]> code.delx.au - gnu-emacs/blob - src/coding.c
(code_convert_region_unwind): Set
[gnu-emacs] / src / coding.c
1 /* Coding system handler (conversion, detection, and etc).
2 Copyright (C) 1995, 1997, 1998, 2002 Electrotechnical Laboratory, JAPAN.
3 Licensed to the Free Software Foundation.
4 Copyright (C) 2001,2002 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs; see the file COPYING. If not, write to
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /*** TABLE OF CONTENTS ***
24
25 0. General comments
26 1. Preamble
27 2. Emacs' internal format (emacs-mule) handlers
28 3. ISO2022 handlers
29 4. Shift-JIS and BIG5 handlers
30 5. CCL handlers
31 6. End-of-line handlers
32 7. C library functions
33 8. Emacs Lisp library functions
34 9. Post-amble
35
36 */
37
38 /*** 0. General comments ***/
39
40
41 /*** GENERAL NOTE on CODING SYSTEMS ***
42
43 A coding system is an encoding mechanism for one or more character
44 sets. Here's a list of coding systems which Emacs can handle. When
45 we say "decode", it means converting some other coding system to
46 Emacs' internal format (emacs-mule), and when we say "encode",
47 it means converting the coding system emacs-mule to some other
48 coding system.
49
50 0. Emacs' internal format (emacs-mule)
51
52 Emacs itself holds a multi-lingual character in buffers and strings
53 in a special format. Details are described in section 2.
54
55 1. ISO2022
56
57 The most famous coding system for multiple character sets. X's
58 Compound Text, various EUCs (Extended Unix Code), and coding
59 systems used in Internet communication such as ISO-2022-JP are
60 all variants of ISO2022. Details are described in section 3.
61
62 2. SJIS (or Shift-JIS or MS-Kanji-Code)
63
64 A coding system to encode character sets: ASCII, JISX0201, and
65 JISX0208. Widely used for PC's in Japan. Details are described in
66 section 4.
67
68 3. BIG5
69
70 A coding system to encode the character sets ASCII and Big5. Widely
71 used for Chinese (mainly in Taiwan and Hong Kong). Details are
72 described in section 4. In this file, when we write "BIG5"
73 (all uppercase), we mean the coding system, and when we write
74 "Big5" (capitalized), we mean the character set.
75
76 4. Raw text
77
78 A coding system for text containing random 8-bit code. Emacs does
79 no code conversion on such text except for end-of-line format.
80
81 5. Other
82
83 If a user wants to read/write text encoded in a coding system not
84 listed above, he can supply a decoder and an encoder for it as CCL
85 (Code Conversion Language) programs. Emacs executes the CCL program
86 while reading/writing.
87
88 Emacs represents a coding system by a Lisp symbol that has a property
89 `coding-system'. But, before actually using the coding system, the
90 information about it is set in a structure of type `struct
91 coding_system' for rapid processing. See section 6 for more details.
92
93 */
94
95 /*** GENERAL NOTES on END-OF-LINE FORMAT ***
96
97 How end-of-line of text is encoded depends on the operating system.
98 For instance, Unix's format is just one byte of `line-feed' code,
99 whereas DOS's format is two-byte sequence of `carriage-return' and
100 `line-feed' codes. MacOS's format is usually one byte of
101 `carriage-return'.
102
103 Since text character encoding and end-of-line encoding are
104 independent, any coding system described above can have any
105 end-of-line format. So Emacs has information about end-of-line
106 format in each coding-system. See section 6 for more details.
107
108 */
109
110 /*** GENERAL NOTES on `detect_coding_XXX ()' functions ***
111
112 These functions check if a text between SRC and SRC_END is encoded
113 in the coding system category XXX. Each returns an integer value in
114 which appropriate flag bits for the category XXX are set. The flag
115 bits are defined in macros CODING_CATEGORY_MASK_XXX. Below is the
116 template for these functions. If MULTIBYTEP is nonzero, 8-bit codes
117 of the range 0x80..0x9F are in multibyte form. */
118 #if 0
119 int
120 detect_coding_emacs_mule (src, src_end, multibytep)
121 unsigned char *src, *src_end;
122 int multibytep;
123 {
124 ...
125 }
126 #endif
127
128 /*** GENERAL NOTES on `decode_coding_XXX ()' functions ***
129
130 These functions decode SRC_BYTES length of unibyte text at SOURCE
131 encoded in CODING to Emacs' internal format. The resulting
132 multibyte text goes to a place pointed to by DESTINATION, the length
133 of which should not exceed DST_BYTES.
134
135 These functions set the information about original and decoded texts
136 in the members `produced', `produced_char', `consumed', and
137 `consumed_char' of the structure *CODING. They also set the member
138 `result' to one of CODING_FINISH_XXX indicating how the decoding
139 finished.
140
141 DST_BYTES zero means that the source area and destination area are
142 overlapped, which means that we can produce a decoded text until it
143 reaches the head of the not-yet-decoded source text.
144
145 Below is a template for these functions. */
146 #if 0
147 static void
148 decode_coding_XXX (coding, source, destination, src_bytes, dst_bytes)
149 struct coding_system *coding;
150 unsigned char *source, *destination;
151 int src_bytes, dst_bytes;
152 {
153 ...
154 }
155 #endif
156
157 /*** GENERAL NOTES on `encode_coding_XXX ()' functions ***
158
159 These functions encode SRC_BYTES length text at SOURCE from Emacs'
160 internal multibyte format to CODING. The resulting unibyte text
161 goes to a place pointed to by DESTINATION, the length of which
162 should not exceed DST_BYTES.
163
164 These functions set the information about original and encoded texts
165 in the members `produced', `produced_char', `consumed', and
166 `consumed_char' of the structure *CODING. They also set the member
167 `result' to one of CODING_FINISH_XXX indicating how the encoding
168 finished.
169
170 DST_BYTES zero means that the source area and destination area are
171 overlapped, which means that we can produce encoded text until it
172 reaches at the head of the not-yet-encoded source text.
173
174 Below is a template for these functions. */
175 #if 0
176 static void
177 encode_coding_XXX (coding, source, destination, src_bytes, dst_bytes)
178 struct coding_system *coding;
179 unsigned char *source, *destination;
180 int src_bytes, dst_bytes;
181 {
182 ...
183 }
184 #endif
185
186 /*** COMMONLY USED MACROS ***/
187
188 /* The following two macros ONE_MORE_BYTE and TWO_MORE_BYTES safely
189 get one, two, and three bytes from the source text respectively.
190 If there are not enough bytes in the source, they jump to
191 `label_end_of_loop'. The caller should set variables `coding',
192 `src' and `src_end' to appropriate pointer in advance. These
193 macros are called from decoding routines `decode_coding_XXX', thus
194 it is assumed that the source text is unibyte. */
195
196 #define ONE_MORE_BYTE(c1) \
197 do { \
198 if (src >= src_end) \
199 { \
200 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
201 goto label_end_of_loop; \
202 } \
203 c1 = *src++; \
204 } while (0)
205
206 #define TWO_MORE_BYTES(c1, c2) \
207 do { \
208 if (src + 1 >= src_end) \
209 { \
210 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
211 goto label_end_of_loop; \
212 } \
213 c1 = *src++; \
214 c2 = *src++; \
215 } while (0)
216
217
218 /* Like ONE_MORE_BYTE, but 8-bit bytes of data at SRC are in multibyte
219 form if MULTIBYTEP is nonzero. */
220
221 #define ONE_MORE_BYTE_CHECK_MULTIBYTE(c1, multibytep) \
222 do { \
223 if (src >= src_end) \
224 { \
225 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
226 goto label_end_of_loop; \
227 } \
228 c1 = *src++; \
229 if (multibytep && c1 == LEADING_CODE_8_BIT_CONTROL) \
230 c1 = *src++ - 0x20; \
231 } while (0)
232
233 /* Set C to the next character at the source text pointed by `src'.
234 If there are not enough characters in the source, jump to
235 `label_end_of_loop'. The caller should set variables `coding'
236 `src', `src_end', and `translation_table' to appropriate pointers
237 in advance. This macro is used in encoding routines
238 `encode_coding_XXX', thus it assumes that the source text is in
239 multibyte form except for 8-bit characters. 8-bit characters are
240 in multibyte form if coding->src_multibyte is nonzero, else they
241 are represented by a single byte. */
242
243 #define ONE_MORE_CHAR(c) \
244 do { \
245 int len = src_end - src; \
246 int bytes; \
247 if (len <= 0) \
248 { \
249 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
250 goto label_end_of_loop; \
251 } \
252 if (coding->src_multibyte \
253 || UNIBYTE_STR_AS_MULTIBYTE_P (src, len, bytes)) \
254 c = STRING_CHAR_AND_LENGTH (src, len, bytes); \
255 else \
256 c = *src, bytes = 1; \
257 if (!NILP (translation_table)) \
258 c = translate_char (translation_table, c, -1, 0, 0); \
259 src += bytes; \
260 } while (0)
261
262
263 /* Produce a multibyte form of character C to `dst'. Jump to
264 `label_end_of_loop' if there's not enough space at `dst'.
265
266 If we are now in the middle of a composition sequence, the decoded
267 character may be ALTCHAR (for the current composition). In that
268 case, the character goes to coding->cmp_data->data instead of
269 `dst'.
270
271 This macro is used in decoding routines. */
272
273 #define EMIT_CHAR(c) \
274 do { \
275 if (! COMPOSING_P (coding) \
276 || coding->composing == COMPOSITION_RELATIVE \
277 || coding->composing == COMPOSITION_WITH_RULE) \
278 { \
279 int bytes = CHAR_BYTES (c); \
280 if ((dst + bytes) > (dst_bytes ? dst_end : src)) \
281 { \
282 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
283 goto label_end_of_loop; \
284 } \
285 dst += CHAR_STRING (c, dst); \
286 coding->produced_char++; \
287 } \
288 \
289 if (COMPOSING_P (coding) \
290 && coding->composing != COMPOSITION_RELATIVE) \
291 { \
292 CODING_ADD_COMPOSITION_COMPONENT (coding, c); \
293 coding->composition_rule_follows \
294 = coding->composing != COMPOSITION_WITH_ALTCHARS; \
295 } \
296 } while (0)
297
298
299 #define EMIT_ONE_BYTE(c) \
300 do { \
301 if (dst >= (dst_bytes ? dst_end : src)) \
302 { \
303 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
304 goto label_end_of_loop; \
305 } \
306 *dst++ = c; \
307 } while (0)
308
309 #define EMIT_TWO_BYTES(c1, c2) \
310 do { \
311 if (dst + 2 > (dst_bytes ? dst_end : src)) \
312 { \
313 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
314 goto label_end_of_loop; \
315 } \
316 *dst++ = c1, *dst++ = c2; \
317 } while (0)
318
319 #define EMIT_BYTES(from, to) \
320 do { \
321 if (dst + (to - from) > (dst_bytes ? dst_end : src)) \
322 { \
323 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
324 goto label_end_of_loop; \
325 } \
326 while (from < to) \
327 *dst++ = *from++; \
328 } while (0)
329
330 \f
331 /*** 1. Preamble ***/
332
333 #ifdef emacs
334 #include <config.h>
335 #endif
336
337 #include <stdio.h>
338
339 #ifdef emacs
340
341 #include "lisp.h"
342 #include "buffer.h"
343 #include "charset.h"
344 #include "composite.h"
345 #include "ccl.h"
346 #include "coding.h"
347 #include "window.h"
348
349 #else /* not emacs */
350
351 #include "mulelib.h"
352
353 #endif /* not emacs */
354
355 Lisp_Object Qcoding_system, Qeol_type;
356 Lisp_Object Qbuffer_file_coding_system;
357 Lisp_Object Qpost_read_conversion, Qpre_write_conversion;
358 Lisp_Object Qno_conversion, Qundecided;
359 Lisp_Object Qcoding_system_history;
360 Lisp_Object Qsafe_chars;
361 Lisp_Object Qvalid_codes;
362
363 extern Lisp_Object Qinsert_file_contents, Qwrite_region;
364 Lisp_Object Qcall_process, Qcall_process_region, Qprocess_argument;
365 Lisp_Object Qstart_process, Qopen_network_stream;
366 Lisp_Object Qtarget_idx;
367
368 Lisp_Object Vselect_safe_coding_system_function;
369
370 int coding_system_require_warning;
371
372 /* Mnemonic string for each format of end-of-line. */
373 Lisp_Object eol_mnemonic_unix, eol_mnemonic_dos, eol_mnemonic_mac;
374 /* Mnemonic string to indicate format of end-of-line is not yet
375 decided. */
376 Lisp_Object eol_mnemonic_undecided;
377
378 /* Format of end-of-line decided by system. This is CODING_EOL_LF on
379 Unix, CODING_EOL_CRLF on DOS/Windows, and CODING_EOL_CR on Mac. */
380 int system_eol_type;
381
382 #ifdef emacs
383
384 /* Information about which coding system is safe for which chars.
385 The value has the form (GENERIC-LIST . NON-GENERIC-ALIST).
386
387 GENERIC-LIST is a list of generic coding systems which can encode
388 any characters.
389
390 NON-GENERIC-ALIST is an alist of non generic coding systems vs the
391 corresponding char table that contains safe chars. */
392 Lisp_Object Vcoding_system_safe_chars;
393
394 Lisp_Object Vcoding_system_list, Vcoding_system_alist;
395
396 Lisp_Object Qcoding_system_p, Qcoding_system_error;
397
398 /* Coding system emacs-mule and raw-text are for converting only
399 end-of-line format. */
400 Lisp_Object Qemacs_mule, Qraw_text;
401
402 /* Coding-systems are handed between Emacs Lisp programs and C internal
403 routines by the following three variables. */
404 /* Coding-system for reading files and receiving data from process. */
405 Lisp_Object Vcoding_system_for_read;
406 /* Coding-system for writing files and sending data to process. */
407 Lisp_Object Vcoding_system_for_write;
408 /* Coding-system actually used in the latest I/O. */
409 Lisp_Object Vlast_coding_system_used;
410
411 /* A vector of length 256 which contains information about special
412 Latin codes (especially for dealing with Microsoft codes). */
413 Lisp_Object Vlatin_extra_code_table;
414
415 /* Flag to inhibit code conversion of end-of-line format. */
416 int inhibit_eol_conversion;
417
418 /* Flag to inhibit ISO2022 escape sequence detection. */
419 int inhibit_iso_escape_detection;
420
421 /* Flag to make buffer-file-coding-system inherit from process-coding. */
422 int inherit_process_coding_system;
423
424 /* Coding system to be used to encode text for terminal display. */
425 struct coding_system terminal_coding;
426
427 /* Coding system to be used to encode text for terminal display when
428 terminal coding system is nil. */
429 struct coding_system safe_terminal_coding;
430
431 /* Coding system of what is sent from terminal keyboard. */
432 struct coding_system keyboard_coding;
433
434 /* Default coding system to be used to write a file. */
435 struct coding_system default_buffer_file_coding;
436
437 Lisp_Object Vfile_coding_system_alist;
438 Lisp_Object Vprocess_coding_system_alist;
439 Lisp_Object Vnetwork_coding_system_alist;
440
441 Lisp_Object Vlocale_coding_system;
442
443 #endif /* emacs */
444
445 Lisp_Object Qcoding_category, Qcoding_category_index;
446
447 /* List of symbols `coding-category-xxx' ordered by priority. */
448 Lisp_Object Vcoding_category_list;
449
450 /* Table of coding categories (Lisp symbols). */
451 Lisp_Object Vcoding_category_table;
452
453 /* Table of names of symbol for each coding-category. */
454 char *coding_category_name[CODING_CATEGORY_IDX_MAX] = {
455 "coding-category-emacs-mule",
456 "coding-category-sjis",
457 "coding-category-iso-7",
458 "coding-category-iso-7-tight",
459 "coding-category-iso-8-1",
460 "coding-category-iso-8-2",
461 "coding-category-iso-7-else",
462 "coding-category-iso-8-else",
463 "coding-category-ccl",
464 "coding-category-big5",
465 "coding-category-utf-8",
466 "coding-category-utf-16-be",
467 "coding-category-utf-16-le",
468 "coding-category-raw-text",
469 "coding-category-binary"
470 };
471
472 /* Table of pointers to coding systems corresponding to each coding
473 categories. */
474 struct coding_system *coding_system_table[CODING_CATEGORY_IDX_MAX];
475
476 /* Table of coding category masks. Nth element is a mask for a coding
477 category of which priority is Nth. */
478 static
479 int coding_priorities[CODING_CATEGORY_IDX_MAX];
480
481 /* Flag to tell if we look up translation table on character code
482 conversion. */
483 Lisp_Object Venable_character_translation;
484 /* Standard translation table to look up on decoding (reading). */
485 Lisp_Object Vstandard_translation_table_for_decode;
486 /* Standard translation table to look up on encoding (writing). */
487 Lisp_Object Vstandard_translation_table_for_encode;
488
489 Lisp_Object Qtranslation_table;
490 Lisp_Object Qtranslation_table_id;
491 Lisp_Object Qtranslation_table_for_decode;
492 Lisp_Object Qtranslation_table_for_encode;
493
494 /* Alist of charsets vs revision number. */
495 Lisp_Object Vcharset_revision_alist;
496
497 /* Default coding systems used for process I/O. */
498 Lisp_Object Vdefault_process_coding_system;
499
500 /* Char table for translating Quail and self-inserting input. */
501 Lisp_Object Vtranslation_table_for_input;
502
503 /* Global flag to tell that we can't call post-read-conversion and
504 pre-write-conversion functions. Usually the value is zero, but it
505 is set to 1 temporarily while such functions are running. This is
506 to avoid infinite recursive call. */
507 static int inhibit_pre_post_conversion;
508
509 Lisp_Object Qchar_coding_system;
510
511 /* Return `safe-chars' property of CODING_SYSTEM (symbol). Don't check
512 its validity. */
513
514 Lisp_Object
515 coding_safe_chars (coding_system)
516 Lisp_Object coding_system;
517 {
518 Lisp_Object coding_spec, plist, safe_chars;
519
520 coding_spec = Fget (coding_system, Qcoding_system);
521 plist = XVECTOR (coding_spec)->contents[3];
522 safe_chars = Fplist_get (XVECTOR (coding_spec)->contents[3], Qsafe_chars);
523 return (CHAR_TABLE_P (safe_chars) ? safe_chars : Qt);
524 }
525
526 #define CODING_SAFE_CHAR_P(safe_chars, c) \
527 (EQ (safe_chars, Qt) || !NILP (CHAR_TABLE_REF (safe_chars, c)))
528
529 \f
530 /*** 2. Emacs internal format (emacs-mule) handlers ***/
531
532 /* Emacs' internal format for representation of multiple character
533 sets is a kind of multi-byte encoding, i.e. characters are
534 represented by variable-length sequences of one-byte codes.
535
536 ASCII characters and control characters (e.g. `tab', `newline') are
537 represented by one-byte sequences which are their ASCII codes, in
538 the range 0x00 through 0x7F.
539
540 8-bit characters of the range 0x80..0x9F are represented by
541 two-byte sequences of LEADING_CODE_8_BIT_CONTROL and (their 8-bit
542 code + 0x20).
543
544 8-bit characters of the range 0xA0..0xFF are represented by
545 one-byte sequences which are their 8-bit code.
546
547 The other characters are represented by a sequence of `base
548 leading-code', optional `extended leading-code', and one or two
549 `position-code's. The length of the sequence is determined by the
550 base leading-code. Leading-code takes the range 0x81 through 0x9D,
551 whereas extended leading-code and position-code take the range 0xA0
552 through 0xFF. See `charset.h' for more details about leading-code
553 and position-code.
554
555 --- CODE RANGE of Emacs' internal format ---
556 character set range
557 ------------- -----
558 ascii 0x00..0x7F
559 eight-bit-control LEADING_CODE_8_BIT_CONTROL + 0xA0..0xBF
560 eight-bit-graphic 0xA0..0xBF
561 ELSE 0x81..0x9D + [0xA0..0xFF]+
562 ---------------------------------------------
563
564 As this is the internal character representation, the format is
565 usually not used externally (i.e. in a file or in a data sent to a
566 process). But, it is possible to have a text externally in this
567 format (i.e. by encoding by the coding system `emacs-mule').
568
569 In that case, a sequence of one-byte codes has a slightly different
570 form.
571
572 Firstly, all characters in eight-bit-control are represented by
573 one-byte sequences which are their 8-bit code.
574
575 Next, character composition data are represented by the byte
576 sequence of the form: 0x80 METHOD BYTES CHARS COMPONENT ...,
577 where,
578 METHOD is 0xF0 plus one of composition method (enum
579 composition_method),
580
581 BYTES is 0xA0 plus the byte length of these composition data,
582
583 CHARS is 0xA0 plus the number of characters composed by these
584 data,
585
586 COMPONENTs are characters of multibyte form or composition
587 rules encoded by two-byte of ASCII codes.
588
589 In addition, for backward compatibility, the following formats are
590 also recognized as composition data on decoding.
591
592 0x80 MSEQ ...
593 0x80 0xFF MSEQ RULE MSEQ RULE ... MSEQ
594
595 Here,
596 MSEQ is a multibyte form but in these special format:
597 ASCII: 0xA0 ASCII_CODE+0x80,
598 other: LEADING_CODE+0x20 FOLLOWING-BYTE ...,
599 RULE is a one byte code of the range 0xA0..0xF0 that
600 represents a composition rule.
601 */
602
603 enum emacs_code_class_type emacs_code_class[256];
604
605 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
606 Check if a text is encoded in Emacs' internal format. If it is,
607 return CODING_CATEGORY_MASK_EMACS_MULE, else return 0. */
608
609 static int
610 detect_coding_emacs_mule (src, src_end, multibytep)
611 unsigned char *src, *src_end;
612 int multibytep;
613 {
614 unsigned char c;
615 int composing = 0;
616 /* Dummy for ONE_MORE_BYTE. */
617 struct coding_system dummy_coding;
618 struct coding_system *coding = &dummy_coding;
619
620 while (1)
621 {
622 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
623
624 if (composing)
625 {
626 if (c < 0xA0)
627 composing = 0;
628 else if (c == 0xA0)
629 {
630 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
631 c &= 0x7F;
632 }
633 else
634 c -= 0x20;
635 }
636
637 if (c < 0x20)
638 {
639 if (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
640 return 0;
641 }
642 else if (c >= 0x80 && c < 0xA0)
643 {
644 if (c == 0x80)
645 /* Old leading code for a composite character. */
646 composing = 1;
647 else
648 {
649 unsigned char *src_base = src - 1;
650 int bytes;
651
652 if (!UNIBYTE_STR_AS_MULTIBYTE_P (src_base, src_end - src_base,
653 bytes))
654 return 0;
655 src = src_base + bytes;
656 }
657 }
658 }
659 label_end_of_loop:
660 return CODING_CATEGORY_MASK_EMACS_MULE;
661 }
662
663
664 /* Record the starting position START and METHOD of one composition. */
665
666 #define CODING_ADD_COMPOSITION_START(coding, start, method) \
667 do { \
668 struct composition_data *cmp_data = coding->cmp_data; \
669 int *data = cmp_data->data + cmp_data->used; \
670 coding->cmp_data_start = cmp_data->used; \
671 data[0] = -1; \
672 data[1] = cmp_data->char_offset + start; \
673 data[3] = (int) method; \
674 cmp_data->used += 4; \
675 } while (0)
676
677 /* Record the ending position END of the current composition. */
678
679 #define CODING_ADD_COMPOSITION_END(coding, end) \
680 do { \
681 struct composition_data *cmp_data = coding->cmp_data; \
682 int *data = cmp_data->data + coding->cmp_data_start; \
683 data[0] = cmp_data->used - coding->cmp_data_start; \
684 data[2] = cmp_data->char_offset + end; \
685 } while (0)
686
687 /* Record one COMPONENT (alternate character or composition rule). */
688
689 #define CODING_ADD_COMPOSITION_COMPONENT(coding, component) \
690 do { \
691 coding->cmp_data->data[coding->cmp_data->used++] = component; \
692 if (coding->cmp_data->used - coding->cmp_data_start \
693 == COMPOSITION_DATA_MAX_BUNCH_LENGTH) \
694 { \
695 CODING_ADD_COMPOSITION_END (coding, coding->produced_char); \
696 coding->composing = COMPOSITION_NO; \
697 } \
698 } while (0)
699
700
701 /* Get one byte from a data pointed by SRC and increment SRC. If SRC
702 is not less than SRC_END, return -1 without incrementing Src. */
703
704 #define SAFE_ONE_MORE_BYTE() (src >= src_end ? -1 : *src++)
705
706
707 /* Decode a character represented as a component of composition
708 sequence of Emacs 20 style at SRC. Set C to that character, store
709 its multibyte form sequence at P, and set P to the end of that
710 sequence. If no valid character is found, set C to -1. */
711
712 #define DECODE_EMACS_MULE_COMPOSITION_CHAR(c, p) \
713 do { \
714 int bytes; \
715 \
716 c = SAFE_ONE_MORE_BYTE (); \
717 if (c < 0) \
718 break; \
719 if (CHAR_HEAD_P (c)) \
720 c = -1; \
721 else if (c == 0xA0) \
722 { \
723 c = SAFE_ONE_MORE_BYTE (); \
724 if (c < 0xA0) \
725 c = -1; \
726 else \
727 { \
728 c -= 0xA0; \
729 *p++ = c; \
730 } \
731 } \
732 else if (BASE_LEADING_CODE_P (c - 0x20)) \
733 { \
734 unsigned char *p0 = p; \
735 \
736 c -= 0x20; \
737 *p++ = c; \
738 bytes = BYTES_BY_CHAR_HEAD (c); \
739 while (--bytes) \
740 { \
741 c = SAFE_ONE_MORE_BYTE (); \
742 if (c < 0) \
743 break; \
744 *p++ = c; \
745 } \
746 if (UNIBYTE_STR_AS_MULTIBYTE_P (p0, p - p0, bytes)) \
747 c = STRING_CHAR (p0, bytes); \
748 else \
749 c = -1; \
750 } \
751 else \
752 c = -1; \
753 } while (0)
754
755
756 /* Decode a composition rule represented as a component of composition
757 sequence of Emacs 20 style at SRC. Set C to the rule. If not
758 valid rule is found, set C to -1. */
759
760 #define DECODE_EMACS_MULE_COMPOSITION_RULE(c) \
761 do { \
762 c = SAFE_ONE_MORE_BYTE (); \
763 c -= 0xA0; \
764 if (c < 0 || c >= 81) \
765 c = -1; \
766 else \
767 { \
768 gref = c / 9, nref = c % 9; \
769 c = COMPOSITION_ENCODE_RULE (gref, nref); \
770 } \
771 } while (0)
772
773
774 /* Decode composition sequence encoded by `emacs-mule' at the source
775 pointed by SRC. SRC_END is the end of source. Store information
776 of the composition in CODING->cmp_data.
777
778 For backward compatibility, decode also a composition sequence of
779 Emacs 20 style. In that case, the composition sequence contains
780 characters that should be extracted into a buffer or string. Store
781 those characters at *DESTINATION in multibyte form.
782
783 If we encounter an invalid byte sequence, return 0.
784 If we encounter an insufficient source or destination, or
785 insufficient space in CODING->cmp_data, return 1.
786 Otherwise, return consumed bytes in the source.
787
788 */
789 static INLINE int
790 decode_composition_emacs_mule (coding, src, src_end,
791 destination, dst_end, dst_bytes)
792 struct coding_system *coding;
793 unsigned char *src, *src_end, **destination, *dst_end;
794 int dst_bytes;
795 {
796 unsigned char *dst = *destination;
797 int method, data_len, nchars;
798 unsigned char *src_base = src++;
799 /* Store components of composition. */
800 int component[COMPOSITION_DATA_MAX_BUNCH_LENGTH];
801 int ncomponent;
802 /* Store multibyte form of characters to be composed. This is for
803 Emacs 20 style composition sequence. */
804 unsigned char buf[MAX_COMPOSITION_COMPONENTS * MAX_MULTIBYTE_LENGTH];
805 unsigned char *bufp = buf;
806 int c, i, gref, nref;
807
808 if (coding->cmp_data->used + COMPOSITION_DATA_MAX_BUNCH_LENGTH
809 >= COMPOSITION_DATA_SIZE)
810 {
811 coding->result = CODING_FINISH_INSUFFICIENT_CMP;
812 return -1;
813 }
814
815 ONE_MORE_BYTE (c);
816 if (c - 0xF0 >= COMPOSITION_RELATIVE
817 && c - 0xF0 <= COMPOSITION_WITH_RULE_ALTCHARS)
818 {
819 int with_rule;
820
821 method = c - 0xF0;
822 with_rule = (method == COMPOSITION_WITH_RULE
823 || method == COMPOSITION_WITH_RULE_ALTCHARS);
824 ONE_MORE_BYTE (c);
825 data_len = c - 0xA0;
826 if (data_len < 4
827 || src_base + data_len > src_end)
828 return 0;
829 ONE_MORE_BYTE (c);
830 nchars = c - 0xA0;
831 if (c < 1)
832 return 0;
833 for (ncomponent = 0; src < src_base + data_len; ncomponent++)
834 {
835 /* If it is longer than this, it can't be valid. */
836 if (ncomponent >= COMPOSITION_DATA_MAX_BUNCH_LENGTH)
837 return 0;
838
839 if (ncomponent % 2 && with_rule)
840 {
841 ONE_MORE_BYTE (gref);
842 gref -= 32;
843 ONE_MORE_BYTE (nref);
844 nref -= 32;
845 c = COMPOSITION_ENCODE_RULE (gref, nref);
846 }
847 else
848 {
849 int bytes;
850 if (UNIBYTE_STR_AS_MULTIBYTE_P (src, src_end - src, bytes))
851 c = STRING_CHAR (src, bytes);
852 else
853 c = *src, bytes = 1;
854 src += bytes;
855 }
856 component[ncomponent] = c;
857 }
858 }
859 else
860 {
861 /* This may be an old Emacs 20 style format. See the comment at
862 the section 2 of this file. */
863 while (src < src_end && !CHAR_HEAD_P (*src)) src++;
864 if (src == src_end
865 && !(coding->mode & CODING_MODE_LAST_BLOCK))
866 goto label_end_of_loop;
867
868 src_end = src;
869 src = src_base + 1;
870 if (c < 0xC0)
871 {
872 method = COMPOSITION_RELATIVE;
873 for (ncomponent = 0; ncomponent < MAX_COMPOSITION_COMPONENTS;)
874 {
875 DECODE_EMACS_MULE_COMPOSITION_CHAR (c, bufp);
876 if (c < 0)
877 break;
878 component[ncomponent++] = c;
879 }
880 if (ncomponent < 2)
881 return 0;
882 nchars = ncomponent;
883 }
884 else if (c == 0xFF)
885 {
886 method = COMPOSITION_WITH_RULE;
887 src++;
888 DECODE_EMACS_MULE_COMPOSITION_CHAR (c, bufp);
889 if (c < 0)
890 return 0;
891 component[0] = c;
892 for (ncomponent = 1;
893 ncomponent < MAX_COMPOSITION_COMPONENTS * 2 - 1;)
894 {
895 DECODE_EMACS_MULE_COMPOSITION_RULE (c);
896 if (c < 0)
897 break;
898 component[ncomponent++] = c;
899 DECODE_EMACS_MULE_COMPOSITION_CHAR (c, bufp);
900 if (c < 0)
901 break;
902 component[ncomponent++] = c;
903 }
904 if (ncomponent < 3)
905 return 0;
906 nchars = (ncomponent + 1) / 2;
907 }
908 else
909 return 0;
910 }
911
912 if (buf == bufp || dst + (bufp - buf) <= (dst_bytes ? dst_end : src))
913 {
914 CODING_ADD_COMPOSITION_START (coding, coding->produced_char, method);
915 for (i = 0; i < ncomponent; i++)
916 CODING_ADD_COMPOSITION_COMPONENT (coding, component[i]);
917 CODING_ADD_COMPOSITION_END (coding, coding->produced_char + nchars);
918 if (buf < bufp)
919 {
920 unsigned char *p = buf;
921 EMIT_BYTES (p, bufp);
922 *destination += bufp - buf;
923 coding->produced_char += nchars;
924 }
925 return (src - src_base);
926 }
927 label_end_of_loop:
928 return -1;
929 }
930
931 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
932
933 static void
934 decode_coding_emacs_mule (coding, source, destination, src_bytes, dst_bytes)
935 struct coding_system *coding;
936 unsigned char *source, *destination;
937 int src_bytes, dst_bytes;
938 {
939 unsigned char *src = source;
940 unsigned char *src_end = source + src_bytes;
941 unsigned char *dst = destination;
942 unsigned char *dst_end = destination + dst_bytes;
943 /* SRC_BASE remembers the start position in source in each loop.
944 The loop will be exited when there's not enough source code, or
945 when there's not enough destination area to produce a
946 character. */
947 unsigned char *src_base;
948
949 coding->produced_char = 0;
950 while ((src_base = src) < src_end)
951 {
952 unsigned char tmp[MAX_MULTIBYTE_LENGTH], *p;
953 int bytes;
954
955 if (*src == '\r')
956 {
957 int c = *src++;
958
959 if (coding->eol_type == CODING_EOL_CR)
960 c = '\n';
961 else if (coding->eol_type == CODING_EOL_CRLF)
962 {
963 ONE_MORE_BYTE (c);
964 if (c != '\n')
965 {
966 src--;
967 c = '\r';
968 }
969 }
970 *dst++ = c;
971 coding->produced_char++;
972 continue;
973 }
974 else if (*src == '\n')
975 {
976 if ((coding->eol_type == CODING_EOL_CR
977 || coding->eol_type == CODING_EOL_CRLF)
978 && coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
979 {
980 coding->result = CODING_FINISH_INCONSISTENT_EOL;
981 goto label_end_of_loop;
982 }
983 *dst++ = *src++;
984 coding->produced_char++;
985 continue;
986 }
987 else if (*src == 0x80 && coding->cmp_data)
988 {
989 /* Start of composition data. */
990 int consumed = decode_composition_emacs_mule (coding, src, src_end,
991 &dst, dst_end,
992 dst_bytes);
993 if (consumed < 0)
994 goto label_end_of_loop;
995 else if (consumed > 0)
996 {
997 src += consumed;
998 continue;
999 }
1000 bytes = CHAR_STRING (*src, tmp);
1001 p = tmp;
1002 src++;
1003 }
1004 else if (UNIBYTE_STR_AS_MULTIBYTE_P (src, src_end - src, bytes))
1005 {
1006 p = src;
1007 src += bytes;
1008 }
1009 else
1010 {
1011 bytes = CHAR_STRING (*src, tmp);
1012 p = tmp;
1013 src++;
1014 }
1015 if (dst + bytes >= (dst_bytes ? dst_end : src))
1016 {
1017 coding->result = CODING_FINISH_INSUFFICIENT_DST;
1018 break;
1019 }
1020 while (bytes--) *dst++ = *p++;
1021 coding->produced_char++;
1022 }
1023 label_end_of_loop:
1024 coding->consumed = coding->consumed_char = src_base - source;
1025 coding->produced = dst - destination;
1026 }
1027
1028
1029 /* Encode composition data stored at DATA into a special byte sequence
1030 starting by 0x80. Update CODING->cmp_data_start and maybe
1031 CODING->cmp_data for the next call. */
1032
1033 #define ENCODE_COMPOSITION_EMACS_MULE(coding, data) \
1034 do { \
1035 unsigned char buf[1024], *p0 = buf, *p; \
1036 int len = data[0]; \
1037 int i; \
1038 \
1039 buf[0] = 0x80; \
1040 buf[1] = 0xF0 + data[3]; /* METHOD */ \
1041 buf[3] = 0xA0 + (data[2] - data[1]); /* COMPOSED-CHARS */ \
1042 p = buf + 4; \
1043 if (data[3] == COMPOSITION_WITH_RULE \
1044 || data[3] == COMPOSITION_WITH_RULE_ALTCHARS) \
1045 { \
1046 p += CHAR_STRING (data[4], p); \
1047 for (i = 5; i < len; i += 2) \
1048 { \
1049 int gref, nref; \
1050 COMPOSITION_DECODE_RULE (data[i], gref, nref); \
1051 *p++ = 0x20 + gref; \
1052 *p++ = 0x20 + nref; \
1053 p += CHAR_STRING (data[i + 1], p); \
1054 } \
1055 } \
1056 else \
1057 { \
1058 for (i = 4; i < len; i++) \
1059 p += CHAR_STRING (data[i], p); \
1060 } \
1061 buf[2] = 0xA0 + (p - buf); /* COMPONENTS-BYTES */ \
1062 \
1063 if (dst + (p - buf) + 4 > (dst_bytes ? dst_end : src)) \
1064 { \
1065 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
1066 goto label_end_of_loop; \
1067 } \
1068 while (p0 < p) \
1069 *dst++ = *p0++; \
1070 coding->cmp_data_start += data[0]; \
1071 if (coding->cmp_data_start == coding->cmp_data->used \
1072 && coding->cmp_data->next) \
1073 { \
1074 coding->cmp_data = coding->cmp_data->next; \
1075 coding->cmp_data_start = 0; \
1076 } \
1077 } while (0)
1078
1079
1080 static void encode_eol P_ ((struct coding_system *, const unsigned char *,
1081 unsigned char *, int, int));
1082
1083 static void
1084 encode_coding_emacs_mule (coding, source, destination, src_bytes, dst_bytes)
1085 struct coding_system *coding;
1086 unsigned char *source, *destination;
1087 int src_bytes, dst_bytes;
1088 {
1089 unsigned char *src = source;
1090 unsigned char *src_end = source + src_bytes;
1091 unsigned char *dst = destination;
1092 unsigned char *dst_end = destination + dst_bytes;
1093 unsigned char *src_base;
1094 int c;
1095 int char_offset;
1096 int *data;
1097
1098 Lisp_Object translation_table;
1099
1100 translation_table = Qnil;
1101
1102 /* Optimization for the case that there's no composition. */
1103 if (!coding->cmp_data || coding->cmp_data->used == 0)
1104 {
1105 encode_eol (coding, source, destination, src_bytes, dst_bytes);
1106 return;
1107 }
1108
1109 char_offset = coding->cmp_data->char_offset;
1110 data = coding->cmp_data->data + coding->cmp_data_start;
1111 while (1)
1112 {
1113 src_base = src;
1114
1115 /* If SRC starts a composition, encode the information about the
1116 composition in advance. */
1117 if (coding->cmp_data_start < coding->cmp_data->used
1118 && char_offset + coding->consumed_char == data[1])
1119 {
1120 ENCODE_COMPOSITION_EMACS_MULE (coding, data);
1121 char_offset = coding->cmp_data->char_offset;
1122 data = coding->cmp_data->data + coding->cmp_data_start;
1123 }
1124
1125 ONE_MORE_CHAR (c);
1126 if (c == '\n' && (coding->eol_type == CODING_EOL_CRLF
1127 || coding->eol_type == CODING_EOL_CR))
1128 {
1129 if (coding->eol_type == CODING_EOL_CRLF)
1130 EMIT_TWO_BYTES ('\r', c);
1131 else
1132 EMIT_ONE_BYTE ('\r');
1133 }
1134 else if (SINGLE_BYTE_CHAR_P (c))
1135 EMIT_ONE_BYTE (c);
1136 else
1137 EMIT_BYTES (src_base, src);
1138 coding->consumed_char++;
1139 }
1140 label_end_of_loop:
1141 coding->consumed = src_base - source;
1142 coding->produced = coding->produced_char = dst - destination;
1143 return;
1144 }
1145
1146 \f
1147 /*** 3. ISO2022 handlers ***/
1148
1149 /* The following note describes the coding system ISO2022 briefly.
