i.e. a list, a vector, or a string).
1567 The return value is a sequence of the same type.
1568
1569 If SEQ is a list, this behaves like `delq', except that it compares
1570 with `equal' instead of `eq'. In particular, it may remove elements
1571 by altering the list structure.
1572
1573 If SEQ is not a list, deletion is never performed destructively;
1574 instead this function creates and returns a new vector or string.
1575
1576 Write `(setq foo (delete element foo))' to be sure of correctly
1577 changing the value of a sequence `foo'. */)
1578 (Lisp_Object elt, Lisp_Object seq)
1579 {
1580 if (VECTORP (seq))
1581 {
1582 ptrdiff_t i, n;
1583
1584 for (i = n = 0; i < ASIZE (seq); ++i)
1585 if (NILP (Fequal (AREF (seq, i), elt)))
1586 ++n;
1587
1588 if (n != ASIZE (seq))
1589 {
1590 struct Lisp_Vector *p = allocate_vector (n);
1591
1592 for (i = n = 0; i < ASIZE (seq); ++i)
1593 if (NILP (Fequal (AREF (seq, i), elt)))
1594 p->contents[n++] = AREF (seq, i);
1595
1596 XSETVECTOR (seq, p);
1597 }
1598 }
1599 else if (STRINGP (seq))
1600 {
1601 ptrdiff_t i, ibyte, nchars, nbytes, cbytes;
1602 int c;
1603
1604 for (i = nchars = nbytes = ibyte = 0;
1605 i < SCHARS (seq);
1606 ++i, ibyte += cbytes)
1607 {
1608 if (STRING_MULTIBYTE (seq))
1609 {
1610 c = STRING_CHAR (SDATA (seq) + ibyte);
1611 cbytes = CHAR_BYTES (c);
1612 }
1613 else
1614 {
1615 c = SREF (seq, i);
1616 cbytes = 1;
1617 }
1618
1619 if (!INTEGERP (elt) || c != XINT (elt))
1620 {
1621 ++nchars;
1622 nbytes += cbytes;
1623 }
1624 }
1625
1626 if (nchars != SCHARS (seq))
1627 {
1628 Lisp_Object tem;
1629
1630 tem = make_uninit_multibyte_string (nchars, nbytes);
1631 if (!STRING_MULTIBYTE (seq))
1632 STRING_SET_UNIBYTE (tem);
1633
1634 for (i = nchars = nbytes = ibyte = 0;
1635 i < SCHARS (seq);
1636 ++i, ibyte += cbytes)
1637 {
1638 if (STRING_MULTIBYTE (seq))
1639 {
1640 c = STRING_CHAR (SDATA (seq) + ibyte);
1641 cbytes = CHAR_BYTES (c);
1642 }
1643 else
1644 {
1645 c = SREF (seq, i);
1646 cbytes = 1;
1647 }
1648
1649 if (!INTEGERP (elt) || c != XINT (elt))
1650 {
1651 unsigned char *from = SDATA (seq) + ibyte;
1652 unsigned char *to = SDATA (tem) + nbytes;
1653 ptrdiff_t n;
1654
1655 ++nchars;
1656 nbytes += cbytes;
1657
1658 for (n = cbytes; n--; )
1659 *to++ = *from++;
1660 }
1661 }
1662
1663 seq = tem;
1664 }
1665 }
1666 else
1667 {
1668 Lisp_Object tail, prev;
1669
1670 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1671 {
1672 CHECK_LIST_CONS (tail, seq);
1673
1674 if (!NILP (Fequal (elt, XCAR (tail))))
1675 {
1676 if (NILP (prev))
1677 seq = XCDR (tail);
1678 else
1679 Fsetcdr (prev, XCDR (tail));
1680 }
1681 else
1682 prev = tail;
1683 QUIT;
1684 }
1685 }
1686
1687 return seq;
1688 }
1689
1690 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1691 doc: /* Reverse LIST by modifying cdr pointers.
1692 Return the reversed list. */)
1693 (Lisp_Object list)
1694 {
1695 register Lisp_Object prev, tail, next;
1696
1697 if (NILP (list)) return list;
1698 prev = Qnil;
1699 tail = list;
1700 while (!NILP (tail))
1701 {
1702 QUIT;
1703 CHECK_LIST_CONS (tail, list);
1704 next = XCDR (tail);
1705 Fsetcdr (tail, prev);
1706 prev = tail;
1707 tail = next;
1708 }
1709 return prev;
1710 }
1711
1712 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1713 doc: /* Reverse LIST, copying. Return the reversed list.
1714 See also the function `nreverse', which is used more often. */)
1715 (Lisp_Object list)
1716 {
1717 Lisp_Object new;
1718
1719 for (new = Qnil; CONSP (list); list = XCDR (list))
1720 {
1721 QUIT;
1722 new = Fcons (XCAR (list), new);
1723 }
1724 CHECK_LIST_END (list, list);
1725 return new;
1726 }
1727 \f
1728 Lisp_Object merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred);
1729
1730 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1731 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1732 Returns the sorted list. LIST is modified by side effects.
1733 PREDICATE is called with two elements of LIST, and should return non-nil
1734 if the first element should sort before the second. */)
1735 (Lisp_Object list, Lisp_Object predicate)
1736 {
1737 Lisp_Object front, back;
1738 register Lisp_Object len, tem;
1739 struct gcpro gcpro1, gcpro2;
1740 EMACS_INT length;
1741
1742 front = list;
1743 len = Flength (list);
1744 length = XINT (len);
1745 if (length < 2)
1746 return list;
1747
1748 XSETINT (len, (length / 2) - 1);
1749 tem = Fnthcdr (len, list);
1750 back = Fcdr (tem);
1751 Fsetcdr (tem, Qnil);
1752
1753 GCPRO2 (front, back);
1754 front = Fsort (front, predicate);
1755 back = Fsort (back, predicate);
1756 UNGCPRO;
1757 return merge (front, back, predicate);
1758 }
1759
1760 Lisp_Object
1761 merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
1762 {
1763 Lisp_Object value;
1764 register Lisp_Object tail;
1765 Lisp_Object tem;
1766 register Lisp_Object l1, l2;
1767 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1768
1769 l1 = org_l1;
1770 l2 = org_l2;
1771 tail = Qnil;
1772 value = Qnil;
1773
1774 /* It is sufficient to protect org_l1 and org_l2.
1775 When l1 and l2 are updated, we copy the new values
1776 back into the org_ vars. */
1777 GCPRO4 (org_l1, org_l2, pred, value);
1778
1779 while (1)
1780 {
1781 if (NILP (l1))
1782 {
1783 UNGCPRO;
1784 if (NILP (tail))
1785 return l2;
1786 Fsetcdr (tail, l2);
1787 return value;
1788 }
1789 if (NILP (l2))
1790 {
1791 UNGCPRO;
1792 if (NILP (tail))
1793 return l1;
1794 Fsetcdr (tail, l1);
1795 return value;
1796 }
1797 tem = call2 (pred, Fcar (l2), Fcar (l1));
1798 if (NILP (tem))
1799 {
1800 tem = l1;
1801 l1 = Fcdr (l1);
1802 org_l1 = l1;
1803 }
1804 else
1805 {
1806 tem = l2;
1807 l2 = Fcdr (l2);
1808 org_l2 = l2;
1809 }
1810 if (NILP (tail))
1811 value = tem;
1812 else
1813 Fsetcdr (tail, tem);
1814 tail = tem;
1815 }
1816 }
1817
1818 \f
1819 /* This does not check for quits. That is safe since it must terminate. */
1820
1821 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1822 doc: /* Extract a value from a property list.
1823 PLIST is a property list, which is a list of the form
1824 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1825 corresponding to the given PROP, or nil if PROP is not one of the
1826 properties on the list. This function never signals an error. */)
1827 (Lisp_Object plist, Lisp_Object prop)
1828 {
1829 Lisp_Object tail, halftail;
1830
1831 /* halftail is used to detect circular lists. */
1832 tail = halftail = plist;
1833 while (CONSP (tail) && CONSP (XCDR (tail)))
1834 {
1835 if (EQ (prop, XCAR (tail)))
1836 return XCAR (XCDR (tail));
1837
1838 tail = XCDR (XCDR (tail));
1839 halftail = XCDR (halftail);
1840 if (EQ (tail, halftail))
1841 break;
1842 }
1843
1844 return Qnil;
1845 }
1846
1847 DEFUN ("get", Fget, Sget, 2, 2, 0,
1848 doc: /* Return the value of SYMBOL's PROPNAME property.
1849 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1850 (Lisp_Object symbol, Lisp_Object propname)
1851 {
1852 CHECK_SYMBOL (symbol);
1853 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1854 }
1855
1856 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1857 doc: /* Change value in PLIST of PROP to VAL.
1858 PLIST is a property list, which is a list of the form
1859 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1860 If PROP is already a property on the list, its value is set to VAL,
1861 otherwise the new PROP VAL pair is added. The new plist is returned;
1862 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1863 The PLIST is modified by side effects. */)
1864 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1865 {
1866 register Lisp_Object tail, prev;
1867 Lisp_Object newcell;
1868 prev = Qnil;
1869 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1870 tail = XCDR (XCDR (tail)))
1871 {
1872 if (EQ (prop, XCAR (tail)))
1873 {
1874 Fsetcar (XCDR (tail), val);
1875 return plist;
1876 }
1877
1878 prev = tail;
1879 QUIT;
1880 }
1881 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
1882 if (NILP (prev))
1883 return newcell;
1884 else
1885 Fsetcdr (XCDR (prev), newcell);
1886 return plist;
1887 }
1888
1889 DEFUN ("put", Fput, Sput, 3, 3, 0,
1890 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
1891 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1892 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
1893 {
1894 CHECK_SYMBOL (symbol);
1895 set_symbol_plist
1896 (symbol, Fplist_put (XSYMBOL (symbol)->plist, propname, value));
1897 return value;
1898 }
1899 \f
1900 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
1901 doc: /* Extract a value from a property list, comparing with `equal'.
1902 PLIST is a property list, which is a list of the form
1903 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1904 corresponding to the given PROP, or nil if PROP is not
1905 one of the properties on the list. */)
1906 (Lisp_Object plist, Lisp_Object prop)
1907 {
1908 Lisp_Object tail;
1909
1910 for (tail = plist;
1911 CONSP (tail) && CONSP (XCDR (tail));
1912 tail = XCDR (XCDR (tail)))
1913 {
1914 if (! NILP (Fequal (prop, XCAR (tail))))
1915 return XCAR (XCDR (tail));
1916
1917 QUIT;
1918 }
1919
1920 CHECK_LIST_END (tail, prop);
1921
1922 return Qnil;
1923 }
1924
1925 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
1926 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1927 PLIST is a property list, which is a list of the form
1928 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1929 If PROP is already a property on the list, its value is set to VAL,
1930 otherwise the new PROP VAL pair is added. The new plist is returned;
1931 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1932 The PLIST is modified by side effects. */)
1933 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1934 {
1935 register Lisp_Object tail, prev;
1936 Lisp_Object newcell;
1937 prev = Qnil;
1938 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1939 tail = XCDR (XCDR (tail)))
1940 {
1941 if (! NILP (Fequal (prop, XCAR (tail))))
1942 {
1943 Fsetcar (XCDR (tail), val);
1944 return plist;
1945 }
1946
1947 prev = tail;
1948 QUIT;
1949 }
1950 newcell = Fcons (prop, Fcons (val, Qnil));
1951 if (NILP (prev))
1952 return newcell;
1953 else
1954 Fsetcdr (XCDR (prev), newcell);
1955 return plist;
1956 }
1957 \f
1958 DEFUN ("eql", Feql, Seql, 2, 2, 0,
1959 doc: /* Return t if the two args are the same Lisp object.
1960 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
1961 (Lisp_Object obj1, Lisp_Object obj2)
1962 {
1963 if (FLOATP (obj1))
1964 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
1965 else
1966 return EQ (obj1, obj2) ? Qt : Qnil;
1967 }
1968
1969 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
1970 doc: /* Return t if two Lisp objects have similar structure and contents.
1971 They must have the same data type.
1972 Conses are compared by comparing the cars and the cdrs.
1973 Vectors and strings are compared element by element.
1974 Numbers are compared by value, but integers cannot equal floats.
1975 (Use `=' if you want integers and floats to be able to be equal.)
1976 Symbols must match exactly. */)
1977 (register Lisp_Object o1, Lisp_Object o2)
1978 {
1979 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
1980 }
1981
1982 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
1983 doc: /* Return t if two Lisp objects have similar structure and contents.
1984 This is like `equal' except that it compares the text properties
1985 of strings. (`equal' ignores text properties.) */)
1986 (register Lisp_Object o1, Lisp_Object o2)
1987 {
1988 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
1989 }
1990
1991 /* DEPTH is current depth of recursion. Signal an error if it
1992 gets too deep.
