]> code.delx.au - gnu-emacs/blob - src/ralloc.c
Trailing whitespace deleted.
[gnu-emacs] / src / ralloc.c
1 /* Block-relocating memory allocator.
2 Copyright (C) 1993, 1995, 2000 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 /* NOTES:
22
23 Only relocate the blocs necessary for SIZE in r_alloc_sbrk,
24 rather than all of them. This means allowing for a possible
25 hole between the first bloc and the end of malloc storage. */
26
27 #ifdef emacs
28
29 #include <config.h>
30 #include "lisp.h" /* Needed for VALBITS. */
31
32 #ifdef HAVE_UNISTD_H
33 #include <unistd.h>
34 #endif
35
36 typedef POINTER_TYPE *POINTER;
37 typedef size_t SIZE;
38
39 /* Declared in dispnew.c, this version doesn't screw up if regions
40 overlap. */
41
42 extern void safe_bcopy ();
43
44 #ifdef DOUG_LEA_MALLOC
45 #define M_TOP_PAD -2
46 extern int mallopt ();
47 #else /* not DOUG_LEA_MALLOC */
48 #ifndef SYSTEM_MALLOC
49 extern size_t __malloc_extra_blocks;
50 #endif /* SYSTEM_MALLOC */
51 #endif /* not DOUG_LEA_MALLOC */
52
53 #else /* not emacs */
54
55 #include <stddef.h>
56
57 typedef size_t SIZE;
58 typedef void *POINTER;
59
60 #include <unistd.h>
61 #include <malloc.h>
62
63 #define safe_bcopy(x, y, z) memmove (y, x, z)
64 #define bzero(x, len) memset (x, 0, len)
65
66 #endif /* not emacs */
67
68
69 #include "getpagesize.h"
70
71 #define NIL ((POINTER) 0)
72
73 /* A flag to indicate whether we have initialized ralloc yet. For
74 Emacs's sake, please do not make this local to malloc_init; on some
75 machines, the dumping procedure makes all static variables
76 read-only. On these machines, the word static is #defined to be
77 the empty string, meaning that r_alloc_initialized becomes an
78 automatic variable, and loses its value each time Emacs is started
79 up. */
80
81 static int r_alloc_initialized = 0;
82
83 static void r_alloc_init ();
84
85 \f
86 /* Declarations for working with the malloc, ralloc, and system breaks. */
87
88 /* Function to set the real break value. */
89 POINTER (*real_morecore) ();
90
91 /* The break value, as seen by malloc. */
92 static POINTER virtual_break_value;
93
94 /* The address of the end of the last data in use by ralloc,
95 including relocatable blocs as well as malloc data. */
96 static POINTER break_value;
97
98 /* This is the size of a page. We round memory requests to this boundary. */
99 static int page_size;
100
101 /* Whenever we get memory from the system, get this many extra bytes. This
102 must be a multiple of page_size. */
103 static int extra_bytes;
104
105 /* Macros for rounding. Note that rounding to any value is possible
106 by changing the definition of PAGE. */
107 #define PAGE (getpagesize ())
108 #define ALIGNED(addr) (((unsigned long int) (addr) & (page_size - 1)) == 0)
109 #define ROUNDUP(size) (((unsigned long int) (size) + page_size - 1) \
110 & ~(page_size - 1))
111 #define ROUND_TO_PAGE(addr) (addr & (~(page_size - 1)))
112
113 #define MEM_ALIGN sizeof(double)
114 #define MEM_ROUNDUP(addr) (((unsigned long int)(addr) + MEM_ALIGN - 1) \
115 & ~(MEM_ALIGN - 1))
116
117 /* The hook `malloc' uses for the function which gets more space
118 from the system. */
119
120 #ifndef SYSTEM_MALLOC
121 extern POINTER (*__morecore) ();
122 #endif
123
124
125 \f
126 /***********************************************************************
127 Implementation using sbrk
128 ***********************************************************************/
129
130 /* Data structures of heaps and blocs. */
131
132 /* The relocatable objects, or blocs, and the malloc data
133 both reside within one or more heaps.
134 Each heap contains malloc data, running from `start' to `bloc_start',
135 and relocatable objects, running from `bloc_start' to `free'.
136
137 Relocatable objects may relocate within the same heap
138 or may move into another heap; the heaps themselves may grow
139 but they never move.
140
141 We try to make just one heap and make it larger as necessary.
142 But sometimes we can't do that, because we can't get contiguous
143 space to add onto the heap. When that happens, we start a new heap. */
144
145 typedef struct heap
146 {
147 struct heap *next;
148 struct heap *prev;
149 /* Start of memory range of this heap. */
150 POINTER start;
151 /* End of memory range of this heap. */
152 POINTER end;
153 /* Start of relocatable data in this heap. */
154 POINTER bloc_start;
155 /* Start of unused space in this heap. */
156 POINTER free;
157 /* First bloc in this heap. */
158 struct bp *first_bloc;
159 /* Last bloc in this heap. */
160 struct bp *last_bloc;
161 } *heap_ptr;
162
163 #define NIL_HEAP ((heap_ptr) 0)
164 #define HEAP_PTR_SIZE (sizeof (struct heap))
165
166 /* This is the first heap object.