1150 Since the intention of this note is to help understand the
1151 functions in this file, some parts are NOT ACCURATE or are OVERLY
1152 SIMPLIFIED. For thorough understanding, please refer to the
1153 original document of ISO2022. This is equivalent to the standard
1154 ECMA-35, obtainable from <URL:http://www.ecma.ch/> (*).
1155
1156 ISO2022 provides many mechanisms to encode several character sets
1157 in 7-bit and 8-bit environments. For 7-bit environments, all text
1158 is encoded using bytes less than 128. This may make the encoded
1159 text a little bit longer, but the text passes more easily through
1160 several types of gateway, some of which strip off the MSB (Most
1161 Significant Bit).
1162
1163 There are two kinds of character sets: control character sets and
1164 graphic character sets. The former contain control characters such
1165 as `newline' and `escape' to provide control functions (control
1166 functions are also provided by escape sequences). The latter
1167 contain graphic characters such as 'A' and '-'. Emacs recognizes
1168 two control character sets and many graphic character sets.
1169
1170 Graphic character sets are classified into one of the following
1171 four classes, according to the number of bytes (DIMENSION) and
1172 number of characters in one dimension (CHARS) of the set:
1173 - DIMENSION1_CHARS94
1174 - DIMENSION1_CHARS96
1175 - DIMENSION2_CHARS94
1176 - DIMENSION2_CHARS96
1177
1178 In addition, each character set is assigned an identification tag,
1179 unique for each set, called the "final character" (denoted as <F>
1180 hereafter). The <F> of each character set is decided by ECMA(*)
1181 when it is registered in ISO. The code range of <F> is 0x30..0x7F
1182 (0x30..0x3F are for private use only).
1183
1184 Note (*): ECMA = European Computer Manufacturers Association
1185
1186 Here are examples of graphic character sets [NAME(<F>)]:
1187 o DIMENSION1_CHARS94 -- ASCII('B'), right-half-of-JISX0201('I'), ...
1188 o DIMENSION1_CHARS96 -- right-half-of-ISO8859-1('A'), ...
1189 o DIMENSION2_CHARS94 -- GB2312('A'), JISX0208('B'), ...
1190 o DIMENSION2_CHARS96 -- none for the moment
1191
1192 A code area (1 byte=8 bits) is divided into 4 areas, C0, GL, C1, and GR.
1193 C0 [0x00..0x1F] -- control character plane 0
1194 GL [0x20..0x7F] -- graphic character plane 0
1195 C1 [0x80..0x9F] -- control character plane 1
1196 GR [0xA0..0xFF] -- graphic character plane 1
1197
1198 A control character set is directly designated and invoked to C0 or
1199 C1 by an escape sequence. The most common case is that:
1200 - ISO646's control character set is designated/invoked to C0, and
1201 - ISO6429's control character set is designated/invoked to C1,
1202 and usually these designations/invocations are omitted in encoded
1203 text. In a 7-bit environment, only C0 can be used, and a control
1204 character for C1 is encoded by an appropriate escape sequence to
1205 fit into the environment. All control characters for C1 are
1206 defined to have corresponding escape sequences.
1207
1208 A graphic character set is at first designated to one of four
1209 graphic registers (G0 through G3), then these graphic registers are
1210 invoked to GL or GR. These designations and invocations can be
1211 done independently. The most common case is that G0 is invoked to
1212 GL, G1 is invoked to GR, and ASCII is designated to G0. Usually
1213 these invocations and designations are omitted in encoded text.
1214 In a 7-bit environment, only GL can be used.
1215
1216 When a graphic character set of CHARS94 is invoked to GL, codes
1217 0x20 and 0x7F of the GL area work as control characters SPACE and
1218 DEL respectively, and codes 0xA0 and 0xFF of the GR area should not
1219 be used.
1220
1221 There are two ways of invocation: locking-shift and single-shift.
1222 With locking-shift, the invocation lasts until the next different
1223 invocation, whereas with single-shift, the invocation affects the
1224 following character only and doesn't affect the locking-shift
1225 state. Invocations are done by the following control characters or
1226 escape sequences:
1227
1228 ----------------------------------------------------------------------
1229 abbrev function cntrl escape seq description
1230 ----------------------------------------------------------------------
1231 SI/LS0 (shift-in) 0x0F none invoke G0 into GL
1232 SO/LS1 (shift-out) 0x0E none invoke G1 into GL
1233 LS2 (locking-shift-2) none ESC 'n' invoke G2 into GL
1234 LS3 (locking-shift-3) none ESC 'o' invoke G3 into GL
1235 LS1R (locking-shift-1 right) none ESC '~' invoke G1 into GR (*)
1236 LS2R (locking-shift-2 right) none ESC '}' invoke G2 into GR (*)
1237 LS3R (locking-shift 3 right) none ESC '|' invoke G3 into GR (*)
1238 SS2 (single-shift-2) 0x8E ESC 'N' invoke G2 for one char
1239 SS3 (single-shift-3) 0x8F ESC 'O' invoke G3 for one char
1240 ----------------------------------------------------------------------
1241 (*) These are not used by any known coding system.
1242
1243 Control characters for these functions are defined by macros
1244 ISO_CODE_XXX in `coding.h'.
1245
1246 Designations are done by the following escape sequences:
1247 ----------------------------------------------------------------------
1248 escape sequence description
1249 ----------------------------------------------------------------------
1250 ESC '(' <F> designate DIMENSION1_CHARS94<F> to G0
1251 ESC ')' <F> designate DIMENSION1_CHARS94<F> to G1
1252 ESC '*' <F> designate DIMENSION1_CHARS94<F> to G2
1253 ESC '+' <F> designate DIMENSION1_CHARS94<F> to G3
1254 ESC ',' <F> designate DIMENSION1_CHARS96<F> to G0 (*)
1255 ESC '-' <F> designate DIMENSION1_CHARS96<F> to G1
1256 ESC '.' <F> designate DIMENSION1_CHARS96<F> to G2
1257 ESC '/' <F> designate DIMENSION1_CHARS96<F> to G3
1258 ESC '$' '(' <F> designate DIMENSION2_CHARS94<F> to G0 (**)
1259 ESC '$' ')' <F> designate DIMENSION2_CHARS94<F> to G1
1260 ESC '$' '*' <F> designate DIMENSION2_CHARS94<F> to G2
1261 ESC '$' '+' <F> designate DIMENSION2_CHARS94<F> to G3
1262 ESC '$' ',' <F> designate DIMENSION2_CHARS96<F> to G0 (*)
1263 ESC '$' '-' <F> designate DIMENSION2_CHARS96<F> to G1
1264 ESC '$' '.' <F> designate DIMENSION2_CHARS96<F> to G2
1265 ESC '$' '/' <F> designate DIMENSION2_CHARS96<F> to G3
1266 ----------------------------------------------------------------------
1267
1268 In this list, "DIMENSION1_CHARS94<F>" means a graphic character set
1269 of dimension 1, chars 94, and final character <F>, etc...
1270
1271 Note (*): Although these designations are not allowed in ISO2022,
1272 Emacs accepts them on decoding, and produces them on encoding
1273 CHARS96 character sets in a coding system which is characterized as
1274 7-bit environment, non-locking-shift, and non-single-shift.
1275
1276 Note (**): If <F> is '@', 'A', or 'B', the intermediate character
1277 '(' can be omitted. We refer to this as "short-form" hereafter.
1278
1279 Now you may notice that there are a lot of ways of encoding the
1280 same multilingual text in ISO2022. Actually, there exist many
1281 coding systems such as Compound Text (used in X11's inter client
1282 communication, ISO-2022-JP (used in Japanese Internet), ISO-2022-KR
1283 (used in Korean Internet), EUC (Extended UNIX Code, used in Asian
1284 localized platforms), and all of these are variants of ISO2022.
1285
1286 In addition to the above, Emacs handles two more kinds of escape
1287 sequences: ISO6429's direction specification and Emacs' private
1288 sequence for specifying character composition.
1289
1290 ISO6429's direction specification takes the following form:
1291 o CSI ']' -- end of the current direction
1292 o CSI '0' ']' -- end of the current direction
1293 o CSI '1' ']' -- start of left-to-right text
1294 o CSI '2' ']' -- start of right-to-left text
1295 The control character CSI (0x9B: control sequence introducer) is
1296 abbreviated to the escape sequence ESC '[' in a 7-bit environment.
1297
1298 Character composition specification takes the following form:
1299 o ESC '0' -- start relative composition
1300 o ESC '1' -- end composition
1301 o ESC '2' -- start rule-base composition (*)
1302 o ESC '3' -- start relative composition with alternate chars (**)
1303 o ESC '4' -- start rule-base composition with alternate chars (**)
1304 Since these are not standard escape sequences of any ISO standard,
1305 the use of them with these meanings is restricted to Emacs only.
1306
1307 (*) This form is used only in Emacs 20.5 and older versions,
1308 but the newer versions can safely decode it.
1309 (**) This form is used only in Emacs 21.1 and newer versions,
1310 and the older versions can't decode it.
1311
1312 Here's a list of example usages of these composition escape
1313 sequences (categorized by `enum composition_method').
1314
1315 COMPOSITION_RELATIVE:
1316 ESC 0 CHAR [ CHAR ] ESC 1
1317 COMPOSITION_WITH_RULE:
1318 ESC 2 CHAR [ RULE CHAR ] ESC 1
1319 COMPOSITION_WITH_ALTCHARS:
1320 ESC 3 ALTCHAR [ ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1
1321 COMPOSITION_WITH_RULE_ALTCHARS:
1322 ESC 4 ALTCHAR [ RULE ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1 */
1323
1324 enum iso_code_class_type iso_code_class[256];
1325
1326 #define CHARSET_OK(idx, charset, c) \
1327 (coding_system_table[idx] \
1328 && (charset == CHARSET_ASCII \
1329 || (safe_chars = coding_safe_chars (coding_system_table[idx]->symbol), \
1330 CODING_SAFE_CHAR_P (safe_chars, c))) \
1331 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding_system_table[idx], \
1332 charset) \
1333 != CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION))
1334
1335 #define SHIFT_OUT_OK(idx) \
1336 (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding_system_table[idx], 1) >= 0)
1337
1338 #define COMPOSITION_OK(idx) \
1339 (coding_system_table[idx]->composing != COMPOSITION_DISABLED)
1340
1341 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1342 Check if a text is encoded in ISO2022. If it is, return an
1343 integer in which appropriate flag bits any of:
1344 CODING_CATEGORY_MASK_ISO_7
1345 CODING_CATEGORY_MASK_ISO_7_TIGHT
1346 CODING_CATEGORY_MASK_ISO_8_1
1347 CODING_CATEGORY_MASK_ISO_8_2
1348 CODING_CATEGORY_MASK_ISO_7_ELSE
1349 CODING_CATEGORY_MASK_ISO_8_ELSE
1350 are set. If a code which should never appear in ISO2022 is found,
1351 returns 0. */
1352
1353 static int
1354 detect_coding_iso2022 (src, src_end, multibytep)
1355 unsigned char *src, *src_end;
1356 int multibytep;
1357 {
1358 int mask = CODING_CATEGORY_MASK_ISO;
1359 int mask_found = 0;
1360 int reg[4], shift_out = 0, single_shifting = 0;
1361 int c, c1, charset;
1362 /* Dummy for ONE_MORE_BYTE. */
1363 struct coding_system dummy_coding;
1364 struct coding_system *coding = &dummy_coding;
1365 Lisp_Object safe_chars;
1366
1367 reg[0] = CHARSET_ASCII, reg[1] = reg[2] = reg[3] = -1;
1368 while (mask && src < src_end)
1369 {
1370 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1371 retry:
1372 switch (c)
1373 {
1374 case ISO_CODE_ESC:
1375 if (inhibit_iso_escape_detection)
1376 break;
1377 single_shifting = 0;
1378 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1379 if (c >= '(' && c <= '/')
1380 {
1381 /* Designation sequence for a charset of dimension 1. */
1382 ONE_MORE_BYTE_CHECK_MULTIBYTE (c1, multibytep);
1383 if (c1 < ' ' || c1 >= 0x80
1384 || (charset = iso_charset_table[0][c >= ','][c1]) < 0)
1385 /* Invalid designation sequence. Just ignore. */
1386 break;
1387 reg[(c - '(') % 4] = charset;
1388 }
1389 else if (c == '$')
1390 {
1391 /* Designation sequence for a charset of dimension 2. */
1392 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1393 if (c >= '@' && c <= 'B')
1394 /* Designation for JISX0208.1978, GB2312, or JISX0208. */
1395 reg[0] = charset = iso_charset_table[1][0][c];
1396 else if (c >= '(' && c <= '/')
1397 {
1398 ONE_MORE_BYTE_CHECK_MULTIBYTE (c1, multibytep);
1399 if (c1 < ' ' || c1 >= 0x80
1400 || (charset = iso_charset_table[1][c >= ','][c1]) < 0)
1401 /* Invalid designation sequence. Just ignore. */
1402 break;
1403 reg[(c - '(') % 4] = charset;
1404 }
1405 else
1406 /* Invalid designation sequence. Just ignore. */
1407 break;
1408 }
1409 else if (c == 'N' || c == 'O')
1410 {
1411 /* ESC <Fe> for SS2 or SS3. */
1412 mask &= CODING_CATEGORY_MASK_ISO_7_ELSE;
1413 break;
1414 }
1415 else if (c >= '0' && c <= '4')
1416 {
1417 /* ESC <Fp> for start/end composition. */
1418 if (COMPOSITION_OK (CODING_CATEGORY_IDX_ISO_7))
1419 mask_found |= CODING_CATEGORY_MASK_ISO_7;
1420 else
1421 mask &= ~CODING_CATEGORY_MASK_ISO_7;
1422 if (COMPOSITION_OK (CODING_CATEGORY_IDX_ISO_7_TIGHT))
1423 mask_found |= CODING_CATEGORY_MASK_ISO_7_TIGHT;
1424 else
1425 mask &= ~CODING_CATEGORY_MASK_ISO_7_TIGHT;
1426 if (COMPOSITION_OK (CODING_CATEGORY_IDX_ISO_8_1))
1427 mask_found |= CODING_CATEGORY_MASK_ISO_8_1;
1428 else
1429 mask &= ~CODING_CATEGORY_MASK_ISO_8_1;
1430 if (COMPOSITION_OK (CODING_CATEGORY_IDX_ISO_8_2))
1431 mask_found |= CODING_CATEGORY_MASK_ISO_8_2;
1432 else
1433 mask &= ~CODING_CATEGORY_MASK_ISO_8_2;
1434 if (COMPOSITION_OK (CODING_CATEGORY_IDX_ISO_7_ELSE))
1435 mask_found |= CODING_CATEGORY_MASK_ISO_7_ELSE;
1436 else
1437 mask &= ~CODING_CATEGORY_MASK_ISO_7_ELSE;
1438 if (COMPOSITION_OK (CODING_CATEGORY_IDX_ISO_8_ELSE))
1439 mask_found |= CODING_CATEGORY_MASK_ISO_8_ELSE;
1440 else
1441 mask &= ~CODING_CATEGORY_MASK_ISO_8_ELSE;
1442 break;
1443 }
1444 else
1445 /* Invalid escape sequence. Just ignore. */
1446 break;
1447
1448 /* We found a valid designation sequence for CHARSET. */
1449 mask &= ~CODING_CATEGORY_MASK_ISO_8BIT;
1450 c = MAKE_CHAR (charset, 0, 0);
1451 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7, charset, c))
1452 mask_found |= CODING_CATEGORY_MASK_ISO_7;
1453 else
1454 mask &= ~CODING_CATEGORY_MASK_ISO_7;
1455 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7_TIGHT, charset, c))
1456 mask_found |= CODING_CATEGORY_MASK_ISO_7_TIGHT;
1457 else
1458 mask &= ~CODING_CATEGORY_MASK_ISO_7_TIGHT;
1459 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7_ELSE, charset, c))
1460 mask_found |= CODING_CATEGORY_MASK_ISO_7_ELSE;
1461 else
1462 mask &= ~CODING_CATEGORY_MASK_ISO_7_ELSE;
1463 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_8_ELSE, charset, c))
1464 mask_found |= CODING_CATEGORY_MASK_ISO_8_ELSE;
1465 else
1466 mask &= ~CODING_CATEGORY_MASK_ISO_8_ELSE;
1467 break;
1468
1469 case ISO_CODE_SO:
1470 if (inhibit_iso_escape_detection)
1471 break;
1472 single_shifting = 0;
1473 if (shift_out == 0
1474 && (reg[1] >= 0
1475 || SHIFT_OUT_OK (CODING_CATEGORY_IDX_ISO_7_ELSE)
1476 || SHIFT_OUT_OK (CODING_CATEGORY_IDX_ISO_8_ELSE)))
1477 {
1478 /* Locking shift out. */
1479 mask &= ~CODING_CATEGORY_MASK_ISO_7BIT;
1480 mask_found |= CODING_CATEGORY_MASK_ISO_SHIFT;
1481 }
1482 break;
1483
1484 case ISO_CODE_SI:
1485 if (inhibit_iso_escape_detection)
1486 break;
1487 single_shifting = 0;
1488 if (shift_out == 1)
1489 {
1490 /* Locking shift in. */
1491 mask &= ~CODING_CATEGORY_MASK_ISO_7BIT;
1492 mask_found |= CODING_CATEGORY_MASK_ISO_SHIFT;
1493 }
1494 break;
1495
1496 case ISO_CODE_CSI:
1497 single_shifting = 0;
1498 case ISO_CODE_SS2:
1499 case ISO_CODE_SS3:
1500 {
1501 int newmask = CODING_CATEGORY_MASK_ISO_8_ELSE;
1502
1503 if (inhibit_iso_escape_detection)
1504 break;
1505 if (c != ISO_CODE_CSI)
1506 {
1507 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
1508 & CODING_FLAG_ISO_SINGLE_SHIFT)
1509 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
1510 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
1511 & CODING_FLAG_ISO_SINGLE_SHIFT)
1512 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
1513 single_shifting = 1;
1514 }
1515 if (VECTORP (Vlatin_extra_code_table)
1516 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
1517 {
1518 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
1519 & CODING_FLAG_ISO_LATIN_EXTRA)
1520 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
1521 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
1522 & CODING_FLAG_ISO_LATIN_EXTRA)
1523 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
1524 }
1525 mask &= newmask;
1526 mask_found |= newmask;
1527 }
1528 break;
1529
1530 default:
1531 if (c < 0x80)
1532 {
1533 single_shifting = 0;
1534 break;
1535 }
1536 else if (c < 0xA0)
1537 {
1538 single_shifting = 0;
1539 if (VECTORP (Vlatin_extra_code_table)
1540 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
1541 {
1542 int newmask = 0;
1543
1544 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
1545 & CODING_FLAG_ISO_LATIN_EXTRA)
1546 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
1547 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
1548 & CODING_FLAG_ISO_LATIN_EXTRA)
1549 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
1550 mask &= newmask;
1551 mask_found |= newmask;
1552 }
1553 else
1554 return 0;
1555 }
1556 else
1557 {
1558 mask &= ~(CODING_CATEGORY_MASK_ISO_7BIT
1559 | CODING_CATEGORY_MASK_ISO_7_ELSE);
1560 mask_found |= CODING_CATEGORY_MASK_ISO_8_1;
1561 /* Check the length of succeeding codes of the range
1562 0xA0..0FF. If the byte length is odd, we exclude
1563 CODING_CATEGORY_MASK_ISO_8_2. We can check this only
1564 when we are not single shifting. */
1565 if (!single_shifting
1566 && mask & CODING_CATEGORY_MASK_ISO_8_2)
1567 {
1568 int i = 1;
1569
1570 c = -1;
1571 while (src < src_end)
1572 {
1573 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1574 if (c < 0xA0)
1575 break;
1576 i++;
1577 }
1578
1579 if (i & 1 && src < src_end)
1580 mask &= ~CODING_CATEGORY_MASK_ISO_8_2;
1581 else
1582 mask_found |= CODING_CATEGORY_MASK_ISO_8_2;
1583 if (c >= 0)
1584 /* This means that we have read one extra byte. */
1585 goto retry;
1586 }
1587 }
1588 break;
1589 }
1590 }
1591 label_end_of_loop:
1592 return (mask & mask_found);
1593 }
1594
1595 /* Decode a character of which charset is CHARSET, the 1st position
1596 code is C1, the 2nd position code is C2, and return the decoded
1597 character code. If the variable `translation_table' is non-nil,
1598 returned the translated code. */
1599
1600 #define DECODE_ISO_CHARACTER(charset, c1, c2) \
1601 (NILP (translation_table) \
1602 ? MAKE_CHAR (charset, c1, c2) \
1603 : translate_char (translation_table, -1, charset, c1, c2))
1604
1605 /* Set designation state into CODING. */
1606 #define DECODE_DESIGNATION(reg, dimension, chars, final_char) \
1607 do { \
1608 int charset, c; \
1609 \
1610 if (final_char < '0' || final_char >= 128) \
1611 goto label_invalid_code; \
1612 charset = ISO_CHARSET_TABLE (make_number (dimension), \
1613 make_number (chars), \
1614 make_number (final_char)); \
1615 c = MAKE_CHAR (charset, 0, 0); \
1616 if (charset >= 0 \
1617 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) == reg \
1618 || CODING_SAFE_CHAR_P (safe_chars, c))) \
1619 { \
1620 if (coding->spec.iso2022.last_invalid_designation_register == 0 \
1621 && reg == 0 \
1622 && charset == CHARSET_ASCII) \
1623 { \
1624 /* We should insert this designation sequence as is so \
1625 that it is surely written back to a file. */ \
1626 coding->spec.iso2022.last_invalid_designation_register = -1; \
1627 goto label_invalid_code; \
1628 } \
1629 coding->spec.iso2022.last_invalid_designation_register = -1; \
1630 if ((coding->mode & CODING_MODE_DIRECTION) \
1631 && CHARSET_REVERSE_CHARSET (charset) >= 0) \
1632 charset = CHARSET_REVERSE_CHARSET (charset); \
1633 CODING_SPEC_ISO_DESIGNATION (coding, reg) = charset; \
1634 } \
1635 else \
1636 { \
1637 coding->spec.iso2022.last_invalid_designation_register = reg; \
1638 goto label_invalid_code; \
1639 } \
1640 } while (0)
1641
1642 /* Allocate a memory block for storing information about compositions.
1643 The block is chained to the already allocated blocks. */
1644
1645 void
1646 coding_allocate_composition_data (coding, char_offset)
1647 struct coding_system *coding;
1648 int char_offset;
1649 {
1650 struct composition_data *cmp_data
1651 = (struct composition_data *) xmalloc (sizeof *cmp_data);
1652
1653 cmp_data->char_offset = char_offset;
1654 cmp_data->used = 0;
1655 cmp_data->prev = coding->cmp_data;
1656 cmp_data->next = NULL;
1657 if (coding->cmp_data)
1658 coding->cmp_data->next = cmp_data;
1659 coding->cmp_data = cmp_data;
1660 coding->cmp_data_start = 0;
1661 }
1662
1663 /* Handle composition start sequence ESC 0, ESC 2, ESC 3, or ESC 4.
1664 ESC 0 : relative composition : ESC 0 CHAR ... ESC 1
1665 ESC 2 : rulebase composition : ESC 2 CHAR RULE CHAR RULE ... CHAR ESC 1
1666 ESC 3 : altchar composition : ESC 3 ALT ... ESC 0 CHAR ... ESC 1
1667 ESC 4 : alt&rule composition : ESC 4 ALT RULE .. ALT ESC 0 CHAR ... ESC 1
1668 */
1669
1670 #define DECODE_COMPOSITION_START(c1) \
1671 do { \
1672 if (coding->composing == COMPOSITION_DISABLED) \
1673 { \
1674 *dst++ = ISO_CODE_ESC; \
1675 *dst++ = c1 & 0x7f; \
1676 coding->produced_char += 2; \
1677 } \
1678 else if (!COMPOSING_P (coding)) \
1679 { \
1680 /* This is surely the start of a composition. We must be sure \
1681 that coding->cmp_data has enough space to store the \
1682 information about the composition. If not, terminate the \
1683 current decoding loop, allocate one more memory block for \
1684 coding->cmp_data in the caller, then start the decoding \
1685 loop again. We can't allocate memory here directly because \
1686 it may cause buffer/string relocation. */ \
1687 if (!coding->cmp_data \
1688 || (coding->cmp_data->used + COMPOSITION_DATA_MAX_BUNCH_LENGTH \
1689 >= COMPOSITION_DATA_SIZE)) \
1690 { \
1691 coding->result = CODING_FINISH_INSUFFICIENT_CMP; \
1692 goto label_end_of_loop; \
1693 } \
1694 coding->composing = (c1 == '0' ? COMPOSITION_RELATIVE \
1695 : c1 == '2' ? COMPOSITION_WITH_RULE \
1696 : c1 == '3' ? COMPOSITION_WITH_ALTCHARS \
1697 : COMPOSITION_WITH_RULE_ALTCHARS); \
1698 CODING_ADD_COMPOSITION_START (coding, coding->produced_char, \
1699 coding->composing); \
1700 coding->composition_rule_follows = 0; \
1701 } \
1702 else \
1703 { \
1704 /* We are already handling a composition. If the method is \
1705 the following two, the codes following the current escape \
1706 sequence are actual characters stored in a buffer. */ \
1707 if (coding->composing == COMPOSITION_WITH_ALTCHARS \
1708 || coding->composing == COMPOSITION_WITH_RULE_ALTCHARS) \
1709 { \
1710 coding->composing = COMPOSITION_RELATIVE; \
1711 coding->composition_rule_follows = 0; \
1712 } \
1713 } \
1714 } while (0)
1715
1716 /* Handle composition end sequence ESC 1. */
1717
1718 #define DECODE_COMPOSITION_END(c1) \
1719 do { \
1720 if (! COMPOSING_P (coding)) \
1721 { \
1722 *dst++ = ISO_CODE_ESC; \
1723 *dst++ = c1; \
1724 coding->produced_char += 2; \
1725 } \
1726 else \
1727 { \
1728 CODING_ADD_COMPOSITION_END (coding, coding->produced_char); \
1729 coding->composing = COMPOSITION_NO; \
1730 } \
1731 } while (0)
1732
1733 /* Decode a composition rule from the byte C1 (and maybe one more byte
1734 from SRC) and store one encoded composition rule in
1735 coding->cmp_data. */
1736
1737 #define DECODE_COMPOSITION_RULE(c1) \
1738 do { \
1739 int rule = 0; \
1740 (c1) -= 32; \
1741 if (c1 < 81) /* old format (before ver.21) */ \
1742 { \
1743 int gref = (c1) / 9; \
1744 int nref = (c1) % 9; \
1745 if (gref == 4) gref = 10; \
1746 if (nref == 4) nref = 10; \
1747 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
1748 } \
1749 else if (c1 < 93) /* new format (after ver.21) */ \
1750 { \
1751 ONE_MORE_BYTE (c2); \
1752 rule = COMPOSITION_ENCODE_RULE (c1 - 81, c2 - 32); \
1753 } \
1754 CODING_ADD_COMPOSITION_COMPONENT (coding, rule); \
1755 coding->composition_rule_follows = 0; \
1756 } while (0)
1757
1758
1759 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
1760
1761 static void
1762 decode_coding_iso2022 (coding, source, destination, src_bytes, dst_bytes)
1763 struct coding_system *coding;
1764 unsigned char *source, *destination;
1765 int src_bytes, dst_bytes;
1766 {
1767 unsigned char *src = source;
1768 unsigned char *src_end = source + src_bytes;
1769 unsigned char *dst = destination;
1770 unsigned char *dst_end = destination + dst_bytes;
1771 /* Charsets invoked to graphic plane 0 and 1 respectively. */
1772 int charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1773 int charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
1774 /* SRC_BASE remembers the start position in source in each loop.
1775 The loop will be exited when there's not enough source code
1776 (within macro ONE_MORE_BYTE), or when there's not enough
1777 destination area to produce a character (within macro
1778 EMIT_CHAR). */
1779 unsigned char *src_base;
1780 int c, charset;
1781 Lisp_Object translation_table;
1782 Lisp_Object safe_chars;
1783
1784 safe_chars = coding_safe_chars (coding->symbol);
1785
1786 if (NILP (Venable_character_translation))
1787 translation_table = Qnil;
1788 else
1789 {
1790 translation_table = coding->translation_table_for_decode;
1791 if (NILP (translation_table))
1792 translation_table = Vstandard_translation_table_for_decode;
1793 }
1794
1795 coding->result = CODING_FINISH_NORMAL;
1796
1797 while (1)
1798 {
1799 int c1, c2;
1800
1801 src_base = src;
1802 ONE_MORE_BYTE (c1);
1803
1804 /* We produce no character or one character. */
1805 switch (iso_code_class [c1])
1806 {
1807 case ISO_0x20_or_0x7F:
1808 if (COMPOSING_P (coding) && coding->composition_rule_follows)
1809 {
1810 DECODE_COMPOSITION_RULE (c1);
1811 continue;
1812 }
1813 if (charset0 < 0 || CHARSET_CHARS (charset0) == 94)
1814 {
1815 /* This is SPACE or DEL. */
1816 charset = CHARSET_ASCII;
1817 break;
1818 }
1819 /* This is a graphic character, we fall down ... */
1820
1821 case ISO_graphic_plane_0:
1822 if (COMPOSING_P (coding) && coding->composition_rule_follows)
1823 {
1824 DECODE_COMPOSITION_RULE (c1);
1825 continue;
1826 }
1827 charset = charset0;
1828 break;
1829
1830 case ISO_0xA0_or_0xFF:
1831 if (charset1 < 0 || CHARSET_CHARS (charset1) == 94
1832 || coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
1833 goto label_invalid_code;
1834 /* This is a graphic character, we fall down ... */
1835
1836 case ISO_graphic_plane_1:
1837 if (charset1 < 0)
1838 goto label_invalid_code;
1839 charset = charset1;
1840 break;
1841
1842 case ISO_control_0:
1843 if (COMPOSING_P (coding))
1844 DECODE_COMPOSITION_END ('1');
1845
1846 /* All ISO2022 control characters in this class have the
1847 same representation in Emacs internal format. */
1848 if (c1 == '\n'
1849 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
1850 && (coding->eol_type == CODING_EOL_CR
1851 || coding->eol_type == CODING_EOL_CRLF))
1852 {
1853 coding->result = CODING_FINISH_INCONSISTENT_EOL;
1854 goto label_end_of_loop;
1855 }
1856 charset = CHARSET_ASCII;
1857 break;
1858
1859 case ISO_control_1:
1860 if (COMPOSING_P (coding))
1861 DECODE_COMPOSITION_END ('1');
1862 goto label_invalid_code;
1863
1864 case ISO_carriage_return:
1865 if (COMPOSING_P (coding))
1866 DECODE_COMPOSITION_END ('1');
1867
1868 if (coding->eol_type == CODING_EOL_CR)
1869 c1 = '\n';
1870 else if (coding->eol_type == CODING_EOL_CRLF)
1871 {
1872 ONE_MORE_BYTE (c1);
1873 if (c1 != ISO_CODE_LF)
1874 {
1875 src--;
1876 c1 = '\r';
1877 }
1878 }
1879 charset = CHARSET_ASCII;
1880 break;
1881
1882 case ISO_shift_out:
1883 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
1884 || CODING_SPEC_ISO_DESIGNATION (coding, 1) < 0)
1885 goto label_invalid_code;
1886 CODING_SPEC_ISO_INVOCATION (coding, 0) = 1;
1887 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1888 continue;
1889
1890 case ISO_shift_in:
1891 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT))
1892 goto label_invalid_code;
1893 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0;
1894 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1895 continue;
1896
1897 case ISO_single_shift_2_7:
1898 case ISO_single_shift_2:
1899 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
1900 goto label_invalid_code;
1901 /* SS2 is handled as an escape sequence of ESC 'N' */
1902 c1 = 'N';
1903 goto label_escape_sequence;
1904
1905 case ISO_single_shift_3:
1906 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
1907 goto label_invalid_code;
1908 /* SS2 is handled as an escape sequence of ESC 'O' */
1909 c1 = 'O';
1910 goto label_escape_sequence;
1911
1912 case ISO_control_sequence_introducer:
1913 /* CSI is handled as an escape sequence of ESC '[' ... */
1914 c1 = '[';
1915 goto label_escape_sequence;
1916
1917 case ISO_escape:
1918 ONE_MORE_BYTE (c1);
1919 label_escape_sequence:
1920 /* Escape sequences handled by Emacs are invocation,
1921 designation, direction specification, and character
1922 composition specification. */
1923 switch (c1)
1924 {
1925 case '&': /* revision of following character set */
1926 ONE_MORE_BYTE (c1);
1927 if (!(c1 >= '@' && c1 <= '~'))
1928 goto label_invalid_code;
1929 ONE_MORE_BYTE (c1);
1930 if (c1 != ISO_CODE_ESC)
1931 goto label_invalid_code;
1932 ONE_MORE_BYTE (c1);
1933 goto label_escape_sequence;
1934
1935 case '$': /* designation of 2-byte character set */
1936 if (! (coding->flags & CODING_FLAG_ISO_DESIGNATION))
1937 goto label_invalid_code;
1938 ONE_MORE_BYTE (c1);
1939 if (c1 >= '@' && c1 <= 'B')
1940 { /* designation of JISX0208.1978, GB2312.1980,
1941 or JISX0208.1980 */
1942 DECODE_DESIGNATION (0, 2, 94, c1);
1943 }
1944 else if (c1 >= 0x28 && c1 <= 0x2B)
1945 { /* designation of DIMENSION2_CHARS94 character set */
1946 ONE_MORE_BYTE (c2);
1947 DECODE_DESIGNATION (c1 - 0x28, 2, 94, c2);
1948 }
1949 else if (c1 >= 0x2C && c1 <= 0x2F)
1950 { /* designation of DIMENSION2_CHARS96 character set */
1951 ONE_MORE_BYTE (c2);
1952 DECODE_DESIGNATION (c1 - 0x2C, 2, 96, c2);
1953 }
1954 else
1955 goto label_invalid_code;
1956 /* We must update these variables now. */
1957 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1958 charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
1959 continue;
1960
1961 case 'n': /* invocation of locking-shift-2 */
1962 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
1963 || CODING_SPEC_ISO_DESIGNATION (coding, 2) < 0)
1964 goto label_invalid_code;
1965 CODING_SPEC_ISO_INVOCATION (coding, 0) = 2;
1966 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1967 continue;
1968
1969 case 'o': /* invocation of locking-shift-3 */
1970 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
1971 || CODING_SPEC_ISO_DESIGNATION (coding, 3) < 0)
1972 goto label_invalid_code;
1973 CODING_SPEC_ISO_INVOCATION (coding, 0) = 3;
1974 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1975 continue;
1976
1977 case 'N': /* invocation of single-shift-2 */
1978 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
1979 || CODING_SPEC_ISO_DESIGNATION (coding, 2) < 0)
1980 goto label_invalid_code;
1981 charset = CODING_SPEC_ISO_DESIGNATION (coding, 2);
1982 ONE_MORE_BYTE (c1);
1983 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
1984 goto label_invalid_code;
1985 break;
1986
1987 case 'O': /* invocation of single-shift-3 */
1988 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
1989 || CODING_SPEC_ISO_DESIGNATION (coding, 3) < 0)
1990 goto label_invalid_code;
1991 charset = CODING_SPEC_ISO_DESIGNATION (coding, 3);
1992 ONE_MORE_BYTE (c1);
1993 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
1994 goto label_invalid_code;
1995 break;
1996
1997 case '0': case '2': case '3': case '4': /* start composition */
1998 DECODE_COMPOSITION_START (c1);
1999 continue;
2000
2001 case '1': /* end composition */
2002 DECODE_COMPOSITION_END (c1);
2003 continue;
2004
2005 case '[': /* specification of direction */
2006 if (coding->flags & CODING_FLAG_ISO_NO_DIRECTION)
2007 goto label_invalid_code;
2008 /* For the moment, nested direction is not supported.