1993 PROPS means compare string text properties too. */
1994
1995 static bool
1996 internal_equal (Lisp_Object o1, Lisp_Object o2, int depth, bool props)
1997 {
1998 if (depth > 200)
1999 error ("Stack overflow in equal");
2000
2001 tail_recurse:
2002 QUIT;
2003 if (EQ (o1, o2))
2004 return 1;
2005 if (XTYPE (o1) != XTYPE (o2))
2006 return 0;
2007
2008 switch (XTYPE (o1))
2009 {
2010 case Lisp_Float:
2011 {
2012 double d1, d2;
2013
2014 d1 = extract_float (o1);
2015 d2 = extract_float (o2);
2016 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2017 though they are not =. */
2018 return d1 == d2 || (d1 != d1 && d2 != d2);
2019 }
2020
2021 case Lisp_Cons:
2022 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2023 return 0;
2024 o1 = XCDR (o1);
2025 o2 = XCDR (o2);
2026 goto tail_recurse;
2027
2028 case Lisp_Misc:
2029 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2030 return 0;
2031 if (OVERLAYP (o1))
2032 {
2033 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2034 depth + 1, props)
2035 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2036 depth + 1, props))
2037 return 0;
2038 o1 = XOVERLAY (o1)->plist;
2039 o2 = XOVERLAY (o2)->plist;
2040 goto tail_recurse;
2041 }
2042 if (MARKERP (o1))
2043 {
2044 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2045 && (XMARKER (o1)->buffer == 0
2046 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2047 }
2048 break;
2049
2050 case Lisp_Vectorlike:
2051 {
2052 register int i;
2053 ptrdiff_t size = ASIZE (o1);
2054 /* Pseudovectors have the type encoded in the size field, so this test
2055 actually checks that the objects have the same type as well as the
2056 same size. */
2057 if (ASIZE (o2) != size)
2058 return 0;
2059 /* Boolvectors are compared much like strings. */
2060 if (BOOL_VECTOR_P (o1))
2061 {
2062 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2063 return 0;
2064 if (memcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2065 ((XBOOL_VECTOR (o1)->size
2066 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2067 / BOOL_VECTOR_BITS_PER_CHAR)))
2068 return 0;
2069 return 1;
2070 }
2071 if (WINDOW_CONFIGURATIONP (o1))
2072 return compare_window_configurations (o1, o2, 0);
2073
2074 /* Aside from them, only true vectors, char-tables, compiled
2075 functions, and fonts (font-spec, font-entity, font-object)
2076 are sensible to compare, so eliminate the others now. */
2077 if (size & PSEUDOVECTOR_FLAG)
2078 {
2079 if (!(size & ((PVEC_COMPILED | PVEC_CHAR_TABLE
2080 | PVEC_SUB_CHAR_TABLE | PVEC_FONT)
2081 << PSEUDOVECTOR_SIZE_BITS)))
2082 return 0;
2083 size &= PSEUDOVECTOR_SIZE_MASK;
2084 }
2085 for (i = 0; i < size; i++)
2086 {
2087 Lisp_Object v1, v2;
2088 v1 = AREF (o1, i);
2089 v2 = AREF (o2, i);
2090 if (!internal_equal (v1, v2, depth + 1, props))
2091 return 0;
2092 }
2093 return 1;
2094 }
2095 break;
2096
2097 case Lisp_String:
2098 if (SCHARS (o1) != SCHARS (o2))
2099 return 0;
2100 if (SBYTES (o1) != SBYTES (o2))
2101 return 0;
2102 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2103 return 0;
2104 if (props && !compare_string_intervals (o1, o2))
2105 return 0;
2106 return 1;
2107
2108 default:
2109 break;
2110 }
2111
2112 return 0;
2113 }
2114 \f
2115
2116 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2117 doc: /* Store each element of ARRAY with ITEM.
2118 ARRAY is a vector, string, char-table, or bool-vector. */)
2119 (Lisp_Object array, Lisp_Object item)
2120 {
2121 register ptrdiff_t size, idx;
2122
2123 if (VECTORP (array))
2124 for (idx = 0, size = ASIZE (array); idx < size; idx++)
2125 ASET (array, idx, item);
2126 else if (CHAR_TABLE_P (array))
2127 {
2128 int i;
2129
2130 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2131 set_char_table_contents (array, i, item);
2132 set_char_table_defalt (array, item);
2133 }
2134 else if (STRINGP (array))
2135 {
2136 register unsigned char *p = SDATA (array);
2137 int charval;
2138 CHECK_CHARACTER (item);
2139 charval = XFASTINT (item);
2140 size = SCHARS (array);
2141 if (STRING_MULTIBYTE (array))
2142 {
2143 unsigned char str[MAX_MULTIBYTE_LENGTH];
2144 int len = CHAR_STRING (charval, str);
2145 ptrdiff_t size_byte = SBYTES (array);
2146
2147 if (INT_MULTIPLY_OVERFLOW (SCHARS (array), len)
2148 || SCHARS (array) * len != size_byte)
2149 error ("Attempt to change byte length of a string");
2150 for (idx = 0; idx < size_byte; idx++)
2151 *p++ = str[idx % len];
2152 }
2153 else
2154 for (idx = 0; idx < size; idx++)
2155 p[idx] = charval;
2156 }
2157 else if (BOOL_VECTOR_P (array))
2158 {
2159 register unsigned char *p = XBOOL_VECTOR (array)->data;
2160 size =
2161 ((XBOOL_VECTOR (array)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2162 / BOOL_VECTOR_BITS_PER_CHAR);
2163
2164 if (size)
2165 {
2166 memset (p, ! NILP (item) ? -1 : 0, size);
2167
2168 /* Clear any extraneous bits in the last byte. */
2169 p[size - 1] &= (1 << (size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2170 }
2171 }
2172 else
2173 wrong_type_argument (Qarrayp, array);
2174 return array;
2175 }
2176
2177 DEFUN ("clear-string", Fclear_string, Sclear_string,
2178 1, 1, 0,
2179 doc: /* Clear the contents of STRING.
2180 This makes STRING unibyte and may change its length. */)
2181 (Lisp_Object string)
2182 {
2183 ptrdiff_t len;
2184 CHECK_STRING (string);
2185 len = SBYTES (string);
2186 memset (SDATA (string), 0, len);
2187 STRING_SET_CHARS (string, len);
2188 STRING_SET_UNIBYTE (string);
2189 return Qnil;
2190 }
2191 \f
2192 /* ARGSUSED */
2193 Lisp_Object
2194 nconc2 (Lisp_Object s1, Lisp_Object s2)
2195 {
2196 Lisp_Object args[2];
2197 args[0] = s1;
2198 args[1] = s2;
2199 return Fnconc (2, args);
2200 }
2201
2202 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2203 doc: /* Concatenate any number of lists by altering them.
2204 Only the last argument is not altered, and need not be a list.
2205 usage: (nconc &rest LISTS) */)
2206 (ptrdiff_t nargs, Lisp_Object *args)
2207 {
2208 ptrdiff_t argnum;
2209 register Lisp_Object tail, tem, val;
2210
2211 val = tail = Qnil;
2212
2213 for (argnum = 0; argnum < nargs; argnum++)
2214 {
2215 tem = args[argnum];
2216 if (NILP (tem)) continue;
2217
2218 if (NILP (val))
2219 val = tem;
2220
2221 if (argnum + 1 == nargs) break;
2222
2223 CHECK_LIST_CONS (tem, tem);
2224
2225 while (CONSP (tem))
2226 {
2227 tail = tem;
2228 tem = XCDR (tail);
2229 QUIT;
2230 }
2231
2232 tem = args[argnum + 1];
2233 Fsetcdr (tail, tem);
2234 if (NILP (tem))
2235 args[argnum + 1] = tail;
2236 }
2237
2238 return val;
2239 }
2240 \f
2241 /* This is the guts of all mapping functions.
2242 Apply FN to each element of SEQ, one by one,
2243 storing the results into elements of VALS, a C vector of Lisp_Objects.
2244 LENI is the length of VALS, which should also be the length of SEQ. */
2245
2246 static void
2247 mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2248 {
2249 register Lisp_Object tail;
2250 Lisp_Object dummy;
2251 register EMACS_INT i;
2252 struct gcpro gcpro1, gcpro2, gcpro3;
2253
2254 if (vals)
2255 {
2256 /* Don't let vals contain any garbage when GC happens. */
2257 for (i = 0; i < leni; i++)
2258 vals[i] = Qnil;
2259
2260 GCPRO3 (dummy, fn, seq);
2261 gcpro1.var = vals;
2262 gcpro1.nvars = leni;
2263 }
2264 else
2265 GCPRO2 (fn, seq);
2266 /* We need not explicitly protect `tail' because it is used only on lists, and
2267 1) lists are not relocated and 2) the list is marked via `seq' so will not
2268 be freed */
2269
2270 if (VECTORP (seq) || COMPILEDP (seq))
2271 {
2272 for (i = 0; i < leni; i++)
2273 {
2274 dummy = call1 (fn, AREF (seq, i));
2275 if (vals)
2276 vals[i] = dummy;
2277 }
2278 }
2279 else if (BOOL_VECTOR_P (seq))
2280 {
2281 for (i = 0; i < leni; i++)
2282 {
2283 unsigned char byte;
2284 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2285 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
2286 dummy = call1 (fn, dummy);
2287 if (vals)
2288 vals[i] = dummy;
2289 }
2290 }
2291 else if (STRINGP (seq))
2292 {
2293 ptrdiff_t i_byte;
2294
2295 for (i = 0, i_byte = 0; i < leni;)
2296 {
2297 int c;
2298 ptrdiff_t i_before = i;
2299
2300 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2301 XSETFASTINT (dummy, c);
2302 dummy = call1 (fn, dummy);
2303 if (vals)
2304 vals[i_before] = dummy;
2305 }
2306 }
2307 else /* Must be a list, since Flength did not get an error */
2308 {
2309 tail = seq;
2310 for (i = 0; i < leni && CONSP (tail); i++)
2311 {
2312 dummy = call1 (fn, XCAR (tail));
2313 if (vals)
2314 vals[i] = dummy;
2315 tail = XCDR (tail);
2316 }
2317 }
2318
2319 UNGCPRO;
2320 }
2321
2322 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2323 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2324 In between each pair of results, stick in SEPARATOR. Thus, " " as
2325 SEPARATOR results in spaces between the values returned by FUNCTION.
2326 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2327 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2328 {
2329 Lisp_Object len;
2330 register EMACS_INT leni;
2331 EMACS_INT nargs;
2332 ptrdiff_t i;
2333 register Lisp_Object *args;
2334 struct gcpro gcpro1;
2335 Lisp_Object ret;
2336 USE_SAFE_ALLOCA;
2337
2338 len = Flength (sequence);
2339 if (CHAR_TABLE_P (sequence))
2340 wrong_type_argument (Qlistp, sequence);
2341 leni = XINT (len);
2342 nargs = leni + leni - 1;
2343 if (nargs < 0) return empty_unibyte_string;
2344
2345 SAFE_ALLOCA_LISP (args, nargs);
2346
2347 GCPRO1 (separator);
2348 mapcar1 (leni, args, function, sequence);
2349 UNGCPRO;
2350
2351 for (i = leni - 1; i > 0; i--)
2352 args[i + i] = args[i];
2353
2354 for (i = 1; i < nargs; i += 2)
2355 args[i] = separator;
2356
2357 ret = Fconcat (nargs, args);
2358 SAFE_FREE ();
2359
2360 return ret;
2361 }
2362
2363 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2364 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2365 The result is a list just as long as SEQUENCE.
2366 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2367 (Lisp_Object function, Lisp_Object sequence)
2368 {
2369 register Lisp_Object len;
2370 register EMACS_INT leni;
2371 register Lisp_Object *args;
2372 Lisp_Object ret;
2373 USE_SAFE_ALLOCA;
2374
2375 len = Flength (sequence);
2376 if (CHAR_TABLE_P (sequence))
2377 wrong_type_argument (Qlistp, sequence);
2378 leni = XFASTINT (len);
2379
2380 SAFE_ALLOCA_LISP (args, leni);
2381
2382 mapcar1 (leni, args, function, sequence);
2383
2384 ret = Flist (leni, args);
2385 SAFE_FREE ();
2386
2387 return ret;
2388 }
2389
2390 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2391 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2392 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2393 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2394 (Lisp_Object function, Lisp_Object sequence)
2395 {
2396 register EMACS_INT leni;
2397
2398 leni = XFASTINT (Flength (sequence));
2399 if (CHAR_TABLE_P (sequence))
2400 wrong_type_argument (Qlistp, sequence);
2401 mapcar1 (leni, 0, function, sequence);
2402
2403 return sequence;
2404 }
2405 \f
2406 /* This is how C code calls `yes-or-no-p' and allows the user
2407 to redefined it.
2408
2409 Anything that calls this function must protect from GC! */
2410
2411 Lisp_Object
2412 do_yes_or_no_p (Lisp_Object prompt)
2413 {
2414 return call1 (intern ("yes-or-no-p"), prompt);
2415 }
2416
2417 /* Anything that calls this function must protect from GC! */
2418
2419 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2420 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2421 PROMPT is the string to display to ask the question. It should end in
2422 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2423
2424 The user must confirm the answer with RET, and can edit it until it
2425 has been confirmed.
2426
2427 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2428 is nil, and `use-dialog-box' is non-nil. */)
2429 (Lisp_Object prompt)
2430 {
2431 register Lisp_Object ans;
2432 Lisp_Object args[2];
2433 struct gcpro gcpro1;
2434
2435 CHECK_STRING (prompt);
2436
2437 #ifdef HAVE_MENUS
2438 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2439 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2440 && use_dialog_box
2441 && have_menus_p ())
2442 {
2443 Lisp_Object pane, menu, obj;
2444 redisplay_preserve_echo_area (4);
2445 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2446 Fcons (Fcons (build_string ("No"), Qnil),
2447 Qnil));
2448 GCPRO1 (pane);
2449 menu = Fcons (prompt, pane);
2450 obj = Fx_popup_dialog (Qt, menu, Qnil);
2451 UNGCPRO;
2452 return obj;
2453 }
2454 #endif /* HAVE_MENUS */
2455
2456 args[0] = prompt;
2457 args[1] = build_string ("(yes or no) ");
2458 prompt = Fconcat (2, args);
2459
2460 GCPRO1 (prompt);
2461
2462 while (1)
2463 {
2464 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2465 Qyes_or_no_p_history, Qnil,
2466 Qnil));
2467 if (SCHARS (ans) == 3 && !strcmp (SSDATA (ans), "yes"))
2468 {
2469 UNGCPRO;
2470 return Qt;
2471 }
2472 if (SCHARS (ans) == 2 && !strcmp (SSDATA (ans), "no"))
2473 {
2474 UNGCPRO;
2475 return Qnil;
2476 }
2477
2478 Fding (Qnil);
2479 Fdiscard_input ();
2480 message ("Please answer yes or no.");
2481 Fsleep_for (make_number (2), Qnil);
2482 }
2483 }
2484 \f
2485 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2486 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2487
2488 Each of the three load averages is multiplied by 100, then converted
2489 to integer.
