]> code.delx.au - gnu-emacs/blob - src/lisp.h
* lisp.h (TAG_SYMPTR): Don't do arithmetic on NULL.
[gnu-emacs] / src / lisp.h
1 /* Fundamental definitions for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2015 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #ifndef EMACS_LISP_H
22 #define EMACS_LISP_H
23
24 #include <setjmp.h>
25 #include <stdalign.h>
26 #include <stdarg.h>
27 #include <stddef.h>
28 #include <float.h>
29 #include <inttypes.h>
30 #include <limits.h>
31
32 #include <intprops.h>
33 #include <verify.h>
34
35 INLINE_HEADER_BEGIN
36
37 /* Define a TYPE constant ID as an externally visible name. Use like this:
38
39 DEFINE_GDB_SYMBOL_BEGIN (TYPE, ID)
40 # define ID (some integer preprocessor expression of type TYPE)
41 DEFINE_GDB_SYMBOL_END (ID)
42
43 This hack is for the benefit of compilers that do not make macro
44 definitions or enums visible to the debugger. It's used for symbols
45 that .gdbinit needs. */
46
47 #define DECLARE_GDB_SYM(type, id) type const id EXTERNALLY_VISIBLE
48 #ifdef MAIN_PROGRAM
49 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) DECLARE_GDB_SYM (type, id)
50 # define DEFINE_GDB_SYMBOL_END(id) = id;
51 #else
52 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) extern DECLARE_GDB_SYM (type, id)
53 # define DEFINE_GDB_SYMBOL_END(val) ;
54 #endif
55
56 /* The ubiquitous max and min macros. */
57 #undef min
58 #undef max
59 #define max(a, b) ((a) > (b) ? (a) : (b))
60 #define min(a, b) ((a) < (b) ? (a) : (b))
61
62 /* Number of elements in an array. */
63 #define ARRAYELTS(arr) (sizeof (arr) / sizeof (arr)[0])
64
65 /* Number of bits in a Lisp_Object tag. */
66 DEFINE_GDB_SYMBOL_BEGIN (int, GCTYPEBITS)
67 #define GCTYPEBITS 3
68 DEFINE_GDB_SYMBOL_END (GCTYPEBITS)
69
70 /* The number of bits needed in an EMACS_INT over and above the number
71 of bits in a pointer. This is 0 on systems where:
72 1. We can specify multiple-of-8 alignment on static variables.
73 2. We know malloc returns a multiple of 8. */
74 #if (defined alignas \
75 && (defined GNU_MALLOC || defined DOUG_LEA_MALLOC || defined __GLIBC__ \
76 || defined DARWIN_OS || defined __sun || defined __MINGW32__ \
77 || defined CYGWIN))
78 # define NONPOINTER_BITS 0
79 #else
80 # define NONPOINTER_BITS GCTYPEBITS
81 #endif
82
83 /* EMACS_INT - signed integer wide enough to hold an Emacs value
84 EMACS_INT_MAX - maximum value of EMACS_INT; can be used in #if
85 pI - printf length modifier for EMACS_INT
86 EMACS_UINT - unsigned variant of EMACS_INT */
87 #ifndef EMACS_INT_MAX
88 # if INTPTR_MAX <= 0
89 # error "INTPTR_MAX misconfigured"
90 # elif INTPTR_MAX <= INT_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
91 typedef int EMACS_INT;
92 typedef unsigned int EMACS_UINT;
93 # define EMACS_INT_MAX INT_MAX
94 # define pI ""
95 # elif INTPTR_MAX <= LONG_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
96 typedef long int EMACS_INT;
97 typedef unsigned long EMACS_UINT;
98 # define EMACS_INT_MAX LONG_MAX
99 # define pI "l"
100 /* Check versus LLONG_MAX, not LLONG_MAX >> NONPOINTER_BITS.
101 In theory this is not safe, but in practice it seems to be OK. */
102 # elif INTPTR_MAX <= LLONG_MAX
103 typedef long long int EMACS_INT;
104 typedef unsigned long long int EMACS_UINT;
105 # define EMACS_INT_MAX LLONG_MAX
106 # define pI "ll"
107 # else
108 # error "INTPTR_MAX too large"
109 # endif
110 #endif
111
112 /* Number of bits to put in each character in the internal representation
113 of bool vectors. This should not vary across implementations. */
114 enum { BOOL_VECTOR_BITS_PER_CHAR =
115 #define BOOL_VECTOR_BITS_PER_CHAR 8
116 BOOL_VECTOR_BITS_PER_CHAR
117 };
118
119 /* An unsigned integer type representing a fixed-length bit sequence,
120 suitable for bool vector words, GC mark bits, etc. Normally it is size_t
121 for speed, but it is unsigned char on weird platforms. */
122 #if BOOL_VECTOR_BITS_PER_CHAR == CHAR_BIT
123 typedef size_t bits_word;
124 # define BITS_WORD_MAX SIZE_MAX
125 enum { BITS_PER_BITS_WORD = CHAR_BIT * sizeof (bits_word) };
126 #else
127 typedef unsigned char bits_word;
128 # define BITS_WORD_MAX ((1u << BOOL_VECTOR_BITS_PER_CHAR) - 1)
129 enum { BITS_PER_BITS_WORD = BOOL_VECTOR_BITS_PER_CHAR };
130 #endif
131 verify (BITS_WORD_MAX >> (BITS_PER_BITS_WORD - 1) == 1);
132
133 /* Number of bits in some machine integer types. */
134 enum
135 {
136 BITS_PER_CHAR = CHAR_BIT,
137 BITS_PER_SHORT = CHAR_BIT * sizeof (short),
138 BITS_PER_LONG = CHAR_BIT * sizeof (long int),
139 BITS_PER_EMACS_INT = CHAR_BIT * sizeof (EMACS_INT)
140 };
141
142 /* printmax_t and uprintmax_t are types for printing large integers.
143 These are the widest integers that are supported for printing.
144 pMd etc. are conversions for printing them.
145 On C99 hosts, there's no problem, as even the widest integers work.
146 Fall back on EMACS_INT on pre-C99 hosts. */
147 #ifdef PRIdMAX
148 typedef intmax_t printmax_t;
149 typedef uintmax_t uprintmax_t;
150 # define pMd PRIdMAX
151 # define pMu PRIuMAX
152 #else
153 typedef EMACS_INT printmax_t;
154 typedef EMACS_UINT uprintmax_t;
155 # define pMd pI"d"
156 # define pMu pI"u"
157 #endif
158
159 /* Use pD to format ptrdiff_t values, which suffice for indexes into
160 buffers and strings. Emacs never allocates objects larger than
161 PTRDIFF_MAX bytes, as they cause problems with pointer subtraction.
162 In C99, pD can always be "t"; configure it here for the sake of
163 pre-C99 libraries such as glibc 2.0 and Solaris 8. */
164 #if PTRDIFF_MAX == INT_MAX
165 # define pD ""
166 #elif PTRDIFF_MAX == LONG_MAX
167 # define pD "l"
168 #elif PTRDIFF_MAX == LLONG_MAX
169 # define pD "ll"
170 #else
171 # define pD "t"
172 #endif
173
174 /* Extra internal type checking? */
175
176 /* Define Emacs versions of <assert.h>'s 'assert (COND)' and <verify.h>'s
177 'assume (COND)'. COND should be free of side effects, as it may or
178 may not be evaluated.
179
180 'eassert (COND)' checks COND at runtime if ENABLE_CHECKING is
181 defined and suppress_checking is false, and does nothing otherwise.
182 Emacs dies if COND is checked and is false. The suppress_checking
183 variable is initialized to 0 in alloc.c. Set it to 1 using a
184 debugger to temporarily disable aborting on detected internal
185 inconsistencies or error conditions.
186
187 In some cases, a good compiler may be able to optimize away the
188 eassert macro even if ENABLE_CHECKING is true, e.g., if XSTRING (x)
189 uses eassert to test STRINGP (x), but a particular use of XSTRING
190 is invoked only after testing that STRINGP (x) is true, making the
191 test redundant.
192
193 eassume is like eassert except that it also causes the compiler to
194 assume that COND is true afterwards, regardless of whether runtime
195 checking is enabled. This can improve performance in some cases,
196 though it can degrade performance in others. It's often suboptimal
197 for COND to call external functions or access volatile storage. */
198
199 #ifndef ENABLE_CHECKING
200 # define eassert(cond) ((void) (false && (cond))) /* Check COND compiles. */
201 # define eassume(cond) assume (cond)
202 #else /* ENABLE_CHECKING */
203
204 extern _Noreturn void die (const char *, const char *, int);
205
206 extern bool suppress_checking EXTERNALLY_VISIBLE;
207
208 # define eassert(cond) \
209 (suppress_checking || (cond) \
210 ? (void) 0 \
211 : die (# cond, __FILE__, __LINE__))
212 # define eassume(cond) \
213 (suppress_checking \
214 ? assume (cond) \
215 : (cond) \
216 ? (void) 0 \
217 : die (# cond, __FILE__, __LINE__))
218 #endif /* ENABLE_CHECKING */
219
220 \f
221 /* Use the configure flag --enable-check-lisp-object-type to make
222 Lisp_Object use a struct type instead of the default int. The flag
223 causes CHECK_LISP_OBJECT_TYPE to be defined. */
224
225 /***** Select the tagging scheme. *****/
226 /* The following option controls the tagging scheme:
227 - USE_LSB_TAG means that we can assume the least 3 bits of pointers are
228 always 0, and we can thus use them to hold tag bits, without
229 restricting our addressing space.
230
231 If ! USE_LSB_TAG, then use the top 3 bits for tagging, thus
232 restricting our possible address range.
233
234 USE_LSB_TAG not only requires the least 3 bits of pointers returned by
235 malloc to be 0 but also needs to be able to impose a mult-of-8 alignment
236 on the few static Lisp_Objects used: all the defsubr as well
237 as the two special buffers buffer_defaults and buffer_local_symbols. */
238
239 enum Lisp_Bits
240 {
241 /* 2**GCTYPEBITS. This must be a macro that expands to a literal
242 integer constant, for MSVC. */
243 #define GCALIGNMENT 8
244
245 /* Number of bits in a Lisp_Object value, not counting the tag. */
246 VALBITS = BITS_PER_EMACS_INT - GCTYPEBITS,
247
248 /* Number of bits in a Lisp fixnum tag. */
249 INTTYPEBITS = GCTYPEBITS - 1,
250
251 /* Number of bits in a Lisp fixnum value, not counting the tag. */
252 FIXNUM_BITS = VALBITS + 1
253 };
254
255 #if GCALIGNMENT != 1 << GCTYPEBITS
256 # error "GCALIGNMENT and GCTYPEBITS are inconsistent"
257 #endif
258
259 /* The maximum value that can be stored in a EMACS_INT, assuming all
260 bits other than the type bits contribute to a nonnegative signed value.
261 This can be used in #if, e.g., '#if USB_TAG' below expands to an
262 expression involving VAL_MAX. */
263 #define VAL_MAX (EMACS_INT_MAX >> (GCTYPEBITS - 1))
264
265 /* Whether the least-significant bits of an EMACS_INT contain the tag.
266 On hosts where pointers-as-ints do not exceed VAL_MAX / 2, USE_LSB_TAG is:
267 a. unnecessary, because the top bits of an EMACS_INT are unused, and
268 b. slower, because it typically requires extra masking.
269 So, USE_LSB_TAG is true only on hosts where it might be useful. */
270 DEFINE_GDB_SYMBOL_BEGIN (bool, USE_LSB_TAG)
271 #define USE_LSB_TAG (VAL_MAX / 2 < INTPTR_MAX)
272 DEFINE_GDB_SYMBOL_END (USE_LSB_TAG)
273
274 #if !USE_LSB_TAG && !defined WIDE_EMACS_INT
275 # error "USE_LSB_TAG not supported on this platform; please report this." \
276 "Try 'configure --with-wide-int' to work around the problem."
277 error !;
278 #endif
279
280 #ifndef alignas
281 # define alignas(alignment) /* empty */
282 # if USE_LSB_TAG
283 # error "USE_LSB_TAG requires alignas"
284 # endif
285 #endif
286
287 #ifdef HAVE_STRUCT_ATTRIBUTE_ALIGNED
288 # define GCALIGNED __attribute__ ((aligned (GCALIGNMENT)))
289 #else
290 # define GCALIGNED /* empty */
291 #endif
292
293 /* Some operations are so commonly executed that they are implemented
294 as macros, not functions, because otherwise runtime performance would
295 suffer too much when compiling with GCC without optimization.
296 There's no need to inline everything, just the operations that
297 would otherwise cause a serious performance problem.
298
299 For each such operation OP, define a macro lisp_h_OP that contains
300 the operation's implementation. That way, OP can be implemented
301 via a macro definition like this:
302
303 #define OP(x) lisp_h_OP (x)
304
305 and/or via a function definition like this:
306
307 LISP_MACRO_DEFUN (OP, Lisp_Object, (Lisp_Object x), (x))
308
309 which macro-expands to this:
310
311 Lisp_Object (OP) (Lisp_Object x) { return lisp_h_OP (x); }
312
313 without worrying about the implementations diverging, since
314 lisp_h_OP defines the actual implementation. The lisp_h_OP macros
315 are intended to be private to this include file, and should not be
316 used elsewhere.