167 If we need additional heap objects, each one resides at the beginning of
168 the space it covers. */
169 static struct heap heap_base;
170
171 /* Head and tail of the list of heaps. */
172 static heap_ptr first_heap, last_heap;
173
174 /* These structures are allocated in the malloc arena.
175 The linked list is kept in order of increasing '.data' members.
176 The data blocks abut each other; if b->next is non-nil, then
177 b->data + b->size == b->next->data.
178
179 An element with variable==NIL denotes a freed block, which has not yet
180 been collected. They may only appear while r_alloc_freeze > 0, and will be
181 freed when the arena is thawed. Currently, these blocs are not reusable,
182 while the arena is frozen. Very inefficient. */
183
184 typedef struct bp
185 {
186 struct bp *next;
187 struct bp *prev;
188 POINTER *variable;
189 POINTER data;
190 SIZE size;
191 POINTER new_data; /* temporarily used for relocation */
192 struct heap *heap; /* Heap this bloc is in. */
193 } *bloc_ptr;
194
195 #define NIL_BLOC ((bloc_ptr) 0)
196 #define BLOC_PTR_SIZE (sizeof (struct bp))
197
198 /* Head and tail of the list of relocatable blocs. */
199 static bloc_ptr first_bloc, last_bloc;
200
201 static int use_relocatable_buffers;
202
203 /* If >0, no relocation whatsoever takes place. */
204 static int r_alloc_freeze_level;
205
206 \f
207 /* Functions to get and return memory from the system. */
208
209 /* Find the heap that ADDRESS falls within. */
210
211 static heap_ptr
212 find_heap (address)
213 POINTER address;
214 {
215 heap_ptr heap;
216
217 for (heap = last_heap; heap; heap = heap->prev)
218 {
219 if (heap->start <= address && address <= heap->end)
220 return heap;
221 }
222
223 return NIL_HEAP;
224 }
225
226 /* Find SIZE bytes of space in a heap.
227 Try to get them at ADDRESS (which must fall within some heap's range)
228 if we can get that many within one heap.
229
230 If enough space is not presently available in our reserve, this means
231 getting more page-aligned space from the system. If the returned space
232 is not contiguous to the last heap, allocate a new heap, and append it
233
234 obtain does not try to keep track of whether space is in use
235 or not in use. It just returns the address of SIZE bytes that
236 fall within a single heap. If you call obtain twice in a row
237 with the same arguments, you typically get the same value.
238 to the heap list. It's the caller's responsibility to keep
239 track of what space is in use.
240
241 Return the address of the space if all went well, or zero if we couldn't
242 allocate the memory. */
243
244 static POINTER
245 obtain (address, size)
246 POINTER address;
247 SIZE size;
248 {
249 heap_ptr heap;
250 SIZE already_available;
251
252 /* Find the heap that ADDRESS falls within. */
253 for (heap = last_heap; heap; heap = heap->prev)
254 {
255 if (heap->start <= address && address <= heap->end)
256 break;
257 }
258
259 if (! heap)
260 abort ();
261
262 /* If we can't fit SIZE bytes in that heap,
263 try successive later heaps. */
264 while (heap && (char *) address + size > (char *) heap->end)
265 {
266 heap = heap->next;
267 if (heap == NIL_HEAP)
268 break;
269 address = heap->bloc_start;
270 }
271
272 /* If we can't fit them within any existing heap,
273 get more space. */
274 if (heap == NIL_HEAP)
275 {
276 POINTER new = (*real_morecore)(0);
277 SIZE get;
278
279 already_available = (char *)last_heap->end - (char *)address;
280
281 if (new != last_heap->end)
282 {
283 /* Someone else called sbrk. Make a new heap. */
284
285 heap_ptr new_heap = (heap_ptr) MEM_ROUNDUP (new);
286 POINTER bloc_start = (POINTER) MEM_ROUNDUP ((POINTER)(new_heap + 1));
287
288 if ((*real_morecore) ((char *) bloc_start - (char *) new) != new)
289 return 0;
290
291 new_heap->start = new;
292 new_heap->end = bloc_start;
293 new_heap->bloc_start = bloc_start;
294 new_heap->free = bloc_start;
295 new_heap->next = NIL_HEAP;
296 new_heap->prev = last_heap;
297 new_heap->first_bloc = NIL_BLOC;
298 new_heap->last_bloc = NIL_BLOC;
299 last_heap->next = new_heap;
300 last_heap = new_heap;
301
302 address = bloc_start;
303 already_available = 0;
304 }
305
306 /* Add space to the last heap (which we may have just created).
307 Get some extra, so we can come here less often. */
308
309 get = size + extra_bytes - already_available;
310 get = (char *) ROUNDUP ((char *)last_heap->end + get)
311 - (char *) last_heap->end;
312
313 if ((*real_morecore) (get) != last_heap->end)
314 return 0;
315
316 last_heap->end = (char *) last_heap->end + get;
317 }
318
319 return address;
320 }
321
322 /* Return unused heap space to the system
323 if there is a lot of unused space now.