2490
2491 When USE-FLOATS is non-nil, floats will be used instead of integers.
2492 These floats are not multiplied by 100.
2493
2494 If the 5-minute or 15-minute load averages are not available, return a
2495 shortened list, containing only those averages which are available.
2496
2497 An error is thrown if the load average can't be obtained. In some
2498 cases making it work would require Emacs being installed setuid or
2499 setgid so that it can read kernel information, and that usually isn't
2500 advisable. */)
2501 (Lisp_Object use_floats)
2502 {
2503 double load_ave[3];
2504 int loads = getloadavg (load_ave, 3);
2505 Lisp_Object ret = Qnil;
2506
2507 if (loads < 0)
2508 error ("load-average not implemented for this operating system");
2509
2510 while (loads-- > 0)
2511 {
2512 Lisp_Object load = (NILP (use_floats)
2513 ? make_number (100.0 * load_ave[loads])
2514 : make_float (load_ave[loads]));
2515 ret = Fcons (load, ret);
2516 }
2517
2518 return ret;
2519 }
2520 \f
2521 static Lisp_Object Qsubfeatures;
2522
2523 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2524 doc: /* Return t if FEATURE is present in this Emacs.
2525
2526 Use this to conditionalize execution of lisp code based on the
2527 presence or absence of Emacs or environment extensions.
2528 Use `provide' to declare that a feature is available. This function
2529 looks at the value of the variable `features'. The optional argument
2530 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2531 (Lisp_Object feature, Lisp_Object subfeature)
2532 {
2533 register Lisp_Object tem;
2534 CHECK_SYMBOL (feature);
2535 tem = Fmemq (feature, Vfeatures);
2536 if (!NILP (tem) && !NILP (subfeature))
2537 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2538 return (NILP (tem)) ? Qnil : Qt;
2539 }
2540
2541 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2542 doc: /* Announce that FEATURE is a feature of the current Emacs.
2543 The optional argument SUBFEATURES should be a list of symbols listing
2544 particular subfeatures supported in this version of FEATURE. */)
2545 (Lisp_Object feature, Lisp_Object subfeatures)
2546 {
2547 register Lisp_Object tem;
2548 CHECK_SYMBOL (feature);
2549 CHECK_LIST (subfeatures);
2550 if (!NILP (Vautoload_queue))
2551 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2552 Vautoload_queue);
2553 tem = Fmemq (feature, Vfeatures);
2554 if (NILP (tem))
2555 Vfeatures = Fcons (feature, Vfeatures);
2556 if (!NILP (subfeatures))
2557 Fput (feature, Qsubfeatures, subfeatures);
2558 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2559
2560 /* Run any load-hooks for this file. */
2561 tem = Fassq (feature, Vafter_load_alist);
2562 if (CONSP (tem))
2563 Fprogn (XCDR (tem));
2564
2565 return feature;
2566 }
2567 \f
2568 /* `require' and its subroutines. */
2569
2570 /* List of features currently being require'd, innermost first. */
2571
2572 static Lisp_Object require_nesting_list;
2573
2574 static Lisp_Object
2575 require_unwind (Lisp_Object old_value)
2576 {
2577 return require_nesting_list = old_value;
2578 }
2579
2580 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2581 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2582 If FEATURE is not a member of the list `features', then the feature
2583 is not loaded; so load the file FILENAME.
2584 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2585 and `load' will try to load this name appended with the suffix `.elc' or
2586 `.el', in that order. The name without appended suffix will not be used.
2587 See `get-load-suffixes' for the complete list of suffixes.
2588 If the optional third argument NOERROR is non-nil,
2589 then return nil if the file is not found instead of signaling an error.
2590 Normally the return value is FEATURE.
2591 The normal messages at start and end of loading FILENAME are suppressed. */)
2592 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2593 {
2594 Lisp_Object tem;
2595 struct gcpro gcpro1, gcpro2;
2596 bool from_file = load_in_progress;
2597
2598 CHECK_SYMBOL (feature);
2599
2600 /* Record the presence of `require' in this file
2601 even if the feature specified is already loaded.
2602 But not more than once in any file,
2603 and not when we aren't loading or reading from a file. */
2604 if (!from_file)
2605 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2606 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2607 from_file = 1;
2608
2609 if (from_file)
2610 {
2611 tem = Fcons (Qrequire, feature);
2612 if (NILP (Fmember (tem, Vcurrent_load_list)))
2613 LOADHIST_ATTACH (tem);
2614 }
2615 tem = Fmemq (feature, Vfeatures);
2616
2617 if (NILP (tem))
2618 {
2619 ptrdiff_t count = SPECPDL_INDEX ();
2620 int nesting = 0;
2621
2622 /* This is to make sure that loadup.el gives a clear picture
2623 of what files are preloaded and when. */
2624 if (! NILP (Vpurify_flag))
2625 error ("(require %s) while preparing to dump",
2626 SDATA (SYMBOL_NAME (feature)));
2627
2628 /* A certain amount of recursive `require' is legitimate,
2629 but if we require the same feature recursively 3 times,
2630 signal an error. */
2631 tem = require_nesting_list;
2632 while (! NILP (tem))
2633 {
2634 if (! NILP (Fequal (feature, XCAR (tem))))
2635 nesting++;
2636 tem = XCDR (tem);
2637 }
2638 if (nesting > 3)
2639 error ("Recursive `require' for feature `%s'",
2640 SDATA (SYMBOL_NAME (feature)));
2641
2642 /* Update the list for any nested `require's that occur. */
2643 record_unwind_protect (require_unwind, require_nesting_list);
2644 require_nesting_list = Fcons (feature, require_nesting_list);
2645
2646 /* Value saved here is to be restored into Vautoload_queue */
2647 record_unwind_protect (un_autoload, Vautoload_queue);
2648 Vautoload_queue = Qt;
2649
2650 /* Load the file. */
2651 GCPRO2 (feature, filename);
2652 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2653 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2654 UNGCPRO;
2655
2656 /* If load failed entirely, return nil. */
2657 if (NILP (tem))
2658 return unbind_to (count, Qnil);
2659
2660 tem = Fmemq (feature, Vfeatures);
2661 if (NILP (tem))
2662 error ("Required feature `%s' was not provided",
2663 SDATA (SYMBOL_NAME (feature)));
2664
2665 /* Once loading finishes, don't undo it. */
2666 Vautoload_queue = Qt;
2667 feature = unbind_to (count, feature);
2668 }
2669
2670 return feature;
2671 }
2672 \f
2673 /* Primitives for work of the "widget" library.
2674 In an ideal world, this section would not have been necessary.
2675 However, lisp function calls being as slow as they are, it turns
2676 out that some functions in the widget library (wid-edit.el) are the
2677 bottleneck of Widget operation. Here is their translation to C,
2678 for the sole reason of efficiency. */
2679
2680 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2681 doc: /* Return non-nil if PLIST has the property PROP.
2682 PLIST is a property list, which is a list of the form
2683 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2684 Unlike `plist-get', this allows you to distinguish between a missing
2685 property and a property with the value nil.
2686 The value is actually the tail of PLIST whose car is PROP. */)
2687 (Lisp_Object plist, Lisp_Object prop)
2688 {
2689 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2690 {
2691 QUIT;
2692 plist = XCDR (plist);
2693 plist = CDR (plist);
2694 }
2695 return plist;
2696 }
2697
2698 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2699 doc: /* In WIDGET, set PROPERTY to VALUE.
2700 The value can later be retrieved with `widget-get'. */)
2701 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2702 {
2703 CHECK_CONS (widget);
2704 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2705 return value;
2706 }
2707
2708 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2709 doc: /* In WIDGET, get the value of PROPERTY.
2710 The value could either be specified when the widget was created, or
2711 later with `widget-put'. */)
2712 (Lisp_Object widget, Lisp_Object property)
2713 {
2714 Lisp_Object tmp;
2715
2716 while (1)
2717 {
2718 if (NILP (widget))
2719 return Qnil;
2720 CHECK_CONS (widget);
2721 tmp = Fplist_member (XCDR (widget), property);
2722 if (CONSP (tmp))
2723 {
2724 tmp = XCDR (tmp);
2725 return CAR (tmp);
2726 }
2727 tmp = XCAR (widget);
2728 if (NILP (tmp))
2729 return Qnil;
2730 widget = Fget (tmp, Qwidget_type);
2731 }
2732 }
2733
2734 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2735 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2736 ARGS are passed as extra arguments to the function.
2737 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2738 (ptrdiff_t nargs, Lisp_Object *args)
2739 {
2740 /* This function can GC. */
2741 Lisp_Object newargs[3];
2742 struct gcpro gcpro1, gcpro2;
2743 Lisp_Object result;
2744
2745 newargs[0] = Fwidget_get (args[0], args[1]);
2746 newargs[1] = args[0];
2747 newargs[2] = Flist (nargs - 2, args + 2);
2748 GCPRO2 (newargs[0], newargs[2]);
2749 result = Fapply (3, newargs);
2750 UNGCPRO;
2751 return result;
2752 }
2753
2754 #ifdef HAVE_LANGINFO_CODESET
2755 #include <langinfo.h>
2756 #endif
2757
2758 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2759 doc: /* Access locale data ITEM for the current C locale, if available.
2760 ITEM should be one of the following:
2761
2762 `codeset', returning the character set as a string (locale item CODESET);
2763
2764 `days', returning a 7-element vector of day names (locale items DAY_n);
2765
2766 `months', returning a 12-element vector of month names (locale items MON_n);
2767
2768 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2769 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2770
2771 If the system can't provide such information through a call to
2772 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2773
2774 See also Info node `(libc)Locales'.
2775
2776 The data read from the system are decoded using `locale-coding-system'. */)
2777 (Lisp_Object item)
2778 {
2779 char *str = NULL;
2780 #ifdef HAVE_LANGINFO_CODESET
2781 Lisp_Object val;
2782 if (EQ (item, Qcodeset))
2783 {
2784 str = nl_langinfo (CODESET);
2785 return build_string (str);
2786 }
2787 #ifdef DAY_1
2788 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
2789 {
2790 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
2791 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
2792 int i;
2793 struct gcpro gcpro1;
2794 GCPRO1 (v);
2795 synchronize_system_time_locale ();
2796 for (i = 0; i < 7; i++)
2797 {
2798 str = nl_langinfo (days[i]);
2799 val = build_unibyte_string (str);
2800 /* Fixme: Is this coding system necessarily right, even if
2801 it is consistent with CODESET? If not, what to do? */
2802 Faset (v, make_number (i),
2803 code_convert_string_norecord (val, Vlocale_coding_system,
2804 0));
2805 }
2806 UNGCPRO;
2807 return v;
2808 }
2809 #endif /* DAY_1 */
2810 #ifdef MON_1
2811 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
2812 {
2813 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
2814 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
2815 MON_8, MON_9, MON_10, MON_11, MON_12};
2816 int i;
2817 struct gcpro gcpro1;
2818 GCPRO1 (v);
2819 synchronize_system_time_locale ();
2820 for (i = 0; i < 12; i++)
2821 {
2822 str = nl_langinfo (months[i]);
2823 val = build_unibyte_string (str);
2824 Faset (v, make_number (i),
2825 code_convert_string_norecord (val, Vlocale_coding_system, 0));
2826 }
2827 UNGCPRO;
2828 return v;
2829 }
2830 #endif /* MON_1 */
2831 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2832 but is in the locale files. This could be used by ps-print. */
2833 #ifdef PAPER_WIDTH
2834 else if (EQ (item, Qpaper))
2835 {
2836 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
2837 make_number (nl_langinfo (PAPER_HEIGHT)));
2838 }
2839 #endif /* PAPER_WIDTH */
2840 #endif /* HAVE_LANGINFO_CODESET*/
2841 return Qnil;
2842 }
2843 \f
2844 /* base64 encode/decode functions (RFC 2045).
2845 Based on code from GNU recode. */
2846
2847 #define MIME_LINE_LENGTH 76
2848
2849 #define IS_ASCII(Character) \
2850 ((Character) < 128)
2851 #define IS_BASE64(Character) \
2852 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2853 #define IS_BASE64_IGNORABLE(Character) \
2854 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2855 || (Character) == '\f' || (Character) == '\r')
2856
2857 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2858 character or return retval if there are no characters left to
2859 process. */
2860 #define READ_QUADRUPLET_BYTE(retval) \
2861 do \
2862 { \
2863 if (i == length) \
2864 { \
2865 if (nchars_return) \
2866 *nchars_return = nchars; \
2867 return (retval); \
2868 } \
2869 c = from[i++]; \
2870 } \
2871 while (IS_BASE64_IGNORABLE (c))
2872
2873 /* Table of characters coding the 64 values. */
2874 static const char base64_value_to_char[64] =
2875 {
2876 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2877 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2878 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2879 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2880 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2881 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2882 '8', '9', '+', '/' /* 60-63 */
2883 };
2884
2885 /* Table of base64 values for first 128 characters. */
2886 static const short base64_char_to_value[128] =
2887 {
2888 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2889 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2890 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2891 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2892 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2893 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2894 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2895 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2896 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2897 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2898 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2899 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2900 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2901 };
2902
2903 /* The following diagram shows the logical steps by which three octets
2904 get transformed into four base64 characters.
2905
2906 .--------. .--------. .--------.
2907 |aaaaaabb| |bbbbcccc| |ccdddddd|
2908 `--------' `--------' `--------'
2909 6 2 4 4 2 6
2910 .--------+--------+--------+--------.
2911 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2912 `--------+--------+--------+--------'
2913
2914 .--------+--------+--------+--------.
