]> code.delx.au - gnu-emacs/blob - src/alloc.c
Comment change.
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ALLOC_DEBUG
27 #undef INLINE
28 #endif
29
30 /* Note that this declares bzero on OSF/1. How dumb. */
31
32 #include <signal.h>
33
34 /* This file is part of the core Lisp implementation, and thus must
35 deal with the real data structures. If the Lisp implementation is
36 replaced, this file likely will not be used. */
37
38 #undef HIDE_LISP_IMPLEMENTATION
39 #include "lisp.h"
40 #include "process.h"
41 #include "intervals.h"
42 #include "puresize.h"
43 #include "buffer.h"
44 #include "window.h"
45 #include "keyboard.h"
46 #include "frame.h"
47 #include "blockinput.h"
48 #include "charset.h"
49 #include "syssignal.h"
50 #include <setjmp.h>
51
52 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
53 memory. Can do this only if using gmalloc.c. */
54
55 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
56 #undef GC_MALLOC_CHECK
57 #endif
58
59 #ifdef HAVE_UNISTD_H
60 #include <unistd.h>
61 #else
62 extern POINTER_TYPE *sbrk ();
63 #endif
64
65 #ifdef DOUG_LEA_MALLOC
66
67 #include <malloc.h>
68 /* malloc.h #defines this as size_t, at least in glibc2. */
69 #ifndef __malloc_size_t
70 #define __malloc_size_t int
71 #endif
72
73 /* Specify maximum number of areas to mmap. It would be nice to use a
74 value that explicitly means "no limit". */
75
76 #define MMAP_MAX_AREAS 100000000
77
78 #else /* not DOUG_LEA_MALLOC */
79
80 /* The following come from gmalloc.c. */
81
82 #define __malloc_size_t size_t
83 extern __malloc_size_t _bytes_used;
84 extern __malloc_size_t __malloc_extra_blocks;
85
86 #endif /* not DOUG_LEA_MALLOC */
87
88 /* Value of _bytes_used, when spare_memory was freed. */
89
90 static __malloc_size_t bytes_used_when_full;
91
92 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
93 to a struct Lisp_String. */
94
95 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
96 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
97 #define STRING_MARKED_P(S) ((S)->size & ARRAY_MARK_FLAG)
98
99 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
100 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
101 #define VECTOR_MARKED_P(V) ((V)->size & ARRAY_MARK_FLAG)
102
103 /* Value is the number of bytes/chars of S, a pointer to a struct
104 Lisp_String. This must be used instead of STRING_BYTES (S) or
105 S->size during GC, because S->size contains the mark bit for
106 strings. */
107
108 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
109 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
110
111 /* Number of bytes of consing done since the last gc. */
112
113 int consing_since_gc;
114
115 /* Count the amount of consing of various sorts of space. */
116
117 EMACS_INT cons_cells_consed;
118 EMACS_INT floats_consed;
119 EMACS_INT vector_cells_consed;
120 EMACS_INT symbols_consed;
121 EMACS_INT string_chars_consed;
122 EMACS_INT misc_objects_consed;
123 EMACS_INT intervals_consed;
124 EMACS_INT strings_consed;
125
126 /* Number of bytes of consing since GC before another GC should be done. */
127
128 EMACS_INT gc_cons_threshold;
129
130 /* Nonzero during GC. */
131
132 int gc_in_progress;
133
134 /* Nonzero means abort if try to GC.
135 This is for code which is written on the assumption that
136 no GC will happen, so as to verify that assumption. */
137
138 int abort_on_gc;
139
140 /* Nonzero means display messages at beginning and end of GC. */
141
142 int garbage_collection_messages;
143
144 #ifndef VIRT_ADDR_VARIES
145 extern
146 #endif /* VIRT_ADDR_VARIES */
147 int malloc_sbrk_used;
148
149 #ifndef VIRT_ADDR_VARIES
150 extern
151 #endif /* VIRT_ADDR_VARIES */
152 int malloc_sbrk_unused;
153
154 /* Two limits controlling how much undo information to keep. */
155
156 EMACS_INT undo_limit;
157 EMACS_INT undo_strong_limit;
158 EMACS_INT undo_outer_limit;
159
160 /* Number of live and free conses etc. */
161
162 static int total_conses, total_markers, total_symbols, total_vector_size;
163 static int total_free_conses, total_free_markers, total_free_symbols;
164 static int total_free_floats, total_floats;
165
166 /* Points to memory space allocated as "spare", to be freed if we run
167 out of memory. */
168
169 static char *spare_memory;
170
171 /* Amount of spare memory to keep in reserve. */
172
173 #define SPARE_MEMORY (1 << 14)
174
175 /* Number of extra blocks malloc should get when it needs more core. */
176
177 static int malloc_hysteresis;
178
179 /* Non-nil means defun should do purecopy on the function definition. */
180
181 Lisp_Object Vpurify_flag;
182
183 /* Non-nil means we are handling a memory-full error. */
184
185 Lisp_Object Vmemory_full;
186
187 #ifndef HAVE_SHM
188
189 /* Initialize it to a nonzero value to force it into data space
190 (rather than bss space). That way unexec will remap it into text
191 space (pure), on some systems. We have not implemented the
192 remapping on more recent systems because this is less important
193 nowadays than in the days of small memories and timesharing. */
194
195 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
196 #define PUREBEG (char *) pure
197
198 #else /* HAVE_SHM */
199
200 #define pure PURE_SEG_BITS /* Use shared memory segment */
201 #define PUREBEG (char *)PURE_SEG_BITS
202
203 #endif /* HAVE_SHM */
204
205 /* Pointer to the pure area, and its size. */
206
207 static char *purebeg;
208 static size_t pure_size;
209
210 /* Number of bytes of pure storage used before pure storage overflowed.
211 If this is non-zero, this implies that an overflow occurred. */
212
213 static size_t pure_bytes_used_before_overflow;
214
215 /* Value is non-zero if P points into pure space. */
216
217 #define PURE_POINTER_P(P) \
218 (((PNTR_COMPARISON_TYPE) (P) \
219 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
220 && ((PNTR_COMPARISON_TYPE) (P) \
221 >= (PNTR_COMPARISON_TYPE) purebeg))
222
223 /* Index in pure at which next pure object will be allocated.. */
224
225 EMACS_INT pure_bytes_used;
226
227 /* If nonzero, this is a warning delivered by malloc and not yet
228 displayed. */
229
230 char *pending_malloc_warning;
231
232 /* Pre-computed signal argument for use when memory is exhausted. */
233
234 Lisp_Object Vmemory_signal_data;
235
236 /* Maximum amount of C stack to save when a GC happens. */
237
238 #ifndef MAX_SAVE_STACK
239 #define MAX_SAVE_STACK 16000
240 #endif
241
242 /* Buffer in which we save a copy of the C stack at each GC. */
243
244 char *stack_copy;
245 int stack_copy_size;
246
247 /* Non-zero means ignore malloc warnings. Set during initialization.
248 Currently not used. */
249
250 int ignore_warnings;
251
252 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
253
254 /* Hook run after GC has finished. */
255
256 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
257
258 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
259 EMACS_INT gcs_done; /* accumulated GCs */
260
261 static void mark_buffer P_ ((Lisp_Object));
262 extern void mark_kboards P_ ((void));
263 extern void mark_backtrace P_ ((void));
264 static void gc_sweep P_ ((void));
265 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
266 static void mark_face_cache P_ ((struct face_cache *));
267
268 #ifdef HAVE_WINDOW_SYSTEM
269 static void mark_image P_ ((struct image *));
270 static void mark_image_cache P_ ((struct frame *));
271 #endif /* HAVE_WINDOW_SYSTEM */
272
273 static struct Lisp_String *allocate_string P_ ((void));
274 static void compact_small_strings P_ ((void));
275 static void free_large_strings P_ ((void));
276 static void sweep_strings P_ ((void));
277
278 extern int message_enable_multibyte;
279
280 /* When scanning the C stack for live Lisp objects, Emacs keeps track
281 of what memory allocated via lisp_malloc is intended for what
282 purpose. This enumeration specifies the type of memory. */
283
284 enum mem_type
285 {
286 MEM_TYPE_NON_LISP,
287 MEM_TYPE_BUFFER,
288 MEM_TYPE_CONS,
289 MEM_TYPE_STRING,
290 MEM_TYPE_MISC,
291 MEM_TYPE_SYMBOL,
292 MEM_TYPE_FLOAT,
293 /* Keep the following vector-like types together, with
294 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
295 first. Or change the code of live_vector_p, for instance. */
296 MEM_TYPE_VECTOR,
297 MEM_TYPE_PROCESS,
298 MEM_TYPE_HASH_TABLE,
299 MEM_TYPE_FRAME,
300 MEM_TYPE_WINDOW
301 };
302
303 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
304
305 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
306 #include <stdio.h> /* For fprintf. */
307 #endif
308
309 /* A unique object in pure space used to make some Lisp objects
310 on free lists recognizable in O(1). */
311
312 Lisp_Object Vdead;
313
314 #ifdef GC_MALLOC_CHECK
315
316 enum mem_type allocated_mem_type;
317 int dont_register_blocks;
318
319 #endif /* GC_MALLOC_CHECK */
320
321 /* A node in the red-black tree describing allocated memory containing
322 Lisp data. Each such block is recorded with its start and end
323 address when it is allocated, and removed from the tree when it
324 is freed.
325
326 A red-black tree is a balanced binary tree with the following
327 properties:
328
329 1. Every node is either red or black.
330 2. Every leaf is black.
331 3. If a node is red, then both of its children are black.
332 4. Every simple path from a node to a descendant leaf contains
333 the same number of black nodes.
334 5. The root is always black.
335
336 When nodes are inserted into the tree, or deleted from the tree,
337 the tree is "fixed" so that these properties are always true.
338
339 A red-black tree with N internal nodes has height at most 2
340 log(N+1). Searches, insertions and deletions are done in O(log N).
341 Please see a text book about data structures for a detailed
342 description of red-black trees. Any book worth its salt should
343 describe them. */
344
345 struct mem_node
346 {
347 /* Children of this node. These pointers are never NULL. When there
348 is no child, the value is MEM_NIL, which points to a dummy node. */
349 struct mem_node *left, *right;
350
351 /* The parent of this node. In the root node, this is NULL. */
352 struct mem_node *parent;
353
354 /* Start and end of allocated region. */
355 void *start, *end;
356
357 /* Node color. */
358 enum {MEM_BLACK, MEM_RED} color;
359
360 /* Memory type. */
361 enum mem_type type;
362 };
363
364 /* Base address of stack. Set in main. */
365
366 Lisp_Object *stack_base;
367
368 /* Root of the tree describing allocated Lisp memory. */
369
370 static struct mem_node *mem_root;
371
372 /* Lowest and highest known address in the heap. */
373
374 static void *min_heap_address, *max_heap_address;
375
376 /* Sentinel node of the tree. */
377
378 static struct mem_node mem_z;
379 #define MEM_NIL &mem_z
380
381 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
382 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
383 static void lisp_free P_ ((POINTER_TYPE *));
384 static void mark_stack P_ ((void));
385 static int live_vector_p P_ ((struct mem_node *, void *));
386 static int live_buffer_p P_ ((struct mem_node *, void *));
387 static int live_string_p P_ ((struct mem_node *, void *));
388 static int live_cons_p P_ ((struct mem_node *, void *));
389 static int live_symbol_p P_ ((struct mem_node *, void *));
390 static int live_float_p P_ ((struct mem_node *, void *));
391 static int live_misc_p P_ ((struct mem_node *, void *));
392 static void mark_maybe_object P_ ((Lisp_Object));
393 static void mark_memory P_ ((void *, void *));
394 static void mem_init P_ ((void));
395 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
396 static void mem_insert_fixup P_ ((struct mem_node *));
397 static void mem_rotate_left P_ ((struct mem_node *));
398 static void mem_rotate_right P_ ((struct mem_node *));
399 static void mem_delete P_ ((struct mem_node *));
400 static void mem_delete_fixup P_ ((struct mem_node *));
401 static INLINE struct mem_node *mem_find P_ ((void *));
402
403 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
404 static void check_gcpros P_ ((void));
405 #endif
406
407 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
408
409 /* Recording what needs to be marked for gc. */
410
411 struct gcpro *gcprolist;
412
413 /* Addresses of staticpro'd variables. Initialize it to a nonzero
414 value; otherwise some compilers put it into BSS. */
415
416 #define NSTATICS 1280
417 Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
418
419 /* Index of next unused slot in staticvec. */
420
421 int staticidx = 0;
422
423 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
424
425
426 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
427 ALIGNMENT must be a power of 2. */
428
429 #define ALIGN(ptr, ALIGNMENT) \
430 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
431 & ~((ALIGNMENT) - 1)))
432
433
434 \f
435 /************************************************************************
436 Malloc
437 ************************************************************************/
438
439 /* Function malloc calls this if it finds we are near exhausting storage. */
440
441 void
442 malloc_warning (str)
443 char *str;
444 {
445 pending_malloc_warning = str;
446 }
447
448
449 /* Display an already-pending malloc warning. */
450
451 void
452 display_malloc_warning ()
453 {
454 call3 (intern ("display-warning"),
455 intern ("alloc"),
456 build_string (pending_malloc_warning),
457 intern ("emergency"));
458 pending_malloc_warning = 0;
459 }
460
461
462 #ifdef DOUG_LEA_MALLOC
463 # define BYTES_USED (mallinfo ().arena)
464 #else
465 # define BYTES_USED _bytes_used
466 #endif
467
468
469 /* Called if malloc returns zero. */
470
471 void
472 memory_full ()
473 {
474 Vmemory_full = Qt;
475
476 #ifndef SYSTEM_MALLOC
477 bytes_used_when_full = BYTES_USED;
478 #endif
479
480 /* The first time we get here, free the spare memory. */
481 if (spare_memory)
482 {
483 free (spare_memory);
484 spare_memory = 0;
485 }
486
487 /* This used to call error, but if we've run out of memory, we could
488 get infinite recursion trying to build the string. */
489 while (1)
490 Fsignal (Qnil, Vmemory_signal_data);
491 }
492
493
494 /* Called if we can't allocate relocatable space for a buffer. */
495
496 void
497 buffer_memory_full ()
498 {
499 /* If buffers use the relocating allocator, no need to free
500 spare_memory, because we may have plenty of malloc space left
501 that we could get, and if we don't, the malloc that fails will
502 itself cause spare_memory to be freed. If buffers don't use the
503 relocating allocator, treat this like any other failing
504 malloc. */
505
506 #ifndef REL_ALLOC
507 memory_full ();
508 #endif
509
510 Vmemory_full = Qt;
511
512 /* This used to call error, but if we've run out of memory, we could
513 get infinite recursion trying to build the string. */
514 while (1)
515 Fsignal (Qnil, Vmemory_signal_data);
516 }
517
518
519 /* Like malloc but check for no memory and block interrupt input.. */
520
521 POINTER_TYPE *
522 xmalloc (size)
523 size_t size;
524 {
525 register POINTER_TYPE *val;
526
527 BLOCK_INPUT;
528 val = (POINTER_TYPE *) malloc (size);
529 UNBLOCK_INPUT;
530
531 if (!val && size)
532 memory_full ();
533 return val;
534 }
535
536
537 /* Like realloc but check for no memory and block interrupt input.. */
538
539 POINTER_TYPE *
540 xrealloc (block, size)
541 POINTER_TYPE *block;
542 size_t size;
543 {
544 register POINTER_TYPE *val;
545
546 BLOCK_INPUT;
547 /* We must call malloc explicitly when BLOCK is 0, since some
548 reallocs don't do this. */
549 if (! block)
550 val = (POINTER_TYPE *) malloc (size);
551 else
552 val = (POINTER_TYPE *) realloc (block, size);
553 UNBLOCK_INPUT;
554
555 if (!val && size) memory_full ();
556 return val;
557 }
558
559
560 /* Like free but block interrupt input. */
561
562 void
563 xfree (block)
564 POINTER_TYPE *block;
565 {
566 BLOCK_INPUT;
567 free (block);
568 UNBLOCK_INPUT;
569 }
570
571
572 /* Like strdup, but uses xmalloc. */
573
574 char *
575 xstrdup (s)
576 const char *s;
577 {
578 size_t len = strlen (s) + 1;
579 char *p = (char *) xmalloc (len);
580 bcopy (s, p, len);
581 return p;
582 }
583
584
585 /* Unwind for SAFE_ALLOCA */
586
587 Lisp_Object
588 safe_alloca_unwind (arg)
589 Lisp_Object arg;
590 {
591 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
592
593 p->dogc = 0;
594 xfree (p->pointer);
595 p->pointer = 0;
596 free_misc (arg);
597 return Qnil;
598 }
599
600
601 /* Like malloc but used for allocating Lisp data. NBYTES is the
602 number of bytes to allocate, TYPE describes the intended use of the
603 allcated memory block (for strings, for conses, ...). */
604
605 static void *lisp_malloc_loser;
606
607 static POINTER_TYPE *
608 lisp_malloc (nbytes, type)
609 size_t nbytes;
610 enum mem_type type;
611 {
612 register void *val;
613
614 BLOCK_INPUT;
615
616 #ifdef GC_MALLOC_CHECK
617 allocated_mem_type = type;
618 #endif
619
620 val = (void *) malloc (nbytes);
621
622 #ifndef USE_LSB_TAG
623 /* If the memory just allocated cannot be addressed thru a Lisp
624 object's pointer, and it needs to be,
625 that's equivalent to running out of memory. */
626 if (val && type != MEM_TYPE_NON_LISP)
627 {
628 Lisp_Object tem;
629 XSETCONS (tem, (char *) val + nbytes - 1);
630 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
631 {
632 lisp_malloc_loser = val;
633 free (val);
634 val = 0;
635 }
636 }
637 #endif
638
639 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
640 if (val && type != MEM_TYPE_NON_LISP)
641 mem_insert (val, (char *) val + nbytes, type);
642 #endif
643
644 UNBLOCK_INPUT;
645 if (!val && nbytes)
646 memory_full ();
647 return val;
648 }
649
650 /* Free BLOCK. This must be called to free memory allocated with a
651 call to lisp_malloc. */
652
653 static void
654 lisp_free (block)
655 POINTER_TYPE *block;
656 {
657 BLOCK_INPUT;
658 free (block);
659 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
660 mem_delete (mem_find (block));
661 #endif
662 UNBLOCK_INPUT;
663 }
664
665 /* Allocation of aligned blocks of memory to store Lisp data. */
666 /* The entry point is lisp_align_malloc which returns blocks of at most */
667 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
668
669
670 /* BLOCK_ALIGN has to be a power of 2. */
671 #define BLOCK_ALIGN (1 << 10)
672
673 /* Padding to leave at the end of a malloc'd block. This is to give
674 malloc a chance to minimize the amount of memory wasted to alignment.
675 It should be tuned to the particular malloc library used.
676 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
677 posix_memalign on the other hand would ideally prefer a value of 4
678 because otherwise, there's 1020 bytes wasted between each ablocks.
679 But testing shows that those 1020 will most of the time be efficiently
680 used by malloc to place other objects, so a value of 0 is still preferable
681 unless you have a lot of cons&floats and virtually nothing else. */
682 #define BLOCK_PADDING 0
683 #define BLOCK_BYTES \
684 (BLOCK_ALIGN - sizeof (struct aligned_block *) - BLOCK_PADDING)
685
686 /* Internal data structures and constants. */
687
688 #define ABLOCKS_SIZE 16
689
690 /* An aligned block of memory. */
691 struct ablock
692 {
693 union
694 {
695 char payload[BLOCK_BYTES];
696 struct ablock *next_free;
697 } x;
698 /* `abase' is the aligned base of the ablocks. */
699 /* It is overloaded to hold the virtual `busy' field that counts
700 the number of used ablock in the parent ablocks.
701 The first ablock has the `busy' field, the others have the `abase'
702 field. To tell the difference, we assume that pointers will have
703 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
704 is used to tell whether the real base of the parent ablocks is `abase'
705 (if not, the word before the first ablock holds a pointer to the
706 real base). */
707 struct ablocks *abase;
708 /* The padding of all but the last ablock is unused. The padding of
709 the last ablock in an ablocks is not allocated. */
710 #if BLOCK_PADDING
711 char padding[BLOCK_PADDING];
712 #endif
713 };
714
715 /* A bunch of consecutive aligned blocks. */
716 struct ablocks
717 {
718 struct ablock blocks[ABLOCKS_SIZE];
719 };
720
721 /* Size of the block requested from malloc or memalign. */
722 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
723
724 #define ABLOCK_ABASE(block) \
725 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
726 ? (struct ablocks *)(block) \
727 : (block)->abase)
728
729 /* Virtual `busy' field. */
730 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
731
732 /* Pointer to the (not necessarily aligned) malloc block. */
733 #ifdef HAVE_POSIX_MEMALIGN
734 #define ABLOCKS_BASE(abase) (abase)
735 #else
736 #define ABLOCKS_BASE(abase) \
737 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
738 #endif
739
740 /* The list of free ablock. */
741 static struct ablock *free_ablock;
742
743 /* Allocate an aligned block of nbytes.