2009 So, `coding->mode & CODING_MODE_DIRECTION' zero means
2010 left-to-right, and nonzero means right-to-left. */
2011 ONE_MORE_BYTE (c1);
2012 switch (c1)
2013 {
2014 case ']': /* end of the current direction */
2015 coding->mode &= ~CODING_MODE_DIRECTION;
2016
2017 case '0': /* end of the current direction */
2018 case '1': /* start of left-to-right direction */
2019 ONE_MORE_BYTE (c1);
2020 if (c1 == ']')
2021 coding->mode &= ~CODING_MODE_DIRECTION;
2022 else
2023 goto label_invalid_code;
2024 break;
2025
2026 case '2': /* start of right-to-left direction */
2027 ONE_MORE_BYTE (c1);
2028 if (c1 == ']')
2029 coding->mode |= CODING_MODE_DIRECTION;
2030 else
2031 goto label_invalid_code;
2032 break;
2033
2034 default:
2035 goto label_invalid_code;
2036 }
2037 continue;
2038
2039 default:
2040 if (! (coding->flags & CODING_FLAG_ISO_DESIGNATION))
2041 goto label_invalid_code;
2042 if (c1 >= 0x28 && c1 <= 0x2B)
2043 { /* designation of DIMENSION1_CHARS94 character set */
2044 ONE_MORE_BYTE (c2);
2045 DECODE_DESIGNATION (c1 - 0x28, 1, 94, c2);
2046 }
2047 else if (c1 >= 0x2C && c1 <= 0x2F)
2048 { /* designation of DIMENSION1_CHARS96 character set */
2049 ONE_MORE_BYTE (c2);
2050 DECODE_DESIGNATION (c1 - 0x2C, 1, 96, c2);
2051 }
2052 else
2053 goto label_invalid_code;
2054 /* We must update these variables now. */
2055 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
2056 charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
2057 continue;
2058 }
2059 }
2060
2061 /* Now we know CHARSET and 1st position code C1 of a character.
2062 Produce a multibyte sequence for that character while getting
2063 2nd position code C2 if necessary. */
2064 if (CHARSET_DIMENSION (charset) == 2)
2065 {
2066 ONE_MORE_BYTE (c2);
2067 if (c1 < 0x80 ? c2 < 0x20 || c2 >= 0x80 : c2 < 0xA0)
2068 /* C2 is not in a valid range. */
2069 goto label_invalid_code;
2070 }
2071 c = DECODE_ISO_CHARACTER (charset, c1, c2);
2072 EMIT_CHAR (c);
2073 continue;
2074
2075 label_invalid_code:
2076 coding->errors++;
2077 if (COMPOSING_P (coding))
2078 DECODE_COMPOSITION_END ('1');
2079 src = src_base;
2080 c = *src++;
2081 EMIT_CHAR (c);
2082 }
2083
2084 label_end_of_loop:
2085 coding->consumed = coding->consumed_char = src_base - source;
2086 coding->produced = dst - destination;
2087 return;
2088 }
2089
2090
2091 /* ISO2022 encoding stuff. */
2092
2093 /*
2094 It is not enough to say just "ISO2022" on encoding, we have to
2095 specify more details. In Emacs, each ISO2022 coding system
2096 variant has the following specifications:
2097 1. Initial designation to G0 through G3.
2098 2. Allows short-form designation?
2099 3. ASCII should be designated to G0 before control characters?
2100 4. ASCII should be designated to G0 at end of line?
2101 5. 7-bit environment or 8-bit environment?
2102 6. Use locking-shift?
2103 7. Use Single-shift?
2104 And the following two are only for Japanese:
2105 8. Use ASCII in place of JIS0201-1976-Roman?
2106 9. Use JISX0208-1983 in place of JISX0208-1978?
2107 These specifications are encoded in `coding->flags' as flag bits
2108 defined by macros CODING_FLAG_ISO_XXX. See `coding.h' for more
2109 details.
2110 */
2111
2112 /* Produce codes (escape sequence) for designating CHARSET to graphic
2113 register REG at DST, and increment DST. If <final-char> of CHARSET is
2114 '@', 'A', or 'B' and the coding system CODING allows, produce
2115 designation sequence of short-form. */
2116
2117 #define ENCODE_DESIGNATION(charset, reg, coding) \
2118 do { \
2119 unsigned char final_char = CHARSET_ISO_FINAL_CHAR (charset); \
2120 char *intermediate_char_94 = "()*+"; \
2121 char *intermediate_char_96 = ",-./"; \
2122 int revision = CODING_SPEC_ISO_REVISION_NUMBER(coding, charset); \
2123 \
2124 if (revision < 255) \
2125 { \
2126 *dst++ = ISO_CODE_ESC; \
2127 *dst++ = '&'; \
2128 *dst++ = '@' + revision; \
2129 } \
2130 *dst++ = ISO_CODE_ESC; \
2131 if (CHARSET_DIMENSION (charset) == 1) \
2132 { \
2133 if (CHARSET_CHARS (charset) == 94) \
2134 *dst++ = (unsigned char) (intermediate_char_94[reg]); \
2135 else \
2136 *dst++ = (unsigned char) (intermediate_char_96[reg]); \
2137 } \
2138 else \
2139 { \
2140 *dst++ = '$'; \
2141 if (CHARSET_CHARS (charset) == 94) \
2142 { \
2143 if (! (coding->flags & CODING_FLAG_ISO_SHORT_FORM) \
2144 || reg != 0 \
2145 || final_char < '@' || final_char > 'B') \
2146 *dst++ = (unsigned char) (intermediate_char_94[reg]); \
2147 } \
2148 else \
2149 *dst++ = (unsigned char) (intermediate_char_96[reg]); \
2150 } \
2151 *dst++ = final_char; \
2152 CODING_SPEC_ISO_DESIGNATION (coding, reg) = charset; \
2153 } while (0)
2154
2155 /* The following two macros produce codes (control character or escape
2156 sequence) for ISO2022 single-shift functions (single-shift-2 and
2157 single-shift-3). */
2158
2159 #define ENCODE_SINGLE_SHIFT_2 \
2160 do { \
2161 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2162 *dst++ = ISO_CODE_ESC, *dst++ = 'N'; \
2163 else \
2164 *dst++ = ISO_CODE_SS2; \
2165 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 1; \
2166 } while (0)
2167
2168 #define ENCODE_SINGLE_SHIFT_3 \
2169 do { \
2170 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2171 *dst++ = ISO_CODE_ESC, *dst++ = 'O'; \
2172 else \
2173 *dst++ = ISO_CODE_SS3; \
2174 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 1; \
2175 } while (0)
2176
2177 /* The following four macros produce codes (control character or
2178 escape sequence) for ISO2022 locking-shift functions (shift-in,
2179 shift-out, locking-shift-2, and locking-shift-3). */
2180
2181 #define ENCODE_SHIFT_IN \
2182 do { \
2183 *dst++ = ISO_CODE_SI; \
2184 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0; \
2185 } while (0)
2186
2187 #define ENCODE_SHIFT_OUT \
2188 do { \
2189 *dst++ = ISO_CODE_SO; \
2190 CODING_SPEC_ISO_INVOCATION (coding, 0) = 1; \
2191 } while (0)
2192
2193 #define ENCODE_LOCKING_SHIFT_2 \
2194 do { \
2195 *dst++ = ISO_CODE_ESC, *dst++ = 'n'; \
2196 CODING_SPEC_ISO_INVOCATION (coding, 0) = 2; \
2197 } while (0)
2198
2199 #define ENCODE_LOCKING_SHIFT_3 \
2200 do { \
2201 *dst++ = ISO_CODE_ESC, *dst++ = 'o'; \
2202 CODING_SPEC_ISO_INVOCATION (coding, 0) = 3; \
2203 } while (0)
2204
2205 /* Produce codes for a DIMENSION1 character whose character set is
2206 CHARSET and whose position-code is C1. Designation and invocation
2207 sequences are also produced in advance if necessary. */
2208
2209 #define ENCODE_ISO_CHARACTER_DIMENSION1(charset, c1) \
2210 do { \
2211 if (CODING_SPEC_ISO_SINGLE_SHIFTING (coding)) \
2212 { \
2213 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2214 *dst++ = c1 & 0x7F; \
2215 else \
2216 *dst++ = c1 | 0x80; \
2217 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0; \
2218 break; \
2219 } \
2220 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 0)) \
2221 { \
2222 *dst++ = c1 & 0x7F; \
2223 break; \
2224 } \
2225 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 1)) \
2226 { \
2227 *dst++ = c1 | 0x80; \
2228 break; \
2229 } \
2230 else \
2231 /* Since CHARSET is not yet invoked to any graphic planes, we \
2232 must invoke it, or, at first, designate it to some graphic \
2233 register. Then repeat the loop to actually produce the \
2234 character. */ \
2235 dst = encode_invocation_designation (charset, coding, dst); \
2236 } while (1)
2237
2238 /* Produce codes for a DIMENSION2 character whose character set is
2239 CHARSET and whose position-codes are C1 and C2. Designation and
2240 invocation codes are also produced in advance if necessary. */
2241
2242 #define ENCODE_ISO_CHARACTER_DIMENSION2(charset, c1, c2) \
2243 do { \
2244 if (CODING_SPEC_ISO_SINGLE_SHIFTING (coding)) \
2245 { \
2246 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2247 *dst++ = c1 & 0x7F, *dst++ = c2 & 0x7F; \
2248 else \
2249 *dst++ = c1 | 0x80, *dst++ = c2 | 0x80; \
2250 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0; \
2251 break; \
2252 } \
2253 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 0)) \
2254 { \
2255 *dst++ = c1 & 0x7F, *dst++= c2 & 0x7F; \
2256 break; \
2257 } \
2258 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 1)) \
2259 { \
2260 *dst++ = c1 | 0x80, *dst++= c2 | 0x80; \
2261 break; \
2262 } \
2263 else \
2264 /* Since CHARSET is not yet invoked to any graphic planes, we \
2265 must invoke it, or, at first, designate it to some graphic \
2266 register. Then repeat the loop to actually produce the \
2267 character. */ \
2268 dst = encode_invocation_designation (charset, coding, dst); \
2269 } while (1)
2270
2271 #define ENCODE_ISO_CHARACTER(c) \
2272 do { \
2273 int charset, c1, c2; \
2274 \
2275 SPLIT_CHAR (c, charset, c1, c2); \
2276 if (CHARSET_DEFINED_P (charset)) \
2277 { \
2278 if (CHARSET_DIMENSION (charset) == 1) \
2279 { \
2280 if (charset == CHARSET_ASCII \
2281 && coding->flags & CODING_FLAG_ISO_USE_ROMAN) \
2282 charset = charset_latin_jisx0201; \
2283 ENCODE_ISO_CHARACTER_DIMENSION1 (charset, c1); \
2284 } \
2285 else \
2286 { \
2287 if (charset == charset_jisx0208 \
2288 && coding->flags & CODING_FLAG_ISO_USE_OLDJIS) \
2289 charset = charset_jisx0208_1978; \
2290 ENCODE_ISO_CHARACTER_DIMENSION2 (charset, c1, c2); \
2291 } \
2292 } \
2293 else \
2294 { \
2295 *dst++ = c1; \
2296 if (c2 >= 0) \
2297 *dst++ = c2; \
2298 } \
2299 } while (0)
2300
2301
2302 /* Instead of encoding character C, produce one or two `?'s. */
2303
2304 #define ENCODE_UNSAFE_CHARACTER(c) \
2305 do { \
2306 ENCODE_ISO_CHARACTER (CODING_INHIBIT_CHARACTER_SUBSTITUTION); \
2307 if (CHARSET_WIDTH (CHAR_CHARSET (c)) > 1) \
2308 ENCODE_ISO_CHARACTER (CODING_INHIBIT_CHARACTER_SUBSTITUTION); \
2309 } while (0)
2310
2311
2312 /* Produce designation and invocation codes at a place pointed by DST
2313 to use CHARSET. The element `spec.iso2022' of *CODING is updated.
2314 Return new DST. */
2315
2316 unsigned char *
2317 encode_invocation_designation (charset, coding, dst)
2318 int charset;
2319 struct coding_system *coding;
2320 unsigned char *dst;
2321 {
2322 int reg; /* graphic register number */
2323
2324 /* At first, check designations. */
2325 for (reg = 0; reg < 4; reg++)
2326 if (charset == CODING_SPEC_ISO_DESIGNATION (coding, reg))
2327 break;
2328
2329 if (reg >= 4)
2330 {
2331 /* CHARSET is not yet designated to any graphic registers. */
2332 /* At first check the requested designation. */
2333 reg = CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset);
2334 if (reg == CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION)
2335 /* Since CHARSET requests no special designation, designate it
2336 to graphic register 0. */
2337 reg = 0;
2338
2339 ENCODE_DESIGNATION (charset, reg, coding);
2340 }
2341
2342 if (CODING_SPEC_ISO_INVOCATION (coding, 0) != reg
2343 && CODING_SPEC_ISO_INVOCATION (coding, 1) != reg)
2344 {
2345 /* Since the graphic register REG is not invoked to any graphic
2346 planes, invoke it to graphic plane 0. */
2347 switch (reg)
2348 {
2349 case 0: /* graphic register 0 */
2350 ENCODE_SHIFT_IN;
2351 break;
2352
2353 case 1: /* graphic register 1 */
2354 ENCODE_SHIFT_OUT;
2355 break;
2356
2357 case 2: /* graphic register 2 */
2358 if (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
2359 ENCODE_SINGLE_SHIFT_2;
2360 else
2361 ENCODE_LOCKING_SHIFT_2;
2362 break;
2363
2364 case 3: /* graphic register 3 */
2365 if (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
2366 ENCODE_SINGLE_SHIFT_3;
2367 else
2368 ENCODE_LOCKING_SHIFT_3;
2369 break;
2370 }
2371 }
2372
2373 return dst;
2374 }
2375
2376 /* Produce 2-byte codes for encoded composition rule RULE. */
2377
2378 #define ENCODE_COMPOSITION_RULE(rule) \
2379 do { \
2380 int gref, nref; \
2381 COMPOSITION_DECODE_RULE (rule, gref, nref); \
2382 *dst++ = 32 + 81 + gref; \
2383 *dst++ = 32 + nref; \
2384 } while (0)
2385
2386 /* Produce codes for indicating the start of a composition sequence
2387 (ESC 0, ESC 3, or ESC 4). DATA points to an array of integers
2388 which specify information about the composition. See the comment
2389 in coding.h for the format of DATA. */
2390
2391 #define ENCODE_COMPOSITION_START(coding, data) \
2392 do { \
2393 coding->composing = data[3]; \
2394 *dst++ = ISO_CODE_ESC; \
2395 if (coding->composing == COMPOSITION_RELATIVE) \
2396 *dst++ = '0'; \
2397 else \
2398 { \
2399 *dst++ = (coding->composing == COMPOSITION_WITH_ALTCHARS \
2400 ? '3' : '4'); \
2401 coding->cmp_data_index = coding->cmp_data_start + 4; \
2402 coding->composition_rule_follows = 0; \
2403 } \
2404 } while (0)
2405
2406 /* Produce codes for indicating the end of the current composition. */
2407
2408 #define ENCODE_COMPOSITION_END(coding, data) \
2409 do { \
2410 *dst++ = ISO_CODE_ESC; \
2411 *dst++ = '1'; \
2412 coding->cmp_data_start += data[0]; \
2413 coding->composing = COMPOSITION_NO; \
2414 if (coding->cmp_data_start == coding->cmp_data->used \
2415 && coding->cmp_data->next) \
2416 { \
2417 coding->cmp_data = coding->cmp_data->next; \
2418 coding->cmp_data_start = 0; \
2419 } \
2420 } while (0)
2421
2422 /* Produce composition start sequence ESC 0. Here, this sequence
2423 doesn't mean the start of a new composition but means that we have
2424 just produced components (alternate chars and composition rules) of
2425 the composition and the actual text follows in SRC. */
2426
2427 #define ENCODE_COMPOSITION_FAKE_START(coding) \
2428 do { \
2429 *dst++ = ISO_CODE_ESC; \
2430 *dst++ = '0'; \
2431 coding->composing = COMPOSITION_RELATIVE; \
2432 } while (0)
2433
2434 /* The following three macros produce codes for indicating direction
2435 of text. */
2436 #define ENCODE_CONTROL_SEQUENCE_INTRODUCER \
2437 do { \
2438 if (coding->flags == CODING_FLAG_ISO_SEVEN_BITS) \
2439 *dst++ = ISO_CODE_ESC, *dst++ = '['; \
2440 else \
2441 *dst++ = ISO_CODE_CSI; \
2442 } while (0)
2443
2444 #define ENCODE_DIRECTION_R2L \
2445 ENCODE_CONTROL_SEQUENCE_INTRODUCER (dst), *dst++ = '2', *dst++ = ']'
2446
2447 #define ENCODE_DIRECTION_L2R \
2448 ENCODE_CONTROL_SEQUENCE_INTRODUCER (dst), *dst++ = '0', *dst++ = ']'
2449
2450 /* Produce codes for designation and invocation to reset the graphic
2451 planes and registers to initial state. */
2452 #define ENCODE_RESET_PLANE_AND_REGISTER \
2453 do { \
2454 int reg; \
2455 if (CODING_SPEC_ISO_INVOCATION (coding, 0) != 0) \
2456 ENCODE_SHIFT_IN; \
2457 for (reg = 0; reg < 4; reg++) \
2458 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg) >= 0 \
2459 && (CODING_SPEC_ISO_DESIGNATION (coding, reg) \
2460 != CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg))) \
2461 ENCODE_DESIGNATION \
2462 (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg), reg, coding); \
2463 } while (0)
2464
2465 /* Produce designation sequences of charsets in the line started from
2466 SRC to a place pointed by DST, and return updated DST.
2467
2468 If the current block ends before any end-of-line, we may fail to
2469 find all the necessary designations. */
2470
2471 static unsigned char *
2472 encode_designation_at_bol (coding, translation_table, src, src_end, dst)
2473 struct coding_system *coding;
2474 Lisp_Object translation_table;
2475 unsigned char *src, *src_end, *dst;
2476 {
2477 int charset, c, found = 0, reg;
2478 /* Table of charsets to be designated to each graphic register. */
2479 int r[4];
2480
2481 for (reg = 0; reg < 4; reg++)
2482 r[reg] = -1;
2483
2484 while (found < 4)
2485 {
2486 ONE_MORE_CHAR (c);
2487 if (c == '\n')
2488 break;
2489
2490 charset = CHAR_CHARSET (c);
2491 reg = CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset);
2492 if (reg != CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION && r[reg] < 0)
2493 {
2494 found++;
2495 r[reg] = charset;
2496 }
2497 }
2498
2499 label_end_of_loop:
2500 if (found)
2501 {
2502 for (reg = 0; reg < 4; reg++)
2503 if (r[reg] >= 0
2504 && CODING_SPEC_ISO_DESIGNATION (coding, reg) != r[reg])
2505 ENCODE_DESIGNATION (r[reg], reg, coding);
2506 }
2507
2508 return dst;
2509 }
2510
2511 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions". */
2512
2513 static void
2514 encode_coding_iso2022 (coding, source, destination, src_bytes, dst_bytes)
2515 struct coding_system *coding;
2516 unsigned char *source, *destination;
2517 int src_bytes, dst_bytes;
2518 {
2519 unsigned char *src = source;
2520 unsigned char *src_end = source + src_bytes;
2521 unsigned char *dst = destination;
2522 unsigned char *dst_end = destination + dst_bytes;
2523 /* Since the maximum bytes produced by each loop is 20, we subtract 19
2524 from DST_END to assure overflow checking is necessary only at the
2525 head of loop. */
2526 unsigned char *adjusted_dst_end = dst_end - 19;
2527 /* SRC_BASE remembers the start position in source in each loop.
2528 The loop will be exited when there's not enough source text to
2529 analyze multi-byte codes (within macro ONE_MORE_CHAR), or when
2530 there's not enough destination area to produce encoded codes
2531 (within macro EMIT_BYTES). */
2532 unsigned char *src_base;
2533 int c;
2534 Lisp_Object translation_table;
2535 Lisp_Object safe_chars;
2536
2537 safe_chars = coding_safe_chars (coding->symbol);
2538
2539 if (NILP (Venable_character_translation))
2540 translation_table = Qnil;
2541 else
2542 {
2543 translation_table = coding->translation_table_for_encode;
2544 if (NILP (translation_table))
2545 translation_table = Vstandard_translation_table_for_encode;
2546 }
2547
2548 coding->consumed_char = 0;
2549 coding->errors = 0;
2550 while (1)
2551 {
2552 src_base = src;
2553
2554 if (dst >= (dst_bytes ? adjusted_dst_end : (src - 19)))
2555 {
2556 coding->result = CODING_FINISH_INSUFFICIENT_DST;
2557 break;
2558 }
2559
2560 if (coding->flags & CODING_FLAG_ISO_DESIGNATE_AT_BOL
2561 && CODING_SPEC_ISO_BOL (coding))
2562 {
2563 /* We have to produce designation sequences if any now. */
2564 dst = encode_designation_at_bol (coding, translation_table,
2565 src, src_end, dst);
2566 CODING_SPEC_ISO_BOL (coding) = 0;
2567 }
2568
2569 /* Check composition start and end. */
2570 if (coding->composing != COMPOSITION_DISABLED
2571 && coding->cmp_data_start < coding->cmp_data->used)
2572 {
2573 struct composition_data *cmp_data = coding->cmp_data;
2574 int *data = cmp_data->data + coding->cmp_data_start;
2575 int this_pos = cmp_data->char_offset + coding->consumed_char;
2576
2577 if (coding->composing == COMPOSITION_RELATIVE)
2578 {
2579 if (this_pos == data[2])
2580 {
2581 ENCODE_COMPOSITION_END (coding, data);
2582 cmp_data = coding->cmp_data;
2583 data = cmp_data->data + coding->cmp_data_start;
2584 }
2585 }
2586 else if (COMPOSING_P (coding))
2587 {
2588 /* COMPOSITION_WITH_ALTCHARS or COMPOSITION_WITH_RULE_ALTCHAR */
2589 if (coding->cmp_data_index == coding->cmp_data_start + data[0])
2590 /* We have consumed components of the composition.
2591 What follows in SRC is the composition's base
2592 text. */
2593 ENCODE_COMPOSITION_FAKE_START (coding);
2594 else
2595 {
2596 int c = cmp_data->data[coding->cmp_data_index++];
2597 if (coding->composition_rule_follows)
2598 {
2599 ENCODE_COMPOSITION_RULE (c);
2600 coding->composition_rule_follows = 0;
2601 }
2602 else
2603 {
2604 if (coding->flags & CODING_FLAG_ISO_SAFE
2605 && ! CODING_SAFE_CHAR_P (safe_chars, c))
2606 ENCODE_UNSAFE_CHARACTER (c);
2607 else
2608 ENCODE_ISO_CHARACTER (c);
2609 if (coding->composing == COMPOSITION_WITH_RULE_ALTCHARS)
2610 coding->composition_rule_follows = 1;
2611 }
2612 continue;
2613 }
2614 }
2615 if (!COMPOSING_P (coding))
2616 {
2617 if (this_pos == data[1])
2618 {
2619 ENCODE_COMPOSITION_START (coding, data);
2620 continue;
2621 }
2622 }
2623 }
2624
2625 ONE_MORE_CHAR (c);
2626
2627 /* Now encode the character C. */
2628 if (c < 0x20 || c == 0x7F)
2629 {
2630 if (c == '\r')
2631 {
2632 if (! (coding->mode & CODING_MODE_SELECTIVE_DISPLAY))
2633 {
2634 if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL)
2635 ENCODE_RESET_PLANE_AND_REGISTER;
2636 *dst++ = c;
2637 continue;
2638 }
2639 /* fall down to treat '\r' as '\n' ... */
2640 c = '\n';
2641 }
2642 if (c == '\n')
2643 {
2644 if (coding->flags & CODING_FLAG_ISO_RESET_AT_EOL)
2645 ENCODE_RESET_PLANE_AND_REGISTER;
2646 if (coding->flags & CODING_FLAG_ISO_INIT_AT_BOL)
2647 bcopy (coding->spec.iso2022.initial_designation,
2648 coding->spec.iso2022.current_designation,
2649 sizeof coding->spec.iso2022.initial_designation);
2650 if (coding->eol_type == CODING_EOL_LF
2651 || coding->eol_type == CODING_EOL_UNDECIDED)
2652 *dst++ = ISO_CODE_LF;
2653 else if (coding->eol_type == CODING_EOL_CRLF)
2654 *dst++ = ISO_CODE_CR, *dst++ = ISO_CODE_LF;
2655 else
2656 *dst++ = ISO_CODE_CR;
2657 CODING_SPEC_ISO_BOL (coding) = 1;
2658 }
2659 else
2660 {
2661 if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL)
2662 ENCODE_RESET_PLANE_AND_REGISTER;
2663 *dst++ = c;
2664 }
2665 }
2666 else if (ASCII_BYTE_P (c))
2667 ENCODE_ISO_CHARACTER (c);
2668 else if (SINGLE_BYTE_CHAR_P (c))
2669 {
2670 *dst++ = c;
2671 coding->errors++;
2672 }
2673 else if (coding->flags & CODING_FLAG_ISO_SAFE
2674 && ! CODING_SAFE_CHAR_P (safe_chars, c))
2675 ENCODE_UNSAFE_CHARACTER (c);
2676 else
2677 ENCODE_ISO_CHARACTER (c);
2678
2679 coding->consumed_char++;
2680 }
2681
2682 label_end_of_loop:
2683 coding->consumed = src_base - source;
2684 coding->produced = coding->produced_char = dst - destination;
2685 }
2686
2687 \f
2688 /*** 4. SJIS and BIG5 handlers ***/
2689
2690 /* Although SJIS and BIG5 are not ISO coding systems, they are used
2691 quite widely. So, for the moment, Emacs supports them in the bare
2692 C code. But, in the future, they may be supported only by CCL. */
2693
2694 /* SJIS is a coding system encoding three character sets: ASCII, right
2695 half of JISX0201-Kana, and JISX0208. An ASCII character is encoded
2696 as is. A character of charset katakana-jisx0201 is encoded by
2697 "position-code + 0x80". A character of charset japanese-jisx0208
2698 is encoded in 2-byte but two position-codes are divided and shifted
2699 so that it fits in the range below.
2700
2701 --- CODE RANGE of SJIS ---
2702 (character set) (range)
2703 ASCII 0x00 .. 0x7F
2704 KATAKANA-JISX0201 0xA1 .. 0xDF
2705 JISX0208 (1st byte) 0x81 .. 0x9F and 0xE0 .. 0xEF
2706 (2nd byte) 0x40 .. 0x7E and 0x80 .. 0xFC
2707 -------------------------------
2708
2709 */
2710
2711 /* BIG5 is a coding system encoding two character sets: ASCII and
2712 Big5. An ASCII character is encoded as is. Big5 is a two-byte
2713 character set and is encoded in two bytes.
2714
2715 --- CODE RANGE of BIG5 ---
2716 (character set) (range)
2717 ASCII 0x00 .. 0x7F
2718 Big5 (1st byte) 0xA1 .. 0xFE
2719 (2nd byte) 0x40 .. 0x7E and 0xA1 .. 0xFE
2720 --------------------------
2721
2722 Since the number of characters in Big5 is larger than maximum
2723 characters in Emacs' charset (96x96), it can't be handled as one
2724 charset. So, in Emacs, Big5 is divided into two: `charset-big5-1'
2725 and `charset-big5-2'. Both are DIMENSION2 and CHARS94. The former
2726 contains frequently used characters and the latter contains less
2727 frequently used characters. */
2728
2729 /* Macros to decode or encode a character of Big5 in BIG5. B1 and B2
2730 are the 1st and 2nd position-codes of Big5 in BIG5 coding system.
2731 C1 and C2 are the 1st and 2nd position-codes of Emacs' internal
2732 format. CHARSET is `charset_big5_1' or `charset_big5_2'. */
2733
2734 /* Number of Big5 characters which have the same code in 1st byte. */
2735 #define BIG5_SAME_ROW (0xFF - 0xA1 + 0x7F - 0x40)
2736
2737 #define DECODE_BIG5(b1, b2, charset, c1, c2) \
2738 do { \
2739 unsigned int temp \
2740 = (b1 - 0xA1) * BIG5_SAME_ROW + b2 - (b2 < 0x7F ? 0x40 : 0x62); \
2741 if (b1 < 0xC9) \
2742 charset = charset_big5_1; \
2743 else \
2744 { \
2745 charset = charset_big5_2; \
2746 temp -= (0xC9 - 0xA1) * BIG5_SAME_ROW; \
2747 } \
2748 c1 = temp / (0xFF - 0xA1) + 0x21; \
2749 c2 = temp % (0xFF - 0xA1) + 0x21; \
2750 } while (0)
2751
2752 #define ENCODE_BIG5(charset, c1, c2, b1, b2) \
2753 do { \
2754 unsigned int temp = (c1 - 0x21) * (0xFF - 0xA1) + (c2 - 0x21); \
2755 if (charset == charset_big5_2) \
2756 temp += BIG5_SAME_ROW * (0xC9 - 0xA1); \
2757 b1 = temp / BIG5_SAME_ROW + 0xA1; \
2758 b2 = temp % BIG5_SAME_ROW; \
2759 b2 += b2 < 0x3F ? 0x40 : 0x62; \
2760 } while (0)
2761
2762 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2763 Check if a text is encoded in SJIS. If it is, return
2764 CODING_CATEGORY_MASK_SJIS, else return 0. */
2765
2766 static int
2767 detect_coding_sjis (src, src_end, multibytep)
2768 unsigned char *src, *src_end;
2769 int multibytep;
2770 {
2771 int c;
2772 /* Dummy for ONE_MORE_BYTE. */
2773 struct coding_system dummy_coding;
2774 struct coding_system *coding = &dummy_coding;
2775
2776 while (1)
2777 {
2778 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2779 if (c < 0x80)
2780 continue;
2781 if (c == 0x80 || c == 0xA0 || c > 0xEF)
2782 return 0;
2783 if (c <= 0x9F || c >= 0xE0)
2784 {
2785 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2786 if (c < 0x40 || c == 0x7F || c > 0xFC)
2787 return 0;
2788 }
2789 }
2790 label_end_of_loop:
2791 return CODING_CATEGORY_MASK_SJIS;
2792 }
2793
2794 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2795 Check if a text is encoded in BIG5. If it is, return
2796 CODING_CATEGORY_MASK_BIG5, else return 0. */
2797
2798 static int
2799 detect_coding_big5 (src, src_end, multibytep)
2800 unsigned char *src, *src_end;
2801 int multibytep;
2802 {
2803 int c;
2804 /* Dummy for ONE_MORE_BYTE. */
2805 struct coding_system dummy_coding;
2806 struct coding_system *coding = &dummy_coding;
2807
2808 while (1)
2809 {
2810 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2811 if (c < 0x80)
2812 continue;
2813 if (c < 0xA1 || c > 0xFE)
2814 return 0;
2815 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2816 if (c < 0x40 || (c > 0x7F && c < 0xA1) || c > 0xFE)
2817 return 0;
2818 }
2819 label_end_of_loop:
2820 return CODING_CATEGORY_MASK_BIG5;
2821 }
2822
2823 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2824 Check if a text is encoded in UTF-8. If it is, return
2825 CODING_CATEGORY_MASK_UTF_8, else return 0. */
2826
2827 #define UTF_8_1_OCTET_P(c) ((c) < 0x80)
2828 #define UTF_8_EXTRA_OCTET_P(c) (((c) & 0xC0) == 0x80)
2829 #define UTF_8_2_OCTET_LEADING_P(c) (((c) & 0xE0) == 0xC0)
2830 #define UTF_8_3_OCTET_LEADING_P(c) (((c) & 0xF0) == 0xE0)
2831 #define UTF_8_4_OCTET_LEADING_P(c) (((c) & 0xF8) == 0xF0)
2832 #define UTF_8_5_OCTET_LEADING_P(c) (((c) & 0xFC) == 0xF8)
2833 #define UTF_8_6_OCTET_LEADING_P(c) (((c) & 0xFE) == 0xFC)
2834
2835 static int
2836 detect_coding_utf_8 (src, src_end, multibytep)
2837 unsigned char *src, *src_end;
2838 int multibytep;
2839 {
2840 unsigned char c;
2841 int seq_maybe_bytes;
2842 /* Dummy for ONE_MORE_BYTE. */
2843 struct coding_system dummy_coding;
2844 struct coding_system *coding = &dummy_coding;
2845
2846 while (1)
2847 {
2848 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2849 if (UTF_8_1_OCTET_P (c))
2850 continue;
2851 else if (UTF_8_2_OCTET_LEADING_P (c))
2852 seq_maybe_bytes = 1;
2853 else if (UTF_8_3_OCTET_LEADING_P (c))
2854 seq_maybe_bytes = 2;
2855 else if (UTF_8_4_OCTET_LEADING_P (c))
2856 seq_maybe_bytes = 3;
2857 else if (UTF_8_5_OCTET_LEADING_P (c))
2858 seq_maybe_bytes = 4;
2859 else if (UTF_8_6_OCTET_LEADING_P (c))
2860 seq_maybe_bytes = 5;
2861 else
2862 return 0;
2863
2864 do
2865 {
2866 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2867 if (!UTF_8_EXTRA_OCTET_P (c))
2868 return 0;
2869 seq_maybe_bytes--;
2870 }
2871 while (seq_maybe_bytes > 0);
2872 }
2873
2874 label_end_of_loop:
2875 return CODING_CATEGORY_MASK_UTF_8;
2876 }
2877
2878 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2879 Check if a text is encoded in UTF-16 Big Endian (endian == 1) or
2880 Little Endian (otherwise). If it is, return
2881 CODING_CATEGORY_MASK_UTF_16_BE or CODING_CATEGORY_MASK_UTF_16_LE,
2882 else return 0. */
2883
2884 #define UTF_16_INVALID_P(val) \
2885 (((val) == 0xFFFE) \
2886 || ((val) == 0xFFFF))
2887
2888 #define UTF_16_HIGH_SURROGATE_P(val) \
2889 (((val) & 0xD800) == 0xD800)
2890
2891 #define UTF_16_LOW_SURROGATE_P(val) \
2892 (((val) & 0xDC00) == 0xDC00)
2893
2894 static int
2895 detect_coding_utf_16 (src, src_end, multibytep)
2896 unsigned char *src, *src_end;
2897 int multibytep;
2898 {
2899 unsigned char c1, c2;
2900 /* Dummy for ONE_MORE_BYTE_CHECK_MULTIBYTE. */
2901 struct coding_system dummy_coding;
2902 struct coding_system *coding = &dummy_coding;
2903
2904 ONE_MORE_BYTE_CHECK_MULTIBYTE (c1, multibytep);
2905 ONE_MORE_BYTE_CHECK_MULTIBYTE (c2, multibytep);
2906
2907 if ((c1 == 0xFF) && (c2 == 0xFE))
2908 return CODING_CATEGORY_MASK_UTF_16_LE;
2909 else if ((c1 == 0xFE) && (c2 == 0xFF))
2910 return CODING_CATEGORY_MASK_UTF_16_BE;
2911
2912 label_end_of_loop:
2913 return 0;
2914 }
2915
2916 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions".