2915 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2916 `--------+--------+--------+--------'
2917
2918 The octets are divided into 6 bit chunks, which are then encoded into
2919 base64 characters. */
2920
2921
2922 static ptrdiff_t base64_encode_1 (const char *, char *, ptrdiff_t, bool, bool);
2923 static ptrdiff_t base64_decode_1 (const char *, char *, ptrdiff_t, bool,
2924 ptrdiff_t *);
2925
2926 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
2927 2, 3, "r",
2928 doc: /* Base64-encode the region between BEG and END.
2929 Return the length of the encoded text.
2930 Optional third argument NO-LINE-BREAK means do not break long lines
2931 into shorter lines. */)
2932 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
2933 {
2934 char *encoded;
2935 ptrdiff_t allength, length;
2936 ptrdiff_t ibeg, iend, encoded_length;
2937 ptrdiff_t old_pos = PT;
2938 USE_SAFE_ALLOCA;
2939
2940 validate_region (&beg, &end);
2941
2942 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
2943 iend = CHAR_TO_BYTE (XFASTINT (end));
2944 move_gap_both (XFASTINT (beg), ibeg);
2945
2946 /* We need to allocate enough room for encoding the text.
2947 We need 33 1/3% more space, plus a newline every 76
2948 characters, and then we round up. */
2949 length = iend - ibeg;
2950 allength = length + length/3 + 1;
2951 allength += allength / MIME_LINE_LENGTH + 1 + 6;
2952
2953 encoded = SAFE_ALLOCA (allength);
2954 encoded_length = base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg),
2955 encoded, length, NILP (no_line_break),
2956 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
2957 if (encoded_length > allength)
2958 emacs_abort ();
2959
2960 if (encoded_length < 0)
2961 {
2962 /* The encoding wasn't possible. */
2963 SAFE_FREE ();
2964 error ("Multibyte character in data for base64 encoding");
2965 }
2966
2967 /* Now we have encoded the region, so we insert the new contents
2968 and delete the old. (Insert first in order to preserve markers.) */
2969 SET_PT_BOTH (XFASTINT (beg), ibeg);
2970 insert (encoded, encoded_length);
2971 SAFE_FREE ();
2972 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
2973
2974 /* If point was outside of the region, restore it exactly; else just
2975 move to the beginning of the region. */
2976 if (old_pos >= XFASTINT (end))
2977 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
2978 else if (old_pos > XFASTINT (beg))
2979 old_pos = XFASTINT (beg);
2980 SET_PT (old_pos);
2981
2982 /* We return the length of the encoded text. */
2983 return make_number (encoded_length);
2984 }
2985
2986 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
2987 1, 2, 0,
2988 doc: /* Base64-encode STRING and return the result.
2989 Optional second argument NO-LINE-BREAK means do not break long lines
2990 into shorter lines. */)
2991 (Lisp_Object string, Lisp_Object no_line_break)
2992 {
2993 ptrdiff_t allength, length, encoded_length;
2994 char *encoded;
2995 Lisp_Object encoded_string;
2996 USE_SAFE_ALLOCA;
2997
2998 CHECK_STRING (string);
2999
3000 /* We need to allocate enough room for encoding the text.
3001 We need 33 1/3% more space, plus a newline every 76
3002 characters, and then we round up. */
3003 length = SBYTES (string);
3004 allength = length + length/3 + 1;
3005 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3006
3007 /* We need to allocate enough room for decoding the text. */
3008 encoded = SAFE_ALLOCA (allength);
3009
3010 encoded_length = base64_encode_1 (SSDATA (string),
3011 encoded, length, NILP (no_line_break),
3012 STRING_MULTIBYTE (string));
3013 if (encoded_length > allength)
3014 emacs_abort ();
3015
3016 if (encoded_length < 0)
3017 {
3018 /* The encoding wasn't possible. */
3019 SAFE_FREE ();
3020 error ("Multibyte character in data for base64 encoding");
3021 }
3022
3023 encoded_string = make_unibyte_string (encoded, encoded_length);
3024 SAFE_FREE ();
3025
3026 return encoded_string;
3027 }
3028
3029 static ptrdiff_t
3030 base64_encode_1 (const char *from, char *to, ptrdiff_t length,
3031 bool line_break, bool multibyte)
3032 {
3033 int counter = 0;
3034 ptrdiff_t i = 0;
3035 char *e = to;
3036 int c;
3037 unsigned int value;
3038 int bytes;
3039
3040 while (i < length)
3041 {
3042 if (multibyte)
3043 {
3044 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3045 if (CHAR_BYTE8_P (c))
3046 c = CHAR_TO_BYTE8 (c);
3047 else if (c >= 256)
3048 return -1;
3049 i += bytes;
3050 }
3051 else
3052 c = from[i++];
3053
3054 /* Wrap line every 76 characters. */
3055
3056 if (line_break)
3057 {
3058 if (counter < MIME_LINE_LENGTH / 4)
3059 counter++;
3060 else
3061 {
3062 *e++ = '\n';
3063 counter = 1;
3064 }
3065 }
3066
3067 /* Process first byte of a triplet. */
3068
3069 *e++ = base64_value_to_char[0x3f & c >> 2];
3070 value = (0x03 & c) << 4;
3071
3072 /* Process second byte of a triplet. */
3073
3074 if (i == length)
3075 {
3076 *e++ = base64_value_to_char[value];
3077 *e++ = '=';
3078 *e++ = '=';
3079 break;
3080 }
3081
3082 if (multibyte)
3083 {
3084 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3085 if (CHAR_BYTE8_P (c))
3086 c = CHAR_TO_BYTE8 (c);
3087 else if (c >= 256)
3088 return -1;
3089 i += bytes;
3090 }
3091 else
3092 c = from[i++];
3093
3094 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3095 value = (0x0f & c) << 2;
3096
3097 /* Process third byte of a triplet. */
3098
3099 if (i == length)
3100 {
3101 *e++ = base64_value_to_char[value];
3102 *e++ = '=';
3103 break;
3104 }
3105
3106 if (multibyte)
3107 {
3108 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3109 if (CHAR_BYTE8_P (c))
3110 c = CHAR_TO_BYTE8 (c);
3111 else if (c >= 256)
3112 return -1;
3113 i += bytes;
3114 }
3115 else
3116 c = from[i++];
3117
3118 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3119 *e++ = base64_value_to_char[0x3f & c];
3120 }
3121
3122 return e - to;
3123 }
3124
3125
3126 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3127 2, 2, "r",
3128 doc: /* Base64-decode the region between BEG and END.
3129 Return the length of the decoded text.
3130 If the region can't be decoded, signal an error and don't modify the buffer. */)
3131 (Lisp_Object beg, Lisp_Object end)
3132 {
3133 ptrdiff_t ibeg, iend, length, allength;
3134 char *decoded;
3135 ptrdiff_t old_pos = PT;
3136 ptrdiff_t decoded_length;
3137 ptrdiff_t inserted_chars;
3138 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3139 USE_SAFE_ALLOCA;
3140
3141 validate_region (&beg, &end);
3142
3143 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3144 iend = CHAR_TO_BYTE (XFASTINT (end));
3145
3146 length = iend - ibeg;
3147
3148 /* We need to allocate enough room for decoding the text. If we are
3149 working on a multibyte buffer, each decoded code may occupy at
3150 most two bytes. */
3151 allength = multibyte ? length * 2 : length;
3152 decoded = SAFE_ALLOCA (allength);
3153
3154 move_gap_both (XFASTINT (beg), ibeg);
3155 decoded_length = base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg),
3156 decoded, length,
3157 multibyte, &inserted_chars);
3158 if (decoded_length > allength)
3159 emacs_abort ();
3160
3161 if (decoded_length < 0)
3162 {
3163 /* The decoding wasn't possible. */
3164 SAFE_FREE ();
3165 error ("Invalid base64 data");
3166 }
3167
3168 /* Now we have decoded the region, so we insert the new contents
3169 and delete the old. (Insert first in order to preserve markers.) */
3170 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3171 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3172 SAFE_FREE ();
3173
3174 /* Delete the original text. */
3175 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3176 iend + decoded_length, 1);
3177
3178 /* If point was outside of the region, restore it exactly; else just
3179 move to the beginning of the region. */
3180 if (old_pos >= XFASTINT (end))
3181 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3182 else if (old_pos > XFASTINT (beg))
3183 old_pos = XFASTINT (beg);
3184 SET_PT (old_pos > ZV ? ZV : old_pos);
3185
3186 return make_number (inserted_chars);
3187 }
3188
3189 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3190 1, 1, 0,
3191 doc: /* Base64-decode STRING and return the result. */)
3192 (Lisp_Object string)
3193 {
3194 char *decoded;
3195 ptrdiff_t length, decoded_length;
3196 Lisp_Object decoded_string;
3197 USE_SAFE_ALLOCA;
3198
3199 CHECK_STRING (string);
3200
3201 length = SBYTES (string);
3202 /* We need to allocate enough room for decoding the text. */
3203 decoded = SAFE_ALLOCA (length);
3204
3205 /* The decoded result should be unibyte. */
3206 decoded_length = base64_decode_1 (SSDATA (string), decoded, length,
3207 0, NULL);
3208 if (decoded_length > length)
3209 emacs_abort ();
3210 else if (decoded_length >= 0)
3211 decoded_string = make_unibyte_string (decoded, decoded_length);
3212 else
3213 decoded_string = Qnil;
3214
3215 SAFE_FREE ();
3216 if (!STRINGP (decoded_string))
3217 error ("Invalid base64 data");
3218
3219 return decoded_string;
3220 }
3221
3222 /* Base64-decode the data at FROM of LENGTH bytes into TO. If
3223 MULTIBYTE, the decoded result should be in multibyte
3224 form. If NCHARS_RETURN is not NULL, store the number of produced
3225 characters in *NCHARS_RETURN. */
3226
3227 static ptrdiff_t
3228 base64_decode_1 (const char *from, char *to, ptrdiff_t length,
3229 bool multibyte, ptrdiff_t *nchars_return)
3230 {
3231 ptrdiff_t i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3232 char *e = to;
3233 unsigned char c;
3234 unsigned long value;
3235 ptrdiff_t nchars = 0;
3236
3237 while (1)
3238 {
3239 /* Process first byte of a quadruplet. */
3240
3241 READ_QUADRUPLET_BYTE (e-to);
3242
3243 if (!IS_BASE64 (c))
3244 return -1;
3245 value = base64_char_to_value[c] << 18;
3246
3247 /* Process second byte of a quadruplet. */
3248
3249 READ_QUADRUPLET_BYTE (-1);
3250
3251 if (!IS_BASE64 (c))
3252 return -1;
3253 value |= base64_char_to_value[c] << 12;
3254
3255 c = (unsigned char) (value >> 16);
3256 if (multibyte && c >= 128)
3257 e += BYTE8_STRING (c, e);
3258 else
3259 *e++ = c;
3260 nchars++;
3261
3262 /* Process third byte of a quadruplet. */
3263
3264 READ_QUADRUPLET_BYTE (-1);
3265
3266 if (c == '=')
3267 {
3268 READ_QUADRUPLET_BYTE (-1);
3269
3270 if (c != '=')
3271 return -1;
3272 continue;
3273 }
3274
3275 if (!IS_BASE64 (c))
3276 return -1;
3277 value |= base64_char_to_value[c] << 6;
3278
3279 c = (unsigned char) (0xff & value >> 8);
3280 if (multibyte && c >= 128)
3281 e += BYTE8_STRING (c, e);
3282 else
3283 *e++ = c;
3284 nchars++;
3285
3286 /* Process fourth byte of a quadruplet. */
3287
3288 READ_QUADRUPLET_BYTE (-1);
3289
3290 if (c == '=')
3291 continue;
3292
3293 if (!IS_BASE64 (c))
3294 return -1;
3295 value |= base64_char_to_value[c];
3296
3297 c = (unsigned char) (0xff & value);
3298 if (multibyte && c >= 128)
3299 e += BYTE8_STRING (c, e);
3300 else
3301 *e++ = c;
3302 nchars++;
3303 }
3304 }
3305
3306
3307 \f
3308 /***********************************************************************
3309 ***** *****
3310 ***** Hash Tables *****
3311 ***** *****
3312 ***********************************************************************/
3313
3314 /* Implemented by gerd@gnu.org. This hash table implementation was
3315 inspired by CMUCL hash tables. */
3316
3317 /* Ideas:
3318
3319 1. For small tables, association lists are probably faster than
3320 hash tables because they have lower overhead.
3321
3322 For uses of hash tables where the O(1) behavior of table
3323 operations is not a requirement, it might therefore be a good idea
3324 not to hash. Instead, we could just do a linear search in the
3325 key_and_value vector of the hash table. This could be done
3326 if a `:linear-search t' argument is given to make-hash-table. */
3327
3328
3329 /* The list of all weak hash tables. Don't staticpro this one. */
3330
3331 static struct Lisp_Hash_Table *weak_hash_tables;
3332
3333 /* Various symbols. */
3334
3335 static Lisp_Object Qhash_table_p, Qkey, Qvalue;
3336 Lisp_Object Qeq, Qeql, Qequal;
3337 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3338 static Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3339
3340 \f
3341 /***********************************************************************
3342 Utilities
3343 ***********************************************************************/
3344
3345 /* If OBJ is a Lisp hash table, return a pointer to its struct
3346 Lisp_Hash_Table. Otherwise, signal an error. */
3347
3348 static struct Lisp_Hash_Table *
3349 check_hash_table (Lisp_Object obj)
3350 {
3351 CHECK_HASH_TABLE (obj);
3352 return XHASH_TABLE (obj);
3353 }
3354
3355
3356 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3357 number. A number is "almost" a prime number if it is not divisible
3358 by any integer in the range 2 .. (NEXT_ALMOST_PRIME_LIMIT - 1). */
3359
3360 EMACS_INT
3361 next_almost_prime (EMACS_INT n)
3362 {
3363 verify (NEXT_ALMOST_PRIME_LIMIT == 11);
3364 for (n |= 1; ; n += 2)
3365 if (n % 3 != 0 && n % 5 != 0 && n % 7 != 0)
3366 return n;
3367 }
3368
3369
3370 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3371 which USED[I] is non-zero. If found at index I in ARGS, set
3372 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3373 0. This function is used to extract a keyword/argument pair from
3374 a DEFUN parameter list. */
3375
3376 static ptrdiff_t
3377 get_key_arg (Lisp_Object key, ptrdiff_t nargs, Lisp_Object *args, char *used)
3378 {
3379 ptrdiff_t i;
3380
3381 for (i = 1; i < nargs; i++)
3382 if (!used[i - 1] && EQ (args[i - 1], key))
3383 {
3384 used[i - 1] = 1;
3385 used[i] = 1;
3386 return i;
3387 }
3388
3389 return 0;
3390 }
3391
3392
3393 /* Return a Lisp vector which has the same contents as VEC but has
3394 at least INCR_MIN more entries, where INCR_MIN is positive.