744 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
745 smaller or equal to BLOCK_BYTES. */
746 static POINTER_TYPE *
747 lisp_align_malloc (nbytes, type)
748 size_t nbytes;
749 enum mem_type type;
750 {
751 void *base, *val;
752 struct ablocks *abase;
753
754 eassert (nbytes <= BLOCK_BYTES);
755
756 BLOCK_INPUT;
757
758 #ifdef GC_MALLOC_CHECK
759 allocated_mem_type = type;
760 #endif
761
762 if (!free_ablock)
763 {
764 int i;
765 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
766
767 #ifdef DOUG_LEA_MALLOC
768 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
769 because mapped region contents are not preserved in
770 a dumped Emacs. */
771 mallopt (M_MMAP_MAX, 0);
772 #endif
773
774 #ifdef HAVE_POSIX_MEMALIGN
775 {
776 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
777 if (err)
778 base = NULL;
779 abase = base;
780 }
781 #else
782 base = malloc (ABLOCKS_BYTES);
783 abase = ALIGN (base, BLOCK_ALIGN);
784 #endif
785
786 if (base == 0)
787 {
788 UNBLOCK_INPUT;
789 memory_full ();
790 }
791
792 aligned = (base == abase);
793 if (!aligned)
794 ((void**)abase)[-1] = base;
795
796 #ifdef DOUG_LEA_MALLOC
797 /* Back to a reasonable maximum of mmap'ed areas. */
798 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
799 #endif
800
801 #ifndef USE_LSB_TAG
802 /* If the memory just allocated cannot be addressed thru a Lisp
803 object's pointer, and it needs to be, that's equivalent to
804 running out of memory. */
805 if (type != MEM_TYPE_NON_LISP)
806 {
807 Lisp_Object tem;
808 char *end = (char *) base + ABLOCKS_BYTES - 1;
809 XSETCONS (tem, end);
810 if ((char *) XCONS (tem) != end)
811 {
812 lisp_malloc_loser = base;
813 free (base);
814 UNBLOCK_INPUT;
815 memory_full ();
816 }
817 }
818 #endif
819
820 /* Initialize the blocks and put them on the free list.
821 Is `base' was not properly aligned, we can't use the last block. */
822 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
823 {
824 abase->blocks[i].abase = abase;
825 abase->blocks[i].x.next_free = free_ablock;
826 free_ablock = &abase->blocks[i];
827 }
828 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
829
830 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
831 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
832 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
833 eassert (ABLOCKS_BASE (abase) == base);
834 eassert (aligned == (long) ABLOCKS_BUSY (abase));
835 }
836
837 abase = ABLOCK_ABASE (free_ablock);
838 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
839 val = free_ablock;
840 free_ablock = free_ablock->x.next_free;
841
842 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
843 if (val && type != MEM_TYPE_NON_LISP)
844 mem_insert (val, (char *) val + nbytes, type);
845 #endif
846
847 UNBLOCK_INPUT;
848 if (!val && nbytes)
849 memory_full ();
850
851 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
852 return val;
853 }
854
855 static void
856 lisp_align_free (block)
857 POINTER_TYPE *block;
858 {
859 struct ablock *ablock = block;
860 struct ablocks *abase = ABLOCK_ABASE (ablock);
861
862 BLOCK_INPUT;
863 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
864 mem_delete (mem_find (block));
865 #endif
866 /* Put on free list. */
867 ablock->x.next_free = free_ablock;
868 free_ablock = ablock;
869 /* Update busy count. */
870 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
871
872 if (2 > (long) ABLOCKS_BUSY (abase))
873 { /* All the blocks are free. */
874 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
875 struct ablock **tem = &free_ablock;
876 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
877
878 while (*tem)
879 {
880 if (*tem >= (struct ablock *) abase && *tem < atop)
881 {
882 i++;
883 *tem = (*tem)->x.next_free;
884 }
885 else
886 tem = &(*tem)->x.next_free;
887 }
888 eassert ((aligned & 1) == aligned);
889 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
890 free (ABLOCKS_BASE (abase));
891 }
892 UNBLOCK_INPUT;
893 }
894
895 /* Return a new buffer structure allocated from the heap with
896 a call to lisp_malloc. */
897
898 struct buffer *
899 allocate_buffer ()
900 {
901 struct buffer *b
902 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
903 MEM_TYPE_BUFFER);
904 return b;
905 }
906
907 \f
908 /* Arranging to disable input signals while we're in malloc.
909
910 This only works with GNU malloc. To help out systems which can't
911 use GNU malloc, all the calls to malloc, realloc, and free
912 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
913 pairs; unfortunately, we have no idea what C library functions
914 might call malloc, so we can't really protect them unless you're
915 using GNU malloc. Fortunately, most of the major operating systems
916 can use GNU malloc. */
917
918 #ifndef SYSTEM_MALLOC
919 #ifndef DOUG_LEA_MALLOC
920 extern void * (*__malloc_hook) P_ ((size_t));
921 extern void * (*__realloc_hook) P_ ((void *, size_t));
922 extern void (*__free_hook) P_ ((void *));
923 /* Else declared in malloc.h, perhaps with an extra arg. */
924 #endif /* DOUG_LEA_MALLOC */
925 static void * (*old_malloc_hook) ();
926 static void * (*old_realloc_hook) ();
927 static void (*old_free_hook) ();
928
929 /* This function is used as the hook for free to call. */
930
931 static void
932 emacs_blocked_free (ptr)
933 void *ptr;
934 {
935 BLOCK_INPUT;
936
937 #ifdef GC_MALLOC_CHECK
938 if (ptr)
939 {
940 struct mem_node *m;
941
942 m = mem_find (ptr);
943 if (m == MEM_NIL || m->start != ptr)
944 {
945 fprintf (stderr,
946 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
947 abort ();
948 }
949 else
950 {
951 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
952 mem_delete (m);
953 }
954 }
955 #endif /* GC_MALLOC_CHECK */
956
957 __free_hook = old_free_hook;
958 free (ptr);
959
960 /* If we released our reserve (due to running out of memory),
961 and we have a fair amount free once again,
962 try to set aside another reserve in case we run out once more. */
963 if (spare_memory == 0
964 /* Verify there is enough space that even with the malloc
965 hysteresis this call won't run out again.
966 The code here is correct as long as SPARE_MEMORY
967 is substantially larger than the block size malloc uses. */
968 && (bytes_used_when_full
969 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
970 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
971
972 __free_hook = emacs_blocked_free;
973 UNBLOCK_INPUT;
974 }
975
976
977 /* If we released our reserve (due to running out of memory),
978 and we have a fair amount free once again,
979 try to set aside another reserve in case we run out once more.
980
981 This is called when a relocatable block is freed in ralloc.c. */
982
983 void
984 refill_memory_reserve ()
985 {
986 if (spare_memory == 0)
987 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
988 }
989
990
991 /* This function is the malloc hook that Emacs uses. */
992
993 static void *
994 emacs_blocked_malloc (size)
995 size_t size;
996 {
997 void *value;
998
999 BLOCK_INPUT;
1000 __malloc_hook = old_malloc_hook;
1001 #ifdef DOUG_LEA_MALLOC
1002 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
1003 #else
1004 __malloc_extra_blocks = malloc_hysteresis;
1005 #endif
1006
1007 value = (void *) malloc (size);
1008
1009 #ifdef GC_MALLOC_CHECK
1010 {
1011 struct mem_node *m = mem_find (value);
1012 if (m != MEM_NIL)
1013 {
1014 fprintf (stderr, "Malloc returned %p which is already in use\n",
1015 value);
1016 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1017 m->start, m->end, (char *) m->end - (char *) m->start,
1018 m->type);
1019 abort ();
1020 }
1021
1022 if (!dont_register_blocks)
1023 {
1024 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1025 allocated_mem_type = MEM_TYPE_NON_LISP;
1026 }
1027 }
1028 #endif /* GC_MALLOC_CHECK */
1029
1030 __malloc_hook = emacs_blocked_malloc;
1031 UNBLOCK_INPUT;
1032
1033 /* fprintf (stderr, "%p malloc\n", value); */
1034 return value;
1035 }
1036
1037
1038 /* This function is the realloc hook that Emacs uses. */
1039
1040 static void *
1041 emacs_blocked_realloc (ptr, size)
1042 void *ptr;
1043 size_t size;
1044 {
1045 void *value;
1046
1047 BLOCK_INPUT;
1048 __realloc_hook = old_realloc_hook;
1049
1050 #ifdef GC_MALLOC_CHECK
1051 if (ptr)
1052 {
1053 struct mem_node *m = mem_find (ptr);
1054 if (m == MEM_NIL || m->start != ptr)
1055 {
1056 fprintf (stderr,
1057 "Realloc of %p which wasn't allocated with malloc\n",
1058 ptr);
1059 abort ();
1060 }
1061
1062 mem_delete (m);
1063 }
1064
1065 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1066
1067 /* Prevent malloc from registering blocks. */
1068 dont_register_blocks = 1;
1069 #endif /* GC_MALLOC_CHECK */
1070
1071 value = (void *) realloc (ptr, size);
1072
1073 #ifdef GC_MALLOC_CHECK
1074 dont_register_blocks = 0;
1075
1076 {
1077 struct mem_node *m = mem_find (value);
1078 if (m != MEM_NIL)
1079 {
1080 fprintf (stderr, "Realloc returns memory that is already in use\n");
1081 abort ();
1082 }
1083
1084 /* Can't handle zero size regions in the red-black tree. */
1085 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1086 }
1087
1088 /* fprintf (stderr, "%p <- realloc\n", value); */
1089 #endif /* GC_MALLOC_CHECK */
1090
1091 __realloc_hook = emacs_blocked_realloc;
1092 UNBLOCK_INPUT;
1093
1094 return value;
1095 }
1096
1097
1098 /* Called from main to set up malloc to use our hooks. */
1099
1100 void
1101 uninterrupt_malloc ()
1102 {
1103 if (__free_hook != emacs_blocked_free)
1104 old_free_hook = __free_hook;
1105 __free_hook = emacs_blocked_free;
1106
1107 if (__malloc_hook != emacs_blocked_malloc)
1108 old_malloc_hook = __malloc_hook;
1109 __malloc_hook = emacs_blocked_malloc;
1110
1111 if (__realloc_hook != emacs_blocked_realloc)
1112 old_realloc_hook = __realloc_hook;
1113 __realloc_hook = emacs_blocked_realloc;
1114 }
1115
1116 #endif /* not SYSTEM_MALLOC */
1117
1118
1119 \f
1120 /***********************************************************************
1121 Interval Allocation
1122 ***********************************************************************/
1123
1124 /* Number of intervals allocated in an interval_block structure.
1125 The 1020 is 1024 minus malloc overhead. */
1126
1127 #define INTERVAL_BLOCK_SIZE \
1128 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1129
1130 /* Intervals are allocated in chunks in form of an interval_block
1131 structure. */
1132
1133 struct interval_block
1134 {
1135 /* Place `intervals' first, to preserve alignment. */
1136 struct interval intervals[INTERVAL_BLOCK_SIZE];
1137 struct interval_block *next;
1138 };
1139
1140 /* Current interval block. Its `next' pointer points to older
1141 blocks. */
1142
1143 struct interval_block *interval_block;
1144
1145 /* Index in interval_block above of the next unused interval
1146 structure. */
1147
1148 static int interval_block_index;
1149
1150 /* Number of free and live intervals. */
1151
1152 static int total_free_intervals, total_intervals;
1153
1154 /* List of free intervals. */
1155
1156 INTERVAL interval_free_list;
1157
1158 /* Total number of interval blocks now in use. */
1159
1160 int n_interval_blocks;
1161
1162
1163 /* Initialize interval allocation. */
1164
1165 static void
1166 init_intervals ()
1167 {
1168 interval_block = NULL;
1169 interval_block_index = INTERVAL_BLOCK_SIZE;
1170 interval_free_list = 0;
1171 n_interval_blocks = 0;
1172 }
1173
1174
1175 /* Return a new interval. */
1176
1177 INTERVAL
1178 make_interval ()
1179 {
1180 INTERVAL val;
1181
1182 if (interval_free_list)
1183 {
1184 val = interval_free_list;
1185 interval_free_list = INTERVAL_PARENT (interval_free_list);
1186 }
1187 else
1188 {
1189 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1190 {
1191 register struct interval_block *newi;
1192
1193 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1194 MEM_TYPE_NON_LISP);
1195
1196 newi->next = interval_block;
1197 interval_block = newi;
1198 interval_block_index = 0;
1199 n_interval_blocks++;
1200 }
1201 val = &interval_block->intervals[interval_block_index++];
1202 }
1203 consing_since_gc += sizeof (struct interval);
1204 intervals_consed++;
1205 RESET_INTERVAL (val);
1206 val->gcmarkbit = 0;
1207 return val;
1208 }
1209
1210
1211 /* Mark Lisp objects in interval I. */
1212
1213 static void
1214 mark_interval (i, dummy)
1215 register INTERVAL i;
1216 Lisp_Object dummy;
1217 {
1218 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1219 i->gcmarkbit = 1;
1220 mark_object (i->plist);
1221 }
1222
1223
1224 /* Mark the interval tree rooted in TREE. Don't call this directly;
1225 use the macro MARK_INTERVAL_TREE instead. */
1226
1227 static void
1228 mark_interval_tree (tree)
1229 register INTERVAL tree;
1230 {
1231 /* No need to test if this tree has been marked already; this
1232 function is always called through the MARK_INTERVAL_TREE macro,
1233 which takes care of that. */
1234
1235 traverse_intervals_noorder (tree, mark_interval, Qnil);
1236 }
1237
1238
1239 /* Mark the interval tree rooted in I. */
1240
1241 #define MARK_INTERVAL_TREE(i) \
1242 do { \
1243 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1244 mark_interval_tree (i); \
1245 } while (0)
1246
1247
1248 #define UNMARK_BALANCE_INTERVALS(i) \
1249 do { \
1250 if (! NULL_INTERVAL_P (i)) \
1251 (i) = balance_intervals (i); \
1252 } while (0)
1253
1254 \f
1255 /* Number support. If NO_UNION_TYPE isn't in effect, we
1256 can't create number objects in macros. */
1257 #ifndef make_number
1258 Lisp_Object
1259 make_number (n)
1260 int n;
1261 {
1262 Lisp_Object obj;
1263 obj.s.val = n;
1264 obj.s.type = Lisp_Int;
1265 return obj;
1266 }
1267 #endif
1268 \f
1269 /***********************************************************************
1270 String Allocation
1271 ***********************************************************************/
1272
1273 /* Lisp_Strings are allocated in string_block structures. When a new
1274 string_block is allocated, all the Lisp_Strings it contains are
1275 added to a free-list string_free_list. When a new Lisp_String is
1276 needed, it is taken from that list. During the sweep phase of GC,
1277 string_blocks that are entirely free are freed, except two which
1278 we keep.
1279
1280 String data is allocated from sblock structures. Strings larger
1281 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1282 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1283
1284 Sblocks consist internally of sdata structures, one for each
1285 Lisp_String. The sdata structure points to the Lisp_String it
1286 belongs to. The Lisp_String points back to the `u.data' member of
1287 its sdata structure.
1288
1289 When a Lisp_String is freed during GC, it is put back on
1290 string_free_list, and its `data' member and its sdata's `string'
1291 pointer is set to null. The size of the string is recorded in the
1292 `u.nbytes' member of the sdata. So, sdata structures that are no
1293 longer used, can be easily recognized, and it's easy to compact the
1294 sblocks of small strings which we do in compact_small_strings. */
1295
1296 /* Size in bytes of an sblock structure used for small strings. This
1297 is 8192 minus malloc overhead. */
1298
1299 #define SBLOCK_SIZE 8188
1300
1301 /* Strings larger than this are considered large strings. String data
1302 for large strings is allocated from individual sblocks. */
1303
1304 #define LARGE_STRING_BYTES 1024
1305
1306 /* Structure describing string memory sub-allocated from an sblock.
1307 This is where the contents of Lisp strings are stored. */
1308
1309 struct sdata
1310 {
1311 /* Back-pointer to the string this sdata belongs to. If null, this
1312 structure is free, and the NBYTES member of the union below
1313 contains the string's byte size (the same value that STRING_BYTES
1314 would return if STRING were non-null). If non-null, STRING_BYTES
1315 (STRING) is the size of the data, and DATA contains the string's
1316 contents. */
1317 struct Lisp_String *string;
1318
1319 #ifdef GC_CHECK_STRING_BYTES
1320
1321 EMACS_INT nbytes;
1322 unsigned char data[1];
1323
1324 #define SDATA_NBYTES(S) (S)->nbytes
1325 #define SDATA_DATA(S) (S)->data
1326
1327 #else /* not GC_CHECK_STRING_BYTES */
1328
1329 union
1330 {
1331 /* When STRING in non-null. */
1332 unsigned char data[1];
1333
1334 /* When STRING is null. */
1335 EMACS_INT nbytes;
1336 } u;
1337
1338
1339 #define SDATA_NBYTES(S) (S)->u.nbytes
1340 #define SDATA_DATA(S) (S)->u.data
1341
1342 #endif /* not GC_CHECK_STRING_BYTES */
1343 };
1344
1345
1346 /* Structure describing a block of memory which is sub-allocated to
1347 obtain string data memory for strings. Blocks for small strings
1348 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1349 as large as needed. */
1350
1351 struct sblock
1352 {
1353 /* Next in list. */
1354 struct sblock *next;
1355
1356 /* Pointer to the next free sdata block. This points past the end
1357 of the sblock if there isn't any space left in this block. */
1358 struct sdata *next_free;
1359
1360 /* Start of data. */
1361 struct sdata first_data;
1362 };
1363
1364 /* Number of Lisp strings in a string_block structure. The 1020 is
1365 1024 minus malloc overhead. */
1366
1367 #define STRING_BLOCK_SIZE \
1368 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1369
1370 /* Structure describing a block from which Lisp_String structures
1371 are allocated. */
1372
1373 struct string_block
1374 {
1375 /* Place `strings' first, to preserve alignment. */
1376 struct Lisp_String strings[STRING_BLOCK_SIZE];
1377 struct string_block *next;
1378 };
1379
1380 /* Head and tail of the list of sblock structures holding Lisp string
1381 data. We always allocate from current_sblock. The NEXT pointers
1382 in the sblock structures go from oldest_sblock to current_sblock. */
1383
1384 static struct sblock *oldest_sblock, *current_sblock;
1385
1386 /* List of sblocks for large strings. */
1387
1388 static struct sblock *large_sblocks;
1389
1390 /* List of string_block structures, and how many there are. */
1391
1392 static struct string_block *string_blocks;
1393 static int n_string_blocks;
1394
1395 /* Free-list of Lisp_Strings. */
1396
1397 static struct Lisp_String *string_free_list;
1398
1399 /* Number of live and free Lisp_Strings. */
1400
1401 static int total_strings, total_free_strings;
1402
1403 /* Number of bytes used by live strings. */
1404
1405 static int total_string_size;
1406
1407 /* Given a pointer to a Lisp_String S which is on the free-list
1408 string_free_list, return a pointer to its successor in the
1409 free-list. */
1410
1411 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1412
1413 /* Return a pointer to the sdata structure belonging to Lisp string S.