317
318 FIXME: Remove the lisp_h_OP macros, and define just the inline OP
319 functions, once most developers have access to GCC 4.8 or later and
320 can use "gcc -Og" to debug. Maybe in the year 2016. See
321 Bug#11935.
322
323 Commentary for these macros can be found near their corresponding
324 functions, below. */
325
326 #if CHECK_LISP_OBJECT_TYPE
327 # define lisp_h_XLI(o) ((o).i)
328 # define lisp_h_XIL(i) ((Lisp_Object) { i })
329 #else
330 # define lisp_h_XLI(o) (o)
331 # define lisp_h_XIL(i) (i)
332 #endif
333 #define lisp_h_CHECK_LIST_CONS(x, y) CHECK_TYPE (CONSP (x), Qlistp, y)
334 #define lisp_h_CHECK_NUMBER(x) CHECK_TYPE (INTEGERP (x), Qintegerp, x)
335 #define lisp_h_CHECK_SYMBOL(x) CHECK_TYPE (SYMBOLP (x), Qsymbolp, x)
336 #define lisp_h_CHECK_TYPE(ok, predicate, x) \
337 ((ok) ? (void) 0 : (void) wrong_type_argument (predicate, x))
338 #define lisp_h_CONSP(x) (XTYPE (x) == Lisp_Cons)
339 #define lisp_h_EQ(x, y) (XLI (x) == XLI (y))
340 #define lisp_h_FLOATP(x) (XTYPE (x) == Lisp_Float)
341 #define lisp_h_INTEGERP(x) ((XTYPE (x) & (Lisp_Int0 | ~Lisp_Int1)) == Lisp_Int0)
342 #define lisp_h_MARKERP(x) (MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Marker)
343 #define lisp_h_MISCP(x) (XTYPE (x) == Lisp_Misc)
344 #define lisp_h_NILP(x) EQ (x, Qnil)
345 #define lisp_h_SET_SYMBOL_VAL(sym, v) \
346 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value = (v))
347 #define lisp_h_SYMBOL_CONSTANT_P(sym) (XSYMBOL (sym)->constant)
348 #define lisp_h_SYMBOL_VAL(sym) \
349 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value)
350 #define lisp_h_SYMBOLP(x) (XTYPE (x) == Lisp_Symbol)
351 #define lisp_h_VECTORLIKEP(x) (XTYPE (x) == Lisp_Vectorlike)
352 #define lisp_h_XCAR(c) XCONS (c)->car
353 #define lisp_h_XCDR(c) XCONS (c)->u.cdr
354 #define lisp_h_XCONS(a) \
355 (eassert (CONSP (a)), (struct Lisp_Cons *) XUNTAG (a, Lisp_Cons))
356 #define lisp_h_XHASH(a) XUINT (a)
357 #define lisp_h_XPNTR(a) \
358 (SYMBOLP (a) ? XSYMBOL (a) : (void *) ((intptr_t) (XLI (a) & VALMASK)))
359 #define lisp_h_XSYMBOL(a) \
360 (eassert (SYMBOLP (a)), \
361 (struct Lisp_Symbol *) XUNTAGBASE (a, Lisp_Symbol, lispsym))
362 #ifndef GC_CHECK_CONS_LIST
363 # define lisp_h_check_cons_list() ((void) 0)
364 #endif
365 #if USE_LSB_TAG
366 # define lisp_h_make_number(n) \
367 XIL ((EMACS_INT) (((EMACS_UINT) (n) << INTTYPEBITS) + Lisp_Int0))
368 # define lisp_h_XFASTINT(a) XINT (a)
369 # define lisp_h_XINT(a) (XLI (a) >> INTTYPEBITS)
370 # define lisp_h_XTYPE(a) ((enum Lisp_Type) (XLI (a) & ~VALMASK))
371 # define lisp_h_XUNTAG(a, type) ((void *) (intptr_t) (XLI (a) - (type)))
372 # define lisp_h_XUNTAGBASE(a, type, base) \
373 ((void *) ((char *) (base) - (type) + (intptr_t) XLI (a)))
374 #endif
375
376 /* When compiling via gcc -O0, define the key operations as macros, as
377 Emacs is too slow otherwise. To disable this optimization, compile
378 with -DINLINING=false. */
379 #if (defined __NO_INLINE__ \
380 && ! defined __OPTIMIZE__ && ! defined __OPTIMIZE_SIZE__ \
381 && ! (defined INLINING && ! INLINING))
382 # define XLI(o) lisp_h_XLI (o)
383 # define XIL(i) lisp_h_XIL (i)
384 # define CHECK_LIST_CONS(x, y) lisp_h_CHECK_LIST_CONS (x, y)
385 # define CHECK_NUMBER(x) lisp_h_CHECK_NUMBER (x)
386 # define CHECK_SYMBOL(x) lisp_h_CHECK_SYMBOL (x)
387 # define CHECK_TYPE(ok, predicate, x) lisp_h_CHECK_TYPE (ok, predicate, x)
388 # define CONSP(x) lisp_h_CONSP (x)
389 # define EQ(x, y) lisp_h_EQ (x, y)
390 # define FLOATP(x) lisp_h_FLOATP (x)
391 # define INTEGERP(x) lisp_h_INTEGERP (x)
392 # define MARKERP(x) lisp_h_MARKERP (x)
393 # define MISCP(x) lisp_h_MISCP (x)
394 # define NILP(x) lisp_h_NILP (x)
395 # define SET_SYMBOL_VAL(sym, v) lisp_h_SET_SYMBOL_VAL (sym, v)
396 # define SYMBOL_CONSTANT_P(sym) lisp_h_SYMBOL_CONSTANT_P (sym)
397 # define SYMBOL_VAL(sym) lisp_h_SYMBOL_VAL (sym)
398 # define SYMBOLP(x) lisp_h_SYMBOLP (x)
399 # define VECTORLIKEP(x) lisp_h_VECTORLIKEP (x)
400 # define XCAR(c) lisp_h_XCAR (c)
401 # define XCDR(c) lisp_h_XCDR (c)
402 # define XCONS(a) lisp_h_XCONS (a)
403 # define XHASH(a) lisp_h_XHASH (a)
404 # define XPNTR(a) lisp_h_XPNTR (a)
405 # define XSYMBOL(a) lisp_h_XSYMBOL (a)
406 # ifndef GC_CHECK_CONS_LIST
407 # define check_cons_list() lisp_h_check_cons_list ()
408 # endif
409 # if USE_LSB_TAG
410 # define make_number(n) lisp_h_make_number (n)
411 # define XFASTINT(a) lisp_h_XFASTINT (a)
412 # define XINT(a) lisp_h_XINT (a)
413 # define XTYPE(a) lisp_h_XTYPE (a)
414 # define XUNTAG(a, type) lisp_h_XUNTAG (a, type)
415 # define XUNTAGBASE(a, type, base) lisp_h_XUNTAGBASE (a, type, base)
416 # endif
417 #endif
418
419 /* Define NAME as a lisp.h inline function that returns TYPE and has
420 arguments declared as ARGDECLS and passed as ARGS. ARGDECLS and
421 ARGS should be parenthesized. Implement the function by calling
422 lisp_h_NAME ARGS. */
423 #define LISP_MACRO_DEFUN(name, type, argdecls, args) \
424 INLINE type (name) argdecls { return lisp_h_##name args; }
425
426 /* like LISP_MACRO_DEFUN, except NAME returns void. */
427 #define LISP_MACRO_DEFUN_VOID(name, argdecls, args) \
428 INLINE void (name) argdecls { lisp_h_##name args; }
429
430
431 /* Define the fundamental Lisp data structures. */
432
433 /* This is the set of Lisp data types. If you want to define a new
434 data type, read the comments after Lisp_Fwd_Type definition
435 below. */
436
437 /* Lisp integers use 2 tags, to give them one extra bit, thus
438 extending their range from, e.g., -2^28..2^28-1 to -2^29..2^29-1. */
439 #define INTMASK (EMACS_INT_MAX >> (INTTYPEBITS - 1))
440 #define case_Lisp_Int case Lisp_Int0: case Lisp_Int1
441
442 /* Idea stolen from GDB. Pedantic GCC complains about enum bitfields,
443 MSVC doesn't support them, and xlc and Oracle Studio c99 complain
444 vociferously about them. */
445 #if (defined __STRICT_ANSI__ || defined _MSC_VER || defined __IBMC__ \
446 || (defined __SUNPRO_C && __STDC__))
447 #define ENUM_BF(TYPE) unsigned int
448 #else
449 #define ENUM_BF(TYPE) enum TYPE
450 #endif
451
452
453 enum Lisp_Type
454 {
455 /* Symbol. XSYMBOL (object) points to a struct Lisp_Symbol. */
456 Lisp_Symbol = 0,
457
458 /* Miscellaneous. XMISC (object) points to a union Lisp_Misc,
459 whose first member indicates the subtype. */
460 Lisp_Misc = 1,
461
462 /* Integer. XINT (obj) is the integer value. */
463 Lisp_Int0 = 2,
464 Lisp_Int1 = USE_LSB_TAG ? 6 : 3,
465
466 /* String. XSTRING (object) points to a struct Lisp_String.
467 The length of the string, and its contents, are stored therein. */
468 Lisp_String = 4,
469
470 /* Vector of Lisp objects, or something resembling it.
471 XVECTOR (object) points to a struct Lisp_Vector, which contains
472 the size and contents. The size field also contains the type
473 information, if it's not a real vector object. */
474 Lisp_Vectorlike = 5,
475
476 /* Cons. XCONS (object) points to a struct Lisp_Cons. */
477 Lisp_Cons = USE_LSB_TAG ? 3 : 6,
478
479 Lisp_Float = 7
480 };
481
482 /* This is the set of data types that share a common structure.
483 The first member of the structure is a type code from this set.
484 The enum values are arbitrary, but we'll use large numbers to make it
485 more likely that we'll spot the error if a random word in memory is
486 mistakenly interpreted as a Lisp_Misc. */
487 enum Lisp_Misc_Type
488 {
489 Lisp_Misc_Free = 0x5eab,
490 Lisp_Misc_Marker,
491 Lisp_Misc_Overlay,
492 Lisp_Misc_Save_Value,
493 /* Currently floats are not a misc type,
494 but let's define this in case we want to change that. */
495 Lisp_Misc_Float,
496 /* This is not a type code. It is for range checking. */
497 Lisp_Misc_Limit
498 };
499
500 /* These are the types of forwarding objects used in the value slot
501 of symbols for special built-in variables whose value is stored in
502 C variables. */
503 enum Lisp_Fwd_Type
504 {
505 Lisp_Fwd_Int, /* Fwd to a C `int' variable. */
506 Lisp_Fwd_Bool, /* Fwd to a C boolean var. */
507 Lisp_Fwd_Obj, /* Fwd to a C Lisp_Object variable. */
508 Lisp_Fwd_Buffer_Obj, /* Fwd to a Lisp_Object field of buffers. */
509 Lisp_Fwd_Kboard_Obj /* Fwd to a Lisp_Object field of kboards. */
510 };
511
512 /* If you want to define a new Lisp data type, here are some
513 instructions. See the thread at
514 http://lists.gnu.org/archive/html/emacs-devel/2012-10/msg00561.html
515 for more info.
516
517 First, there are already a couple of Lisp types that can be used if
518 your new type does not need to be exposed to Lisp programs nor
519 displayed to users. These are Lisp_Save_Value, a Lisp_Misc
520 subtype; and PVEC_OTHER, a kind of vectorlike object. The former
521 is suitable for temporarily stashing away pointers and integers in
522 a Lisp object. The latter is useful for vector-like Lisp objects
523 that need to be used as part of other objects, but which are never
524 shown to users or Lisp code (search for PVEC_OTHER in xterm.c for
525 an example).
526
527 These two types don't look pretty when printed, so they are
528 unsuitable for Lisp objects that can be exposed to users.
529
530 To define a new data type, add one more Lisp_Misc subtype or one
531 more pseudovector subtype. Pseudovectors are more suitable for
532 objects with several slots that need to support fast random access,
533 while Lisp_Misc types are for everything else. A pseudovector object
534 provides one or more slots for Lisp objects, followed by struct
535 members that are accessible only from C. A Lisp_Misc object is a
536 wrapper for a C struct that can contain anything you like.
537
538 Explicit freeing is discouraged for Lisp objects in general. But if
539 you really need to exploit this, use Lisp_Misc (check free_misc in
540 alloc.c to see why). There is no way to free a vectorlike object.
541
542 To add a new pseudovector type, extend the pvec_type enumeration;
543 to add a new Lisp_Misc, extend the Lisp_Misc_Type enumeration.
544
545 For a Lisp_Misc, you will also need to add your entry to union
546 Lisp_Misc (but make sure the first word has the same structure as
547 the others, starting with a 16-bit member of the Lisp_Misc_Type
548 enumeration and a 1-bit GC markbit) and make sure the overall size
549 of the union is not increased by your addition.
550
551 For a new pseudovector, it's highly desirable to limit the size
552 of your data type by VBLOCK_BYTES_MAX bytes (defined in alloc.c).
553 Otherwise you will need to change sweep_vectors (also in alloc.c).
554
555 Then you will need to add switch branches in print.c (in
556 print_object, to print your object, and possibly also in
557 print_preprocess) and to alloc.c, to mark your object (in
558 mark_object) and to free it (in gc_sweep). The latter is also the
559 right place to call any code specific to your data type that needs
560 to run when the object is recycled -- e.g., free any additional
561 resources allocated for it that are not Lisp objects. You can even
562 make a pointer to the function that frees the resources a slot in
563 your object -- this way, the same object could be used to represent
564 several disparate C structures. */
565
566 #ifdef CHECK_LISP_OBJECT_TYPE
567
568 typedef struct { EMACS_INT i; } Lisp_Object;
569
570 #define LISP_INITIALLY(i) {i}
571
572 #undef CHECK_LISP_OBJECT_TYPE
573 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = true };
574 #else /* CHECK_LISP_OBJECT_TYPE */
575
576 /* If a struct type is not wanted, define Lisp_Object as just a number. */
577
578 typedef EMACS_INT Lisp_Object;
579 #define LISP_INITIALLY(i) (i)
580 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = false };
581 #endif /* CHECK_LISP_OBJECT_TYPE */
582
583 #define LISP_INITIALLY_ZERO LISP_INITIALLY (0)
584 \f
585 /* Forward declarations. */
586
587 /* Defined in this file. */
588 union Lisp_Fwd;
589 INLINE bool BOOL_VECTOR_P (Lisp_Object);
590 INLINE bool BUFFER_OBJFWDP (union Lisp_Fwd *);
591 INLINE bool BUFFERP (Lisp_Object);
592 INLINE bool CHAR_TABLE_P (Lisp_Object);
593 INLINE Lisp_Object CHAR_TABLE_REF_ASCII (Lisp_Object, ptrdiff_t);
594 INLINE bool (CONSP) (Lisp_Object);
595 INLINE bool (FLOATP) (Lisp_Object);
596 INLINE bool functionp (Lisp_Object);
597 INLINE bool (INTEGERP) (Lisp_Object);
598 INLINE bool (MARKERP) (Lisp_Object);
599 INLINE bool (MISCP) (Lisp_Object);
600 INLINE bool (NILP) (Lisp_Object);
601 INLINE bool OVERLAYP (Lisp_Object);
602 INLINE bool PROCESSP (Lisp_Object);
603 INLINE bool PSEUDOVECTORP (Lisp_Object, int);
604 INLINE bool SAVE_VALUEP (Lisp_Object);
605 INLINE void set_sub_char_table_contents (Lisp_Object, ptrdiff_t,
606 Lisp_Object);
607 INLINE bool STRINGP (Lisp_Object);
608 INLINE bool SUB_CHAR_TABLE_P (Lisp_Object);
609 INLINE bool SUBRP (Lisp_Object);
610 INLINE bool (SYMBOLP) (Lisp_Object);
611 INLINE bool (VECTORLIKEP) (Lisp_Object);
612 INLINE bool WINDOWP (Lisp_Object);
613 INLINE struct Lisp_Save_Value *XSAVE_VALUE (Lisp_Object);
614 INLINE struct Lisp_Symbol *(XSYMBOL) (Lisp_Object);
615 INLINE void *(XUNTAGBASE) (Lisp_Object, int, void *);
616
617 /* Defined in chartab.c. */
618 extern Lisp_Object char_table_ref (Lisp_Object, int);
619 extern void char_table_set (Lisp_Object, int, Lisp_Object);
620
621 /* Defined in data.c. */
622 extern _Noreturn Lisp_Object wrong_type_argument (Lisp_Object, Lisp_Object);
623 extern _Noreturn void wrong_choice (Lisp_Object, Lisp_Object);
624
625 /* Defined in emacs.c. */
626 extern bool might_dump;
627 /* True means Emacs has already been initialized.
628 Used during startup to detect startup of dumped Emacs. */
629 extern bool initialized;
630
631 /* Defined in floatfns.c. */
632 extern double extract_float (Lisp_Object);
633
634 \f
635 /* Interned state of a symbol. */
636
637 enum symbol_interned
638 {
639 SYMBOL_UNINTERNED = 0,
640 SYMBOL_INTERNED = 1,
641 SYMBOL_INTERNED_IN_INITIAL_OBARRAY = 2
642 };
643
644 enum symbol_redirect
645 {
646 SYMBOL_PLAINVAL = 4,
647 SYMBOL_VARALIAS = 1,
648 SYMBOL_LOCALIZED = 2,
649 SYMBOL_FORWARDED = 3
650 };
651
652 struct Lisp_Symbol
653 {
654 bool_bf gcmarkbit : 1;
655
656 /* Indicates where the value can be found:
657 0 : it's a plain var, the value is in the `value' field.
658 1 : it's a varalias, the value is really in the `alias' symbol.
659 2 : it's a localized var, the value is in the `blv' object.
660 3 : it's a forwarding variable, the value is in `forward'. */
661 ENUM_BF (symbol_redirect) redirect : 3;
662
663 /* Non-zero means symbol is constant, i.e. changing its value
664 should signal an error. If the value is 3, then the var
665 can be changed, but only by `defconst'. */
666 unsigned constant : 2;
667
668 /* Interned state of the symbol. This is an enumerator from
669 enum symbol_interned. */
670 unsigned interned : 2;
671
672 /* True means that this variable has been explicitly declared
673 special (with `defvar' etc), and shouldn't be lexically bound. */
674 bool_bf declared_special : 1;
675
676 /* True if pointed to from purespace and hence can't be GC'd. */
677 bool_bf pinned : 1;
678
679 /* The symbol's name, as a Lisp string. */
680 Lisp_Object name;
681
682 /* Value of the symbol or Qunbound if unbound. Which alternative of the
683 union is used depends on the `redirect' field above. */
684 union {
685 Lisp_Object value;
686 struct Lisp_Symbol *alias;
687 struct Lisp_Buffer_Local_Value *blv;
688 union Lisp_Fwd *fwd;
689 } val;
690
691 /* Function value of the symbol or Qnil if not fboundp. */
692 Lisp_Object function;
693
694 /* The symbol's property list. */
695 Lisp_Object plist;
696
697 /* Next symbol in obarray bucket, if the symbol is interned. */
698 struct Lisp_Symbol *next;
699 };
700
701 /* Declare a Lisp-callable function. The MAXARGS parameter has the same
702 meaning as in the DEFUN macro, and is used to construct a prototype. */
703 /* We can use the same trick as in the DEFUN macro to generate the
704 appropriate prototype. */
705 #define EXFUN(fnname, maxargs) \
706 extern Lisp_Object fnname DEFUN_ARGS_ ## maxargs
707
708 /* Note that the weird token-substitution semantics of ANSI C makes
709 this work for MANY and UNEVALLED. */
710 #define DEFUN_ARGS_MANY (ptrdiff_t, Lisp_Object *)
711 #define DEFUN_ARGS_UNEVALLED (Lisp_Object)
712 #define DEFUN_ARGS_0 (void)
713 #define DEFUN_ARGS_1 (Lisp_Object)
714 #define DEFUN_ARGS_2 (Lisp_Object, Lisp_Object)
715 #define DEFUN_ARGS_3 (Lisp_Object, Lisp_Object, Lisp_Object)
716 #define DEFUN_ARGS_4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
717 #define DEFUN_ARGS_5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
718 Lisp_Object)
719 #define DEFUN_ARGS_6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
720 Lisp_Object, Lisp_Object)
721 #define DEFUN_ARGS_7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
722 Lisp_Object, Lisp_Object, Lisp_Object)
723 #define DEFUN_ARGS_8 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
724 Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
725
726 /* Yield an integer that contains TAG along with PTR. */
727 #define TAG_PTR(tag, ptr) \
728 ((USE_LSB_TAG ? (tag) : (EMACS_UINT) (tag) << VALBITS) + (uintptr_t) (ptr))
729
730 /* Yield an integer that tags PTR as a symbol. */
731 #define TAG_SYMPTR(ptr) \
732 TAG_PTR (Lisp_Symbol, \
733 USE_LSB_TAG ? (char *) (ptr) - (char *) lispsym : (intptr_t) (ptr))
734
735 /* Declare extern constants for Lisp symbols. These can be helpful
736 when using a debugger like GDB, on older platforms where the debug
737 format does not represent C macros. Athough these symbols are
738 useless on modern platforms, they don't hurt performance all that much. */
739 #define DEFINE_LISP_SYMBOL_BEGIN(name) \
740 DEFINE_GDB_SYMBOL_BEGIN (Lisp_Object, name)
741 #define DEFINE_LISP_SYMBOL_END(name) \
742 DEFINE_GDB_SYMBOL_END (LISP_INITIALLY (TAG_SYMPTR (name)))
743
744 #include "globals.h"
745
746 /* Convert a Lisp_Object to the corresponding EMACS_INT and vice versa.