3395 If NITEMS_MAX is not -1, do not grow the vector to be any larger
3396 than NITEMS_MAX. Entries in the resulting
3397 vector that are not copied from VEC are set to nil. */
3398
3399 Lisp_Object
3400 larger_vector (Lisp_Object vec, ptrdiff_t incr_min, ptrdiff_t nitems_max)
3401 {
3402 struct Lisp_Vector *v;
3403 ptrdiff_t i, incr, incr_max, old_size, new_size;
3404 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / sizeof *v->contents;
3405 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
3406 ? nitems_max : C_language_max);
3407 eassert (VECTORP (vec));
3408 eassert (0 < incr_min && -1 <= nitems_max);
3409 old_size = ASIZE (vec);
3410 incr_max = n_max - old_size;
3411 incr = max (incr_min, min (old_size >> 1, incr_max));
3412 if (incr_max < incr)
3413 memory_full (SIZE_MAX);
3414 new_size = old_size + incr;
3415 v = allocate_vector (new_size);
3416 memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
3417 for (i = old_size; i < new_size; ++i)
3418 v->contents[i] = Qnil;
3419 XSETVECTOR (vec, v);
3420 return vec;
3421 }
3422
3423
3424 /***********************************************************************
3425 Low-level Functions
3426 ***********************************************************************/
3427
3428 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3429 HASH2 in hash table H using `eql'. Value is true if KEY1 and
3430 KEY2 are the same. */
3431
3432 static bool
3433 cmpfn_eql (struct Lisp_Hash_Table *h,
3434 Lisp_Object key1, EMACS_UINT hash1,
3435 Lisp_Object key2, EMACS_UINT hash2)
3436 {
3437 return (FLOATP (key1)
3438 && FLOATP (key2)
3439 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3440 }
3441
3442
3443 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3444 HASH2 in hash table H using `equal'. Value is true if KEY1 and
3445 KEY2 are the same. */
3446
3447 static bool
3448 cmpfn_equal (struct Lisp_Hash_Table *h,
3449 Lisp_Object key1, EMACS_UINT hash1,
3450 Lisp_Object key2, EMACS_UINT hash2)
3451 {
3452 return hash1 == hash2 && !NILP (Fequal (key1, key2));
3453 }
3454
3455
3456 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3457 HASH2 in hash table H using H->user_cmp_function. Value is true
3458 if KEY1 and KEY2 are the same. */
3459
3460 static bool
3461 cmpfn_user_defined (struct Lisp_Hash_Table *h,
3462 Lisp_Object key1, EMACS_UINT hash1,
3463 Lisp_Object key2, EMACS_UINT hash2)
3464 {
3465 if (hash1 == hash2)
3466 {
3467 Lisp_Object args[3];
3468
3469 args[0] = h->user_cmp_function;
3470 args[1] = key1;
3471 args[2] = key2;
3472 return !NILP (Ffuncall (3, args));
3473 }
3474 else
3475 return 0;
3476 }
3477
3478
3479 /* Value is a hash code for KEY for use in hash table H which uses
3480 `eq' to compare keys. The hash code returned is guaranteed to fit
3481 in a Lisp integer. */
3482
3483 static EMACS_UINT
3484 hashfn_eq (struct Lisp_Hash_Table *h, Lisp_Object key)
3485 {
3486 EMACS_UINT hash = XUINT (key) ^ XTYPE (key);
3487 eassert ((hash & ~INTMASK) == 0);
3488 return hash;
3489 }
3490
3491
3492 /* Value is a hash code for KEY for use in hash table H which uses
3493 `eql' to compare keys. The hash code returned is guaranteed to fit
3494 in a Lisp integer. */
3495
3496 static EMACS_UINT
3497 hashfn_eql (struct Lisp_Hash_Table *h, Lisp_Object key)
3498 {
3499 EMACS_UINT hash;
3500 if (FLOATP (key))
3501 hash = sxhash (key, 0);
3502 else
3503 hash = XUINT (key) ^ XTYPE (key);
3504 eassert ((hash & ~INTMASK) == 0);
3505 return hash;
3506 }
3507
3508
3509 /* Value is a hash code for KEY for use in hash table H which uses
3510 `equal' to compare keys. The hash code returned is guaranteed to fit
3511 in a Lisp integer. */
3512
3513 static EMACS_UINT
3514 hashfn_equal (struct Lisp_Hash_Table *h, Lisp_Object key)
3515 {
3516 EMACS_UINT hash = sxhash (key, 0);
3517 eassert ((hash & ~INTMASK) == 0);
3518 return hash;
3519 }
3520
3521
3522 /* Value is a hash code for KEY for use in hash table H which uses as
3523 user-defined function to compare keys. The hash code returned is
3524 guaranteed to fit in a Lisp integer. */
3525
3526 static EMACS_UINT
3527 hashfn_user_defined (struct Lisp_Hash_Table *h, Lisp_Object key)
3528 {
3529 Lisp_Object args[2], hash;
3530
3531 args[0] = h->user_hash_function;
3532 args[1] = key;
3533 hash = Ffuncall (2, args);
3534 if (!INTEGERP (hash))
3535 signal_error ("Invalid hash code returned from user-supplied hash function", hash);
3536 return XUINT (hash);
3537 }
3538
3539 /* An upper bound on the size of a hash table index. It must fit in
3540 ptrdiff_t and be a valid Emacs fixnum. */
3541 #define INDEX_SIZE_BOUND \
3542 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, PTRDIFF_MAX / word_size))
3543
3544 /* Create and initialize a new hash table.
3545
3546 TEST specifies the test the hash table will use to compare keys.
3547 It must be either one of the predefined tests `eq', `eql' or
3548 `equal' or a symbol denoting a user-defined test named TEST with
3549 test and hash functions USER_TEST and USER_HASH.
3550
3551 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3552
3553 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3554 new size when it becomes full is computed by adding REHASH_SIZE to
3555 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3556 table's new size is computed by multiplying its old size with
3557 REHASH_SIZE.
3558
3559 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3560 be resized when the ratio of (number of entries in the table) /
3561 (table size) is >= REHASH_THRESHOLD.
3562
3563 WEAK specifies the weakness of the table. If non-nil, it must be
3564 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3565
3566 Lisp_Object
3567 make_hash_table (Lisp_Object test, Lisp_Object size, Lisp_Object rehash_size,
3568 Lisp_Object rehash_threshold, Lisp_Object weak,
3569 Lisp_Object user_test, Lisp_Object user_hash)
3570 {
3571 struct Lisp_Hash_Table *h;
3572 Lisp_Object table;
3573 EMACS_INT index_size, sz;
3574 ptrdiff_t i;
3575 double index_float;
3576
3577 /* Preconditions. */
3578 eassert (SYMBOLP (test));
3579 eassert (INTEGERP (size) && XINT (size) >= 0);
3580 eassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3581 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size)));
3582 eassert (FLOATP (rehash_threshold)
3583 && 0 < XFLOAT_DATA (rehash_threshold)
3584 && XFLOAT_DATA (rehash_threshold) <= 1.0);
3585
3586 if (XFASTINT (size) == 0)
3587 size = make_number (1);
3588
3589 sz = XFASTINT (size);
3590 index_float = sz / XFLOAT_DATA (rehash_threshold);
3591 index_size = (index_float < INDEX_SIZE_BOUND + 1
3592 ? next_almost_prime (index_float)
3593 : INDEX_SIZE_BOUND + 1);
3594 if (INDEX_SIZE_BOUND < max (index_size, 2 * sz))
3595 error ("Hash table too large");
3596
3597 /* Allocate a table and initialize it. */
3598 h = allocate_hash_table ();
3599
3600 /* Initialize hash table slots. */
3601 h->test = test;
3602 if (EQ (test, Qeql))
3603 {
3604 h->cmpfn = cmpfn_eql;
3605 h->hashfn = hashfn_eql;
3606 }
3607 else if (EQ (test, Qeq))
3608 {
3609 h->cmpfn = NULL;
3610 h->hashfn = hashfn_eq;
3611 }
3612 else if (EQ (test, Qequal))
3613 {
3614 h->cmpfn = cmpfn_equal;
3615 h->hashfn = hashfn_equal;
3616 }
3617 else
3618 {
3619 h->user_cmp_function = user_test;
3620 h->user_hash_function = user_hash;
3621 h->cmpfn = cmpfn_user_defined;
3622 h->hashfn = hashfn_user_defined;
3623 }
3624
3625 h->weak = weak;
3626 h->rehash_threshold = rehash_threshold;
3627 h->rehash_size = rehash_size;
3628 h->count = 0;
3629 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3630 h->hash = Fmake_vector (size, Qnil);
3631 h->next = Fmake_vector (size, Qnil);
3632 h->index = Fmake_vector (make_number (index_size), Qnil);
3633
3634 /* Set up the free list. */
3635 for (i = 0; i < sz - 1; ++i)
3636 set_hash_next_slot (h, i, make_number (i + 1));
3637 h->next_free = make_number (0);
3638
3639 XSET_HASH_TABLE (table, h);
3640 eassert (HASH_TABLE_P (table));
3641 eassert (XHASH_TABLE (table) == h);
3642
3643 /* Maybe add this hash table to the list of all weak hash tables. */
3644 if (NILP (h->weak))
3645 h->next_weak = NULL;
3646 else
3647 {
3648 h->next_weak = weak_hash_tables;
3649 weak_hash_tables = h;
3650 }
3651
3652 return table;
3653 }
3654
3655
3656 /* Return a copy of hash table H1. Keys and values are not copied,
3657 only the table itself is. */
3658
3659 static Lisp_Object
3660 copy_hash_table (struct Lisp_Hash_Table *h1)
3661 {
3662 Lisp_Object table;
3663 struct Lisp_Hash_Table *h2;
3664 struct Lisp_Vector *next;
3665
3666 h2 = allocate_hash_table ();
3667 next = h2->header.next.vector;
3668 *h2 = *h1;
3669 h2->header.next.vector = next;
3670 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3671 h2->hash = Fcopy_sequence (h1->hash);
3672 h2->next = Fcopy_sequence (h1->next);
3673 h2->index = Fcopy_sequence (h1->index);
3674 XSET_HASH_TABLE (table, h2);
3675
3676 /* Maybe add this hash table to the list of all weak hash tables. */
3677 if (!NILP (h2->weak))
3678 {
3679 h2->next_weak = weak_hash_tables;
3680 weak_hash_tables = h2;
3681 }
3682
3683 return table;
3684 }
3685
3686
3687 /* Resize hash table H if it's too full. If H cannot be resized
3688 because it's already too large, throw an error. */
3689
3690 static void
3691 maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3692 {
3693 if (NILP (h->next_free))
3694 {
3695 ptrdiff_t old_size = HASH_TABLE_SIZE (h);
3696 EMACS_INT new_size, index_size, nsize;
3697 ptrdiff_t i;
3698 double index_float;
3699
3700 if (INTEGERP (h->rehash_size))
3701 new_size = old_size + XFASTINT (h->rehash_size);
3702 else
3703 {
3704 double float_new_size = old_size * XFLOAT_DATA (h->rehash_size);
3705 if (float_new_size < INDEX_SIZE_BOUND + 1)
3706 {
3707 new_size = float_new_size;
3708 if (new_size <= old_size)
3709 new_size = old_size + 1;
3710 }
3711 else
3712 new_size = INDEX_SIZE_BOUND + 1;
3713 }
3714 index_float = new_size / XFLOAT_DATA (h->rehash_threshold);
3715 index_size = (index_float < INDEX_SIZE_BOUND + 1
3716 ? next_almost_prime (index_float)
3717 : INDEX_SIZE_BOUND + 1);
3718 nsize = max (index_size, 2 * new_size);
3719 if (INDEX_SIZE_BOUND < nsize)
3720 error ("Hash table too large to resize");
3721
3722 #ifdef ENABLE_CHECKING
3723 if (HASH_TABLE_P (Vpurify_flag)
3724 && XHASH_TABLE (Vpurify_flag) == h)
3725 {
3726 Lisp_Object args[2];
3727 args[0] = build_string ("Growing hash table to: %d");
3728 args[1] = make_number (new_size);
3729 Fmessage (2, args);
3730 }
3731 #endif
3732
3733 set_hash_key_and_value (h, larger_vector (h->key_and_value,
3734 2 * (new_size - old_size), -1));
3735 set_hash_next (h, larger_vector (h->next, new_size - old_size, -1));
3736 set_hash_hash (h, larger_vector (h->hash, new_size - old_size, -1));
3737 set_hash_index (h, Fmake_vector (make_number (index_size), Qnil));
3738
3739 /* Update the free list. Do it so that new entries are added at
3740 the end of the free list. This makes some operations like
3741 maphash faster. */
3742 for (i = old_size; i < new_size - 1; ++i)
3743 set_hash_next_slot (h, i, make_number (i + 1));
3744
3745 if (!NILP (h->next_free))
3746 {
3747 Lisp_Object last, next;
3748
3749 last = h->next_free;
3750 while (next = HASH_NEXT (h, XFASTINT (last)),
3751 !NILP (next))
3752 last = next;
3753
3754 set_hash_next_slot (h, XFASTINT (last), make_number (old_size));
3755 }
3756 else
3757 XSETFASTINT (h->next_free, old_size);
3758
3759 /* Rehash. */
3760 for (i = 0; i < old_size; ++i)
3761 if (!NILP (HASH_HASH (h, i)))
3762 {
3763 EMACS_UINT hash_code = XUINT (HASH_HASH (h, i));
3764 ptrdiff_t start_of_bucket = hash_code % ASIZE (h->index);
3765 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
3766 set_hash_index_slot (h, start_of_bucket, make_number (i));
3767 }
3768 }
3769 }
3770
3771
3772 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3773 the hash code of KEY. Value is the index of the entry in H
3774 matching KEY, or -1 if not found. */
3775
3776 ptrdiff_t
3777 hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, EMACS_UINT *hash)
3778 {
3779 EMACS_UINT hash_code;
3780 ptrdiff_t start_of_bucket;
3781 Lisp_Object idx;
3782
3783 hash_code = h->hashfn (h, key);
3784 if (hash)
3785 *hash = hash_code;
3786
3787 start_of_bucket = hash_code % ASIZE (h->index);
3788 idx = HASH_INDEX (h, start_of_bucket);
3789
3790 /* We need not gcpro idx since it's either an integer or nil. */
3791 while (!NILP (idx))
3792 {
3793 ptrdiff_t i = XFASTINT (idx);
3794 if (EQ (key, HASH_KEY (h, i))
3795 || (h->cmpfn
3796 && h->cmpfn (h, key, hash_code,
3797 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3798 break;
3799 idx = HASH_NEXT (h, i);
3800 }
3801
3802 return NILP (idx) ? -1 : XFASTINT (idx);
3803 }
3804
3805
3806 /* Put an entry into hash table H that associates KEY with VALUE.