1414 S must be live, i.e. S->data must not be null. S->data is actually
1415 a pointer to the `u.data' member of its sdata structure; the
1416 structure starts at a constant offset in front of that. */
1417
1418 #ifdef GC_CHECK_STRING_BYTES
1419
1420 #define SDATA_OF_STRING(S) \
1421 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1422 - sizeof (EMACS_INT)))
1423
1424 #else /* not GC_CHECK_STRING_BYTES */
1425
1426 #define SDATA_OF_STRING(S) \
1427 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1428
1429 #endif /* not GC_CHECK_STRING_BYTES */
1430
1431 /* Value is the size of an sdata structure large enough to hold NBYTES
1432 bytes of string data. The value returned includes a terminating
1433 NUL byte, the size of the sdata structure, and padding. */
1434
1435 #ifdef GC_CHECK_STRING_BYTES
1436
1437 #define SDATA_SIZE(NBYTES) \
1438 ((sizeof (struct Lisp_String *) \
1439 + (NBYTES) + 1 \
1440 + sizeof (EMACS_INT) \
1441 + sizeof (EMACS_INT) - 1) \
1442 & ~(sizeof (EMACS_INT) - 1))
1443
1444 #else /* not GC_CHECK_STRING_BYTES */
1445
1446 #define SDATA_SIZE(NBYTES) \
1447 ((sizeof (struct Lisp_String *) \
1448 + (NBYTES) + 1 \
1449 + sizeof (EMACS_INT) - 1) \
1450 & ~(sizeof (EMACS_INT) - 1))
1451
1452 #endif /* not GC_CHECK_STRING_BYTES */
1453
1454 /* Initialize string allocation. Called from init_alloc_once. */
1455
1456 void
1457 init_strings ()
1458 {
1459 total_strings = total_free_strings = total_string_size = 0;
1460 oldest_sblock = current_sblock = large_sblocks = NULL;
1461 string_blocks = NULL;
1462 n_string_blocks = 0;
1463 string_free_list = NULL;
1464 }
1465
1466
1467 #ifdef GC_CHECK_STRING_BYTES
1468
1469 static int check_string_bytes_count;
1470
1471 void check_string_bytes P_ ((int));
1472 void check_sblock P_ ((struct sblock *));
1473
1474 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1475
1476
1477 /* Like GC_STRING_BYTES, but with debugging check. */
1478
1479 int
1480 string_bytes (s)
1481 struct Lisp_String *s;
1482 {
1483 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1484 if (!PURE_POINTER_P (s)
1485 && s->data
1486 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1487 abort ();
1488 return nbytes;
1489 }
1490
1491 /* Check validity of Lisp strings' string_bytes member in B. */
1492
1493 void
1494 check_sblock (b)
1495 struct sblock *b;
1496 {
1497 struct sdata *from, *end, *from_end;
1498
1499 end = b->next_free;
1500
1501 for (from = &b->first_data; from < end; from = from_end)
1502 {
1503 /* Compute the next FROM here because copying below may
1504 overwrite data we need to compute it. */
1505 int nbytes;
1506
1507 /* Check that the string size recorded in the string is the
1508 same as the one recorded in the sdata structure. */
1509 if (from->string)
1510 CHECK_STRING_BYTES (from->string);
1511
1512 if (from->string)
1513 nbytes = GC_STRING_BYTES (from->string);
1514 else
1515 nbytes = SDATA_NBYTES (from);
1516
1517 nbytes = SDATA_SIZE (nbytes);
1518 from_end = (struct sdata *) ((char *) from + nbytes);
1519 }
1520 }
1521
1522
1523 /* Check validity of Lisp strings' string_bytes member. ALL_P
1524 non-zero means check all strings, otherwise check only most
1525 recently allocated strings. Used for hunting a bug. */
1526
1527 void
1528 check_string_bytes (all_p)
1529 int all_p;
1530 {
1531 if (all_p)
1532 {
1533 struct sblock *b;
1534
1535 for (b = large_sblocks; b; b = b->next)
1536 {
1537 struct Lisp_String *s = b->first_data.string;
1538 if (s)
1539 CHECK_STRING_BYTES (s);
1540 }
1541
1542 for (b = oldest_sblock; b; b = b->next)
1543 check_sblock (b);
1544 }
1545 else
1546 check_sblock (current_sblock);
1547 }
1548
1549 #endif /* GC_CHECK_STRING_BYTES */
1550
1551
1552 /* Return a new Lisp_String. */
1553
1554 static struct Lisp_String *
1555 allocate_string ()
1556 {
1557 struct Lisp_String *s;
1558
1559 /* If the free-list is empty, allocate a new string_block, and
1560 add all the Lisp_Strings in it to the free-list. */
1561 if (string_free_list == NULL)
1562 {
1563 struct string_block *b;
1564 int i;
1565
1566 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1567 bzero (b, sizeof *b);
1568 b->next = string_blocks;
1569 string_blocks = b;
1570 ++n_string_blocks;
1571
1572 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1573 {
1574 s = b->strings + i;
1575 NEXT_FREE_LISP_STRING (s) = string_free_list;
1576 string_free_list = s;
1577 }
1578
1579 total_free_strings += STRING_BLOCK_SIZE;
1580 }
1581
1582 /* Pop a Lisp_String off the free-list. */
1583 s = string_free_list;
1584 string_free_list = NEXT_FREE_LISP_STRING (s);
1585
1586 /* Probably not strictly necessary, but play it safe. */
1587 bzero (s, sizeof *s);
1588
1589 --total_free_strings;
1590 ++total_strings;
1591 ++strings_consed;
1592 consing_since_gc += sizeof *s;
1593
1594 #ifdef GC_CHECK_STRING_BYTES
1595 if (!noninteractive
1596 #ifdef MAC_OS8
1597 && current_sblock
1598 #endif
1599 )
1600 {
1601 if (++check_string_bytes_count == 200)
1602 {
1603 check_string_bytes_count = 0;
1604 check_string_bytes (1);
1605 }
1606 else
1607 check_string_bytes (0);
1608 }
1609 #endif /* GC_CHECK_STRING_BYTES */
1610
1611 return s;
1612 }
1613
1614
1615 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1616 plus a NUL byte at the end. Allocate an sdata structure for S, and
1617 set S->data to its `u.data' member. Store a NUL byte at the end of
1618 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1619 S->data if it was initially non-null. */
1620
1621 void
1622 allocate_string_data (s, nchars, nbytes)
1623 struct Lisp_String *s;
1624 int nchars, nbytes;
1625 {
1626 struct sdata *data, *old_data;
1627 struct sblock *b;
1628 int needed, old_nbytes;
1629
1630 /* Determine the number of bytes needed to store NBYTES bytes
1631 of string data. */
1632 needed = SDATA_SIZE (nbytes);
1633
1634 if (nbytes > LARGE_STRING_BYTES)
1635 {
1636 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1637
1638 #ifdef DOUG_LEA_MALLOC
1639 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1640 because mapped region contents are not preserved in
1641 a dumped Emacs.
1642
1643 In case you think of allowing it in a dumped Emacs at the
1644 cost of not being able to re-dump, there's another reason:
1645 mmap'ed data typically have an address towards the top of the
1646 address space, which won't fit into an EMACS_INT (at least on
1647 32-bit systems with the current tagging scheme). --fx */
1648 mallopt (M_MMAP_MAX, 0);
1649 #endif
1650
1651 b = (struct sblock *) lisp_malloc (size, MEM_TYPE_NON_LISP);
1652
1653 #ifdef DOUG_LEA_MALLOC
1654 /* Back to a reasonable maximum of mmap'ed areas. */
1655 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1656 #endif
1657
1658 b->next_free = &b->first_data;
1659 b->first_data.string = NULL;
1660 b->next = large_sblocks;
1661 large_sblocks = b;
1662 }
1663 else if (current_sblock == NULL
1664 || (((char *) current_sblock + SBLOCK_SIZE
1665 - (char *) current_sblock->next_free)
1666 < needed))
1667 {
1668 /* Not enough room in the current sblock. */
1669 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1670 b->next_free = &b->first_data;
1671 b->first_data.string = NULL;
1672 b->next = NULL;
1673
1674 if (current_sblock)
1675 current_sblock->next = b;
1676 else
1677 oldest_sblock = b;
1678 current_sblock = b;
1679 }
1680 else
1681 b = current_sblock;
1682
1683 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1684 old_nbytes = GC_STRING_BYTES (s);
1685
1686 data = b->next_free;
1687 data->string = s;
1688 s->data = SDATA_DATA (data);
1689 #ifdef GC_CHECK_STRING_BYTES
1690 SDATA_NBYTES (data) = nbytes;
1691 #endif
1692 s->size = nchars;
1693 s->size_byte = nbytes;
1694 s->data[nbytes] = '\0';
1695 b->next_free = (struct sdata *) ((char *) data + needed);
1696
1697 /* If S had already data assigned, mark that as free by setting its
1698 string back-pointer to null, and recording the size of the data
1699 in it. */
1700 if (old_data)
1701 {
1702 SDATA_NBYTES (old_data) = old_nbytes;
1703 old_data->string = NULL;
1704 }
1705
1706 consing_since_gc += needed;
1707 }
1708
1709
1710 /* Sweep and compact strings. */
1711
1712 static void
1713 sweep_strings ()
1714 {
1715 struct string_block *b, *next;
1716 struct string_block *live_blocks = NULL;
1717
1718 string_free_list = NULL;
1719 total_strings = total_free_strings = 0;
1720 total_string_size = 0;
1721
1722 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1723 for (b = string_blocks; b; b = next)
1724 {
1725 int i, nfree = 0;
1726 struct Lisp_String *free_list_before = string_free_list;
1727
1728 next = b->next;
1729
1730 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1731 {
1732 struct Lisp_String *s = b->strings + i;
1733
1734 if (s->data)
1735 {
1736 /* String was not on free-list before. */
1737 if (STRING_MARKED_P (s))
1738 {
1739 /* String is live; unmark it and its intervals. */
1740 UNMARK_STRING (s);
1741
1742 if (!NULL_INTERVAL_P (s->intervals))
1743 UNMARK_BALANCE_INTERVALS (s->intervals);
1744
1745 ++total_strings;
1746 total_string_size += STRING_BYTES (s);
1747 }
1748 else
1749 {
1750 /* String is dead. Put it on the free-list. */
1751 struct sdata *data = SDATA_OF_STRING (s);
1752
1753 /* Save the size of S in its sdata so that we know
1754 how large that is. Reset the sdata's string
1755 back-pointer so that we know it's free. */
1756 #ifdef GC_CHECK_STRING_BYTES
1757 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
1758 abort ();
1759 #else
1760 data->u.nbytes = GC_STRING_BYTES (s);
1761 #endif
1762 data->string = NULL;
1763
1764 /* Reset the strings's `data' member so that we
1765 know it's free. */
1766 s->data = NULL;
1767
1768 /* Put the string on the free-list. */
1769 NEXT_FREE_LISP_STRING (s) = string_free_list;
1770 string_free_list = s;
1771 ++nfree;
1772 }
1773 }
1774 else
1775 {
1776 /* S was on the free-list before. Put it there again. */
1777 NEXT_FREE_LISP_STRING (s) = string_free_list;
1778 string_free_list = s;
1779 ++nfree;
1780 }
1781 }
1782
1783 /* Free blocks that contain free Lisp_Strings only, except
1784 the first two of them. */
1785 if (nfree == STRING_BLOCK_SIZE
1786 && total_free_strings > STRING_BLOCK_SIZE)
1787 {
1788 lisp_free (b);
1789 --n_string_blocks;
1790 string_free_list = free_list_before;
1791 }
1792 else
1793 {
1794 total_free_strings += nfree;
1795 b->next = live_blocks;
1796 live_blocks = b;
1797 }
1798 }
1799
1800 string_blocks = live_blocks;
1801 free_large_strings ();
1802 compact_small_strings ();
1803 }
1804
1805
1806 /* Free dead large strings. */
1807
1808 static void
1809 free_large_strings ()
1810 {
1811 struct sblock *b, *next;
1812 struct sblock *live_blocks = NULL;
1813
1814 for (b = large_sblocks; b; b = next)
1815 {
1816 next = b->next;
1817
1818 if (b->first_data.string == NULL)
1819 lisp_free (b);
1820 else
1821 {
1822 b->next = live_blocks;
1823 live_blocks = b;
1824 }
1825 }
1826
1827 large_sblocks = live_blocks;
1828 }
1829
1830
1831 /* Compact data of small strings. Free sblocks that don't contain
1832 data of live strings after compaction. */
1833
1834 static void
1835 compact_small_strings ()
1836 {
1837 struct sblock *b, *tb, *next;
1838 struct sdata *from, *to, *end, *tb_end;
1839 struct sdata *to_end, *from_end;
1840
1841 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1842 to, and TB_END is the end of TB. */
1843 tb = oldest_sblock;
1844 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1845 to = &tb->first_data;
1846
1847 /* Step through the blocks from the oldest to the youngest. We
1848 expect that old blocks will stabilize over time, so that less
1849 copying will happen this way. */
1850 for (b = oldest_sblock; b; b = b->next)
1851 {
1852 end = b->next_free;
1853 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1854
1855 for (from = &b->first_data; from < end; from = from_end)
1856 {
1857 /* Compute the next FROM here because copying below may
1858 overwrite data we need to compute it. */
1859 int nbytes;
1860
1861 #ifdef GC_CHECK_STRING_BYTES
1862 /* Check that the string size recorded in the string is the
1863 same as the one recorded in the sdata structure. */
1864 if (from->string
1865 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
1866 abort ();
1867 #endif /* GC_CHECK_STRING_BYTES */
1868
1869 if (from->string)
1870 nbytes = GC_STRING_BYTES (from->string);
1871 else
1872 nbytes = SDATA_NBYTES (from);
1873
1874 nbytes = SDATA_SIZE (nbytes);
1875 from_end = (struct sdata *) ((char *) from + nbytes);
1876
1877 /* FROM->string non-null means it's alive. Copy its data. */
1878 if (from->string)
1879 {
1880 /* If TB is full, proceed with the next sblock. */
1881 to_end = (struct sdata *) ((char *) to + nbytes);
1882 if (to_end > tb_end)
1883 {
1884 tb->next_free = to;
1885 tb = tb->next;
1886 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1887 to = &tb->first_data;
1888 to_end = (struct sdata *) ((char *) to + nbytes);
1889 }
1890
1891 /* Copy, and update the string's `data' pointer. */
1892 if (from != to)
1893 {
1894 xassert (tb != b || to <= from);
1895 safe_bcopy ((char *) from, (char *) to, nbytes);
1896 to->string->data = SDATA_DATA (to);
1897 }
1898
1899 /* Advance past the sdata we copied to. */
1900 to = to_end;
1901 }
1902 }
1903 }
1904
1905 /* The rest of the sblocks following TB don't contain live data, so
1906 we can free them. */
1907 for (b = tb->next; b; b = next)
1908 {
1909 next = b->next;
1910 lisp_free (b);
1911 }
1912
1913 tb->next_free = to;
1914 tb->next = NULL;
1915 current_sblock = tb;
1916 }
1917
1918
1919 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1920 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1921 LENGTH must be an integer.
1922 INIT must be an integer that represents a character. */)
1923 (length, init)
1924 Lisp_Object length, init;
1925 {
1926 register Lisp_Object val;
1927 register unsigned char *p, *end;
1928 int c, nbytes;
1929
1930 CHECK_NATNUM (length);
1931 CHECK_NUMBER (init);
1932
1933 c = XINT (init);
1934 if (SINGLE_BYTE_CHAR_P (c))
1935 {
1936 nbytes = XINT (length);
1937 val = make_uninit_string (nbytes);
1938 p = SDATA (val);
1939 end = p + SCHARS (val);
1940 while (p != end)
1941 *p++ = c;
1942 }
1943 else
1944 {
1945 unsigned char str[MAX_MULTIBYTE_LENGTH];
1946 int len = CHAR_STRING (c, str);
1947
1948 nbytes = len * XINT (length);
1949 val = make_uninit_multibyte_string (XINT (length), nbytes);
1950 p = SDATA (val);
1951 end = p + nbytes;
1952 while (p != end)
1953 {
1954 bcopy (str, p, len);
1955 p += len;
1956 }
1957 }
1958
1959 *p = 0;
1960 return val;
1961 }
1962
1963
1964 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
1965 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
1966 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
1967 (length, init)
1968 Lisp_Object length, init;
1969 {
1970 register Lisp_Object val;
1971 struct Lisp_Bool_Vector *p;
1972 int real_init, i;
1973 int length_in_chars, length_in_elts, bits_per_value;
1974
1975 CHECK_NATNUM (length);
1976
1977 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
1978
1979 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
1980 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
1981 / BOOL_VECTOR_BITS_PER_CHAR);
1982
1983 /* We must allocate one more elements than LENGTH_IN_ELTS for the
1984 slot `size' of the struct Lisp_Bool_Vector. */
1985 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
1986 p = XBOOL_VECTOR (val);
1987
1988 /* Get rid of any bits that would cause confusion. */
1989 p->vector_size = 0;
1990 XSETBOOL_VECTOR (val, p);
1991 p->size = XFASTINT (length);
1992
1993 real_init = (NILP (init) ? 0 : -1);
1994 for (i = 0; i < length_in_chars ; i++)
1995 p->data[i] = real_init;
1996
1997 /* Clear the extraneous bits in the last byte. */
1998 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
1999 XBOOL_VECTOR (val)->data[length_in_chars - 1]
2000 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2001
2002 return val;
2003 }
2004
2005
2006 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2007 of characters from the contents. This string may be unibyte or
2008 multibyte, depending on the contents. */
2009
2010 Lisp_Object
2011 make_string (contents, nbytes)
2012 const char *contents;
2013 int nbytes;
2014 {
2015 register Lisp_Object val;
2016 int nchars, multibyte_nbytes;
2017
2018 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2019 if (nbytes == nchars || nbytes != multibyte_nbytes)
2020 /* CONTENTS contains no multibyte sequences or contains an invalid
2021 multibyte sequence. We must make unibyte string. */
2022 val = make_unibyte_string (contents, nbytes);
2023 else
2024 val = make_multibyte_string (contents, nchars, nbytes);
2025 return val;
2026 }
2027
2028
2029 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2030
2031 Lisp_Object
2032 make_unibyte_string (contents, length)
2033 const char *contents;
2034 int length;
2035 {
2036 register Lisp_Object val;
2037 val = make_uninit_string (length);
2038 bcopy (contents, SDATA (val), length);
2039 STRING_SET_UNIBYTE (val);
2040 return val;
2041 }
2042
2043
2044 /* Make a multibyte string from NCHARS characters occupying NBYTES
2045 bytes at CONTENTS. */
2046
2047 Lisp_Object
2048 make_multibyte_string (contents, nchars, nbytes)
2049 const char *contents;
2050 int nchars, nbytes;
2051 {
2052 register Lisp_Object val;
2053 val = make_uninit_multibyte_string (nchars, nbytes);
2054 bcopy (contents, SDATA (val), nbytes);
2055 return val;
2056 }
2057
2058
2059 /* Make a string from NCHARS characters occupying NBYTES bytes at
2060 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2061
2062 Lisp_Object
2063 make_string_from_bytes (contents, nchars, nbytes)
2064 const char *contents;
2065 int nchars, nbytes;
2066 {
2067 register Lisp_Object val;
2068 val = make_uninit_multibyte_string (nchars, nbytes);
2069 bcopy (contents, SDATA (val), nbytes);
2070 if (SBYTES (val) == SCHARS (val))
2071 STRING_SET_UNIBYTE (val);
2072 return val;
2073 }
2074
2075
2076 /* Make a string from NCHARS characters occupying NBYTES bytes at
2077 CONTENTS. The argument MULTIBYTE controls whether to label the
2078 string as multibyte. If NCHARS is negative, it counts the number of
2079 characters by itself. */
2080
2081 Lisp_Object
2082 make_specified_string (contents, nchars, nbytes, multibyte)
2083 const char *contents;
2084 int nchars, nbytes;
2085 int multibyte;
2086 {
2087 register Lisp_Object val;
2088
2089 if (nchars < 0)
2090 {
2091 if (multibyte)
2092 nchars = multibyte_chars_in_text (contents, nbytes);
2093 else
2094 nchars = nbytes;
2095 }
2096 val = make_uninit_multibyte_string (nchars, nbytes);
2097 bcopy (contents, SDATA (val), nbytes);
2098 if (!multibyte)
2099 STRING_SET_UNIBYTE (val);
2100 return val;
2101 }
2102
2103
2104 /* Make a string from the data at STR, treating it as multibyte if the
2105 data warrants. */
2106
2107 Lisp_Object
2108 build_string (str)
2109 const char *str;
2110 {
2111 return make_string (str, strlen (str));
2112 }
2113
2114
2115 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2116 occupying LENGTH bytes. */
2117
2118 Lisp_Object
2119 make_uninit_string (length)
2120 int length;
2121 {
2122 Lisp_Object val;
2123 val = make_uninit_multibyte_string (length, length);
2124 STRING_SET_UNIBYTE (val);
2125 return val;
2126 }
2127
2128
2129 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2130 which occupy NBYTES bytes. */
2131
2132 Lisp_Object
2133 make_uninit_multibyte_string (nchars, nbytes)
2134 int nchars, nbytes;
2135 {
2136 Lisp_Object string;
2137 struct Lisp_String *s;
2138
2139 if (nchars < 0)
2140 abort ();
2141
2142 s = allocate_string ();
2143 allocate_string_data (s, nchars, nbytes);
2144 XSETSTRING (string, s);
2145 string_chars_consed += nbytes;
2146 return string;
2147 }
2148
2149
2150 \f
2151 /***********************************************************************
2152 Float Allocation
2153 ***********************************************************************/
2154
2155 /* We store float cells inside of float_blocks, allocating a new
2156 float_block with malloc whenever necessary. Float cells reclaimed
2157 by GC are put on a free list to be reallocated before allocating
2158 any new float cells from the latest float_block. */
2159
2160 #define FLOAT_BLOCK_SIZE \
2161 (((BLOCK_BYTES - sizeof (struct float_block *) \
2162 /* The compiler might add padding at the end. */ \
2163 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2164 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2165
2166 #define GETMARKBIT(block,n) \
2167 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2168 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2169 & 1)
2170
2171 #define SETMARKBIT(block,n) \
2172 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2173 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2174
2175 #define UNSETMARKBIT(block,n) \
2176 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2177 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2178
2179 #define FLOAT_BLOCK(fptr) \
2180 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2181
2182 #define FLOAT_INDEX(fptr) \
2183 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2184
2185 struct float_block
2186 {
2187 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2188 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2189 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2190 struct float_block *next;
2191 };
2192
2193 #define FLOAT_MARKED_P(fptr) \
2194 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2195