324 This can make the last heap smaller;
325 it can also eliminate the last heap entirely. */
326
327 static void
328 relinquish ()
329 {
330 register heap_ptr h;
331 int excess = 0;
332
333 /* Add the amount of space beyond break_value
334 in all heaps which have extend beyond break_value at all. */
335
336 for (h = last_heap; h && break_value < h->end; h = h->prev)
337 {
338 excess += (char *) h->end - (char *) ((break_value < h->bloc_start)
339 ? h->bloc_start : break_value);
340 }
341
342 if (excess > extra_bytes * 2 && (*real_morecore) (0) == last_heap->end)
343 {
344 /* Keep extra_bytes worth of empty space.
345 And don't free anything unless we can free at least extra_bytes. */
346 excess -= extra_bytes;
347
348 if ((char *)last_heap->end - (char *)last_heap->bloc_start <= excess)
349 {
350 /* This heap should have no blocs in it. */
351 if (last_heap->first_bloc != NIL_BLOC
352 || last_heap->last_bloc != NIL_BLOC)
353 abort ();
354
355 /* Return the last heap, with its header, to the system. */
356 excess = (char *)last_heap->end - (char *)last_heap->start;
357 last_heap = last_heap->prev;
358 last_heap->next = NIL_HEAP;
359 }
360 else
361 {
362 excess = (char *) last_heap->end
363 - (char *) ROUNDUP ((char *)last_heap->end - excess);
364 last_heap->end = (char *) last_heap->end - excess;
365 }
366
367 if ((*real_morecore) (- excess) == 0)
368 {
369 /* If the system didn't want that much memory back, adjust
370 the end of the last heap to reflect that. This can occur
371 if break_value is still within the original data segment. */
372 last_heap->end = (char *) last_heap->end + excess;
373 /* Make sure that the result of the adjustment is accurate.
374 It should be, for the else clause above; the other case,
375 which returns the entire last heap to the system, seems
376 unlikely to trigger this mode of failure. */
377 if (last_heap->end != (*real_morecore) (0))
378 abort ();
379 }
380 }
381 }
382
383 /* Return the total size in use by relocating allocator,
384 above where malloc gets space. */
385
386 long
387 r_alloc_size_in_use ()
388 {
389 return (char *) break_value - (char *) virtual_break_value;
390 }
391 \f
392 /* The meat - allocating, freeing, and relocating blocs. */
393
394 /* Find the bloc referenced by the address in PTR. Returns a pointer
395 to that block. */
396
397 static bloc_ptr
398 find_bloc (ptr)
399 POINTER *ptr;
400 {
401 register bloc_ptr p = first_bloc;
402
403 while (p != NIL_BLOC)
404 {
405 if (p->variable == ptr && p->data == *ptr)
406 return p;
407
408 p = p->next;
409 }
410
411 return p;
412 }
413
414 /* Allocate a bloc of SIZE bytes and append it to the chain of blocs.
415 Returns a pointer to the new bloc, or zero if we couldn't allocate
416 memory for the new block. */
417
418 static bloc_ptr
419 get_bloc (size)
420 SIZE size;
421 {
422 register bloc_ptr new_bloc;
423 register heap_ptr heap;
424
425 if (! (new_bloc = (bloc_ptr) malloc (BLOC_PTR_SIZE))
426 || ! (new_bloc->data = obtain (break_value, size)))
427 {
428 if (new_bloc)
429 free (new_bloc);
430
431 return 0;
432 }
433
434 break_value = (char *) new_bloc->data + size;
435
436 new_bloc->size = size;
437 new_bloc->next = NIL_BLOC;
438 new_bloc->variable = (POINTER *) NIL;
439 new_bloc->new_data = 0;
440
441 /* Record in the heap that this space is in use. */
442 heap = find_heap (new_bloc->data);
443 heap->free = break_value;
444
445 /* Maintain the correspondence between heaps and blocs. */
446 new_bloc->heap = heap;
447 heap->last_bloc = new_bloc;
448 if (heap->first_bloc == NIL_BLOC)
449 heap->first_bloc = new_bloc;
450
451 /* Put this bloc on the doubly-linked list of blocs. */
452 if (first_bloc)
453 {
454 new_bloc->prev = last_bloc;
455 last_bloc->next = new_bloc;
456 last_bloc = new_bloc;
457 }
458 else
459 {
460 first_bloc = last_bloc = new_bloc;
461 new_bloc->prev = NIL_BLOC;
462 }
463
464 return new_bloc;
465 }
466 \f
467 /* Calculate new locations of blocs in the list beginning with BLOC,
468 relocating it to start at ADDRESS, in heap HEAP. If enough space is
469 not presently available in our reserve, call obtain for
470 more space.