747 At the machine level, these operations are no-ops. */
748 LISP_MACRO_DEFUN (XLI, EMACS_INT, (Lisp_Object o), (o))
749 LISP_MACRO_DEFUN (XIL, Lisp_Object, (EMACS_INT i), (i))
750
751 /* In the size word of a vector, this bit means the vector has been marked. */
752
753 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, ARRAY_MARK_FLAG)
754 # define ARRAY_MARK_FLAG PTRDIFF_MIN
755 DEFINE_GDB_SYMBOL_END (ARRAY_MARK_FLAG)
756
757 /* In the size word of a struct Lisp_Vector, this bit means it's really
758 some other vector-like object. */
759 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, PSEUDOVECTOR_FLAG)
760 # define PSEUDOVECTOR_FLAG (PTRDIFF_MAX - PTRDIFF_MAX / 2)
761 DEFINE_GDB_SYMBOL_END (PSEUDOVECTOR_FLAG)
762
763 /* In a pseudovector, the size field actually contains a word with one
764 PSEUDOVECTOR_FLAG bit set, and one of the following values extracted
765 with PVEC_TYPE_MASK to indicate the actual type. */
766 enum pvec_type
767 {
768 PVEC_NORMAL_VECTOR,
769 PVEC_FREE,
770 PVEC_PROCESS,
771 PVEC_FRAME,
772 PVEC_WINDOW,
773 PVEC_BOOL_VECTOR,
774 PVEC_BUFFER,
775 PVEC_HASH_TABLE,
776 PVEC_TERMINAL,
777 PVEC_WINDOW_CONFIGURATION,
778 PVEC_SUBR,
779 PVEC_OTHER,
780 /* These should be last, check internal_equal to see why. */
781 PVEC_COMPILED,
782 PVEC_CHAR_TABLE,
783 PVEC_SUB_CHAR_TABLE,
784 PVEC_FONT /* Should be last because it's used for range checking. */
785 };
786
787 enum More_Lisp_Bits
788 {
789 /* For convenience, we also store the number of elements in these bits.
790 Note that this size is not necessarily the memory-footprint size, but
791 only the number of Lisp_Object fields (that need to be traced by GC).
792 The distinction is used, e.g., by Lisp_Process, which places extra
793 non-Lisp_Object fields at the end of the structure. */
794 PSEUDOVECTOR_SIZE_BITS = 12,
795 PSEUDOVECTOR_SIZE_MASK = (1 << PSEUDOVECTOR_SIZE_BITS) - 1,
796
797 /* To calculate the memory footprint of the pseudovector, it's useful
798 to store the size of non-Lisp area in word_size units here. */
799 PSEUDOVECTOR_REST_BITS = 12,
800 PSEUDOVECTOR_REST_MASK = (((1 << PSEUDOVECTOR_REST_BITS) - 1)
801 << PSEUDOVECTOR_SIZE_BITS),
802
803 /* Used to extract pseudovector subtype information. */
804 PSEUDOVECTOR_AREA_BITS = PSEUDOVECTOR_SIZE_BITS + PSEUDOVECTOR_REST_BITS,
805 PVEC_TYPE_MASK = 0x3f << PSEUDOVECTOR_AREA_BITS
806 };
807 \f
808 /* These functions extract various sorts of values from a Lisp_Object.
809 For example, if tem is a Lisp_Object whose type is Lisp_Cons,
810 XCONS (tem) is the struct Lisp_Cons * pointing to the memory for
811 that cons. */
812
813 /* Mask for the value (as opposed to the type bits) of a Lisp object. */
814 DEFINE_GDB_SYMBOL_BEGIN (EMACS_INT, VALMASK)
815 # define VALMASK (USE_LSB_TAG ? - (1 << GCTYPEBITS) : VAL_MAX)
816 DEFINE_GDB_SYMBOL_END (VALMASK)
817
818 /* Largest and smallest representable fixnum values. These are the C
819 values. They are macros for use in static initializers. */
820 #define MOST_POSITIVE_FIXNUM (EMACS_INT_MAX >> INTTYPEBITS)
821 #define MOST_NEGATIVE_FIXNUM (-1 - MOST_POSITIVE_FIXNUM)
822
823 /* Extract the pointer hidden within A. */
824 LISP_MACRO_DEFUN (XPNTR, void *, (Lisp_Object a), (a))
825
826 #if USE_LSB_TAG
827
828 LISP_MACRO_DEFUN (make_number, Lisp_Object, (EMACS_INT n), (n))
829 LISP_MACRO_DEFUN (XINT, EMACS_INT, (Lisp_Object a), (a))
830 LISP_MACRO_DEFUN (XFASTINT, EMACS_INT, (Lisp_Object a), (a))
831 LISP_MACRO_DEFUN (XTYPE, enum Lisp_Type, (Lisp_Object a), (a))
832 LISP_MACRO_DEFUN (XUNTAG, void *, (Lisp_Object a, int type), (a, type))
833 LISP_MACRO_DEFUN (XUNTAGBASE, void *, (Lisp_Object a, int type, void *base),
834 (a, type, base))
835
836 #else /* ! USE_LSB_TAG */
837
838 /* Although compiled only if ! USE_LSB_TAG, the following functions
839 also work when USE_LSB_TAG; this is to aid future maintenance when
840 the lisp_h_* macros are eventually removed. */
841
842 /* Make a Lisp integer representing the value of the low order
843 bits of N. */
844 INLINE Lisp_Object
845 make_number (EMACS_INT n)
846 {
847 EMACS_INT int0 = Lisp_Int0;
848 if (USE_LSB_TAG)
849 {
850 EMACS_UINT u = n;
851 n = u << INTTYPEBITS;
852 n += int0;
853 }
854 else
855 {
856 n &= INTMASK;
857 n += (int0 << VALBITS);
858 }
859 return XIL (n);
860 }
861
862 /* Extract A's value as a signed integer. */
863 INLINE EMACS_INT
864 XINT (Lisp_Object a)
865 {
866 EMACS_INT i = XLI (a);
867 if (! USE_LSB_TAG)
868 {
869 EMACS_UINT u = i;
870 i = u << INTTYPEBITS;
871 }
872 return i >> INTTYPEBITS;
873 }
874
875 /* Like XINT (A), but may be faster. A must be nonnegative.
876 If ! USE_LSB_TAG, this takes advantage of the fact that Lisp
877 integers have zero-bits in their tags. */
878 INLINE EMACS_INT
879 XFASTINT (Lisp_Object a)
880 {
881 EMACS_INT int0 = Lisp_Int0;
882 EMACS_INT n = USE_LSB_TAG ? XINT (a) : XLI (a) - (int0 << VALBITS);
883 eassert (0 <= n);
884 return n;
885 }
886
887 /* Extract A's type. */
888 INLINE enum Lisp_Type
889 XTYPE (Lisp_Object a)
890 {
891 EMACS_UINT i = XLI (a);
892 return USE_LSB_TAG ? i & ~VALMASK : i >> VALBITS;
893 }
894
895 /* Extract A's pointer value, assuming A's type is TYPE.
896 If USE_LSB_TAG, add BASE to A's pointer value while extracting. */
897 INLINE void *
898 XUNTAGBASE (Lisp_Object a, int type, void *base)
899 {
900 char *b = USE_LSB_TAG ? base : 0;
901 intptr_t i = USE_LSB_TAG ? XLI (a) - type : XLI (a) & VALMASK;
902 return b + i;
903 }
904
905 /* Extract A's pointer value, assuming A's type is TYPE. */
906 INLINE void *
907 XUNTAG (Lisp_Object a, int type)
908 {
909 intptr_t i = USE_LSB_TAG ? XLI (a) - type : XLI (a) & VALMASK;
910 return (void *) i;
911 }
912
913 #endif /* ! USE_LSB_TAG */
914
915 /* Extract A's value as an unsigned integer. */
916 INLINE EMACS_UINT
917 XUINT (Lisp_Object a)
918 {
919 EMACS_UINT i = XLI (a);
920 return USE_LSB_TAG ? i >> INTTYPEBITS : i & INTMASK;
921 }
922
923 /* Return A's (Lisp-integer sized) hash. Happens to be like XUINT
924 right now, but XUINT should only be applied to objects we know are
925 integers. */
926 LISP_MACRO_DEFUN (XHASH, EMACS_INT, (Lisp_Object a), (a))
927
928 /* Like make_number (N), but may be faster. N must be in nonnegative range. */
929 INLINE Lisp_Object
930 make_natnum (EMACS_INT n)
931 {
932 eassert (0 <= n && n <= MOST_POSITIVE_FIXNUM);
933 EMACS_INT int0 = Lisp_Int0;
934 return USE_LSB_TAG ? make_number (n) : XIL (n + (int0 << VALBITS));
935 }
936
937 /* Return true if X and Y are the same object. */
938 LISP_MACRO_DEFUN (EQ, bool, (Lisp_Object x, Lisp_Object y), (x, y))
939
940 /* Value is true if I doesn't fit into a Lisp fixnum. It is
941 written this way so that it also works if I is of unsigned
942 type or if I is a NaN. */
943
944 #define FIXNUM_OVERFLOW_P(i) \
945 (! ((0 <= (i) || MOST_NEGATIVE_FIXNUM <= (i)) && (i) <= MOST_POSITIVE_FIXNUM))
946
947 INLINE ptrdiff_t
948 clip_to_bounds (ptrdiff_t lower, EMACS_INT num, ptrdiff_t upper)
949 {
950 return num < lower ? lower : num <= upper ? num : upper;
951 }
952 \f
953
954 /* Extract a value or address from a Lisp_Object. */
955
956 LISP_MACRO_DEFUN (XCONS, struct Lisp_Cons *, (Lisp_Object a), (a))
957
958 INLINE struct Lisp_Vector *
959 XVECTOR (Lisp_Object a)
960 {
961 eassert (VECTORLIKEP (a));
962 return XUNTAG (a, Lisp_Vectorlike);
963 }
964
965 INLINE struct Lisp_String *
966 XSTRING (Lisp_Object a)
967 {
968 eassert (STRINGP (a));
969 return XUNTAG (a, Lisp_String);
970 }
971
972 LISP_MACRO_DEFUN (XSYMBOL, struct Lisp_Symbol *, (Lisp_Object a), (a))
973
974 /* XSYMBOL_INIT (Qfoo) is like XSYMBOL (Qfoo), except it is valid in
975 static initializers, and SYM must be a C-defined symbol. */
976 #define XSYMBOL_INIT(sym) a##sym
977
978 INLINE struct Lisp_Float *
979 XFLOAT (Lisp_Object a)
980 {
981 eassert (FLOATP (a));
982 return XUNTAG (a, Lisp_Float);
983 }
984
985 /* Pseudovector types. */
986
987 INLINE struct Lisp_Process *
988 XPROCESS (Lisp_Object a)
989 {
990 eassert (PROCESSP (a));
991 return XUNTAG (a, Lisp_Vectorlike);
992 }
993
994 INLINE struct window *
995 XWINDOW (Lisp_Object a)
996 {
997 eassert (WINDOWP (a));
998 return XUNTAG (a, Lisp_Vectorlike);
999 }
1000
1001 INLINE struct terminal *
1002 XTERMINAL (Lisp_Object a)
1003 {
1004 return XUNTAG (a, Lisp_Vectorlike);
1005 }
1006
1007 INLINE struct Lisp_Subr *
1008 XSUBR (Lisp_Object a)
1009 {
1010 eassert (SUBRP (a));
1011 return XUNTAG (a, Lisp_Vectorlike);
1012 }
1013
1014 INLINE struct buffer *
1015 XBUFFER (Lisp_Object a)
1016 {
1017 eassert (BUFFERP (a));
1018 return XUNTAG (a, Lisp_Vectorlike);
1019 }
1020
1021 INLINE struct Lisp_Char_Table *
1022 XCHAR_TABLE (Lisp_Object a)
1023 {
1024 eassert (CHAR_TABLE_P (a));
1025 return XUNTAG (a, Lisp_Vectorlike);
1026 }
1027
1028 INLINE struct Lisp_Sub_Char_Table *
1029 XSUB_CHAR_TABLE (Lisp_Object a)
1030 {
1031 eassert (SUB_CHAR_TABLE_P (a));
1032 return XUNTAG (a, Lisp_Vectorlike);
1033 }
1034
1035 INLINE struct Lisp_Bool_Vector *
1036 XBOOL_VECTOR (Lisp_Object a)
1037 {
1038 eassert (BOOL_VECTOR_P (a));
1039 return XUNTAG (a, Lisp_Vectorlike);
1040 }
1041
1042 /* Construct a Lisp_Object from a value or address. */
1043
1044 INLINE Lisp_Object
1045 make_lisp_ptr (void *ptr, enum Lisp_Type type)
1046 {
1047 Lisp_Object a = XIL (TAG_PTR (type, ptr));
1048 eassert (XTYPE (a) == type && XUNTAG (a, type) == ptr);
1049 return a;
1050 }
1051
1052 INLINE Lisp_Object
1053 make_lisp_symbol (struct Lisp_Symbol *sym)
1054 {
1055 Lisp_Object a = XIL (TAG_SYMPTR (sym));
1056 eassert (XTYPE (a) == Lisp_Symbol
1057 && XUNTAGBASE (a, Lisp_Symbol, lispsym) == sym);
1058 return a;
1059 }
1060
1061 INLINE Lisp_Object
1062 make_lisp_proc (struct Lisp_Process *p)
1063 {
1064 return make_lisp_ptr (p, Lisp_Vectorlike);
1065 }
1066
1067 #define XSETINT(a, b) ((a) = make_number (b))
1068 #define XSETFASTINT(a, b) ((a) = make_natnum (b))
1069 #define XSETCONS(a, b) ((a) = make_lisp_ptr (b, Lisp_Cons))
1070 #define XSETVECTOR(a, b) ((a) = make_lisp_ptr (b, Lisp_Vectorlike))
1071 #define XSETSTRING(a, b) ((a) = make_lisp_ptr (b, Lisp_String))
1072 #define XSETSYMBOL(a, b) ((a) = make_lisp_symbol (b))
1073 #define XSETFLOAT(a, b) ((a) = make_lisp_ptr (b, Lisp_Float))
1074 #define XSETMISC(a, b) ((a) = make_lisp_ptr (b, Lisp_Misc))
1075
1076 /* Pseudovector types. */
1077
1078 #define XSETPVECTYPE(v, code) \
1079 ((v)->header.size |= PSEUDOVECTOR_FLAG | ((code) << PSEUDOVECTOR_AREA_BITS))
1080 #define XSETPVECTYPESIZE(v, code, lispsize, restsize) \
1081 ((v)->header.size = (PSEUDOVECTOR_FLAG \
1082 | ((code) << PSEUDOVECTOR_AREA_BITS) \
1083 | ((restsize) << PSEUDOVECTOR_SIZE_BITS) \
1084 | (lispsize)))
1085
1086 /* The cast to struct vectorlike_header * avoids aliasing issues. */
1087 #define XSETPSEUDOVECTOR(a, b, code) \
1088 XSETTYPED_PSEUDOVECTOR (a, b, \
1089 (((struct vectorlike_header *) \
1090 XUNTAG (a, Lisp_Vectorlike)) \
1091 ->size), \
1092 code)
1093 #define XSETTYPED_PSEUDOVECTOR(a, b, size, code) \
1094 (XSETVECTOR (a, b), \
1095 eassert ((size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK)) \
1096 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS))))
1097
1098 #define XSETWINDOW_CONFIGURATION(a, b) \
1099 (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW_CONFIGURATION))
1100 #define XSETPROCESS(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_PROCESS))
1101 #define XSETWINDOW(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW))
1102 #define XSETTERMINAL(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_TERMINAL))
1103 #define XSETSUBR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUBR))
1104 #define XSETCOMPILED(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_COMPILED))
1105 #define XSETBUFFER(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BUFFER))
1106 #define XSETCHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_CHAR_TABLE))
1107 #define XSETBOOL_VECTOR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BOOL_VECTOR))
1108 #define XSETSUB_CHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUB_CHAR_TABLE))
1109
1110 /* Type checking. */
1111
1112 LISP_MACRO_DEFUN_VOID (CHECK_TYPE,
1113 (int ok, Lisp_Object predicate, Lisp_Object x),
1114 (ok, predicate, x))
1115
1116 /* Deprecated and will be removed soon. */
1117
1118 #define INTERNAL_FIELD(field) field ## _
1119
1120 /* See the macros in intervals.h. */
1121
1122 typedef struct interval *INTERVAL;
1123
1124 struct GCALIGNED Lisp_Cons
1125 {
1126 /* Car of this cons cell. */
1127 Lisp_Object car;
1128
1129 union
1130 {
1131 /* Cdr of this cons cell. */
1132 Lisp_Object cdr;
1133
1134 /* Used to chain conses on a free list. */
1135 struct Lisp_Cons *chain;
1136 } u;
1137 };
1138
1139 /* Take the car or cdr of something known to be a cons cell. */
1140 /* The _addr functions shouldn't be used outside of the minimal set
1141 of code that has to know what a cons cell looks like. Other code not
1142 part of the basic lisp implementation should assume that the car and cdr
1143 fields are not accessible. (What if we want to switch to
1144 a copying collector someday? Cached cons cell field addresses may be
1145 invalidated at arbitrary points.) */
1146 INLINE Lisp_Object *
1147 xcar_addr (Lisp_Object c)
1148 {
1149 return &XCONS (c)->car;
1150 }
1151 INLINE Lisp_Object *
1152 xcdr_addr (Lisp_Object c)
1153 {
1154 return &XCONS (c)->u.cdr;
1155 }
1156
1157 /* Use these from normal code. */
1158 LISP_MACRO_DEFUN (XCAR, Lisp_Object, (Lisp_Object c), (c))
1159 LISP_MACRO_DEFUN (XCDR, Lisp_Object, (Lisp_Object c), (c))
1160
1161 /* Use these to set the fields of a cons cell.