2196 #define FLOAT_MARK(fptr) \
2197 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2198
2199 #define FLOAT_UNMARK(fptr) \
2200 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2201
2202 /* Current float_block. */
2203
2204 struct float_block *float_block;
2205
2206 /* Index of first unused Lisp_Float in the current float_block. */
2207
2208 int float_block_index;
2209
2210 /* Total number of float blocks now in use. */
2211
2212 int n_float_blocks;
2213
2214 /* Free-list of Lisp_Floats. */
2215
2216 struct Lisp_Float *float_free_list;
2217
2218
2219 /* Initialize float allocation. */
2220
2221 void
2222 init_float ()
2223 {
2224 float_block = NULL;
2225 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2226 float_free_list = 0;
2227 n_float_blocks = 0;
2228 }
2229
2230
2231 /* Explicitly free a float cell by putting it on the free-list. */
2232
2233 void
2234 free_float (ptr)
2235 struct Lisp_Float *ptr;
2236 {
2237 *(struct Lisp_Float **)&ptr->data = float_free_list;
2238 float_free_list = ptr;
2239 }
2240
2241
2242 /* Return a new float object with value FLOAT_VALUE. */
2243
2244 Lisp_Object
2245 make_float (float_value)
2246 double float_value;
2247 {
2248 register Lisp_Object val;
2249
2250 if (float_free_list)
2251 {
2252 /* We use the data field for chaining the free list
2253 so that we won't use the same field that has the mark bit. */
2254 XSETFLOAT (val, float_free_list);
2255 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
2256 }
2257 else
2258 {
2259 if (float_block_index == FLOAT_BLOCK_SIZE)
2260 {
2261 register struct float_block *new;
2262
2263 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2264 MEM_TYPE_FLOAT);
2265 new->next = float_block;
2266 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2267 float_block = new;
2268 float_block_index = 0;
2269 n_float_blocks++;
2270 }
2271 XSETFLOAT (val, &float_block->floats[float_block_index]);
2272 float_block_index++;
2273 }
2274
2275 XFLOAT_DATA (val) = float_value;
2276 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2277 consing_since_gc += sizeof (struct Lisp_Float);
2278 floats_consed++;
2279 return val;
2280 }
2281
2282
2283 \f
2284 /***********************************************************************
2285 Cons Allocation
2286 ***********************************************************************/
2287
2288 /* We store cons cells inside of cons_blocks, allocating a new
2289 cons_block with malloc whenever necessary. Cons cells reclaimed by
2290 GC are put on a free list to be reallocated before allocating
2291 any new cons cells from the latest cons_block. */
2292
2293 #define CONS_BLOCK_SIZE \
2294 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2295 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2296
2297 #define CONS_BLOCK(fptr) \
2298 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2299
2300 #define CONS_INDEX(fptr) \
2301 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2302
2303 struct cons_block
2304 {
2305 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2306 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2307 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2308 struct cons_block *next;
2309 };
2310
2311 #define CONS_MARKED_P(fptr) \
2312 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2313
2314 #define CONS_MARK(fptr) \
2315 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2316
2317 #define CONS_UNMARK(fptr) \
2318 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2319
2320 /* Current cons_block. */
2321
2322 struct cons_block *cons_block;
2323
2324 /* Index of first unused Lisp_Cons in the current block. */
2325
2326 int cons_block_index;
2327
2328 /* Free-list of Lisp_Cons structures. */
2329
2330 struct Lisp_Cons *cons_free_list;
2331
2332 /* Total number of cons blocks now in use. */
2333
2334 int n_cons_blocks;
2335
2336
2337 /* Initialize cons allocation. */
2338
2339 void
2340 init_cons ()
2341 {
2342 cons_block = NULL;
2343 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2344 cons_free_list = 0;
2345 n_cons_blocks = 0;
2346 }
2347
2348
2349 /* Explicitly free a cons cell by putting it on the free-list. */
2350
2351 void
2352 free_cons (ptr)
2353 struct Lisp_Cons *ptr;
2354 {
2355 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
2356 #if GC_MARK_STACK
2357 ptr->car = Vdead;
2358 #endif
2359 cons_free_list = ptr;
2360 }
2361
2362 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2363 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2364 (car, cdr)
2365 Lisp_Object car, cdr;
2366 {
2367 register Lisp_Object val;
2368
2369 if (cons_free_list)
2370 {
2371 /* We use the cdr for chaining the free list
2372 so that we won't use the same field that has the mark bit. */
2373 XSETCONS (val, cons_free_list);
2374 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2375 }
2376 else
2377 {
2378 if (cons_block_index == CONS_BLOCK_SIZE)
2379 {
2380 register struct cons_block *new;
2381 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2382 MEM_TYPE_CONS);
2383 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2384 new->next = cons_block;
2385 cons_block = new;
2386 cons_block_index = 0;
2387 n_cons_blocks++;
2388 }
2389 XSETCONS (val, &cons_block->conses[cons_block_index]);
2390 cons_block_index++;
2391 }
2392
2393 XSETCAR (val, car);
2394 XSETCDR (val, cdr);
2395 eassert (!CONS_MARKED_P (XCONS (val)));
2396 consing_since_gc += sizeof (struct Lisp_Cons);
2397 cons_cells_consed++;
2398 return val;
2399 }
2400
2401 /* Get an error now if there's any junk in the cons free list. */
2402 void
2403 check_cons_list ()
2404 {
2405 struct Lisp_Cons *tail = cons_free_list;
2406
2407 #if 0
2408 while (tail)
2409 tail = *(struct Lisp_Cons **)&tail->cdr;
2410 #endif
2411 }
2412
2413 /* Make a list of 2, 3, 4 or 5 specified objects. */
2414
2415 Lisp_Object
2416 list2 (arg1, arg2)
2417 Lisp_Object arg1, arg2;
2418 {
2419 return Fcons (arg1, Fcons (arg2, Qnil));
2420 }
2421
2422
2423 Lisp_Object
2424 list3 (arg1, arg2, arg3)
2425 Lisp_Object arg1, arg2, arg3;
2426 {
2427 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2428 }
2429
2430
2431 Lisp_Object
2432 list4 (arg1, arg2, arg3, arg4)
2433 Lisp_Object arg1, arg2, arg3, arg4;
2434 {
2435 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2436 }
2437
2438
2439 Lisp_Object
2440 list5 (arg1, arg2, arg3, arg4, arg5)
2441 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2442 {
2443 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2444 Fcons (arg5, Qnil)))));
2445 }
2446
2447
2448 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2449 doc: /* Return a newly created list with specified arguments as elements.
2450 Any number of arguments, even zero arguments, are allowed.
2451 usage: (list &rest OBJECTS) */)
2452 (nargs, args)
2453 int nargs;
2454 register Lisp_Object *args;
2455 {
2456 register Lisp_Object val;
2457 val = Qnil;
2458
2459 while (nargs > 0)
2460 {
2461 nargs--;
2462 val = Fcons (args[nargs], val);
2463 }
2464 return val;
2465 }
2466
2467
2468 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2469 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2470 (length, init)
2471 register Lisp_Object length, init;
2472 {
2473 register Lisp_Object val;
2474 register int size;
2475
2476 CHECK_NATNUM (length);
2477 size = XFASTINT (length);
2478
2479 val = Qnil;
2480 while (size > 0)
2481 {
2482 val = Fcons (init, val);
2483 --size;
2484
2485 if (size > 0)
2486 {
2487 val = Fcons (init, val);
2488 --size;
2489
2490 if (size > 0)
2491 {
2492 val = Fcons (init, val);
2493 --size;
2494
2495 if (size > 0)
2496 {
2497 val = Fcons (init, val);
2498 --size;
2499
2500 if (size > 0)
2501 {
2502 val = Fcons (init, val);
2503 --size;
2504 }
2505 }
2506 }
2507 }
2508
2509 QUIT;
2510 }
2511
2512 return val;
2513 }
2514
2515
2516 \f
2517 /***********************************************************************
2518 Vector Allocation
2519 ***********************************************************************/
2520
2521 /* Singly-linked list of all vectors. */
2522
2523 struct Lisp_Vector *all_vectors;
2524
2525 /* Total number of vector-like objects now in use. */
2526
2527 int n_vectors;
2528
2529
2530 /* Value is a pointer to a newly allocated Lisp_Vector structure
2531 with room for LEN Lisp_Objects. */
2532
2533 static struct Lisp_Vector *
2534 allocate_vectorlike (len, type)
2535 EMACS_INT len;
2536 enum mem_type type;
2537 {
2538 struct Lisp_Vector *p;
2539 size_t nbytes;
2540
2541 #ifdef DOUG_LEA_MALLOC
2542 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2543 because mapped region contents are not preserved in
2544 a dumped Emacs. */
2545 BLOCK_INPUT;
2546 mallopt (M_MMAP_MAX, 0);
2547 UNBLOCK_INPUT;
2548 #endif
2549
2550 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2551 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2552
2553 #ifdef DOUG_LEA_MALLOC
2554 /* Back to a reasonable maximum of mmap'ed areas. */
2555 BLOCK_INPUT;
2556 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2557 UNBLOCK_INPUT;
2558 #endif
2559
2560 consing_since_gc += nbytes;
2561 vector_cells_consed += len;
2562
2563 p->next = all_vectors;
2564 all_vectors = p;
2565 ++n_vectors;
2566 return p;
2567 }
2568
2569
2570 /* Allocate a vector with NSLOTS slots. */
2571
2572 struct Lisp_Vector *
2573 allocate_vector (nslots)
2574 EMACS_INT nslots;
2575 {
2576 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2577 v->size = nslots;
2578 return v;
2579 }
2580
2581
2582 /* Allocate other vector-like structures. */
2583
2584 struct Lisp_Hash_Table *
2585 allocate_hash_table ()
2586 {
2587 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2588 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2589 EMACS_INT i;
2590
2591 v->size = len;
2592 for (i = 0; i < len; ++i)
2593 v->contents[i] = Qnil;
2594
2595 return (struct Lisp_Hash_Table *) v;
2596 }
2597
2598
2599 struct window *
2600 allocate_window ()
2601 {
2602 EMACS_INT len = VECSIZE (struct window);
2603 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2604 EMACS_INT i;
2605
2606 for (i = 0; i < len; ++i)
2607 v->contents[i] = Qnil;
2608 v->size = len;
2609
2610 return (struct window *) v;
2611 }
2612
2613
2614 struct frame *
2615 allocate_frame ()
2616 {
2617 EMACS_INT len = VECSIZE (struct frame);
2618 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2619 EMACS_INT i;
2620
2621 for (i = 0; i < len; ++i)
2622 v->contents[i] = make_number (0);
2623 v->size = len;
2624 return (struct frame *) v;
2625 }
2626
2627
2628 struct Lisp_Process *
2629 allocate_process ()
2630 {
2631 EMACS_INT len = VECSIZE (struct Lisp_Process);
2632 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2633 EMACS_INT i;
2634
2635 for (i = 0; i < len; ++i)
2636 v->contents[i] = Qnil;
2637 v->size = len;
2638
2639 return (struct Lisp_Process *) v;
2640 }
2641
2642
2643 struct Lisp_Vector *
2644 allocate_other_vector (len)
2645 EMACS_INT len;
2646 {
2647 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2648 EMACS_INT i;
2649
2650 for (i = 0; i < len; ++i)
2651 v->contents[i] = Qnil;
2652 v->size = len;
2653
2654 return v;
2655 }
2656
2657
2658 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2659 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2660 See also the function `vector'. */)
2661 (length, init)
2662 register Lisp_Object length, init;
2663 {
2664 Lisp_Object vector;
2665 register EMACS_INT sizei;
2666 register int index;
2667 register struct Lisp_Vector *p;
2668
2669 CHECK_NATNUM (length);
2670 sizei = XFASTINT (length);
2671
2672 p = allocate_vector (sizei);
2673 for (index = 0; index < sizei; index++)
2674 p->contents[index] = init;
2675
2676 XSETVECTOR (vector, p);
2677 return vector;
2678 }
2679
2680
2681 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
2682 doc: /* Return a newly created char-table, with purpose PURPOSE.
2683 Each element is initialized to INIT, which defaults to nil.
2684 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
2685 The property's value should be an integer between 0 and 10. */)
2686 (purpose, init)
2687 register Lisp_Object purpose, init;
2688 {
2689 Lisp_Object vector;
2690 Lisp_Object n;
2691 CHECK_SYMBOL (purpose);
2692 n = Fget (purpose, Qchar_table_extra_slots);
2693 CHECK_NUMBER (n);
2694 if (XINT (n) < 0 || XINT (n) > 10)
2695 args_out_of_range (n, Qnil);
2696 /* Add 2 to the size for the defalt and parent slots. */
2697 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
2698 init);
2699 XCHAR_TABLE (vector)->top = Qt;
2700 XCHAR_TABLE (vector)->parent = Qnil;
2701 XCHAR_TABLE (vector)->purpose = purpose;
2702 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2703 return vector;
2704 }
2705
2706
2707 /* Return a newly created sub char table with default value DEFALT.
2708 Since a sub char table does not appear as a top level Emacs Lisp
2709 object, we don't need a Lisp interface to make it. */
2710
2711 Lisp_Object
2712 make_sub_char_table (defalt)
2713 Lisp_Object defalt;
2714 {
2715 Lisp_Object vector
2716 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), Qnil);
2717 XCHAR_TABLE (vector)->top = Qnil;
2718 XCHAR_TABLE (vector)->defalt = defalt;
2719 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2720 return vector;
2721 }
2722
2723
2724 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2725 doc: /* Return a newly created vector with specified arguments as elements.
2726 Any number of arguments, even zero arguments, are allowed.
2727 usage: (vector &rest OBJECTS) */)
2728 (nargs, args)
2729 register int nargs;
2730 Lisp_Object *args;
2731 {
2732 register Lisp_Object len, val;
2733 register int index;
2734 register struct Lisp_Vector *p;
2735
2736 XSETFASTINT (len, nargs);
2737 val = Fmake_vector (len, Qnil);
2738 p = XVECTOR (val);
2739 for (index = 0; index < nargs; index++)
2740 p->contents[index] = args[index];
2741 return val;
2742 }
2743
2744
2745 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2746 doc: /* Create a byte-code object with specified arguments as elements.
2747 The arguments should be the arglist, bytecode-string, constant vector,
2748 stack size, (optional) doc string, and (optional) interactive spec.
2749 The first four arguments are required; at most six have any
2750 significance.
2751 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2752 (nargs, args)
2753 register int nargs;
2754 Lisp_Object *args;
2755 {
2756 register Lisp_Object len, val;
2757 register int index;
2758 register struct Lisp_Vector *p;
2759
2760 XSETFASTINT (len, nargs);
2761 if (!NILP (Vpurify_flag))
2762 val = make_pure_vector ((EMACS_INT) nargs);
2763 else
2764 val = Fmake_vector (len, Qnil);
2765
2766 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2767 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2768 earlier because they produced a raw 8-bit string for byte-code
2769 and now such a byte-code string is loaded as multibyte while
2770 raw 8-bit characters converted to multibyte form. Thus, now we
2771 must convert them back to the original unibyte form. */
2772 args[1] = Fstring_as_unibyte (args[1]);
2773
2774 p = XVECTOR (val);
2775 for (index = 0; index < nargs; index++)
2776 {
2777 if (!NILP (Vpurify_flag))
2778 args[index] = Fpurecopy (args[index]);
2779 p->contents[index] = args[index];
2780 }
2781 XSETCOMPILED (val, p);
2782 return val;
2783 }
2784
2785
2786 \f
2787 /***********************************************************************
2788 Symbol Allocation
2789 ***********************************************************************/
2790
2791 /* Each symbol_block is just under 1020 bytes long, since malloc
2792 really allocates in units of powers of two and uses 4 bytes for its
2793 own overhead. */
2794
2795 #define SYMBOL_BLOCK_SIZE \
2796 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2797
2798 struct symbol_block
2799 {
2800 /* Place `symbols' first, to preserve alignment. */
2801 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
2802 struct symbol_block *next;
2803 };
2804
2805 /* Current symbol block and index of first unused Lisp_Symbol
2806 structure in it. */
2807
2808 struct symbol_block *symbol_block;
2809 int symbol_block_index;
2810
2811 /* List of free symbols. */
2812
2813 struct Lisp_Symbol *symbol_free_list;
2814
2815 /* Total number of symbol blocks now in use. */
2816
2817 int n_symbol_blocks;
2818
2819
2820 /* Initialize symbol allocation. */
2821
2822 void
2823 init_symbol ()
2824 {
2825 symbol_block = NULL;
2826 symbol_block_index = SYMBOL_BLOCK_SIZE;
2827 symbol_free_list = 0;
2828 n_symbol_blocks = 0;
2829 }
2830
2831
2832 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
2833 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
2834 Its value and function definition are void, and its property list is nil. */)
2835 (name)
2836 Lisp_Object name;
2837 {
2838 register Lisp_Object val;
2839 register struct Lisp_Symbol *p;
2840
2841 CHECK_STRING (name);
2842
2843 if (symbol_free_list)
2844 {
2845 XSETSYMBOL (val, symbol_free_list);
2846 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
2847 }
2848 else
2849 {
2850 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
2851 {
2852 struct symbol_block *new;
2853 new = (struct symbol_block *) lisp_malloc (sizeof *new,
2854 MEM_TYPE_SYMBOL);
2855 new->next = symbol_block;
2856 symbol_block = new;
2857 symbol_block_index = 0;
2858 n_symbol_blocks++;
2859 }
2860 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
2861 symbol_block_index++;
2862 }
2863
2864 p = XSYMBOL (val);
2865 p->xname = name;
2866 p->plist = Qnil;
2867 p->value = Qunbound;
2868 p->function = Qunbound;
2869 p->next = NULL;
2870 p->gcmarkbit = 0;
2871 p->interned = SYMBOL_UNINTERNED;
2872 p->constant = 0;
2873 p->indirect_variable = 0;
2874 consing_since_gc += sizeof (struct Lisp_Symbol);
2875 symbols_consed++;
2876 return val;
2877 }
2878
2879
2880 \f
2881 /***********************************************************************
2882 Marker (Misc) Allocation
2883 ***********************************************************************/
2884
2885 /* Allocation of markers and other objects that share that structure.
2886 Works like allocation of conses. */
2887
2888 #define MARKER_BLOCK_SIZE \
2889 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
2890
2891 struct marker_block
2892 {
2893 /* Place `markers' first, to preserve alignment. */
2894 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
2895 struct marker_block *next;
2896 };
2897
2898 struct marker_block *marker_block;
2899 int marker_block_index;
2900
2901 union Lisp_Misc *marker_free_list;
2902
2903 /* Total number of marker blocks now in use. */
2904
2905 int n_marker_blocks;
2906
2907 void
2908 init_marker ()
2909 {
2910 marker_block = NULL;
2911 marker_block_index = MARKER_BLOCK_SIZE;
2912 marker_free_list = 0;
2913 n_marker_blocks = 0;
2914 }
2915
2916 /* Return a newly allocated Lisp_Misc object, with no substructure. */
2917
2918 Lisp_Object
2919 allocate_misc ()
2920 {
2921 Lisp_Object val;
2922
2923 if (marker_free_list)
2924 {
2925 XSETMISC (val, marker_free_list);
2926 marker_free_list = marker_free_list->u_free.chain;
2927 }
2928 else
2929 {
2930 if (marker_block_index == MARKER_BLOCK_SIZE)
2931 {
2932 struct marker_block *new;
2933 new = (struct marker_block *) lisp_malloc (sizeof *new,
2934 MEM_TYPE_MISC);
2935 new->next = marker_block;
2936 marker_block = new;
2937 marker_block_index = 0;
2938 n_marker_blocks++;
2939 total_free_markers += MARKER_BLOCK_SIZE;
2940 }
2941 XSETMISC (val, &marker_block->markers[marker_block_index]);
2942 marker_block_index++;
2943 }
2944
2945 --total_free_markers;
2946 consing_since_gc += sizeof (union Lisp_Misc);
2947 misc_objects_consed++;
2948 XMARKER (val)->gcmarkbit = 0;
2949 return val;
2950 }
2951
2952 /* Free a Lisp_Misc object */
2953
2954 void
2955 free_misc (misc)
2956 Lisp_Object misc;
2957 {
2958 XMISC (misc)->u_marker.type = Lisp_Misc_Free;
2959 XMISC (misc)->u_free.chain = marker_free_list;
2960 marker_free_list = XMISC (misc);
2961
2962 total_free_markers++;
2963 }
2964
2965 /* Return a Lisp_Misc_Save_Value object containing POINTER and
2966 INTEGER. This is used to package C values to call record_unwind_protect.
2967 The unwind function can get the C values back using XSAVE_VALUE. */
2968
2969 Lisp_Object
2970 make_save_value (pointer, integer)
2971 void *pointer;
2972 int integer;
2973 {
2974 register Lisp_Object val;
2975 register struct Lisp_Save_Value *p;
2976
2977 val = allocate_misc ();
2978 XMISCTYPE (val) = Lisp_Misc_Save_Value;
2979 p = XSAVE_VALUE (val);
2980 p->pointer = pointer;
2981 p->integer = integer;
2982 p->dogc = 0;
2983 return val;
2984 }
2985
2986 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
2987 doc: /* Return a newly allocated marker which does not point at any place. */)
2988 ()
2989 {
2990 register Lisp_Object val;
2991 register struct Lisp_Marker *p;
2992
2993 val = allocate_misc ();
2994 XMISCTYPE (val) = Lisp_Misc_Marker;
2995 p = XMARKER (val);
2996 p->buffer = 0;
2997 p->bytepos = 0;
2998 p->charpos = 0;
2999 p->next = NULL;
3000 p->insertion_type = 0;
3001 return val;
3002 }
3003
3004 /* Put MARKER back on the free list after using it temporarily. */
3005
3006 void
3007 free_marker (marker)
3008 Lisp_Object marker;
3009 {
3010 unchain_marker (XMARKER (marker));
3011 free_misc (marker);
3012 }
3013
3014 \f
3015 /* Return a newly created vector or string with specified arguments as
3016 elements. If all the arguments are characters that can fit
3017 in a string of events, make a string; otherwise, make a vector.
