]> code.delx.au - gnu-emacs/blob - doc/lispref/numbers.texi
Improve documentation for integer and floating-point basics.
[gnu-emacs] / doc / lispref / numbers.texi
1 @c -*-texinfo-*-
2 @c This is part of the GNU Emacs Lisp Reference Manual.
3 @c Copyright (C) 1990-1995, 1998-1999, 2001-2014 Free Software
4 @c Foundation, Inc.
5 @c See the file elisp.texi for copying conditions.
6 @node Numbers
7 @chapter Numbers
8 @cindex integers
9 @cindex numbers
10
11 GNU Emacs supports two numeric data types: @dfn{integers} and
12 @dfn{floating-point numbers}. Integers are whole numbers such as
13 @minus{}3, 0, 7, 13, and 511. Floating-point numbers are numbers with
14 fractional parts, such as @minus{}4.5, 0.0, and 2.71828. They can
15 also be expressed in exponential notation: @samp{1.5e2} is the same as
16 @samp{150.0}; here, @samp{e2} stands for ten to the second power, and
17 that is multiplied by 1.5. Integer computations are exact, though
18 they may overflow. Floating-point computations often involve rounding
19 errors, as the numbers have a fixed amount of precision.
20
21 @menu
22 * Integer Basics:: Representation and range of integers.
23 * Float Basics:: Representation and range of floating point.
24 * Predicates on Numbers:: Testing for numbers.
25 * Comparison of Numbers:: Equality and inequality predicates.
26 * Numeric Conversions:: Converting float to integer and vice versa.
27 * Arithmetic Operations:: How to add, subtract, multiply and divide.
28 * Rounding Operations:: Explicitly rounding floating-point numbers.
29 * Bitwise Operations:: Logical and, or, not, shifting.
30 * Math Functions:: Trig, exponential and logarithmic functions.
31 * Random Numbers:: Obtaining random integers, predictable or not.
32 @end menu
33
34 @node Integer Basics
35 @section Integer Basics
36
37 The range of values for an integer depends on the machine. The
38 minimum range is @minus{}536,870,912 to 536,870,911 (30 bits; i.e.,
39 @ifnottex
40 @minus{}2**29
41 @end ifnottex
42 @tex
43 @math{-2^{29}}
44 @end tex
45 to
46 @ifnottex
47 2**29 @minus{} 1),
48 @end ifnottex
49 @tex
50 @math{2^{29}-1}),
51 @end tex
52 but many machines provide a wider range. Many examples in this
53 chapter assume the minimum integer width of 30 bits.
54 @cindex overflow
55
56 The Lisp reader reads an integer as a sequence of digits with optional
57 initial sign and optional final period. An integer that is out of the
58 Emacs range is treated as a floating-point number.
59
60 @example
61 1 ; @r{The integer 1.}
62 1. ; @r{The integer 1.}
63 +1 ; @r{Also the integer 1.}
64 -1 ; @r{The integer @minus{}1.}
65 9000000000000000000
66 ; @r{The floating-point number 9e18.}
67 0 ; @r{The integer 0.}
68 -0 ; @r{The integer 0.}
69 @end example
70
71 @cindex integers in specific radix
72 @cindex radix for reading an integer
73 @cindex base for reading an integer
74 @cindex hex numbers
75 @cindex octal numbers
76 @cindex reading numbers in hex, octal, and binary
77 The syntax for integers in bases other than 10 uses @samp{#}
78 followed by a letter that specifies the radix: @samp{b} for binary,
79 @samp{o} for octal, @samp{x} for hex, or @samp{@var{radix}r} to
80 specify radix @var{radix}. Case is not significant for the letter
81 that specifies the radix. Thus, @samp{#b@var{integer}} reads
82 @var{integer} in binary, and @samp{#@var{radix}r@var{integer}} reads
83 @var{integer} in radix @var{radix}. Allowed values of @var{radix} run
84 from 2 to 36. For example:
85
86 @example
87 #b101100 @result{} 44
88 #o54 @result{} 44
89 #x2c @result{} 44
90 #24r1k @result{} 44
91 @end example
92
93 To understand how various functions work on integers, especially the
94 bitwise operators (@pxref{Bitwise Operations}), it is often helpful to
95 view the numbers in their binary form.
96
97 In 30-bit binary, the decimal integer 5 looks like this:
98
99 @example
100 0000...000101 (30 bits total)
101 @end example
102
103 @noindent
104 (The @samp{...} stands for enough bits to fill out a 30-bit word; in
105 this case, @samp{...} stands for twenty 0 bits. Later examples also
106 use the @samp{...} notation to make binary integers easier to read.)
107
108 The integer @minus{}1 looks like this:
109
110 @example
111 1111...111111 (30 bits total)
112 @end example
113
114 @noindent
115 @cindex two's complement
116 @minus{}1 is represented as 30 ones. (This is called @dfn{two's
117 complement} notation.)