3807 HASH is a previously computed hash code of KEY.
3808 Value is the index of the entry in H matching KEY. */
3809
3810 ptrdiff_t
3811 hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value,
3812 EMACS_UINT hash)
3813 {
3814 ptrdiff_t start_of_bucket, i;
3815
3816 eassert ((hash & ~INTMASK) == 0);
3817
3818 /* Increment count after resizing because resizing may fail. */
3819 maybe_resize_hash_table (h);
3820 h->count++;
3821
3822 /* Store key/value in the key_and_value vector. */
3823 i = XFASTINT (h->next_free);
3824 h->next_free = HASH_NEXT (h, i);
3825 set_hash_key_slot (h, i, key);
3826 set_hash_value_slot (h, i, value);
3827
3828 /* Remember its hash code. */
3829 set_hash_hash_slot (h, i, make_number (hash));
3830
3831 /* Add new entry to its collision chain. */
3832 start_of_bucket = hash % ASIZE (h->index);
3833 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
3834 set_hash_index_slot (h, start_of_bucket, make_number (i));
3835 return i;
3836 }
3837
3838
3839 /* Remove the entry matching KEY from hash table H, if there is one. */
3840
3841 static void
3842 hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
3843 {
3844 EMACS_UINT hash_code;
3845 ptrdiff_t start_of_bucket;
3846 Lisp_Object idx, prev;
3847
3848 hash_code = h->hashfn (h, key);
3849 start_of_bucket = hash_code % ASIZE (h->index);
3850 idx = HASH_INDEX (h, start_of_bucket);
3851 prev = Qnil;
3852
3853 /* We need not gcpro idx, prev since they're either integers or nil. */
3854 while (!NILP (idx))
3855 {
3856 ptrdiff_t i = XFASTINT (idx);
3857
3858 if (EQ (key, HASH_KEY (h, i))
3859 || (h->cmpfn
3860 && h->cmpfn (h, key, hash_code,
3861 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3862 {
3863 /* Take entry out of collision chain. */
3864 if (NILP (prev))
3865 set_hash_index_slot (h, start_of_bucket, HASH_NEXT (h, i));
3866 else
3867 set_hash_next_slot (h, XFASTINT (prev), HASH_NEXT (h, i));
3868
3869 /* Clear slots in key_and_value and add the slots to
3870 the free list. */
3871 set_hash_key_slot (h, i, Qnil);
3872 set_hash_value_slot (h, i, Qnil);
3873 set_hash_hash_slot (h, i, Qnil);
3874 set_hash_next_slot (h, i, h->next_free);
3875 h->next_free = make_number (i);
3876 h->count--;
3877 eassert (h->count >= 0);
3878 break;
3879 }
3880 else
3881 {
3882 prev = idx;
3883 idx = HASH_NEXT (h, i);
3884 }
3885 }
3886 }
3887
3888
3889 /* Clear hash table H. */
3890
3891 static void
3892 hash_clear (struct Lisp_Hash_Table *h)
3893 {
3894 if (h->count > 0)
3895 {
3896 ptrdiff_t i, size = HASH_TABLE_SIZE (h);
3897
3898 for (i = 0; i < size; ++i)
3899 {
3900 set_hash_next_slot (h, i, i < size - 1 ? make_number (i + 1) : Qnil);
3901 set_hash_key_slot (h, i, Qnil);
3902 set_hash_value_slot (h, i, Qnil);
3903 set_hash_hash_slot (h, i, Qnil);
3904 }
3905
3906 for (i = 0; i < ASIZE (h->index); ++i)
3907 ASET (h->index, i, Qnil);
3908
3909 h->next_free = make_number (0);
3910 h->count = 0;
3911 }
3912 }
3913
3914
3915 \f
3916 /************************************************************************
3917 Weak Hash Tables
3918 ************************************************************************/
3919
3920 /* Sweep weak hash table H. REMOVE_ENTRIES_P means remove
3921 entries from the table that don't survive the current GC.
3922 !REMOVE_ENTRIES_P means mark entries that are in use. Value is
3923 true if anything was marked. */
3924
3925 static bool
3926 sweep_weak_table (struct Lisp_Hash_Table *h, bool remove_entries_p)
3927 {
3928 ptrdiff_t bucket, n;
3929 bool marked;
3930
3931 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
3932 marked = 0;
3933
3934 for (bucket = 0; bucket < n; ++bucket)
3935 {
3936 Lisp_Object idx, next, prev;
3937
3938 /* Follow collision chain, removing entries that
3939 don't survive this garbage collection. */
3940 prev = Qnil;
3941 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
3942 {
3943 ptrdiff_t i = XFASTINT (idx);
3944 bool key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
3945 bool value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
3946 bool remove_p;
3947
3948 if (EQ (h->weak, Qkey))
3949 remove_p = !key_known_to_survive_p;
3950 else if (EQ (h->weak, Qvalue))
3951 remove_p = !value_known_to_survive_p;
3952 else if (EQ (h->weak, Qkey_or_value))
3953 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
3954 else if (EQ (h->weak, Qkey_and_value))
3955 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
3956 else
3957 emacs_abort ();
3958
3959 next = HASH_NEXT (h, i);
3960
3961 if (remove_entries_p)
3962 {
3963 if (remove_p)
3964 {
3965 /* Take out of collision chain. */
3966 if (NILP (prev))
3967 set_hash_index_slot (h, bucket, next);
3968 else
3969 set_hash_next_slot (h, XFASTINT (prev), next);
3970
3971 /* Add to free list. */
3972 set_hash_next_slot (h, i, h->next_free);
3973 h->next_free = idx;
3974
3975 /* Clear key, value, and hash. */
3976 set_hash_key_slot (h, i, Qnil);
3977 set_hash_value_slot (h, i, Qnil);
3978 set_hash_hash_slot (h, i, Qnil);
3979
3980 h->count--;
3981 }
3982 else
3983 {
3984 prev = idx;
3985 }
3986 }
3987 else
3988 {
3989 if (!remove_p)
3990 {
3991 /* Make sure key and value survive. */
3992 if (!key_known_to_survive_p)
3993 {
3994 mark_object (HASH_KEY (h, i));
3995 marked = 1;
3996 }
3997
3998 if (!value_known_to_survive_p)
3999 {
4000 mark_object (HASH_VALUE (h, i));
4001 marked = 1;
4002 }
4003 }
4004 }
4005 }
4006 }
4007
4008 return marked;
4009 }
4010
4011 /* Remove elements from weak hash tables that don't survive the
4012 current garbage collection. Remove weak tables that don't survive
4013 from Vweak_hash_tables. Called from gc_sweep. */
4014
4015 void
4016 sweep_weak_hash_tables (void)
4017 {
4018 struct Lisp_Hash_Table *h, *used, *next;
4019 bool marked;
4020
4021 /* Mark all keys and values that are in use. Keep on marking until
4022 there is no more change. This is necessary for cases like
4023 value-weak table A containing an entry X -> Y, where Y is used in a
4024 key-weak table B, Z -> Y. If B comes after A in the list of weak
4025 tables, X -> Y might be removed from A, although when looking at B
4026 one finds that it shouldn't. */
4027 do
4028 {
4029 marked = 0;
4030 for (h = weak_hash_tables; h; h = h->next_weak)
4031 {
4032 if (h->header.size & ARRAY_MARK_FLAG)
4033 marked |= sweep_weak_table (h, 0);
4034 }
4035 }
4036 while (marked);
4037
4038 /* Remove tables and entries that aren't used. */
4039 for (h = weak_hash_tables, used = NULL; h; h = next)
4040 {
4041 next = h->next_weak;
4042
4043 if (h->header.size & ARRAY_MARK_FLAG)
4044 {
4045 /* TABLE is marked as used. Sweep its contents. */
4046 if (h->count > 0)
4047 sweep_weak_table (h, 1);
4048
4049 /* Add table to the list of used weak hash tables. */
4050 h->next_weak = used;
4051 used = h;
4052 }
4053 }
4054
4055 weak_hash_tables = used;
4056 }
4057
4058
4059 \f
4060 /***********************************************************************
4061 Hash Code Computation
4062 ***********************************************************************/
4063
4064 /* Maximum depth up to which to dive into Lisp structures. */
4065
4066 #define SXHASH_MAX_DEPTH 3
4067
4068 /* Maximum length up to which to take list and vector elements into
4069 account. */
4070
4071 #define SXHASH_MAX_LEN 7
4072
4073 /* Combine two integers X and Y for hashing. The result might not fit
4074 into a Lisp integer. */
4075
4076 #define SXHASH_COMBINE(X, Y) \
4077 ((((EMACS_UINT) (X) << 4) + ((EMACS_UINT) (X) >> (BITS_PER_EMACS_INT - 4))) \
4078 + (EMACS_UINT) (Y))
4079
4080 /* Hash X, returning a value that fits into a Lisp integer. */
4081 #define SXHASH_REDUCE(X) \
4082 ((((X) ^ (X) >> (BITS_PER_EMACS_INT - FIXNUM_BITS))) & INTMASK)
4083
4084 /* Return a hash for string PTR which has length LEN. The hash value
4085 can be any EMACS_UINT value. */
4086
4087 EMACS_UINT
4088 hash_string (char const *ptr, ptrdiff_t len)
4089 {
4090 char const *p = ptr;
4091 char const *end = p + len;
4092 unsigned char c;
4093 EMACS_UINT hash = 0;
4094
4095 while (p != end)
4096 {
4097 c = *p++;
4098 hash = SXHASH_COMBINE (hash, c);
4099 }
4100
4101 return hash;
4102 }
4103
4104 /* Return a hash for string PTR which has length LEN. The hash
4105 code returned is guaranteed to fit in a Lisp integer. */
4106
4107 static EMACS_UINT
4108 sxhash_string (char const *ptr, ptrdiff_t len)
4109 {
4110 EMACS_UINT hash = hash_string (ptr, len);
4111 return SXHASH_REDUCE (hash);
4112 }
4113
4114 /* Return a hash for the floating point value VAL. */
4115
4116 static EMACS_INT
4117 sxhash_float (double val)
4118 {
4119 EMACS_UINT hash = 0;
4120 enum {
4121 WORDS_PER_DOUBLE = (sizeof val / sizeof hash
4122 + (sizeof val % sizeof hash != 0))
4123 };
4124 union {
4125 double val;
4126 EMACS_UINT word[WORDS_PER_DOUBLE];
4127 } u;
4128 int i;
4129 u.val = val;
4130 memset (&u.val + 1, 0, sizeof u - sizeof u.val);
4131 for (i = 0; i < WORDS_PER_DOUBLE; i++)
4132 hash = SXHASH_COMBINE (hash, u.word[i]);
4133 return SXHASH_REDUCE (hash);
4134 }
4135
4136 /* Return a hash for list LIST. DEPTH is the current depth in the
4137 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4138
4139 static EMACS_UINT
4140 sxhash_list (Lisp_Object list, int depth)
4141 {
4142 EMACS_UINT hash = 0;
4143 int i;
4144
4145 if (depth < SXHASH_MAX_DEPTH)
4146 for (i = 0;
4147 CONSP (list) && i < SXHASH_MAX_LEN;
4148 list = XCDR (list), ++i)
4149 {
4150 EMACS_UINT hash2 = sxhash (XCAR (list), depth + 1);
4151 hash = SXHASH_COMBINE (hash, hash2);
4152 }
4153
4154 if (!NILP (list))
4155 {
4156 EMACS_UINT hash2 = sxhash (list, depth + 1);
4157 hash = SXHASH_COMBINE (hash, hash2);
4158 }
4159
4160 return SXHASH_REDUCE (hash);
4161 }
4162
4163
4164 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4165 the Lisp structure. */
4166
4167 static EMACS_UINT
4168 sxhash_vector (Lisp_Object vec, int depth)
4169 {
4170 EMACS_UINT hash = ASIZE (vec);
4171 int i, n;
4172
4173 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4174 for (i = 0; i < n; ++i)
4175 {
4176 EMACS_UINT hash2 = sxhash (AREF (vec, i), depth + 1);
4177 hash = SXHASH_COMBINE (hash, hash2);
4178 }
4179
4180 return SXHASH_REDUCE (hash);
4181 }
4182
4183 /* Return a hash for bool-vector VECTOR. */
4184
4185 static EMACS_UINT
4186 sxhash_bool_vector (Lisp_Object vec)
4187 {
4188 EMACS_UINT hash = XBOOL_VECTOR (vec)->size;
4189 int i, n;
4190
4191 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->header.size);
4192 for (i = 0; i < n; ++i)
4193 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4194
4195 return SXHASH_REDUCE (hash);
4196 }
4197
4198
4199 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4200 structure. Value is an unsigned integer clipped to INTMASK. */
4201
4202 EMACS_UINT
4203 sxhash (Lisp_Object obj, int depth)
4204 {
4205 EMACS_UINT hash;
4206
4207 if (depth > SXHASH_MAX_DEPTH)
4208 return 0;
4209
4210 switch (XTYPE (obj))
4211 {
4212 case_Lisp_Int:
4213 hash = XUINT (obj);
4214 break;
4215
4216 case Lisp_Misc:
4217 hash = XUINT (obj);
4218 break;
4219
4220 case Lisp_Symbol:
4221 obj = SYMBOL_NAME (obj);
4222 /* Fall through. */
4223
4224 case Lisp_String:
4225 hash = sxhash_string (SSDATA (obj), SBYTES (obj));
4226 break;
4227
4228 /* This can be everything from a vector to an overlay. */
4229 case Lisp_Vectorlike:
4230 if (VECTORP (obj))
4231 /* According to the CL HyperSpec, two arrays are equal only if
4232 they are `eq', except for strings and bit-vectors. In
4233 Emacs, this works differently. We have to compare element
4234 by element. */
4235 hash = sxhash_vector (obj, depth);
4236 else if (BOOL_VECTOR_P (obj))
4237 hash = sxhash_bool_vector (obj);
4238 else
4239 /* Others are `equal' if they are `eq', so let's take their
4240 address as hash. */
4241 hash = XUINT (obj);
4242 break;
4243
4244 case Lisp_Cons:
4245 hash = sxhash_list (obj, depth);
4246 break;
4247
4248 case Lisp_Float:
4249 hash = sxhash_float (XFLOAT_DATA (obj));
4250 break;
4251
4252 default:
4253 emacs_abort ();
4254 }
4255
4256 return hash;
4257 }
4258
4259
4260 \f
4261 /***********************************************************************
4262 Lisp Interface
4263 ***********************************************************************/
4264
4265
4266 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4267 doc: /* Compute a hash code for OBJ and return it as integer. */)
4268 (Lisp_Object obj)
4269 {
4270 EMACS_UINT hash = sxhash (obj, 0);
4271 return make_number (hash);
4272 }
4273
4274
4275 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4276 doc: /* Create and return a new hash table.