471
472 Store the new location of each bloc in its new_data field.
473 Do not touch the contents of blocs or break_value. */
474
475 static int
476 relocate_blocs (bloc, heap, address)
477 bloc_ptr bloc;
478 heap_ptr heap;
479 POINTER address;
480 {
481 register bloc_ptr b = bloc;
482
483 /* No need to ever call this if arena is frozen, bug somewhere! */
484 if (r_alloc_freeze_level)
485 abort();
486
487 while (b)
488 {
489 /* If bloc B won't fit within HEAP,
490 move to the next heap and try again. */
491 while (heap && (char *) address + b->size > (char *) heap->end)
492 {
493 heap = heap->next;
494 if (heap == NIL_HEAP)
495 break;
496 address = heap->bloc_start;
497 }
498
499 /* If BLOC won't fit in any heap,
500 get enough new space to hold BLOC and all following blocs. */
501 if (heap == NIL_HEAP)
502 {
503 register bloc_ptr tb = b;
504 register SIZE s = 0;
505
506 /* Add up the size of all the following blocs. */
507 while (tb != NIL_BLOC)
508 {
509 if (tb->variable)
510 s += tb->size;
511
512 tb = tb->next;
513 }
514
515 /* Get that space. */
516 address = obtain (address, s);
517 if (address == 0)
518 return 0;
519
520 heap = last_heap;
521 }
522
523 /* Record the new address of this bloc
524 and update where the next bloc can start. */
525 b->new_data = address;
526 if (b->variable)
527 address = (char *) address + b->size;
528 b = b->next;
529 }
530
531 return 1;
532 }
533
534 /* Reorder the bloc BLOC to go before bloc BEFORE in the doubly linked list.
535 This is necessary if we put the memory of space of BLOC
536 before that of BEFORE. */
537
538 static void
539 reorder_bloc (bloc, before)
540 bloc_ptr bloc, before;
541 {
542 bloc_ptr prev, next;
543
544 /* Splice BLOC out from where it is. */
545 prev = bloc->prev;
546 next = bloc->next;
547
548 if (prev)
549 prev->next = next;
550 if (next)
551 next->prev = prev;
552
553 /* Splice it in before BEFORE. */
554 prev = before->prev;
555
556 if (prev)
557 prev->next = bloc;
558 bloc->prev = prev;
559
560 before->prev = bloc;
561 bloc->next = before;
562 }
563 \f
564 /* Update the records of which heaps contain which blocs, starting
565 with heap HEAP and bloc BLOC. */
566
567 static void
568 update_heap_bloc_correspondence (bloc, heap)
569 bloc_ptr bloc;
570 heap_ptr heap;
571 {
572 register bloc_ptr b;
573
574 /* Initialize HEAP's status to reflect blocs before BLOC. */
575 if (bloc != NIL_BLOC && bloc->prev != NIL_BLOC && bloc->prev->heap == heap)
576 {
577 /* The previous bloc is in HEAP. */
578 heap->last_bloc = bloc->prev;
579 heap->free = (char *) bloc->prev->data + bloc->prev->size;
580 }
581 else
582 {
583 /* HEAP contains no blocs before BLOC. */
584 heap->first_bloc = NIL_BLOC;
585 heap->last_bloc = NIL_BLOC;
586 heap->free = heap->bloc_start;
587 }
588
589 /* Advance through blocs one by one. */
590 for (b = bloc; b != NIL_BLOC; b = b->next)
591 {
592 /* Advance through heaps, marking them empty,
593 till we get to the one that B is in. */
594 while (heap)
595 {
596 if (heap->bloc_start <= b->data && b->data <= heap->end)
597 break;
598 heap = heap->next;
599 /* We know HEAP is not null now,
600 because there has to be space for bloc B. */
601 heap->first_bloc = NIL_BLOC;
602 heap->last_bloc = NIL_BLOC;
603 heap->free = heap->bloc_start;
604 }
605
606 /* Update HEAP's status for bloc B. */
607 heap->free = (char *) b->data + b->size;
608 heap->last_bloc = b;
609 if (heap->first_bloc == NIL_BLOC)
610 heap->first_bloc = b;
611
612 /* Record that B is in HEAP. */
613 b->heap = heap;
614 }
615
616 /* If there are any remaining heaps and no blocs left,
617 mark those heaps as empty. */
618 heap = heap->next;
619 while (heap)
620 {
621 heap->first_bloc = NIL_BLOC;
622 heap->last_bloc = NIL_BLOC;