1162
1163 Note that both arguments may refer to the same object, so 'n'
1164 should not be read after 'c' is first modified. */
1165 INLINE void
1166 XSETCAR (Lisp_Object c, Lisp_Object n)
1167 {
1168 *xcar_addr (c) = n;
1169 }
1170 INLINE void
1171 XSETCDR (Lisp_Object c, Lisp_Object n)
1172 {
1173 *xcdr_addr (c) = n;
1174 }
1175
1176 /* Take the car or cdr of something whose type is not known. */
1177 INLINE Lisp_Object
1178 CAR (Lisp_Object c)
1179 {
1180 return (CONSP (c) ? XCAR (c)
1181 : NILP (c) ? Qnil
1182 : wrong_type_argument (Qlistp, c));
1183 }
1184 INLINE Lisp_Object
1185 CDR (Lisp_Object c)
1186 {
1187 return (CONSP (c) ? XCDR (c)
1188 : NILP (c) ? Qnil
1189 : wrong_type_argument (Qlistp, c));
1190 }
1191
1192 /* Take the car or cdr of something whose type is not known. */
1193 INLINE Lisp_Object
1194 CAR_SAFE (Lisp_Object c)
1195 {
1196 return CONSP (c) ? XCAR (c) : Qnil;
1197 }
1198 INLINE Lisp_Object
1199 CDR_SAFE (Lisp_Object c)
1200 {
1201 return CONSP (c) ? XCDR (c) : Qnil;
1202 }
1203
1204 /* In a string or vector, the sign bit of the `size' is the gc mark bit. */
1205
1206 struct GCALIGNED Lisp_String
1207 {
1208 ptrdiff_t size;
1209 ptrdiff_t size_byte;
1210 INTERVAL intervals; /* Text properties in this string. */
1211 unsigned char *data;
1212 };
1213
1214 /* True if STR is a multibyte string. */
1215 INLINE bool
1216 STRING_MULTIBYTE (Lisp_Object str)
1217 {
1218 return 0 <= XSTRING (str)->size_byte;
1219 }
1220
1221 /* An upper bound on the number of bytes in a Lisp string, not
1222 counting the terminating null. This a tight enough bound to
1223 prevent integer overflow errors that would otherwise occur during
1224 string size calculations. A string cannot contain more bytes than
1225 a fixnum can represent, nor can it be so long that C pointer
1226 arithmetic stops working on the string plus its terminating null.
1227 Although the actual size limit (see STRING_BYTES_MAX in alloc.c)
1228 may be a bit smaller than STRING_BYTES_BOUND, calculating it here
1229 would expose alloc.c internal details that we'd rather keep
1230 private.
1231
1232 This is a macro for use in static initializers. The cast to
1233 ptrdiff_t ensures that the macro is signed. */
1234 #define STRING_BYTES_BOUND \
1235 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, min (SIZE_MAX, PTRDIFF_MAX) - 1))
1236
1237 /* Mark STR as a unibyte string. */
1238 #define STRING_SET_UNIBYTE(STR) \
1239 do { \
1240 if (EQ (STR, empty_multibyte_string)) \
1241 (STR) = empty_unibyte_string; \
1242 else \
1243 XSTRING (STR)->size_byte = -1; \
1244 } while (false)
1245
1246 /* Mark STR as a multibyte string. Assure that STR contains only
1247 ASCII characters in advance. */
1248 #define STRING_SET_MULTIBYTE(STR) \
1249 do { \
1250 if (EQ (STR, empty_unibyte_string)) \
1251 (STR) = empty_multibyte_string; \
1252 else \
1253 XSTRING (STR)->size_byte = XSTRING (STR)->size; \
1254 } while (false)
1255
1256 /* Convenience functions for dealing with Lisp strings. */
1257
1258 INLINE unsigned char *
1259 SDATA (Lisp_Object string)
1260 {
1261 return XSTRING (string)->data;
1262 }
1263 INLINE char *
1264 SSDATA (Lisp_Object string)
1265 {
1266 /* Avoid "differ in sign" warnings. */
1267 return (char *) SDATA (string);
1268 }
1269 INLINE unsigned char
1270 SREF (Lisp_Object string, ptrdiff_t index)
1271 {
1272 return SDATA (string)[index];
1273 }
1274 INLINE void
1275 SSET (Lisp_Object string, ptrdiff_t index, unsigned char new)
1276 {
1277 SDATA (string)[index] = new;
1278 }
1279 INLINE ptrdiff_t
1280 SCHARS (Lisp_Object string)
1281 {
1282 return XSTRING (string)->size;
1283 }
1284
1285 #ifdef GC_CHECK_STRING_BYTES
1286 extern ptrdiff_t string_bytes (struct Lisp_String *);
1287 #endif
1288 INLINE ptrdiff_t
1289 STRING_BYTES (struct Lisp_String *s)
1290 {
1291 #ifdef GC_CHECK_STRING_BYTES
1292 return string_bytes (s);
1293 #else
1294 return s->size_byte < 0 ? s->size : s->size_byte;
1295 #endif
1296 }
1297
1298 INLINE ptrdiff_t
1299 SBYTES (Lisp_Object string)
1300 {
1301 return STRING_BYTES (XSTRING (string));
1302 }
1303 INLINE void
1304 STRING_SET_CHARS (Lisp_Object string, ptrdiff_t newsize)
1305 {
1306 XSTRING (string)->size = newsize;
1307 }
1308
1309 /* Header of vector-like objects. This documents the layout constraints on
1310 vectors and pseudovectors (objects of PVEC_xxx subtype). It also prevents
1311 compilers from being fooled by Emacs's type punning: XSETPSEUDOVECTOR
1312 and PSEUDOVECTORP cast their pointers to struct vectorlike_header *,
1313 because when two such pointers potentially alias, a compiler won't
1314 incorrectly reorder loads and stores to their size fields. See
1315 Bug#8546. */
1316 struct vectorlike_header
1317 {
1318 /* The only field contains various pieces of information:
1319 - The MSB (ARRAY_MARK_FLAG) holds the gcmarkbit.
1320 - The next bit (PSEUDOVECTOR_FLAG) indicates whether this is a plain
1321 vector (0) or a pseudovector (1).
1322 - If PSEUDOVECTOR_FLAG is 0, the rest holds the size (number
1323 of slots) of the vector.
1324 - If PSEUDOVECTOR_FLAG is 1, the rest is subdivided into three fields:
1325 - a) pseudovector subtype held in PVEC_TYPE_MASK field;
1326 - b) number of Lisp_Objects slots at the beginning of the object
1327 held in PSEUDOVECTOR_SIZE_MASK field. These objects are always
1328 traced by the GC;
1329 - c) size of the rest fields held in PSEUDOVECTOR_REST_MASK and
1330 measured in word_size units. Rest fields may also include
1331 Lisp_Objects, but these objects usually needs some special treatment
1332 during GC.
1333 There are some exceptions. For PVEC_FREE, b) is always zero. For
1334 PVEC_BOOL_VECTOR and PVEC_SUBR, both b) and c) are always zero.
1335 Current layout limits the pseudovectors to 63 PVEC_xxx subtypes,
1336 4095 Lisp_Objects in GC-ed area and 4095 word-sized other slots. */
1337 ptrdiff_t size;
1338 };
1339
1340 /* A regular vector is just a header plus an array of Lisp_Objects. */
1341
1342 struct Lisp_Vector
1343 {
1344 struct vectorlike_header header;
1345 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1346 };
1347
1348 /* C11 prohibits alignof (struct Lisp_Vector), so compute it manually. */
1349 enum
1350 {
1351 ALIGNOF_STRUCT_LISP_VECTOR
1352 = alignof (union { struct vectorlike_header a; Lisp_Object b; })
1353 };
1354
1355 /* A boolvector is a kind of vectorlike, with contents like a string. */
1356
1357 struct Lisp_Bool_Vector
1358 {
1359 /* HEADER.SIZE is the vector's size field. It doesn't have the real size,
1360 just the subtype information. */
1361 struct vectorlike_header header;
1362 /* This is the size in bits. */
1363 EMACS_INT size;
1364 /* The actual bits, packed into bytes.
1365 Zeros fill out the last word if needed.
1366 The bits are in little-endian order in the bytes, and
1367 the bytes are in little-endian order in the words. */
1368 bits_word data[FLEXIBLE_ARRAY_MEMBER];
1369 };
1370
1371 INLINE EMACS_INT
1372 bool_vector_size (Lisp_Object a)
1373 {
1374 EMACS_INT size = XBOOL_VECTOR (a)->size;
1375 eassume (0 <= size);
1376 return size;
1377 }
1378
1379 INLINE bits_word *
1380 bool_vector_data (Lisp_Object a)
1381 {
1382 return XBOOL_VECTOR (a)->data;
1383 }
1384
1385 INLINE unsigned char *
1386 bool_vector_uchar_data (Lisp_Object a)
1387 {
1388 return (unsigned char *) bool_vector_data (a);
1389 }
1390
1391 /* The number of data words and bytes in a bool vector with SIZE bits. */
1392
1393 INLINE EMACS_INT
1394 bool_vector_words (EMACS_INT size)
1395 {
1396 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1397 return (size + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
1398 }
1399
1400 INLINE EMACS_INT
1401 bool_vector_bytes (EMACS_INT size)
1402 {
1403 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1404 return (size + BOOL_VECTOR_BITS_PER_CHAR - 1) / BOOL_VECTOR_BITS_PER_CHAR;
1405 }
1406
1407 /* True if A's Ith bit is set. */
1408
1409 INLINE bool
1410 bool_vector_bitref (Lisp_Object a, EMACS_INT i)
1411 {
1412 eassume (0 <= i && i < bool_vector_size (a));
1413 return !! (bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR]
1414 & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR)));
1415 }
1416
1417 INLINE Lisp_Object
1418 bool_vector_ref (Lisp_Object a, EMACS_INT i)
1419 {
1420 return bool_vector_bitref (a, i) ? Qt : Qnil;
1421 }
1422
1423 /* Set A's Ith bit to B. */
1424
1425 INLINE void
1426 bool_vector_set (Lisp_Object a, EMACS_INT i, bool b)
1427 {
1428 unsigned char *addr;
1429
1430 eassume (0 <= i && i < bool_vector_size (a));
1431 addr = &bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR];
1432
1433 if (b)
1434 *addr |= 1 << (i % BOOL_VECTOR_BITS_PER_CHAR);
1435 else
1436 *addr &= ~ (1 << (i % BOOL_VECTOR_BITS_PER_CHAR));
1437 }
1438
1439 /* Some handy constants for calculating sizes
1440 and offsets, mostly of vectorlike objects. */
1441
1442 enum
1443 {
1444 header_size = offsetof (struct Lisp_Vector, contents),
1445 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
1446 word_size = sizeof (Lisp_Object)
1447 };
1448
1449 /* Conveniences for dealing with Lisp arrays. */
1450
1451 INLINE Lisp_Object
1452 AREF (Lisp_Object array, ptrdiff_t idx)
1453 {
1454 return XVECTOR (array)->contents[idx];
1455 }
1456
1457 INLINE Lisp_Object *
1458 aref_addr (Lisp_Object array, ptrdiff_t idx)
1459 {
1460 return & XVECTOR (array)->contents[idx];
1461 }
1462
1463 INLINE ptrdiff_t
1464 ASIZE (Lisp_Object array)
1465 {
1466 return XVECTOR (array)->header.size;
1467 }
1468
1469 INLINE void
1470 ASET (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1471 {
1472 eassert (0 <= idx && idx < ASIZE (array));
1473 XVECTOR (array)->contents[idx] = val;
1474 }
1475
1476 INLINE void
1477 gc_aset (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1478 {
1479 /* Like ASET, but also can be used in the garbage collector:
1480 sweep_weak_table calls set_hash_key etc. while the table is marked. */
1481 eassert (0 <= idx && idx < (ASIZE (array) & ~ARRAY_MARK_FLAG));
1482 XVECTOR (array)->contents[idx] = val;
1483 }
1484
1485 /* If a struct is made to look like a vector, this macro returns the length
1486 of the shortest vector that would hold that struct. */
1487
1488 #define VECSIZE(type) \
1489 ((sizeof (type) - header_size + word_size - 1) / word_size)
1490
1491 /* Like VECSIZE, but used when the pseudo-vector has non-Lisp_Object fields
1492 at the end and we need to compute the number of Lisp_Object fields (the
1493 ones that the GC needs to trace). */
1494
1495 #define PSEUDOVECSIZE(type, nonlispfield) \
1496 ((offsetof (type, nonlispfield) - header_size) / word_size)
1497
1498 /* Compute A OP B, using the unsigned comparison operator OP. A and B
1499 should be integer expressions. This is not the same as
1500 mathematical comparison; for example, UNSIGNED_CMP (0, <, -1)
1501 returns true. For efficiency, prefer plain unsigned comparison if A
1502 and B's sizes both fit (after integer promotion). */
1503 #define UNSIGNED_CMP(a, op, b) \
1504 (max (sizeof ((a) + 0), sizeof ((b) + 0)) <= sizeof (unsigned) \
1505 ? ((a) + (unsigned) 0) op ((b) + (unsigned) 0) \
1506 : ((a) + (uintmax_t) 0) op ((b) + (uintmax_t) 0))
1507
1508 /* True iff C is an ASCII character. */
1509 #define ASCII_CHAR_P(c) UNSIGNED_CMP (c, <, 0x80)
1510
1511 /* A char-table is a kind of vectorlike, with contents are like a
1512 vector but with a few other slots. For some purposes, it makes
1513 sense to handle a char-table with type struct Lisp_Vector. An
1514 element of a char table can be any Lisp objects, but if it is a sub
1515 char-table, we treat it a table that contains information of a
1516 specific range of characters. A sub char-table is like a vector but
1517 with two integer fields between the header and Lisp data, which means
1518 that it has to be marked with some precautions (see mark_char_table
1519 in alloc.c). A sub char-table appears only in an element of a char-table,
1520 and there's no way to access it directly from Emacs Lisp program. */
1521
1522 enum CHARTAB_SIZE_BITS
1523 {
1524 CHARTAB_SIZE_BITS_0 = 6,
1525 CHARTAB_SIZE_BITS_1 = 4,
1526 CHARTAB_SIZE_BITS_2 = 5,
1527 CHARTAB_SIZE_BITS_3 = 7
1528 };
1529
1530 extern const int chartab_size[4];
1531
1532 struct Lisp_Char_Table
1533 {
1534 /* HEADER.SIZE is the vector's size field, which also holds the
1535 pseudovector type information. It holds the size, too.
1536 The size counts the defalt, parent, purpose, ascii,
1537 contents, and extras slots. */
1538 struct vectorlike_header header;
1539
1540 /* This holds a default value,
1541 which is used whenever the value for a specific character is nil. */
1542 Lisp_Object defalt;
1543
1544 /* This points to another char table, which we inherit from when the
1545 value for a specific character is nil. The `defalt' slot takes
1546 precedence over this. */
1547 Lisp_Object parent;
1548
1549 /* This is a symbol which says what kind of use this char-table is
1550 meant for. */
1551 Lisp_Object purpose;
1552
1553 /* The bottom sub char-table for characters of the range 0..127. It
1554 is nil if none of ASCII character has a specific value. */
1555 Lisp_Object ascii;
1556
1557 Lisp_Object contents[(1 << CHARTAB_SIZE_BITS_0)];
1558
1559 /* These hold additional data. It is a vector. */
1560 Lisp_Object extras[FLEXIBLE_ARRAY_MEMBER];
1561 };
1562
1563 struct Lisp_Sub_Char_Table
1564 {
1565 /* HEADER.SIZE is the vector's size field, which also holds the
1566 pseudovector type information. It holds the size, too. */
1567 struct vectorlike_header header;
1568
1569 /* Depth of this sub char-table. It should be 1, 2, or 3. A sub
1570 char-table of depth 1 contains 16 elements, and each element
1571 covers 4096 (128*32) characters. A sub char-table of depth 2
1572 contains 32 elements, and each element covers 128 characters. A
1573 sub char-table of depth 3 contains 128 elements, and each element
1574 is for one character. */
1575 int depth;
1576
1577 /* Minimum character covered by the sub char-table. */
1578 int min_char;
1579
1580 /* Use set_sub_char_table_contents to set this. */
1581 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1582 };
1583
1584 INLINE Lisp_Object
1585 CHAR_TABLE_REF_ASCII (Lisp_Object ct, ptrdiff_t idx)
1586 {
1587 struct Lisp_Char_Table *tbl = NULL;
1588 Lisp_Object val;
1589 do
1590 {
1591 tbl = tbl ? XCHAR_TABLE (tbl->parent) : XCHAR_TABLE (ct);
1592 val = (! SUB_CHAR_TABLE_P (tbl->ascii) ? tbl->ascii
1593 : XSUB_CHAR_TABLE (tbl->ascii)->contents[idx]);
1594 if (NILP (val))
1595 val = tbl->defalt;
1596 }
1597 while (NILP (val) && ! NILP (tbl->parent));
1598
1599 return val;
1600 }
1601
1602 /* Almost equivalent to Faref (CT, IDX) with optimization for ASCII
1603 characters. Do not check validity of CT. */
1604 INLINE Lisp_Object
1605 CHAR_TABLE_REF (Lisp_Object ct, int idx)
1606 {
1607 return (ASCII_CHAR_P (idx)
1608 ? CHAR_TABLE_REF_ASCII (ct, idx)
1609 : char_table_ref (ct, idx));
1610 }
1611
1612 /* Equivalent to Faset (CT, IDX, VAL) with optimization for ASCII and
1613 8-bit European characters. Do not check validity of CT. */
1614 INLINE void
1615 CHAR_TABLE_SET (Lisp_Object ct, int idx, Lisp_Object val)
1616 {
1617 if (ASCII_CHAR_P (idx) && SUB_CHAR_TABLE_P (XCHAR_TABLE (ct)->ascii))
1618 set_sub_char_table_contents (XCHAR_TABLE (ct)->ascii, idx, val);
1619 else
1620 char_table_set (ct, idx, val);
1621 }
1622
1623 /* This structure describes a built-in function.