4277
4278 Arguments are specified as keyword/argument pairs. The following
4279 arguments are defined:
4280
4281 :test TEST -- TEST must be a symbol that specifies how to compare
4282 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4283 `equal'. User-supplied test and hash functions can be specified via
4284 `define-hash-table-test'.
4285
4286 :size SIZE -- A hint as to how many elements will be put in the table.
4287 Default is 65.
4288
4289 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4290 fills up. If REHASH-SIZE is an integer, increase the size by that
4291 amount. If it is a float, it must be > 1.0, and the new size is the
4292 old size multiplied by that factor. Default is 1.5.
4293
4294 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4295 Resize the hash table when the ratio (number of entries / table size)
4296 is greater than or equal to THRESHOLD. Default is 0.8.
4297
4298 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4299 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4300 returned is a weak table. Key/value pairs are removed from a weak
4301 hash table when there are no non-weak references pointing to their
4302 key, value, one of key or value, or both key and value, depending on
4303 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4304 is nil.
4305
4306 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4307 (ptrdiff_t nargs, Lisp_Object *args)
4308 {
4309 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4310 Lisp_Object user_test, user_hash;
4311 char *used;
4312 ptrdiff_t i;
4313
4314 /* The vector `used' is used to keep track of arguments that
4315 have been consumed. */
4316 used = alloca (nargs * sizeof *used);
4317 memset (used, 0, nargs * sizeof *used);
4318
4319 /* See if there's a `:test TEST' among the arguments. */
4320 i = get_key_arg (QCtest, nargs, args, used);
4321 test = i ? args[i] : Qeql;
4322 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
4323 {
4324 /* See if it is a user-defined test. */
4325 Lisp_Object prop;
4326
4327 prop = Fget (test, Qhash_table_test);
4328 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4329 signal_error ("Invalid hash table test", test);
4330 user_test = XCAR (prop);
4331 user_hash = XCAR (XCDR (prop));
4332 }
4333 else
4334 user_test = user_hash = Qnil;
4335
4336 /* See if there's a `:size SIZE' argument. */
4337 i = get_key_arg (QCsize, nargs, args, used);
4338 size = i ? args[i] : Qnil;
4339 if (NILP (size))
4340 size = make_number (DEFAULT_HASH_SIZE);
4341 else if (!INTEGERP (size) || XINT (size) < 0)
4342 signal_error ("Invalid hash table size", size);
4343
4344 /* Look for `:rehash-size SIZE'. */
4345 i = get_key_arg (QCrehash_size, nargs, args, used);
4346 rehash_size = i ? args[i] : make_float (DEFAULT_REHASH_SIZE);
4347 if (! ((INTEGERP (rehash_size) && 0 < XINT (rehash_size))
4348 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size))))
4349 signal_error ("Invalid hash table rehash size", rehash_size);
4350
4351 /* Look for `:rehash-threshold THRESHOLD'. */
4352 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4353 rehash_threshold = i ? args[i] : make_float (DEFAULT_REHASH_THRESHOLD);
4354 if (! (FLOATP (rehash_threshold)
4355 && 0 < XFLOAT_DATA (rehash_threshold)
4356 && XFLOAT_DATA (rehash_threshold) <= 1))
4357 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4358
4359 /* Look for `:weakness WEAK'. */
4360 i = get_key_arg (QCweakness, nargs, args, used);
4361 weak = i ? args[i] : Qnil;
4362 if (EQ (weak, Qt))
4363 weak = Qkey_and_value;
4364 if (!NILP (weak)
4365 && !EQ (weak, Qkey)
4366 && !EQ (weak, Qvalue)
4367 && !EQ (weak, Qkey_or_value)
4368 && !EQ (weak, Qkey_and_value))
4369 signal_error ("Invalid hash table weakness", weak);
4370
4371 /* Now, all args should have been used up, or there's a problem. */
4372 for (i = 0; i < nargs; ++i)
4373 if (!used[i])
4374 signal_error ("Invalid argument list", args[i]);
4375
4376 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4377 user_test, user_hash);
4378 }
4379
4380
4381 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4382 doc: /* Return a copy of hash table TABLE. */)
4383 (Lisp_Object table)
4384 {
4385 return copy_hash_table (check_hash_table (table));
4386 }
4387
4388
4389 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4390 doc: /* Return the number of elements in TABLE. */)
4391 (Lisp_Object table)
4392 {
4393 return make_number (check_hash_table (table)->count);
4394 }
4395
4396
4397 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4398 Shash_table_rehash_size, 1, 1, 0,
4399 doc: /* Return the current rehash size of TABLE. */)
4400 (Lisp_Object table)
4401 {
4402 return check_hash_table (table)->rehash_size;
4403 }
4404
4405
4406 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4407 Shash_table_rehash_threshold, 1, 1, 0,
4408 doc: /* Return the current rehash threshold of TABLE. */)
4409 (Lisp_Object table)
4410 {
4411 return check_hash_table (table)->rehash_threshold;
4412 }
4413
4414
4415 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4416 doc: /* Return the size of TABLE.
4417 The size can be used as an argument to `make-hash-table' to create
4418 a hash table than can hold as many elements as TABLE holds
4419 without need for resizing. */)
4420 (Lisp_Object table)
4421 {
4422 struct Lisp_Hash_Table *h = check_hash_table (table);
4423 return make_number (HASH_TABLE_SIZE (h));
4424 }
4425
4426
4427 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4428 doc: /* Return the test TABLE uses. */)
4429 (Lisp_Object table)
4430 {
4431 return check_hash_table (table)->test;
4432 }
4433
4434
4435 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4436 1, 1, 0,
4437 doc: /* Return the weakness of TABLE. */)
4438 (Lisp_Object table)
4439 {
4440 return check_hash_table (table)->weak;
4441 }
4442
4443
4444 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4445 doc: /* Return t if OBJ is a Lisp hash table object. */)
4446 (Lisp_Object obj)
4447 {
4448 return HASH_TABLE_P (obj) ? Qt : Qnil;
4449 }
4450
4451
4452 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4453 doc: /* Clear hash table TABLE and return it. */)
4454 (Lisp_Object table)
4455 {
4456 hash_clear (check_hash_table (table));
4457 /* Be compatible with XEmacs. */
4458 return table;
4459 }
4460
4461
4462 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4463 doc: /* Look up KEY in TABLE and return its associated value.
4464 If KEY is not found, return DFLT which defaults to nil. */)
4465 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4466 {
4467 struct Lisp_Hash_Table *h = check_hash_table (table);
4468 ptrdiff_t i = hash_lookup (h, key, NULL);
4469 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4470 }
4471
4472
4473 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4474 doc: /* Associate KEY with VALUE in hash table TABLE.
4475 If KEY is already present in table, replace its current value with
4476 VALUE. In any case, return VALUE. */)
4477 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4478 {
4479 struct Lisp_Hash_Table *h = check_hash_table (table);
4480 ptrdiff_t i;
4481 EMACS_UINT hash;
4482
4483 i = hash_lookup (h, key, &hash);
4484 if (i >= 0)
4485 set_hash_value_slot (h, i, value);
4486 else
4487 hash_put (h, key, value, hash);
4488
4489 return value;
4490 }
4491
4492
4493 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4494 doc: /* Remove KEY from TABLE. */)
4495 (Lisp_Object key, Lisp_Object table)
4496 {
4497 struct Lisp_Hash_Table *h = check_hash_table (table);
4498 hash_remove_from_table (h, key);
4499 return Qnil;
4500 }
4501
4502
4503 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4504 doc: /* Call FUNCTION for all entries in hash table TABLE.
4505 FUNCTION is called with two arguments, KEY and VALUE. */)
4506 (Lisp_Object function, Lisp_Object table)
4507 {
4508 struct Lisp_Hash_Table *h = check_hash_table (table);
4509 Lisp_Object args[3];
4510 ptrdiff_t i;
4511
4512 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4513 if (!NILP (HASH_HASH (h, i)))
4514 {
4515 args[0] = function;
4516 args[1] = HASH_KEY (h, i);
4517 args[2] = HASH_VALUE (h, i);
4518 Ffuncall (3, args);
4519 }
4520
4521 return Qnil;
4522 }
4523
4524
4525 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4526 Sdefine_hash_table_test, 3, 3, 0,
4527 doc: /* Define a new hash table test with name NAME, a symbol.
4528
4529 In hash tables created with NAME specified as test, use TEST to
4530 compare keys, and HASH for computing hash codes of keys.
4531
4532 TEST must be a function taking two arguments and returning non-nil if
4533 both arguments are the same. HASH must be a function taking one
4534 argument and return an integer that is the hash code of the argument.
4535 Hash code computation should use the whole value range of integers,
4536 including negative integers. */)
4537 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4538 {
4539 return Fput (name, Qhash_table_test, list2 (test, hash));
4540 }
4541
4542
4543 \f
4544 /************************************************************************
4545 MD5, SHA-1, and SHA-2
4546 ************************************************************************/
4547
4548 #include "md5.h"
4549 #include "sha1.h"
4550 #include "sha256.h"
4551 #include "sha512.h"
4552
4553 /* ALGORITHM is a symbol: md5, sha1, sha224 and so on. */
4554
4555 static Lisp_Object
4556 secure_hash (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror, Lisp_Object binary)
4557 {
4558 int i;
4559 ptrdiff_t size;
4560 EMACS_INT start_char = 0, end_char = 0;
4561 ptrdiff_t start_byte, end_byte;
4562 register EMACS_INT b, e;
4563 register struct buffer *bp;
4564 EMACS_INT temp;
4565 int digest_size;
4566 void *(*hash_func) (const char *, size_t, void *);
4567 Lisp_Object digest;
4568
4569 CHECK_SYMBOL (algorithm);
4570
4571 if (STRINGP (object))
4572 {
4573 if (NILP (coding_system))
4574 {
4575 /* Decide the coding-system to encode the data with. */
4576
4577 if (STRING_MULTIBYTE (object))
4578 /* use default, we can't guess correct value */
4579 coding_system = preferred_coding_system ();
4580 else
4581 coding_system = Qraw_text;
4582 }
4583
4584 if (NILP (Fcoding_system_p (coding_system)))
4585 {
4586 /* Invalid coding system. */
4587
4588 if (!NILP (noerror))
4589 coding_system = Qraw_text;
4590 else
4591 xsignal1 (Qcoding_system_error, coding_system);
4592 }
4593
4594 if (STRING_MULTIBYTE (object))
4595 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4596
4597 size = SCHARS (object);
4598
4599 if (!NILP (start))
4600 {
4601 CHECK_NUMBER (start);
4602
4603 start_char = XINT (start);
4604
4605 if (start_char < 0)
4606 start_char += size;
4607 }
4608
4609 if (NILP (end))
4610 end_char = size;
4611 else
4612 {
4613 CHECK_NUMBER (end);
4614
4615 end_char = XINT (end);
4616
4617 if (end_char < 0)
4618 end_char += size;
4619 }
4620
4621 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
4622 args_out_of_range_3 (object, make_number (start_char),
4623 make_number (end_char));
4624
4625 start_byte = NILP (start) ? 0 : string_char_to_byte (object, start_char);
4626 end_byte =
4627 NILP (end) ? SBYTES (object) : string_char_to_byte (object, end_char);
4628 }
4629 else
4630 {
4631 struct buffer *prev = current_buffer;
4632
4633 record_unwind_current_buffer ();
4634
4635 CHECK_BUFFER (object);
4636
4637 bp = XBUFFER (object);
4638 set_buffer_internal (bp);
4639
4640 if (NILP (start))
4641 b = BEGV;
4642 else
4643 {
4644 CHECK_NUMBER_COERCE_MARKER (start);
4645 b = XINT (start);
4646 }
4647
4648 if (NILP (end))
4649 e = ZV;
4650 else
4651 {
4652 CHECK_NUMBER_COERCE_MARKER (end);
4653 e = XINT (end);
4654 }
4655
4656 if (b > e)
4657 temp = b, b = e, e = temp;
4658
4659 if (!(BEGV <= b && e <= ZV))
4660 args_out_of_range (start, end);
4661
4662 if (NILP (coding_system))
4663 {
4664 /* Decide the coding-system to encode the data with.