118
119 The negative integer, @minus{}5, is creating by subtracting 4 from
120 @minus{}1. In binary, the decimal integer 4 is 100. Consequently,
121 @minus{}5 looks like this:
122
123 @example
124 1111...111011 (30 bits total)
125 @end example
126
127 In this implementation, the largest 30-bit binary integer is
128 536,870,911 in decimal. In binary, it looks like this:
129
130 @example
131 0111...111111 (30 bits total)
132 @end example
133
134 Since the arithmetic functions do not check whether integers go
135 outside their range, when you add 1 to 536,870,911, the value is the
136 negative integer @minus{}536,870,912:
137
138 @example
139 (+ 1 536870911)
140 @result{} -536870912
141 @result{} 1000...000000 (30 bits total)
142 @end example
143
144 Many of the functions described in this chapter accept markers for
145 arguments in place of numbers. (@xref{Markers}.) Since the actual
146 arguments to such functions may be either numbers or markers, we often
147 give these arguments the name @var{number-or-marker}. When the argument
148 value is a marker, its position value is used and its buffer is ignored.
149
150 @cindex largest Lisp integer
151 @cindex maximum Lisp integer
152 @defvar most-positive-fixnum
153 The value of this variable is the largest integer that Emacs Lisp can
154 handle. Typical values are
155 @ifnottex
156 2**29 @minus{} 1
157 @end ifnottex
158 @tex
159 @math{2^{29}-1}
160 @end tex
161 on 32-bit and
162 @ifnottex
163 2**61 @minus{} 1
164 @end ifnottex
165 @tex
166 @math{2^{61}-1}
167 @end tex
168 on 64-bit platforms.
169 @end defvar
170
171 @cindex smallest Lisp integer
172 @cindex minimum Lisp integer
173 @defvar most-negative-fixnum
174 The value of this variable is the smallest integer that Emacs Lisp can
175 handle. It is negative. Typical values are
176 @ifnottex
177 @minus{}2**29
178 @end ifnottex
179 @tex
180 @math{-2^{29}}
181 @end tex
182 on 32-bit and
183 @ifnottex
184 @minus{}2**61
185 @end ifnottex
186 @tex
187 @math{-2^{61}}
188 @end tex
189 on 64-bit platforms.
190 @end defvar
191
192 In Emacs Lisp, text characters are represented by integers. Any
193 integer between zero and the value of @code{max-char}, inclusive, is
194 considered to be valid as a character. @xref{String Basics}.
195
196 @node Float Basics
197 @section Floating-Point Basics
198
199 @cindex @acronym{IEEE} floating point
200 Floating-point numbers are useful for representing numbers that are
201 not integral. The range of floating-point numbers is
202 the same as the range of the C data type @code{double} on the machine
203 you are using. On all computers currently supported by Emacs, this is
204 double-precision @acronym{IEEE} floating point.
205
206 The read syntax for floating-point numbers requires either a decimal
207 point, an exponent, or both. Optional signs (@samp{+} or @samp{-})
208 precede the number and its exponent. For example, @samp{1500.0},
209 @samp{+15e2}, @samp{15.0e+2}, @samp{+1500000e-3}, and @samp{.15e4} are
210 five ways of writing a floating-point number whose value is 1500.
211 They are all equivalent. Like Common Lisp, Emacs Lisp requires at
212 least one digit after any decimal point in a floating-point number;
213 @samp{1500.} is an integer, not a floating-point number.
214
215 Emacs Lisp treats @code{-0.0} as numerically equal to ordinary zero
216 with respect to @code{equal} and @code{=}. This follows the
217 @acronym{IEEE} floating-point standard, which says @code{-0.0} and
218 @code{0.0} are numerically equal even though other operations can
219 distinguish them.
220
221 @cindex positive infinity
222 @cindex negative infinity
223 @cindex infinity
224 @cindex NaN
225 The @acronym{IEEE} floating-point standard supports positive
226 infinity and negative infinity as floating-point values. It also
227 provides for a class of values called NaN or ``not-a-number'';
228 numerical functions return such values in cases where there is no
229 correct answer. For example, @code{(/ 0.0 0.0)} returns a NaN@.
230 Although NaN values carry a sign, for practical purposes there is no other
231 significant difference between different NaN values in Emacs Lisp.
232
233 Here are read syntaxes for these special floating-point values:
234
235 @table @asis
236 @item infinity
237 @samp{1.0e+INF} and @samp{-1.0e+INF}
238 @item not-a-number
239 @samp{0.0e+NaN} and @samp{-0.0e+NaN}
240 @end table
241
242 The following functions are specialized for handling floating-point
243 numbers:
244
245 @defun isnan x
246 This predicate returns @code{t} if its floating-point argument is a NaN,
247 @code{nil} otherwise.
248 @end defun
249
250 @defun frexp x
251 This function returns a cons cell @code{(@var{s} . @var{e})},
252 where @var{s} and @var{e} are respectively the significand and
253 exponent of the floating-point number @var{x}.
254
255 If @var{x} is finite, @var{s} is a floating-point number between 0.5
256 (inclusive) and 1.0 (exclusive), @var{e} is an integer, and
257 @ifnottex
258 @var{x} = @var{s} * 2**@var{e}.
259 @end ifnottex
260 @tex
261 @math{x = s 2^e}.
262 @end tex
263 If @var{x} is zero or infinity, @var{s} is the same as @var{x}.
264 If @var{x} is a NaN, @var{s} is also a NaN.
265 If @var{x} is zero, @var{e} is 0.
266 @end defun
267
268 @defun ldexp sig &optional exp
269 This function returns a floating-point number corresponding to the
270 significand @var{sig} and exponent @var{exp}.
271 @end defun
272
273 @defun copysign x1 x2
274 This function copies the sign of @var{x2} to the value of @var{x1},
275 and returns the result. @var{x1} and @var{x2} must be floating point.