1624 It is generated by the DEFUN macro only.
1625 defsubr makes it into a Lisp object. */
1626
1627 struct Lisp_Subr
1628 {
1629 struct vectorlike_header header;
1630 union {
1631 Lisp_Object (*a0) (void);
1632 Lisp_Object (*a1) (Lisp_Object);
1633 Lisp_Object (*a2) (Lisp_Object, Lisp_Object);
1634 Lisp_Object (*a3) (Lisp_Object, Lisp_Object, Lisp_Object);
1635 Lisp_Object (*a4) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1636 Lisp_Object (*a5) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1637 Lisp_Object (*a6) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1638 Lisp_Object (*a7) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1639 Lisp_Object (*a8) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1640 Lisp_Object (*aUNEVALLED) (Lisp_Object args);
1641 Lisp_Object (*aMANY) (ptrdiff_t, Lisp_Object *);
1642 } function;
1643 short min_args, max_args;
1644 const char *symbol_name;
1645 const char *intspec;
1646 const char *doc;
1647 };
1648
1649 enum char_table_specials
1650 {
1651 /* This is the number of slots that every char table must have. This
1652 counts the ordinary slots and the top, defalt, parent, and purpose
1653 slots. */
1654 CHAR_TABLE_STANDARD_SLOTS = PSEUDOVECSIZE (struct Lisp_Char_Table, extras),
1655
1656 /* This is an index of first Lisp_Object field in Lisp_Sub_Char_Table
1657 when the latter is treated as an ordinary Lisp_Vector. */
1658 SUB_CHAR_TABLE_OFFSET = PSEUDOVECSIZE (struct Lisp_Sub_Char_Table, contents)
1659 };
1660
1661 /* Return the number of "extra" slots in the char table CT. */
1662
1663 INLINE int
1664 CHAR_TABLE_EXTRA_SLOTS (struct Lisp_Char_Table *ct)
1665 {
1666 return ((ct->header.size & PSEUDOVECTOR_SIZE_MASK)
1667 - CHAR_TABLE_STANDARD_SLOTS);
1668 }
1669
1670 /* Make sure that sub char-table contents slot
1671 is aligned on a multiple of Lisp_Objects. */
1672 verify ((offsetof (struct Lisp_Sub_Char_Table, contents)
1673 - offsetof (struct Lisp_Sub_Char_Table, depth)) % word_size == 0);
1674
1675 /***********************************************************************
1676 Symbols
1677 ***********************************************************************/
1678
1679 /* Value is name of symbol. */
1680
1681 LISP_MACRO_DEFUN (SYMBOL_VAL, Lisp_Object, (struct Lisp_Symbol *sym), (sym))
1682
1683 INLINE struct Lisp_Symbol *
1684 SYMBOL_ALIAS (struct Lisp_Symbol *sym)
1685 {
1686 eassert (sym->redirect == SYMBOL_VARALIAS);
1687 return sym->val.alias;
1688 }
1689 INLINE struct Lisp_Buffer_Local_Value *
1690 SYMBOL_BLV (struct Lisp_Symbol *sym)
1691 {
1692 eassert (sym->redirect == SYMBOL_LOCALIZED);
1693 return sym->val.blv;
1694 }
1695 INLINE union Lisp_Fwd *
1696 SYMBOL_FWD (struct Lisp_Symbol *sym)
1697 {
1698 eassert (sym->redirect == SYMBOL_FORWARDED);
1699 return sym->val.fwd;
1700 }
1701
1702 LISP_MACRO_DEFUN_VOID (SET_SYMBOL_VAL,
1703 (struct Lisp_Symbol *sym, Lisp_Object v), (sym, v))
1704
1705 INLINE void
1706 SET_SYMBOL_ALIAS (struct Lisp_Symbol *sym, struct Lisp_Symbol *v)
1707 {
1708 eassert (sym->redirect == SYMBOL_VARALIAS);
1709 sym->val.alias = v;
1710 }
1711 INLINE void
1712 SET_SYMBOL_BLV (struct Lisp_Symbol *sym, struct Lisp_Buffer_Local_Value *v)
1713 {
1714 eassert (sym->redirect == SYMBOL_LOCALIZED);
1715 sym->val.blv = v;
1716 }
1717 INLINE void
1718 SET_SYMBOL_FWD (struct Lisp_Symbol *sym, union Lisp_Fwd *v)
1719 {
1720 eassert (sym->redirect == SYMBOL_FORWARDED);
1721 sym->val.fwd = v;
1722 }
1723
1724 INLINE Lisp_Object
1725 SYMBOL_NAME (Lisp_Object sym)
1726 {
1727 return XSYMBOL (sym)->name;
1728 }
1729
1730 /* Value is true if SYM is an interned symbol. */
1731
1732 INLINE bool
1733 SYMBOL_INTERNED_P (Lisp_Object sym)
1734 {
1735 return XSYMBOL (sym)->interned != SYMBOL_UNINTERNED;
1736 }
1737
1738 /* Value is true if SYM is interned in initial_obarray. */
1739
1740 INLINE bool
1741 SYMBOL_INTERNED_IN_INITIAL_OBARRAY_P (Lisp_Object sym)
1742 {
1743 return XSYMBOL (sym)->interned == SYMBOL_INTERNED_IN_INITIAL_OBARRAY;
1744 }
1745
1746 /* Value is non-zero if symbol is considered a constant, i.e. its
1747 value cannot be changed (there is an exception for keyword symbols,
1748 whose value can be set to the keyword symbol itself). */
1749
1750 LISP_MACRO_DEFUN (SYMBOL_CONSTANT_P, int, (Lisp_Object sym), (sym))
1751
1752 /* Placeholder for make-docfile to process. The actual symbol
1753 definition is done by lread.c's defsym. */
1754 #define DEFSYM(sym, name) /* empty */
1755
1756 \f
1757 /***********************************************************************
1758 Hash Tables
1759 ***********************************************************************/
1760
1761 /* The structure of a Lisp hash table. */
1762
1763 struct hash_table_test
1764 {
1765 /* Name of the function used to compare keys. */
1766 Lisp_Object name;
1767
1768 /* User-supplied hash function, or nil. */
1769 Lisp_Object user_hash_function;
1770
1771 /* User-supplied key comparison function, or nil. */
1772 Lisp_Object user_cmp_function;
1773
1774 /* C function to compare two keys. */
1775 bool (*cmpfn) (struct hash_table_test *t, Lisp_Object, Lisp_Object);
1776
1777 /* C function to compute hash code. */
1778 EMACS_UINT (*hashfn) (struct hash_table_test *t, Lisp_Object);
1779 };
1780
1781 struct Lisp_Hash_Table
1782 {
1783 /* This is for Lisp; the hash table code does not refer to it. */
1784 struct vectorlike_header header;
1785
1786 /* Nil if table is non-weak. Otherwise a symbol describing the
1787 weakness of the table. */
1788 Lisp_Object weak;
1789
1790 /* When the table is resized, and this is an integer, compute the
1791 new size by adding this to the old size. If a float, compute the
1792 new size by multiplying the old size with this factor. */
1793 Lisp_Object rehash_size;
1794
1795 /* Resize hash table when number of entries/ table size is >= this
1796 ratio, a float. */
1797 Lisp_Object rehash_threshold;
1798
1799 /* Vector of hash codes. If hash[I] is nil, this means that the
1800 I-th entry is unused. */
1801 Lisp_Object hash;
1802
1803 /* Vector used to chain entries. If entry I is free, next[I] is the
1804 entry number of the next free item. If entry I is non-free,
1805 next[I] is the index of the next entry in the collision chain. */
1806 Lisp_Object next;
1807
1808 /* Index of first free entry in free list. */
1809 Lisp_Object next_free;
1810
1811 /* Bucket vector. A non-nil entry is the index of the first item in
1812 a collision chain. This vector's size can be larger than the
1813 hash table size to reduce collisions. */
1814 Lisp_Object index;
1815
1816 /* Only the fields above are traced normally by the GC. The ones below
1817 `count' are special and are either ignored by the GC or traced in
1818 a special way (e.g. because of weakness). */
1819
1820 /* Number of key/value entries in the table. */
1821 ptrdiff_t count;
1822
1823 /* Vector of keys and values. The key of item I is found at index
1824 2 * I, the value is found at index 2 * I + 1.
1825 This is gc_marked specially if the table is weak. */
1826 Lisp_Object key_and_value;
1827
1828 /* The comparison and hash functions. */
1829 struct hash_table_test test;
1830
1831 /* Next weak hash table if this is a weak hash table. The head
1832 of the list is in weak_hash_tables. */
1833 struct Lisp_Hash_Table *next_weak;
1834 };
1835
1836
1837 INLINE struct Lisp_Hash_Table *
1838 XHASH_TABLE (Lisp_Object a)
1839 {
1840 return XUNTAG (a, Lisp_Vectorlike);
1841 }
1842
1843 #define XSET_HASH_TABLE(VAR, PTR) \
1844 (XSETPSEUDOVECTOR (VAR, PTR, PVEC_HASH_TABLE))
1845
1846 INLINE bool
1847 HASH_TABLE_P (Lisp_Object a)
1848 {
1849 return PSEUDOVECTORP (a, PVEC_HASH_TABLE);
1850 }
1851
1852 /* Value is the key part of entry IDX in hash table H. */
1853 INLINE Lisp_Object
1854 HASH_KEY (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1855 {
1856 return AREF (h->key_and_value, 2 * idx);
1857 }
1858
1859 /* Value is the value part of entry IDX in hash table H. */
1860 INLINE Lisp_Object
1861 HASH_VALUE (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1862 {
1863 return AREF (h->key_and_value, 2 * idx + 1);
1864 }
1865
1866 /* Value is the index of the next entry following the one at IDX
1867 in hash table H. */
1868 INLINE Lisp_Object
1869 HASH_NEXT (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1870 {
1871 return AREF (h->next, idx);
1872 }
1873
1874 /* Value is the hash code computed for entry IDX in hash table H. */
1875 INLINE Lisp_Object
1876 HASH_HASH (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1877 {
1878 return AREF (h->hash, idx);
1879 }
1880
1881 /* Value is the index of the element in hash table H that is the
1882 start of the collision list at index IDX in the index vector of H. */
1883 INLINE Lisp_Object
1884 HASH_INDEX (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1885 {
1886 return AREF (h->index, idx);
1887 }
1888
1889 /* Value is the size of hash table H. */
1890 INLINE ptrdiff_t
1891 HASH_TABLE_SIZE (struct Lisp_Hash_Table *h)
1892 {
1893 return ASIZE (h->next);
1894 }
1895
1896 /* Default size for hash tables if not specified. */
1897
1898 enum DEFAULT_HASH_SIZE { DEFAULT_HASH_SIZE = 65 };
1899
1900 /* Default threshold specifying when to resize a hash table. The
1901 value gives the ratio of current entries in the hash table and the
1902 size of the hash table. */
1903
1904 static double const DEFAULT_REHASH_THRESHOLD = 0.8;
1905
1906 /* Default factor by which to increase the size of a hash table. */
1907
1908 static double const DEFAULT_REHASH_SIZE = 1.5;
1909
1910 /* Combine two integers X and Y for hashing. The result might not fit
1911 into a Lisp integer. */
1912
1913 INLINE EMACS_UINT
1914 sxhash_combine (EMACS_UINT x, EMACS_UINT y)
1915 {
1916 return (x << 4) + (x >> (BITS_PER_EMACS_INT - 4)) + y;
1917 }
1918
1919 /* Hash X, returning a value that fits into a fixnum. */
1920
1921 INLINE EMACS_UINT
1922 SXHASH_REDUCE (EMACS_UINT x)
1923 {
1924 return (x ^ x >> (BITS_PER_EMACS_INT - FIXNUM_BITS)) & INTMASK;
1925 }
1926
1927 /* These structures are used for various misc types. */
1928
1929 struct Lisp_Misc_Any /* Supertype of all Misc types. */
1930 {
1931 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_??? */
1932 bool_bf gcmarkbit : 1;
1933 unsigned spacer : 15;
1934 };
1935
1936 struct Lisp_Marker
1937 {
1938 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Marker */
1939 bool_bf gcmarkbit : 1;
1940 unsigned spacer : 13;
1941 /* This flag is temporarily used in the functions
1942 decode/encode_coding_object to record that the marker position
1943 must be adjusted after the conversion. */
1944 bool_bf need_adjustment : 1;
1945 /* True means normal insertion at the marker's position
1946 leaves the marker after the inserted text. */
1947 bool_bf insertion_type : 1;
1948 /* This is the buffer that the marker points into, or 0 if it points nowhere.
1949 Note: a chain of markers can contain markers pointing into different
1950 buffers (the chain is per buffer_text rather than per buffer, so it's
1951 shared between indirect buffers). */
1952 /* This is used for (other than NULL-checking):
1953 - Fmarker_buffer
1954 - Fset_marker: check eq(oldbuf, newbuf) to avoid unchain+rechain.
1955 - unchain_marker: to find the list from which to unchain.
1956 - Fkill_buffer: to only unchain the markers of current indirect buffer.
1957 */
1958 struct buffer *buffer;
1959
1960 /* The remaining fields are meaningless in a marker that
1961 does not point anywhere. */
1962
1963 /* For markers that point somewhere,
1964 this is used to chain of all the markers in a given buffer. */
1965 /* We could remove it and use an array in buffer_text instead.
1966 That would also allow to preserve it ordered. */
1967 struct Lisp_Marker *next;
1968 /* This is the char position where the marker points. */
1969 ptrdiff_t charpos;
1970 /* This is the byte position.
1971 It's mostly used as a charpos<->bytepos cache (i.e. it's not directly
1972 used to implement the functionality of markers, but rather to (ab)use
1973 markers as a cache for char<->byte mappings). */
1974 ptrdiff_t bytepos;
1975 };
1976
1977 /* START and END are markers in the overlay's buffer, and
1978 PLIST is the overlay's property list. */
1979 struct Lisp_Overlay
1980 /* An overlay's real data content is:
1981 - plist
1982 - buffer (really there are two buffer pointers, one per marker,
1983 and both points to the same buffer)
1984 - insertion type of both ends (per-marker fields)
1985 - start & start byte (of start marker)
1986 - end & end byte (of end marker)
1987 - next (singly linked list of overlays)
1988 - next fields of start and end markers (singly linked list of markers).
1989 I.e. 9words plus 2 bits, 3words of which are for external linked lists.
1990 */
1991 {
1992 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Overlay */
1993 bool_bf gcmarkbit : 1;
1994 unsigned spacer : 15;
1995 struct Lisp_Overlay *next;
1996 Lisp_Object start;
1997 Lisp_Object end;
1998 Lisp_Object plist;
1999 };
2000
2001 /* Types of data which may be saved in a Lisp_Save_Value. */
2002
2003 enum
2004 {
2005 SAVE_UNUSED,
2006 SAVE_INTEGER,
2007 SAVE_FUNCPOINTER,
2008 SAVE_POINTER,
2009 SAVE_OBJECT
2010 };
2011
2012 /* Number of bits needed to store one of the above values. */
2013 enum { SAVE_SLOT_BITS = 3 };
2014
2015 /* Number of slots in a save value where save_type is nonzero. */
2016 enum { SAVE_VALUE_SLOTS = 4 };
2017
2018 /* Bit-width and values for struct Lisp_Save_Value's save_type member. */
2019
2020 enum { SAVE_TYPE_BITS = SAVE_VALUE_SLOTS * SAVE_SLOT_BITS + 1 };
2021
2022 enum Lisp_Save_Type
2023 {
2024 SAVE_TYPE_INT_INT = SAVE_INTEGER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2025 SAVE_TYPE_INT_INT_INT
2026 = (SAVE_INTEGER + (SAVE_TYPE_INT_INT << SAVE_SLOT_BITS)),
2027 SAVE_TYPE_OBJ_OBJ = SAVE_OBJECT + (SAVE_OBJECT << SAVE_SLOT_BITS),
2028 SAVE_TYPE_OBJ_OBJ_OBJ = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ << SAVE_SLOT_BITS),
2029 SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
2030 = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ_OBJ << SAVE_SLOT_BITS),
2031 SAVE_TYPE_PTR_INT = SAVE_POINTER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2032 SAVE_TYPE_PTR_OBJ = SAVE_POINTER + (SAVE_OBJECT << SAVE_SLOT_BITS),
2033 SAVE_TYPE_PTR_PTR = SAVE_POINTER + (SAVE_POINTER << SAVE_SLOT_BITS),
2034 SAVE_TYPE_FUNCPTR_PTR_OBJ
2035 = SAVE_FUNCPOINTER + (SAVE_TYPE_PTR_OBJ << SAVE_SLOT_BITS),
2036
2037 /* This has an extra bit indicating it's raw memory. */
2038 SAVE_TYPE_MEMORY = SAVE_TYPE_PTR_INT + (1 << (SAVE_TYPE_BITS - 1))
2039 };
2040
2041 /* Special object used to hold a different values for later use.
2042
2043 This is mostly used to package C integers and pointers to call
2044 record_unwind_protect when two or more values need to be saved.
2045 For example:
2046
2047 ...
2048 struct my_data *md = get_my_data ();
2049 ptrdiff_t mi = get_my_integer ();
2050 record_unwind_protect (my_unwind, make_save_ptr_int (md, mi));
2051 ...
2052
2053 Lisp_Object my_unwind (Lisp_Object arg)
2054 {
2055 struct my_data *md = XSAVE_POINTER (arg, 0);
2056 ptrdiff_t mi = XSAVE_INTEGER (arg, 1);
2057 ...