623 heap->free = heap->bloc_start;
624 heap = heap->next;
625 }
626 }
627 \f
628 /* Resize BLOC to SIZE bytes. This relocates the blocs
629 that come after BLOC in memory. */
630
631 static int
632 resize_bloc (bloc, size)
633 bloc_ptr bloc;
634 SIZE size;
635 {
636 register bloc_ptr b;
637 heap_ptr heap;
638 POINTER address;
639 SIZE old_size;
640
641 /* No need to ever call this if arena is frozen, bug somewhere! */
642 if (r_alloc_freeze_level)
643 abort();
644
645 if (bloc == NIL_BLOC || size == bloc->size)
646 return 1;
647
648 for (heap = first_heap; heap != NIL_HEAP; heap = heap->next)
649 {
650 if (heap->bloc_start <= bloc->data && bloc->data <= heap->end)
651 break;
652 }
653
654 if (heap == NIL_HEAP)
655 abort ();
656
657 old_size = bloc->size;
658 bloc->size = size;
659
660 /* Note that bloc could be moved into the previous heap. */
661 address = (bloc->prev ? (char *) bloc->prev->data + bloc->prev->size
662 : (char *) first_heap->bloc_start);
663 while (heap)
664 {
665 if (heap->bloc_start <= address && address <= heap->end)
666 break;
667 heap = heap->prev;
668 }
669
670 if (! relocate_blocs (bloc, heap, address))
671 {
672 bloc->size = old_size;
673 return 0;
674 }
675
676 if (size > old_size)
677 {
678 for (b = last_bloc; b != bloc; b = b->prev)
679 {
680 if (!b->variable)
681 {
682 b->size = 0;
683 b->data = b->new_data;
684 }
685 else
686 {
687 safe_bcopy (b->data, b->new_data, b->size);
688 *b->variable = b->data = b->new_data;
689 }
690 }
691 if (!bloc->variable)
692 {
693 bloc->size = 0;
694 bloc->data = bloc->new_data;
695 }
696 else
697 {
698 safe_bcopy (bloc->data, bloc->new_data, old_size);
699 bzero ((char *) bloc->new_data + old_size, size - old_size);
700 *bloc->variable = bloc->data = bloc->new_data;
701 }
702 }
703 else
704 {
705 for (b = bloc; b != NIL_BLOC; b = b->next)
706 {
707 if (!b->variable)
708 {
709 b->size = 0;
710 b->data = b->new_data;
711 }
712 else
713 {
714 safe_bcopy (b->data, b->new_data, b->size);
715 *b->variable = b->data = b->new_data;
716 }
717 }
718 }
719
720 update_heap_bloc_correspondence (bloc, heap);
721
722 break_value = (last_bloc ? (char *) last_bloc->data + last_bloc->size
723 : (char *) first_heap->bloc_start);
724 return 1;
725 }
726 \f
727 /* Free BLOC from the chain of blocs, relocating any blocs above it.
728 This may return space to the system. */
729
730 static void
731 free_bloc (bloc)
732 bloc_ptr bloc;
733 {
734 heap_ptr heap = bloc->heap;
735
736 if (r_alloc_freeze_level)
737 {
738 bloc->variable = (POINTER *) NIL;
739 return;
740 }
741
742 resize_bloc (bloc, 0);
743
744 if (bloc == first_bloc && bloc == last_bloc)
745 {
746 first_bloc = last_bloc = NIL_BLOC;
747 }
748 else if (bloc == last_bloc)
749 {
750 last_bloc = bloc->prev;
751 last_bloc->next = NIL_BLOC;
752 }
753 else if (bloc == first_bloc)
754 {
755 first_bloc = bloc->next;
756 first_bloc->prev = NIL_BLOC;
757 }
758 else
759 {
760 bloc->next->prev = bloc->prev;
761 bloc->prev->next = bloc->next;
762 }
763
764 /* Update the records of which blocs are in HEAP. */
765 if (heap->first_bloc == bloc)
766 {
767 if (bloc->next != 0 && bloc->next->heap == heap)
768 heap->first_bloc = bloc->next;
769 else
770 heap->first_bloc = heap->last_bloc = NIL_BLOC;
771 }
772 if (heap->last_bloc == bloc)
773 {
774 if (bloc->prev != 0 && bloc->prev->heap == heap)
775 heap->last_bloc = bloc->prev;
776 else
777 heap->first_bloc = heap->last_bloc = NIL_BLOC;
778 }
779
780 relinquish ();
781 free (bloc);
782 }
783 \f
784 /* Interface routines. */
785
786 /* Obtain SIZE bytes of storage from the free pool, or the system, as
787 necessary. If relocatable blocs are in use, this means relocating
788 them. This function gets plugged into the GNU malloc's __morecore
789 hook.