276 @end defun
277
278 @defun logb number
279 This function returns the binary exponent of @var{number}. More
280 precisely, the value is the logarithm of |@var{number}| base 2, rounded
281 down to an integer.
282
283 @example
284 (logb 10)
285 @result{} 3
286 (logb 10.0e20)
287 @result{} 69
288 @end example
289 @end defun
290
291 @node Predicates on Numbers
292 @section Type Predicates for Numbers
293 @cindex predicates for numbers
294
295 The functions in this section test for numbers, or for a specific
296 type of number. The functions @code{integerp} and @code{floatp} can
297 take any type of Lisp object as argument (they would not be of much
298 use otherwise), but the @code{zerop} predicate requires a number as
299 its argument. See also @code{integer-or-marker-p} and
300 @code{number-or-marker-p}, in @ref{Predicates on Markers}.
301
302 @defun floatp object
303 This predicate tests whether its argument is floating point
304 and returns @code{t} if so, @code{nil} otherwise.
305 @end defun
306
307 @defun integerp object
308 This predicate tests whether its argument is an integer, and returns
309 @code{t} if so, @code{nil} otherwise.
310 @end defun
311
312 @defun numberp object
313 This predicate tests whether its argument is a number (either integer or
314 floating point), and returns @code{t} if so, @code{nil} otherwise.
315 @end defun
316
317 @defun natnump object
318 @cindex natural numbers
319 This predicate (whose name comes from the phrase ``natural number'')
320 tests to see whether its argument is a nonnegative integer, and
321 returns @code{t} if so, @code{nil} otherwise. 0 is considered
322 non-negative.
323
324 @findex wholenump
325 @code{wholenump} is a synonym for @code{natnump}.
326 @end defun
327
328 @defun zerop number
329 This predicate tests whether its argument is zero, and returns @code{t}
330 if so, @code{nil} otherwise. The argument must be a number.
331
332 @code{(zerop x)} is equivalent to @code{(= x 0)}.
333 @end defun
334
335 @node Comparison of Numbers
336 @section Comparison of Numbers
337 @cindex number comparison
338 @cindex comparing numbers
339
340 To test numbers for numerical equality, you should normally use
341 @code{=}, not @code{eq}. There can be many distinct floating-point
342 objects with the same numeric value. If you use @code{eq} to
343 compare them, then you test whether two values are the same
344 @emph{object}. By contrast, @code{=} compares only the numeric values
345 of the objects.
346
347 In Emacs Lisp, each integer is a unique Lisp object.
348 Therefore, @code{eq} is equivalent to @code{=} where integers are
349 concerned. It is sometimes convenient to use @code{eq} for comparing
350 an unknown value with an integer, because @code{eq} does not report an
351 error if the unknown value is not a number---it accepts arguments of
352 any type. By contrast, @code{=} signals an error if the arguments are
353 not numbers or markers. However, it is better programming practice to
354 use @code{=} if you can, even for comparing integers.
355
356 Sometimes it is useful to compare numbers with @code{equal}, which
357 treats two numbers as equal if they have the same data type (both
358 integers, or both floating point) and the same value. By contrast,
359 @code{=} can treat an integer and a floating-point number as equal.
360 @xref{Equality Predicates}.
361
362 There is another wrinkle: because floating-point arithmetic is not
363 exact, it is often a bad idea to check for equality of floating-point
364 values. Usually it is better to test for approximate equality.
365 Here's a function to do this:
366
367 @example
368 (defvar fuzz-factor 1.0e-6)
369 (defun approx-equal (x y)
370 (or (and (= x 0) (= y 0))
371 (< (/ (abs (- x y))
372 (max (abs x) (abs y)))
373 fuzz-factor)))
374 @end example
375
376 @cindex CL note---integers vrs @code{eq}
377 @quotation
378 @b{Common Lisp note:} Comparing numbers in Common Lisp always requires
379 @code{=} because Common Lisp implements multi-word integers, and two
380 distinct integer objects can have the same numeric value. Emacs Lisp
381 can have just one integer object for any given value because it has a
382 limited range of integers.
383 @end quotation
384
385 @defun = number-or-marker &rest number-or-markers
386 This function tests whether all its arguments are numerically equal,
387 and returns @code{t} if so, @code{nil} otherwise.
388 @end defun
389
390 @defun eql value1 value2
391 This function acts like @code{eq} except when both arguments are
392 numbers. It compares numbers by type and numeric value, so that
393 @code{(eql 1.0 1)} returns @code{nil}, but @code{(eql 1.0 1.0)} and
394 @code{(eql 1 1)} both return @code{t}.
395 @end defun
396
397 @defun /= number-or-marker1 number-or-marker2
398 This function tests whether its arguments are numerically equal, and
399 returns @code{t} if they are not, and @code{nil} if they are.
400 @end defun
401
402 @defun < number-or-marker &rest number-or-markers
403 This function tests whether every argument is strictly less than the
404 respective next argument. It returns @code{t} if so, @code{nil}
405 otherwise.
406 @end defun
407
408 @defun <= number-or-marker &rest number-or-markers
409 This function tests whether every argument is less than or equal to
410 the respective next argument. It returns @code{t} if so, @code{nil}
411 otherwise.
412 @end defun
413
414 @defun > number-or-marker &rest number-or-markers
415 This function tests whether every argument is strictly greater than
416 the respective next argument. It returns @code{t} if so, @code{nil}
417 otherwise.