3018
3019 Any number of arguments, even zero arguments, are allowed. */
3020
3021 Lisp_Object
3022 make_event_array (nargs, args)
3023 register int nargs;
3024 Lisp_Object *args;
3025 {
3026 int i;
3027
3028 for (i = 0; i < nargs; i++)
3029 /* The things that fit in a string
3030 are characters that are in 0...127,
3031 after discarding the meta bit and all the bits above it. */
3032 if (!INTEGERP (args[i])
3033 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3034 return Fvector (nargs, args);
3035
3036 /* Since the loop exited, we know that all the things in it are
3037 characters, so we can make a string. */
3038 {
3039 Lisp_Object result;
3040
3041 result = Fmake_string (make_number (nargs), make_number (0));
3042 for (i = 0; i < nargs; i++)
3043 {
3044 SSET (result, i, XINT (args[i]));
3045 /* Move the meta bit to the right place for a string char. */
3046 if (XINT (args[i]) & CHAR_META)
3047 SSET (result, i, SREF (result, i) | 0x80);
3048 }
3049
3050 return result;
3051 }
3052 }
3053
3054
3055 \f
3056 /************************************************************************
3057 C Stack Marking
3058 ************************************************************************/
3059
3060 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3061
3062 /* Conservative C stack marking requires a method to identify possibly
3063 live Lisp objects given a pointer value. We do this by keeping
3064 track of blocks of Lisp data that are allocated in a red-black tree
3065 (see also the comment of mem_node which is the type of nodes in
3066 that tree). Function lisp_malloc adds information for an allocated
3067 block to the red-black tree with calls to mem_insert, and function
3068 lisp_free removes it with mem_delete. Functions live_string_p etc
3069 call mem_find to lookup information about a given pointer in the
3070 tree, and use that to determine if the pointer points to a Lisp
3071 object or not. */
3072
3073 /* Initialize this part of alloc.c. */
3074
3075 static void
3076 mem_init ()
3077 {
3078 mem_z.left = mem_z.right = MEM_NIL;
3079 mem_z.parent = NULL;
3080 mem_z.color = MEM_BLACK;
3081 mem_z.start = mem_z.end = NULL;
3082 mem_root = MEM_NIL;
3083 }
3084
3085
3086 /* Value is a pointer to the mem_node containing START. Value is
3087 MEM_NIL if there is no node in the tree containing START. */
3088
3089 static INLINE struct mem_node *
3090 mem_find (start)
3091 void *start;
3092 {
3093 struct mem_node *p;
3094
3095 if (start < min_heap_address || start > max_heap_address)
3096 return MEM_NIL;
3097
3098 /* Make the search always successful to speed up the loop below. */
3099 mem_z.start = start;
3100 mem_z.end = (char *) start + 1;
3101
3102 p = mem_root;
3103 while (start < p->start || start >= p->end)
3104 p = start < p->start ? p->left : p->right;
3105 return p;
3106 }
3107
3108
3109 /* Insert a new node into the tree for a block of memory with start
3110 address START, end address END, and type TYPE. Value is a
3111 pointer to the node that was inserted. */
3112
3113 static struct mem_node *
3114 mem_insert (start, end, type)
3115 void *start, *end;
3116 enum mem_type type;
3117 {
3118 struct mem_node *c, *parent, *x;
3119
3120 if (start < min_heap_address)
3121 min_heap_address = start;
3122 if (end > max_heap_address)
3123 max_heap_address = end;
3124
3125 /* See where in the tree a node for START belongs. In this
3126 particular application, it shouldn't happen that a node is already
3127 present. For debugging purposes, let's check that. */
3128 c = mem_root;
3129 parent = NULL;
3130
3131 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3132
3133 while (c != MEM_NIL)
3134 {
3135 if (start >= c->start && start < c->end)
3136 abort ();
3137 parent = c;
3138 c = start < c->start ? c->left : c->right;
3139 }
3140
3141 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3142
3143 while (c != MEM_NIL)
3144 {
3145 parent = c;
3146 c = start < c->start ? c->left : c->right;
3147 }
3148
3149 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3150
3151 /* Create a new node. */
3152 #ifdef GC_MALLOC_CHECK
3153 x = (struct mem_node *) _malloc_internal (sizeof *x);
3154 if (x == NULL)
3155 abort ();
3156 #else
3157 x = (struct mem_node *) xmalloc (sizeof *x);
3158 #endif
3159 x->start = start;
3160 x->end = end;
3161 x->type = type;
3162 x->parent = parent;
3163 x->left = x->right = MEM_NIL;
3164 x->color = MEM_RED;
3165
3166 /* Insert it as child of PARENT or install it as root. */
3167 if (parent)
3168 {
3169 if (start < parent->start)
3170 parent->left = x;
3171 else
3172 parent->right = x;
3173 }
3174 else
3175 mem_root = x;
3176
3177 /* Re-establish red-black tree properties. */
3178 mem_insert_fixup (x);
3179
3180 return x;
3181 }
3182
3183
3184 /* Re-establish the red-black properties of the tree, and thereby
3185 balance the tree, after node X has been inserted; X is always red. */
3186
3187 static void
3188 mem_insert_fixup (x)
3189 struct mem_node *x;
3190 {
3191 while (x != mem_root && x->parent->color == MEM_RED)
3192 {
3193 /* X is red and its parent is red. This is a violation of
3194 red-black tree property #3. */
3195
3196 if (x->parent == x->parent->parent->left)
3197 {
3198 /* We're on the left side of our grandparent, and Y is our
3199 "uncle". */
3200 struct mem_node *y = x->parent->parent->right;
3201
3202 if (y->color == MEM_RED)
3203 {
3204 /* Uncle and parent are red but should be black because
3205 X is red. Change the colors accordingly and proceed
3206 with the grandparent. */
3207 x->parent->color = MEM_BLACK;
3208 y->color = MEM_BLACK;
3209 x->parent->parent->color = MEM_RED;
3210 x = x->parent->parent;
3211 }
3212 else
3213 {
3214 /* Parent and uncle have different colors; parent is
3215 red, uncle is black. */
3216 if (x == x->parent->right)
3217 {
3218 x = x->parent;
3219 mem_rotate_left (x);
3220 }
3221
3222 x->parent->color = MEM_BLACK;
3223 x->parent->parent->color = MEM_RED;
3224 mem_rotate_right (x->parent->parent);
3225 }
3226 }
3227 else
3228 {
3229 /* This is the symmetrical case of above. */
3230 struct mem_node *y = x->parent->parent->left;
3231
3232 if (y->color == MEM_RED)
3233 {
3234 x->parent->color = MEM_BLACK;
3235 y->color = MEM_BLACK;
3236 x->parent->parent->color = MEM_RED;
3237 x = x->parent->parent;
3238 }
3239 else
3240 {
3241 if (x == x->parent->left)
3242 {
3243 x = x->parent;
3244 mem_rotate_right (x);
3245 }
3246
3247 x->parent->color = MEM_BLACK;
3248 x->parent->parent->color = MEM_RED;
3249 mem_rotate_left (x->parent->parent);
3250 }
3251 }
3252 }
3253
3254 /* The root may have been changed to red due to the algorithm. Set
3255 it to black so that property #5 is satisfied. */
3256 mem_root->color = MEM_BLACK;
3257 }
3258
3259
3260 /* (x) (y)
3261 / \ / \
3262 a (y) ===> (x) c
3263 / \ / \
3264 b c a b */
3265
3266 static void
3267 mem_rotate_left (x)
3268 struct mem_node *x;
3269 {
3270 struct mem_node *y;
3271
3272 /* Turn y's left sub-tree into x's right sub-tree. */
3273 y = x->right;
3274 x->right = y->left;
3275 if (y->left != MEM_NIL)
3276 y->left->parent = x;
3277
3278 /* Y's parent was x's parent. */
3279 if (y != MEM_NIL)
3280 y->parent = x->parent;
3281
3282 /* Get the parent to point to y instead of x. */
3283 if (x->parent)
3284 {
3285 if (x == x->parent->left)
3286 x->parent->left = y;
3287 else
3288 x->parent->right = y;
3289 }
3290 else
3291 mem_root = y;
3292
3293 /* Put x on y's left. */
3294 y->left = x;
3295 if (x != MEM_NIL)
3296 x->parent = y;
3297 }
3298
3299
3300 /* (x) (Y)
3301 / \ / \
3302 (y) c ===> a (x)
3303 / \ / \
3304 a b b c */
3305
3306 static void
3307 mem_rotate_right (x)
3308 struct mem_node *x;
3309 {
3310 struct mem_node *y = x->left;
3311
3312 x->left = y->right;
3313 if (y->right != MEM_NIL)
3314 y->right->parent = x;
3315
3316 if (y != MEM_NIL)
3317 y->parent = x->parent;
3318 if (x->parent)
3319 {
3320 if (x == x->parent->right)
3321 x->parent->right = y;
3322 else
3323 x->parent->left = y;
3324 }
3325 else
3326 mem_root = y;
3327
3328 y->right = x;
3329 if (x != MEM_NIL)
3330 x->parent = y;
3331 }
3332
3333
3334 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3335
3336 static void
3337 mem_delete (z)
3338 struct mem_node *z;
3339 {
3340 struct mem_node *x, *y;
3341
3342 if (!z || z == MEM_NIL)
3343 return;
3344
3345 if (z->left == MEM_NIL || z->right == MEM_NIL)
3346 y = z;
3347 else
3348 {
3349 y = z->right;
3350 while (y->left != MEM_NIL)
3351 y = y->left;
3352 }
3353
3354 if (y->left != MEM_NIL)
3355 x = y->left;
3356 else
3357 x = y->right;
3358
3359 x->parent = y->parent;
3360 if (y->parent)
3361 {
3362 if (y == y->parent->left)
3363 y->parent->left = x;
3364 else
3365 y->parent->right = x;
3366 }
3367 else
3368 mem_root = x;
3369
3370 if (y != z)
3371 {
3372 z->start = y->start;
3373 z->end = y->end;
3374 z->type = y->type;
3375 }
3376
3377 if (y->color == MEM_BLACK)
3378 mem_delete_fixup (x);
3379
3380 #ifdef GC_MALLOC_CHECK
3381 _free_internal (y);
3382 #else
3383 xfree (y);
3384 #endif
3385 }
3386
3387
3388 /* Re-establish the red-black properties of the tree, after a
3389 deletion. */
3390
3391 static void
3392 mem_delete_fixup (x)
3393 struct mem_node *x;
3394 {
3395 while (x != mem_root && x->color == MEM_BLACK)
3396 {
3397 if (x == x->parent->left)
3398 {
3399 struct mem_node *w = x->parent->right;
3400
3401 if (w->color == MEM_RED)
3402 {
3403 w->color = MEM_BLACK;
3404 x->parent->color = MEM_RED;
3405 mem_rotate_left (x->parent);
3406 w = x->parent->right;
3407 }
3408
3409 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3410 {
3411 w->color = MEM_RED;
3412 x = x->parent;
3413 }
3414 else
3415 {
3416 if (w->right->color == MEM_BLACK)
3417 {
3418 w->left->color = MEM_BLACK;
3419 w->color = MEM_RED;
3420 mem_rotate_right (w);
3421 w = x->parent->right;
3422 }
3423 w->color = x->parent->color;
3424 x->parent->color = MEM_BLACK;
3425 w->right->color = MEM_BLACK;
3426 mem_rotate_left (x->parent);
3427 x = mem_root;
3428 }
3429 }
3430 else
3431 {
3432 struct mem_node *w = x->parent->left;
3433
3434 if (w->color == MEM_RED)
3435 {
3436 w->color = MEM_BLACK;
3437 x->parent->color = MEM_RED;
3438 mem_rotate_right (x->parent);
3439 w = x->parent->left;
3440 }
3441
3442 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3443 {
3444 w->color = MEM_RED;
3445 x = x->parent;
3446 }
3447 else
3448 {
3449 if (w->left->color == MEM_BLACK)
3450 {
3451 w->right->color = MEM_BLACK;
3452 w->color = MEM_RED;
3453 mem_rotate_left (w);
3454 w = x->parent->left;
3455 }
3456
3457 w->color = x->parent->color;
3458 x->parent->color = MEM_BLACK;
3459 w->left->color = MEM_BLACK;
3460 mem_rotate_right (x->parent);
3461 x = mem_root;
3462 }
3463 }
3464 }
3465
3466 x->color = MEM_BLACK;
3467 }
3468
3469
3470 /* Value is non-zero if P is a pointer to a live Lisp string on
3471 the heap. M is a pointer to the mem_block for P. */
3472
3473 static INLINE int
3474 live_string_p (m, p)
3475 struct mem_node *m;
3476 void *p;
3477 {
3478 if (m->type == MEM_TYPE_STRING)
3479 {
3480 struct string_block *b = (struct string_block *) m->start;
3481 int offset = (char *) p - (char *) &b->strings[0];
3482
3483 /* P must point to the start of a Lisp_String structure, and it
3484 must not be on the free-list. */
3485 return (offset >= 0
3486 && offset % sizeof b->strings[0] == 0
3487 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3488 && ((struct Lisp_String *) p)->data != NULL);
3489 }
3490 else
3491 return 0;
3492 }
3493
3494
3495 /* Value is non-zero if P is a pointer to a live Lisp cons on
3496 the heap. M is a pointer to the mem_block for P. */
3497
3498 static INLINE int
3499 live_cons_p (m, p)
3500 struct mem_node *m;
3501 void *p;
3502 {
3503 if (m->type == MEM_TYPE_CONS)
3504 {
3505 struct cons_block *b = (struct cons_block *) m->start;
3506 int offset = (char *) p - (char *) &b->conses[0];
3507
3508 /* P must point to the start of a Lisp_Cons, not be
3509 one of the unused cells in the current cons block,
3510 and not be on the free-list. */
3511 return (offset >= 0
3512 && offset % sizeof b->conses[0] == 0
3513 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3514 && (b != cons_block
3515 || offset / sizeof b->conses[0] < cons_block_index)
3516 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3517 }
3518 else
3519 return 0;
3520 }
3521
3522
3523 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3524 the heap. M is a pointer to the mem_block for P. */
3525
3526 static INLINE int
3527 live_symbol_p (m, p)
3528 struct mem_node *m;
3529 void *p;
3530 {
3531 if (m->type == MEM_TYPE_SYMBOL)
3532 {
3533 struct symbol_block *b = (struct symbol_block *) m->start;
3534 int offset = (char *) p - (char *) &b->symbols[0];
3535
3536 /* P must point to the start of a Lisp_Symbol, not be
3537 one of the unused cells in the current symbol block,
3538 and not be on the free-list. */
3539 return (offset >= 0
3540 && offset % sizeof b->symbols[0] == 0
3541 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3542 && (b != symbol_block
3543 || offset / sizeof b->symbols[0] < symbol_block_index)
3544 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3545 }
3546 else
3547 return 0;
3548 }
3549
3550
3551 /* Value is non-zero if P is a pointer to a live Lisp float on
3552 the heap. M is a pointer to the mem_block for P. */
3553
3554 static INLINE int
3555 live_float_p (m, p)
3556 struct mem_node *m;
3557 void *p;
3558 {
3559 if (m->type == MEM_TYPE_FLOAT)
3560 {
3561 struct float_block *b = (struct float_block *) m->start;
3562 int offset = (char *) p - (char *) &b->floats[0];
3563
3564 /* P must point to the start of a Lisp_Float and not be
3565 one of the unused cells in the current float block. */
3566 return (offset >= 0
3567 && offset % sizeof b->floats[0] == 0
3568 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3569 && (b != float_block
3570 || offset / sizeof b->floats[0] < float_block_index));
3571 }
3572 else
3573 return 0;
3574 }
3575
3576
3577 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3578 the heap. M is a pointer to the mem_block for P. */
3579
3580 static INLINE int
3581 live_misc_p (m, p)
3582 struct mem_node *m;
3583 void *p;
3584 {
3585 if (m->type == MEM_TYPE_MISC)
3586 {
3587 struct marker_block *b = (struct marker_block *) m->start;
3588 int offset = (char *) p - (char *) &b->markers[0];
3589
3590 /* P must point to the start of a Lisp_Misc, not be
3591 one of the unused cells in the current misc block,
3592 and not be on the free-list. */
3593 return (offset >= 0
3594 && offset % sizeof b->markers[0] == 0
3595 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3596 && (b != marker_block
3597 || offset / sizeof b->markers[0] < marker_block_index)
3598 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3599 }
3600 else
3601 return 0;
3602 }
3603
3604
3605 /* Value is non-zero if P is a pointer to a live vector-like object.