790
791 We provide hysteresis, never relocating by less than extra_bytes.
792
793 If we're out of memory, we should return zero, to imitate the other
794 __morecore hook values - in particular, __default_morecore in the
795 GNU malloc package. */
796
797 POINTER
798 r_alloc_sbrk (size)
799 long size;
800 {
801 register bloc_ptr b;
802 POINTER address;
803
804 if (! r_alloc_initialized)
805 r_alloc_init ();
806
807 if (! use_relocatable_buffers)
808 return (*real_morecore) (size);
809
810 if (size == 0)
811 return virtual_break_value;
812
813 if (size > 0)
814 {
815 /* Allocate a page-aligned space. GNU malloc would reclaim an
816 extra space if we passed an unaligned one. But we could
817 not always find a space which is contiguous to the previous. */
818 POINTER new_bloc_start;
819 heap_ptr h = first_heap;
820 SIZE get = ROUNDUP (size);
821
822 address = (POINTER) ROUNDUP (virtual_break_value);
823
824 /* Search the list upward for a heap which is large enough. */
825 while ((char *) h->end < (char *) MEM_ROUNDUP ((char *)address + get))
826 {
827 h = h->next;
828 if (h == NIL_HEAP)
829 break;
830 address = (POINTER) ROUNDUP (h->start);
831 }
832
833 /* If not found, obtain more space. */
834 if (h == NIL_HEAP)
835 {
836 get += extra_bytes + page_size;
837
838 if (! obtain (address, get))
839 return 0;
840
841 if (first_heap == last_heap)
842 address = (POINTER) ROUNDUP (virtual_break_value);
843 else
844 address = (POINTER) ROUNDUP (last_heap->start);
845 h = last_heap;
846 }
847
848 new_bloc_start = (POINTER) MEM_ROUNDUP ((char *)address + get);
849
850 if (first_heap->bloc_start < new_bloc_start)
851 {
852 /* This is no clean solution - no idea how to do it better. */
853 if (r_alloc_freeze_level)
854 return NIL;
855
856 /* There is a bug here: if the above obtain call succeeded, but the
857 relocate_blocs call below does not succeed, we need to free
858 the memory that we got with obtain. */
859
860 /* Move all blocs upward. */
861 if (! relocate_blocs (first_bloc, h, new_bloc_start))
862 return 0;
863
864 /* Note that (POINTER)(h+1) <= new_bloc_start since
865 get >= page_size, so the following does not destroy the heap
866 header. */
867 for (b = last_bloc; b != NIL_BLOC; b = b->prev)
868 {
869 safe_bcopy (b->data, b->new_data, b->size);
870 *b->variable = b->data = b->new_data;
871 }
872
873 h->bloc_start = new_bloc_start;
874
875 update_heap_bloc_correspondence (first_bloc, h);
876 }
877 if (h != first_heap)
878 {
879 /* Give up managing heaps below the one the new
880 virtual_break_value points to. */
881 first_heap->prev = NIL_HEAP;
882 first_heap->next = h->next;
883 first_heap->start = h->start;
884 first_heap->end = h->end;
885 first_heap->free = h->free;
886 first_heap->first_bloc = h->first_bloc;
887 first_heap->last_bloc = h->last_bloc;
888 first_heap->bloc_start = h->bloc_start;
889
890 if (first_heap->next)
891 first_heap->next->prev = first_heap;
892 else
893 last_heap = first_heap;
894 }
895
896 bzero (address, size);
897 }
898 else /* size < 0 */
899 {
900 SIZE excess = (char *)first_heap->bloc_start
901 - ((char *)virtual_break_value + size);
902
903 address = virtual_break_value;
904
905 if (r_alloc_freeze_level == 0 && excess > 2 * extra_bytes)
906 {
907 excess -= extra_bytes;
908 first_heap->bloc_start
909 = (POINTER) MEM_ROUNDUP ((char *)first_heap->bloc_start - excess);
910
911 relocate_blocs (first_bloc, first_heap, first_heap->bloc_start);
912
913 for (b = first_bloc; b != NIL_BLOC; b = b->next)
914 {
915 safe_bcopy (b->data, b->new_data, b->size);
916 *b->variable = b->data = b->new_data;
917 }
918 }
919
920 if ((char *)virtual_break_value + size < (char *)first_heap->start)
921 {
922 /* We found an additional space below the first heap */
923 first_heap->start = (POINTER) ((char *)virtual_break_value + size);
924 }
925 }
926
927 virtual_break_value = (POINTER) ((char *)address + size);
928 break_value = (last_bloc
929 ? (char *) last_bloc->data + last_bloc->size
930 : (char *) first_heap->bloc_start);
931 if (size < 0)
932 relinquish ();
933
934 return address;
935 }
936
937
938 /* Allocate a relocatable bloc of storage of size SIZE. A pointer to
939 the data is returned in *PTR. PTR is thus the address of some variable
940 which will use the data area.
941
942 The allocation of 0 bytes is valid.
943 In case r_alloc_freeze is set, a best fit of unused blocs could be done
944 before allocating a new area. Not yet done.
945
946 If we can't allocate the necessary memory, set *PTR to zero, and
947 return zero. */
948
949 POINTER
950 r_alloc (ptr, size)
951 POINTER *ptr;
952 SIZE size;
953 {
954 register bloc_ptr new_bloc;
955
956 if (! r_alloc_initialized)
957 r_alloc_init ();
958
959 new_bloc = get_bloc (MEM_ROUNDUP (size));
960 if (new_bloc)
961 {
962 new_bloc->variable = ptr;
963 *ptr = new_bloc->data;
964 }
965 else
966 *ptr = 0;
967
968 return *ptr;
969 }
970
971 /* Free a bloc of relocatable storage whose data is pointed to by PTR.
972 Store 0 in *PTR to show there's no block allocated. */
973
974 void
975 r_alloc_free (ptr)
976 register POINTER *ptr;
977 {
978 register bloc_ptr dead_bloc;
979
980 if (! r_alloc_initialized)
981 r_alloc_init ();
982
983 dead_bloc = find_bloc (ptr);
984 if (dead_bloc == NIL_BLOC)
985 abort ();
986
987 free_bloc (dead_bloc);
988 *ptr = 0;
989
990 #ifdef emacs
991 refill_memory_reserve ();
992 #endif
993 }
994
995 /* Given a pointer at address PTR to relocatable data, resize it to SIZE.