2058 }
2059
2060 If ENABLE_CHECKING is in effect, XSAVE_xxx macros do type checking of the
2061 saved objects and raise eassert if type of the saved object doesn't match
2062 the type which is extracted. In the example above, XSAVE_INTEGER (arg, 2)
2063 and XSAVE_OBJECT (arg, 0) are wrong because nothing was saved in slot 2 and
2064 slot 0 is a pointer. */
2065
2066 typedef void (*voidfuncptr) (void);
2067
2068 struct Lisp_Save_Value
2069 {
2070 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Save_Value */
2071 bool_bf gcmarkbit : 1;
2072 unsigned spacer : 32 - (16 + 1 + SAVE_TYPE_BITS);
2073
2074 /* V->data may hold up to SAVE_VALUE_SLOTS entries. The type of
2075 V's data entries are determined by V->save_type. E.g., if
2076 V->save_type == SAVE_TYPE_PTR_OBJ, V->data[0] is a pointer,
2077 V->data[1] is an integer, and V's other data entries are unused.
2078
2079 If V->save_type == SAVE_TYPE_MEMORY, V->data[0].pointer is the address of
2080 a memory area containing V->data[1].integer potential Lisp_Objects. */
2081 ENUM_BF (Lisp_Save_Type) save_type : SAVE_TYPE_BITS;
2082 union {
2083 void *pointer;
2084 voidfuncptr funcpointer;
2085 ptrdiff_t integer;
2086 Lisp_Object object;
2087 } data[SAVE_VALUE_SLOTS];
2088 };
2089
2090 /* Return the type of V's Nth saved value. */
2091 INLINE int
2092 save_type (struct Lisp_Save_Value *v, int n)
2093 {
2094 eassert (0 <= n && n < SAVE_VALUE_SLOTS);
2095 return (v->save_type >> (SAVE_SLOT_BITS * n) & ((1 << SAVE_SLOT_BITS) - 1));
2096 }
2097
2098 /* Get and set the Nth saved pointer. */
2099
2100 INLINE void *
2101 XSAVE_POINTER (Lisp_Object obj, int n)
2102 {
2103 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2104 return XSAVE_VALUE (obj)->data[n].pointer;
2105 }
2106 INLINE void
2107 set_save_pointer (Lisp_Object obj, int n, void *val)
2108 {
2109 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2110 XSAVE_VALUE (obj)->data[n].pointer = val;
2111 }
2112 INLINE voidfuncptr
2113 XSAVE_FUNCPOINTER (Lisp_Object obj, int n)
2114 {
2115 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_FUNCPOINTER);
2116 return XSAVE_VALUE (obj)->data[n].funcpointer;
2117 }
2118
2119 /* Likewise for the saved integer. */
2120
2121 INLINE ptrdiff_t
2122 XSAVE_INTEGER (Lisp_Object obj, int n)
2123 {
2124 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2125 return XSAVE_VALUE (obj)->data[n].integer;
2126 }
2127 INLINE void
2128 set_save_integer (Lisp_Object obj, int n, ptrdiff_t val)
2129 {
2130 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2131 XSAVE_VALUE (obj)->data[n].integer = val;
2132 }
2133
2134 /* Extract Nth saved object. */
2135
2136 INLINE Lisp_Object
2137 XSAVE_OBJECT (Lisp_Object obj, int n)
2138 {
2139 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_OBJECT);
2140 return XSAVE_VALUE (obj)->data[n].object;
2141 }
2142
2143 /* A miscellaneous object, when it's on the free list. */
2144 struct Lisp_Free
2145 {
2146 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Free */
2147 bool_bf gcmarkbit : 1;
2148 unsigned spacer : 15;
2149 union Lisp_Misc *chain;
2150 };
2151
2152 /* To get the type field of a union Lisp_Misc, use XMISCTYPE.
2153 It uses one of these struct subtypes to get the type field. */
2154
2155 union Lisp_Misc
2156 {
2157 struct Lisp_Misc_Any u_any; /* Supertype of all Misc types. */
2158 struct Lisp_Free u_free;
2159 struct Lisp_Marker u_marker;
2160 struct Lisp_Overlay u_overlay;
2161 struct Lisp_Save_Value u_save_value;
2162 };
2163
2164 INLINE union Lisp_Misc *
2165 XMISC (Lisp_Object a)
2166 {
2167 return XUNTAG (a, Lisp_Misc);
2168 }
2169
2170 INLINE struct Lisp_Misc_Any *
2171 XMISCANY (Lisp_Object a)
2172 {
2173 eassert (MISCP (a));
2174 return & XMISC (a)->u_any;
2175 }
2176
2177 INLINE enum Lisp_Misc_Type
2178 XMISCTYPE (Lisp_Object a)
2179 {
2180 return XMISCANY (a)->type;
2181 }
2182
2183 INLINE struct Lisp_Marker *
2184 XMARKER (Lisp_Object a)
2185 {
2186 eassert (MARKERP (a));
2187 return & XMISC (a)->u_marker;
2188 }
2189
2190 INLINE struct Lisp_Overlay *
2191 XOVERLAY (Lisp_Object a)
2192 {
2193 eassert (OVERLAYP (a));
2194 return & XMISC (a)->u_overlay;
2195 }
2196
2197 INLINE struct Lisp_Save_Value *
2198 XSAVE_VALUE (Lisp_Object a)
2199 {
2200 eassert (SAVE_VALUEP (a));
2201 return & XMISC (a)->u_save_value;
2202 }
2203 \f
2204 /* Forwarding pointer to an int variable.
2205 This is allowed only in the value cell of a symbol,
2206 and it means that the symbol's value really lives in the
2207 specified int variable. */
2208 struct Lisp_Intfwd
2209 {
2210 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Int */
2211 EMACS_INT *intvar;
2212 };
2213
2214 /* Boolean forwarding pointer to an int variable.
2215 This is like Lisp_Intfwd except that the ostensible
2216 "value" of the symbol is t if the bool variable is true,
2217 nil if it is false. */
2218 struct Lisp_Boolfwd
2219 {
2220 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Bool */
2221 bool *boolvar;
2222 };
2223
2224 /* Forwarding pointer to a Lisp_Object variable.
2225 This is allowed only in the value cell of a symbol,
2226 and it means that the symbol's value really lives in the
2227 specified variable. */
2228 struct Lisp_Objfwd
2229 {
2230 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Obj */
2231 Lisp_Object *objvar;
2232 };
2233
2234 /* Like Lisp_Objfwd except that value lives in a slot in the
2235 current buffer. Value is byte index of slot within buffer. */
2236 struct Lisp_Buffer_Objfwd
2237 {
2238 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Buffer_Obj */
2239 int offset;
2240 /* One of Qnil, Qintegerp, Qsymbolp, Qstringp, Qfloatp or Qnumberp. */
2241 Lisp_Object predicate;
2242 };
2243
2244 /* struct Lisp_Buffer_Local_Value is used in a symbol value cell when
2245 the symbol has buffer-local or frame-local bindings. (Exception:
2246 some buffer-local variables are built-in, with their values stored
2247 in the buffer structure itself. They are handled differently,
2248 using struct Lisp_Buffer_Objfwd.)
2249
2250 The `realvalue' slot holds the variable's current value, or a
2251 forwarding pointer to where that value is kept. This value is the
2252 one that corresponds to the loaded binding. To read or set the
2253 variable, you must first make sure the right binding is loaded;
2254 then you can access the value in (or through) `realvalue'.
2255
2256 `buffer' and `frame' are the buffer and frame for which the loaded
2257 binding was found. If those have changed, to make sure the right
2258 binding is loaded it is necessary to find which binding goes with
2259 the current buffer and selected frame, then load it. To load it,
2260 first unload the previous binding, then copy the value of the new
2261 binding into `realvalue' (or through it). Also update
2262 LOADED-BINDING to point to the newly loaded binding.
2263
2264 `local_if_set' indicates that merely setting the variable creates a
2265 local binding for the current buffer. Otherwise the latter, setting
2266 the variable does not do that; only make-local-variable does that. */
2267
2268 struct Lisp_Buffer_Local_Value
2269 {
2270 /* True means that merely setting the variable creates a local
2271 binding for the current buffer. */
2272 bool_bf local_if_set : 1;
2273 /* True means this variable can have frame-local bindings, otherwise, it is
2274 can have buffer-local bindings. The two cannot be combined. */
2275 bool_bf frame_local : 1;
2276 /* True means that the binding now loaded was found.
2277 Presumably equivalent to (defcell!=valcell). */
2278 bool_bf found : 1;
2279 /* If non-NULL, a forwarding to the C var where it should also be set. */
2280 union Lisp_Fwd *fwd; /* Should never be (Buffer|Kboard)_Objfwd. */
2281 /* The buffer or frame for which the loaded binding was found. */
2282 Lisp_Object where;
2283 /* A cons cell that holds the default value. It has the form
2284 (SYMBOL . DEFAULT-VALUE). */
2285 Lisp_Object defcell;
2286 /* The cons cell from `where's parameter alist.
2287 It always has the form (SYMBOL . VALUE)
2288 Note that if `forward' is non-nil, VALUE may be out of date.
2289 Also if the currently loaded binding is the default binding, then
2290 this is `eq'ual to defcell. */
2291 Lisp_Object valcell;
2292 };
2293
2294 /* Like Lisp_Objfwd except that value lives in a slot in the
2295 current kboard. */
2296 struct Lisp_Kboard_Objfwd
2297 {
2298 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Kboard_Obj */
2299 int offset;
2300 };
2301
2302 union Lisp_Fwd
2303 {
2304 struct Lisp_Intfwd u_intfwd;
2305 struct Lisp_Boolfwd u_boolfwd;
2306 struct Lisp_Objfwd u_objfwd;
2307 struct Lisp_Buffer_Objfwd u_buffer_objfwd;
2308 struct Lisp_Kboard_Objfwd u_kboard_objfwd;
2309 };
2310
2311 INLINE enum Lisp_Fwd_Type
2312 XFWDTYPE (union Lisp_Fwd *a)
2313 {
2314 return a->u_intfwd.type;
2315 }
2316
2317 INLINE struct Lisp_Buffer_Objfwd *
2318 XBUFFER_OBJFWD (union Lisp_Fwd *a)
2319 {
2320 eassert (BUFFER_OBJFWDP (a));
2321 return &a->u_buffer_objfwd;
2322 }
2323 \f
2324 /* Lisp floating point type. */
2325 struct Lisp_Float
2326 {
2327 union
2328 {
2329 double data;
2330 struct Lisp_Float *chain;
2331 } u;
2332 };
2333
2334 INLINE double
2335 XFLOAT_DATA (Lisp_Object f)
2336 {
2337 return XFLOAT (f)->u.data;
2338 }
2339
2340 /* Most hosts nowadays use IEEE floating point, so they use IEC 60559
2341 representations, have infinities and NaNs, and do not trap on
2342 exceptions. Define IEEE_FLOATING_POINT if this host is one of the
2343 typical ones. The C11 macro __STDC_IEC_559__ is close to what is
2344 wanted here, but is not quite right because Emacs does not require
2345 all the features of C11 Annex F (and does not require C11 at all,
2346 for that matter). */
2347 enum
2348 {
2349 IEEE_FLOATING_POINT
2350 = (FLT_RADIX == 2 && FLT_MANT_DIG == 24
2351 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
2352 };
2353
2354 /* A character, declared with the following typedef, is a member
2355 of some character set associated with the current buffer. */
2356 #ifndef _UCHAR_T /* Protect against something in ctab.h on AIX. */
2357 #define _UCHAR_T
2358 typedef unsigned char UCHAR;
2359 #endif
2360
2361 /* Meanings of slots in a Lisp_Compiled: */
2362
2363 enum Lisp_Compiled
2364 {
2365 COMPILED_ARGLIST = 0,
2366 COMPILED_BYTECODE = 1,
2367 COMPILED_CONSTANTS = 2,
2368 COMPILED_STACK_DEPTH = 3,
2369 COMPILED_DOC_STRING = 4,
2370 COMPILED_INTERACTIVE = 5
2371 };
2372
2373 /* Flag bits in a character. These also get used in termhooks.h.
2374 Richard Stallman <rms@gnu.ai.mit.edu> thinks that MULE
2375 (MUlti-Lingual Emacs) might need 22 bits for the character value
2376 itself, so we probably shouldn't use any bits lower than 0x0400000. */
2377 enum char_bits
2378 {
2379 CHAR_ALT = 0x0400000,
2380 CHAR_SUPER = 0x0800000,
2381 CHAR_HYPER = 0x1000000,
2382 CHAR_SHIFT = 0x2000000,
2383 CHAR_CTL = 0x4000000,
2384 CHAR_META = 0x8000000,
2385
2386 CHAR_MODIFIER_MASK =
2387 CHAR_ALT | CHAR_SUPER | CHAR_HYPER | CHAR_SHIFT | CHAR_CTL | CHAR_META,
2388
2389 /* Actually, the current Emacs uses 22 bits for the character value
2390 itself. */
2391 CHARACTERBITS = 22
2392 };
2393 \f
2394 /* Data type checking. */
2395
2396 LISP_MACRO_DEFUN (NILP, bool, (Lisp_Object x), (x))
2397
2398 INLINE bool
2399 NUMBERP (Lisp_Object x)
2400 {
2401 return INTEGERP (x) || FLOATP (x);
2402 }
2403 INLINE bool
2404 NATNUMP (Lisp_Object x)
2405 {
2406 return INTEGERP (x) && 0 <= XINT (x);
2407 }
2408
2409 INLINE bool
2410 RANGED_INTEGERP (intmax_t lo, Lisp_Object x, intmax_t hi)
2411 {
2412 return INTEGERP (x) && lo <= XINT (x) && XINT (x) <= hi;
2413 }
2414
2415 #define TYPE_RANGED_INTEGERP(type, x) \
2416 (INTEGERP (x) \
2417 && (TYPE_SIGNED (type) ? TYPE_MINIMUM (type) <= XINT (x) : 0 <= XINT (x)) \
2418 && XINT (x) <= TYPE_MAXIMUM (type))
2419
2420 LISP_MACRO_DEFUN (CONSP, bool, (Lisp_Object x), (x))
2421 LISP_MACRO_DEFUN (FLOATP, bool, (Lisp_Object x), (x))
2422 LISP_MACRO_DEFUN (MISCP, bool, (Lisp_Object x), (x))
2423 LISP_MACRO_DEFUN (SYMBOLP, bool, (Lisp_Object x), (x))
2424 LISP_MACRO_DEFUN (INTEGERP, bool, (Lisp_Object x), (x))
2425 LISP_MACRO_DEFUN (VECTORLIKEP, bool, (Lisp_Object x), (x))
2426 LISP_MACRO_DEFUN (MARKERP, bool, (Lisp_Object x), (x))
2427
2428 INLINE bool
2429 STRINGP (Lisp_Object x)
2430 {
2431 return XTYPE (x) == Lisp_String;
2432 }
2433 INLINE bool
2434 VECTORP (Lisp_Object x)
2435 {
2436 return VECTORLIKEP (x) && ! (ASIZE (x) & PSEUDOVECTOR_FLAG);
2437 }
2438 INLINE bool
2439 OVERLAYP (Lisp_Object x)
2440 {
2441 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Overlay;
2442 }
2443 INLINE bool
2444 SAVE_VALUEP (Lisp_Object x)
2445 {
2446 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Save_Value;
2447 }
2448
2449 INLINE bool
2450 AUTOLOADP (Lisp_Object x)
2451 {
2452 return CONSP (x) && EQ (Qautoload, XCAR (x));
2453 }
2454
2455 INLINE bool
2456 BUFFER_OBJFWDP (union Lisp_Fwd *a)
2457 {
2458 return XFWDTYPE (a) == Lisp_Fwd_Buffer_Obj;
2459 }
2460
2461 INLINE bool
2462 PSEUDOVECTOR_TYPEP (struct vectorlike_header *a, int code)
2463 {
2464 return ((a->size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK))
2465 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS)));
2466 }
2467
2468 /* True if A is a pseudovector whose code is CODE. */
2469 INLINE bool
2470 PSEUDOVECTORP (Lisp_Object a, int code)
2471 {
2472 if (! VECTORLIKEP (a))
2473 return false;
2474 else
2475 {
2476 /* Converting to struct vectorlike_header * avoids aliasing issues. */
2477 struct vectorlike_header *h = XUNTAG (a, Lisp_Vectorlike);
2478 return PSEUDOVECTOR_TYPEP (h, code);
2479 }
2480 }
2481
2482
2483 /* Test for specific pseudovector types. */
2484
2485 INLINE bool
2486 WINDOW_CONFIGURATIONP (Lisp_Object a)
2487 {
2488 return PSEUDOVECTORP (a, PVEC_WINDOW_CONFIGURATION);
2489 }
2490
2491 INLINE bool
2492 PROCESSP (Lisp_Object a)
2493 {
2494 return PSEUDOVECTORP (a, PVEC_PROCESS);
2495 }
2496
2497 INLINE bool
2498 WINDOWP (Lisp_Object a)
2499 {
2500 return PSEUDOVECTORP (a, PVEC_WINDOW);
2501 }
2502
2503 INLINE bool
2504 TERMINALP (Lisp_Object a)
2505 {
2506 return PSEUDOVECTORP (a, PVEC_TERMINAL);
2507 }
2508
2509 INLINE bool
2510 SUBRP (Lisp_Object a)
2511 {
2512 return PSEUDOVECTORP (a, PVEC_SUBR);
2513 }
2514
2515 INLINE bool
2516 COMPILEDP (Lisp_Object a)
2517 {
2518 return PSEUDOVECTORP (a, PVEC_COMPILED);
2519 }
2520
2521 INLINE bool
2522 BUFFERP (Lisp_Object a)
2523 {
2524 return PSEUDOVECTORP (a, PVEC_BUFFER);
2525 }
2526
2527 INLINE bool
2528 CHAR_TABLE_P (Lisp_Object a)
2529 {
2530 return PSEUDOVECTORP (a, PVEC_CHAR_TABLE);
2531 }
2532
2533 INLINE bool
2534 SUB_CHAR_TABLE_P (Lisp_Object a)
2535 {
2536 return PSEUDOVECTORP (a, PVEC_SUB_CHAR_TABLE);
2537 }
2538
2539 INLINE bool
2540 BOOL_VECTOR_P (Lisp_Object a)
2541 {
2542 return PSEUDOVECTORP (a, PVEC_BOOL_VECTOR);
2543 }
2544
2545 INLINE bool
2546 FRAMEP (Lisp_Object a)
2547 {
2548 return PSEUDOVECTORP (a, PVEC_FRAME);
2549 }
2550
2551 /* Test for image (image . spec) */
2552 INLINE bool
2553 IMAGEP (Lisp_Object x)
2554 {
2555 return CONSP (x) && EQ (XCAR (x), Qimage);
2556 }
2557
2558 /* Array types. */
2559 INLINE bool
2560 ARRAYP (Lisp_Object x)
2561 {