3606 M is a pointer to the mem_block for P. */
3607
3608 static INLINE int
3609 live_vector_p (m, p)
3610 struct mem_node *m;
3611 void *p;
3612 {
3613 return (p == m->start
3614 && m->type >= MEM_TYPE_VECTOR
3615 && m->type <= MEM_TYPE_WINDOW);
3616 }
3617
3618
3619 /* Value is non-zero if P is a pointer to a live buffer. M is a
3620 pointer to the mem_block for P. */
3621
3622 static INLINE int
3623 live_buffer_p (m, p)
3624 struct mem_node *m;
3625 void *p;
3626 {
3627 /* P must point to the start of the block, and the buffer
3628 must not have been killed. */
3629 return (m->type == MEM_TYPE_BUFFER
3630 && p == m->start
3631 && !NILP (((struct buffer *) p)->name));
3632 }
3633
3634 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3635
3636 #if GC_MARK_STACK
3637
3638 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3639
3640 /* Array of objects that are kept alive because the C stack contains
3641 a pattern that looks like a reference to them . */
3642
3643 #define MAX_ZOMBIES 10
3644 static Lisp_Object zombies[MAX_ZOMBIES];
3645
3646 /* Number of zombie objects. */
3647
3648 static int nzombies;
3649
3650 /* Number of garbage collections. */
3651
3652 static int ngcs;
3653
3654 /* Average percentage of zombies per collection. */
3655
3656 static double avg_zombies;
3657
3658 /* Max. number of live and zombie objects. */
3659
3660 static int max_live, max_zombies;
3661
3662 /* Average number of live objects per GC. */
3663
3664 static double avg_live;
3665
3666 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3667 doc: /* Show information about live and zombie objects. */)
3668 ()
3669 {
3670 Lisp_Object args[8], zombie_list = Qnil;
3671 int i;
3672 for (i = 0; i < nzombies; i++)
3673 zombie_list = Fcons (zombies[i], zombie_list);
3674 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3675 args[1] = make_number (ngcs);
3676 args[2] = make_float (avg_live);
3677 args[3] = make_float (avg_zombies);
3678 args[4] = make_float (avg_zombies / avg_live / 100);
3679 args[5] = make_number (max_live);
3680 args[6] = make_number (max_zombies);
3681 args[7] = zombie_list;
3682 return Fmessage (8, args);
3683 }
3684
3685 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3686
3687
3688 /* Mark OBJ if we can prove it's a Lisp_Object. */
3689
3690 static INLINE void
3691 mark_maybe_object (obj)
3692 Lisp_Object obj;
3693 {
3694 void *po = (void *) XPNTR (obj);
3695 struct mem_node *m = mem_find (po);
3696
3697 if (m != MEM_NIL)
3698 {
3699 int mark_p = 0;
3700
3701 switch (XGCTYPE (obj))
3702 {
3703 case Lisp_String:
3704 mark_p = (live_string_p (m, po)
3705 && !STRING_MARKED_P ((struct Lisp_String *) po));
3706 break;
3707
3708 case Lisp_Cons:
3709 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3710 break;
3711
3712 case Lisp_Symbol:
3713 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3714 break;
3715
3716 case Lisp_Float:
3717 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3718 break;
3719
3720 case Lisp_Vectorlike:
3721 /* Note: can't check GC_BUFFERP before we know it's a
3722 buffer because checking that dereferences the pointer
3723 PO which might point anywhere. */
3724 if (live_vector_p (m, po))
3725 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3726 else if (live_buffer_p (m, po))
3727 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
3728 break;
3729
3730 case Lisp_Misc:
3731 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
3732 break;
3733
3734 case Lisp_Int:
3735 case Lisp_Type_Limit:
3736 break;
3737 }
3738
3739 if (mark_p)
3740 {
3741 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3742 if (nzombies < MAX_ZOMBIES)
3743 zombies[nzombies] = obj;
3744 ++nzombies;
3745 #endif
3746 mark_object (obj);
3747 }
3748 }
3749 }
3750
3751
3752 /* If P points to Lisp data, mark that as live if it isn't already
3753 marked. */
3754
3755 static INLINE void
3756 mark_maybe_pointer (p)
3757 void *p;
3758 {
3759 struct mem_node *m;
3760
3761 /* Quickly rule out some values which can't point to Lisp data. We
3762 assume that Lisp data is aligned on even addresses. */
3763 if ((EMACS_INT) p & 1)
3764 return;
3765
3766 m = mem_find (p);
3767 if (m != MEM_NIL)
3768 {
3769 Lisp_Object obj = Qnil;
3770
3771 switch (m->type)
3772 {
3773 case MEM_TYPE_NON_LISP:
3774 /* Nothing to do; not a pointer to Lisp memory. */
3775 break;
3776
3777 case MEM_TYPE_BUFFER:
3778 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
3779 XSETVECTOR (obj, p);
3780 break;
3781
3782 case MEM_TYPE_CONS:
3783 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
3784 XSETCONS (obj, p);
3785 break;
3786
3787 case MEM_TYPE_STRING:
3788 if (live_string_p (m, p)
3789 && !STRING_MARKED_P ((struct Lisp_String *) p))
3790 XSETSTRING (obj, p);
3791 break;
3792
3793 case MEM_TYPE_MISC:
3794 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
3795 XSETMISC (obj, p);
3796 break;
3797
3798 case MEM_TYPE_SYMBOL:
3799 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
3800 XSETSYMBOL (obj, p);
3801 break;
3802
3803 case MEM_TYPE_FLOAT:
3804 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
3805 XSETFLOAT (obj, p);
3806 break;
3807
3808 case MEM_TYPE_VECTOR:
3809 case MEM_TYPE_PROCESS:
3810 case MEM_TYPE_HASH_TABLE:
3811 case MEM_TYPE_FRAME:
3812 case MEM_TYPE_WINDOW:
3813 if (live_vector_p (m, p))
3814 {
3815 Lisp_Object tem;
3816 XSETVECTOR (tem, p);
3817 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
3818 obj = tem;
3819 }
3820 break;
3821
3822 default:
3823 abort ();
3824 }
3825
3826 if (!GC_NILP (obj))
3827 mark_object (obj);
3828 }
3829 }
3830
3831
3832 /* Mark Lisp objects referenced from the address range START..END. */
3833
3834 static void
3835 mark_memory (start, end)
3836 void *start, *end;
3837 {
3838 Lisp_Object *p;
3839 void **pp;
3840
3841 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3842 nzombies = 0;
3843 #endif
3844
3845 /* Make START the pointer to the start of the memory region,
3846 if it isn't already. */
3847 if (end < start)
3848 {
3849 void *tem = start;
3850 start = end;
3851 end = tem;
3852 }
3853
3854 /* Mark Lisp_Objects. */
3855 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
3856 mark_maybe_object (*p);
3857
3858 /* Mark Lisp data pointed to. This is necessary because, in some
3859 situations, the C compiler optimizes Lisp objects away, so that
3860 only a pointer to them remains. Example:
3861
3862 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
3863 ()
3864 {
3865 Lisp_Object obj = build_string ("test");
3866 struct Lisp_String *s = XSTRING (obj);
3867 Fgarbage_collect ();
3868 fprintf (stderr, "test `%s'\n", s->data);
3869 return Qnil;
3870 }
3871
3872 Here, `obj' isn't really used, and the compiler optimizes it
3873 away. The only reference to the life string is through the
3874 pointer `s'. */
3875
3876 for (pp = (void **) start; (void *) pp < end; ++pp)
3877 mark_maybe_pointer (*pp);
3878 }
3879
3880 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
3881 the GCC system configuration. In gcc 3.2, the only systems for
3882 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
3883 by others?) and ns32k-pc532-min. */
3884
3885 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
3886
3887 static int setjmp_tested_p, longjmps_done;
3888
3889 #define SETJMP_WILL_LIKELY_WORK "\
3890 \n\
3891 Emacs garbage collector has been changed to use conservative stack\n\
3892 marking. Emacs has determined that the method it uses to do the\n\
3893 marking will likely work on your system, but this isn't sure.\n\
3894 \n\
3895 If you are a system-programmer, or can get the help of a local wizard\n\
3896 who is, please take a look at the function mark_stack in alloc.c, and\n\
3897 verify that the methods used are appropriate for your system.\n\
3898 \n\
3899 Please mail the result to <emacs-devel@gnu.org>.\n\
3900 "
3901
3902 #define SETJMP_WILL_NOT_WORK "\
3903 \n\
3904 Emacs garbage collector has been changed to use conservative stack\n\
3905 marking. Emacs has determined that the default method it uses to do the\n\
3906 marking will not work on your system. We will need a system-dependent\n\
3907 solution for your system.\n\
3908 \n\
3909 Please take a look at the function mark_stack in alloc.c, and\n\
3910 try to find a way to make it work on your system.\n\
3911 \n\
3912 Note that you may get false negatives, depending on the compiler.\n\
3913 In particular, you need to use -O with GCC for this test.\n\
3914 \n\
3915 Please mail the result to <emacs-devel@gnu.org>.\n\
3916 "
3917
3918
3919 /* Perform a quick check if it looks like setjmp saves registers in a
3920 jmp_buf. Print a message to stderr saying so. When this test
3921 succeeds, this is _not_ a proof that setjmp is sufficient for
3922 conservative stack marking. Only the sources or a disassembly
3923 can prove that. */
3924
3925 static void
3926 test_setjmp ()
3927 {
3928 char buf[10];
3929 register int x;
3930 jmp_buf jbuf;
3931 int result = 0;
3932
3933 /* Arrange for X to be put in a register. */
3934 sprintf (buf, "1");
3935 x = strlen (buf);
3936 x = 2 * x - 1;
3937
3938 setjmp (jbuf);
3939 if (longjmps_done == 1)
3940 {
3941 /* Came here after the longjmp at the end of the function.
3942
3943 If x == 1, the longjmp has restored the register to its
3944 value before the setjmp, and we can hope that setjmp
3945 saves all such registers in the jmp_buf, although that
3946 isn't sure.
3947
3948 For other values of X, either something really strange is
3949 taking place, or the setjmp just didn't save the register. */
3950
3951 if (x == 1)
3952 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
3953 else
3954 {
3955 fprintf (stderr, SETJMP_WILL_NOT_WORK);
3956 exit (1);
3957 }
3958 }
3959
3960 ++longjmps_done;
3961 x = 2;
3962 if (longjmps_done == 1)
3963 longjmp (jbuf, 1);
3964 }
3965
3966 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
3967
3968
3969 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3970
3971 /* Abort if anything GCPRO'd doesn't survive the GC. */
3972
3973 static void
3974 check_gcpros ()
3975 {
3976 struct gcpro *p;
3977 int i;
3978
3979 for (p = gcprolist; p; p = p->next)
3980 for (i = 0; i < p->nvars; ++i)
3981 if (!survives_gc_p (p->var[i]))
3982 /* FIXME: It's not necessarily a bug. It might just be that the
3983 GCPRO is unnecessary or should release the object sooner. */
3984 abort ();
3985 }
3986
3987 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3988
3989 static void
3990 dump_zombies ()
3991 {
3992 int i;
3993
3994 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
3995 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
3996 {
3997 fprintf (stderr, " %d = ", i);
3998 debug_print (zombies[i]);
3999 }
4000 }
4001
4002 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4003
4004
4005 /* Mark live Lisp objects on the C stack.
4006
4007 There are several system-dependent problems to consider when
4008 porting this to new architectures:
4009
4010 Processor Registers
4011
4012 We have to mark Lisp objects in CPU registers that can hold local
4013 variables or are used to pass parameters.
4014
4015 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4016 something that either saves relevant registers on the stack, or
4017 calls mark_maybe_object passing it each register's contents.
4018
4019 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4020 implementation assumes that calling setjmp saves registers we need
4021 to see in a jmp_buf which itself lies on the stack. This doesn't
4022 have to be true! It must be verified for each system, possibly
4023 by taking a look at the source code of setjmp.
4024
4025 Stack Layout
4026
4027 Architectures differ in the way their processor stack is organized.
4028 For example, the stack might look like this
4029
4030 +----------------+
4031 | Lisp_Object | size = 4
4032 +----------------+
4033 | something else | size = 2
4034 +----------------+
4035 | Lisp_Object | size = 4
4036 +----------------+
4037 | ... |
4038
4039 In such a case, not every Lisp_Object will be aligned equally. To
4040 find all Lisp_Object on the stack it won't be sufficient to walk
4041 the stack in steps of 4 bytes. Instead, two passes will be
4042 necessary, one starting at the start of the stack, and a second
4043 pass starting at the start of the stack + 2. Likewise, if the
4044 minimal alignment of Lisp_Objects on the stack is 1, four passes
4045 would be necessary, each one starting with one byte more offset
4046 from the stack start.
4047
4048 The current code assumes by default that Lisp_Objects are aligned
4049 equally on the stack. */
4050
4051 static void
4052 mark_stack ()
4053 {
4054 int i;
4055 jmp_buf j;
4056 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4057 void *end;
4058
4059 /* This trick flushes the register windows so that all the state of
4060 the process is contained in the stack. */
4061 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4062 needed on ia64 too. See mach_dep.c, where it also says inline
4063 assembler doesn't work with relevant proprietary compilers. */
4064 #ifdef sparc
4065 asm ("ta 3");
4066 #endif
4067
4068 /* Save registers that we need to see on the stack. We need to see
4069 registers used to hold register variables and registers used to
4070 pass parameters. */
4071 #ifdef GC_SAVE_REGISTERS_ON_STACK
4072 GC_SAVE_REGISTERS_ON_STACK (end);
4073 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4074
4075 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4076 setjmp will definitely work, test it
4077 and print a message with the result
4078 of the test. */
4079 if (!setjmp_tested_p)
4080 {
4081 setjmp_tested_p = 1;
4082 test_setjmp ();
4083 }
4084 #endif /* GC_SETJMP_WORKS */
4085
4086 setjmp (j);
4087 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4088 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4089
4090 /* This assumes that the stack is a contiguous region in memory. If
4091 that's not the case, something has to be done here to iterate
4092 over the stack segments. */
4093 #ifndef GC_LISP_OBJECT_ALIGNMENT
4094 #ifdef __GNUC__
4095 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4096 #else
4097 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4098 #endif
4099 #endif
4100 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4101 mark_memory ((char *) stack_base + i, end);
4102
4103 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4104 check_gcpros ();
4105 #endif
4106 }
4107
4108
4109 #endif /* GC_MARK_STACK != 0 */
4110
4111
4112 \f
4113 /***********************************************************************
4114 Pure Storage Management
4115 ***********************************************************************/
4116
4117 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4118 pointer to it. TYPE is the Lisp type for which the memory is
4119 allocated. TYPE < 0 means it's not used for a Lisp object.
4120
4121 If store_pure_type_info is set and TYPE is >= 0, the type of
4122 the allocated object is recorded in pure_types. */
4123
4124 static POINTER_TYPE *
4125 pure_alloc (size, type)
4126 size_t size;
4127 int type;
4128 {
4129 POINTER_TYPE *result;
4130 #ifdef USE_LSB_TAG
4131 size_t alignment = (1 << GCTYPEBITS);
4132 #else
4133 size_t alignment = sizeof (EMACS_INT);
4134
4135 /* Give Lisp_Floats an extra alignment. */
4136 if (type == Lisp_Float)
4137 {
4138 #if defined __GNUC__ && __GNUC__ >= 2
4139 alignment = __alignof (struct Lisp_Float);
4140 #else
4141 alignment = sizeof (struct Lisp_Float);
4142 #endif
4143 }
4144 #endif
4145
4146 again:
4147 result = ALIGN (purebeg + pure_bytes_used, alignment);
4148 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4149
4150 if (pure_bytes_used <= pure_size)
4151 return result;
4152
4153 /* Don't allocate a large amount here,
4154 because it might get mmap'd and then its address
4155 might not be usable. */
4156 purebeg = (char *) xmalloc (10000);
4157 pure_size = 10000;
4158 pure_bytes_used_before_overflow += pure_bytes_used - size;
4159 pure_bytes_used = 0;
4160 goto again;
4161 }
4162
4163
4164 /* Print a warning if PURESIZE is too small. */
4165
4166 void
4167 check_pure_size ()
4168 {
4169 if (pure_bytes_used_before_overflow)
4170 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4171 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4172 }
4173
4174
4175 /* Return a string allocated in pure space. DATA is a buffer holding
4176 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4177 non-zero means make the result string multibyte.
4178
4179 Must get an error if pure storage is full, since if it cannot hold
4180 a large string it may be able to hold conses that point to that
4181 string; then the string is not protected from gc. */
4182
4183 Lisp_Object
4184 make_pure_string (data, nchars, nbytes, multibyte)
4185 char *data;
4186 int nchars, nbytes;
4187 int multibyte;
4188 {
4189 Lisp_Object string;
4190 struct Lisp_String *s;
4191
4192 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4193 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4194 s->size = nchars;
4195 s->size_byte = multibyte ? nbytes : -1;
4196 bcopy (data, s->data, nbytes);
4197 s->data[nbytes] = '\0';
4198 s->intervals = NULL_INTERVAL;
4199 XSETSTRING (string, s);
4200 return string;
4201 }
4202
4203
4204 /* Return a cons allocated from pure space. Give it pure copies
4205 of CAR as car and CDR as cdr. */
4206
4207 Lisp_Object
4208 pure_cons (car, cdr)
4209 Lisp_Object car, cdr;
4210 {
4211 register Lisp_Object new;
4212 struct Lisp_Cons *p;
4213
4214 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4215 XSETCONS (new, p);
4216 XSETCAR (new, Fpurecopy (car));
4217 XSETCDR (new, Fpurecopy (cdr));
4218 return new;
4219 }
4220
4221
4222 /* Value is a float object with value NUM allocated from pure space. */
4223
4224 Lisp_Object
4225 make_pure_float (num)
4226 double num;
4227 {
4228 register Lisp_Object new;
4229 struct Lisp_Float *p;
4230
4231 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4232 XSETFLOAT (new, p);
4233 XFLOAT_DATA (new) = num;
4234 return new;
4235 }
4236
4237
4238 /* Return a vector with room for LEN Lisp_Objects allocated from
4239 pure space. */
4240
4241 Lisp_Object
4242 make_pure_vector (len)
4243 EMACS_INT len;
4244 {
4245 Lisp_Object new;
4246 struct Lisp_Vector *p;
4247 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4248
4249 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4250 XSETVECTOR (new, p);
4251 XVECTOR (new)->size = len;
4252 return new;
4253 }
4254
4255
4256 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4257 doc: /* Make a copy of OBJECT in pure storage.
4258 Recursively copies contents of vectors and cons cells.
4259 Does not copy symbols. Copies strings without text properties. */)
4260 (obj)
4261 register Lisp_Object obj;
4262 {
4263 if (NILP (Vpurify_flag))
4264 return obj;
4265
4266 if (PURE_POINTER_P (XPNTR (obj)))
4267 return obj;
4268
4269 if (CONSP (obj))
4270 return pure_cons (XCAR (obj), XCDR (obj));
4271 else if (FLOATP (obj))
4272 return make_pure_float (XFLOAT_DATA (obj));
4273 else if (STRINGP (obj))
4274 return make_pure_string (SDATA (obj), SCHARS (obj),
4275 SBYTES (obj),
4276 STRING_MULTIBYTE (obj));
4277 else if (COMPILEDP (obj) || VECTORP (obj))
4278 {
4279 register struct Lisp_Vector *vec;
4280 register int i;
4281 EMACS_INT size;
4282
4283 size = XVECTOR (obj)->size;
4284 if (size & PSEUDOVECTOR_FLAG)
4285 size &= PSEUDOVECTOR_SIZE_MASK;
4286 vec = XVECTOR (make_pure_vector (size));
4287 for (i = 0; i < size; i++)
4288 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4289 if (COMPILEDP (obj))
4290 XSETCOMPILED (obj, vec);
4291 else
4292 XSETVECTOR (obj, vec);
4293 return obj;
4294 }
4295 else if (MARKERP (obj))
4296 error ("Attempt to copy a marker to pure storage");
4297
4298 return obj;
4299 }
4300
4301
4302 \f
4303 /***********************************************************************
4304 Protection from GC
4305 ***********************************************************************/
4306
4307 /* Put an entry in staticvec, pointing at the variable with address
4308 VARADDRESS. */
4309
4310 void
4311 staticpro (varaddress)
4312 Lisp_Object *varaddress;
4313 {
4314 staticvec[staticidx++] = varaddress;
4315 if (staticidx >= NSTATICS)
4316 abort ();
4317 }
4318
4319 struct catchtag
4320 {
4321 Lisp_Object tag;
4322 Lisp_Object val;
4323 struct catchtag *next;
4324 };
4325
4326 \f
4327 /***********************************************************************
4328 Protection from GC
4329 ***********************************************************************/
4330
4331 /* Temporarily prevent garbage collection. */
4332
4333 int
4334 inhibit_garbage_collection ()
4335 {
4336 int count = SPECPDL_INDEX ();
4337 int nbits = min (VALBITS, BITS_PER_INT);
4338
4339 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4340 return count;
4341 }
4342
4343
4344 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4345 doc: /* Reclaim storage for Lisp objects no longer needed.
4346 Garbage collection happens automatically if you cons more than
4347 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4348 `garbage-collect' normally returns a list with info on amount of space in use:
4349 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4350 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4351 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4352 (USED-STRINGS . FREE-STRINGS))
4353 However, if there was overflow in pure space, `garbage-collect'
4354 returns nil, because real GC can't be done. */)
4355 ()
4356 {
4357 register struct specbinding *bind;
4358 struct catchtag *catch;
4359 struct handler *handler;
4360 char stack_top_variable;
4361 register int i;
4362 int message_p;
4363 Lisp_Object total[8];
4364 int count = SPECPDL_INDEX ();
4365 EMACS_TIME t1, t2, t3;
4366
4367 if (abort_on_gc)
4368 abort ();
4369
4370 EMACS_GET_TIME (t1);
4371
4372 /* Can't GC if pure storage overflowed because we can't determine
4373 if something is a pure object or not. */
4374 if (pure_bytes_used_before_overflow)
4375 return Qnil;
4376
4377 /* In case user calls debug_print during GC,
4378 don't let that cause a recursive GC. */
4379 consing_since_gc = 0;
4380
4381 /* Save what's currently displayed in the echo area. */
4382 message_p = push_message ();
4383 record_unwind_protect (pop_message_unwind, Qnil);
4384
4385 /* Save a copy of the contents of the stack, for debugging. */
4386 #if MAX_SAVE_STACK > 0
4387 if (NILP (Vpurify_flag))
4388 {
4389 i = &stack_top_variable - stack_bottom;
4390 if (i < 0) i = -i;
4391 if (i < MAX_SAVE_STACK)
4392 {
4393 if (stack_copy == 0)
4394 stack_copy = (char *) xmalloc (stack_copy_size = i);
4395 else if (stack_copy_size < i)
4396 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4397 if (stack_copy)
4398 {
4399 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4400 bcopy (stack_bottom, stack_copy, i);
4401 else
4402 bcopy (&stack_top_variable, stack_copy, i);
4403 }
4404 }
4405 }
4406 #endif /* MAX_SAVE_STACK > 0 */
4407
4408 if (garbage_collection_messages)
4409 message1_nolog ("Garbage collecting...");
4410
4411 BLOCK_INPUT;
4412
4413 shrink_regexp_cache ();
4414
4415 /* Don't keep undo information around forever. */
4416 {
4417 register struct buffer *nextb = all_buffers;
4418
4419 while (nextb)
4420 {
4421 /* If a buffer's undo list is Qt, that means that undo is
4422 turned off in that buffer. Calling truncate_undo_list on
4423 Qt tends to return NULL, which effectively turns undo back on.
4424 So don't call truncate_undo_list if undo_list is Qt. */
4425 if (! EQ (nextb->undo_list, Qt))
4426 nextb->undo_list
4427 = truncate_undo_list (nextb->undo_list, undo_limit,
4428 undo_strong_limit, undo_outer_limit);
4429
4430 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4431 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4432 {
4433 /* If a buffer's gap size is more than 10% of the buffer
4434 size, or larger than 2000 bytes, then shrink it
4435 accordingly. Keep a minimum size of 20 bytes. */
4436 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4437
4438 if (nextb->text->gap_size > size)
4439 {
4440 struct buffer *save_current = current_buffer;
4441 current_buffer = nextb;
4442 make_gap (-(nextb->text->gap_size - size));
4443 current_buffer = save_current;
4444 }
4445 }
4446
4447 nextb = nextb->next;
4448 }
4449 }
4450
4451 gc_in_progress = 1;
4452
4453 /* clear_marks (); */
4454
4455 /* Mark all the special slots that serve as the roots of accessibility. */
4456
4457 for (i = 0; i < staticidx; i++)
4458 mark_object (*staticvec[i]);
4459
4460 for (bind = specpdl; bind != specpdl_ptr; bind++)
4461 {
4462 mark_object (bind->symbol);
4463 mark_object (bind->old_value);
4464 }
4465 mark_kboards ();
4466
4467 #ifdef USE_GTK
4468 {
4469 extern void xg_mark_data ();
4470 xg_mark_data ();
4471 }
4472 #endif
4473
4474 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4475 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4476 mark_stack ();
4477 #else
4478 {
4479 register struct gcpro *tail;
4480 for (tail = gcprolist; tail; tail = tail->next)
4481 for (i = 0; i < tail->nvars; i++)
4482 mark_object (tail->var[i]);
4483 }
4484 #endif
4485
4486 mark_byte_stack ();
4487 for (catch = catchlist; catch; catch = catch->next)
4488 {
4489 mark_object (catch->tag);
4490 mark_object (catch->val);
4491 }
4492 for (handler = handlerlist; handler; handler = handler->next)
4493 {
4494 mark_object (handler->handler);
4495 mark_object (handler->var);
4496 }
4497 mark_backtrace ();
4498
4499 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4500 mark_stack ();
4501 #endif
4502
4503 /* Everything is now marked, except for the things that require special
4504 finalization, i.e. the undo_list.