996 Do this by shifting all blocks above this one up in memory, unless
997 SIZE is less than or equal to the current bloc size, in which case
998 do nothing.
999
1000 In case r_alloc_freeze is set, a new bloc is allocated, and the
1001 memory copied to it. Not very efficient. We could traverse the
1002 bloc_list for a best fit of free blocs first.
1003
1004 Change *PTR to reflect the new bloc, and return this value.
1005
1006 If more memory cannot be allocated, then leave *PTR unchanged, and
1007 return zero. */
1008
1009 POINTER
1010 r_re_alloc (ptr, size)
1011 POINTER *ptr;
1012 SIZE size;
1013 {
1014 register bloc_ptr bloc;
1015
1016 if (! r_alloc_initialized)
1017 r_alloc_init ();
1018
1019 if (!*ptr)
1020 return r_alloc (ptr, size);
1021 if (!size)
1022 {
1023 r_alloc_free (ptr);
1024 return r_alloc (ptr, 0);
1025 }
1026
1027 bloc = find_bloc (ptr);
1028 if (bloc == NIL_BLOC)
1029 abort ();
1030
1031 if (size < bloc->size)
1032 {
1033 /* Wouldn't it be useful to actually resize the bloc here? */
1034 /* I think so too, but not if it's too expensive... */
1035 if ((bloc->size - MEM_ROUNDUP (size) >= page_size)
1036 && r_alloc_freeze_level == 0)
1037 {
1038 resize_bloc (bloc, MEM_ROUNDUP (size));
1039 /* Never mind if this fails, just do nothing... */
1040 /* It *should* be infallible! */
1041 }
1042 }
1043 else if (size > bloc->size)
1044 {
1045 if (r_alloc_freeze_level)
1046 {
1047 bloc_ptr new_bloc;
1048 new_bloc = get_bloc (MEM_ROUNDUP (size));
1049 if (new_bloc)
1050 {
1051 new_bloc->variable = ptr;
1052 *ptr = new_bloc->data;
1053 bloc->variable = (POINTER *) NIL;
1054 }
1055 else
1056 return NIL;
1057 }
1058 else
1059 {
1060 if (! resize_bloc (bloc, MEM_ROUNDUP (size)))
1061 return NIL;
1062 }
1063 }
1064 return *ptr;
1065 }
1066
1067 /* Disable relocations, after making room for at least SIZE bytes
1068 of non-relocatable heap if possible. The relocatable blocs are
1069 guaranteed to hold still until thawed, even if this means that
1070 malloc must return a null pointer. */
1071
1072 void
1073 r_alloc_freeze (size)
1074 long size;
1075 {
1076 if (! r_alloc_initialized)
1077 r_alloc_init ();
1078
1079 /* If already frozen, we can't make any more room, so don't try. */
1080 if (r_alloc_freeze_level > 0)
1081 size = 0;
1082 /* If we can't get the amount requested, half is better than nothing. */
1083 while (size > 0 && r_alloc_sbrk (size) == 0)
1084 size /= 2;
1085 ++r_alloc_freeze_level;
1086 if (size > 0)
1087 r_alloc_sbrk (-size);
1088 }
1089
1090 void
1091 r_alloc_thaw ()
1092 {
1093
1094 if (! r_alloc_initialized)
1095 r_alloc_init ();
1096
1097 if (--r_alloc_freeze_level < 0)
1098 abort ();
1099
1100 /* This frees all unused blocs. It is not too inefficient, as the resize
1101 and bcopy is done only once. Afterwards, all unreferenced blocs are
1102 already shrunk to zero size. */
1103 if (!r_alloc_freeze_level)
1104 {
1105 bloc_ptr *b = &first_bloc;
1106 while (*b)
1107 if (!(*b)->variable)
1108 free_bloc (*b);
1109 else
1110 b = &(*b)->next;
1111 }
1112 }
1113
1114
1115 #if defined (emacs) && defined (DOUG_LEA_MALLOC)
1116
1117 /* Reinitialize the morecore hook variables after restarting a dumped
1118 Emacs. This is needed when using Doug Lea's malloc from GNU libc. */
1119 void
1120 r_alloc_reinit ()
1121 {
1122 /* Only do this if the hook has been reset, so that we don't get an
1123 infinite loop, in case Emacs was linked statically. */
1124 if (__morecore != r_alloc_sbrk)
1125 {
1126 real_morecore = __morecore;
1127 __morecore = r_alloc_sbrk;
1128 }
1129 }
1130
1131 #endif /* emacs && DOUG_LEA_MALLOC */
1132
1133 #ifdef DEBUG
1134
1135 #include <assert.h>
1136
1137 void
1138 r_alloc_check ()
1139 {
1140 int found = 0;
1141 heap_ptr h, ph = 0;
1142 bloc_ptr b, pb = 0;
1143
1144 if (!r_alloc_initialized)
1145 return;
1146
1147 assert (first_heap);
1148 assert (last_heap->end <= (POINTER) sbrk (0));
1149 assert ((POINTER) first_heap < first_heap->start);
1150 assert (first_heap->start <= virtual_break_value);
1151 assert (virtual_break_value <= first_heap->end);
1152
1153 for (h = first_heap; h; h = h->next)
1154 {
1155 assert (h->prev == ph);
1156 assert ((POINTER) ROUNDUP (h->end) == h->end);
1157 #if 0 /* ??? The code in ralloc.c does not really try to ensure
1158 the heap start has any sort of alignment.