2562 return VECTORP (x) || STRINGP (x) || CHAR_TABLE_P (x) || BOOL_VECTOR_P (x);
2563 }
2564 \f
2565 INLINE void
2566 CHECK_LIST (Lisp_Object x)
2567 {
2568 CHECK_TYPE (CONSP (x) || NILP (x), Qlistp, x);
2569 }
2570
2571 LISP_MACRO_DEFUN_VOID (CHECK_LIST_CONS, (Lisp_Object x, Lisp_Object y), (x, y))
2572 LISP_MACRO_DEFUN_VOID (CHECK_SYMBOL, (Lisp_Object x), (x))
2573 LISP_MACRO_DEFUN_VOID (CHECK_NUMBER, (Lisp_Object x), (x))
2574
2575 INLINE void
2576 CHECK_STRING (Lisp_Object x)
2577 {
2578 CHECK_TYPE (STRINGP (x), Qstringp, x);
2579 }
2580 INLINE void
2581 CHECK_STRING_CAR (Lisp_Object x)
2582 {
2583 CHECK_TYPE (STRINGP (XCAR (x)), Qstringp, XCAR (x));
2584 }
2585 INLINE void
2586 CHECK_CONS (Lisp_Object x)
2587 {
2588 CHECK_TYPE (CONSP (x), Qconsp, x);
2589 }
2590 INLINE void
2591 CHECK_VECTOR (Lisp_Object x)
2592 {
2593 CHECK_TYPE (VECTORP (x), Qvectorp, x);
2594 }
2595 INLINE void
2596 CHECK_BOOL_VECTOR (Lisp_Object x)
2597 {
2598 CHECK_TYPE (BOOL_VECTOR_P (x), Qbool_vector_p, x);
2599 }
2600 /* This is a bit special because we always need size afterwards. */
2601 INLINE ptrdiff_t
2602 CHECK_VECTOR_OR_STRING (Lisp_Object x)
2603 {
2604 if (VECTORP (x))
2605 return ASIZE (x);
2606 if (STRINGP (x))
2607 return SCHARS (x);
2608 wrong_type_argument (Qarrayp, x);
2609 }
2610 INLINE void
2611 CHECK_ARRAY (Lisp_Object x, Lisp_Object predicate)
2612 {
2613 CHECK_TYPE (ARRAYP (x), predicate, x);
2614 }
2615 INLINE void
2616 CHECK_BUFFER (Lisp_Object x)
2617 {
2618 CHECK_TYPE (BUFFERP (x), Qbufferp, x);
2619 }
2620 INLINE void
2621 CHECK_WINDOW (Lisp_Object x)
2622 {
2623 CHECK_TYPE (WINDOWP (x), Qwindowp, x);
2624 }
2625 #ifdef subprocesses
2626 INLINE void
2627 CHECK_PROCESS (Lisp_Object x)
2628 {
2629 CHECK_TYPE (PROCESSP (x), Qprocessp, x);
2630 }
2631 #endif
2632 INLINE void
2633 CHECK_NATNUM (Lisp_Object x)
2634 {
2635 CHECK_TYPE (NATNUMP (x), Qwholenump, x);
2636 }
2637
2638 #define CHECK_RANGED_INTEGER(x, lo, hi) \
2639 do { \
2640 CHECK_NUMBER (x); \
2641 if (! ((lo) <= XINT (x) && XINT (x) <= (hi))) \
2642 args_out_of_range_3 \
2643 (x, \
2644 make_number ((lo) < 0 && (lo) < MOST_NEGATIVE_FIXNUM \
2645 ? MOST_NEGATIVE_FIXNUM \
2646 : (lo)), \
2647 make_number (min (hi, MOST_POSITIVE_FIXNUM))); \
2648 } while (false)
2649 #define CHECK_TYPE_RANGED_INTEGER(type, x) \
2650 do { \
2651 if (TYPE_SIGNED (type)) \
2652 CHECK_RANGED_INTEGER (x, TYPE_MINIMUM (type), TYPE_MAXIMUM (type)); \
2653 else \
2654 CHECK_RANGED_INTEGER (x, 0, TYPE_MAXIMUM (type)); \
2655 } while (false)
2656
2657 #define CHECK_NUMBER_COERCE_MARKER(x) \
2658 do { \
2659 if (MARKERP ((x))) \
2660 XSETFASTINT (x, marker_position (x)); \
2661 else \
2662 CHECK_TYPE (INTEGERP (x), Qinteger_or_marker_p, x); \
2663 } while (false)
2664
2665 INLINE double
2666 XFLOATINT (Lisp_Object n)
2667 {
2668 return extract_float (n);
2669 }
2670
2671 INLINE void
2672 CHECK_NUMBER_OR_FLOAT (Lisp_Object x)
2673 {
2674 CHECK_TYPE (FLOATP (x) || INTEGERP (x), Qnumberp, x);
2675 }
2676
2677 #define CHECK_NUMBER_OR_FLOAT_COERCE_MARKER(x) \
2678 do { \
2679 if (MARKERP (x)) \
2680 XSETFASTINT (x, marker_position (x)); \
2681 else \
2682 CHECK_TYPE (INTEGERP (x) || FLOATP (x), Qnumber_or_marker_p, x); \
2683 } while (false)
2684
2685 /* Since we can't assign directly to the CAR or CDR fields of a cons
2686 cell, use these when checking that those fields contain numbers. */
2687 INLINE void
2688 CHECK_NUMBER_CAR (Lisp_Object x)
2689 {
2690 Lisp_Object tmp = XCAR (x);
2691 CHECK_NUMBER (tmp);
2692 XSETCAR (x, tmp);
2693 }
2694
2695 INLINE void
2696 CHECK_NUMBER_CDR (Lisp_Object x)
2697 {
2698 Lisp_Object tmp = XCDR (x);
2699 CHECK_NUMBER (tmp);
2700 XSETCDR (x, tmp);
2701 }
2702 \f
2703 /* Define a built-in function for calling from Lisp.
2704 `lname' should be the name to give the function in Lisp,
2705 as a null-terminated C string.
2706 `fnname' should be the name of the function in C.
2707 By convention, it starts with F.
2708 `sname' should be the name for the C constant structure
2709 that records information on this function for internal use.
2710 By convention, it should be the same as `fnname' but with S instead of F.
2711 It's too bad that C macros can't compute this from `fnname'.
2712 `minargs' should be a number, the minimum number of arguments allowed.
2713 `maxargs' should be a number, the maximum number of arguments allowed,
2714 or else MANY or UNEVALLED.
2715 MANY means pass a vector of evaluated arguments,
2716 in the form of an integer number-of-arguments
2717 followed by the address of a vector of Lisp_Objects
2718 which contains the argument values.
2719 UNEVALLED means pass the list of unevaluated arguments
2720 `intspec' says how interactive arguments are to be fetched.
2721 If the string starts with a `(', `intspec' is evaluated and the resulting
2722 list is the list of arguments.
2723 If it's a string that doesn't start with `(', the value should follow
2724 the one of the doc string for `interactive'.
2725 A null string means call interactively with no arguments.
2726 `doc' is documentation for the user. */
2727
2728 /* This version of DEFUN declares a function prototype with the right
2729 arguments, so we can catch errors with maxargs at compile-time. */
2730 #ifdef _MSC_VER
2731 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2732 Lisp_Object fnname DEFUN_ARGS_ ## maxargs ; \
2733 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2734 { { (PVEC_SUBR << PSEUDOVECTOR_AREA_BITS) \
2735 | (sizeof (struct Lisp_Subr) / sizeof (EMACS_INT)) }, \
2736 { (Lisp_Object (__cdecl *)(void))fnname }, \
2737 minargs, maxargs, lname, intspec, 0}; \
2738 Lisp_Object fnname
2739 #else /* not _MSC_VER */
2740 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2741 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2742 { { PVEC_SUBR << PSEUDOVECTOR_AREA_BITS }, \
2743 { .a ## maxargs = fnname }, \
2744 minargs, maxargs, lname, intspec, 0}; \
2745 Lisp_Object fnname
2746 #endif
2747
2748 /* True if OBJ is a Lisp function. */
2749 INLINE bool
2750 FUNCTIONP (Lisp_Object obj)
2751 {
2752 return functionp (obj);
2753 }
2754
2755 /* defsubr (Sname);
2756 is how we define the symbol for function `name' at start-up time. */
2757 extern void defsubr (struct Lisp_Subr *);
2758
2759 enum maxargs
2760 {
2761 MANY = -2,
2762 UNEVALLED = -1
2763 };
2764
2765 extern void defvar_lisp (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2766 extern void defvar_lisp_nopro (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2767 extern void defvar_bool (struct Lisp_Boolfwd *, const char *, bool *);
2768 extern void defvar_int (struct Lisp_Intfwd *, const char *, EMACS_INT *);
2769 extern void defvar_kboard (struct Lisp_Kboard_Objfwd *, const char *, int);
2770
2771 /* Macros we use to define forwarded Lisp variables.
2772 These are used in the syms_of_FILENAME functions.
2773
2774 An ordinary (not in buffer_defaults, per-buffer, or per-keyboard)
2775 lisp variable is actually a field in `struct emacs_globals'. The
2776 field's name begins with "f_", which is a convention enforced by
2777 these macros. Each such global has a corresponding #define in
2778 globals.h; the plain name should be used in the code.
2779
2780 E.g., the global "cons_cells_consed" is declared as "int
2781 f_cons_cells_consed" in globals.h, but there is a define:
2782
2783 #define cons_cells_consed globals.f_cons_cells_consed
2784
2785 All C code uses the `cons_cells_consed' name. This is all done
2786 this way to support indirection for multi-threaded Emacs. */
2787
2788 #define DEFVAR_LISP(lname, vname, doc) \
2789 do { \
2790 static struct Lisp_Objfwd o_fwd; \
2791 defvar_lisp (&o_fwd, lname, &globals.f_ ## vname); \
2792 } while (false)
2793 #define DEFVAR_LISP_NOPRO(lname, vname, doc) \
2794 do { \
2795 static struct Lisp_Objfwd o_fwd; \
2796 defvar_lisp_nopro (&o_fwd, lname, &globals.f_ ## vname); \
2797 } while (false)
2798 #define DEFVAR_BOOL(lname, vname, doc) \
2799 do { \
2800 static struct Lisp_Boolfwd b_fwd; \
2801 defvar_bool (&b_fwd, lname, &globals.f_ ## vname); \
2802 } while (false)
2803 #define DEFVAR_INT(lname, vname, doc) \
2804 do { \
2805 static struct Lisp_Intfwd i_fwd; \
2806 defvar_int (&i_fwd, lname, &globals.f_ ## vname); \
2807 } while (false)
2808
2809 #define DEFVAR_BUFFER_DEFAULTS(lname, vname, doc) \
2810 do { \
2811 static struct Lisp_Objfwd o_fwd; \
2812 defvar_lisp_nopro (&o_fwd, lname, &BVAR (&buffer_defaults, vname)); \
2813 } while (false)
2814
2815 #define DEFVAR_KBOARD(lname, vname, doc) \
2816 do { \
2817 static struct Lisp_Kboard_Objfwd ko_fwd; \
2818 defvar_kboard (&ko_fwd, lname, offsetof (KBOARD, vname ## _)); \
2819 } while (false)
2820 \f
2821 /* Save and restore the instruction and environment pointers,
2822 without affecting the signal mask. */
2823
2824 #ifdef HAVE__SETJMP
2825 typedef jmp_buf sys_jmp_buf;
2826 # define sys_setjmp(j) _setjmp (j)
2827 # define sys_longjmp(j, v) _longjmp (j, v)
2828 #elif defined HAVE_SIGSETJMP
2829 typedef sigjmp_buf sys_jmp_buf;
2830 # define sys_setjmp(j) sigsetjmp (j, 0)
2831 # define sys_longjmp(j, v) siglongjmp (j, v)
2832 #else
2833 /* A platform that uses neither _longjmp nor siglongjmp; assume
2834 longjmp does not affect the sigmask. */
2835 typedef jmp_buf sys_jmp_buf;
2836 # define sys_setjmp(j) setjmp (j)
2837 # define sys_longjmp(j, v) longjmp (j, v)
2838 #endif
2839
2840 \f
2841 /* Elisp uses several stacks:
2842 - the C stack.
2843 - the bytecode stack: used internally by the bytecode interpreter.
2844 Allocated from the C stack.
2845 - The specpdl stack: keeps track of active unwind-protect and
2846 dynamic-let-bindings. Allocated from the `specpdl' array, a manually
2847 managed stack.
2848 - The handler stack: keeps track of active catch tags and condition-case
2849 handlers. Allocated in a manually managed stack implemented by a
2850 doubly-linked list allocated via xmalloc and never freed. */
2851
2852 /* Structure for recording Lisp call stack for backtrace purposes. */
2853
2854 /* The special binding stack holds the outer values of variables while
2855 they are bound by a function application or a let form, stores the
2856 code to be executed for unwind-protect forms.
2857
2858 NOTE: The specbinding union is defined here, because SPECPDL_INDEX is
2859 used all over the place, needs to be fast, and needs to know the size of
2860 union specbinding. But only eval.c should access it. */
2861
2862 enum specbind_tag {
2863 SPECPDL_UNWIND, /* An unwind_protect function on Lisp_Object. */
2864 SPECPDL_UNWIND_PTR, /* Likewise, on void *. */
2865 SPECPDL_UNWIND_INT, /* Likewise, on int. */
2866 SPECPDL_UNWIND_VOID, /* Likewise, with no arg. */
2867 SPECPDL_BACKTRACE, /* An element of the backtrace. */
2868 SPECPDL_LET, /* A plain and simple dynamic let-binding. */
2869 /* Tags greater than SPECPDL_LET must be "subkinds" of LET. */
2870 SPECPDL_LET_LOCAL, /* A buffer-local let-binding. */
2871 SPECPDL_LET_DEFAULT /* A global binding for a localized var. */
2872 };
2873
2874 union specbinding
2875 {
2876 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2877 struct {
2878 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2879 void (*func) (Lisp_Object);
2880 Lisp_Object arg;
2881 } unwind;
2882 struct {
2883 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2884 void (*func) (void *);
2885 void *arg;
2886 } unwind_ptr;
2887 struct {
2888 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2889 void (*func) (int);
2890 int arg;
2891 } unwind_int;
2892 struct {
2893 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2894 void (*func) (void);
2895 } unwind_void;
2896 struct {
2897 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2898 /* `where' is not used in the case of SPECPDL_LET. */
2899 Lisp_Object symbol, old_value, where;
2900 } let;
2901 struct {
2902 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2903 bool_bf debug_on_exit : 1;
2904 Lisp_Object function;
2905 Lisp_Object *args;
2906 ptrdiff_t nargs;
2907 } bt;
2908 };
2909
2910 extern union specbinding *specpdl;
2911 extern union specbinding *specpdl_ptr;
2912 extern ptrdiff_t specpdl_size;
2913
2914 INLINE ptrdiff_t
2915 SPECPDL_INDEX (void)
2916 {
2917 return specpdl_ptr - specpdl;
2918 }
2919
2920 /* This structure helps implement the `catch/throw' and `condition-case/signal'
2921 control structures. A struct handler contains all the information needed to
2922 restore the state of the interpreter after a non-local jump.
2923
2924 handler structures are chained together in a doubly linked list; the `next'
2925 member points to the next outer catchtag and the `nextfree' member points in
2926 the other direction to the next inner element (which is typically the next
2927 free element since we mostly use it on the deepest handler).
2928
2929 A call like (throw TAG VAL) searches for a catchtag whose `tag_or_ch'
2930 member is TAG, and then unbinds to it. The `val' member is used to
2931 hold VAL while the stack is unwound; `val' is returned as the value
2932 of the catch form.
2933
2934 All the other members are concerned with restoring the interpreter
2935 state.
2936
2937 Members are volatile if their values need to survive _longjmp when
2938 a 'struct handler' is a local variable. */
2939
2940 enum handlertype { CATCHER, CONDITION_CASE };
2941
2942 struct handler
2943 {
2944 enum handlertype type;
2945 Lisp_Object tag_or_ch;
2946 Lisp_Object val;
2947 struct handler *next;
2948 struct handler *nextfree;
2949
2950 /* The bytecode interpreter can have several handlers active at the same
2951 time, so when we longjmp to one of them, it needs to know which handler
2952 this was and what was the corresponding internal state. This is stored
2953 here, and when we longjmp we make sure that handlerlist points to the
2954 proper handler. */
2955 Lisp_Object *bytecode_top;
2956 int bytecode_dest;
2957
2958 /* Most global vars are reset to their value via the specpdl mechanism,
2959 but a few others are handled by storing their value here. */
2960 #if true /* GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS, but defined later. */
2961 struct gcpro *gcpro;
2962 #endif
2963 sys_jmp_buf jmp;
2964 EMACS_INT lisp_eval_depth;
2965 ptrdiff_t pdlcount;
2966 int poll_suppress_count;
2967 int interrupt_input_blocked;
2968 struct byte_stack *byte_stack;
2969 };
2970
2971 /* Fill in the components of c, and put it on the list. */
2972 #define PUSH_HANDLER(c, tag_ch_val, handlertype) \
2973 if (handlerlist->nextfree) \
2974 (c) = handlerlist->nextfree; \
2975 else \
2976 { \
2977 (c) = xmalloc (sizeof (struct handler)); \
2978 (c)->nextfree = NULL; \
2979 handlerlist->nextfree = (c); \
2980 } \
2981 (c)->type = (handlertype); \
2982 (c)->tag_or_ch = (tag_ch_val); \
2983 (c)->val = Qnil; \
2984 (c)->next = handlerlist; \
2985 (c)->lisp_eval_depth = lisp_eval_depth; \
2986 (c)->pdlcount = SPECPDL_INDEX (); \
2987 (c)->poll_suppress_count = poll_suppress_count; \
2988 (c)->interrupt_input_blocked = interrupt_input_blocked;\
2989 (c)->gcpro = gcprolist; \
2990 (c)->byte_stack = byte_stack_list; \
2991 handlerlist = (c);
2992
2993
2994 extern Lisp_Object memory_signal_data;
2995
2996 /* An address near the bottom of the stack.