418 @end defun
419
420 @defun >= number-or-marker &rest number-or-markers
421 This function tests whether every argument is greater than or equal to
422 the respective next argument. It returns @code{t} if so, @code{nil}
423 otherwise.
424 @end defun
425
426 @defun max number-or-marker &rest numbers-or-markers
427 This function returns the largest of its arguments.
428 If any of the arguments is floating point, the value is returned
429 as floating point, even if it was given as an integer.
430
431 @example
432 (max 20)
433 @result{} 20
434 (max 1 2.5)
435 @result{} 2.5
436 (max 1 3 2.5)
437 @result{} 3.0
438 @end example
439 @end defun
440
441 @defun min number-or-marker &rest numbers-or-markers
442 This function returns the smallest of its arguments.
443 If any of the arguments is floating point, the value is returned
444 as floating point, even if it was given as an integer.
445
446 @example
447 (min -4 1)
448 @result{} -4
449 @end example
450 @end defun
451
452 @defun abs number
453 This function returns the absolute value of @var{number}.
454 @end defun
455
456 @node Numeric Conversions
457 @section Numeric Conversions
458 @cindex rounding in conversions
459 @cindex number conversions
460 @cindex converting numbers
461
462 To convert an integer to floating point, use the function @code{float}.
463
464 @defun float number
465 This returns @var{number} converted to floating point.
466 If @var{number} is already floating point, @code{float} returns
467 it unchanged.
468 @end defun
469
470 There are four functions to convert floating-point numbers to
471 integers; they differ in how they round. All accept an argument
472 @var{number} and an optional argument @var{divisor}. Both arguments
473 may be integers or floating-point numbers. @var{divisor} may also be
474 @code{nil}. If @var{divisor} is @code{nil} or omitted, these
475 functions convert @var{number} to an integer, or return it unchanged
476 if it already is an integer. If @var{divisor} is non-@code{nil}, they
477 divide @var{number} by @var{divisor} and convert the result to an
478 integer. If @var{divisor} is zero (whether integer or
479 floating point), Emacs signals an @code{arith-error} error.
480
481 @defun truncate number &optional divisor
482 This returns @var{number}, converted to an integer by rounding towards
483 zero.
484
485 @example
486 (truncate 1.2)
487 @result{} 1
488 (truncate 1.7)
489 @result{} 1
490 (truncate -1.2)
491 @result{} -1
492 (truncate -1.7)
493 @result{} -1
494 @end example
495 @end defun
496
497 @defun floor number &optional divisor
498 This returns @var{number}, converted to an integer by rounding downward
499 (towards negative infinity).
500
501 If @var{divisor} is specified, this uses the kind of division
502 operation that corresponds to @code{mod}, rounding downward.
503
504 @example
505 (floor 1.2)
506 @result{} 1
507 (floor 1.7)
508 @result{} 1
509 (floor -1.2)
510 @result{} -2
511 (floor -1.7)
512 @result{} -2
513 (floor 5.99 3)
514 @result{} 1
515 @end example
516 @end defun
517
518 @defun ceiling number &optional divisor
519 This returns @var{number}, converted to an integer by rounding upward
520 (towards positive infinity).
521
522 @example
523 (ceiling 1.2)
524 @result{} 2
525 (ceiling 1.7)
526 @result{} 2
527 (ceiling -1.2)
528 @result{} -1
529 (ceiling -1.7)
530 @result{} -1
531 @end example
532 @end defun
533
534 @defun round number &optional divisor
535 This returns @var{number}, converted to an integer by rounding towards the
536 nearest integer. Rounding a value equidistant between two integers
537 may choose the integer closer to zero, or it may prefer an even integer,
538 depending on your machine.
539
540 @example
541 (round 1.2)
542 @result{} 1
543 (round 1.7)
544 @result{} 2
545 (round -1.2)
546 @result{} -1
547 (round -1.7)
548 @result{} -2
549 @end example
550 @end defun
551
552 @node Arithmetic Operations
553 @section Arithmetic Operations
554 @cindex arithmetic operations
555
556 Emacs Lisp provides the traditional four arithmetic operations
557 (addition, subtraction, multiplication, and division), as well as
558 remainder and modulus functions, and functions to add or subtract 1.
559 Except for @code{%}, each of these functions accepts both integer and
560 floating-point arguments, and returns a floating-point number if any
561 argument is floating point.
562
563 Emacs Lisp arithmetic functions do not check for integer overflow.
564 Thus @code{(1+ 536870911)} may evaluate to
565 @minus{}536870912, depending on your hardware.
566
567 @defun 1+ number-or-marker
568 This function returns @var{number-or-marker} plus 1.
569 For example,
570
571 @example
572 (setq foo 4)
573 @result{} 4
574 (1+ foo)
575 @result{} 5
576 @end example
577
578 This function is not analogous to the C operator @code{++}---it does not
579 increment a variable. It just computes a sum. Thus, if we continue,
580
581 @example
582 foo
583 @result{} 4
584 @end example
585
586 If you want to increment the variable, you must use @code{setq},
587 like this:
588
589 @example
590 (setq foo (1+ foo))
591 @result{} 5
592 @end example
593 @end defun
594
595 @defun 1- number-or-marker
596 This function returns @var{number-or-marker} minus 1.
597 @end defun
598
599 @defun + &rest numbers-or-markers
600 This function adds its arguments together. When given no arguments,
601 @code{+} returns 0.