4665 See fileio.c:Fwrite-region */
4666
4667 if (!NILP (Vcoding_system_for_write))
4668 coding_system = Vcoding_system_for_write;
4669 else
4670 {
4671 bool force_raw_text = 0;
4672
4673 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4674 if (NILP (coding_system)
4675 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4676 {
4677 coding_system = Qnil;
4678 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4679 force_raw_text = 1;
4680 }
4681
4682 if (NILP (coding_system) && !NILP (Fbuffer_file_name (object)))
4683 {
4684 /* Check file-coding-system-alist. */
4685 Lisp_Object args[4], val;
4686
4687 args[0] = Qwrite_region; args[1] = start; args[2] = end;
4688 args[3] = Fbuffer_file_name (object);
4689 val = Ffind_operation_coding_system (4, args);
4690 if (CONSP (val) && !NILP (XCDR (val)))
4691 coding_system = XCDR (val);
4692 }
4693
4694 if (NILP (coding_system)
4695 && !NILP (BVAR (XBUFFER (object), buffer_file_coding_system)))
4696 {
4697 /* If we still have not decided a coding system, use the
4698 default value of buffer-file-coding-system. */
4699 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4700 }
4701
4702 if (!force_raw_text
4703 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4704 /* Confirm that VAL can surely encode the current region. */
4705 coding_system = call4 (Vselect_safe_coding_system_function,
4706 make_number (b), make_number (e),
4707 coding_system, Qnil);
4708
4709 if (force_raw_text)
4710 coding_system = Qraw_text;
4711 }
4712
4713 if (NILP (Fcoding_system_p (coding_system)))
4714 {
4715 /* Invalid coding system. */
4716
4717 if (!NILP (noerror))
4718 coding_system = Qraw_text;
4719 else
4720 xsignal1 (Qcoding_system_error, coding_system);
4721 }
4722 }
4723
4724 object = make_buffer_string (b, e, 0);
4725 set_buffer_internal (prev);
4726 /* Discard the unwind protect for recovering the current
4727 buffer. */
4728 specpdl_ptr--;
4729
4730 if (STRING_MULTIBYTE (object))
4731 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4732 start_byte = 0;
4733 end_byte = SBYTES (object);
4734 }
4735
4736 if (EQ (algorithm, Qmd5))
4737 {
4738 digest_size = MD5_DIGEST_SIZE;
4739 hash_func = md5_buffer;
4740 }
4741 else if (EQ (algorithm, Qsha1))
4742 {
4743 digest_size = SHA1_DIGEST_SIZE;
4744 hash_func = sha1_buffer;
4745 }
4746 else if (EQ (algorithm, Qsha224))
4747 {
4748 digest_size = SHA224_DIGEST_SIZE;
4749 hash_func = sha224_buffer;
4750 }
4751 else if (EQ (algorithm, Qsha256))
4752 {
4753 digest_size = SHA256_DIGEST_SIZE;
4754 hash_func = sha256_buffer;
4755 }
4756 else if (EQ (algorithm, Qsha384))
4757 {
4758 digest_size = SHA384_DIGEST_SIZE;
4759 hash_func = sha384_buffer;
4760 }
4761 else if (EQ (algorithm, Qsha512))
4762 {
4763 digest_size = SHA512_DIGEST_SIZE;
4764 hash_func = sha512_buffer;
4765 }
4766 else
4767 error ("Invalid algorithm arg: %s", SDATA (Fsymbol_name (algorithm)));
4768
4769 /* allocate 2 x digest_size so that it can be re-used to hold the
4770 hexified value */
4771 digest = make_uninit_string (digest_size * 2);
4772
4773 hash_func (SSDATA (object) + start_byte,
4774 end_byte - start_byte,
4775 SSDATA (digest));
4776
4777 if (NILP (binary))
4778 {
4779 unsigned char *p = SDATA (digest);
4780 for (i = digest_size - 1; i >= 0; i--)
4781 {
4782 static char const hexdigit[16] = "0123456789abcdef";
4783 int p_i = p[i];
4784 p[2 * i] = hexdigit[p_i >> 4];
4785 p[2 * i + 1] = hexdigit[p_i & 0xf];
4786 }
4787 return digest;
4788 }
4789 else
4790 return make_unibyte_string (SSDATA (digest), digest_size);
4791 }
4792
4793 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4794 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4795
4796 A message digest is a cryptographic checksum of a document, and the
4797 algorithm to calculate it is defined in RFC 1321.
4798
4799 The two optional arguments START and END are character positions
4800 specifying for which part of OBJECT the message digest should be
4801 computed. If nil or omitted, the digest is computed for the whole
4802 OBJECT.
4803
4804 The MD5 message digest is computed from the result of encoding the
4805 text in a coding system, not directly from the internal Emacs form of
4806 the text. The optional fourth argument CODING-SYSTEM specifies which
4807 coding system to encode the text with. It should be the same coding
4808 system that you used or will use when actually writing the text into a
4809 file.
4810
4811 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4812 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4813 system would be chosen by default for writing this text into a file.
4814
4815 If OBJECT is a string, the most preferred coding system (see the
4816 command `prefer-coding-system') is used.
4817
4818 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4819 guesswork fails. Normally, an error is signaled in such case. */)
4820 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
4821 {
4822 return secure_hash (Qmd5, object, start, end, coding_system, noerror, Qnil);
4823 }
4824
4825 DEFUN ("secure-hash", Fsecure_hash, Ssecure_hash, 2, 5, 0,
4826 doc: /* Return the secure hash of OBJECT, a buffer or string.
4827 ALGORITHM is a symbol specifying the hash to use:
4828 md5, sha1, sha224, sha256, sha384 or sha512.
4829
4830 The two optional arguments START and END are positions specifying for
4831 which part of OBJECT to compute the hash. If nil or omitted, uses the
4832 whole OBJECT.
4833
4834 If BINARY is non-nil, returns a string in binary form. */)
4835 (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object binary)
4836 {
4837 return secure_hash (algorithm, object, start, end, Qnil, Qnil, binary);
4838 }
4839 \f
4840 void
4841 syms_of_fns (void)
4842 {
4843 DEFSYM (Qmd5, "md5");
4844 DEFSYM (Qsha1, "sha1");
4845 DEFSYM (Qsha224, "sha224");
4846 DEFSYM (Qsha256, "sha256");
4847 DEFSYM (Qsha384, "sha384");
4848 DEFSYM (Qsha512, "sha512");
4849
4850 /* Hash table stuff. */
4851 DEFSYM (Qhash_table_p, "hash-table-p");
4852 DEFSYM (Qeq, "eq");
4853 DEFSYM (Qeql, "eql");
4854 DEFSYM (Qequal, "equal");
4855 DEFSYM (QCtest, ":test");
4856 DEFSYM (QCsize, ":size");
4857 DEFSYM (QCrehash_size, ":rehash-size");
4858 DEFSYM (QCrehash_threshold, ":rehash-threshold");
4859 DEFSYM (QCweakness, ":weakness");
4860 DEFSYM (Qkey, "key");
4861 DEFSYM (Qvalue, "value");
4862 DEFSYM (Qhash_table_test, "hash-table-test");
4863 DEFSYM (Qkey_or_value, "key-or-value");
4864 DEFSYM (Qkey_and_value, "key-and-value");
4865
4866 defsubr (&Ssxhash);
4867 defsubr (&Smake_hash_table);
4868 defsubr (&Scopy_hash_table);
4869 defsubr (&Shash_table_count);
4870 defsubr (&Shash_table_rehash_size);
4871 defsubr (&Shash_table_rehash_threshold);
4872 defsubr (&Shash_table_size);
4873 defsubr (&Shash_table_test);
4874 defsubr (&Shash_table_weakness);
4875 defsubr (&Shash_table_p);
4876 defsubr (&Sclrhash);
4877 defsubr (&Sgethash);
4878 defsubr (&Sputhash);
4879 defsubr (&Sremhash);
4880 defsubr (&Smaphash);
4881 defsubr (&Sdefine_hash_table_test);
4882
4883 DEFSYM (Qstring_lessp, "string-lessp");
4884 DEFSYM (Qprovide, "provide");
4885 DEFSYM (Qrequire, "require");
4886 DEFSYM (Qyes_or_no_p_history, "yes-or-no-p-history");
4887 DEFSYM (Qcursor_in_echo_area, "cursor-in-echo-area");
4888 DEFSYM (Qwidget_type, "widget-type");
4889
4890 staticpro (&string_char_byte_cache_string);
4891 string_char_byte_cache_string = Qnil;
4892
4893 require_nesting_list = Qnil;
4894 staticpro (&require_nesting_list);
4895
4896 Fset (Qyes_or_no_p_history, Qnil);
4897
4898 DEFVAR_LISP ("features", Vfeatures,
4899 doc: /* A list of symbols which are the features of the executing Emacs.
4900 Used by `featurep' and `require', and altered by `provide'. */);
4901 Vfeatures = Fcons (intern_c_string ("emacs"), Qnil);
4902 DEFSYM (Qsubfeatures, "subfeatures");
4903
4904 #ifdef HAVE_LANGINFO_CODESET
4905 DEFSYM (Qcodeset, "codeset");
4906 DEFSYM (Qdays, "days");
4907 DEFSYM (Qmonths, "months");
4908 DEFSYM (Qpaper, "paper");
4909 #endif /* HAVE_LANGINFO_CODESET */
4910
4911 DEFVAR_BOOL ("use-dialog-box", use_dialog_box,
4912 doc: /* Non-nil means mouse commands use dialog boxes to ask questions.
4913 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4914 invoked by mouse clicks and mouse menu items.
4915
4916 On some platforms, file selection dialogs are also enabled if this is
4917 non-nil. */);
4918 use_dialog_box = 1;
4919
4920 DEFVAR_BOOL ("use-file-dialog", use_file_dialog,
4921 doc: /* Non-nil means mouse commands use a file dialog to ask for files.
4922 This applies to commands from menus and tool bar buttons even when
4923 they are initiated from the keyboard. If `use-dialog-box' is nil,
4924 that disables the use of a file dialog, regardless of the value of
4925 this variable. */);
4926 use_file_dialog = 1;
4927
4928 defsubr (&Sidentity);
4929 defsubr (&Srandom);
4930 defsubr (&Slength);
4931 defsubr (&Ssafe_length);
4932 defsubr (&Sstring_bytes);
4933 defsubr (&Sstring_equal);
4934 defsubr (&Scompare_strings);
4935 defsubr (&Sstring_lessp);
4936 defsubr (&Sappend);
4937 defsubr (&Sconcat);
4938 defsubr (&Svconcat);
4939 defsubr (&Scopy_sequence);
4940 defsubr (&Sstring_make_multibyte);
4941 defsubr (&Sstring_make_unibyte);
4942 defsubr (&Sstring_as_multibyte);
4943 defsubr (&Sstring_as_unibyte);
4944 defsubr (&Sstring_to_multibyte);
4945 defsubr (&Sstring_to_unibyte);
4946 defsubr (&Scopy_alist);
4947 defsubr (&Ssubstring);
4948 defsubr (&Ssubstring_no_properties);
4949 defsubr (&Snthcdr);
4950 defsubr (&Snth);
4951 defsubr (&Selt);
4952 defsubr (&Smember);
4953 defsubr (&Smemq);
4954 defsubr (&Smemql);
4955 defsubr (&Sassq);
4956 defsubr (&Sassoc);
4957 defsubr (&Srassq);
4958 defsubr (&Srassoc);
4959 defsubr (&Sdelq);
4960 defsubr (&Sdelete);
4961 defsubr (&Snreverse);
4962 defsubr (&Sreverse);
4963 defsubr (&Ssort);
4964 defsubr (&Splist_get);
4965 defsubr (&Sget);
4966 defsubr (&Splist_put);
4967 defsubr (&Sput);
4968 defsubr (&Slax_plist_get);
4969 defsubr (&Slax_plist_put);
4970 defsubr (&Seql);
4971 defsubr (&Sequal);
4972 defsubr (&Sequal_including_properties);
4973 defsubr (&Sfillarray);
4974 defsubr (&Sclear_string);
4975 defsubr (&Snconc);
4976 defsubr (&Smapcar);
4977 defsubr (&Smapc);
4978 defsubr (&Smapconcat);
4979 defsubr (&Syes_or_no_p);
4980 defsubr (&Sload_average);
4981 defsubr (&Sfeaturep);
4982 defsubr (&Srequire);
4983 defsubr (&Sprovide);
4984 defsubr (&Splist_member);
4985 defsubr (&Swidget_put);
4986 defsubr (&Swidget_get);
4987 defsubr (&Swidget_apply);
4988 defsubr (&Sbase64_encode_region);
4989 defsubr (&Sbase64_decode_region);
4990 defsubr (&Sbase64_encode_string);
4991 defsubr (&Sbase64_decode_string);
4992 defsubr (&Smd5);
4993 defsubr (&Ssecure_hash);
4994 defsubr (&Slocale_info);
4995 }