2917 If SJIS_P is 1, decode SJIS text, else decode BIG5 test. */
2918
2919 static void
2920 decode_coding_sjis_big5 (coding, source, destination,
2921 src_bytes, dst_bytes, sjis_p)
2922 struct coding_system *coding;
2923 unsigned char *source, *destination;
2924 int src_bytes, dst_bytes;
2925 int sjis_p;
2926 {
2927 unsigned char *src = source;
2928 unsigned char *src_end = source + src_bytes;
2929 unsigned char *dst = destination;
2930 unsigned char *dst_end = destination + dst_bytes;
2931 /* SRC_BASE remembers the start position in source in each loop.
2932 The loop will be exited when there's not enough source code
2933 (within macro ONE_MORE_BYTE), or when there's not enough
2934 destination area to produce a character (within macro
2935 EMIT_CHAR). */
2936 unsigned char *src_base;
2937 Lisp_Object translation_table;
2938
2939 if (NILP (Venable_character_translation))
2940 translation_table = Qnil;
2941 else
2942 {
2943 translation_table = coding->translation_table_for_decode;
2944 if (NILP (translation_table))
2945 translation_table = Vstandard_translation_table_for_decode;
2946 }
2947
2948 coding->produced_char = 0;
2949 while (1)
2950 {
2951 int c, charset, c1, c2;
2952
2953 src_base = src;
2954 ONE_MORE_BYTE (c1);
2955
2956 if (c1 < 0x80)
2957 {
2958 charset = CHARSET_ASCII;
2959 if (c1 < 0x20)
2960 {
2961 if (c1 == '\r')
2962 {
2963 if (coding->eol_type == CODING_EOL_CRLF)
2964 {
2965 ONE_MORE_BYTE (c2);
2966 if (c2 == '\n')
2967 c1 = c2;
2968 else
2969 /* To process C2 again, SRC is subtracted by 1. */
2970 src--;
2971 }
2972 else if (coding->eol_type == CODING_EOL_CR)
2973 c1 = '\n';
2974 }
2975 else if (c1 == '\n'
2976 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
2977 && (coding->eol_type == CODING_EOL_CR
2978 || coding->eol_type == CODING_EOL_CRLF))
2979 {
2980 coding->result = CODING_FINISH_INCONSISTENT_EOL;
2981 goto label_end_of_loop;
2982 }
2983 }
2984 }
2985 else
2986 {
2987 if (sjis_p)
2988 {
2989 if (c1 == 0x80 || c1 == 0xA0 || c1 > 0xEF)
2990 goto label_invalid_code;
2991 if (c1 <= 0x9F || c1 >= 0xE0)
2992 {
2993 /* SJIS -> JISX0208 */
2994 ONE_MORE_BYTE (c2);
2995 if (c2 < 0x40 || c2 == 0x7F || c2 > 0xFC)
2996 goto label_invalid_code;
2997 DECODE_SJIS (c1, c2, c1, c2);
2998 charset = charset_jisx0208;
2999 }
3000 else
3001 /* SJIS -> JISX0201-Kana */
3002 charset = charset_katakana_jisx0201;
3003 }
3004 else
3005 {
3006 /* BIG5 -> Big5 */
3007 if (c1 < 0xA0 || c1 > 0xFE)
3008 goto label_invalid_code;
3009 ONE_MORE_BYTE (c2);
3010 if (c2 < 0x40 || (c2 > 0x7E && c2 < 0xA1) || c2 > 0xFE)
3011 goto label_invalid_code;
3012 DECODE_BIG5 (c1, c2, charset, c1, c2);
3013 }
3014 }
3015
3016 c = DECODE_ISO_CHARACTER (charset, c1, c2);
3017 EMIT_CHAR (c);
3018 continue;
3019
3020 label_invalid_code:
3021 coding->errors++;
3022 src = src_base;
3023 c = *src++;
3024 EMIT_CHAR (c);
3025 }
3026
3027 label_end_of_loop:
3028 coding->consumed = coding->consumed_char = src_base - source;
3029 coding->produced = dst - destination;
3030 return;
3031 }
3032
3033 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions".
3034 This function can encode charsets `ascii', `katakana-jisx0201',
3035 `japanese-jisx0208', `chinese-big5-1', and `chinese-big5-2'. We
3036 are sure that all these charsets are registered as official charset
3037 (i.e. do not have extended leading-codes). Characters of other
3038 charsets are produced without any encoding. If SJIS_P is 1, encode
3039 SJIS text, else encode BIG5 text. */
3040
3041 static void
3042 encode_coding_sjis_big5 (coding, source, destination,
3043 src_bytes, dst_bytes, sjis_p)
3044 struct coding_system *coding;
3045 unsigned char *source, *destination;
3046 int src_bytes, dst_bytes;
3047 int sjis_p;
3048 {
3049 unsigned char *src = source;
3050 unsigned char *src_end = source + src_bytes;
3051 unsigned char *dst = destination;
3052 unsigned char *dst_end = destination + dst_bytes;
3053 /* SRC_BASE remembers the start position in source in each loop.
3054 The loop will be exited when there's not enough source text to
3055 analyze multi-byte codes (within macro ONE_MORE_CHAR), or when
3056 there's not enough destination area to produce encoded codes
3057 (within macro EMIT_BYTES). */
3058 unsigned char *src_base;
3059 Lisp_Object translation_table;
3060
3061 if (NILP (Venable_character_translation))
3062 translation_table = Qnil;
3063 else
3064 {
3065 translation_table = coding->translation_table_for_encode;
3066 if (NILP (translation_table))
3067 translation_table = Vstandard_translation_table_for_encode;
3068 }
3069
3070 while (1)
3071 {
3072 int c, charset, c1, c2;
3073
3074 src_base = src;
3075 ONE_MORE_CHAR (c);
3076
3077 /* Now encode the character C. */
3078 if (SINGLE_BYTE_CHAR_P (c))
3079 {
3080 switch (c)
3081 {
3082 case '\r':
3083 if (!(coding->mode & CODING_MODE_SELECTIVE_DISPLAY))
3084 {
3085 EMIT_ONE_BYTE (c);
3086 break;
3087 }
3088 c = '\n';
3089 case '\n':
3090 if (coding->eol_type == CODING_EOL_CRLF)
3091 {
3092 EMIT_TWO_BYTES ('\r', c);
3093 break;
3094 }
3095 else if (coding->eol_type == CODING_EOL_CR)
3096 c = '\r';
3097 default:
3098 EMIT_ONE_BYTE (c);
3099 }
3100 }
3101 else
3102 {
3103 SPLIT_CHAR (c, charset, c1, c2);
3104 if (sjis_p)
3105 {
3106 if (charset == charset_jisx0208
3107 || charset == charset_jisx0208_1978)
3108 {
3109 ENCODE_SJIS (c1, c2, c1, c2);
3110 EMIT_TWO_BYTES (c1, c2);
3111 }
3112 else if (charset == charset_katakana_jisx0201)
3113 EMIT_ONE_BYTE (c1 | 0x80);
3114 else if (charset == charset_latin_jisx0201)
3115 EMIT_ONE_BYTE (c1);
3116 else
3117 /* There's no way other than producing the internal
3118 codes as is. */
3119 EMIT_BYTES (src_base, src);
3120 }
3121 else
3122 {
3123 if (charset == charset_big5_1 || charset == charset_big5_2)
3124 {
3125 ENCODE_BIG5 (charset, c1, c2, c1, c2);
3126 EMIT_TWO_BYTES (c1, c2);
3127 }
3128 else
3129 /* There's no way other than producing the internal
3130 codes as is. */
3131 EMIT_BYTES (src_base, src);
3132 }
3133 }
3134 coding->consumed_char++;
3135 }
3136
3137 label_end_of_loop:
3138 coding->consumed = src_base - source;
3139 coding->produced = coding->produced_char = dst - destination;
3140 }
3141
3142 \f
3143 /*** 5. CCL handlers ***/
3144
3145 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
3146 Check if a text is encoded in a coding system of which
3147 encoder/decoder are written in CCL program. If it is, return
3148 CODING_CATEGORY_MASK_CCL, else return 0. */
3149
3150 static int
3151 detect_coding_ccl (src, src_end, multibytep)
3152 unsigned char *src, *src_end;
3153 int multibytep;
3154 {
3155 unsigned char *valid;
3156 int c;
3157 /* Dummy for ONE_MORE_BYTE. */
3158 struct coding_system dummy_coding;
3159 struct coding_system *coding = &dummy_coding;
3160
3161 /* No coding system is assigned to coding-category-ccl. */
3162 if (!coding_system_table[CODING_CATEGORY_IDX_CCL])
3163 return 0;
3164
3165 valid = coding_system_table[CODING_CATEGORY_IDX_CCL]->spec.ccl.valid_codes;
3166 while (1)
3167 {
3168 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
3169 if (! valid[c])
3170 return 0;
3171 }
3172 label_end_of_loop:
3173 return CODING_CATEGORY_MASK_CCL;
3174 }
3175
3176 \f
3177 /*** 6. End-of-line handlers ***/
3178
3179 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
3180
3181 static void
3182 decode_eol (coding, source, destination, src_bytes, dst_bytes)
3183 struct coding_system *coding;
3184 unsigned char *source, *destination;
3185 int src_bytes, dst_bytes;
3186 {
3187 unsigned char *src = source;
3188 unsigned char *dst = destination;
3189 unsigned char *src_end = src + src_bytes;
3190 unsigned char *dst_end = dst + dst_bytes;
3191 Lisp_Object translation_table;
3192 /* SRC_BASE remembers the start position in source in each loop.
3193 The loop will be exited when there's not enough source code
3194 (within macro ONE_MORE_BYTE), or when there's not enough
3195 destination area to produce a character (within macro
3196 EMIT_CHAR). */
3197 unsigned char *src_base;
3198 int c;
3199
3200 translation_table = Qnil;
3201 switch (coding->eol_type)
3202 {
3203 case CODING_EOL_CRLF:
3204 while (1)
3205 {
3206 src_base = src;
3207 ONE_MORE_BYTE (c);
3208 if (c == '\r')
3209 {
3210 ONE_MORE_BYTE (c);
3211 if (c != '\n')
3212 {
3213 src--;
3214 c = '\r';
3215 }
3216 }
3217 else if (c == '\n'
3218 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL))
3219 {
3220 coding->result = CODING_FINISH_INCONSISTENT_EOL;
3221 goto label_end_of_loop;
3222 }
3223 EMIT_CHAR (c);
3224 }
3225 break;
3226
3227 case CODING_EOL_CR:
3228 while (1)
3229 {
3230 src_base = src;
3231 ONE_MORE_BYTE (c);
3232 if (c == '\n')
3233 {
3234 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
3235 {
3236 coding->result = CODING_FINISH_INCONSISTENT_EOL;
3237 goto label_end_of_loop;
3238 }
3239 }
3240 else if (c == '\r')
3241 c = '\n';
3242 EMIT_CHAR (c);
3243 }
3244 break;
3245
3246 default: /* no need for EOL handling */
3247 while (1)
3248 {
3249 src_base = src;
3250 ONE_MORE_BYTE (c);
3251 EMIT_CHAR (c);
3252 }
3253 }
3254
3255 label_end_of_loop:
3256 coding->consumed = coding->consumed_char = src_base - source;
3257 coding->produced = dst - destination;
3258 return;
3259 }
3260
3261 /* See "GENERAL NOTES about `encode_coding_XXX ()' functions". Encode
3262 format of end-of-line according to `coding->eol_type'. It also
3263 convert multibyte form 8-bit characters to unibyte if
3264 CODING->src_multibyte is nonzero. If `coding->mode &
3265 CODING_MODE_SELECTIVE_DISPLAY' is nonzero, code '\r' in source text
3266 also means end-of-line. */
3267
3268 static void
3269 encode_eol (coding, source, destination, src_bytes, dst_bytes)
3270 struct coding_system *coding;
3271 const unsigned char *source;
3272 unsigned char *destination;
3273 int src_bytes, dst_bytes;
3274 {
3275 const unsigned char *src = source;
3276 unsigned char *dst = destination;
3277 const unsigned char *src_end = src + src_bytes;
3278 unsigned char *dst_end = dst + dst_bytes;
3279 Lisp_Object translation_table;
3280 /* SRC_BASE remembers the start position in source in each loop.
3281 The loop will be exited when there's not enough source text to
3282 analyze multi-byte codes (within macro ONE_MORE_CHAR), or when
3283 there's not enough destination area to produce encoded codes
3284 (within macro EMIT_BYTES). */
3285 const unsigned char *src_base;
3286 unsigned char *tmp;
3287 int c;
3288 int selective_display = coding->mode & CODING_MODE_SELECTIVE_DISPLAY;
3289
3290 translation_table = Qnil;
3291 if (coding->src_multibyte
3292 && *(src_end - 1) == LEADING_CODE_8_BIT_CONTROL)
3293 {
3294 src_end--;
3295 src_bytes--;
3296 coding->result = CODING_FINISH_INSUFFICIENT_SRC;
3297 }
3298
3299 if (coding->eol_type == CODING_EOL_CRLF)
3300 {
3301 while (src < src_end)
3302 {
3303 src_base = src;
3304 c = *src++;
3305 if (c >= 0x20)
3306 EMIT_ONE_BYTE (c);
3307 else if (c == '\n' || (c == '\r' && selective_display))
3308 EMIT_TWO_BYTES ('\r', '\n');
3309 else
3310 EMIT_ONE_BYTE (c);
3311 }
3312 src_base = src;
3313 label_end_of_loop:
3314 ;
3315 }
3316 else
3317 {
3318 if (!dst_bytes || src_bytes <= dst_bytes)
3319 {
3320 safe_bcopy (src, dst, src_bytes);
3321 src_base = src_end;
3322 dst += src_bytes;
3323 }
3324 else
3325 {
3326 if (coding->src_multibyte
3327 && *(src + dst_bytes - 1) == LEADING_CODE_8_BIT_CONTROL)
3328 dst_bytes--;
3329 safe_bcopy (src, dst, dst_bytes);
3330 src_base = src + dst_bytes;
3331 dst = destination + dst_bytes;
3332 coding->result = CODING_FINISH_INSUFFICIENT_DST;
3333 }
3334 if (coding->eol_type == CODING_EOL_CR)
3335 {
3336 for (tmp = destination; tmp < dst; tmp++)
3337 if (*tmp == '\n') *tmp = '\r';
3338 }
3339 else if (selective_display)
3340 {
3341 for (tmp = destination; tmp < dst; tmp++)
3342 if (*tmp == '\r') *tmp = '\n';
3343 }
3344 }
3345 if (coding->src_multibyte)
3346 dst = destination + str_as_unibyte (destination, dst - destination);
3347
3348 coding->consumed = src_base - source;
3349 coding->produced = dst - destination;
3350 coding->produced_char = coding->produced;
3351 }
3352
3353 \f
3354 /*** 7. C library functions ***/
3355
3356 /* In Emacs Lisp, a coding system is represented by a Lisp symbol which
3357 has a property `coding-system'. The value of this property is a
3358 vector of length 5 (called the coding-vector). Among elements of
3359 this vector, the first (element[0]) and the fifth (element[4])
3360 carry important information for decoding/encoding. Before
3361 decoding/encoding, this information should be set in fields of a
3362 structure of type `coding_system'.
3363
3364 The value of the property `coding-system' can be a symbol of another
3365 subsidiary coding-system. In that case, Emacs gets coding-vector
3366 from that symbol.
3367
3368 `element[0]' contains information to be set in `coding->type'. The
3369 value and its meaning is as follows:
3370
3371 0 -- coding_type_emacs_mule
3372 1 -- coding_type_sjis
3373 2 -- coding_type_iso2022
3374 3 -- coding_type_big5
3375 4 -- coding_type_ccl encoder/decoder written in CCL
3376 nil -- coding_type_no_conversion
3377 t -- coding_type_undecided (automatic conversion on decoding,
3378 no-conversion on encoding)
3379
3380 `element[4]' contains information to be set in `coding->flags' and
3381 `coding->spec'. The meaning varies by `coding->type'.
3382
3383 If `coding->type' is `coding_type_iso2022', element[4] is a vector
3384 of length 32 (of which the first 13 sub-elements are used now).
3385 Meanings of these sub-elements are:
3386
3387 sub-element[N] where N is 0 through 3: to be set in `coding->spec.iso2022'
3388 If the value is an integer of valid charset, the charset is
3389 assumed to be designated to graphic register N initially.
3390
3391 If the value is minus, it is a minus value of charset which
3392 reserves graphic register N, which means that the charset is
3393 not designated initially but should be designated to graphic
3394 register N just before encoding a character in that charset.
3395
3396 If the value is nil, graphic register N is never used on
3397 encoding.
3398
3399 sub-element[N] where N is 4 through 11: to be set in `coding->flags'
3400 Each value takes t or nil. See the section ISO2022 of
3401 `coding.h' for more information.
3402
3403 If `coding->type' is `coding_type_big5', element[4] is t to denote
3404 BIG5-ETen or nil to denote BIG5-HKU.
3405
3406 If `coding->type' takes the other value, element[4] is ignored.
3407
3408 Emacs Lisp's coding systems also carry information about format of
3409 end-of-line in a value of property `eol-type'. If the value is
3410 integer, 0 means CODING_EOL_LF, 1 means CODING_EOL_CRLF, and 2
3411 means CODING_EOL_CR. If it is not integer, it should be a vector
3412 of subsidiary coding systems of which property `eol-type' has one
3413 of the above values.
3414
3415 */
3416
3417 /* Extract information for decoding/encoding from CODING_SYSTEM_SYMBOL
3418 and set it in CODING. If CODING_SYSTEM_SYMBOL is invalid, CODING
3419 is setup so that no conversion is necessary and return -1, else
3420 return 0. */
3421
3422 int
3423 setup_coding_system (coding_system, coding)
3424 Lisp_Object coding_system;
3425 struct coding_system *coding;
3426 {
3427 Lisp_Object coding_spec, coding_type, eol_type, plist;
3428 Lisp_Object val;
3429
3430 /* At first, zero clear all members. */
3431 bzero (coding, sizeof (struct coding_system));
3432
3433 /* Initialize some fields required for all kinds of coding systems. */
3434 coding->symbol = coding_system;
3435 coding->heading_ascii = -1;
3436 coding->post_read_conversion = coding->pre_write_conversion = Qnil;
3437 coding->composing = COMPOSITION_DISABLED;
3438 coding->cmp_data = NULL;
3439
3440 if (NILP (coding_system))
3441 goto label_invalid_coding_system;
3442
3443 coding_spec = Fget (coding_system, Qcoding_system);
3444
3445 if (!VECTORP (coding_spec)
3446 || XVECTOR (coding_spec)->size != 5
3447 || !CONSP (XVECTOR (coding_spec)->contents[3]))
3448 goto label_invalid_coding_system;
3449
3450 eol_type = inhibit_eol_conversion ? Qnil : Fget (coding_system, Qeol_type);
3451 if (VECTORP (eol_type))
3452 {
3453 coding->eol_type = CODING_EOL_UNDECIDED;
3454 coding->common_flags = CODING_REQUIRE_DETECTION_MASK;
3455 }
3456 else if (XFASTINT (eol_type) == 1)
3457 {
3458 coding->eol_type = CODING_EOL_CRLF;
3459 coding->common_flags
3460 = CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3461 }
3462 else if (XFASTINT (eol_type) == 2)
3463 {
3464 coding->eol_type = CODING_EOL_CR;
3465 coding->common_flags
3466 = CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3467 }
3468 else
3469 coding->eol_type = CODING_EOL_LF;
3470
3471 coding_type = XVECTOR (coding_spec)->contents[0];
3472 /* Try short cut. */
3473 if (SYMBOLP (coding_type))
3474 {
3475 if (EQ (coding_type, Qt))
3476 {
3477 coding->type = coding_type_undecided;
3478 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
3479 }
3480 else
3481 coding->type = coding_type_no_conversion;
3482 /* Initialize this member. Any thing other than
3483 CODING_CATEGORY_IDX_UTF_16_BE and
3484 CODING_CATEGORY_IDX_UTF_16_LE are ok because they have
3485 special treatment in detect_eol. */
3486 coding->category_idx = CODING_CATEGORY_IDX_EMACS_MULE;
3487
3488 return 0;
3489 }
3490
3491 /* Get values of coding system properties:
3492 `post-read-conversion', `pre-write-conversion',
3493 `translation-table-for-decode', `translation-table-for-encode'. */
3494 plist = XVECTOR (coding_spec)->contents[3];
3495 /* Pre & post conversion functions should be disabled if
3496 inhibit_eol_conversion is nonzero. This is the case that a code
3497 conversion function is called while those functions are running. */
3498 if (! inhibit_pre_post_conversion)
3499 {
3500 coding->post_read_conversion = Fplist_get (plist, Qpost_read_conversion);
3501 coding->pre_write_conversion = Fplist_get (plist, Qpre_write_conversion);
3502 }
3503 val = Fplist_get (plist, Qtranslation_table_for_decode);
3504 if (SYMBOLP (val))
3505 val = Fget (val, Qtranslation_table_for_decode);
3506 coding->translation_table_for_decode = CHAR_TABLE_P (val) ? val : Qnil;
3507 val = Fplist_get (plist, Qtranslation_table_for_encode);
3508 if (SYMBOLP (val))
3509 val = Fget (val, Qtranslation_table_for_encode);
3510 coding->translation_table_for_encode = CHAR_TABLE_P (val) ? val : Qnil;
3511 val = Fplist_get (plist, Qcoding_category);
3512 if (!NILP (val))
3513 {
3514 val = Fget (val, Qcoding_category_index);
3515 if (INTEGERP (val))
3516 coding->category_idx = XINT (val);
3517 else
3518 goto label_invalid_coding_system;
3519 }
3520 else
3521 goto label_invalid_coding_system;
3522
3523 /* If the coding system has non-nil `composition' property, enable
3524 composition handling. */
3525 val = Fplist_get (plist, Qcomposition);
3526 if (!NILP (val))
3527 coding->composing = COMPOSITION_NO;
3528
3529 switch (XFASTINT (coding_type))
3530 {
3531 case 0:
3532 coding->type = coding_type_emacs_mule;
3533 coding->common_flags
3534 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3535 if (!NILP (coding->post_read_conversion))
3536 coding->common_flags |= CODING_REQUIRE_DECODING_MASK;
3537 if (!NILP (coding->pre_write_conversion))
3538 coding->common_flags |= CODING_REQUIRE_ENCODING_MASK;
3539 break;
3540
3541 case 1:
3542 coding->type = coding_type_sjis;
3543 coding->common_flags
3544 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3545 break;
3546
3547 case 2:
3548 coding->type = coding_type_iso2022;
3549 coding->common_flags
3550 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3551 {
3552 Lisp_Object val, temp;
3553 Lisp_Object *flags;
3554 int i, charset, reg_bits = 0;
3555
3556 val = XVECTOR (coding_spec)->contents[4];
3557
3558 if (!VECTORP (val) || XVECTOR (val)->size != 32)
3559 goto label_invalid_coding_system;
3560
3561 flags = XVECTOR (val)->contents;
3562 coding->flags
3563 = ((NILP (flags[4]) ? 0 : CODING_FLAG_ISO_SHORT_FORM)
3564 | (NILP (flags[5]) ? 0 : CODING_FLAG_ISO_RESET_AT_EOL)
3565 | (NILP (flags[6]) ? 0 : CODING_FLAG_ISO_RESET_AT_CNTL)
3566 | (NILP (flags[7]) ? 0 : CODING_FLAG_ISO_SEVEN_BITS)
3567 | (NILP (flags[8]) ? 0 : CODING_FLAG_ISO_LOCKING_SHIFT)
3568 | (NILP (flags[9]) ? 0 : CODING_FLAG_ISO_SINGLE_SHIFT)
3569 | (NILP (flags[10]) ? 0 : CODING_FLAG_ISO_USE_ROMAN)
3570 | (NILP (flags[11]) ? 0 : CODING_FLAG_ISO_USE_OLDJIS)
3571 | (NILP (flags[12]) ? 0 : CODING_FLAG_ISO_NO_DIRECTION)
3572 | (NILP (flags[13]) ? 0 : CODING_FLAG_ISO_INIT_AT_BOL)
3573 | (NILP (flags[14]) ? 0 : CODING_FLAG_ISO_DESIGNATE_AT_BOL)
3574 | (NILP (flags[15]) ? 0 : CODING_FLAG_ISO_SAFE)
3575 | (NILP (flags[16]) ? 0 : CODING_FLAG_ISO_LATIN_EXTRA)
3576 );
3577
3578 /* Invoke graphic register 0 to plane 0. */
3579 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0;
3580 /* Invoke graphic register 1 to plane 1 if we can use full 8-bit. */
3581 CODING_SPEC_ISO_INVOCATION (coding, 1)
3582 = (coding->flags & CODING_FLAG_ISO_SEVEN_BITS ? -1 : 1);
3583 /* Not single shifting at first. */
3584 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0;
3585 /* Beginning of buffer should also be regarded as bol. */
3586 CODING_SPEC_ISO_BOL (coding) = 1;
3587
3588 for (charset = 0; charset <= MAX_CHARSET; charset++)
3589 CODING_SPEC_ISO_REVISION_NUMBER (coding, charset) = 255;
3590 val = Vcharset_revision_alist;
3591 while (CONSP (val))
3592 {
3593 charset = get_charset_id (Fcar_safe (XCAR (val)));
3594 if (charset >= 0
3595 && (temp = Fcdr_safe (XCAR (val)), INTEGERP (temp))
3596 && (i = XINT (temp), (i >= 0 && (i + '@') < 128)))
3597 CODING_SPEC_ISO_REVISION_NUMBER (coding, charset) = i;
3598 val = XCDR (val);
3599 }
3600
3601 /* Checks FLAGS[REG] (REG = 0, 1, 2 3) and decide designations.
3602 FLAGS[REG] can be one of below:
3603 integer CHARSET: CHARSET occupies register I,
3604 t: designate nothing to REG initially, but can be used
3605 by any charsets,
3606 list of integer, nil, or t: designate the first
3607 element (if integer) to REG initially, the remaining
3608 elements (if integer) is designated to REG on request,
3609 if an element is t, REG can be used by any charsets,
3610 nil: REG is never used. */
3611 for (charset = 0; charset <= MAX_CHARSET; charset++)
3612 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3613 = CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION;
3614 for (i = 0; i < 4; i++)
3615 {
3616 if ((INTEGERP (flags[i])
3617 && (charset = XINT (flags[i]), CHARSET_VALID_P (charset)))
3618 || (charset = get_charset_id (flags[i])) >= 0)
3619 {
3620 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = charset;
3621 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) = i;
3622 }
3623 else if (EQ (flags[i], Qt))
3624 {
3625 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3626 reg_bits |= 1 << i;
3627 coding->flags |= CODING_FLAG_ISO_DESIGNATION;
3628 }
3629 else if (CONSP (flags[i]))
3630 {
3631 Lisp_Object tail;
3632 tail = flags[i];
3633
3634 coding->flags |= CODING_FLAG_ISO_DESIGNATION;
3635 if ((INTEGERP (XCAR (tail))
3636 && (charset = XINT (XCAR (tail)),
3637 CHARSET_VALID_P (charset)))
3638 || (charset = get_charset_id (XCAR (tail))) >= 0)
3639 {
3640 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = charset;
3641 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) =i;
3642 }
3643 else
3644 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3645 tail = XCDR (tail);
3646 while (CONSP (tail))
3647 {
3648 if ((INTEGERP (XCAR (tail))
3649 && (charset = XINT (XCAR (tail)),
3650 CHARSET_VALID_P (charset)))
3651 || (charset = get_charset_id (XCAR (tail))) >= 0)
3652 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3653 = i;
3654 else if (EQ (XCAR (tail), Qt))
3655 reg_bits |= 1 << i;
3656 tail = XCDR (tail);
3657 }
3658 }
3659 else
3660 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3661
3662 CODING_SPEC_ISO_DESIGNATION (coding, i)
3663 = CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i);
3664 }
3665
3666 if (reg_bits && ! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT))
3667 {
3668 /* REG 1 can be used only by locking shift in 7-bit env. */
3669 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
3670 reg_bits &= ~2;
3671 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
3672 /* Without any shifting, only REG 0 and 1 can be used. */
3673 reg_bits &= 3;
3674 }
3675
3676 if (reg_bits)
3677 for (charset = 0; charset <= MAX_CHARSET; charset++)
3678 {
3679 if (CHARSET_DEFINED_P (charset)
3680 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3681 == CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION))
3682 {
3683 /* There exist some default graphic registers to be
3684 used by CHARSET. */
3685
3686 /* We had better avoid designating a charset of
3687 CHARS96 to REG 0 as far as possible. */
3688 if (CHARSET_CHARS (charset) == 96)
3689 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3690 = (reg_bits & 2
3691 ? 1 : (reg_bits & 4 ? 2 : (reg_bits & 8 ? 3 : 0)));
3692 else
3693 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3694 = (reg_bits & 1
3695 ? 0 : (reg_bits & 2 ? 1 : (reg_bits & 4 ? 2 : 3)));
3696 }
3697 }
3698 }
3699 coding->common_flags |= CODING_REQUIRE_FLUSHING_MASK;
3700 coding->spec.iso2022.last_invalid_designation_register = -1;
3701 break;
3702
3703 case 3:
3704 coding->type = coding_type_big5;
3705 coding->common_flags
3706 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3707 coding->flags
3708 = (NILP (XVECTOR (coding_spec)->contents[4])
3709 ? CODING_FLAG_BIG5_HKU
3710 : CODING_FLAG_BIG5_ETEN);
3711 break;
3712
3713 case 4:
3714 coding->type = coding_type_ccl;
3715 coding->common_flags
3716 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3717 {
3718 val = XVECTOR (coding_spec)->contents[4];
3719 if (! CONSP (val)
3720 || setup_ccl_program (&(coding->spec.ccl.decoder),
3721 XCAR (val)) < 0
3722 || setup_ccl_program (&(coding->spec.ccl.encoder),
3723 XCDR (val)) < 0)
3724 goto label_invalid_coding_system;
3725
3726 bzero (coding->spec.ccl.valid_codes, 256);
3727 val = Fplist_get (plist, Qvalid_codes);
3728 if (CONSP (val))
3729 {
3730 Lisp_Object this;
3731
3732 for (; CONSP (val); val = XCDR (val))
3733 {
3734 this = XCAR (val);
3735 if (INTEGERP (this)
3736 && XINT (this) >= 0 && XINT (this) < 256)
3737 coding->spec.ccl.valid_codes[XINT (this)] = 1;
3738 else if (CONSP (this)
3739 && INTEGERP (XCAR (this))
3740 && INTEGERP (XCDR (this)))
3741 {
3742 int start = XINT (XCAR (this));
3743 int end = XINT (XCDR (this));
3744
3745 if (start >= 0 && start <= end && end < 256)
3746 while (start <= end)
3747 coding->spec.ccl.valid_codes[start++] = 1;
3748 }
3749 }
3750 }
3751 }
3752 coding->common_flags |= CODING_REQUIRE_FLUSHING_MASK;
3753 coding->spec.ccl.cr_carryover = 0;
3754 coding->spec.ccl.eight_bit_carryover[0] = 0;
3755 break;
3756
3757 case 5:
3758 coding->type = coding_type_raw_text;
3759 break;
3760
3761 default:
3762 goto label_invalid_coding_system;
3763 }
3764 return 0;
3765
3766 label_invalid_coding_system:
3767 coding->type = coding_type_no_conversion;
3768 coding->category_idx = CODING_CATEGORY_IDX_BINARY;
3769 coding->common_flags = 0;
3770 coding->eol_type = CODING_EOL_LF;
3771 coding->pre_write_conversion = coding->post_read_conversion = Qnil;
3772 return -1;
3773 }
3774
3775 /* Free memory blocks allocated for storing composition information. */
3776
3777 void
3778 coding_free_composition_data (coding)
3779 struct coding_system *coding;
3780 {
3781 struct composition_data *cmp_data = coding->cmp_data, *next;
3782
3783 if (!cmp_data)
3784 return;
3785 /* Memory blocks are chained. At first, rewind to the first, then,
3786 free blocks one by one. */
3787 while (cmp_data->prev)
3788 cmp_data = cmp_data->prev;
3789 while (cmp_data)
3790 {
3791 next = cmp_data->next;
3792 xfree (cmp_data);
3793 cmp_data = next;
3794 }
3795 coding->cmp_data = NULL;
3796 }
3797
3798 /* Set `char_offset' member of all memory blocks pointed by
3799 coding->cmp_data to POS. */
3800
3801 void
3802 coding_adjust_composition_offset (coding, pos)
3803 struct coding_system *coding;
3804 int pos;
3805 {
3806 struct composition_data *cmp_data;
3807
3808 for (cmp_data = coding->cmp_data; cmp_data; cmp_data = cmp_data->next)
3809 cmp_data->char_offset = pos;
3810 }
3811
3812 /* Setup raw-text or one of its subsidiaries in the structure
3813 coding_system CODING according to the already setup value eol_type
3814 in CODING. CODING should be setup for some coding system in
3815 advance. */
3816
3817 void
3818 setup_raw_text_coding_system (coding)
3819 struct coding_system *coding;
3820 {
3821 if (coding->type != coding_type_raw_text)
3822 {
3823 coding->symbol = Qraw_text;
3824 coding->type = coding_type_raw_text;
3825 if (coding->eol_type != CODING_EOL_UNDECIDED)
3826 {
3827 Lisp_Object subsidiaries;
3828 subsidiaries = Fget (Qraw_text, Qeol_type);
3829
3830 if (VECTORP (subsidiaries)
3831 && XVECTOR (subsidiaries)->size == 3)
3832 coding->symbol
3833 = XVECTOR (subsidiaries)->contents[coding->eol_type];
3834 }
3835 setup_coding_system (coding->symbol, coding);
3836 }
3837 return;
3838 }
3839
3840 /* Emacs has a mechanism to automatically detect a coding system if it
3841 is one of Emacs' internal format, ISO2022, SJIS, and BIG5. But,
3842 it's impossible to distinguish some coding systems accurately
3843 because they use the same range of codes. So, at first, coding
3844 systems are categorized into 7, those are:
3845
3846 o coding-category-emacs-mule
3847
3848 The category for a coding system which has the same code range
3849 as Emacs' internal format. Assigned the coding-system (Lisp
3850 symbol) `emacs-mule' by default.
3851
3852 o coding-category-sjis
3853
3854 The category for a coding system which has the same code range
3855 as SJIS. Assigned the coding-system (Lisp
3856 symbol) `japanese-shift-jis' by default.
3857
3858 o coding-category-iso-7
3859
3860 The category for a coding system which has the same code range
3861 as ISO2022 of 7-bit environment. This doesn't use any locking
3862 shift and single shift functions. This can encode/decode all
3863 charsets. Assigned the coding-system (Lisp symbol)
3864 `iso-2022-7bit' by default.
3865
3866 o coding-category-iso-7-tight
3867
3868 Same as coding-category-iso-7 except that this can
3869 encode/decode only the specified charsets.
3870
3871 o coding-category-iso-8-1
3872
3873 The category for a coding system which has the same code range
3874 as ISO2022 of 8-bit environment and graphic plane 1 used only
3875 for DIMENSION1 charset. This doesn't use any locking shift
3876 and single shift functions. Assigned the coding-system (Lisp
3877 symbol) `iso-latin-1' by default.
3878
3879 o coding-category-iso-8-2
3880
3881 The category for a coding system which has the same code range
3882 as ISO2022 of 8-bit environment and graphic plane 1 used only
3883 for DIMENSION2 charset. This doesn't use any locking shift
3884 and single shift functions. Assigned the coding-system (Lisp
3885 symbol) `japanese-iso-8bit' by default.
3886
3887 o coding-category-iso-7-else
3888
3889 The category for a coding system which has the same code range
3890 as ISO2022 of 7-bit environment but uses locking shift or
3891 single shift functions. Assigned the coding-system (Lisp
3892 symbol) `iso-2022-7bit-lock' by default.
3893
3894 o coding-category-iso-8-else
3895
3896 The category for a coding system which has the same code range
3897 as ISO2022 of 8-bit environment but uses locking shift or
3898 single shift functions. Assigned the coding-system (Lisp
3899 symbol) `iso-2022-8bit-ss2' by default.
3900
3901 o coding-category-big5
3902
3903 The category for a coding system which has the same code range
3904 as BIG5. Assigned the coding-system (Lisp symbol)
3905 `cn-big5' by default.
3906
3907 o coding-category-utf-8
3908
3909 The category for a coding system which has the same code range
3910 as UTF-8 (cf. RFC2279). Assigned the coding-system (Lisp
3911 symbol) `utf-8' by default.
3912
3913 o coding-category-utf-16-be
3914
3915 The category for a coding system in which a text has an
3916 Unicode signature (cf. Unicode Standard) in the order of BIG
3917 endian at the head. Assigned the coding-system (Lisp symbol)
3918 `utf-16-be' by default.
3919
3920 o coding-category-utf-16-le
3921
3922 The category for a coding system in which a text has an
3923 Unicode signature (cf. Unicode Standard) in the order of
3924 LITTLE endian at the head. Assigned the coding-system (Lisp
3925 symbol) `utf-16-le' by default.