602
603 @example
604 (+)
605 @result{} 0
606 (+ 1)
607 @result{} 1
608 (+ 1 2 3 4)
609 @result{} 10
610 @end example
611 @end defun
612
613 @defun - &optional number-or-marker &rest more-numbers-or-markers
614 The @code{-} function serves two purposes: negation and subtraction.
615 When @code{-} has a single argument, the value is the negative of the
616 argument. When there are multiple arguments, @code{-} subtracts each of
617 the @var{more-numbers-or-markers} from @var{number-or-marker},
618 cumulatively. If there are no arguments, the result is 0.
619
620 @example
621 (- 10 1 2 3 4)
622 @result{} 0
623 (- 10)
624 @result{} -10
625 (-)
626 @result{} 0
627 @end example
628 @end defun
629
630 @defun * &rest numbers-or-markers
631 This function multiplies its arguments together, and returns the
632 product. When given no arguments, @code{*} returns 1.
633
634 @example
635 (*)
636 @result{} 1
637 (* 1)
638 @result{} 1
639 (* 1 2 3 4)
640 @result{} 24
641 @end example
642 @end defun
643
644 @defun / dividend divisor &rest divisors
645 This function divides @var{dividend} by @var{divisor} and returns the
646 quotient. If there are additional arguments @var{divisors}, then it
647 divides @var{dividend} by each divisor in turn. Each argument may be a
648 number or a marker.
649
650 If all the arguments are integers, the result is an integer, obtained
651 by rounding the quotient towards zero after each division.
652 (Hypothetically, some machines may have different rounding behavior
653 for negative arguments, because @code{/} is implemented using the C
654 division operator, which permits machine-dependent rounding; but this
655 does not happen in practice.)
656
657 @example
658 @group
659 (/ 6 2)
660 @result{} 3
661 @end group
662 @group
663 (/ 5 2)
664 @result{} 2
665 @end group
666 @group
667 (/ 5.0 2)
668 @result{} 2.5
669 @end group
670 @group
671 (/ 5 2.0)
672 @result{} 2.5
673 @end group
674 @group
675 (/ 5.0 2.0)
676 @result{} 2.5
677 @end group
678 @group
679 (/ 25 3 2)
680 @result{} 4
681 @end group
682 @group
683 (/ -17 6)
684 @result{} -2
685 @end group
686 @end example
687
688 @cindex @code{arith-error} in division
689 If you divide an integer by the integer 0, Emacs signals an
690 @code{arith-error} error (@pxref{Errors}). Floating-point division of
691 a nonzero number by zero yields either positive or negative infinity
692 (@pxref{Float Basics}).
693 @end defun
694
695 @defun % dividend divisor
696 @cindex remainder
697 This function returns the integer remainder after division of @var{dividend}
698 by @var{divisor}. The arguments must be integers or markers.
699
700 For any two integers @var{dividend} and @var{divisor},
701
702 @example
703 @group
704 (+ (% @var{dividend} @var{divisor})
705 (* (/ @var{dividend} @var{divisor}) @var{divisor}))
706 @end group
707 @end example
708
709 @noindent
710 always equals @var{dividend}. If @var{divisor} is zero, Emacs signals
711 an @code{arith-error} error.
712
713 @example
714 (% 9 4)
715 @result{} 1
716 (% -9 4)
717 @result{} -1
718 (% 9 -4)
719 @result{} 1
720 (% -9 -4)
721 @result{} -1
722 @end example
723 @end defun
724
725 @defun mod dividend divisor
726 @cindex modulus
727 This function returns the value of @var{dividend} modulo @var{divisor};
728 in other words, the remainder after division of @var{dividend}
729 by @var{divisor}, but with the same sign as @var{divisor}.
730 The arguments must be numbers or markers.
731
732 Unlike @code{%}, @code{mod} permits floating-point arguments; it
733 rounds the quotient downward (towards minus infinity) to an integer,
734 and uses that quotient to compute the remainder.
735
736 If @var{divisor} is zero, @code{mod} signals an @code{arith-error}
737 error if both arguments are integers, and returns a NaN otherwise.
738
739 @example
740 @group
741 (mod 9 4)
742 @result{} 1
743 @end group
744 @group
745 (mod -9 4)
746 @result{} 3
747 @end group
748 @group
749 (mod 9 -4)
750 @result{} -3
751 @end group
752 @group
753 (mod -9 -4)
754 @result{} -1
755 @end group
756 @group
757 (mod 5.5 2.5)
758 @result{} .5
759 @end group
760 @end example
761
762 For any two numbers @var{dividend} and @var{divisor},
763
764 @example
765 @group
766 (+ (mod @var{dividend} @var{divisor})
767 (* (floor @var{dividend} @var{divisor}) @var{divisor}))
768 @end group
769 @end example
770
771 @noindent
772 always equals @var{dividend}, subject to rounding error if either
773 argument is floating point. For @code{floor}, see @ref{Numeric
774 Conversions}.
775 @end defun
776
777 @node Rounding Operations
778 @section Rounding Operations
779 @cindex rounding without conversion
780
781 The functions @code{ffloor}, @code{fceiling}, @code{fround}, and
782 @code{ftruncate} take a floating-point argument and return a floating-point
783 result whose value is a nearby integer. @code{ffloor} returns the
784 nearest integer below; @code{fceiling}, the nearest integer above;
785 @code{ftruncate}, the nearest integer in the direction towards zero;
786 @code{fround}, the nearest integer.