1159 Perhaps it should. */
1160 assert ((POINTER) MEM_ROUNDUP (h->start) == h->start);
1161 #endif
1162 assert ((POINTER) MEM_ROUNDUP (h->bloc_start) == h->bloc_start);
1163 assert (h->start <= h->bloc_start && h->bloc_start <= h->end);
1164
1165 if (ph)
1166 {
1167 assert (ph->end < h->start);
1168 assert (h->start <= (POINTER)h && (POINTER)(h+1) <= h->bloc_start);
1169 }
1170
1171 if (h->bloc_start <= break_value && break_value <= h->end)
1172 found = 1;
1173
1174 ph = h;
1175 }
1176
1177 assert (found);
1178 assert (last_heap == ph);
1179
1180 for (b = first_bloc; b; b = b->next)
1181 {
1182 assert (b->prev == pb);
1183 assert ((POINTER) MEM_ROUNDUP (b->data) == b->data);
1184 assert ((SIZE) MEM_ROUNDUP (b->size) == b->size);
1185
1186 ph = 0;
1187 for (h = first_heap; h; h = h->next)
1188 {
1189 if (h->bloc_start <= b->data && b->data + b->size <= h->end)
1190 break;
1191 ph = h;
1192 }
1193
1194 assert (h);
1195
1196 if (pb && pb->data + pb->size != b->data)
1197 {
1198 assert (ph && b->data == h->bloc_start);
1199 while (ph)
1200 {
1201 if (ph->bloc_start <= pb->data
1202 && pb->data + pb->size <= ph->end)
1203 {
1204 assert (pb->data + pb->size + b->size > ph->end);
1205 break;
1206 }
1207 else
1208 {
1209 assert (ph->bloc_start + b->size > ph->end);
1210 }
1211 ph = ph->prev;
1212 }
1213 }
1214 pb = b;
1215 }
1216
1217 assert (last_bloc == pb);
1218
1219 if (last_bloc)
1220 assert (last_bloc->data + last_bloc->size == break_value);
1221 else
1222 assert (first_heap->bloc_start == break_value);
1223 }
1224
1225 #endif /* DEBUG */
1226
1227
1228 \f
1229 /***********************************************************************
1230 Initialization
1231 ***********************************************************************/
1232
1233 /* Initialize various things for memory allocation. */
1234
1235 static void
1236 r_alloc_init ()
1237 {
1238 if (r_alloc_initialized)
1239 return;
1240 r_alloc_initialized = 1;
1241
1242 page_size = PAGE;
1243 #ifndef SYSTEM_MALLOC
1244 real_morecore = __morecore;
1245 __morecore = r_alloc_sbrk;
1246
1247 first_heap = last_heap = &heap_base;
1248 first_heap->next = first_heap->prev = NIL_HEAP;
1249 first_heap->start = first_heap->bloc_start
1250 = virtual_break_value = break_value = (*real_morecore) (0);
1251 if (break_value == NIL)
1252 abort ();
1253
1254 extra_bytes = ROUNDUP (50000);
1255 #endif
1256
1257 #ifdef DOUG_LEA_MALLOC
1258 mallopt (M_TOP_PAD, 64 * 4096);
1259 #else
1260 #ifndef SYSTEM_MALLOC
1261 /* Give GNU malloc's morecore some hysteresis
1262 so that we move all the relocatable blocks much less often. */
1263 __malloc_extra_blocks = 64;
1264 #endif
1265 #endif
1266
1267 #ifndef SYSTEM_MALLOC
1268 first_heap->end = (POINTER) ROUNDUP (first_heap->start);
1269
1270 /* The extra call to real_morecore guarantees that the end of the
1271 address space is a multiple of page_size, even if page_size is
1272 not really the page size of the system running the binary in
1273 which page_size is stored. This allows a binary to be built on a
1274 system with one page size and run on a system with a smaller page
1275 size. */
1276 (*real_morecore) ((char *) first_heap->end - (char *) first_heap->start);
1277
1278 /* Clear the rest of the last page; this memory is in our address space
1279 even though it is after the sbrk value. */
1280 /* Doubly true, with the additional call that explicitly adds the
1281 rest of that page to the address space. */
1282 bzero (first_heap->start,
1283 (char *) first_heap->end - (char *) first_heap->start);
1284 virtual_break_value = break_value = first_heap->bloc_start = first_heap->end;
1285 #endif
1286
1287 use_relocatable_buffers = 1;
1288 }