3926
3927 o coding-category-ccl
3928
3929 The category for a coding system of which encoder/decoder is
3930 written in CCL programs. The default value is nil, i.e., no
3931 coding system is assigned.
3932
3933 o coding-category-binary
3934
3935 The category for a coding system not categorized in any of the
3936 above. Assigned the coding-system (Lisp symbol)
3937 `no-conversion' by default.
3938
3939 Each of them is a Lisp symbol and the value is an actual
3940 `coding-system' (this is also a Lisp symbol) assigned by a user.
3941 What Emacs does actually is to detect a category of coding system.
3942 Then, it uses a `coding-system' assigned to it. If Emacs can't
3943 decide a single possible category, it selects a category of the
3944 highest priority. Priorities of categories are also specified by a
3945 user in a Lisp variable `coding-category-list'.
3946
3947 */
3948
3949 static
3950 int ascii_skip_code[256];
3951
3952 /* Detect how a text of length SRC_BYTES pointed by SOURCE is encoded.
3953 If it detects possible coding systems, return an integer in which
3954 appropriate flag bits are set. Flag bits are defined by macros
3955 CODING_CATEGORY_MASK_XXX in `coding.h'. If PRIORITIES is non-NULL,
3956 it should point the table `coding_priorities'. In that case, only
3957 the flag bit for a coding system of the highest priority is set in
3958 the returned value. If MULTIBYTEP is nonzero, 8-bit codes of the
3959 range 0x80..0x9F are in multibyte form.
3960
3961 How many ASCII characters are at the head is returned as *SKIP. */
3962
3963 static int
3964 detect_coding_mask (source, src_bytes, priorities, skip, multibytep)
3965 unsigned char *source;
3966 int src_bytes, *priorities, *skip;
3967 int multibytep;
3968 {
3969 register unsigned char c;
3970 unsigned char *src = source, *src_end = source + src_bytes;
3971 unsigned int mask, utf16_examined_p, iso2022_examined_p;
3972 int i;
3973
3974 /* At first, skip all ASCII characters and control characters except
3975 for three ISO2022 specific control characters. */
3976 ascii_skip_code[ISO_CODE_SO] = 0;
3977 ascii_skip_code[ISO_CODE_SI] = 0;
3978 ascii_skip_code[ISO_CODE_ESC] = 0;
3979
3980 label_loop_detect_coding:
3981 while (src < src_end && ascii_skip_code[*src]) src++;
3982 *skip = src - source;
3983
3984 if (src >= src_end)
3985 /* We found nothing other than ASCII. There's nothing to do. */
3986 return 0;
3987
3988 c = *src;
3989 /* The text seems to be encoded in some multilingual coding system.
3990 Now, try to find in which coding system the text is encoded. */
3991 if (c < 0x80)
3992 {
3993 /* i.e. (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO) */
3994 /* C is an ISO2022 specific control code of C0. */
3995 mask = detect_coding_iso2022 (src, src_end, multibytep);
3996 if (mask == 0)
3997 {
3998 /* No valid ISO2022 code follows C. Try again. */
3999 src++;
4000 if (c == ISO_CODE_ESC)
4001 ascii_skip_code[ISO_CODE_ESC] = 1;
4002 else
4003 ascii_skip_code[ISO_CODE_SO] = ascii_skip_code[ISO_CODE_SI] = 1;
4004 goto label_loop_detect_coding;
4005 }
4006 if (priorities)
4007 {
4008 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
4009 {
4010 if (mask & priorities[i])
4011 return priorities[i];
4012 }
4013 return CODING_CATEGORY_MASK_RAW_TEXT;
4014 }
4015 }
4016 else
4017 {
4018 int try;
4019
4020 if (multibytep && c == LEADING_CODE_8_BIT_CONTROL)
4021 c = src[1] - 0x20;
4022
4023 if (c < 0xA0)
4024 {
4025 /* C is the first byte of SJIS character code,
4026 or a leading-code of Emacs' internal format (emacs-mule),
4027 or the first byte of UTF-16. */
4028 try = (CODING_CATEGORY_MASK_SJIS
4029 | CODING_CATEGORY_MASK_EMACS_MULE
4030 | CODING_CATEGORY_MASK_UTF_16_BE
4031 | CODING_CATEGORY_MASK_UTF_16_LE);
4032
4033 /* Or, if C is a special latin extra code,
4034 or is an ISO2022 specific control code of C1 (SS2 or SS3),
4035 or is an ISO2022 control-sequence-introducer (CSI),
4036 we should also consider the possibility of ISO2022 codings. */
4037 if ((VECTORP (Vlatin_extra_code_table)
4038 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
4039 || (c == ISO_CODE_SS2 || c == ISO_CODE_SS3)
4040 || (c == ISO_CODE_CSI
4041 && (src < src_end
4042 && (*src == ']'
4043 || ((*src == '0' || *src == '1' || *src == '2')
4044 && src + 1 < src_end
4045 && src[1] == ']')))))
4046 try |= (CODING_CATEGORY_MASK_ISO_8_ELSE
4047 | CODING_CATEGORY_MASK_ISO_8BIT);
4048 }
4049 else
4050 /* C is a character of ISO2022 in graphic plane right,
4051 or a SJIS's 1-byte character code (i.e. JISX0201),
4052 or the first byte of BIG5's 2-byte code,
4053 or the first byte of UTF-8/16. */
4054 try = (CODING_CATEGORY_MASK_ISO_8_ELSE
4055 | CODING_CATEGORY_MASK_ISO_8BIT
4056 | CODING_CATEGORY_MASK_SJIS
4057 | CODING_CATEGORY_MASK_BIG5
4058 | CODING_CATEGORY_MASK_UTF_8
4059 | CODING_CATEGORY_MASK_UTF_16_BE
4060 | CODING_CATEGORY_MASK_UTF_16_LE);
4061
4062 /* Or, we may have to consider the possibility of CCL. */
4063 if (coding_system_table[CODING_CATEGORY_IDX_CCL]
4064 && (coding_system_table[CODING_CATEGORY_IDX_CCL]
4065 ->spec.ccl.valid_codes)[c])
4066 try |= CODING_CATEGORY_MASK_CCL;
4067
4068 mask = 0;
4069 utf16_examined_p = iso2022_examined_p = 0;
4070 if (priorities)
4071 {
4072 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
4073 {
4074 if (!iso2022_examined_p
4075 && (priorities[i] & try & CODING_CATEGORY_MASK_ISO))
4076 {
4077 mask |= detect_coding_iso2022 (src, src_end, multibytep);
4078 iso2022_examined_p = 1;
4079 }
4080 else if (priorities[i] & try & CODING_CATEGORY_MASK_SJIS)
4081 mask |= detect_coding_sjis (src, src_end, multibytep);
4082 else if (priorities[i] & try & CODING_CATEGORY_MASK_UTF_8)
4083 mask |= detect_coding_utf_8 (src, src_end, multibytep);
4084 else if (!utf16_examined_p
4085 && (priorities[i] & try &
4086 CODING_CATEGORY_MASK_UTF_16_BE_LE))
4087 {
4088 mask |= detect_coding_utf_16 (src, src_end, multibytep);
4089 utf16_examined_p = 1;
4090 }
4091 else if (priorities[i] & try & CODING_CATEGORY_MASK_BIG5)
4092 mask |= detect_coding_big5 (src, src_end, multibytep);
4093 else if (priorities[i] & try & CODING_CATEGORY_MASK_EMACS_MULE)
4094 mask |= detect_coding_emacs_mule (src, src_end, multibytep);
4095 else if (priorities[i] & try & CODING_CATEGORY_MASK_CCL)
4096 mask |= detect_coding_ccl (src, src_end, multibytep);
4097 else if (priorities[i] & CODING_CATEGORY_MASK_RAW_TEXT)
4098 mask |= CODING_CATEGORY_MASK_RAW_TEXT;
4099 else if (priorities[i] & CODING_CATEGORY_MASK_BINARY)
4100 mask |= CODING_CATEGORY_MASK_BINARY;
4101 if (mask & priorities[i])
4102 return priorities[i];
4103 }
4104 return CODING_CATEGORY_MASK_RAW_TEXT;
4105 }
4106 if (try & CODING_CATEGORY_MASK_ISO)
4107 mask |= detect_coding_iso2022 (src, src_end, multibytep);
4108 if (try & CODING_CATEGORY_MASK_SJIS)
4109 mask |= detect_coding_sjis (src, src_end, multibytep);
4110 if (try & CODING_CATEGORY_MASK_BIG5)
4111 mask |= detect_coding_big5 (src, src_end, multibytep);
4112 if (try & CODING_CATEGORY_MASK_UTF_8)
4113 mask |= detect_coding_utf_8 (src, src_end, multibytep);
4114 if (try & CODING_CATEGORY_MASK_UTF_16_BE_LE)
4115 mask |= detect_coding_utf_16 (src, src_end, multibytep);
4116 if (try & CODING_CATEGORY_MASK_EMACS_MULE)
4117 mask |= detect_coding_emacs_mule (src, src_end, multibytep);
4118 if (try & CODING_CATEGORY_MASK_CCL)
4119 mask |= detect_coding_ccl (src, src_end, multibytep);
4120 }
4121 return (mask | CODING_CATEGORY_MASK_RAW_TEXT | CODING_CATEGORY_MASK_BINARY);
4122 }
4123
4124 /* Detect how a text of length SRC_BYTES pointed by SRC is encoded.
4125 The information of the detected coding system is set in CODING. */
4126
4127 void
4128 detect_coding (coding, src, src_bytes)
4129 struct coding_system *coding;
4130 const unsigned char *src;
4131 int src_bytes;
4132 {
4133 unsigned int idx;
4134 int skip, mask;
4135 Lisp_Object val;
4136
4137 val = Vcoding_category_list;
4138 mask = detect_coding_mask (src, src_bytes, coding_priorities, &skip,
4139 coding->src_multibyte);
4140 coding->heading_ascii = skip;
4141
4142 if (!mask) return;
4143
4144 /* We found a single coding system of the highest priority in MASK. */
4145 idx = 0;
4146 while (mask && ! (mask & 1)) mask >>= 1, idx++;
4147 if (! mask)
4148 idx = CODING_CATEGORY_IDX_RAW_TEXT;
4149
4150 val = SYMBOL_VALUE (XVECTOR (Vcoding_category_table)->contents[idx]);
4151
4152 if (coding->eol_type != CODING_EOL_UNDECIDED)
4153 {
4154 Lisp_Object tmp;
4155
4156 tmp = Fget (val, Qeol_type);
4157 if (VECTORP (tmp))
4158 val = XVECTOR (tmp)->contents[coding->eol_type];
4159 }
4160
4161 /* Setup this new coding system while preserving some slots. */
4162 {
4163 int src_multibyte = coding->src_multibyte;
4164 int dst_multibyte = coding->dst_multibyte;
4165
4166 setup_coding_system (val, coding);
4167 coding->src_multibyte = src_multibyte;
4168 coding->dst_multibyte = dst_multibyte;
4169 coding->heading_ascii = skip;
4170 }
4171 }
4172
4173 /* Detect how end-of-line of a text of length SRC_BYTES pointed by
4174 SOURCE is encoded. Return one of CODING_EOL_LF, CODING_EOL_CRLF,
4175 CODING_EOL_CR, and CODING_EOL_UNDECIDED.
4176
4177 How many non-eol characters are at the head is returned as *SKIP. */
4178
4179 #define MAX_EOL_CHECK_COUNT 3
4180
4181 static int
4182 detect_eol_type (source, src_bytes, skip)
4183 unsigned char *source;
4184 int src_bytes, *skip;
4185 {
4186 unsigned char *src = source, *src_end = src + src_bytes;
4187 unsigned char c;
4188 int total = 0; /* How many end-of-lines are found so far. */
4189 int eol_type = CODING_EOL_UNDECIDED;
4190 int this_eol_type;
4191
4192 *skip = 0;
4193
4194 while (src < src_end && total < MAX_EOL_CHECK_COUNT)
4195 {
4196 c = *src++;
4197 if (c == '\n' || c == '\r')
4198 {
4199 if (*skip == 0)
4200 *skip = src - 1 - source;
4201 total++;
4202 if (c == '\n')
4203 this_eol_type = CODING_EOL_LF;
4204 else if (src >= src_end || *src != '\n')
4205 this_eol_type = CODING_EOL_CR;
4206 else
4207 this_eol_type = CODING_EOL_CRLF, src++;
4208
4209 if (eol_type == CODING_EOL_UNDECIDED)
4210 /* This is the first end-of-line. */
4211 eol_type = this_eol_type;
4212 else if (eol_type != this_eol_type)
4213 {
4214 /* The found type is different from what found before. */
4215 eol_type = CODING_EOL_INCONSISTENT;
4216 break;
4217 }
4218 }
4219 }
4220
4221 if (*skip == 0)
4222 *skip = src_end - source;
4223 return eol_type;
4224 }
4225
4226 /* Like detect_eol_type, but detect EOL type in 2-octet
4227 big-endian/little-endian format for coding systems utf-16-be and
4228 utf-16-le. */
4229
4230 static int
4231 detect_eol_type_in_2_octet_form (source, src_bytes, skip, big_endian_p)
4232 unsigned char *source;
4233 int src_bytes, *skip, big_endian_p;
4234 {
4235 unsigned char *src = source, *src_end = src + src_bytes;
4236 unsigned int c1, c2;
4237 int total = 0; /* How many end-of-lines are found so far. */
4238 int eol_type = CODING_EOL_UNDECIDED;
4239 int this_eol_type;
4240 int msb, lsb;
4241
4242 if (big_endian_p)
4243 msb = 0, lsb = 1;
4244 else
4245 msb = 1, lsb = 0;
4246
4247 *skip = 0;
4248
4249 while ((src + 1) < src_end && total < MAX_EOL_CHECK_COUNT)
4250 {
4251 c1 = (src[msb] << 8) | (src[lsb]);
4252 src += 2;
4253
4254 if (c1 == '\n' || c1 == '\r')
4255 {
4256 if (*skip == 0)
4257 *skip = src - 2 - source;
4258 total++;
4259 if (c1 == '\n')
4260 {
4261 this_eol_type = CODING_EOL_LF;
4262 }
4263 else
4264 {
4265 if ((src + 1) >= src_end)
4266 {
4267 this_eol_type = CODING_EOL_CR;
4268 }
4269 else
4270 {
4271 c2 = (src[msb] << 8) | (src[lsb]);
4272 if (c2 == '\n')
4273 this_eol_type = CODING_EOL_CRLF, src += 2;
4274 else
4275 this_eol_type = CODING_EOL_CR;
4276 }
4277 }
4278
4279 if (eol_type == CODING_EOL_UNDECIDED)
4280 /* This is the first end-of-line. */
4281 eol_type = this_eol_type;
4282 else if (eol_type != this_eol_type)
4283 {
4284 /* The found type is different from what found before. */
4285 eol_type = CODING_EOL_INCONSISTENT;
4286 break;
4287 }
4288 }
4289 }
4290
4291 if (*skip == 0)
4292 *skip = src_end - source;
4293 return eol_type;
4294 }
4295
4296 /* Detect how end-of-line of a text of length SRC_BYTES pointed by SRC
4297 is encoded. If it detects an appropriate format of end-of-line, it
4298 sets the information in *CODING. */
4299
4300 void
4301 detect_eol (coding, src, src_bytes)
4302 struct coding_system *coding;
4303 const unsigned char *src;
4304 int src_bytes;
4305 {
4306 Lisp_Object val;
4307 int skip;
4308 int eol_type;
4309
4310 switch (coding->category_idx)
4311 {
4312 case CODING_CATEGORY_IDX_UTF_16_BE:
4313 eol_type = detect_eol_type_in_2_octet_form (src, src_bytes, &skip, 1);
4314 break;
4315 case CODING_CATEGORY_IDX_UTF_16_LE:
4316 eol_type = detect_eol_type_in_2_octet_form (src, src_bytes, &skip, 0);
4317 break;
4318 default:
4319 eol_type = detect_eol_type (src, src_bytes, &skip);
4320 break;
4321 }
4322
4323 if (coding->heading_ascii > skip)
4324 coding->heading_ascii = skip;
4325 else
4326 skip = coding->heading_ascii;
4327
4328 if (eol_type == CODING_EOL_UNDECIDED)
4329 return;
4330 if (eol_type == CODING_EOL_INCONSISTENT)
4331 {
4332 #if 0
4333 /* This code is suppressed until we find a better way to
4334 distinguish raw text file and binary file. */
4335
4336 /* If we have already detected that the coding is raw-text, the
4337 coding should actually be no-conversion. */
4338 if (coding->type == coding_type_raw_text)
4339 {
4340 setup_coding_system (Qno_conversion, coding);
4341 return;
4342 }
4343 /* Else, let's decode only text code anyway. */
4344 #endif /* 0 */
4345 eol_type = CODING_EOL_LF;
4346 }
4347
4348 val = Fget (coding->symbol, Qeol_type);
4349 if (VECTORP (val) && XVECTOR (val)->size == 3)
4350 {
4351 int src_multibyte = coding->src_multibyte;
4352 int dst_multibyte = coding->dst_multibyte;
4353 struct composition_data *cmp_data = coding->cmp_data;
4354
4355 setup_coding_system (XVECTOR (val)->contents[eol_type], coding);
4356 coding->src_multibyte = src_multibyte;
4357 coding->dst_multibyte = dst_multibyte;
4358 coding->heading_ascii = skip;
4359 coding->cmp_data = cmp_data;
4360 }
4361 }
4362
4363 #define CONVERSION_BUFFER_EXTRA_ROOM 256
4364
4365 #define DECODING_BUFFER_MAG(coding) \
4366 (coding->type == coding_type_iso2022 \
4367 ? 3 \
4368 : (coding->type == coding_type_ccl \
4369 ? coding->spec.ccl.decoder.buf_magnification \
4370 : 2))
4371
4372 /* Return maximum size (bytes) of a buffer enough for decoding
4373 SRC_BYTES of text encoded in CODING. */
4374
4375 int
4376 decoding_buffer_size (coding, src_bytes)
4377 struct coding_system *coding;
4378 int src_bytes;
4379 {
4380 return (src_bytes * DECODING_BUFFER_MAG (coding)
4381 + CONVERSION_BUFFER_EXTRA_ROOM);
4382 }
4383
4384 /* Return maximum size (bytes) of a buffer enough for encoding
4385 SRC_BYTES of text to CODING. */
4386
4387 int
4388 encoding_buffer_size (coding, src_bytes)
4389 struct coding_system *coding;
4390 int src_bytes;
4391 {
4392 int magnification;
4393
4394 if (coding->type == coding_type_ccl)
4395 magnification = coding->spec.ccl.encoder.buf_magnification;
4396 else if (CODING_REQUIRE_ENCODING (coding))
4397 magnification = 3;
4398 else
4399 magnification = 1;
4400
4401 return (src_bytes * magnification + CONVERSION_BUFFER_EXTRA_ROOM);
4402 }
4403
4404 /* Working buffer for code conversion. */
4405 struct conversion_buffer
4406 {
4407 int size; /* size of data. */
4408 int on_stack; /* 1 if allocated by alloca. */
4409 unsigned char *data;
4410 };
4411
4412 /* Don't use alloca for allocating memory space larger than this, lest
4413 we overflow their stack. */
4414 #define MAX_ALLOCA 16*1024
4415
4416 /* Allocate LEN bytes of memory for BUF (struct conversion_buffer). */
4417 #define allocate_conversion_buffer(buf, len) \
4418 do { \
4419 if (len < MAX_ALLOCA) \
4420 { \
4421 buf.data = (unsigned char *) alloca (len); \
4422 buf.on_stack = 1; \
4423 } \
4424 else \
4425 { \
4426 buf.data = (unsigned char *) xmalloc (len); \
4427 buf.on_stack = 0; \
4428 } \
4429 buf.size = len; \
4430 } while (0)
4431
4432 /* Double the allocated memory for *BUF. */
4433 static void
4434 extend_conversion_buffer (buf)
4435 struct conversion_buffer *buf;
4436 {
4437 if (buf->on_stack)
4438 {
4439 unsigned char *save = buf->data;
4440 buf->data = (unsigned char *) xmalloc (buf->size * 2);
4441 bcopy (save, buf->data, buf->size);
4442 buf->on_stack = 0;
4443 }
4444 else
4445 {
4446 buf->data = (unsigned char *) xrealloc (buf->data, buf->size * 2);
4447 }
4448 buf->size *= 2;
4449 }
4450
4451 /* Free the allocated memory for BUF if it is not on stack. */
4452 static void
4453 free_conversion_buffer (buf)
4454 struct conversion_buffer *buf;
4455 {
4456 if (!buf->on_stack)
4457 xfree (buf->data);
4458 }
4459
4460 int
4461 ccl_coding_driver (coding, source, destination, src_bytes, dst_bytes, encodep)
4462 struct coding_system *coding;
4463 unsigned char *source, *destination;
4464 int src_bytes, dst_bytes, encodep;
4465 {
4466 struct ccl_program *ccl
4467 = encodep ? &coding->spec.ccl.encoder : &coding->spec.ccl.decoder;
4468 unsigned char *dst = destination;
4469
4470 ccl->suppress_error = coding->suppress_error;
4471 ccl->last_block = coding->mode & CODING_MODE_LAST_BLOCK;
4472 if (encodep)
4473 {
4474 /* On encoding, EOL format is converted within ccl_driver. For
4475 that, setup proper information in the structure CCL. */
4476 ccl->eol_type = coding->eol_type;
4477 if (ccl->eol_type ==CODING_EOL_UNDECIDED)
4478 ccl->eol_type = CODING_EOL_LF;
4479 ccl->cr_consumed = coding->spec.ccl.cr_carryover;
4480 }
4481 ccl->multibyte = coding->src_multibyte;
4482 if (coding->spec.ccl.eight_bit_carryover[0] != 0)
4483 {
4484 /* Move carryover bytes to DESTINATION. */
4485 unsigned char *p = coding->spec.ccl.eight_bit_carryover;
4486 while (*p)
4487 *dst++ = *p++;
4488 coding->spec.ccl.eight_bit_carryover[0] = 0;
4489 if (dst_bytes)
4490 dst_bytes -= dst - destination;
4491 }
4492
4493 coding->produced = (ccl_driver (ccl, source, dst, src_bytes, dst_bytes,
4494 &(coding->consumed))
4495 + dst - destination);
4496
4497 if (encodep)
4498 {
4499 coding->produced_char = coding->produced;
4500 coding->spec.ccl.cr_carryover = ccl->cr_consumed;
4501 }
4502 else if (!ccl->eight_bit_control)
4503 {
4504 /* The produced bytes forms a valid multibyte sequence. */
4505 coding->produced_char
4506 = multibyte_chars_in_text (destination, coding->produced);
4507 coding->spec.ccl.eight_bit_carryover[0] = 0;
4508 }
4509 else
4510 {
4511 /* On decoding, the destination should always multibyte. But,
4512 CCL program might have been generated an invalid multibyte
4513 sequence. Here we make such a sequence valid as
4514 multibyte. */
4515 int bytes
4516 = dst_bytes ? dst_bytes : source + coding->consumed - destination;
4517
4518 if ((coding->consumed < src_bytes
4519 || !ccl->last_block)
4520 && coding->produced >= 1
4521 && destination[coding->produced - 1] >= 0x80)
4522 {
4523 /* We should not convert the tailing 8-bit codes to
4524 multibyte form even if they doesn't form a valid
4525 multibyte sequence. They may form a valid sequence in
4526 the next call. */
4527 int carryover = 0;
4528
4529 if (destination[coding->produced - 1] < 0xA0)
4530 carryover = 1;
4531 else if (coding->produced >= 2)
4532 {
4533 if (destination[coding->produced - 2] >= 0x80)
4534 {
4535 if (destination[coding->produced - 2] < 0xA0)
4536 carryover = 2;
4537 else if (coding->produced >= 3
4538 && destination[coding->produced - 3] >= 0x80
4539 && destination[coding->produced - 3] < 0xA0)
4540 carryover = 3;
4541 }
4542 }
4543 if (carryover > 0)
4544 {
4545 BCOPY_SHORT (destination + coding->produced - carryover,
4546 coding->spec.ccl.eight_bit_carryover,
4547 carryover);
4548 coding->spec.ccl.eight_bit_carryover[carryover] = 0;
4549 coding->produced -= carryover;
4550 }
4551 }
4552 coding->produced = str_as_multibyte (destination, bytes,
4553 coding->produced,
4554 &(coding->produced_char));
4555 }
4556
4557 switch (ccl->status)
4558 {
4559 case CCL_STAT_SUSPEND_BY_SRC:
4560 coding->result = CODING_FINISH_INSUFFICIENT_SRC;
4561 break;
4562 case CCL_STAT_SUSPEND_BY_DST:
4563 coding->result = CODING_FINISH_INSUFFICIENT_DST;
4564 break;
4565 case CCL_STAT_QUIT:
4566 case CCL_STAT_INVALID_CMD:
4567 coding->result = CODING_FINISH_INTERRUPT;
4568 break;
4569 default:
4570 coding->result = CODING_FINISH_NORMAL;
4571 break;
4572 }
4573 return coding->result;
4574 }
4575
4576 /* Decode EOL format of the text at PTR of BYTES length destructively
4577 according to CODING->eol_type. This is called after the CCL
4578 program produced a decoded text at PTR. If we do CRLF->LF
4579 conversion, update CODING->produced and CODING->produced_char. */
4580
4581 static void
4582 decode_eol_post_ccl (coding, ptr, bytes)
4583 struct coding_system *coding;
4584 unsigned char *ptr;
4585 int bytes;
4586 {
4587 Lisp_Object val, saved_coding_symbol;
4588 unsigned char *pend = ptr + bytes;
4589 int dummy;
4590
4591 /* Remember the current coding system symbol. We set it back when
4592 an inconsistent EOL is found so that `last-coding-system-used' is
4593 set to the coding system that doesn't specify EOL conversion. */
4594 saved_coding_symbol = coding->symbol;
4595
4596 coding->spec.ccl.cr_carryover = 0;
4597 if (coding->eol_type == CODING_EOL_UNDECIDED)
4598 {
4599 /* Here, to avoid the call of setup_coding_system, we directly
4600 call detect_eol_type. */
4601 coding->eol_type = detect_eol_type (ptr, bytes, &dummy);
4602 if (coding->eol_type == CODING_EOL_INCONSISTENT)
4603 coding->eol_type = CODING_EOL_LF;
4604 if (coding->eol_type != CODING_EOL_UNDECIDED)
4605 {
4606 val = Fget (coding->symbol, Qeol_type);
4607 if (VECTORP (val) && XVECTOR (val)->size == 3)
4608 coding->symbol = XVECTOR (val)->contents[coding->eol_type];
4609 }
4610 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
4611 }
4612
4613 if (coding->eol_type == CODING_EOL_LF
4614 || coding->eol_type == CODING_EOL_UNDECIDED)
4615 {
4616 /* We have nothing to do. */
4617 ptr = pend;
4618 }
4619 else if (coding->eol_type == CODING_EOL_CRLF)
4620 {
4621 unsigned char *pstart = ptr, *p = ptr;
4622
4623 if (! (coding->mode & CODING_MODE_LAST_BLOCK)
4624 && *(pend - 1) == '\r')
4625 {
4626 /* If the last character is CR, we can't handle it here
4627 because LF will be in the not-yet-decoded source text.
4628 Record that the CR is not yet processed. */
4629 coding->spec.ccl.cr_carryover = 1;
4630 coding->produced--;
4631 coding->produced_char--;
4632 pend--;
4633 }
4634 while (ptr < pend)
4635 {
4636 if (*ptr == '\r')
4637 {
4638 if (ptr + 1 < pend && *(ptr + 1) == '\n')
4639 {
4640 *p++ = '\n';
4641 ptr += 2;
4642 }
4643 else
4644 {
4645 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
4646 goto undo_eol_conversion;
4647 *p++ = *ptr++;
4648 }
4649 }
4650 else if (*ptr == '\n'
4651 && coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
4652 goto undo_eol_conversion;
4653 else
4654 *p++ = *ptr++;
4655 continue;
4656
4657 undo_eol_conversion:
4658 /* We have faced with inconsistent EOL format at PTR.
4659 Convert all LFs before PTR back to CRLFs. */
4660 for (p--, ptr--; p >= pstart; p--)
4661 {
4662 if (*p == '\n')
4663 *ptr-- = '\n', *ptr-- = '\r';
4664 else
4665 *ptr-- = *p;
4666 }
4667 /* If carryover is recorded, cancel it because we don't
4668 convert CRLF anymore. */
4669 if (coding->spec.ccl.cr_carryover)
4670 {
4671 coding->spec.ccl.cr_carryover = 0;
4672 coding->produced++;
4673 coding->produced_char++;
4674 pend++;
4675 }
4676 p = ptr = pend;
4677 coding->eol_type = CODING_EOL_LF;
4678 coding->symbol = saved_coding_symbol;
4679 }
4680 if (p < pend)
4681 {
4682 /* As each two-byte sequence CRLF was converted to LF, (PEND
4683 - P) is the number of deleted characters. */
4684 coding->produced -= pend - p;
4685 coding->produced_char -= pend - p;
4686 }
4687 }
4688 else /* i.e. coding->eol_type == CODING_EOL_CR */
4689 {
4690 unsigned char *p = ptr;
4691
4692 for (; ptr < pend; ptr++)
4693 {
4694 if (*ptr == '\r')
4695 *ptr = '\n';
4696 else if (*ptr == '\n'
4697 && coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
4698 {
4699 for (; p < ptr; p++)
4700 {
4701 if (*p == '\n')
4702 *p = '\r';
4703 }
4704 ptr = pend;
4705 coding->eol_type = CODING_EOL_LF;
4706 coding->symbol = saved_coding_symbol;
4707 }
4708 }
4709 }
4710 }
4711
4712 /* See "GENERAL NOTES about `decode_coding_XXX ()' functions". Before
4713 decoding, it may detect coding system and format of end-of-line if
4714 those are not yet decided. The source should be unibyte, the
4715 result is multibyte if CODING->dst_multibyte is nonzero, else
4716 unibyte. */
4717
4718 int
4719 decode_coding (coding, source, destination, src_bytes, dst_bytes)
4720 struct coding_system *coding;
4721 const unsigned char *source;
4722 unsigned char *destination;
4723 int src_bytes, dst_bytes;
4724 {
4725 int extra = 0;
4726
4727 if (coding->type == coding_type_undecided)
4728 detect_coding (coding, source, src_bytes);
4729
4730 if (coding->eol_type == CODING_EOL_UNDECIDED
4731 && coding->type != coding_type_ccl)
4732 {
4733 detect_eol (coding, source, src_bytes);
4734 /* We had better recover the original eol format if we
4735 encounter an inconsistent eol format while decoding. */
4736 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
4737 }
4738
4739 coding->produced = coding->produced_char = 0;
4740 coding->consumed = coding->consumed_char = 0;
4741 coding->errors = 0;
4742 coding->result = CODING_FINISH_NORMAL;
4743
4744 switch (coding->type)
4745 {
4746 case coding_type_sjis:
4747 decode_coding_sjis_big5 (coding, source, destination,
4748 src_bytes, dst_bytes, 1);
4749 break;
4750
4751 case coding_type_iso2022:
4752 decode_coding_iso2022 (coding, source, destination,
4753 src_bytes, dst_bytes);
4754 break;
4755
4756 case coding_type_big5:
4757 decode_coding_sjis_big5 (coding, source, destination,
4758 src_bytes, dst_bytes, 0);
4759 break;
4760
4761 case coding_type_emacs_mule:
4762 decode_coding_emacs_mule (coding, source, destination,
4763 src_bytes, dst_bytes);
4764 break;
4765
4766 case coding_type_ccl:
4767 if (coding->spec.ccl.cr_carryover)
4768 {
4769 /* Put the CR which was not processed by the previous call
4770 of decode_eol_post_ccl in DESTINATION. It will be
4771 decoded together with the following LF by the call to
4772 decode_eol_post_ccl below. */
4773 *destination = '\r';
4774 coding->produced++;
4775 coding->produced_char++;
4776 dst_bytes--;
4777 extra = coding->spec.ccl.cr_carryover;
4778 }
4779 ccl_coding_driver (coding, source, destination + extra,
4780 src_bytes, dst_bytes, 0);
4781 if (coding->eol_type != CODING_EOL_LF)
4782 {
4783 coding->produced += extra;
4784 coding->produced_char += extra;
4785 decode_eol_post_ccl (coding, destination, coding->produced);
4786 }
4787 break;
4788
4789 default:
4790 decode_eol (coding, source, destination, src_bytes, dst_bytes);
4791 }
4792
4793 if (coding->result == CODING_FINISH_INSUFFICIENT_SRC
4794 && coding->mode & CODING_MODE_LAST_BLOCK
4795 && coding->consumed == src_bytes)
4796 coding->result = CODING_FINISH_NORMAL;
4797
4798 if (coding->mode & CODING_MODE_LAST_BLOCK
4799 && coding->result == CODING_FINISH_INSUFFICIENT_SRC)
4800 {
4801 const unsigned char *src = source + coding->consumed;
4802 unsigned char *dst = destination + coding->produced;
4803
4804 src_bytes -= coding->consumed;
4805 coding->errors++;
4806 if (COMPOSING_P (coding))
4807 DECODE_COMPOSITION_END ('1');
4808 while (src_bytes--)
4809 {
4810 int c = *src++;
4811 dst += CHAR_STRING (c, dst);
4812 coding->produced_char++;
4813 }
4814 coding->consumed = coding->consumed_char = src - source;
4815 coding->produced = dst - destination;
4816 coding->result = CODING_FINISH_NORMAL;
4817 }
4818
4819 if (!coding->dst_multibyte)
4820 {
4821 coding->produced = str_as_unibyte (destination, coding->produced);
4822 coding->produced_char = coding->produced;
4823 }
4824
4825 return coding->result;
4826 }
4827
4828 /* See "GENERAL NOTES about `encode_coding_XXX ()' functions". The
4829 multibyteness of the source is CODING->src_multibyte, the
4830 multibyteness of the result is always unibyte. */
4831
4832 int
4833 encode_coding (coding, source, destination, src_bytes, dst_bytes)
4834 struct coding_system *coding;
4835 const unsigned char *source;
4836 unsigned char *destination;
4837 int src_bytes, dst_bytes;
4838 {
4839 coding->produced = coding->produced_char = 0;
4840 coding->consumed = coding->consumed_char = 0;
4841 coding->errors = 0;
4842 coding->result = CODING_FINISH_NORMAL;
4843
4844 switch (coding->type)
4845 {
4846 case coding_type_sjis:
4847 encode_coding_sjis_big5 (coding, source, destination,
4848 src_bytes, dst_bytes, 1);
4849 break;
4850
4851 case coding_type_iso2022:
4852 encode_coding_iso2022 (coding, source, destination,
4853 src_bytes, dst_bytes);
4854 break;
4855
4856 case coding_type_big5:
4857 encode_coding_sjis_big5 (coding, source, destination,
4858 src_bytes, dst_bytes, 0);
4859 break;
4860
4861 case coding_type_emacs_mule:
4862 encode_coding_emacs_mule (coding, source, destination,
4863 src_bytes, dst_bytes);
4864 break;
4865
4866 case coding_type_ccl:
4867 ccl_coding_driver (coding, source, destination,
4868 src_bytes, dst_bytes, 1);
4869 break;
4870
4871 default:
4872 encode_eol (coding, source, destination, src_bytes, dst_bytes);
4873 }
4874
4875 if (coding->mode & CODING_MODE_LAST_BLOCK
4876 && coding->result == CODING_FINISH_INSUFFICIENT_SRC)
4877 {
4878 const unsigned char *src = source + coding->consumed;
4879 unsigned char *dst = destination + coding->produced;
4880
4881 if (coding->type == coding_type_iso2022)
4882 ENCODE_RESET_PLANE_AND_REGISTER;
4883 if (COMPOSING_P (coding))
4884 *dst++ = ISO_CODE_ESC, *dst++ = '1';
4885 if (coding->consumed < src_bytes)
4886 {
4887 int len = src_bytes - coding->consumed;
4888
4889 BCOPY_SHORT (src, dst, len);
4890 if (coding->src_multibyte)
4891 len = str_as_unibyte (dst, len);
4892 dst += len;
4893 coding->consumed = src_bytes;
4894 }
4895 coding->produced = coding->produced_char = dst - destination;
4896 coding->result = CODING_FINISH_NORMAL;
4897 }
4898
4899 if (coding->result == CODING_FINISH_INSUFFICIENT_SRC
4900 && coding->consumed == src_bytes)
4901 coding->result = CODING_FINISH_NORMAL;
4902
4903 return coding->result;
4904 }
4905
4906 /* Scan text in the region between *BEG and *END (byte positions),
4907 skip characters which we don't have to decode by coding system
4908 CODING at the head and tail, then set *BEG and *END to the region
4909 of the text we actually have to convert. The caller should move
4910 the gap out of the region in advance if the region is from a
4911 buffer.