787
788 @defun ffloor float
789 This function rounds @var{float} to the next lower integral value, and
790 returns that value as a floating-point number.
791 @end defun
792
793 @defun fceiling float
794 This function rounds @var{float} to the next higher integral value, and
795 returns that value as a floating-point number.
796 @end defun
797
798 @defun ftruncate float
799 This function rounds @var{float} towards zero to an integral value, and
800 returns that value as a floating-point number.
801 @end defun
802
803 @defun fround float
804 This function rounds @var{float} to the nearest integral value,
805 and returns that value as a floating-point number.
806 @end defun
807
808 @node Bitwise Operations
809 @section Bitwise Operations on Integers
810 @cindex bitwise arithmetic
811 @cindex logical arithmetic
812
813 In a computer, an integer is represented as a binary number, a
814 sequence of @dfn{bits} (digits which are either zero or one). A bitwise
815 operation acts on the individual bits of such a sequence. For example,
816 @dfn{shifting} moves the whole sequence left or right one or more places,
817 reproducing the same pattern ``moved over''.
818
819 The bitwise operations in Emacs Lisp apply only to integers.
820
821 @defun lsh integer1 count
822 @cindex logical shift
823 @code{lsh}, which is an abbreviation for @dfn{logical shift}, shifts the
824 bits in @var{integer1} to the left @var{count} places, or to the right
825 if @var{count} is negative, bringing zeros into the vacated bits. If
826 @var{count} is negative, @code{lsh} shifts zeros into the leftmost
827 (most-significant) bit, producing a positive result even if
828 @var{integer1} is negative. Contrast this with @code{ash}, below.
829
830 Here are two examples of @code{lsh}, shifting a pattern of bits one
831 place to the left. We show only the low-order eight bits of the binary
832 pattern; the rest are all zero.
833
834 @example
835 @group
836 (lsh 5 1)
837 @result{} 10
838 ;; @r{Decimal 5 becomes decimal 10.}
839 00000101 @result{} 00001010
840
841 (lsh 7 1)
842 @result{} 14
843 ;; @r{Decimal 7 becomes decimal 14.}
844 00000111 @result{} 00001110
845 @end group
846 @end example
847
848 @noindent
849 As the examples illustrate, shifting the pattern of bits one place to
850 the left produces a number that is twice the value of the previous
851 number.
852
853 Shifting a pattern of bits two places to the left produces results
854 like this (with 8-bit binary numbers):
855
856 @example
857 @group
858 (lsh 3 2)
859 @result{} 12
860 ;; @r{Decimal 3 becomes decimal 12.}
861 00000011 @result{} 00001100
862 @end group
863 @end example
864
865 On the other hand, shifting one place to the right looks like this:
866
867 @example
868 @group
869 (lsh 6 -1)
870 @result{} 3
871 ;; @r{Decimal 6 becomes decimal 3.}
872 00000110 @result{} 00000011
873 @end group
874
875 @group
876 (lsh 5 -1)
877 @result{} 2
878 ;; @r{Decimal 5 becomes decimal 2.}
879 00000101 @result{} 00000010
880 @end group
881 @end example
882
883 @noindent
884 As the example illustrates, shifting one place to the right divides the
885 value of a positive integer by two, rounding downward.
886
887 The function @code{lsh}, like all Emacs Lisp arithmetic functions, does
888 not check for overflow, so shifting left can discard significant bits
889 and change the sign of the number. For example, left shifting
890 536,870,911 produces @minus{}2 in the 30-bit implementation:
891
892 @example
893 (lsh 536870911 1) ; @r{left shift}
894 @result{} -2
895 @end example
896
897 In binary, the argument looks like this:
898
899 @example
900 @group
901 ;; @r{Decimal 536,870,911}
902 0111...111111 (30 bits total)
903 @end group
904 @end example
905
906 @noindent
907 which becomes the following when left shifted:
908
909 @example
910 @group
911 ;; @r{Decimal @minus{}2}
912 1111...111110 (30 bits total)
913 @end group
914 @end example
915 @end defun
916
917 @defun ash integer1 count
918 @cindex arithmetic shift
919 @code{ash} (@dfn{arithmetic shift}) shifts the bits in @var{integer1}
920 to the left @var{count} places, or to the right if @var{count}
921 is negative.
922
923 @code{ash} gives the same results as @code{lsh} except when
924 @var{integer1} and @var{count} are both negative. In that case,
925 @code{ash} puts ones in the empty bit positions on the left, while
926 @code{lsh} puts zeros in those bit positions.