4505 Look thru every buffer's undo list
4506 for elements that update markers that were not marked,
4507 and delete them. */
4508 {
4509 register struct buffer *nextb = all_buffers;
4510
4511 while (nextb)
4512 {
4513 /* If a buffer's undo list is Qt, that means that undo is
4514 turned off in that buffer. Calling truncate_undo_list on
4515 Qt tends to return NULL, which effectively turns undo back on.
4516 So don't call truncate_undo_list if undo_list is Qt. */
4517 if (! EQ (nextb->undo_list, Qt))
4518 {
4519 Lisp_Object tail, prev;
4520 tail = nextb->undo_list;
4521 prev = Qnil;
4522 while (CONSP (tail))
4523 {
4524 if (GC_CONSP (XCAR (tail))
4525 && GC_MARKERP (XCAR (XCAR (tail)))
4526 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4527 {
4528 if (NILP (prev))
4529 nextb->undo_list = tail = XCDR (tail);
4530 else
4531 {
4532 tail = XCDR (tail);
4533 XSETCDR (prev, tail);
4534 }
4535 }
4536 else
4537 {
4538 prev = tail;
4539 tail = XCDR (tail);
4540 }
4541 }
4542 }
4543 /* Now that we have stripped the elements that need not be in the
4544 undo_list any more, we can finally mark the list. */
4545 mark_object (nextb->undo_list);
4546
4547 nextb = nextb->next;
4548 }
4549 }
4550
4551 gc_sweep ();
4552
4553 /* Clear the mark bits that we set in certain root slots. */
4554
4555 unmark_byte_stack ();
4556 VECTOR_UNMARK (&buffer_defaults);
4557 VECTOR_UNMARK (&buffer_local_symbols);
4558
4559 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4560 dump_zombies ();
4561 #endif
4562
4563 UNBLOCK_INPUT;
4564
4565 /* clear_marks (); */
4566 gc_in_progress = 0;
4567
4568 consing_since_gc = 0;
4569 if (gc_cons_threshold < 10000)
4570 gc_cons_threshold = 10000;
4571
4572 if (garbage_collection_messages)
4573 {
4574 if (message_p || minibuf_level > 0)
4575 restore_message ();
4576 else
4577 message1_nolog ("Garbage collecting...done");
4578 }
4579
4580 unbind_to (count, Qnil);
4581
4582 total[0] = Fcons (make_number (total_conses),
4583 make_number (total_free_conses));
4584 total[1] = Fcons (make_number (total_symbols),
4585 make_number (total_free_symbols));
4586 total[2] = Fcons (make_number (total_markers),
4587 make_number (total_free_markers));
4588 total[3] = make_number (total_string_size);
4589 total[4] = make_number (total_vector_size);
4590 total[5] = Fcons (make_number (total_floats),
4591 make_number (total_free_floats));
4592 total[6] = Fcons (make_number (total_intervals),
4593 make_number (total_free_intervals));
4594 total[7] = Fcons (make_number (total_strings),
4595 make_number (total_free_strings));
4596
4597 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4598 {
4599 /* Compute average percentage of zombies. */
4600 double nlive = 0;
4601
4602 for (i = 0; i < 7; ++i)
4603 if (CONSP (total[i]))
4604 nlive += XFASTINT (XCAR (total[i]));
4605
4606 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4607 max_live = max (nlive, max_live);
4608 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4609 max_zombies = max (nzombies, max_zombies);
4610 ++ngcs;
4611 }
4612 #endif
4613
4614 if (!NILP (Vpost_gc_hook))
4615 {
4616 int count = inhibit_garbage_collection ();
4617 safe_run_hooks (Qpost_gc_hook);
4618 unbind_to (count, Qnil);
4619 }
4620
4621 /* Accumulate statistics. */
4622 EMACS_GET_TIME (t2);
4623 EMACS_SUB_TIME (t3, t2, t1);
4624 if (FLOATP (Vgc_elapsed))
4625 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
4626 EMACS_SECS (t3) +
4627 EMACS_USECS (t3) * 1.0e-6);
4628 gcs_done++;
4629
4630 return Flist (sizeof total / sizeof *total, total);
4631 }
4632
4633
4634 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
4635 only interesting objects referenced from glyphs are strings. */
4636
4637 static void
4638 mark_glyph_matrix (matrix)
4639 struct glyph_matrix *matrix;
4640 {
4641 struct glyph_row *row = matrix->rows;
4642 struct glyph_row *end = row + matrix->nrows;
4643
4644 for (; row < end; ++row)
4645 if (row->enabled_p)
4646 {
4647 int area;
4648 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
4649 {
4650 struct glyph *glyph = row->glyphs[area];
4651 struct glyph *end_glyph = glyph + row->used[area];
4652
4653 for (; glyph < end_glyph; ++glyph)
4654 if (GC_STRINGP (glyph->object)
4655 && !STRING_MARKED_P (XSTRING (glyph->object)))
4656 mark_object (glyph->object);
4657 }
4658 }
4659 }
4660
4661
4662 /* Mark Lisp faces in the face cache C. */
4663
4664 static void
4665 mark_face_cache (c)
4666 struct face_cache *c;
4667 {
4668 if (c)
4669 {
4670 int i, j;
4671 for (i = 0; i < c->used; ++i)
4672 {
4673 struct face *face = FACE_FROM_ID (c->f, i);
4674
4675 if (face)
4676 {
4677 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
4678 mark_object (face->lface[j]);
4679 }
4680 }
4681 }
4682 }
4683
4684
4685 #ifdef HAVE_WINDOW_SYSTEM
4686
4687 /* Mark Lisp objects in image IMG. */
4688
4689 static void
4690 mark_image (img)
4691 struct image *img;
4692 {
4693 mark_object (img->spec);
4694
4695 if (!NILP (img->data.lisp_val))
4696 mark_object (img->data.lisp_val);
4697 }
4698
4699
4700 /* Mark Lisp objects in image cache of frame F. It's done this way so
4701 that we don't have to include xterm.h here. */
4702
4703 static void
4704 mark_image_cache (f)
4705 struct frame *f;
4706 {
4707 forall_images_in_image_cache (f, mark_image);
4708 }
4709
4710 #endif /* HAVE_X_WINDOWS */
4711
4712
4713 \f
4714 /* Mark reference to a Lisp_Object.
4715 If the object referred to has not been seen yet, recursively mark
4716 all the references contained in it. */
4717
4718 #define LAST_MARKED_SIZE 500
4719 Lisp_Object last_marked[LAST_MARKED_SIZE];
4720 int last_marked_index;
4721
4722 /* For debugging--call abort when we cdr down this many
4723 links of a list, in mark_object. In debugging,
4724 the call to abort will hit a breakpoint.
4725 Normally this is zero and the check never goes off. */
4726 int mark_object_loop_halt;
4727
4728 void
4729 mark_object (arg)
4730 Lisp_Object arg;
4731 {
4732 register Lisp_Object obj = arg;
4733 #ifdef GC_CHECK_MARKED_OBJECTS
4734 void *po;
4735 struct mem_node *m;
4736 #endif
4737 int cdr_count = 0;
4738
4739 loop:
4740
4741 if (PURE_POINTER_P (XPNTR (obj)))
4742 return;
4743
4744 last_marked[last_marked_index++] = obj;
4745 if (last_marked_index == LAST_MARKED_SIZE)
4746 last_marked_index = 0;
4747
4748 /* Perform some sanity checks on the objects marked here. Abort if
4749 we encounter an object we know is bogus. This increases GC time
4750 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
4751 #ifdef GC_CHECK_MARKED_OBJECTS
4752
4753 po = (void *) XPNTR (obj);
4754
4755 /* Check that the object pointed to by PO is known to be a Lisp
4756 structure allocated from the heap. */
4757 #define CHECK_ALLOCATED() \
4758 do { \
4759 m = mem_find (po); \
4760 if (m == MEM_NIL) \
4761 abort (); \
4762 } while (0)
4763
4764 /* Check that the object pointed to by PO is live, using predicate
4765 function LIVEP. */
4766 #define CHECK_LIVE(LIVEP) \
4767 do { \
4768 if (!LIVEP (m, po)) \
4769 abort (); \
4770 } while (0)
4771
4772 /* Check both of the above conditions. */
4773 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
4774 do { \
4775 CHECK_ALLOCATED (); \
4776 CHECK_LIVE (LIVEP); \
4777 } while (0) \
4778
4779 #else /* not GC_CHECK_MARKED_OBJECTS */
4780
4781 #define CHECK_ALLOCATED() (void) 0
4782 #define CHECK_LIVE(LIVEP) (void) 0
4783 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
4784
4785 #endif /* not GC_CHECK_MARKED_OBJECTS */
4786
4787 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
4788 {
4789 case Lisp_String:
4790 {
4791 register struct Lisp_String *ptr = XSTRING (obj);
4792 CHECK_ALLOCATED_AND_LIVE (live_string_p);
4793 MARK_INTERVAL_TREE (ptr->intervals);
4794 MARK_STRING (ptr);
4795 #ifdef GC_CHECK_STRING_BYTES
4796 /* Check that the string size recorded in the string is the
4797 same as the one recorded in the sdata structure. */
4798 CHECK_STRING_BYTES (ptr);
4799 #endif /* GC_CHECK_STRING_BYTES */
4800 }
4801 break;
4802
4803 case Lisp_Vectorlike:
4804 #ifdef GC_CHECK_MARKED_OBJECTS
4805 m = mem_find (po);
4806 if (m == MEM_NIL && !GC_SUBRP (obj)
4807 && po != &buffer_defaults
4808 && po != &buffer_local_symbols)
4809 abort ();
4810 #endif /* GC_CHECK_MARKED_OBJECTS */
4811
4812 if (GC_BUFFERP (obj))
4813 {
4814 if (!VECTOR_MARKED_P (XBUFFER (obj)))
4815 {
4816 #ifdef GC_CHECK_MARKED_OBJECTS
4817 if (po != &buffer_defaults && po != &buffer_local_symbols)
4818 {
4819 struct buffer *b;
4820 for (b = all_buffers; b && b != po; b = b->next)
4821 ;
4822 if (b == NULL)
4823 abort ();
4824 }
4825 #endif /* GC_CHECK_MARKED_OBJECTS */
4826 mark_buffer (obj);
4827 }
4828 }
4829 else if (GC_SUBRP (obj))
4830 break;
4831 else if (GC_COMPILEDP (obj))
4832 /* We could treat this just like a vector, but it is better to
4833 save the COMPILED_CONSTANTS element for last and avoid
4834 recursion there. */
4835 {
4836 register struct Lisp_Vector *ptr = XVECTOR (obj);
4837 register EMACS_INT size = ptr->size;
4838 register int i;
4839
4840 if (VECTOR_MARKED_P (ptr))
4841 break; /* Already marked */
4842
4843 CHECK_LIVE (live_vector_p);
4844 VECTOR_MARK (ptr); /* Else mark it */
4845 size &= PSEUDOVECTOR_SIZE_MASK;
4846 for (i = 0; i < size; i++) /* and then mark its elements */
4847 {
4848 if (i != COMPILED_CONSTANTS)
4849 mark_object (ptr->contents[i]);
4850 }
4851 obj = ptr->contents[COMPILED_CONSTANTS];
4852 goto loop;
4853 }
4854 else if (GC_FRAMEP (obj))
4855 {
4856 register struct frame *ptr = XFRAME (obj);
4857
4858 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4859 VECTOR_MARK (ptr); /* Else mark it */
4860
4861 CHECK_LIVE (live_vector_p);
4862 mark_object (ptr->name);
4863 mark_object (ptr->icon_name);
4864 mark_object (ptr->title);
4865 mark_object (ptr->focus_frame);
4866 mark_object (ptr->selected_window);
4867 mark_object (ptr->minibuffer_window);
4868 mark_object (ptr->param_alist);
4869 mark_object (ptr->scroll_bars);
4870 mark_object (ptr->condemned_scroll_bars);
4871 mark_object (ptr->menu_bar_items);
4872 mark_object (ptr->face_alist);
4873 mark_object (ptr->menu_bar_vector);
4874 mark_object (ptr->buffer_predicate);
4875 mark_object (ptr->buffer_list);
4876 mark_object (ptr->menu_bar_window);
4877 mark_object (ptr->tool_bar_window);
4878 mark_face_cache (ptr->face_cache);
4879 #ifdef HAVE_WINDOW_SYSTEM
4880 mark_image_cache (ptr);
4881 mark_object (ptr->tool_bar_items);
4882 mark_object (ptr->desired_tool_bar_string);
4883 mark_object (ptr->current_tool_bar_string);
4884 #endif /* HAVE_WINDOW_SYSTEM */
4885 }
4886 else if (GC_BOOL_VECTOR_P (obj))
4887 {
4888 register struct Lisp_Vector *ptr = XVECTOR (obj);
4889
4890 if (VECTOR_MARKED_P (ptr))
4891 break; /* Already marked */
4892 CHECK_LIVE (live_vector_p);
4893 VECTOR_MARK (ptr); /* Else mark it */
4894 }
4895 else if (GC_WINDOWP (obj))
4896 {
4897 register struct Lisp_Vector *ptr = XVECTOR (obj);
4898 struct window *w = XWINDOW (obj);
4899 register int i;
4900
4901 /* Stop if already marked. */
4902 if (VECTOR_MARKED_P (ptr))
4903 break;
4904
4905 /* Mark it. */
4906 CHECK_LIVE (live_vector_p);
4907 VECTOR_MARK (ptr);
4908
4909 /* There is no Lisp data above The member CURRENT_MATRIX in
4910 struct WINDOW. Stop marking when that slot is reached. */
4911 for (i = 0;
4912 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
4913 i++)
4914 mark_object (ptr->contents[i]);
4915
4916 /* Mark glyphs for leaf windows. Marking window matrices is
4917 sufficient because frame matrices use the same glyph
4918 memory. */
4919 if (NILP (w->hchild)
4920 && NILP (w->vchild)
4921 && w->current_matrix)
4922 {
4923 mark_glyph_matrix (w->current_matrix);
4924 mark_glyph_matrix (w->desired_matrix);
4925 }
4926 }
4927 else if (GC_HASH_TABLE_P (obj))
4928 {
4929 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
4930
4931 /* Stop if already marked. */
4932 if (VECTOR_MARKED_P (h))
4933 break;
4934
4935 /* Mark it. */
4936 CHECK_LIVE (live_vector_p);
4937 VECTOR_MARK (h);
4938
4939 /* Mark contents. */
4940 /* Do not mark next_free or next_weak.
4941 Being in the next_weak chain
4942 should not keep the hash table alive.
4943 No need to mark `count' since it is an integer. */
4944 mark_object (h->test);
4945 mark_object (h->weak);
4946 mark_object (h->rehash_size);
4947 mark_object (h->rehash_threshold);
4948 mark_object (h->hash);
4949 mark_object (h->next);
4950 mark_object (h->index);
4951 mark_object (h->user_hash_function);
4952 mark_object (h->user_cmp_function);
4953
4954 /* If hash table is not weak, mark all keys and values.
4955 For weak tables, mark only the vector. */
4956 if (GC_NILP (h->weak))
4957 mark_object (h->key_and_value);
4958 else
4959 VECTOR_MARK (XVECTOR (h->key_and_value));
4960 }
4961 else
4962 {
4963 register struct Lisp_Vector *ptr = XVECTOR (obj);
4964 register EMACS_INT size = ptr->size;
4965 register int i;
4966
4967 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4968 CHECK_LIVE (live_vector_p);
4969 VECTOR_MARK (ptr); /* Else mark it */
4970 if (size & PSEUDOVECTOR_FLAG)
4971 size &= PSEUDOVECTOR_SIZE_MASK;
4972
4973 for (i = 0; i < size; i++) /* and then mark its elements */
4974 mark_object (ptr->contents[i]);
4975 }
4976 break;
4977
4978 case Lisp_Symbol:
4979 {
4980 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
4981 struct Lisp_Symbol *ptrx;
4982
4983 if (ptr->gcmarkbit) break;
4984 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
4985 ptr->gcmarkbit = 1;
4986 mark_object (ptr->value);
4987 mark_object (ptr->function);
4988 mark_object (ptr->plist);
4989
4990 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
4991 MARK_STRING (XSTRING (ptr->xname));
4992 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
4993
4994 /* Note that we do not mark the obarray of the symbol.
4995 It is safe not to do so because nothing accesses that
4996 slot except to check whether it is nil. */
4997 ptr = ptr->next;
4998 if (ptr)
4999 {
5000 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5001 XSETSYMBOL (obj, ptrx);
5002 goto loop;
5003 }
5004 }
5005 break;
5006
5007 case Lisp_Misc:
5008 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5009 if (XMARKER (obj)->gcmarkbit)
5010 break;
5011 XMARKER (obj)->gcmarkbit = 1;
5012
5013 switch (XMISCTYPE (obj))
5014 {
5015 case Lisp_Misc_Buffer_Local_Value:
5016 case Lisp_Misc_Some_Buffer_Local_Value:
5017 {
5018 register struct Lisp_Buffer_Local_Value *ptr
5019 = XBUFFER_LOCAL_VALUE (obj);
5020 /* If the cdr is nil, avoid recursion for the car. */
5021 if (EQ (ptr->cdr, Qnil))
5022 {
5023 obj = ptr->realvalue;
5024 goto loop;
5025 }
5026 mark_object (ptr->realvalue);
5027 mark_object (ptr->buffer);
5028 mark_object (ptr->frame);
5029 obj = ptr->cdr;
5030 goto loop;
5031 }
5032
5033 case Lisp_Misc_Marker:
5034 /* DO NOT mark thru the marker's chain.