4912
4913 If STR is not NULL, *BEG and *END are indices into STR. */
4914
4915 static void
4916 shrink_decoding_region (beg, end, coding, str)
4917 int *beg, *end;
4918 struct coding_system *coding;
4919 unsigned char *str;
4920 {
4921 unsigned char *begp_orig, *begp, *endp_orig, *endp, c;
4922 int eol_conversion;
4923 Lisp_Object translation_table;
4924
4925 if (coding->type == coding_type_ccl
4926 || coding->type == coding_type_undecided
4927 || coding->eol_type != CODING_EOL_LF
4928 || !NILP (coding->post_read_conversion)
4929 || coding->composing != COMPOSITION_DISABLED)
4930 {
4931 /* We can't skip any data. */
4932 return;
4933 }
4934 if (coding->type == coding_type_no_conversion
4935 || coding->type == coding_type_raw_text
4936 || coding->type == coding_type_emacs_mule)
4937 {
4938 /* We need no conversion, but don't have to skip any data here.
4939 Decoding routine handles them effectively anyway. */
4940 return;
4941 }
4942
4943 translation_table = coding->translation_table_for_decode;
4944 if (NILP (translation_table) && !NILP (Venable_character_translation))
4945 translation_table = Vstandard_translation_table_for_decode;
4946 if (CHAR_TABLE_P (translation_table))
4947 {
4948 int i;
4949 for (i = 0; i < 128; i++)
4950 if (!NILP (CHAR_TABLE_REF (translation_table, i)))
4951 break;
4952 if (i < 128)
4953 /* Some ASCII character should be translated. We give up
4954 shrinking. */
4955 return;
4956 }
4957
4958 if (coding->heading_ascii >= 0)
4959 /* Detection routine has already found how much we can skip at the
4960 head. */
4961 *beg += coding->heading_ascii;
4962
4963 if (str)
4964 {
4965 begp_orig = begp = str + *beg;
4966 endp_orig = endp = str + *end;
4967 }
4968 else
4969 {
4970 begp_orig = begp = BYTE_POS_ADDR (*beg);
4971 endp_orig = endp = begp + *end - *beg;
4972 }
4973
4974 eol_conversion = (coding->eol_type == CODING_EOL_CR
4975 || coding->eol_type == CODING_EOL_CRLF);
4976
4977 switch (coding->type)
4978 {
4979 case coding_type_sjis:
4980 case coding_type_big5:
4981 /* We can skip all ASCII characters at the head. */
4982 if (coding->heading_ascii < 0)
4983 {
4984 if (eol_conversion)
4985 while (begp < endp && *begp < 0x80 && *begp != '\r') begp++;
4986 else
4987 while (begp < endp && *begp < 0x80) begp++;
4988 }
4989 /* We can skip all ASCII characters at the tail except for the
4990 second byte of SJIS or BIG5 code. */
4991 if (eol_conversion)
4992 while (begp < endp && endp[-1] < 0x80 && endp[-1] != '\r') endp--;
4993 else
4994 while (begp < endp && endp[-1] < 0x80) endp--;
4995 /* Do not consider LF as ascii if preceded by CR, since that
4996 confuses eol decoding. */
4997 if (begp < endp && endp < endp_orig && endp[-1] == '\r' && endp[0] == '\n')
4998 endp++;
4999 if (begp < endp && endp < endp_orig && endp[-1] >= 0x80)
5000 endp++;
5001 break;
5002
5003 case coding_type_iso2022:
5004 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, 0) != CHARSET_ASCII)
5005 /* We can't skip any data. */
5006 break;
5007 if (coding->heading_ascii < 0)
5008 {
5009 /* We can skip all ASCII characters at the head except for a
5010 few control codes. */
5011 while (begp < endp && (c = *begp) < 0x80
5012 && c != ISO_CODE_CR && c != ISO_CODE_SO
5013 && c != ISO_CODE_SI && c != ISO_CODE_ESC
5014 && (!eol_conversion || c != ISO_CODE_LF))
5015 begp++;
5016 }
5017 switch (coding->category_idx)
5018 {
5019 case CODING_CATEGORY_IDX_ISO_8_1:
5020 case CODING_CATEGORY_IDX_ISO_8_2:
5021 /* We can skip all ASCII characters at the tail. */
5022 if (eol_conversion)
5023 while (begp < endp && (c = endp[-1]) < 0x80 && c != '\r') endp--;
5024 else
5025 while (begp < endp && endp[-1] < 0x80) endp--;
5026 /* Do not consider LF as ascii if preceded by CR, since that
5027 confuses eol decoding. */
5028 if (begp < endp && endp < endp_orig && endp[-1] == '\r' && endp[0] == '\n')
5029 endp++;
5030 break;
5031
5032 case CODING_CATEGORY_IDX_ISO_7:
5033 case CODING_CATEGORY_IDX_ISO_7_TIGHT:
5034 {
5035 /* We can skip all characters at the tail except for 8-bit
5036 codes and ESC and the following 2-byte at the tail. */
5037 unsigned char *eight_bit = NULL;
5038
5039 if (eol_conversion)
5040 while (begp < endp
5041 && (c = endp[-1]) != ISO_CODE_ESC && c != '\r')
5042 {
5043 if (!eight_bit && c & 0x80) eight_bit = endp;
5044 endp--;
5045 }
5046 else
5047 while (begp < endp
5048 && (c = endp[-1]) != ISO_CODE_ESC)
5049 {
5050 if (!eight_bit && c & 0x80) eight_bit = endp;
5051 endp--;
5052 }
5053 /* Do not consider LF as ascii if preceded by CR, since that
5054 confuses eol decoding. */
5055 if (begp < endp && endp < endp_orig
5056 && endp[-1] == '\r' && endp[0] == '\n')
5057 endp++;
5058 if (begp < endp && endp[-1] == ISO_CODE_ESC)
5059 {
5060 if (endp + 1 < endp_orig && end[0] == '(' && end[1] == 'B')
5061 /* This is an ASCII designation sequence. We can
5062 surely skip the tail. But, if we have
5063 encountered an 8-bit code, skip only the codes
5064 after that. */
5065 endp = eight_bit ? eight_bit : endp + 2;
5066 else
5067 /* Hmmm, we can't skip the tail. */
5068 endp = endp_orig;
5069 }
5070 else if (eight_bit)
5071 endp = eight_bit;
5072 }
5073 }
5074 break;
5075
5076 default:
5077 abort ();
5078 }
5079 *beg += begp - begp_orig;
5080 *end += endp - endp_orig;
5081 return;
5082 }
5083
5084 /* Like shrink_decoding_region but for encoding. */
5085
5086 static void
5087 shrink_encoding_region (beg, end, coding, str)
5088 int *beg, *end;
5089 struct coding_system *coding;
5090 unsigned char *str;
5091 {
5092 unsigned char *begp_orig, *begp, *endp_orig, *endp;
5093 int eol_conversion;
5094 Lisp_Object translation_table;
5095
5096 if (coding->type == coding_type_ccl
5097 || coding->eol_type == CODING_EOL_CRLF
5098 || coding->eol_type == CODING_EOL_CR
5099 || (coding->cmp_data && coding->cmp_data->used > 0))
5100 {
5101 /* We can't skip any data. */
5102 return;
5103 }
5104 if (coding->type == coding_type_no_conversion
5105 || coding->type == coding_type_raw_text
5106 || coding->type == coding_type_emacs_mule
5107 || coding->type == coding_type_undecided)
5108 {
5109 /* We need no conversion, but don't have to skip any data here.
5110 Encoding routine handles them effectively anyway. */
5111 return;
5112 }
5113
5114 translation_table = coding->translation_table_for_encode;
5115 if (NILP (translation_table) && !NILP (Venable_character_translation))
5116 translation_table = Vstandard_translation_table_for_encode;
5117 if (CHAR_TABLE_P (translation_table))
5118 {
5119 int i;
5120 for (i = 0; i < 128; i++)
5121 if (!NILP (CHAR_TABLE_REF (translation_table, i)))
5122 break;
5123 if (i < 128)
5124 /* Some ASCII character should be translated. We give up
5125 shrinking. */
5126 return;
5127 }
5128
5129 if (str)
5130 {
5131 begp_orig = begp = str + *beg;
5132 endp_orig = endp = str + *end;
5133 }
5134 else
5135 {
5136 begp_orig = begp = BYTE_POS_ADDR (*beg);
5137 endp_orig = endp = begp + *end - *beg;
5138 }
5139
5140 eol_conversion = (coding->eol_type == CODING_EOL_CR
5141 || coding->eol_type == CODING_EOL_CRLF);
5142
5143 /* Here, we don't have to check coding->pre_write_conversion because
5144 the caller is expected to have handled it already. */
5145 switch (coding->type)
5146 {
5147 case coding_type_iso2022:
5148 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, 0) != CHARSET_ASCII)
5149 /* We can't skip any data. */
5150 break;
5151 if (coding->flags & CODING_FLAG_ISO_DESIGNATE_AT_BOL)
5152 {
5153 unsigned char *bol = begp;
5154 while (begp < endp && *begp < 0x80)
5155 {
5156 begp++;
5157 if (begp[-1] == '\n')
5158 bol = begp;
5159 }
5160 begp = bol;
5161 goto label_skip_tail;
5162 }
5163 /* fall down ... */
5164
5165 case coding_type_sjis:
5166 case coding_type_big5:
5167 /* We can skip all ASCII characters at the head and tail. */
5168 if (eol_conversion)
5169 while (begp < endp && *begp < 0x80 && *begp != '\n') begp++;
5170 else
5171 while (begp < endp && *begp < 0x80) begp++;
5172 label_skip_tail:
5173 if (eol_conversion)
5174 while (begp < endp && endp[-1] < 0x80 && endp[-1] != '\n') endp--;
5175 else
5176 while (begp < endp && *(endp - 1) < 0x80) endp--;
5177 break;
5178
5179 default:
5180 abort ();
5181 }
5182
5183 *beg += begp - begp_orig;
5184 *end += endp - endp_orig;
5185 return;
5186 }
5187
5188 /* As shrinking conversion region requires some overhead, we don't try
5189 shrinking if the length of conversion region is less than this
5190 value. */
5191 static int shrink_conversion_region_threshhold = 1024;
5192
5193 #define SHRINK_CONVERSION_REGION(beg, end, coding, str, encodep) \
5194 do { \
5195 if (*(end) - *(beg) > shrink_conversion_region_threshhold) \
5196 { \
5197 if (encodep) shrink_encoding_region (beg, end, coding, str); \
5198 else shrink_decoding_region (beg, end, coding, str); \
5199 } \
5200 } while (0)
5201
5202 static Lisp_Object
5203 code_convert_region_unwind (arg)
5204 Lisp_Object arg;
5205 {
5206 inhibit_pre_post_conversion = 0;
5207 Vlast_coding_system_used = arg;
5208 return Qnil;
5209 }
5210
5211 /* Store information about all compositions in the range FROM and TO
5212 of OBJ in memory blocks pointed by CODING->cmp_data. OBJ is a
5213 buffer or a string, defaults to the current buffer. */
5214
5215 void
5216 coding_save_composition (coding, from, to, obj)
5217 struct coding_system *coding;
5218 int from, to;
5219 Lisp_Object obj;
5220 {
5221 Lisp_Object prop;
5222 int start, end;
5223
5224 if (coding->composing == COMPOSITION_DISABLED)
5225 return;
5226 if (!coding->cmp_data)
5227 coding_allocate_composition_data (coding, from);
5228 if (!find_composition (from, to, &start, &end, &prop, obj)
5229 || end > to)
5230 return;
5231 if (start < from
5232 && (!find_composition (end, to, &start, &end, &prop, obj)
5233 || end > to))
5234 return;
5235 coding->composing = COMPOSITION_NO;
5236 do
5237 {
5238 if (COMPOSITION_VALID_P (start, end, prop))
5239 {
5240 enum composition_method method = COMPOSITION_METHOD (prop);
5241 if (coding->cmp_data->used + COMPOSITION_DATA_MAX_BUNCH_LENGTH
5242 >= COMPOSITION_DATA_SIZE)
5243 coding_allocate_composition_data (coding, from);
5244 /* For relative composition, we remember start and end
5245 positions, for the other compositions, we also remember
5246 components. */
5247 CODING_ADD_COMPOSITION_START (coding, start - from, method);
5248 if (method != COMPOSITION_RELATIVE)
5249 {
5250 /* We must store a*/
5251 Lisp_Object val, ch;
5252
5253 val = COMPOSITION_COMPONENTS (prop);
5254 if (CONSP (val))
5255 while (CONSP (val))
5256 {
5257 ch = XCAR (val), val = XCDR (val);
5258 CODING_ADD_COMPOSITION_COMPONENT (coding, XINT (ch));
5259 }
5260 else if (VECTORP (val) || STRINGP (val))
5261 {
5262 int len = (VECTORP (val)
5263 ? XVECTOR (val)->size : SCHARS (val));
5264 int i;
5265 for (i = 0; i < len; i++)
5266 {
5267 ch = (STRINGP (val)
5268 ? Faref (val, make_number (i))
5269 : XVECTOR (val)->contents[i]);
5270 CODING_ADD_COMPOSITION_COMPONENT (coding, XINT (ch));
5271 }
5272 }
5273 else /* INTEGERP (val) */
5274 CODING_ADD_COMPOSITION_COMPONENT (coding, XINT (val));
5275 }
5276 CODING_ADD_COMPOSITION_END (coding, end - from);
5277 }
5278 start = end;
5279 }
5280 while (start < to
5281 && find_composition (start, to, &start, &end, &prop, obj)
5282 && end <= to);
5283
5284 /* Make coding->cmp_data point to the first memory block. */
5285 while (coding->cmp_data->prev)
5286 coding->cmp_data = coding->cmp_data->prev;
5287 coding->cmp_data_start = 0;
5288 }
5289
5290 /* Reflect the saved information about compositions to OBJ.
5291 CODING->cmp_data points to a memory block for the information. OBJ
5292 is a buffer or a string, defaults to the current buffer. */
5293
5294 void
5295 coding_restore_composition (coding, obj)
5296 struct coding_system *coding;
5297 Lisp_Object obj;
5298 {
5299 struct composition_data *cmp_data = coding->cmp_data;
5300
5301 if (!cmp_data)
5302 return;
5303
5304 while (cmp_data->prev)
5305 cmp_data = cmp_data->prev;
5306
5307 while (cmp_data)
5308 {
5309 int i;
5310
5311 for (i = 0; i < cmp_data->used && cmp_data->data[i] > 0;
5312 i += cmp_data->data[i])
5313 {
5314 int *data = cmp_data->data + i;
5315 enum composition_method method = (enum composition_method) data[3];
5316 Lisp_Object components;
5317
5318 if (method == COMPOSITION_RELATIVE)
5319 components = Qnil;
5320 else
5321 {
5322 int len = data[0] - 4, j;
5323 Lisp_Object args[MAX_COMPOSITION_COMPONENTS * 2 - 1];
5324
5325 if (method == COMPOSITION_WITH_RULE_ALTCHARS
5326 && len % 2 == 0)
5327 len --;
5328 for (j = 0; j < len; j++)
5329 args[j] = make_number (data[4 + j]);
5330 components = (method == COMPOSITION_WITH_ALTCHARS
5331 ? Fstring (len, args) : Fvector (len, args));
5332 }
5333 compose_text (data[1], data[2], components, Qnil, obj);
5334 }
5335 cmp_data = cmp_data->next;
5336 }
5337 }
5338
5339 /* Decode (if ENCODEP is zero) or encode (if ENCODEP is nonzero) the
5340 text from FROM to TO (byte positions are FROM_BYTE and TO_BYTE) by
5341 coding system CODING, and return the status code of code conversion
5342 (currently, this value has no meaning).
5343
5344 How many characters (and bytes) are converted to how many
5345 characters (and bytes) are recorded in members of the structure
5346 CODING.
5347
5348 If REPLACE is nonzero, we do various things as if the original text
5349 is deleted and a new text is inserted. See the comments in
5350 replace_range (insdel.c) to know what we are doing.
5351
5352 If REPLACE is zero, it is assumed that the source text is unibyte.
5353 Otherwise, it is assumed that the source text is multibyte. */
5354
5355 int
5356 code_convert_region (from, from_byte, to, to_byte, coding, encodep, replace)
5357 int from, from_byte, to, to_byte, encodep, replace;
5358 struct coding_system *coding;
5359 {
5360 int len = to - from, len_byte = to_byte - from_byte;
5361 int nchars_del = 0, nbytes_del = 0;
5362 int require, inserted, inserted_byte;
5363 int head_skip, tail_skip, total_skip = 0;
5364 Lisp_Object saved_coding_symbol;
5365 int first = 1;
5366 unsigned char *src, *dst;
5367 Lisp_Object deletion;
5368 int orig_point = PT, orig_len = len;
5369 int prev_Z;
5370 int multibyte_p = !NILP (current_buffer->enable_multibyte_characters);
5371
5372 deletion = Qnil;
5373 saved_coding_symbol = coding->symbol;
5374
5375 if (from < PT && PT < to)
5376 {
5377 TEMP_SET_PT_BOTH (from, from_byte);
5378 orig_point = from;
5379 }
5380
5381 if (replace)
5382 {
5383 int saved_from = from;
5384 int saved_inhibit_modification_hooks;
5385
5386 prepare_to_modify_buffer (from, to, &from);
5387 if (saved_from != from)
5388 {
5389 to = from + len;
5390 from_byte = CHAR_TO_BYTE (from), to_byte = CHAR_TO_BYTE (to);
5391 len_byte = to_byte - from_byte;
5392 }
5393
5394 /* The code conversion routine can not preserve text properties
5395 for now. So, we must remove all text properties in the
5396 region. Here, we must suppress all modification hooks. */
5397 saved_inhibit_modification_hooks = inhibit_modification_hooks;
5398 inhibit_modification_hooks = 1;
5399 Fset_text_properties (make_number (from), make_number (to), Qnil, Qnil);
5400 inhibit_modification_hooks = saved_inhibit_modification_hooks;
5401 }
5402
5403 if (! encodep && CODING_REQUIRE_DETECTION (coding))
5404 {
5405 /* We must detect encoding of text and eol format. */
5406
5407 if (from < GPT && to > GPT)
5408 move_gap_both (from, from_byte);
5409 if (coding->type == coding_type_undecided)
5410 {
5411 detect_coding (coding, BYTE_POS_ADDR (from_byte), len_byte);
5412 if (coding->type == coding_type_undecided)
5413 {
5414 /* It seems that the text contains only ASCII, but we
5415 should not leave it undecided because the deeper
5416 decoding routine (decode_coding) tries to detect the
5417 encodings again in vain. */
5418 coding->type = coding_type_emacs_mule;
5419 coding->category_idx = CODING_CATEGORY_IDX_EMACS_MULE;
5420 /* As emacs-mule decoder will handle composition, we
5421 need this setting to allocate coding->cmp_data
5422 later. */
5423 coding->composing = COMPOSITION_NO;
5424 }
5425 }
5426 if (coding->eol_type == CODING_EOL_UNDECIDED
5427 && coding->type != coding_type_ccl)
5428 {
5429 detect_eol (coding, BYTE_POS_ADDR (from_byte), len_byte);
5430 if (coding->eol_type == CODING_EOL_UNDECIDED)
5431 coding->eol_type = CODING_EOL_LF;
5432 /* We had better recover the original eol format if we
5433 encounter an inconsistent eol format while decoding. */
5434 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
5435 }
5436 }
5437
5438 /* Now we convert the text. */
5439
5440 /* For encoding, we must process pre-write-conversion in advance. */
5441 if (! inhibit_pre_post_conversion
5442 && encodep
5443 && SYMBOLP (coding->pre_write_conversion)
5444 && ! NILP (Ffboundp (coding->pre_write_conversion)))
5445 {
5446 /* The function in pre-write-conversion may put a new text in a
5447 new buffer. */
5448 struct buffer *prev = current_buffer;
5449 Lisp_Object new;
5450
5451 record_unwind_protect (code_convert_region_unwind,
5452 Vlatin_extra_code_table);
5453 /* We should not call any more pre-write/post-read-conversion
5454 functions while this pre-write-conversion is running. */
5455 inhibit_pre_post_conversion = 1;
5456 call2 (coding->pre_write_conversion,
5457 make_number (from), make_number (to));
5458 inhibit_pre_post_conversion = 0;
5459 /* Discard the unwind protect. */
5460 specpdl_ptr--;
5461
5462 if (current_buffer != prev)
5463 {
5464 len = ZV - BEGV;
5465 new = Fcurrent_buffer ();
5466 set_buffer_internal_1 (prev);
5467 del_range_2 (from, from_byte, to, to_byte, 0);
5468 TEMP_SET_PT_BOTH (from, from_byte);
5469 insert_from_buffer (XBUFFER (new), 1, len, 0);
5470 Fkill_buffer (new);
5471 if (orig_point >= to)
5472 orig_point += len - orig_len;
5473 else if (orig_point > from)
5474 orig_point = from;
5475 orig_len = len;
5476 to = from + len;
5477 from_byte = CHAR_TO_BYTE (from);
5478 to_byte = CHAR_TO_BYTE (to);
5479 len_byte = to_byte - from_byte;
5480 TEMP_SET_PT_BOTH (from, from_byte);
5481 }
5482 }
5483
5484 if (replace)
5485 {
5486 if (! EQ (current_buffer->undo_list, Qt))
5487 deletion = make_buffer_string_both (from, from_byte, to, to_byte, 1);
5488 else
5489 {
5490 nchars_del = to - from;
5491 nbytes_del = to_byte - from_byte;
5492 }
5493 }
5494
5495 if (coding->composing != COMPOSITION_DISABLED)
5496 {
5497 if (encodep)
5498 coding_save_composition (coding, from, to, Fcurrent_buffer ());
5499 else
5500 coding_allocate_composition_data (coding, from);
5501 }
5502
5503 /* Try to skip the heading and tailing ASCIIs. */
5504 if (coding->type != coding_type_ccl)
5505 {
5506 int from_byte_orig = from_byte, to_byte_orig = to_byte;
5507
5508 if (from < GPT && GPT < to)
5509 move_gap_both (from, from_byte);
5510 SHRINK_CONVERSION_REGION (&from_byte, &to_byte, coding, NULL, encodep);
5511 if (from_byte == to_byte
5512 && (encodep || NILP (coding->post_read_conversion))
5513 && ! CODING_REQUIRE_FLUSHING (coding))
5514 {
5515 coding->produced = len_byte;
5516 coding->produced_char = len;
5517 if (!replace)
5518 /* We must record and adjust for this new text now. */
5519 adjust_after_insert (from, from_byte_orig, to, to_byte_orig, len);
5520 return 0;
5521 }
5522
5523 head_skip = from_byte - from_byte_orig;
5524 tail_skip = to_byte_orig - to_byte;
5525 total_skip = head_skip + tail_skip;
5526 from += head_skip;
5527 to -= tail_skip;
5528 len -= total_skip; len_byte -= total_skip;
5529 }
5530
5531 /* For conversion, we must put the gap before the text in addition to
5532 making the gap larger for efficient decoding. The required gap
5533 size starts from 2000 which is the magic number used in make_gap.
5534 But, after one batch of conversion, it will be incremented if we
5535 find that it is not enough . */
5536 require = 2000;
5537
5538 if (GAP_SIZE < require)
5539 make_gap (require - GAP_SIZE);
5540 move_gap_both (from, from_byte);
5541
5542 inserted = inserted_byte = 0;
5543
5544 GAP_SIZE += len_byte;
5545 ZV -= len;
5546 Z -= len;
5547 ZV_BYTE -= len_byte;
5548 Z_BYTE -= len_byte;
5549
5550 if (GPT - BEG < BEG_UNCHANGED)
5551 BEG_UNCHANGED = GPT - BEG;
5552 if (Z - GPT < END_UNCHANGED)
5553 END_UNCHANGED = Z - GPT;
5554
5555 if (!encodep && coding->src_multibyte)
5556 {
5557 /* Decoding routines expects that the source text is unibyte.
5558 We must convert 8-bit characters of multibyte form to
5559 unibyte. */
5560 int len_byte_orig = len_byte;
5561 len_byte = str_as_unibyte (GAP_END_ADDR - len_byte, len_byte);
5562 if (len_byte < len_byte_orig)
5563 safe_bcopy (GAP_END_ADDR - len_byte_orig, GAP_END_ADDR - len_byte,
5564 len_byte);
5565 coding->src_multibyte = 0;
5566 }
5567
5568 for (;;)
5569 {
5570 int result;
5571
5572 /* The buffer memory is now:
5573 +--------+converted-text+---------+-------original-text-------+---+
5574 |<-from->|<--inserted-->|---------|<--------len_byte--------->|---|
5575 |<---------------------- GAP ----------------------->| */
5576 src = GAP_END_ADDR - len_byte;
5577 dst = GPT_ADDR + inserted_byte;
5578
5579 if (encodep)
5580 result = encode_coding (coding, src, dst, len_byte, 0);
5581 else
5582 {
5583 if (coding->composing != COMPOSITION_DISABLED)
5584 coding->cmp_data->char_offset = from + inserted;
5585 result = decode_coding (coding, src, dst, len_byte, 0);
5586 }
5587
5588 /* The buffer memory is now:
5589 +--------+-------converted-text----+--+------original-text----+---+
5590 |<-from->|<-inserted->|<-produced->|--|<-(len_byte-consumed)->|---|
5591 |<---------------------- GAP ----------------------->| */
5592
5593 inserted += coding->produced_char;
5594 inserted_byte += coding->produced;
5595 len_byte -= coding->consumed;
5596
5597 if (result == CODING_FINISH_INSUFFICIENT_CMP)
5598 {
5599 coding_allocate_composition_data (coding, from + inserted);
5600 continue;
5601 }
5602
5603 src += coding->consumed;
5604 dst += coding->produced;
5605
5606 if (result == CODING_FINISH_NORMAL)
5607 {
5608 src += len_byte;
5609 break;
5610 }
5611 if (! encodep && result == CODING_FINISH_INCONSISTENT_EOL)
5612 {
5613 unsigned char *pend = dst, *p = pend - inserted_byte;
5614 Lisp_Object eol_type;
5615
5616 /* Encode LFs back to the original eol format (CR or CRLF). */
5617 if (coding->eol_type == CODING_EOL_CR)
5618 {
5619 while (p < pend) if (*p++ == '\n') p[-1] = '\r';
5620 }
5621 else
5622 {
5623 int count = 0;
5624
5625 while (p < pend) if (*p++ == '\n') count++;
5626 if (src - dst < count)
5627 {
5628 /* We don't have sufficient room for encoding LFs
5629 back to CRLF. We must record converted and
5630 not-yet-converted text back to the buffer
5631 content, enlarge the gap, then record them out of
5632 the buffer contents again. */
5633 int add = len_byte + inserted_byte;
5634
5635 GAP_SIZE -= add;
5636 ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
5637 GPT += inserted_byte; GPT_BYTE += inserted_byte;
5638 make_gap (count - GAP_SIZE);
5639 GAP_SIZE += add;
5640 ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
5641 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
5642 /* Don't forget to update SRC, DST, and PEND. */
5643 src = GAP_END_ADDR - len_byte;
5644 dst = GPT_ADDR + inserted_byte;
5645 pend = dst;
5646 }
5647 inserted += count;
5648 inserted_byte += count;
5649 coding->produced += count;
5650 p = dst = pend + count;
5651 while (count)
5652 {
5653 *--p = *--pend;
5654 if (*p == '\n') count--, *--p = '\r';
5655 }
5656 }
5657
5658 /* Suppress eol-format conversion in the further conversion. */
5659 coding->eol_type = CODING_EOL_LF;
5660
5661 /* Set the coding system symbol to that for Unix-like EOL. */
5662 eol_type = Fget (saved_coding_symbol, Qeol_type);
5663 if (VECTORP (eol_type)
5664 && XVECTOR (eol_type)->size == 3
5665 && SYMBOLP (XVECTOR (eol_type)->contents[CODING_EOL_LF]))
5666 coding->symbol = XVECTOR (eol_type)->contents[CODING_EOL_LF];
5667 else
5668 coding->symbol = saved_coding_symbol;
5669
5670 continue;
5671 }
5672 if (len_byte <= 0)
5673 {
5674 if (coding->type != coding_type_ccl
5675 || coding->mode & CODING_MODE_LAST_BLOCK)
5676 break;
5677 coding->mode |= CODING_MODE_LAST_BLOCK;
5678 continue;
5679 }
5680 if (result == CODING_FINISH_INSUFFICIENT_SRC)
5681 {
5682 /* The source text ends in invalid codes. Let's just
5683 make them valid buffer contents, and finish conversion. */
5684 if (multibyte_p)
5685 {
5686 unsigned char *start = dst;
5687
5688 inserted += len_byte;
5689 while (len_byte--)
5690 {
5691 int c = *src++;
5692 dst += CHAR_STRING (c, dst);
5693 }
5694
5695 inserted_byte += dst - start;
5696 }
5697 else
5698 {
5699 inserted += len_byte;
5700 inserted_byte += len_byte;
5701 while (len_byte--)
5702 *dst++ = *src++;
5703 }
5704 break;
5705 }
5706 if (result == CODING_FINISH_INTERRUPT)
5707 {
5708 /* The conversion procedure was interrupted by a user. */
5709 break;
5710 }
5711 /* Now RESULT == CODING_FINISH_INSUFFICIENT_DST */
5712 if (coding->consumed < 1)
5713 {
5714 /* It's quite strange to require more memory without
5715 consuming any bytes. Perhaps CCL program bug. */
5716 break;
5717 }
5718 if (first)
5719 {
5720 /* We have just done the first batch of conversion which was
5721 stopped because of insufficient gap. Let's reconsider the
5722 required gap size (i.e. SRT - DST) now.