927
928 Thus, with @code{ash}, shifting the pattern of bits one place to the right
929 looks like this:
930
931 @example
932 @group
933 (ash -6 -1) @result{} -3
934 ;; @r{Decimal @minus{}6 becomes decimal @minus{}3.}
935 1111...111010 (30 bits total)
936 @result{}
937 1111...111101 (30 bits total)
938 @end group
939 @end example
940
941 In contrast, shifting the pattern of bits one place to the right with
942 @code{lsh} looks like this:
943
944 @example
945 @group
946 (lsh -6 -1) @result{} 536870909
947 ;; @r{Decimal @minus{}6 becomes decimal 536,870,909.}
948 1111...111010 (30 bits total)
949 @result{}
950 0111...111101 (30 bits total)
951 @end group
952 @end example
953
954 Here are other examples:
955
956 @c !!! Check if lined up in smallbook format! XDVI shows problem
957 @c with smallbook but not with regular book! --rjc 16mar92
958 @smallexample
959 @group
960 ; @r{ 30-bit binary values}
961
962 (lsh 5 2) ; 5 = @r{0000...000101}
963 @result{} 20 ; = @r{0000...010100}
964 @end group
965 @group
966 (ash 5 2)
967 @result{} 20
968 (lsh -5 2) ; -5 = @r{1111...111011}
969 @result{} -20 ; = @r{1111...101100}
970 (ash -5 2)
971 @result{} -20
972 @end group
973 @group
974 (lsh 5 -2) ; 5 = @r{0000...000101}
975 @result{} 1 ; = @r{0000...000001}
976 @end group
977 @group
978 (ash 5 -2)
979 @result{} 1
980 @end group
981 @group
982 (lsh -5 -2) ; -5 = @r{1111...111011}
983 @result{} 268435454
984 ; = @r{0011...111110}
985 @end group
986 @group
987 (ash -5 -2) ; -5 = @r{1111...111011}
988 @result{} -2 ; = @r{1111...111110}
989 @end group
990 @end smallexample
991 @end defun
992
993 @defun logand &rest ints-or-markers
994 This function returns the ``logical and'' of the arguments: the
995 @var{n}th bit is set in the result if, and only if, the @var{n}th bit is
996 set in all the arguments. (``Set'' means that the value of the bit is 1
997 rather than 0.)
998
999 For example, using 4-bit binary numbers, the ``logical and'' of 13 and
1000 12 is 12: 1101 combined with 1100 produces 1100.
1001 In both the binary numbers, the leftmost two bits are set (i.e., they
1002 are 1's), so the leftmost two bits of the returned value are set.
1003 However, for the rightmost two bits, each is zero in at least one of
1004 the arguments, so the rightmost two bits of the returned value are 0's.
1005
1006 @noindent
1007 Therefore,
1008
1009 @example
1010 @group
1011 (logand 13 12)
1012 @result{} 12
1013 @end group
1014 @end example
1015
1016 If @code{logand} is not passed any argument, it returns a value of
1017 @minus{}1. This number is an identity element for @code{logand}
1018 because its binary representation consists entirely of ones. If
1019 @code{logand} is passed just one argument, it returns that argument.
1020
1021 @smallexample
1022 @group
1023 ; @r{ 30-bit binary values}
1024
1025 (logand 14 13) ; 14 = @r{0000...001110}
1026 ; 13 = @r{0000...001101}
1027 @result{} 12 ; 12 = @r{0000...001100}
1028 @end group
1029
1030 @group
1031 (logand 14 13 4) ; 14 = @r{0000...001110}
1032 ; 13 = @r{0000...001101}
1033 ; 4 = @r{0000...000100}
1034 @result{} 4 ; 4 = @r{0000...000100}
1035 @end group
1036
1037 @group
1038 (logand)
1039 @result{} -1 ; -1 = @r{1111...111111}
1040 @end group
1041 @end smallexample
1042 @end defun
1043
1044 @defun logior &rest ints-or-markers
1045 This function returns the ``inclusive or'' of its arguments: the @var{n}th bit
1046 is set in the result if, and only if, the @var{n}th bit is set in at least
1047 one of the arguments. If there are no arguments, the result is zero,
1048 which is an identity element for this operation. If @code{logior} is
1049 passed just one argument, it returns that argument.
1050
1051 @smallexample
1052 @group
1053 ; @r{ 30-bit binary values}
1054
1055 (logior 12 5) ; 12 = @r{0000...001100}
1056 ; 5 = @r{0000...000101}
1057 @result{} 13 ; 13 = @r{0000...001101}
1058 @end group
1059
1060 @group
1061 (logior 12 5 7) ; 12 = @r{0000...001100}
1062 ; 5 = @r{0000...000101}
1063 ; 7 = @r{0000...000111}
1064 @result{} 15 ; 15 = @r{0000...001111}
1065 @end group
1066 @end smallexample
1067 @end defun
1068
1069 @defun logxor &rest ints-or-markers
1070 This function returns the ``exclusive or'' of its arguments: the
1071 @var{n}th bit is set in the result if, and only if, the @var{n}th bit is
1072 set in an odd number of the arguments. If there are no arguments, the
1073 result is 0, which is an identity element for this operation. If
1074 @code{logxor} is passed just one argument, it returns that argument.
1075
1076 @smallexample
1077 @group
1078 ; @r{ 30-bit binary values}
1079
1080 (logxor 12 5) ; 12 = @r{0000...001100}
1081 ; 5 = @r{0000...000101}
1082 @result{} 9 ; 9 = @r{0000...001001}
1083 @end group
1084
1085 @group
1086 (logxor 12 5 7) ; 12 = @r{0000...001100}
1087 ; 5 = @r{0000...000101}
1088 ; 7 = @r{0000...000111}
1089 @result{} 14 ; 14 = @r{0000...001110}
1090 @end group
1091 @end smallexample
1092 @end defun
1093
1094 @defun lognot integer
1095 This function returns the logical complement of its argument: the @var{n}th
1096 bit is one in the result if, and only if, the @var{n}th bit is zero in
1097 @var{integer}, and vice-versa.
1098
1099 @example
1100 (lognot 5)
1101 @result{} -6
1102 ;; 5 = @r{0000...000101} (30 bits total)
1103 ;; @r{becomes}
1104 ;; -6 = @r{1111...111010} (30 bits total)
1105 @end example
1106 @end defun
1107
1108 @node Math Functions
1109 @section Standard Mathematical Functions
1110 @cindex transcendental functions
1111 @cindex mathematical functions
1112 @cindex floating-point functions
1113
1114 These mathematical functions allow integers as well as floating-point
1115 numbers as arguments.