5035 The buffer's markers chain does not preserve markers from gc;
5036 instead, markers are removed from the chain when freed by gc. */
5037 break;
5038
5039 case Lisp_Misc_Intfwd:
5040 case Lisp_Misc_Boolfwd:
5041 case Lisp_Misc_Objfwd:
5042 case Lisp_Misc_Buffer_Objfwd:
5043 case Lisp_Misc_Kboard_Objfwd:
5044 /* Don't bother with Lisp_Buffer_Objfwd,
5045 since all markable slots in current buffer marked anyway. */
5046 /* Don't need to do Lisp_Objfwd, since the places they point
5047 are protected with staticpro. */
5048 break;
5049
5050 case Lisp_Misc_Save_Value:
5051 #if GC_MARK_STACK
5052 {
5053 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5054 /* If DOGC is set, POINTER is the address of a memory
5055 area containing INTEGER potential Lisp_Objects. */
5056 if (ptr->dogc)
5057 {
5058 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5059 int nelt;
5060 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5061 mark_maybe_object (*p);
5062 }
5063 }
5064 #endif
5065 break;
5066
5067 case Lisp_Misc_Overlay:
5068 {
5069 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5070 mark_object (ptr->start);
5071 mark_object (ptr->end);
5072 mark_object (ptr->plist);
5073 if (ptr->next)
5074 {
5075 XSETMISC (obj, ptr->next);
5076 goto loop;
5077 }
5078 }
5079 break;
5080
5081 default:
5082 abort ();
5083 }
5084 break;
5085
5086 case Lisp_Cons:
5087 {
5088 register struct Lisp_Cons *ptr = XCONS (obj);
5089 if (CONS_MARKED_P (ptr)) break;
5090 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5091 CONS_MARK (ptr);
5092 /* If the cdr is nil, avoid recursion for the car. */
5093 if (EQ (ptr->cdr, Qnil))
5094 {
5095 obj = ptr->car;
5096 cdr_count = 0;
5097 goto loop;
5098 }
5099 mark_object (ptr->car);
5100 obj = ptr->cdr;
5101 cdr_count++;
5102 if (cdr_count == mark_object_loop_halt)
5103 abort ();
5104 goto loop;
5105 }
5106
5107 case Lisp_Float:
5108 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5109 FLOAT_MARK (XFLOAT (obj));
5110 break;
5111
5112 case Lisp_Int:
5113 break;
5114
5115 default:
5116 abort ();
5117 }
5118
5119 #undef CHECK_LIVE
5120 #undef CHECK_ALLOCATED
5121 #undef CHECK_ALLOCATED_AND_LIVE
5122 }
5123
5124 /* Mark the pointers in a buffer structure. */
5125
5126 static void
5127 mark_buffer (buf)
5128 Lisp_Object buf;
5129 {
5130 register struct buffer *buffer = XBUFFER (buf);
5131 register Lisp_Object *ptr, tmp;
5132 Lisp_Object base_buffer;
5133
5134 VECTOR_MARK (buffer);
5135
5136 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5137
5138 /* For now, we just don't mark the undo_list. It's done later in
5139 a special way just before the sweep phase, and after stripping
5140 some of its elements that are not needed any more. */
5141
5142 if (buffer->overlays_before)
5143 {
5144 XSETMISC (tmp, buffer->overlays_before);
5145 mark_object (tmp);
5146 }
5147 if (buffer->overlays_after)
5148 {
5149 XSETMISC (tmp, buffer->overlays_after);
5150 mark_object (tmp);
5151 }
5152
5153 for (ptr = &buffer->name;
5154 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5155 ptr++)
5156 mark_object (*ptr);
5157
5158 /* If this is an indirect buffer, mark its base buffer. */
5159 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5160 {
5161 XSETBUFFER (base_buffer, buffer->base_buffer);
5162 mark_buffer (base_buffer);
5163 }
5164 }
5165
5166
5167 /* Value is non-zero if OBJ will survive the current GC because it's
5168 either marked or does not need to be marked to survive. */
5169
5170 int
5171 survives_gc_p (obj)
5172 Lisp_Object obj;
5173 {
5174 int survives_p;
5175
5176 switch (XGCTYPE (obj))
5177 {
5178 case Lisp_Int:
5179 survives_p = 1;
5180 break;
5181
5182 case Lisp_Symbol:
5183 survives_p = XSYMBOL (obj)->gcmarkbit;
5184 break;
5185
5186 case Lisp_Misc:
5187 survives_p = XMARKER (obj)->gcmarkbit;
5188 break;
5189
5190 case Lisp_String:
5191 survives_p = STRING_MARKED_P (XSTRING (obj));
5192 break;
5193
5194 case Lisp_Vectorlike:
5195 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5196 break;
5197
5198 case Lisp_Cons:
5199 survives_p = CONS_MARKED_P (XCONS (obj));
5200 break;
5201
5202 case Lisp_Float:
5203 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5204 break;
5205
5206 default:
5207 abort ();
5208 }
5209
5210 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5211 }
5212
5213
5214 \f
5215 /* Sweep: find all structures not marked, and free them. */
5216
5217 static void
5218 gc_sweep ()
5219 {
5220 /* Remove or mark entries in weak hash tables.
5221 This must be done before any object is unmarked. */
5222 sweep_weak_hash_tables ();
5223
5224 sweep_strings ();
5225 #ifdef GC_CHECK_STRING_BYTES
5226 if (!noninteractive)
5227 check_string_bytes (1);
5228 #endif
5229
5230 /* Put all unmarked conses on free list */
5231 {
5232 register struct cons_block *cblk;
5233 struct cons_block **cprev = &cons_block;
5234 register int lim = cons_block_index;
5235 register int num_free = 0, num_used = 0;
5236
5237 cons_free_list = 0;
5238
5239 for (cblk = cons_block; cblk; cblk = *cprev)
5240 {
5241 register int i;
5242 int this_free = 0;
5243 for (i = 0; i < lim; i++)
5244 if (!CONS_MARKED_P (&cblk->conses[i]))
5245 {
5246 this_free++;
5247 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
5248 cons_free_list = &cblk->conses[i];
5249 #if GC_MARK_STACK
5250 cons_free_list->car = Vdead;
5251 #endif
5252 }
5253 else
5254 {
5255 num_used++;
5256 CONS_UNMARK (&cblk->conses[i]);
5257 }
5258 lim = CONS_BLOCK_SIZE;
5259 /* If this block contains only free conses and we have already
5260 seen more than two blocks worth of free conses then deallocate
5261 this block. */
5262 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5263 {
5264 *cprev = cblk->next;
5265 /* Unhook from the free list. */
5266 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
5267 lisp_align_free (cblk);
5268 n_cons_blocks--;
5269 }
5270 else
5271 {
5272 num_free += this_free;
5273 cprev = &cblk->next;
5274 }
5275 }
5276 total_conses = num_used;
5277 total_free_conses = num_free;
5278 }
5279
5280 /* Put all unmarked floats on free list */
5281 {
5282 register struct float_block *fblk;
5283 struct float_block **fprev = &float_block;
5284 register int lim = float_block_index;
5285 register int num_free = 0, num_used = 0;
5286
5287 float_free_list = 0;
5288
5289 for (fblk = float_block; fblk; fblk = *fprev)
5290 {
5291 register int i;
5292 int this_free = 0;
5293 for (i = 0; i < lim; i++)
5294 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5295 {
5296 this_free++;
5297 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
5298 float_free_list = &fblk->floats[i];
5299 }
5300 else
5301 {
5302 num_used++;
5303 FLOAT_UNMARK (&fblk->floats[i]);
5304 }
5305 lim = FLOAT_BLOCK_SIZE;
5306 /* If this block contains only free floats and we have already
5307 seen more than two blocks worth of free floats then deallocate
5308 this block. */
5309 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5310 {
5311 *fprev = fblk->next;
5312 /* Unhook from the free list. */
5313 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
5314 lisp_align_free (fblk);
5315 n_float_blocks--;
5316 }
5317 else
5318 {
5319 num_free += this_free;
5320 fprev = &fblk->next;
5321 }
5322 }
5323 total_floats = num_used;
5324 total_free_floats = num_free;
5325 }
5326
5327 /* Put all unmarked intervals on free list */
5328 {
5329 register struct interval_block *iblk;
5330 struct interval_block **iprev = &interval_block;
5331 register int lim = interval_block_index;
5332 register int num_free = 0, num_used = 0;
5333
5334 interval_free_list = 0;
5335
5336 for (iblk = interval_block; iblk; iblk = *iprev)
5337 {
5338 register int i;
5339 int this_free = 0;
5340
5341 for (i = 0; i < lim; i++)
5342 {
5343 if (!iblk->intervals[i].gcmarkbit)
5344 {
5345 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5346 interval_free_list = &iblk->intervals[i];
5347 this_free++;
5348 }
5349 else
5350 {
5351 num_used++;
5352 iblk->intervals[i].gcmarkbit = 0;
5353 }
5354 }
5355 lim = INTERVAL_BLOCK_SIZE;
5356 /* If this block contains only free intervals and we have already
5357 seen more than two blocks worth of free intervals then
5358 deallocate this block. */
5359 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5360 {
5361 *iprev = iblk->next;
5362 /* Unhook from the free list. */
5363 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5364 lisp_free (iblk);
5365 n_interval_blocks--;
5366 }
5367 else
5368 {
5369 num_free += this_free;
5370 iprev = &iblk->next;
5371 }
5372 }
5373 total_intervals = num_used;
5374 total_free_intervals = num_free;
5375 }
5376
5377 /* Put all unmarked symbols on free list */
5378 {
5379 register struct symbol_block *sblk;
5380 struct symbol_block **sprev = &symbol_block;
5381 register int lim = symbol_block_index;
5382 register int num_free = 0, num_used = 0;
5383
5384 symbol_free_list = NULL;
5385
5386 for (sblk = symbol_block; sblk; sblk = *sprev)
5387 {
5388 int this_free = 0;
5389 struct Lisp_Symbol *sym = sblk->symbols;
5390 struct Lisp_Symbol *end = sym + lim;
5391
5392 for (; sym < end; ++sym)
5393 {
5394 /* Check if the symbol was created during loadup. In such a case
5395 it might be pointed to by pure bytecode which we don't trace,
5396 so we conservatively assume that it is live. */
5397 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5398
5399 if (!sym->gcmarkbit && !pure_p)
5400 {
5401 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5402 symbol_free_list = sym;
5403 #if GC_MARK_STACK
5404 symbol_free_list->function = Vdead;
5405 #endif
5406 ++this_free;
5407 }
5408 else
5409 {
5410 ++num_used;
5411 if (!pure_p)
5412 UNMARK_STRING (XSTRING (sym->xname));
5413 sym->gcmarkbit = 0;
5414 }
5415 }
5416
5417 lim = SYMBOL_BLOCK_SIZE;
5418 /* If this block contains only free symbols and we have already
5419 seen more than two blocks worth of free symbols then deallocate
5420 this block. */
5421 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5422 {
5423 *sprev = sblk->next;
5424 /* Unhook from the free list. */
5425 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
5426 lisp_free (sblk);
5427 n_symbol_blocks--;
5428 }
5429 else
5430 {
5431 num_free += this_free;
5432 sprev = &sblk->next;
5433 }
5434 }
5435 total_symbols = num_used;
5436 total_free_symbols = num_free;
5437 }
5438
5439 /* Put all unmarked misc's on free list.
5440 For a marker, first unchain it from the buffer it points into. */
5441 {
5442 register struct marker_block *mblk;
5443 struct marker_block **mprev = &marker_block;
5444 register int lim = marker_block_index;
5445 register int num_free = 0, num_used = 0;
5446
5447 marker_free_list = 0;
5448
5449 for (mblk = marker_block; mblk; mblk = *mprev)
5450 {
5451 register int i;
5452 int this_free = 0;
5453
5454 for (i = 0; i < lim; i++)
5455 {
5456 if (!mblk->markers[i].u_marker.gcmarkbit)
5457 {
5458 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
5459 unchain_marker (&mblk->markers[i].u_marker);
5460 /* Set the type of the freed object to Lisp_Misc_Free.
5461 We could leave the type alone, since nobody checks it,
5462 but this might catch bugs faster. */
5463 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5464 mblk->markers[i].u_free.chain = marker_free_list;
5465 marker_free_list = &mblk->markers[i];
5466 this_free++;
5467 }
5468 else
5469 {
5470 num_used++;
5471 mblk->markers[i].u_marker.gcmarkbit = 0;
5472 }
5473 }
5474 lim = MARKER_BLOCK_SIZE;
5475 /* If this block contains only free markers and we have already
5476 seen more than two blocks worth of free markers then deallocate
5477 this block. */
5478 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5479 {
5480 *mprev = mblk->next;
5481 /* Unhook from the free list. */
5482 marker_free_list = mblk->markers[0].u_free.chain;
5483 lisp_free (mblk);
5484 n_marker_blocks--;
5485 }
5486 else
5487 {
5488 num_free += this_free;
5489 mprev = &mblk->next;
5490 }
5491 }
5492
5493 total_markers = num_used;
5494 total_free_markers = num_free;
5495 }
5496
5497 /* Free all unmarked buffers */
5498 {
5499 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5500
5501 while (buffer)
5502 if (!VECTOR_MARKED_P (buffer))
5503 {
5504 if (prev)
5505 prev->next = buffer->next;
5506 else
5507 all_buffers = buffer->next;
5508 next = buffer->next;
5509 lisp_free (buffer);
5510 buffer = next;
5511 }
5512 else
5513 {
5514 VECTOR_UNMARK (buffer);
5515 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
5516 prev = buffer, buffer = buffer->next;
5517 }
5518 }
5519
5520 /* Free all unmarked vectors */
5521 {
5522 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5523 total_vector_size = 0;
5524
5525 while (vector)
5526 if (!VECTOR_MARKED_P (vector))
5527 {
5528 if (prev)
5529 prev->next = vector->next;
5530 else
5531 all_vectors = vector->next;
5532 next = vector->next;
5533 lisp_free (vector);
5534 n_vectors--;
5535 vector = next;
5536
5537 }
5538 else
5539 {
5540 VECTOR_UNMARK (vector);
5541 if (vector->size & PSEUDOVECTOR_FLAG)
5542 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5543 else
5544 total_vector_size += vector->size;
5545 prev = vector, vector = vector->next;
5546 }
5547 }
5548
5549 #ifdef GC_CHECK_STRING_BYTES
5550 if (!noninteractive)
5551 check_string_bytes (1);
5552 #endif
5553 }
5554
5555
5556
5557 \f
5558 /* Debugging aids. */
5559
5560 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
5561 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
5562 This may be helpful in debugging Emacs's memory usage.
5563 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5564 ()
5565 {
5566 Lisp_Object end;
5567
5568 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
5569
5570 return end;
5571 }
5572
5573 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
5574 doc: /* Return a list of counters that measure how much consing there has been.
5575 Each of these counters increments for a certain kind of object.
5576 The counters wrap around from the largest positive integer to zero.
5577 Garbage collection does not decrease them.
5578 The elements of the value are as follows:
5579 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5580 All are in units of 1 = one object consed
5581 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5582 objects consed.
5583 MISCS include overlays, markers, and some internal types.
5584 Frames, windows, buffers, and subprocesses count as vectors
5585 (but the contents of a buffer's text do not count here). */)
5586 ()
5587 {
5588 Lisp_Object consed[8];
5589
5590 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5591 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5592 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5593 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5594 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5595 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5596 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5597 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
5598
5599 return Flist (8, consed);
5600 }
5601
5602 int suppress_checking;
5603 void
5604 die (msg, file, line)
5605 const char *msg;
5606 const char *file;
5607 int line;
5608 {
5609 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5610 file, line, msg);
5611 abort ();
5612 }
5613 \f
5614 /* Initialization */
5615
5616 void
5617 init_alloc_once ()
5618 {
5619 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
5620 purebeg = PUREBEG;
5621 pure_size = PURESIZE;
5622 pure_bytes_used = 0;
5623 pure_bytes_used_before_overflow = 0;
5624
5625 /* Initialize the list of free aligned blocks. */
5626 free_ablock = NULL;
5627
5628 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
5629 mem_init ();
5630 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5631 #endif
5632
5633 all_vectors = 0;
5634 ignore_warnings = 1;
5635 #ifdef DOUG_LEA_MALLOC
5636 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5637 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
5638 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
5639 #endif
5640 init_strings ();
5641 init_cons ();
5642 init_symbol ();
5643 init_marker ();
5644 init_float ();
5645 init_intervals ();
5646
5647 #ifdef REL_ALLOC
5648 malloc_hysteresis = 32;
5649 #else
5650 malloc_hysteresis = 0;
5651 #endif
5652
5653 spare_memory = (char *) malloc (SPARE_MEMORY);
5654
5655 ignore_warnings = 0;
5656 gcprolist = 0;
5657 byte_stack_list = 0;
5658 staticidx = 0;
5659 consing_since_gc = 0;
5660 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
5661 #ifdef VIRT_ADDR_VARIES
5662 malloc_sbrk_unused = 1<<22; /* A large number */
5663 malloc_sbrk_used = 100000; /* as reasonable as any number */
5664 #endif /* VIRT_ADDR_VARIES */
5665 }
5666
5667 void
5668 init_alloc ()
5669 {
5670 gcprolist = 0;
5671 byte_stack_list = 0;
5672 #if GC_MARK_STACK
5673 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5674 setjmp_tested_p = longjmps_done = 0;
5675 #endif
5676 #endif
5677 Vgc_elapsed = make_float (0.0);
5678 gcs_done = 0;
5679 }
5680
5681 void
5682 syms_of_alloc ()
5683 {
5684 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
5685 doc: /* *Number of bytes of consing between garbage collections.
5686 Garbage collection can happen automatically once this many bytes have been
5687 allocated since the last garbage collection. All data types count.
5688
5689 Garbage collection happens automatically only when `eval' is called.
5690
5691 By binding this temporarily to a large number, you can effectively
5692 prevent garbage collection during a part of the program. */);
5693
5694 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
5695 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
5696
5697 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
5698 doc: /* Number of cons cells that have been consed so far. */);
5699
5700 DEFVAR_INT ("floats-consed", &floats_consed,
5701 doc: /* Number of floats that have been consed so far. */);
5702
5703 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
5704 doc: /* Number of vector cells that have been consed so far. */);
5705
5706 DEFVAR_INT ("symbols-consed", &symbols_consed,
5707 doc: /* Number of symbols that have been consed so far. */);
5708
5709 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
5710 doc: /* Number of string characters that have been consed so far. */);
5711
5712 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
5713 doc: /* Number of miscellaneous objects that have been consed so far. */);
5714
5715 DEFVAR_INT ("intervals-consed", &intervals_consed,
5716 doc: /* Number of intervals that have been consed so far. */);
5717
5718 DEFVAR_INT ("strings-consed", &strings_consed,
5719 doc: /* Number of strings that have been consed so far. */);
5720
5721 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
5722 doc: /* Non-nil means loading Lisp code in order to dump an executable.
5723 This means that certain objects should be allocated in shared (pure) space. */);
5724
5725 DEFVAR_INT ("undo-limit", &undo_limit,
5726 doc: /* Keep no more undo information once it exceeds this size.
5727 This limit is applied when garbage collection happens.
5728 The size is counted as the number of bytes occupied,
5729 which includes both saved text and other data. */);
5730 undo_limit = 20000;
5731
5732 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
5733 doc: /* Don't keep more than this much size of undo information.
5734 A previous command which pushes the undo list past this size
5735 is entirely forgotten when GC happens.
5736 The size is counted as the number of bytes occupied,
5737 which includes both saved text and other data. */);
5738 undo_strong_limit = 30000;
5739
5740 DEFVAR_INT ("undo-outer-limit", &undo_outer_limit,
5741 doc: /* Don't keep more than this much size of undo information.
5742 If the current command has produced more than this much undo information,
5743 GC discards it. This is a last-ditch limit to prevent memory overflow.
5744 The size is counted as the number of bytes occupied,
5745 which includes both saved text and other data. */);
5746 undo_outer_limit = 300000;
5747
5748 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
5749 doc: /* Non-nil means display messages at start and end of garbage collection. */);
5750 garbage_collection_messages = 0;
5751
5752 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
5753 doc: /* Hook run after garbage collection has finished. */);
5754 Vpost_gc_hook = Qnil;
5755 Qpost_gc_hook = intern ("post-gc-hook");
5756 staticpro (&Qpost_gc_hook);
5757
5758 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
5759 doc: /* Precomputed `signal' argument for memory-full error. */);
5760 /* We build this in advance because if we wait until we need it, we might
5761 not be able to allocate the memory to hold it. */
5762 Vmemory_signal_data
5763 = list2 (Qerror,
5764 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
5765
5766 DEFVAR_LISP ("memory-full", &Vmemory_full,
5767 doc: /* Non-nil means we are handling a memory-full error. */);
5768 Vmemory_full = Qnil;
5769
5770 staticpro (&Qgc_cons_threshold);
5771 Qgc_cons_threshold = intern ("gc-cons-threshold");
5772
5773 staticpro (&Qchar_table_extra_slots);
5774 Qchar_table_extra_slots = intern ("char-table-extra-slots");
5775
5776 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
5777 doc: /* Accumulated time elapsed in garbage collections.
5778 The time is in seconds as a floating point value. */);
5779 DEFVAR_INT ("gcs-done", &gcs_done,
5780 doc: /* Accumulated number of garbage collections done. */);
5781
5782 defsubr (&Scons);
5783 defsubr (&Slist);
5784 defsubr (&Svector);
5785 defsubr (&Smake_byte_code);
5786 defsubr (&Smake_list);
5787 defsubr (&Smake_vector);
5788 defsubr (&Smake_char_table);
5789 defsubr (&Smake_string);
5790 defsubr (&Smake_bool_vector);
5791 defsubr (&Smake_symbol);
5792 defsubr (&Smake_marker);
5793 defsubr (&Spurecopy);
5794 defsubr (&Sgarbage_collect);
5795 defsubr (&Smemory_limit);
5796 defsubr (&Smemory_use_counts);
5797
5798 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5799 defsubr (&Sgc_status);
5800 #endif
5801 }
5802
5803 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
5804 (do not change this comment) */