5723
5724 We have converted ORIG bytes (== coding->consumed) into
5725 NEW bytes (coding->produced). To convert the remaining
5726 LEN bytes, we may need REQUIRE bytes of gap, where:
5727 REQUIRE + LEN_BYTE = LEN_BYTE * (NEW / ORIG)
5728 REQUIRE = LEN_BYTE * (NEW - ORIG) / ORIG
5729 Here, we are sure that NEW >= ORIG. */
5730 float ratio;
5731
5732 if (coding->produced <= coding->consumed)
5733 {
5734 /* This happens because of CCL-based coding system with
5735 eol-type CRLF. */
5736 require = 0;
5737 }
5738 else
5739 {
5740 ratio = (coding->produced - coding->consumed) / coding->consumed;
5741 require = len_byte * ratio;
5742 }
5743 first = 0;
5744 }
5745 if ((src - dst) < (require + 2000))
5746 {
5747 /* See the comment above the previous call of make_gap. */
5748 int add = len_byte + inserted_byte;
5749
5750 GAP_SIZE -= add;
5751 ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
5752 GPT += inserted_byte; GPT_BYTE += inserted_byte;
5753 make_gap (require + 2000);
5754 GAP_SIZE += add;
5755 ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
5756 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
5757 }
5758 }
5759 if (src - dst > 0) *dst = 0; /* Put an anchor. */
5760
5761 if (encodep && coding->dst_multibyte)
5762 {
5763 /* The output is unibyte. We must convert 8-bit characters to
5764 multibyte form. */
5765 if (inserted_byte * 2 > GAP_SIZE)
5766 {
5767 GAP_SIZE -= inserted_byte;
5768 ZV += inserted_byte; Z += inserted_byte;
5769 ZV_BYTE += inserted_byte; Z_BYTE += inserted_byte;
5770 GPT += inserted_byte; GPT_BYTE += inserted_byte;
5771 make_gap (inserted_byte - GAP_SIZE);
5772 GAP_SIZE += inserted_byte;
5773 ZV -= inserted_byte; Z -= inserted_byte;
5774 ZV_BYTE -= inserted_byte; Z_BYTE -= inserted_byte;
5775 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
5776 }
5777 inserted_byte = str_to_multibyte (GPT_ADDR, GAP_SIZE, inserted_byte);
5778 }
5779
5780 /* If we shrank the conversion area, adjust it now. */
5781 if (total_skip > 0)
5782 {
5783 if (tail_skip > 0)
5784 safe_bcopy (GAP_END_ADDR, GPT_ADDR + inserted_byte, tail_skip);
5785 inserted += total_skip; inserted_byte += total_skip;
5786 GAP_SIZE += total_skip;
5787 GPT -= head_skip; GPT_BYTE -= head_skip;
5788 ZV -= total_skip; ZV_BYTE -= total_skip;
5789 Z -= total_skip; Z_BYTE -= total_skip;
5790 from -= head_skip; from_byte -= head_skip;
5791 to += tail_skip; to_byte += tail_skip;
5792 }
5793
5794 prev_Z = Z;
5795 if (! EQ (current_buffer->undo_list, Qt))
5796 adjust_after_replace (from, from_byte, deletion, inserted, inserted_byte);
5797 else
5798 adjust_after_replace_noundo (from, from_byte, nchars_del, nbytes_del,
5799 inserted, inserted_byte);
5800 inserted = Z - prev_Z;
5801
5802 if (!encodep && coding->cmp_data && coding->cmp_data->used)
5803 coding_restore_composition (coding, Fcurrent_buffer ());
5804 coding_free_composition_data (coding);
5805
5806 if (! inhibit_pre_post_conversion
5807 && ! encodep && ! NILP (coding->post_read_conversion))
5808 {
5809 Lisp_Object val;
5810 Lisp_Object saved_coding_system;
5811
5812 if (from != PT)
5813 TEMP_SET_PT_BOTH (from, from_byte);
5814 prev_Z = Z;
5815 record_unwind_protect (code_convert_region_unwind,
5816 Vlast_coding_system_used);
5817 saved_coding_system = Vlast_coding_system_used;
5818 Vlast_coding_system_used = coding->symbol;
5819 /* We should not call any more pre-write/post-read-conversion
5820 functions while this post-read-conversion is running. */
5821 inhibit_pre_post_conversion = 1;
5822 val = call1 (coding->post_read_conversion, make_number (inserted));
5823 inhibit_pre_post_conversion = 0;
5824 coding->symbol = Vlast_coding_system_used;
5825 Vlast_coding_system_used = saved_coding_system;
5826 /* Discard the unwind protect. */
5827 specpdl_ptr--;
5828 CHECK_NUMBER (val);
5829 inserted += Z - prev_Z;
5830 }
5831
5832 if (orig_point >= from)
5833 {
5834 if (orig_point >= from + orig_len)
5835 orig_point += inserted - orig_len;
5836 else
5837 orig_point = from;
5838 TEMP_SET_PT (orig_point);
5839 }
5840
5841 if (replace)
5842 {
5843 signal_after_change (from, to - from, inserted);
5844 update_compositions (from, from + inserted, CHECK_BORDER);
5845 }
5846
5847 {
5848 coding->consumed = to_byte - from_byte;
5849 coding->consumed_char = to - from;
5850 coding->produced = inserted_byte;
5851 coding->produced_char = inserted;
5852 }
5853
5854 return 0;
5855 }
5856
5857 Lisp_Object
5858 run_pre_post_conversion_on_str (str, coding, encodep)
5859 Lisp_Object str;
5860 struct coding_system *coding;
5861 int encodep;
5862 {
5863 int count = SPECPDL_INDEX ();
5864 struct gcpro gcpro1, gcpro2;
5865 int multibyte = STRING_MULTIBYTE (str);
5866 Lisp_Object buffer;
5867 struct buffer *buf;
5868 Lisp_Object old_deactivate_mark;
5869
5870 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
5871 record_unwind_protect (code_convert_region_unwind,
5872 Vlast_coding_system_used);
5873 /* It is not crucial to specbind this. */
5874 old_deactivate_mark = Vdeactivate_mark;
5875 GCPRO2 (str, old_deactivate_mark);
5876
5877 buffer = Fget_buffer_create (build_string (" *code-converting-work*"));
5878 buf = XBUFFER (buffer);
5879
5880 buf->directory = current_buffer->directory;
5881 buf->read_only = Qnil;
5882 buf->filename = Qnil;
5883 buf->undo_list = Qt;
5884 buf->overlays_before = Qnil;
5885 buf->overlays_after = Qnil;
5886
5887 set_buffer_internal (buf);
5888 /* We must insert the contents of STR as is without
5889 unibyte<->multibyte conversion. For that, we adjust the
5890 multibyteness of the working buffer to that of STR. */
5891 Ferase_buffer ();
5892 buf->enable_multibyte_characters = multibyte ? Qt : Qnil;
5893
5894 insert_from_string (str, 0, 0,
5895 SCHARS (str), SBYTES (str), 0);
5896 UNGCPRO;
5897 inhibit_pre_post_conversion = 1;
5898 if (encodep)
5899 call2 (coding->pre_write_conversion, make_number (BEG), make_number (Z));
5900 else
5901 {
5902 Vlast_coding_system_used = coding->symbol;
5903 TEMP_SET_PT_BOTH (BEG, BEG_BYTE);
5904 call1 (coding->post_read_conversion, make_number (Z - BEG));
5905 coding->symbol = Vlast_coding_system_used;
5906 }
5907 inhibit_pre_post_conversion = 0;
5908 Vdeactivate_mark = old_deactivate_mark;
5909 str = make_buffer_string (BEG, Z, 1);
5910 return unbind_to (count, str);
5911 }
5912
5913 Lisp_Object
5914 decode_coding_string (str, coding, nocopy)
5915 Lisp_Object str;
5916 struct coding_system *coding;
5917 int nocopy;
5918 {
5919 int len;
5920 struct conversion_buffer buf;
5921 int from, to_byte;
5922 Lisp_Object saved_coding_symbol;
5923 int result;
5924 int require_decoding;
5925 int shrinked_bytes = 0;
5926 Lisp_Object newstr;
5927 int consumed, consumed_char, produced, produced_char;
5928
5929 from = 0;
5930 to_byte = SBYTES (str);
5931
5932 saved_coding_symbol = coding->symbol;
5933 coding->src_multibyte = STRING_MULTIBYTE (str);
5934 coding->dst_multibyte = 1;
5935 if (CODING_REQUIRE_DETECTION (coding))
5936 {
5937 /* See the comments in code_convert_region. */
5938 if (coding->type == coding_type_undecided)
5939 {
5940 detect_coding (coding, SDATA (str), to_byte);
5941 if (coding->type == coding_type_undecided)
5942 {
5943 coding->type = coding_type_emacs_mule;
5944 coding->category_idx = CODING_CATEGORY_IDX_EMACS_MULE;
5945 /* As emacs-mule decoder will handle composition, we
5946 need this setting to allocate coding->cmp_data
5947 later. */
5948 coding->composing = COMPOSITION_NO;
5949 }
5950 }
5951 if (coding->eol_type == CODING_EOL_UNDECIDED
5952 && coding->type != coding_type_ccl)
5953 {
5954 saved_coding_symbol = coding->symbol;
5955 detect_eol (coding, SDATA (str), to_byte);
5956 if (coding->eol_type == CODING_EOL_UNDECIDED)
5957 coding->eol_type = CODING_EOL_LF;
5958 /* We had better recover the original eol format if we
5959 encounter an inconsistent eol format while decoding. */
5960 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
5961 }
5962 }
5963
5964 if (coding->type == coding_type_no_conversion
5965 || coding->type == coding_type_raw_text)
5966 coding->dst_multibyte = 0;
5967
5968 require_decoding = CODING_REQUIRE_DECODING (coding);
5969
5970 if (STRING_MULTIBYTE (str))
5971 {
5972 /* Decoding routines expect the source text to be unibyte. */
5973 str = Fstring_as_unibyte (str);
5974 to_byte = SBYTES (str);
5975 nocopy = 1;
5976 coding->src_multibyte = 0;
5977 }
5978
5979 /* Try to skip the heading and tailing ASCIIs. */
5980 if (require_decoding && coding->type != coding_type_ccl)
5981 {
5982 SHRINK_CONVERSION_REGION (&from, &to_byte, coding, SDATA (str),
5983 0);
5984 if (from == to_byte)
5985 require_decoding = 0;
5986 shrinked_bytes = from + (SBYTES (str) - to_byte);
5987 }
5988
5989 if (!require_decoding)
5990 {
5991 coding->consumed = SBYTES (str);
5992 coding->consumed_char = SCHARS (str);
5993 if (coding->dst_multibyte)
5994 {
5995 str = Fstring_as_multibyte (str);
5996 nocopy = 1;
5997 }
5998 coding->produced = SBYTES (str);
5999 coding->produced_char = SCHARS (str);
6000 return (nocopy ? str : Fcopy_sequence (str));
6001 }
6002
6003 if (coding->composing != COMPOSITION_DISABLED)
6004 coding_allocate_composition_data (coding, from);
6005 len = decoding_buffer_size (coding, to_byte - from);
6006 allocate_conversion_buffer (buf, len);
6007
6008 consumed = consumed_char = produced = produced_char = 0;
6009 while (1)
6010 {
6011 result = decode_coding (coding, SDATA (str) + from + consumed,
6012 buf.data + produced, to_byte - from - consumed,
6013 buf.size - produced);
6014 consumed += coding->consumed;
6015 consumed_char += coding->consumed_char;
6016 produced += coding->produced;
6017 produced_char += coding->produced_char;
6018 if (result == CODING_FINISH_NORMAL
6019 || (result == CODING_FINISH_INSUFFICIENT_SRC
6020 && coding->consumed == 0))
6021 break;
6022 if (result == CODING_FINISH_INSUFFICIENT_CMP)
6023 coding_allocate_composition_data (coding, from + produced_char);
6024 else if (result == CODING_FINISH_INSUFFICIENT_DST)
6025 extend_conversion_buffer (&buf);
6026 else if (result == CODING_FINISH_INCONSISTENT_EOL)
6027 {
6028 Lisp_Object eol_type;
6029
6030 /* Recover the original EOL format. */
6031 if (coding->eol_type == CODING_EOL_CR)
6032 {
6033 unsigned char *p;
6034 for (p = buf.data; p < buf.data + produced; p++)
6035 if (*p == '\n') *p = '\r';
6036 }
6037 else if (coding->eol_type == CODING_EOL_CRLF)
6038 {
6039 int num_eol = 0;
6040 unsigned char *p0, *p1;
6041 for (p0 = buf.data, p1 = p0 + produced; p0 < p1; p0++)
6042 if (*p0 == '\n') num_eol++;
6043 if (produced + num_eol >= buf.size)
6044 extend_conversion_buffer (&buf);
6045 for (p0 = buf.data + produced, p1 = p0 + num_eol; p0 > buf.data;)
6046 {
6047 *--p1 = *--p0;
6048 if (*p0 == '\n') *--p1 = '\r';
6049 }
6050 produced += num_eol;
6051 produced_char += num_eol;
6052 }
6053 /* Suppress eol-format conversion in the further conversion. */
6054 coding->eol_type = CODING_EOL_LF;
6055
6056 /* Set the coding system symbol to that for Unix-like EOL. */
6057 eol_type = Fget (saved_coding_symbol, Qeol_type);
6058 if (VECTORP (eol_type)
6059 && XVECTOR (eol_type)->size == 3
6060 && SYMBOLP (XVECTOR (eol_type)->contents[CODING_EOL_LF]))
6061 coding->symbol = XVECTOR (eol_type)->contents[CODING_EOL_LF];
6062 else
6063 coding->symbol = saved_coding_symbol;
6064
6065
6066 }
6067 }
6068
6069 coding->consumed = consumed;
6070 coding->consumed_char = consumed_char;
6071 coding->produced = produced;
6072 coding->produced_char = produced_char;
6073
6074 if (coding->dst_multibyte)
6075 newstr = make_uninit_multibyte_string (produced_char + shrinked_bytes,
6076 produced + shrinked_bytes);
6077 else
6078 newstr = make_uninit_string (produced + shrinked_bytes);
6079 if (from > 0)
6080 STRING_COPYIN (newstr, 0, SDATA (str), from);
6081 STRING_COPYIN (newstr, from, buf.data, produced);
6082 if (shrinked_bytes > from)
6083 STRING_COPYIN (newstr, from + produced,
6084 SDATA (str) + to_byte,
6085 shrinked_bytes - from);
6086 free_conversion_buffer (&buf);
6087
6088 if (coding->cmp_data && coding->cmp_data->used)
6089 coding_restore_composition (coding, newstr);
6090 coding_free_composition_data (coding);
6091
6092 if (SYMBOLP (coding->post_read_conversion)
6093 && !NILP (Ffboundp (coding->post_read_conversion)))
6094 newstr = run_pre_post_conversion_on_str (newstr, coding, 0);
6095
6096 return newstr;
6097 }
6098
6099 Lisp_Object
6100 encode_coding_string (str, coding, nocopy)
6101 Lisp_Object str;
6102 struct coding_system *coding;
6103 int nocopy;
6104 {
6105 int len;
6106 struct conversion_buffer buf;
6107 int from, to, to_byte;
6108 int result;
6109 int shrinked_bytes = 0;
6110 Lisp_Object newstr;
6111 int consumed, consumed_char, produced, produced_char;
6112
6113 if (SYMBOLP (coding->pre_write_conversion)
6114 && !NILP (Ffboundp (coding->pre_write_conversion)))
6115 str = run_pre_post_conversion_on_str (str, coding, 1);
6116
6117 from = 0;
6118 to = SCHARS (str);
6119 to_byte = SBYTES (str);
6120
6121 /* Encoding routines determine the multibyteness of the source text
6122 by coding->src_multibyte. */
6123 coding->src_multibyte = STRING_MULTIBYTE (str);
6124 coding->dst_multibyte = 0;
6125 if (! CODING_REQUIRE_ENCODING (coding))
6126 {
6127 coding->consumed = SBYTES (str);
6128 coding->consumed_char = SCHARS (str);
6129 if (STRING_MULTIBYTE (str))
6130 {
6131 str = Fstring_as_unibyte (str);
6132 nocopy = 1;
6133 }
6134 coding->produced = SBYTES (str);
6135 coding->produced_char = SCHARS (str);
6136 return (nocopy ? str : Fcopy_sequence (str));
6137 }
6138
6139 if (coding->composing != COMPOSITION_DISABLED)
6140 coding_save_composition (coding, from, to, str);
6141
6142 /* Try to skip the heading and tailing ASCIIs. */
6143 if (coding->type != coding_type_ccl)
6144 {
6145 SHRINK_CONVERSION_REGION (&from, &to_byte, coding, SDATA (str),
6146 1);
6147 if (from == to_byte)
6148 return (nocopy ? str : Fcopy_sequence (str));
6149 shrinked_bytes = from + (SBYTES (str) - to_byte);
6150 }
6151
6152 len = encoding_buffer_size (coding, to_byte - from);
6153 allocate_conversion_buffer (buf, len);
6154
6155 consumed = consumed_char = produced = produced_char = 0;
6156 while (1)
6157 {
6158 result = encode_coding (coding, SDATA (str) + from + consumed,
6159 buf.data + produced, to_byte - from - consumed,
6160 buf.size - produced);
6161 consumed += coding->consumed;
6162 consumed_char += coding->consumed_char;
6163 produced += coding->produced;
6164 produced_char += coding->produced_char;
6165 if (result == CODING_FINISH_NORMAL
6166 || (result == CODING_FINISH_INSUFFICIENT_SRC
6167 && coding->consumed == 0))
6168 break;
6169 /* Now result should be CODING_FINISH_INSUFFICIENT_DST. */
6170 extend_conversion_buffer (&buf);
6171 }
6172
6173 coding->consumed = consumed;
6174 coding->consumed_char = consumed_char;
6175 coding->produced = produced;
6176 coding->produced_char = produced_char;
6177
6178 newstr = make_uninit_string (produced + shrinked_bytes);
6179 if (from > 0)
6180 STRING_COPYIN (newstr, 0, SDATA (str), from);
6181 STRING_COPYIN (newstr, from, buf.data, produced);
6182 if (shrinked_bytes > from)
6183 STRING_COPYIN (newstr, from + produced,
6184 SDATA (str) + to_byte,
6185 shrinked_bytes - from);
6186
6187 free_conversion_buffer (&buf);
6188 coding_free_composition_data (coding);
6189
6190 return newstr;
6191 }
6192
6193 \f
6194 #ifdef emacs
6195 /*** 8. Emacs Lisp library functions ***/
6196
6197 DEFUN ("coding-system-p", Fcoding_system_p, Scoding_system_p, 1, 1, 0,
6198 doc: /* Return t if OBJECT is nil or a coding-system.
6199 See the documentation of `make-coding-system' for information
6200 about coding-system objects. */)
6201 (obj)
6202 Lisp_Object obj;
6203 {
6204 if (NILP (obj))
6205 return Qt;
6206 if (!SYMBOLP (obj))
6207 return Qnil;
6208 /* Get coding-spec vector for OBJ. */
6209 obj = Fget (obj, Qcoding_system);
6210 return ((VECTORP (obj) && XVECTOR (obj)->size == 5)
6211 ? Qt : Qnil);
6212 }
6213
6214 DEFUN ("read-non-nil-coding-system", Fread_non_nil_coding_system,
6215 Sread_non_nil_coding_system, 1, 1, 0,
6216 doc: /* Read a coding system from the minibuffer, prompting with string PROMPT. */)
6217 (prompt)
6218 Lisp_Object prompt;
6219 {
6220 Lisp_Object val;
6221 do
6222 {
6223 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
6224 Qt, Qnil, Qcoding_system_history, Qnil, Qnil);
6225 }
6226 while (SCHARS (val) == 0);
6227 return (Fintern (val, Qnil));
6228 }
6229
6230 DEFUN ("read-coding-system", Fread_coding_system, Sread_coding_system, 1, 2, 0,
6231 doc: /* Read a coding system from the minibuffer, prompting with string PROMPT.
6232 If the user enters null input, return second argument DEFAULT-CODING-SYSTEM. */)
6233 (prompt, default_coding_system)
6234 Lisp_Object prompt, default_coding_system;
6235 {
6236 Lisp_Object val;
6237 if (SYMBOLP (default_coding_system))
6238 default_coding_system = SYMBOL_NAME (default_coding_system);
6239 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
6240 Qt, Qnil, Qcoding_system_history,
6241 default_coding_system, Qnil);
6242 return (SCHARS (val) == 0 ? Qnil : Fintern (val, Qnil));
6243 }
6244
6245 DEFUN ("check-coding-system", Fcheck_coding_system, Scheck_coding_system,
6246 1, 1, 0,
6247 doc: /* Check validity of CODING-SYSTEM.
6248 If valid, return CODING-SYSTEM, else signal a `coding-system-error' error.
6249 It is valid if it is a symbol with a non-nil `coding-system' property.
6250 The value of property should be a vector of length 5. */)
6251 (coding_system)
6252 Lisp_Object coding_system;
6253 {
6254 CHECK_SYMBOL (coding_system);
6255 if (!NILP (Fcoding_system_p (coding_system)))
6256 return coding_system;
6257 while (1)
6258 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
6259 }
6260 \f
6261 Lisp_Object
6262 detect_coding_system (src, src_bytes, highest, multibytep)
6263 const unsigned char *src;
6264 int src_bytes, highest;
6265 int multibytep;
6266 {
6267 int coding_mask, eol_type;
6268 Lisp_Object val, tmp;
6269 int dummy;
6270
6271 coding_mask = detect_coding_mask (src, src_bytes, NULL, &dummy, multibytep);
6272 eol_type = detect_eol_type (src, src_bytes, &dummy);
6273 if (eol_type == CODING_EOL_INCONSISTENT)
6274 eol_type = CODING_EOL_UNDECIDED;
6275
6276 if (!coding_mask)
6277 {
6278 val = Qundecided;
6279 if (eol_type != CODING_EOL_UNDECIDED)
6280 {
6281 Lisp_Object val2;
6282 val2 = Fget (Qundecided, Qeol_type);
6283 if (VECTORP (val2))
6284 val = XVECTOR (val2)->contents[eol_type];
6285 }
6286 return (highest ? val : Fcons (val, Qnil));
6287 }
6288
6289 /* At first, gather possible coding systems in VAL. */
6290 val = Qnil;
6291 for (tmp = Vcoding_category_list; CONSP (tmp); tmp = XCDR (tmp))
6292 {
6293 Lisp_Object category_val, category_index;
6294
6295 category_index = Fget (XCAR (tmp), Qcoding_category_index);
6296 category_val = Fsymbol_value (XCAR (tmp));
6297 if (!NILP (category_val)
6298 && NATNUMP (category_index)
6299 && (coding_mask & (1 << XFASTINT (category_index))))
6300 {
6301 val = Fcons (category_val, val);
6302 if (highest)
6303 break;
6304 }
6305 }
6306 if (!highest)
6307 val = Fnreverse (val);
6308
6309 /* Then, replace the elements with subsidiary coding systems. */
6310 for (tmp = val; CONSP (tmp); tmp = XCDR (tmp))
6311 {
6312 if (eol_type != CODING_EOL_UNDECIDED
6313 && eol_type != CODING_EOL_INCONSISTENT)
6314 {
6315 Lisp_Object eol;
6316 eol = Fget (XCAR (tmp), Qeol_type);
6317 if (VECTORP (eol))
6318 XSETCAR (tmp, XVECTOR (eol)->contents[eol_type]);
6319 }
6320 }
6321 return (highest ? XCAR (val) : val);
6322 }
6323
6324 DEFUN ("detect-coding-region", Fdetect_coding_region, Sdetect_coding_region,
6325 2, 3, 0,
6326 doc: /* Detect how the byte sequence in the region is encoded.
6327 Return a list of possible coding systems used on decoding a byte
6328 sequence containing the bytes in the region between START and END when
6329 the coding system `undecided' is specified. The list is ordered by
6330 priority decided in the current language environment.
6331
6332 If only ASCII characters are found, it returns a list of single element
6333 `undecided' or its subsidiary coding system according to a detected
6334 end-of-line format.
6335
6336 If optional argument HIGHEST is non-nil, return the coding system of
6337 highest priority. */)
6338 (start, end, highest)
6339 Lisp_Object start, end, highest;
6340 {
6341 int from, to;
6342 int from_byte, to_byte;
6343 int include_anchor_byte = 0;
6344
6345 CHECK_NUMBER_COERCE_MARKER (start);
6346 CHECK_NUMBER_COERCE_MARKER (end);
6347
6348 validate_region (&start, &end);
6349 from = XINT (start), to = XINT (end);
6350 from_byte = CHAR_TO_BYTE (from);
6351 to_byte = CHAR_TO_BYTE (to);
6352
6353 if (from < GPT && to >= GPT)
6354 move_gap_both (to, to_byte);
6355 /* If we an anchor byte `\0' follows the region, we include it in
6356 the detecting source. Then code detectors can handle the tailing
6357 byte sequence more accurately.
6358
6359 Fix me: This is not a perfect solution. It is better that we
6360 add one more argument, say LAST_BLOCK, to all detect_coding_XXX.
6361 */
6362 if (to == Z || (to == GPT && GAP_SIZE > 0))
6363 include_anchor_byte = 1;
6364 return detect_coding_system (BYTE_POS_ADDR (from_byte),
6365 to_byte - from_byte + include_anchor_byte,
6366 !NILP (highest),
6367 !NILP (current_buffer
6368 ->enable_multibyte_characters));
6369 }
6370
6371 DEFUN ("detect-coding-string", Fdetect_coding_string, Sdetect_coding_string,
6372 1, 2, 0,
6373 doc: /* Detect how the byte sequence in STRING is encoded.
6374 Return a list of possible coding systems used on decoding a byte
6375 sequence containing the bytes in STRING when the coding system
6376 `undecided' is specified. The list is ordered by priority decided in
6377 the current language environment.
6378
6379 If only ASCII characters are found, it returns a list of single element
6380 `undecided' or its subsidiary coding system according to a detected
6381 end-of-line format.
6382
6383 If optional argument HIGHEST is non-nil, return the coding system of
6384 highest priority. */)
6385 (string, highest)
6386 Lisp_Object string, highest;
6387 {
6388 CHECK_STRING (string);
6389
6390 return detect_coding_system (SDATA (string),
6391 /* "+ 1" is to include the anchor byte
6392 `\0'. With this, code detectors can
6393 handle the tailing bytes more
6394 accurately. */
6395 SBYTES (string) + 1,
6396 !NILP (highest),
6397 STRING_MULTIBYTE (string));
6398 }
6399
6400 /* Subroutine for Fsafe_coding_systems_region_internal.
6401
6402 Return a list of coding systems that safely encode the multibyte
6403 text between P and PEND. SAFE_CODINGS, if non-nil, is a list of
6404 possible coding systems. If it is nil, it means that we have not
6405 yet found any coding systems.
6406
6407 WORK_TABLE is a copy of the char-table Vchar_coding_system_table. An
6408 element of WORK_TABLE is set to t once the element is looked up.
6409
6410 If a non-ASCII single byte char is found, set
6411 *single_byte_char_found to 1. */
6412
6413 static Lisp_Object
6414 find_safe_codings (p, pend, safe_codings, work_table, single_byte_char_found)
6415 unsigned char *p, *pend;
6416 Lisp_Object safe_codings, work_table;
6417 int *single_byte_char_found;
6418 {
6419 int c, len, i;
6420 Lisp_Object val, ch;
6421 Lisp_Object prev, tail;
6422
6423 while (p < pend)
6424 {
6425 c = STRING_CHAR_AND_LENGTH (p, pend - p, len);
6426 p += len;
6427 if (ASCII_BYTE_P (c))
6428 /* We can ignore ASCII characters here. */
6429 continue;
6430 if (SINGLE_BYTE_CHAR_P (c))
6431 *single_byte_char_found = 1;
6432 if (NILP (safe_codings))
6433 /* Already all coding systems are excluded. */
6434 continue;
6435 /* Check the safe coding systems for C. */
6436 ch = make_number (c);
6437 val = Faref (work_table, ch);
6438 if (EQ (val, Qt))
6439 /* This element was already checked. Ignore it. */
6440 continue;
6441 /* Remember that we checked this element. */
6442 Faset (work_table, ch, Qt);
6443
6444 for (prev = tail = safe_codings; CONSP (tail); tail = XCDR (tail))
6445 {
6446 val = XCAR (tail);
6447 if (NILP (Faref (XCDR (val), ch)))
6448 {
6449 /* Exclued this coding system from SAFE_CODINGS. */
6450 if (EQ (tail, safe_codings))
6451 safe_codings = XCDR (safe_codings);
6452 else
6453 XSETCDR (prev, XCDR (tail));
6454 }
6455 else
6456 prev = tail;
6457 }
6458 }
6459 return safe_codings;
6460 }
6461
6462 DEFUN ("find-coding-systems-region-internal",
6463 Ffind_coding_systems_region_internal,
6464 Sfind_coding_systems_region_internal, 2, 2, 0,
6465 doc: /* Internal use only. */)
6466 (start, end)
6467 Lisp_Object start, end;
6468 {
6469 Lisp_Object work_table, safe_codings;
6470 int non_ascii_p = 0;
6471 int single_byte_char_found = 0;
6472 const unsigned char *p1, *p1end, *p2, *p2end, *p;
6473
6474 if (STRINGP (start))
6475 {
6476 if (!STRING_MULTIBYTE (start))
6477 return Qt;
6478 p1 = SDATA (start), p1end = p1 + SBYTES (start);
6479 p2 = p2end = p1end;
6480 if (SCHARS (start) != SBYTES (start))
6481 non_ascii_p = 1;
6482 }
6483 else
6484 {
6485 int from, to, stop;
6486
6487 CHECK_NUMBER_COERCE_MARKER (start);
6488 CHECK_NUMBER_COERCE_MARKER (end);
6489 if (XINT (start) < BEG || XINT (end) > Z || XINT (start) > XINT (end))
6490 args_out_of_range (start, end);
6491 if (NILP (current_buffer->enable_multibyte_characters))
6492 return Qt;
6493 from = CHAR_TO_BYTE (XINT (start));
6494 to = CHAR_TO_BYTE (XINT (end));
6495 stop = from < GPT_BYTE && GPT_BYTE < to ? GPT_BYTE : to;
6496 p1 = BYTE_POS_ADDR (from), p1end = p1 + (stop - from);
6497 if (stop == to)
6498 p2 = p2end = p1end;
6499 else
6500 p2 = BYTE_POS_ADDR (stop), p2end = p2 + (to - stop);
6501 if (XINT (end) - XINT (start) != to - from)
6502 non_ascii_p = 1;
6503 }
6504
6505 if (!non_ascii_p)
6506 {
6507 /* We are sure that the text contains no multibyte character.
6508 Check if it contains eight-bit-graphic. */
6509 p = p1;
6510 for (p = p1; p < p1end && ASCII_BYTE_P (*p); p++);
6511 if (p == p1end)
6512 {
6513 for (p = p2; p < p2end && ASCII_BYTE_P (*p); p++);
6514 if (p == p2end)
6515 return Qt;
6516 }
6517 }
6518
6519 /* The text contains non-ASCII characters. */
6520
6521 work_table = Fmake_char_table (Qchar_coding_system, Qnil);
6522 safe_codings = Fcopy_sequence (XCDR (Vcoding_system_safe_chars));
6523
6524 safe_codings = find_safe_codings (p1, p1end, safe_codings, work_table,
6525 &single_byte_char_found);
6526 if (p2 < p2end)
6527 safe_codings = find_safe_codings (p2, p2end, safe_codings, work_table,
6528 &single_byte_char_found);
6529 if (EQ (safe_codings, XCDR (Vcoding_system_safe_chars)))
6530 safe_codings = Qt;
6531 else
6532 {
6533 /* Turn safe_codings to a list of coding systems... */
6534 Lisp_Object val;
6535
6536 if (single_byte_char_found)
6537 /* ... and append these for eight-bit chars. */
6538 val = Fcons (Qraw_text,
6539 Fcons (Qemacs_mule, Fcons (Qno_conversion, Qnil)));
6540 else
6541 /* ... and append generic coding systems. */
6542 val = Fcopy_sequence (XCAR (Vcoding_system_safe_chars));
6543
6544 for (; CONSP (safe_codings); safe_codings = XCDR (safe_codings))
6545 val = Fcons (XCAR (XCAR (safe_codings)), val);
6546 safe_codings = val;
6547 }
6548
6549 return safe_codings;
6550 }
6551
6552
6553 /* Search from position POS for such characters that are unencodable
6554 accoding to SAFE_CHARS, and return a list of their positions. P
6555 points where in the memory the character at POS exists. Limit the
6556 search at PEND or when Nth unencodable characters are found.
6557
6558 If SAFE_CHARS is a char table, an element for an unencodable
6559 character is nil.
6560
6561 If SAFE_CHARS is nil, all non-ASCII characters are unencodable.
6562
6563 Otherwise, SAFE_CHARS is t, and only eight-bit-contrl and
6564 eight-bit-graphic characters are unencodable. */
6565
6566 static Lisp_Object
6567 unencodable_char_position (safe_chars, pos, p, pend, n)
6568 Lisp_Object safe_chars;
6569 int pos;
6570 unsigned char *p, *pend;
6571 int n;
6572 {
6573 Lisp_Object pos_list;
6574
6575 pos_list = Qnil;
6576 while (p < pend)
6577 {
6578 int len;
6579 int c = STRING_CHAR_AND_LENGTH (p, MAX_MULTIBYTE_LENGTH, len);
6580
6581 if (c >= 128
6582 && (CHAR_TABLE_P (safe_chars)
6583 ? NILP (CHAR_TABLE_REF (safe_chars, c))
6584 : (NILP (safe_chars) || c < 256)))
6585 {
6586 pos_list = Fcons (make_number (pos), pos_list);
6587 if (--n <= 0)
6588 break;
6589 }
6590 pos++;
6591 p += len;
6592 }
6593 return Fnreverse (pos_list);
6594 }
6595
6596
6597 DEFUN ("unencodable-char-position", Funencodable_char_position,
6598 Sunencodable_char_position, 3, 5, 0,
6599 doc: /*
6600 Return position of first un-encodable character in a region.
6601 START and END specfiy the region and CODING-SYSTEM specifies the
6602 encoding to check. Return nil if CODING-SYSTEM does encode the region.
6603
6604 If optional 4th argument COUNT is non-nil, it specifies at most how
6605 many un-encodable characters to search. In this case, the value is a
6606 list of positions.
6607
6608 If optional 5th argument STRING is non-nil, it is a string to search
6609 for un-encodable characters. In that case, START and END are indexes
6610 to the string. */)
6611 (start, end, coding_system, count, string)
6612 Lisp_Object start, end, coding_system, count, string;
6613 {
6614 int n;
6615 Lisp_Object safe_chars;
6616 struct coding_system coding;
6617 Lisp_Object positions;
6618 int from, to;
6619 unsigned char *p, *pend;
6620
6621 if (NILP (string))
6622 {
6623 validate_region (&start, &end);
6624 from = XINT (start);
6625 to = XINT (end);
6626 if (NILP (current_buffer->enable_multibyte_characters))
6627 return Qnil;
6628 p = CHAR_POS_ADDR (from);
6629 if (to == GPT)
6630 pend = GPT_ADDR;
6631 else
6632 pend = CHAR_POS_ADDR (to);
6633 }
6634 else
6635 {
6636 CHECK_STRING (string);
6637 CHECK_NATNUM (start);
6638 CHECK_NATNUM (end);
6639 from = XINT (start);
6640 to = XINT (end);
6641 if (from > to
6642 || to > SCHARS (string))
6643 args_out_of_range_3 (string, start, end);
6644 if (! STRING_MULTIBYTE (string))
6645 return Qnil;
6646 p = SDATA (string) + string_char_to_byte (string, from);
6647 pend = SDATA (string) + string_char_to_byte (string, to);
6648 }
6649
6650 setup_coding_system (Fcheck_coding_system (coding_system), &coding);
6651
6652 if (NILP (count))
6653 n = 1;
6654 else
6655 {
6656 CHECK_NATNUM (count);
6657 n = XINT (count);
6658 }
6659
6660 if (coding.type == coding_type_no_conversion
6661 || coding.type == coding_type_raw_text)
6662 return Qnil;
6663
6664 if (coding.type == coding_type_undecided)
6665 safe_chars = Qnil;
6666 else
6667 safe_chars = coding_safe_chars (coding_system);
6668
6669 if (STRINGP (string)
6670 || from >= GPT || to <= GPT)
6671 positions = unencodable_char_position (safe_chars, from, p, pend, n);
6672 else
6673 {
6674 Lisp_Object args[2];
6675
6676 args[0] = unencodable_char_position (safe_chars, from, p, GPT_ADDR, n);
6677 n -= XINT (Flength (args[0]));
6678 if (n <= 0)
6679 positions = args[0];
6680 else
6681 {
6682 args[1] = unencodable_char_position (safe_chars, GPT, GAP_END_ADDR,
6683 pend, n);
6684 positions = Fappend (2, args);
6685 }
6686 }
6687
6688 return (NILP (count) ? Fcar (positions) : positions);
6689 }
6690
6691
6692 Lisp_Object
6693 code_convert_region1 (start, end, coding_system, encodep)
6694 Lisp_Object start, end, coding_system;
6695 int encodep;
6696 {
6697 struct coding_system coding;
6698 int from, to;
6699
6700 CHECK_NUMBER_COERCE_MARKER (start);
6701 CHECK_NUMBER_COERCE_MARKER (end);
6702 CHECK_SYMBOL (coding_system);
6703
6704 validate_region (&start, &end);
6705 from = XFASTINT (start);
6706 to = XFASTINT (end);
6707
6708 if (NILP (coding_system))
6709 return make_number (to - from);
6710
6711 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
6712 error ("Invalid coding system: %s", SDATA (SYMBOL_NAME (coding_system)));
6713
6714 coding.mode |= CODING_MODE_LAST_BLOCK;
6715 coding.src_multibyte = coding.dst_multibyte
6716 = !NILP (current_buffer->enable_multibyte_characters);
6717 code_convert_region (from, CHAR_TO_BYTE (from), to, CHAR_TO_BYTE (to),
6718 &coding, encodep, 1);
6719 Vlast_coding_system_used = coding.symbol;
6720 return make_number (coding.produced_char);
6721 }
6722
6723 DEFUN ("decode-coding-region", Fdecode_coding_region, Sdecode_coding_region,
6724 3, 3, "r\nzCoding system: ",
6725 doc: /* Decode the current region from the specified coding system.
6726 When called from a program, takes three arguments:
6727 START, END, and CODING-SYSTEM. START and END are buffer positions.
6728 This function sets `last-coding-system-used' to the precise coding system
6729 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
6730 not fully specified.)
6731 It returns the length of the decoded text. */)
6732 (start, end, coding_system)
6733 Lisp_Object start, end, coding_system;
6734 {
6735 return code_convert_region1 (start, end, coding_system, 0);
6736 }
6737
6738 DEFUN ("encode-coding-region", Fencode_coding_region, Sencode_coding_region,
6739 3, 3, "r\nzCoding system: ",
6740 doc: /* Encode the current region into the specified coding system.
6741 When called from a program, takes three arguments:
6742 START, END, and CODING-SYSTEM. START and END are buffer positions.
6743 This function sets `last-coding-system-used' to the precise coding system
6744 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
6745 not fully specified.)
6746 It returns the length of the encoded text. */)
6747 (start, end, coding_system)
6748 Lisp_Object start, end, coding_system;
6749 {
6750 return code_convert_region1 (start, end, coding_system, 1);
6751 }
6752
6753 Lisp_Object
6754 code_convert_string1 (string, coding_system, nocopy, encodep)
6755 Lisp_Object string, coding_system, nocopy;
6756 int encodep;
6757 {
6758 struct coding_system coding;
6759
6760 CHECK_STRING (string);
6761 CHECK_SYMBOL (coding_system);
6762
6763 if (NILP (coding_system))
6764 return (NILP (nocopy) ? Fcopy_sequence (string) : string);
6765
6766 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
6767 error ("Invalid coding system: %s", SDATA (SYMBOL_NAME (coding_system)));
6768
6769 coding.mode |= CODING_MODE_LAST_BLOCK;
6770 string = (encodep
6771 ? encode_coding_string (string, &coding, !NILP (nocopy))
6772 : decode_coding_string (string, &coding, !NILP (nocopy)));
6773 Vlast_coding_system_used = coding.symbol;
6774
6775 return string;
6776 }
6777
6778 DEFUN ("decode-coding-string", Fdecode_coding_string, Sdecode_coding_string,
6779 2, 3, 0,
6780 doc: /* Decode STRING which is encoded in CODING-SYSTEM, and return the result.
6781 Optional arg NOCOPY non-nil means it is OK to return STRING itself
6782 if the decoding operation is trivial.
6783 This function sets `last-coding-system-used' to the precise coding system
6784 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
6785 not fully specified.) */)
6786 (string, coding_system, nocopy)
6787 Lisp_Object string, coding_system, nocopy;
6788 {
6789 return code_convert_string1 (string, coding_system, nocopy, 0);
6790 }
6791
6792 DEFUN ("encode-coding-string", Fencode_coding_string, Sencode_coding_string,
6793 2, 3, 0,
6794 doc: /* Encode STRING to CODING-SYSTEM, and return the result.
6795 Optional arg NOCOPY non-nil means it is OK to return STRING itself
6796 if the encoding operation is trivial.
6797 This function sets `last-coding-system-used' to the precise coding system
6798 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
6799 not fully specified.) */)
6800 (string, coding_system, nocopy)
6801 Lisp_Object string, coding_system, nocopy;
6802 {
6803 return code_convert_string1 (string, coding_system, nocopy, 1);
6804 }
6805
6806 /* Encode or decode STRING according to CODING_SYSTEM.
6807 Do not set Vlast_coding_system_used.
6808
6809 This function is called only from macros DECODE_FILE and
6810 ENCODE_FILE, thus we ignore character composition. */
6811
6812 Lisp_Object
6813 code_convert_string_norecord (string, coding_system, encodep)
6814 Lisp_Object string, coding_system;
6815 int encodep;
6816 {
6817 struct coding_system coding;
6818
6819 CHECK_STRING (string);
6820 CHECK_SYMBOL (coding_system);
6821
6822 if (NILP (coding_system))
6823 return string;
6824
6825 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
6826 error ("Invalid coding system: %s", SDATA (SYMBOL_NAME (coding_system)));
6827
6828 coding.composing = COMPOSITION_DISABLED;
6829 coding.mode |= CODING_MODE_LAST_BLOCK;
6830 return (encodep
6831 ? encode_coding_string (string, &coding, 1)
6832 : decode_coding_string (string, &coding, 1));
6833 }
6834 \f
6835 DEFUN ("decode-sjis-char", Fdecode_sjis_char, Sdecode_sjis_char, 1, 1, 0,
6836 doc: /* Decode a Japanese character which has CODE in shift_jis encoding.
6837 Return the corresponding character. */)
6838 (code)
6839 Lisp_Object code;
6840 {
6841 unsigned char c1, c2, s1, s2;
6842 Lisp_Object val;
6843
6844 CHECK_NUMBER (code);
6845 s1 = (XFASTINT (code)) >> 8, s2 = (XFASTINT (code)) & 0xFF;
6846 if (s1 == 0)
6847 {
6848 if (s2 < 0x80)
6849 XSETFASTINT (val, s2);
6850 else if (s2 >= 0xA0 || s2 <= 0xDF)
6851 XSETFASTINT (val, MAKE_CHAR (charset_katakana_jisx0201, s2, 0));
6852 else
6853 error ("Invalid Shift JIS code: %x", XFASTINT (code));
6854 }
6855 else
6856 {
6857 if ((s1 < 0x80 || (s1 > 0x9F && s1 < 0xE0) || s1 > 0xEF)
6858 || (s2 < 0x40 || s2 == 0x7F || s2 > 0xFC))
6859 error ("Invalid Shift JIS code: %x", XFASTINT (code));
6860 DECODE_SJIS (s1, s2, c1, c2);
6861 XSETFASTINT (val, MAKE_CHAR (charset_jisx0208, c1, c2));
6862 }
6863 return val;
6864 }
6865
6866 DEFUN ("encode-sjis-char", Fencode_sjis_char, Sencode_sjis_char, 1, 1, 0,
6867 doc: /* Encode a Japanese character CHAR to shift_jis encoding.