1116
1117 @defun sin arg
1118 @defunx cos arg
1119 @defunx tan arg
1120 These are the basic trigonometric functions, with argument @var{arg}
1121 measured in radians.
1122 @end defun
1123
1124 @defun asin arg
1125 The value of @code{(asin @var{arg})} is a number between
1126 @ifnottex
1127 @minus{}pi/2
1128 @end ifnottex
1129 @tex
1130 @math{-\pi/2}
1131 @end tex
1132 and
1133 @ifnottex
1134 pi/2
1135 @end ifnottex
1136 @tex
1137 @math{\pi/2}
1138 @end tex
1139 (inclusive) whose sine is @var{arg}. If @var{arg} is out of range
1140 (outside [@minus{}1, 1]), @code{asin} returns a NaN.
1141 @end defun
1142
1143 @defun acos arg
1144 The value of @code{(acos @var{arg})} is a number between 0 and
1145 @ifnottex
1146 pi
1147 @end ifnottex
1148 @tex
1149 @math{\pi}
1150 @end tex
1151 (inclusive) whose cosine is @var{arg}. If @var{arg} is out of range
1152 (outside [@minus{}1, 1]), @code{acos} returns a NaN.
1153 @end defun
1154
1155 @defun atan y &optional x
1156 The value of @code{(atan @var{y})} is a number between
1157 @ifnottex
1158 @minus{}pi/2
1159 @end ifnottex
1160 @tex
1161 @math{-\pi/2}
1162 @end tex
1163 and
1164 @ifnottex
1165 pi/2
1166 @end ifnottex
1167 @tex
1168 @math{\pi/2}
1169 @end tex
1170 (exclusive) whose tangent is @var{y}. If the optional second
1171 argument @var{x} is given, the value of @code{(atan y x)} is the
1172 angle in radians between the vector @code{[@var{x}, @var{y}]} and the
1173 @code{X} axis.
1174 @end defun
1175
1176 @defun exp arg
1177 This is the exponential function; it returns @math{e} to the power
1178 @var{arg}.
1179 @end defun
1180
1181 @defun log arg &optional base
1182 This function returns the logarithm of @var{arg}, with base
1183 @var{base}. If you don't specify @var{base}, the natural base
1184 @math{e} is used. If @var{arg} or @var{base} is negative, @code{log}
1185 returns a NaN.
1186 @end defun
1187
1188 @defun expt x y
1189 This function returns @var{x} raised to power @var{y}. If both
1190 arguments are integers and @var{y} is positive, the result is an
1191 integer; in this case, overflow causes truncation, so watch out.
1192 If @var{x} is a finite negative number and @var{y} is a finite
1193 non-integer, @code{expt} returns a NaN.
1194 @end defun
1195
1196 @defun sqrt arg
1197 This returns the square root of @var{arg}. If @var{arg} is negative,
1198 @code{sqrt} returns a NaN.
1199 @end defun
1200
1201 In addition, Emacs defines the following common mathematical
1202 constants:
1203
1204 @defvar float-e
1205 The mathematical constant @math{e} (2.71828@dots{}).
1206 @end defvar
1207
1208 @defvar float-pi
1209 The mathematical constant @math{pi} (3.14159@dots{}).
1210 @end defvar
1211
1212 @node Random Numbers
1213 @section Random Numbers
1214 @cindex random numbers
1215
1216 A deterministic computer program cannot generate true random
1217 numbers. For most purposes, @dfn{pseudo-random numbers} suffice. A
1218 series of pseudo-random numbers is generated in a deterministic
1219 fashion. The numbers are not truly random, but they have certain
1220 properties that mimic a random series. For example, all possible
1221 values occur equally often in a pseudo-random series.
1222
1223 Pseudo-random numbers are generated from a ``seed''. Starting from
1224 any given seed, the @code{random} function always generates the same
1225 sequence of numbers. By default, Emacs initializes the random seed at
1226 startup, in such a way that the sequence of values of @code{random}
1227 (with overwhelming likelihood) differs in each Emacs run.
1228
1229 Sometimes you want the random number sequence to be repeatable. For
1230 example, when debugging a program whose behavior depends on the random
1231 number sequence, it is helpful to get the same behavior in each
1232 program run. To make the sequence repeat, execute @code{(random "")}.
1233 This sets the seed to a constant value for your particular Emacs
1234 executable (though it may differ for other Emacs builds). You can use
1235 other strings to choose various seed values.
1236
1237 @defun random &optional limit
1238 This function returns a pseudo-random integer. Repeated calls return a
1239 series of pseudo-random integers.
1240
1241 If @var{limit} is a positive integer, the value is chosen to be
1242 nonnegative and less than @var{limit}. Otherwise, the value might be
1243 any integer representable in Lisp, i.e., an integer between
1244 @code{most-negative-fixnum} and @code{most-positive-fixnum}
1245 (@pxref{Integer Basics}).
1246
1247 If @var{limit} is @code{t}, it means to choose a new seed based on the
1248 current time of day and on Emacs's process @acronym{ID} number.
1249
1250 If @var{limit} is a string, it means to choose a new seed based on the
1251 string's contents.
1252
1253 @end defun