6868 Return the corresponding code in SJIS. */)
6869 (ch)
6870 Lisp_Object ch;
6871 {
6872 int charset, c1, c2, s1, s2;
6873 Lisp_Object val;
6874
6875 CHECK_NUMBER (ch);
6876 SPLIT_CHAR (XFASTINT (ch), charset, c1, c2);
6877 if (charset == CHARSET_ASCII)
6878 {
6879 val = ch;
6880 }
6881 else if (charset == charset_jisx0208
6882 && c1 > 0x20 && c1 < 0x7F && c2 > 0x20 && c2 < 0x7F)
6883 {
6884 ENCODE_SJIS (c1, c2, s1, s2);
6885 XSETFASTINT (val, (s1 << 8) | s2);
6886 }
6887 else if (charset == charset_katakana_jisx0201
6888 && c1 > 0x20 && c2 < 0xE0)
6889 {
6890 XSETFASTINT (val, c1 | 0x80);
6891 }
6892 else
6893 error ("Can't encode to shift_jis: %d", XFASTINT (ch));
6894 return val;
6895 }
6896
6897 DEFUN ("decode-big5-char", Fdecode_big5_char, Sdecode_big5_char, 1, 1, 0,
6898 doc: /* Decode a Big5 character which has CODE in BIG5 coding system.
6899 Return the corresponding character. */)
6900 (code)
6901 Lisp_Object code;
6902 {
6903 int charset;
6904 unsigned char b1, b2, c1, c2;
6905 Lisp_Object val;
6906
6907 CHECK_NUMBER (code);
6908 b1 = (XFASTINT (code)) >> 8, b2 = (XFASTINT (code)) & 0xFF;
6909 if (b1 == 0)
6910 {
6911 if (b2 >= 0x80)
6912 error ("Invalid BIG5 code: %x", XFASTINT (code));
6913 val = code;
6914 }
6915 else
6916 {
6917 if ((b1 < 0xA1 || b1 > 0xFE)
6918 || (b2 < 0x40 || (b2 > 0x7E && b2 < 0xA1) || b2 > 0xFE))
6919 error ("Invalid BIG5 code: %x", XFASTINT (code));
6920 DECODE_BIG5 (b1, b2, charset, c1, c2);
6921 XSETFASTINT (val, MAKE_CHAR (charset, c1, c2));
6922 }
6923 return val;
6924 }
6925
6926 DEFUN ("encode-big5-char", Fencode_big5_char, Sencode_big5_char, 1, 1, 0,
6927 doc: /* Encode the Big5 character CHAR to BIG5 coding system.
6928 Return the corresponding character code in Big5. */)
6929 (ch)
6930 Lisp_Object ch;
6931 {
6932 int charset, c1, c2, b1, b2;
6933 Lisp_Object val;
6934
6935 CHECK_NUMBER (ch);
6936 SPLIT_CHAR (XFASTINT (ch), charset, c1, c2);
6937 if (charset == CHARSET_ASCII)
6938 {
6939 val = ch;
6940 }
6941 else if ((charset == charset_big5_1
6942 && (XFASTINT (ch) >= 0x250a1 && XFASTINT (ch) <= 0x271ec))
6943 || (charset == charset_big5_2
6944 && XFASTINT (ch) >= 0x290a1 && XFASTINT (ch) <= 0x2bdb2))
6945 {
6946 ENCODE_BIG5 (charset, c1, c2, b1, b2);
6947 XSETFASTINT (val, (b1 << 8) | b2);
6948 }
6949 else
6950 error ("Can't encode to Big5: %d", XFASTINT (ch));
6951 return val;
6952 }
6953 \f
6954 DEFUN ("set-terminal-coding-system-internal", Fset_terminal_coding_system_internal,
6955 Sset_terminal_coding_system_internal, 1, 1, 0,
6956 doc: /* Internal use only. */)
6957 (coding_system)
6958 Lisp_Object coding_system;
6959 {
6960 CHECK_SYMBOL (coding_system);
6961 setup_coding_system (Fcheck_coding_system (coding_system), &terminal_coding);
6962 /* We had better not send unsafe characters to terminal. */
6963 terminal_coding.flags |= CODING_FLAG_ISO_SAFE;
6964 /* Character composition should be disabled. */
6965 terminal_coding.composing = COMPOSITION_DISABLED;
6966 /* Error notification should be suppressed. */
6967 terminal_coding.suppress_error = 1;
6968 terminal_coding.src_multibyte = 1;
6969 terminal_coding.dst_multibyte = 0;
6970 return Qnil;
6971 }
6972
6973 DEFUN ("set-safe-terminal-coding-system-internal", Fset_safe_terminal_coding_system_internal,
6974 Sset_safe_terminal_coding_system_internal, 1, 1, 0,
6975 doc: /* Internal use only. */)
6976 (coding_system)
6977 Lisp_Object coding_system;
6978 {
6979 CHECK_SYMBOL (coding_system);
6980 setup_coding_system (Fcheck_coding_system (coding_system),
6981 &safe_terminal_coding);
6982 /* Character composition should be disabled. */
6983 safe_terminal_coding.composing = COMPOSITION_DISABLED;
6984 /* Error notification should be suppressed. */
6985 terminal_coding.suppress_error = 1;
6986 safe_terminal_coding.src_multibyte = 1;
6987 safe_terminal_coding.dst_multibyte = 0;
6988 return Qnil;
6989 }
6990
6991 DEFUN ("terminal-coding-system", Fterminal_coding_system,
6992 Sterminal_coding_system, 0, 0, 0,
6993 doc: /* Return coding system specified for terminal output. */)
6994 ()
6995 {
6996 return terminal_coding.symbol;
6997 }
6998
6999 DEFUN ("set-keyboard-coding-system-internal", Fset_keyboard_coding_system_internal,
7000 Sset_keyboard_coding_system_internal, 1, 1, 0,
7001 doc: /* Internal use only. */)
7002 (coding_system)
7003 Lisp_Object coding_system;
7004 {
7005 CHECK_SYMBOL (coding_system);
7006 setup_coding_system (Fcheck_coding_system (coding_system), &keyboard_coding);
7007 /* Character composition should be disabled. */
7008 keyboard_coding.composing = COMPOSITION_DISABLED;
7009 return Qnil;
7010 }
7011
7012 DEFUN ("keyboard-coding-system", Fkeyboard_coding_system,
7013 Skeyboard_coding_system, 0, 0, 0,
7014 doc: /* Return coding system specified for decoding keyboard input. */)
7015 ()
7016 {
7017 return keyboard_coding.symbol;
7018 }
7019
7020 \f
7021 DEFUN ("find-operation-coding-system", Ffind_operation_coding_system,
7022 Sfind_operation_coding_system, 1, MANY, 0,
7023 doc: /* Choose a coding system for an operation based on the target name.
7024 The value names a pair of coding systems: (DECODING-SYSTEM . ENCODING-SYSTEM).
7025 DECODING-SYSTEM is the coding system to use for decoding
7026 \(in case OPERATION does decoding), and ENCODING-SYSTEM is the coding system
7027 for encoding (in case OPERATION does encoding).
7028
7029 The first argument OPERATION specifies an I/O primitive:
7030 For file I/O, `insert-file-contents' or `write-region'.
7031 For process I/O, `call-process', `call-process-region', or `start-process'.
7032 For network I/O, `open-network-stream'.
7033
7034 The remaining arguments should be the same arguments that were passed
7035 to the primitive. Depending on which primitive, one of those arguments
7036 is selected as the TARGET. For example, if OPERATION does file I/O,
7037 whichever argument specifies the file name is TARGET.
7038
7039 TARGET has a meaning which depends on OPERATION:
7040 For file I/O, TARGET is a file name.
7041 For process I/O, TARGET is a process name.
7042 For network I/O, TARGET is a service name or a port number
7043
7044 This function looks up what specified for TARGET in,
7045 `file-coding-system-alist', `process-coding-system-alist',
7046 or `network-coding-system-alist' depending on OPERATION.
7047 They may specify a coding system, a cons of coding systems,
7048 or a function symbol to call.
7049 In the last case, we call the function with one argument,
7050 which is a list of all the arguments given to this function.
7051
7052 usage: (find-operation-coding-system OPERATION ARGUMENTS ...) */)
7053 (nargs, args)
7054 int nargs;
7055 Lisp_Object *args;
7056 {
7057 Lisp_Object operation, target_idx, target, val;
7058 register Lisp_Object chain;
7059
7060 if (nargs < 2)
7061 error ("Too few arguments");
7062 operation = args[0];
7063 if (!SYMBOLP (operation)
7064 || !INTEGERP (target_idx = Fget (operation, Qtarget_idx)))
7065 error ("Invalid first argument");
7066 if (nargs < 1 + XINT (target_idx))
7067 error ("Too few arguments for operation: %s",
7068 SDATA (SYMBOL_NAME (operation)));
7069 /* For write-region, if the 6th argument (i.e. VISIT, the 5th
7070 argument to write-region) is string, it must be treated as a
7071 target file name. */
7072 if (EQ (operation, Qwrite_region)
7073 && nargs > 5
7074 && STRINGP (args[5]))
7075 target_idx = make_number (4);
7076 target = args[XINT (target_idx) + 1];
7077 if (!(STRINGP (target)
7078 || (EQ (operation, Qopen_network_stream) && INTEGERP (target))))
7079 error ("Invalid argument %d", XINT (target_idx) + 1);
7080
7081 chain = ((EQ (operation, Qinsert_file_contents)
7082 || EQ (operation, Qwrite_region))
7083 ? Vfile_coding_system_alist
7084 : (EQ (operation, Qopen_network_stream)
7085 ? Vnetwork_coding_system_alist
7086 : Vprocess_coding_system_alist));
7087 if (NILP (chain))
7088 return Qnil;
7089
7090 for (; CONSP (chain); chain = XCDR (chain))
7091 {
7092 Lisp_Object elt;
7093 elt = XCAR (chain);
7094
7095 if (CONSP (elt)
7096 && ((STRINGP (target)
7097 && STRINGP (XCAR (elt))
7098 && fast_string_match (XCAR (elt), target) >= 0)
7099 || (INTEGERP (target) && EQ (target, XCAR (elt)))))
7100 {
7101 val = XCDR (elt);
7102 /* Here, if VAL is both a valid coding system and a valid
7103 function symbol, we return VAL as a coding system. */
7104 if (CONSP (val))
7105 return val;
7106 if (! SYMBOLP (val))
7107 return Qnil;
7108 if (! NILP (Fcoding_system_p (val)))
7109 return Fcons (val, val);
7110 if (! NILP (Ffboundp (val)))
7111 {
7112 val = call1 (val, Flist (nargs, args));
7113 if (CONSP (val))
7114 return val;
7115 if (SYMBOLP (val) && ! NILP (Fcoding_system_p (val)))
7116 return Fcons (val, val);
7117 }
7118 return Qnil;
7119 }
7120 }
7121 return Qnil;
7122 }
7123
7124 DEFUN ("update-coding-systems-internal", Fupdate_coding_systems_internal,
7125 Supdate_coding_systems_internal, 0, 0, 0,
7126 doc: /* Update internal database for ISO2022 and CCL based coding systems.
7127 When values of any coding categories are changed, you must
7128 call this function. */)
7129 ()
7130 {
7131 int i;
7132
7133 for (i = CODING_CATEGORY_IDX_EMACS_MULE; i < CODING_CATEGORY_IDX_MAX; i++)
7134 {
7135 Lisp_Object val;
7136
7137 val = SYMBOL_VALUE (XVECTOR (Vcoding_category_table)->contents[i]);
7138 if (!NILP (val))
7139 {
7140 if (! coding_system_table[i])
7141 coding_system_table[i] = ((struct coding_system *)
7142 xmalloc (sizeof (struct coding_system)));
7143 setup_coding_system (val, coding_system_table[i]);
7144 }
7145 else if (coding_system_table[i])
7146 {
7147 xfree (coding_system_table[i]);
7148 coding_system_table[i] = NULL;
7149 }
7150 }
7151
7152 return Qnil;
7153 }
7154
7155 DEFUN ("set-coding-priority-internal", Fset_coding_priority_internal,
7156 Sset_coding_priority_internal, 0, 0, 0,
7157 doc: /* Update internal database for the current value of `coding-category-list'.
7158 This function is internal use only. */)
7159 ()
7160 {
7161 int i = 0, idx;
7162 Lisp_Object val;
7163
7164 val = Vcoding_category_list;
7165
7166 while (CONSP (val) && i < CODING_CATEGORY_IDX_MAX)
7167 {
7168 if (! SYMBOLP (XCAR (val)))
7169 break;
7170 idx = XFASTINT (Fget (XCAR (val), Qcoding_category_index));
7171 if (idx >= CODING_CATEGORY_IDX_MAX)
7172 break;
7173 coding_priorities[i++] = (1 << idx);
7174 val = XCDR (val);
7175 }
7176 /* If coding-category-list is valid and contains all coding
7177 categories, `i' should be CODING_CATEGORY_IDX_MAX now. If not,
7178 the following code saves Emacs from crashing. */
7179 while (i < CODING_CATEGORY_IDX_MAX)
7180 coding_priorities[i++] = CODING_CATEGORY_MASK_RAW_TEXT;
7181
7182 return Qnil;
7183 }
7184
7185 DEFUN ("define-coding-system-internal", Fdefine_coding_system_internal,
7186 Sdefine_coding_system_internal, 1, 1, 0,
7187 doc: /* Register CODING-SYSTEM as a base coding system.
7188 This function is internal use only. */)
7189 (coding_system)
7190 Lisp_Object coding_system;
7191 {
7192 Lisp_Object safe_chars, slot;
7193
7194 if (NILP (Fcheck_coding_system (coding_system)))
7195 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
7196 safe_chars = coding_safe_chars (coding_system);
7197 if (! EQ (safe_chars, Qt) && ! CHAR_TABLE_P (safe_chars))
7198 error ("No valid safe-chars property for %s",
7199 SDATA (SYMBOL_NAME (coding_system)));
7200 if (EQ (safe_chars, Qt))
7201 {
7202 if (NILP (Fmemq (coding_system, XCAR (Vcoding_system_safe_chars))))
7203 XSETCAR (Vcoding_system_safe_chars,
7204 Fcons (coding_system, XCAR (Vcoding_system_safe_chars)));
7205 }
7206 else
7207 {
7208 slot = Fassq (coding_system, XCDR (Vcoding_system_safe_chars));
7209 if (NILP (slot))
7210 XSETCDR (Vcoding_system_safe_chars,
7211 nconc2 (XCDR (Vcoding_system_safe_chars),
7212 Fcons (Fcons (coding_system, safe_chars), Qnil)));
7213 else
7214 XSETCDR (slot, safe_chars);
7215 }
7216 return Qnil;
7217 }
7218
7219 #endif /* emacs */
7220
7221 \f
7222 /*** 9. Post-amble ***/
7223
7224 void
7225 init_coding_once ()
7226 {
7227 int i;
7228
7229 /* Emacs' internal format specific initialize routine. */
7230 for (i = 0; i <= 0x20; i++)
7231 emacs_code_class[i] = EMACS_control_code;
7232 emacs_code_class[0x0A] = EMACS_linefeed_code;
7233 emacs_code_class[0x0D] = EMACS_carriage_return_code;
7234 for (i = 0x21 ; i < 0x7F; i++)
7235 emacs_code_class[i] = EMACS_ascii_code;
7236 emacs_code_class[0x7F] = EMACS_control_code;
7237 for (i = 0x80; i < 0xFF; i++)
7238 emacs_code_class[i] = EMACS_invalid_code;
7239 emacs_code_class[LEADING_CODE_PRIVATE_11] = EMACS_leading_code_3;
7240 emacs_code_class[LEADING_CODE_PRIVATE_12] = EMACS_leading_code_3;
7241 emacs_code_class[LEADING_CODE_PRIVATE_21] = EMACS_leading_code_4;
7242 emacs_code_class[LEADING_CODE_PRIVATE_22] = EMACS_leading_code_4;
7243
7244 /* ISO2022 specific initialize routine. */
7245 for (i = 0; i < 0x20; i++)
7246 iso_code_class[i] = ISO_control_0;
7247 for (i = 0x21; i < 0x7F; i++)
7248 iso_code_class[i] = ISO_graphic_plane_0;
7249 for (i = 0x80; i < 0xA0; i++)
7250 iso_code_class[i] = ISO_control_1;
7251 for (i = 0xA1; i < 0xFF; i++)
7252 iso_code_class[i] = ISO_graphic_plane_1;
7253 iso_code_class[0x20] = iso_code_class[0x7F] = ISO_0x20_or_0x7F;
7254 iso_code_class[0xA0] = iso_code_class[0xFF] = ISO_0xA0_or_0xFF;
7255 iso_code_class[ISO_CODE_CR] = ISO_carriage_return;
7256 iso_code_class[ISO_CODE_SO] = ISO_shift_out;
7257 iso_code_class[ISO_CODE_SI] = ISO_shift_in;
7258 iso_code_class[ISO_CODE_SS2_7] = ISO_single_shift_2_7;
7259 iso_code_class[ISO_CODE_ESC] = ISO_escape;
7260 iso_code_class[ISO_CODE_SS2] = ISO_single_shift_2;
7261 iso_code_class[ISO_CODE_SS3] = ISO_single_shift_3;
7262 iso_code_class[ISO_CODE_CSI] = ISO_control_sequence_introducer;
7263
7264 setup_coding_system (Qnil, &keyboard_coding);
7265 setup_coding_system (Qnil, &terminal_coding);
7266 setup_coding_system (Qnil, &safe_terminal_coding);
7267 setup_coding_system (Qnil, &default_buffer_file_coding);
7268
7269 bzero (coding_system_table, sizeof coding_system_table);
7270
7271 bzero (ascii_skip_code, sizeof ascii_skip_code);
7272 for (i = 0; i < 128; i++)
7273 ascii_skip_code[i] = 1;
7274
7275 #if defined (MSDOS) || defined (WINDOWSNT)
7276 system_eol_type = CODING_EOL_CRLF;
7277 #else
7278 system_eol_type = CODING_EOL_LF;
7279 #endif
7280
7281 inhibit_pre_post_conversion = 0;
7282 }
7283
7284 #ifdef emacs
7285
7286 void
7287 syms_of_coding ()
7288 {
7289 Qtarget_idx = intern ("target-idx");
7290 staticpro (&Qtarget_idx);
7291
7292 Qcoding_system_history = intern ("coding-system-history");
7293 staticpro (&Qcoding_system_history);
7294 Fset (Qcoding_system_history, Qnil);
7295
7296 /* Target FILENAME is the first argument. */
7297 Fput (Qinsert_file_contents, Qtarget_idx, make_number (0));
7298 /* Target FILENAME is the third argument. */
7299 Fput (Qwrite_region, Qtarget_idx, make_number (2));
7300
7301 Qcall_process = intern ("call-process");
7302 staticpro (&Qcall_process);
7303 /* Target PROGRAM is the first argument. */
7304 Fput (Qcall_process, Qtarget_idx, make_number (0));
7305
7306 Qcall_process_region = intern ("call-process-region");
7307 staticpro (&Qcall_process_region);
7308 /* Target PROGRAM is the third argument. */
7309 Fput (Qcall_process_region, Qtarget_idx, make_number (2));
7310
7311 Qstart_process = intern ("start-process");
7312 staticpro (&Qstart_process);
7313 /* Target PROGRAM is the third argument. */
7314 Fput (Qstart_process, Qtarget_idx, make_number (2));
7315
7316 Qopen_network_stream = intern ("open-network-stream");
7317 staticpro (&Qopen_network_stream);
7318 /* Target SERVICE is the fourth argument. */
7319 Fput (Qopen_network_stream, Qtarget_idx, make_number (3));
7320
7321 Qcoding_system = intern ("coding-system");
7322 staticpro (&Qcoding_system);
7323
7324 Qeol_type = intern ("eol-type");
7325 staticpro (&Qeol_type);
7326
7327 Qbuffer_file_coding_system = intern ("buffer-file-coding-system");
7328 staticpro (&Qbuffer_file_coding_system);
7329
7330 Qpost_read_conversion = intern ("post-read-conversion");
7331 staticpro (&Qpost_read_conversion);
7332
7333 Qpre_write_conversion = intern ("pre-write-conversion");
7334 staticpro (&Qpre_write_conversion);
7335
7336 Qno_conversion = intern ("no-conversion");
7337 staticpro (&Qno_conversion);
7338
7339 Qundecided = intern ("undecided");
7340 staticpro (&Qundecided);
7341
7342 Qcoding_system_p = intern ("coding-system-p");
7343 staticpro (&Qcoding_system_p);
7344
7345 Qcoding_system_error = intern ("coding-system-error");
7346 staticpro (&Qcoding_system_error);
7347
7348 Fput (Qcoding_system_error, Qerror_conditions,
7349 Fcons (Qcoding_system_error, Fcons (Qerror, Qnil)));
7350 Fput (Qcoding_system_error, Qerror_message,
7351 build_string ("Invalid coding system"));
7352
7353 Qcoding_category = intern ("coding-category");
7354 staticpro (&Qcoding_category);
7355 Qcoding_category_index = intern ("coding-category-index");
7356 staticpro (&Qcoding_category_index);
7357
7358 Vcoding_category_table
7359 = Fmake_vector (make_number (CODING_CATEGORY_IDX_MAX), Qnil);
7360 staticpro (&Vcoding_category_table);
7361 {
7362 int i;
7363 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
7364 {
7365 XVECTOR (Vcoding_category_table)->contents[i]
7366 = intern (coding_category_name[i]);
7367 Fput (XVECTOR (Vcoding_category_table)->contents[i],
7368 Qcoding_category_index, make_number (i));
7369 }
7370 }
7371
7372 Vcoding_system_safe_chars = Fcons (Qnil, Qnil);
7373 staticpro (&Vcoding_system_safe_chars);
7374
7375 Qtranslation_table = intern ("translation-table");
7376 staticpro (&Qtranslation_table);
7377 Fput (Qtranslation_table, Qchar_table_extra_slots, make_number (1));
7378
7379 Qtranslation_table_id = intern ("translation-table-id");
7380 staticpro (&Qtranslation_table_id);
7381
7382 Qtranslation_table_for_decode = intern ("translation-table-for-decode");
7383 staticpro (&Qtranslation_table_for_decode);
7384
7385 Qtranslation_table_for_encode = intern ("translation-table-for-encode");
7386 staticpro (&Qtranslation_table_for_encode);
7387
7388 Qsafe_chars = intern ("safe-chars");
7389 staticpro (&Qsafe_chars);
7390
7391 Qchar_coding_system = intern ("char-coding-system");
7392 staticpro (&Qchar_coding_system);
7393
7394 /* Intern this now in case it isn't already done.
7395 Setting this variable twice is harmless.
7396 But don't staticpro it here--that is done in alloc.c. */
7397 Qchar_table_extra_slots = intern ("char-table-extra-slots");
7398 Fput (Qsafe_chars, Qchar_table_extra_slots, make_number (0));
7399 Fput (Qchar_coding_system, Qchar_table_extra_slots, make_number (0));
7400
7401 Qvalid_codes = intern ("valid-codes");
7402 staticpro (&Qvalid_codes);
7403
7404 Qemacs_mule = intern ("emacs-mule");
7405 staticpro (&Qemacs_mule);
7406
7407 Qraw_text = intern ("raw-text");
7408 staticpro (&Qraw_text);
7409
7410 defsubr (&Scoding_system_p);
7411 defsubr (&Sread_coding_system);
7412 defsubr (&Sread_non_nil_coding_system);
7413 defsubr (&Scheck_coding_system);
7414 defsubr (&Sdetect_coding_region);
7415 defsubr (&Sdetect_coding_string);
7416 defsubr (&Sfind_coding_systems_region_internal);
7417 defsubr (&Sunencodable_char_position);
7418 defsubr (&Sdecode_coding_region);
7419 defsubr (&Sencode_coding_region);
7420 defsubr (&Sdecode_coding_string);
7421 defsubr (&Sencode_coding_string);
7422 defsubr (&Sdecode_sjis_char);
7423 defsubr (&Sencode_sjis_char);
7424 defsubr (&Sdecode_big5_char);
7425 defsubr (&Sencode_big5_char);
7426 defsubr (&Sset_terminal_coding_system_internal);
7427 defsubr (&Sset_safe_terminal_coding_system_internal);
7428 defsubr (&Sterminal_coding_system);
7429 defsubr (&Sset_keyboard_coding_system_internal);
7430 defsubr (&Skeyboard_coding_system);
7431 defsubr (&Sfind_operation_coding_system);
7432 defsubr (&Supdate_coding_systems_internal);
7433 defsubr (&Sset_coding_priority_internal);
7434 defsubr (&Sdefine_coding_system_internal);
7435
7436 DEFVAR_LISP ("coding-system-list", &Vcoding_system_list,
7437 doc: /* List of coding systems.
7438
7439 Do not alter the value of this variable manually. This variable should be
7440 updated by the functions `make-coding-system' and
7441 `define-coding-system-alias'. */);
7442 Vcoding_system_list = Qnil;
7443
7444 DEFVAR_LISP ("coding-system-alist", &Vcoding_system_alist,
7445 doc: /* Alist of coding system names.
7446 Each element is one element list of coding system name.
7447 This variable is given to `completing-read' as TABLE argument.
7448
7449 Do not alter the value of this variable manually. This variable should be
7450 updated by the functions `make-coding-system' and
7451 `define-coding-system-alias'. */);
7452 Vcoding_system_alist = Qnil;
7453
7454 DEFVAR_LISP ("coding-category-list", &Vcoding_category_list,
7455 doc: /* List of coding-categories (symbols) ordered by priority.
7456
7457 On detecting a coding system, Emacs tries code detection algorithms
7458 associated with each coding-category one by one in this order. When
7459 one algorithm agrees with a byte sequence of source text, the coding
7460 system bound to the corresponding coding-category is selected. */);
7461 {
7462 int i;
7463
7464 Vcoding_category_list = Qnil;
7465 for (i = CODING_CATEGORY_IDX_MAX - 1; i >= 0; i--)
7466 Vcoding_category_list
7467 = Fcons (XVECTOR (Vcoding_category_table)->contents[i],
7468 Vcoding_category_list);
7469 }
7470
7471 DEFVAR_LISP ("coding-system-for-read", &Vcoding_system_for_read,
7472 doc: /* Specify the coding system for read operations.
7473 It is useful to bind this variable with `let', but do not set it globally.
7474 If the value is a coding system, it is used for decoding on read operation.
7475 If not, an appropriate element is used from one of the coding system alists:
7476 There are three such tables, `file-coding-system-alist',
7477 `process-coding-system-alist', and `network-coding-system-alist'. */);
7478 Vcoding_system_for_read = Qnil;
7479
7480 DEFVAR_LISP ("coding-system-for-write", &Vcoding_system_for_write,
7481 doc: /* Specify the coding system for write operations.
7482 Programs bind this variable with `let', but you should not set it globally.
7483 If the value is a coding system, it is used for encoding of output,
7484 when writing it to a file and when sending it to a file or subprocess.
7485
7486 If this does not specify a coding system, an appropriate element
7487 is used from one of the coding system alists:
7488 There are three such tables, `file-coding-system-alist',
7489 `process-coding-system-alist', and `network-coding-system-alist'.
7490 For output to files, if the above procedure does not specify a coding system,
7491 the value of `buffer-file-coding-system' is used. */);
7492 Vcoding_system_for_write = Qnil;
7493
7494 DEFVAR_LISP ("last-coding-system-used", &Vlast_coding_system_used,
7495 doc: /* Coding system used in the latest file or process I/O. */);
7496 Vlast_coding_system_used = Qnil;
7497
7498 DEFVAR_BOOL ("inhibit-eol-conversion", &inhibit_eol_conversion,
7499 doc: /* *Non-nil means always inhibit code conversion of end-of-line format.
7500 See info node `Coding Systems' and info node `Text and Binary' concerning
7501 such conversion. */);
7502 inhibit_eol_conversion = 0;
7503
7504 DEFVAR_BOOL ("inherit-process-coding-system", &inherit_process_coding_system,
7505 doc: /* Non-nil means process buffer inherits coding system of process output.
7506 Bind it to t if the process output is to be treated as if it were a file
7507 read from some filesystem. */);
7508 inherit_process_coding_system = 0;
7509
7510 DEFVAR_LISP ("file-coding-system-alist", &Vfile_coding_system_alist,
7511 doc: /* Alist to decide a coding system to use for a file I/O operation.
7512 The format is ((PATTERN . VAL) ...),
7513 where PATTERN is a regular expression matching a file name,
7514 VAL is a coding system, a cons of coding systems, or a function symbol.
7515 If VAL is a coding system, it is used for both decoding and encoding
7516 the file contents.
7517 If VAL is a cons of coding systems, the car part is used for decoding,
7518 and the cdr part is used for encoding.
7519 If VAL is a function symbol, the function must return a coding system
7520 or a cons of coding systems which are used as above. The function gets
7521 the arguments with which `find-operation-coding-system' was called.
7522
7523 See also the function `find-operation-coding-system'
7524 and the variable `auto-coding-alist'. */);
7525 Vfile_coding_system_alist = Qnil;
7526
7527 DEFVAR_LISP ("process-coding-system-alist", &Vprocess_coding_system_alist,
7528 doc: /* Alist to decide a coding system to use for a process I/O operation.
7529 The format is ((PATTERN . VAL) ...),
7530 where PATTERN is a regular expression matching a program name,
7531 VAL is a coding system, a cons of coding systems, or a function symbol.
7532 If VAL is a coding system, it is used for both decoding what received
7533 from the program and encoding what sent to the program.
7534 If VAL is a cons of coding systems, the car part is used for decoding,
7535 and the cdr part is used for encoding.
7536 If VAL is a function symbol, the function must return a coding system
7537 or a cons of coding systems which are used as above.
7538
7539 See also the function `find-operation-coding-system'. */);
7540 Vprocess_coding_system_alist = Qnil;
7541
7542 DEFVAR_LISP ("network-coding-system-alist", &Vnetwork_coding_system_alist,
7543 doc: /* Alist to decide a coding system to use for a network I/O operation.
7544 The format is ((PATTERN . VAL) ...),
7545 where PATTERN is a regular expression matching a network service name
7546 or is a port number to connect to,
7547 VAL is a coding system, a cons of coding systems, or a function symbol.
7548 If VAL is a coding system, it is used for both decoding what received
7549 from the network stream and encoding what sent to the network stream.
7550 If VAL is a cons of coding systems, the car part is used for decoding,
7551 and the cdr part is used for encoding.
7552 If VAL is a function symbol, the function must return a coding system
7553 or a cons of coding systems which are used as above.
7554
7555 See also the function `find-operation-coding-system'. */);
7556 Vnetwork_coding_system_alist = Qnil;
7557
7558 DEFVAR_LISP ("locale-coding-system", &Vlocale_coding_system,
7559 doc: /* Coding system to use with system messages.
7560 Also used for decoding keyboard input on X Window system. */);
7561 Vlocale_coding_system = Qnil;
7562
7563 /* The eol mnemonics are reset in startup.el system-dependently. */
7564 DEFVAR_LISP ("eol-mnemonic-unix", &eol_mnemonic_unix,
7565 doc: /* *String displayed in mode line for UNIX-like (LF) end-of-line format. */);
7566 eol_mnemonic_unix = build_string (":");
7567
7568 DEFVAR_LISP ("eol-mnemonic-dos", &eol_mnemonic_dos,
7569 doc: /* *String displayed in mode line for DOS-like (CRLF) end-of-line format. */);
7570 eol_mnemonic_dos = build_string ("\\");
7571
7572 DEFVAR_LISP ("eol-mnemonic-mac", &eol_mnemonic_mac,
7573 doc: /* *String displayed in mode line for MAC-like (CR) end-of-line format. */);
7574 eol_mnemonic_mac = build_string ("/");
7575
7576 DEFVAR_LISP ("eol-mnemonic-undecided", &eol_mnemonic_undecided,
7577 doc: /* *String displayed in mode line when end-of-line format is not yet determined. */);
7578 eol_mnemonic_undecided = build_string (":");
7579
7580 DEFVAR_LISP ("enable-character-translation", &Venable_character_translation,
7581 doc: /* *Non-nil enables character translation while encoding and decoding. */);
7582 Venable_character_translation = Qt;
7583
7584 DEFVAR_LISP ("standard-translation-table-for-decode",
7585 &Vstandard_translation_table_for_decode,
7586 doc: /* Table for translating characters while decoding. */);
7587 Vstandard_translation_table_for_decode = Qnil;
7588
7589 DEFVAR_LISP ("standard-translation-table-for-encode",
7590 &Vstandard_translation_table_for_encode,
7591 doc: /* Table for translating characters while encoding. */);
7592 Vstandard_translation_table_for_encode = Qnil;
7593
7594 DEFVAR_LISP ("charset-revision-table", &Vcharset_revision_alist,
7595 doc: /* Alist of charsets vs revision numbers.
7596 While encoding, if a charset (car part of an element) is found,
7597 designate it with the escape sequence identifying revision (cdr part of the element). */);
7598 Vcharset_revision_alist = Qnil;
7599
7600 DEFVAR_LISP ("default-process-coding-system",
7601 &Vdefault_process_coding_system,
7602 doc: /* Cons of coding systems used for process I/O by default.
7603 The car part is used for decoding a process output,
7604 the cdr part is used for encoding a text to be sent to a process. */);
7605 Vdefault_process_coding_system = Qnil;
7606
7607 DEFVAR_LISP ("latin-extra-code-table", &Vlatin_extra_code_table,
7608 doc: /* Table of extra Latin codes in the range 128..159 (inclusive).
7609 This is a vector of length 256.
7610 If Nth element is non-nil, the existence of code N in a file
7611 \(or output of subprocess) doesn't prevent it to be detected as
7612 a coding system of ISO 2022 variant which has a flag
7613 `accept-latin-extra-code' t (e.g. iso-latin-1) on reading a file
7614 or reading output of a subprocess.
7615 Only 128th through 159th elements has a meaning. */);
7616 Vlatin_extra_code_table = Fmake_vector (make_number (256), Qnil);
7617
7618 DEFVAR_LISP ("select-safe-coding-system-function",
7619 &Vselect_safe_coding_system_function,
7620 doc: /* Function to call to select safe coding system for encoding a text.
7621
7622 If set, this function is called to force a user to select a proper
7623 coding system which can encode the text in the case that a default
7624 coding system used in each operation can't encode the text.
7625
7626 The default value is `select-safe-coding-system' (which see). */);
7627 Vselect_safe_coding_system_function = Qnil;
7628
7629 DEFVAR_BOOL ("coding-system-require-warning",
7630 &coding_system_require_warning,
7631 doc: /* Internal use only.
7632 If non-nil, on writing a file, `select-safe-coding-system-function' is
7633 called even if `coding-system-for-write' is non-nil. The command
7634 `universal-coding-system-argument' binds this variable to t temporarily. */);
7635 coding_system_require_warning = 0;
7636
7637
7638 DEFVAR_BOOL ("inhibit-iso-escape-detection",
7639 &inhibit_iso_escape_detection,
7640 doc: /* If non-nil, Emacs ignores ISO2022's escape sequence on code detection.
7641
7642 By default, on reading a file, Emacs tries to detect how the text is
7643 encoded. This code detection is sensitive to escape sequences. If
7644 the sequence is valid as ISO2022, the code is determined as one of
7645 the ISO2022 encodings, and the file is decoded by the corresponding
7646 coding system (e.g. `iso-2022-7bit').
7647
7648 However, there may be a case that you want to read escape sequences in
7649 a file as is. In such a case, you can set this variable to non-nil.
7650 Then, as the code detection ignores any escape sequences, no file is
7651 detected as encoded in some ISO2022 encoding. The result is that all
7652 escape sequences become visible in a buffer.
7653
7654 The default value is nil, and it is strongly recommended not to change
7655 it. That is because many Emacs Lisp source files that contain
7656 non-ASCII characters are encoded by the coding system `iso-2022-7bit'
7657 in Emacs's distribution, and they won't be decoded correctly on
7658 reading if you suppress escape sequence detection.
7659
7660 The other way to read escape sequences in a file without decoding is
7661 to explicitly specify some coding system that doesn't use ISO2022's
7662 escape sequence (e.g `latin-1') on reading by \\[universal-coding-system-argument]. */);
7663 inhibit_iso_escape_detection = 0;
7664
7665 DEFVAR_LISP ("translation-table-for-input", &Vtranslation_table_for_input,
7666 doc: /* Char table for translating self-inserting characters.
7667 This is applied to the result of input methods, not their input. See also
7668 `keyboard-translate-table'. */);
7669 Vtranslation_table_for_input = Qnil;
7670 }
7671
7672 char *
7673 emacs_strerror (error_number)
7674 int error_number;
7675 {
7676 char *str;
7677
7678 synchronize_system_messages_locale ();
7679 str = strerror (error_number);
7680
7681 if (! NILP (Vlocale_coding_system))
7682 {
7683 Lisp_Object dec = code_convert_string_norecord (build_string (str),
7684 Vlocale_coding_system,
7685 0);
7686 str = (char *) SDATA (dec);
7687 }
7688
7689 return str;
7690 }
7691
7692 #endif /* emacs */
7693