2997 Tells GC how to save a copy of the stack. */
2998 extern char *stack_bottom;
2999
3000 /* Check quit-flag and quit if it is non-nil.
3001 Typing C-g does not directly cause a quit; it only sets Vquit_flag.
3002 So the program needs to do QUIT at times when it is safe to quit.
3003 Every loop that might run for a long time or might not exit
3004 ought to do QUIT at least once, at a safe place.
3005 Unless that is impossible, of course.
3006 But it is very desirable to avoid creating loops where QUIT is impossible.
3007
3008 Exception: if you set immediate_quit to true,
3009 then the handler that responds to the C-g does the quit itself.
3010 This is a good thing to do around a loop that has no side effects
3011 and (in particular) cannot call arbitrary Lisp code.
3012
3013 If quit-flag is set to `kill-emacs' the SIGINT handler has received
3014 a request to exit Emacs when it is safe to do. */
3015
3016 extern void process_pending_signals (void);
3017 extern bool volatile pending_signals;
3018
3019 extern void process_quit_flag (void);
3020 #define QUIT \
3021 do { \
3022 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
3023 process_quit_flag (); \
3024 else if (pending_signals) \
3025 process_pending_signals (); \
3026 } while (false)
3027
3028
3029 /* True if ought to quit now. */
3030
3031 #define QUITP (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
3032 \f
3033 extern Lisp_Object Vascii_downcase_table;
3034 extern Lisp_Object Vascii_canon_table;
3035 \f
3036 /* Structure for recording stack slots that need marking. */
3037
3038 /* This is a chain of structures, each of which points at a Lisp_Object
3039 variable whose value should be marked in garbage collection.
3040 Normally every link of the chain is an automatic variable of a function,
3041 and its `val' points to some argument or local variable of the function.
3042 On exit to the function, the chain is set back to the value it had on entry.
3043 This way, no link remains in the chain when the stack frame containing the
3044 link disappears.
3045
3046 Every function that can call Feval must protect in this fashion all
3047 Lisp_Object variables whose contents will be used again. */
3048
3049 extern struct gcpro *gcprolist;
3050
3051 struct gcpro
3052 {
3053 struct gcpro *next;
3054
3055 /* Address of first protected variable. */
3056 volatile Lisp_Object *var;
3057
3058 /* Number of consecutive protected variables. */
3059 ptrdiff_t nvars;
3060
3061 #ifdef DEBUG_GCPRO
3062 /* File name where this record is used. */
3063 const char *name;
3064
3065 /* Line number in this file. */
3066 int lineno;
3067
3068 /* Index in the local chain of records. */
3069 int idx;
3070
3071 /* Nesting level. */
3072 int level;
3073 #endif
3074 };
3075
3076 /* Values of GC_MARK_STACK during compilation:
3077
3078 0 Use GCPRO as before
3079 1 Do the real thing, make GCPROs and UNGCPRO no-ops.
3080 2 Mark the stack, and check that everything GCPRO'd is
3081 marked.
3082 3 Mark using GCPRO's, mark stack last, and count how many
3083 dead objects are kept alive.
3084
3085 Formerly, method 0 was used. Currently, method 1 is used unless
3086 otherwise specified by hand when building, e.g.,
3087 "make CPPFLAGS='-DGC_MARK_STACK=GC_USE_GCPROS_AS_BEFORE'".
3088 Methods 2 and 3 are present mainly to debug the transition from 0 to 1. */
3089
3090 #define GC_USE_GCPROS_AS_BEFORE 0
3091 #define GC_MAKE_GCPROS_NOOPS 1
3092 #define GC_MARK_STACK_CHECK_GCPROS 2
3093 #define GC_USE_GCPROS_CHECK_ZOMBIES 3
3094
3095 #ifndef GC_MARK_STACK
3096 #define GC_MARK_STACK GC_MAKE_GCPROS_NOOPS
3097 #endif
3098
3099 /* Whether we do the stack marking manually. */
3100 #define BYTE_MARK_STACK !(GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
3101 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
3102
3103
3104 #if GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS
3105
3106 /* Do something silly with gcproN vars just so gcc shuts up. */
3107 /* You get warnings from MIPSPro... */
3108
3109 #define GCPRO1(varname) ((void) gcpro1)
3110 #define GCPRO2(varname1, varname2) ((void) gcpro2, (void) gcpro1)
3111 #define GCPRO3(varname1, varname2, varname3) \
3112 ((void) gcpro3, (void) gcpro2, (void) gcpro1)
3113 #define GCPRO4(varname1, varname2, varname3, varname4) \
3114 ((void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3115 #define GCPRO5(varname1, varname2, varname3, varname4, varname5) \
3116 ((void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3117 #define GCPRO6(varname1, varname2, varname3, varname4, varname5, varname6) \
3118 ((void) gcpro6, (void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, \
3119 (void) gcpro1)
3120 #define GCPRO7(a, b, c, d, e, f, g) (GCPRO6 (a, b, c, d, e, f), (void) gcpro7)
3121 #define UNGCPRO ((void) 0)
3122
3123 #else /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3124
3125 #ifndef DEBUG_GCPRO
3126
3127 #define GCPRO1(a) \
3128 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3129 gcprolist = &gcpro1; }
3130
3131 #define GCPRO2(a, b) \
3132 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3133 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3134 gcprolist = &gcpro2; }
3135
3136 #define GCPRO3(a, b, c) \
3137 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3138 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3139 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3140 gcprolist = &gcpro3; }
3141
3142 #define GCPRO4(a, b, c, d) \
3143 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3144 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3145 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3146 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3147 gcprolist = &gcpro4; }
3148
3149 #define GCPRO5(a, b, c, d, e) \
3150 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3151 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3152 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3153 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3154 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3155 gcprolist = &gcpro5; }
3156
3157 #define GCPRO6(a, b, c, d, e, f) \
3158 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3159 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3160 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3161 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3162 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3163 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3164 gcprolist = &gcpro6; }
3165
3166 #define GCPRO7(a, b, c, d, e, f, g) \
3167 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3168 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3169 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3170 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3171 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3172 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3173 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3174 gcprolist = &gcpro7; }
3175
3176 #define UNGCPRO (gcprolist = gcpro1.next)
3177
3178 #else /* !DEBUG_GCPRO */
3179
3180 extern int gcpro_level;
3181
3182 #define GCPRO1(a) \
3183 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3184 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3185 gcpro1.level = gcpro_level++; \
3186 gcprolist = &gcpro1; }
3187
3188 #define GCPRO2(a, b) \
3189 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3190 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3191 gcpro1.level = gcpro_level; \
3192 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3193 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3194 gcpro2.level = gcpro_level++; \
3195 gcprolist = &gcpro2; }
3196
3197 #define GCPRO3(a, b, c) \
3198 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3199 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3200 gcpro1.level = gcpro_level; \
3201 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3202 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3203 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3204 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3205 gcpro3.level = gcpro_level++; \
3206 gcprolist = &gcpro3; }
3207
3208 #define GCPRO4(a, b, c, d) \
3209 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3210 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3211 gcpro1.level = gcpro_level; \
3212 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3213 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3214 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3215 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3216 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3217 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3218 gcpro4.level = gcpro_level++; \
3219 gcprolist = &gcpro4; }
3220
3221 #define GCPRO5(a, b, c, d, e) \
3222 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3223 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3224 gcpro1.level = gcpro_level; \
3225 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3226 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3227 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3228 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3229 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3230 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3231 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3232 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3233 gcpro5.level = gcpro_level++; \
3234 gcprolist = &gcpro5; }
3235
3236 #define GCPRO6(a, b, c, d, e, f) \
3237 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3238 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3239 gcpro1.level = gcpro_level; \
3240 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3241 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3242 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3243 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3244 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3245 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3246 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3247 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3248 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3249 gcpro6.name = __FILE__; gcpro6.lineno = __LINE__; gcpro6.idx = 6; \
3250 gcpro6.level = gcpro_level++; \
3251 gcprolist = &gcpro6; }
3252
3253 #define GCPRO7(a, b, c, d, e, f, g) \
3254 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3255 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3256 gcpro1.level = gcpro_level; \
3257 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3258 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3259 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3260 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3261 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3262 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3263 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3264 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3265 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3266 gcpro6.name = __FILE__; gcpro6.lineno = __LINE__; gcpro6.idx = 6; \
3267 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3268 gcpro7.name = __FILE__; gcpro7.lineno = __LINE__; gcpro7.idx = 7; \
3269 gcpro7.level = gcpro_level++; \
3270 gcprolist = &gcpro7; }
3271
3272 #define UNGCPRO \
3273 (--gcpro_level != gcpro1.level \
3274 ? emacs_abort () \
3275 : (void) (gcprolist = gcpro1.next))
3276
3277 #endif /* DEBUG_GCPRO */
3278 #endif /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3279
3280
3281 /* Evaluate expr, UNGCPRO, and then return the value of expr. */
3282 #define RETURN_UNGCPRO(expr) \
3283 do \
3284 { \
3285 Lisp_Object ret_ungc_val; \
3286 ret_ungc_val = (expr); \
3287 UNGCPRO; \
3288 return ret_ungc_val; \
3289 } \
3290 while (false)
3291
3292 /* Call staticpro (&var) to protect static variable `var'. */
3293
3294 void staticpro (Lisp_Object *);
3295 \f
3296 /* Forward declarations for prototypes. */
3297 struct window;
3298 struct frame;
3299
3300 /* Copy COUNT Lisp_Objects from ARGS to contents of V starting from OFFSET. */
3301
3302 INLINE void
3303 vcopy (Lisp_Object v, ptrdiff_t offset, Lisp_Object *args, ptrdiff_t count)
3304 {
3305 eassert (0 <= offset && 0 <= count && offset + count <= ASIZE (v));
3306 memcpy (XVECTOR (v)->contents + offset, args, count * sizeof *args);
3307 }
3308
3309 /* Functions to modify hash tables. */
3310
3311 INLINE void
3312 set_hash_key_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3313 {
3314 gc_aset (h->key_and_value, 2 * idx, val);
3315 }
3316
3317 INLINE void
3318 set_hash_value_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3319 {
3320 gc_aset (h->key_and_value, 2 * idx + 1, val);
3321 }
3322
3323 /* Use these functions to set Lisp_Object
3324 or pointer slots of struct Lisp_Symbol. */
3325
3326 INLINE void
3327 set_symbol_function (Lisp_Object sym, Lisp_Object function)
3328 {
3329 XSYMBOL (sym)->function = function;
3330 }
3331
3332 INLINE void
3333 set_symbol_plist (Lisp_Object sym, Lisp_Object plist)
3334 {
3335 XSYMBOL (sym)->plist = plist;
3336 }
3337
3338 INLINE void
3339 set_symbol_next (Lisp_Object sym, struct Lisp_Symbol *next)
3340 {
3341 XSYMBOL (sym)->next = next;
3342 }
3343
3344 /* Buffer-local (also frame-local) variable access functions. */
3345
3346 INLINE int
3347 blv_found (struct Lisp_Buffer_Local_Value *blv)
3348 {
3349 eassert (blv->found == !EQ (blv->defcell, blv->valcell));
3350 return blv->found;
3351 }
3352
3353 /* Set overlay's property list. */
3354
3355 INLINE void
3356 set_overlay_plist (Lisp_Object overlay, Lisp_Object plist)
3357 {
3358 XOVERLAY (overlay)->plist = plist;
3359 }
3360
3361 /* Get text properties of S. */
3362
3363 INLINE INTERVAL
3364 string_intervals (Lisp_Object s)
3365 {
3366 return XSTRING (s)->intervals;
3367 }
3368
3369 /* Set text properties of S to I. */
3370
3371 INLINE void
3372 set_string_intervals (Lisp_Object s, INTERVAL i)
3373 {
3374 XSTRING (s)->intervals = i;
3375 }
3376
3377 /* Set a Lisp slot in TABLE to VAL. Most code should use this instead
3378 of setting slots directly. */
3379
3380 INLINE void
3381 set_char_table_defalt (Lisp_Object table, Lisp_Object val)
3382 {
3383 XCHAR_TABLE (table)->defalt = val;
3384 }
3385 INLINE void
3386 set_char_table_purpose (Lisp_Object table, Lisp_Object val)
3387 {
3388 XCHAR_TABLE (table)->purpose = val;
3389 }
3390
3391 /* Set different slots in (sub)character tables. */
3392
3393 INLINE void
3394 set_char_table_extras (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3395 {
3396 eassert (0 <= idx && idx < CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (table)));
3397 XCHAR_TABLE (table)->extras[idx] = val;
3398 }
3399
3400 INLINE void
3401 set_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3402 {
3403 eassert (0 <= idx && idx < (1 << CHARTAB_SIZE_BITS_0));
3404 XCHAR_TABLE (table)->contents[idx] = val;
3405 }
3406
3407 INLINE void
3408 set_sub_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3409 {
3410 XSUB_CHAR_TABLE (table)->contents[idx] = val;
3411 }
3412
3413 /* Defined in data.c. */
3414 extern Lisp_Object indirect_function (Lisp_Object);
3415 extern Lisp_Object find_symbol_value (Lisp_Object);
3416 enum Arith_Comparison {
3417 ARITH_EQUAL,
3418 ARITH_NOTEQUAL,
3419 ARITH_LESS,
3420 ARITH_GRTR,
3421 ARITH_LESS_OR_EQUAL,
3422 ARITH_GRTR_OR_EQUAL
3423 };
3424 extern Lisp_Object arithcompare (Lisp_Object num1, Lisp_Object num2,
3425 enum Arith_Comparison comparison);
3426
3427 /* Convert the integer I to an Emacs representation, either the integer
3428 itself, or a cons of two or three integers, or if all else fails a float.
3429 I should not have side effects. */
3430 #define INTEGER_TO_CONS(i) \
3431 (! FIXNUM_OVERFLOW_P (i) \
3432 ? make_number (i) \
3433 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16) \
3434 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16)) \
3435 && FIXNUM_OVERFLOW_P ((i) >> 16)) \
3436 ? Fcons (make_number ((i) >> 16), make_number ((i) & 0xffff)) \
3437 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16 >> 24) \
3438 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16 >> 24)) \
3439 && FIXNUM_OVERFLOW_P ((i) >> 16 >> 24)) \
3440 ? Fcons (make_number ((i) >> 16 >> 24), \
3441 Fcons (make_number ((i) >> 16 & 0xffffff), \
3442 make_number ((i) & 0xffff))) \
3443 : make_float (i))
3444
3445 /* Convert the Emacs representation CONS back to an integer of type
3446 TYPE, storing the result the variable VAR. Signal an error if CONS
3447 is not a valid representation or is out of range for TYPE. */
3448 #define CONS_TO_INTEGER(cons, type, var) \
3449 (TYPE_SIGNED (type) \
3450 ? ((var) = cons_to_signed (cons, TYPE_MINIMUM (type), TYPE_MAXIMUM (type))) \
3451 : ((var) = cons_to_unsigned (cons, TYPE_MAXIMUM (type))))
3452 extern intmax_t cons_to_signed (Lisp_Object, intmax_t, intmax_t);
3453 extern uintmax_t cons_to_unsigned (Lisp_Object, uintmax_t);
3454
3455 extern struct Lisp_Symbol *indirect_variable (struct Lisp_Symbol *);
3456 extern _Noreturn void args_out_of_range (Lisp_Object, Lisp_Object);
3457 extern _Noreturn void args_out_of_range_3 (Lisp_Object, Lisp_Object,
3458 Lisp_Object);
3459 extern Lisp_Object do_symval_forwarding (union Lisp_Fwd *);
3460 extern void set_internal (Lisp_Object, Lisp_Object, Lisp_Object, bool);
3461 extern void syms_of_data (void);
3462 extern void swap_in_global_binding (struct Lisp_Symbol *);
3463
3464 /* Defined in cmds.c */
3465 extern void syms_of_cmds (void);
3466 extern void keys_of_cmds (void);
3467
3468 /* Defined in coding.c. */
3469 extern Lisp_Object detect_coding_system (const unsigned char *, ptrdiff_t,
3470 ptrdiff_t, bool, bool, Lisp_Object);
3471 extern void init_coding (void);
3472 extern void init_coding_once (void);
3473 extern void syms_of_coding (void);
3474
3475 /* Defined in character.c. */
3476 extern ptrdiff_t chars_in_text (const unsigned char *, ptrdiff_t);
3477 extern ptrdiff_t multibyte_chars_in_text (const unsigned char *, ptrdiff_t);
3478 extern void syms_of_character (void);
3479
3480 /* Defined in charset.c. */
3481 extern void init_charset (void);
3482 extern void init_charset_once (void);
3483 extern void syms_of_charset (void);
3484 /* Structure forward declarations. */
3485 struct charset;
3486
3487 /* Defined in syntax.c. */
3488 extern void init_syntax_once (void);
3489 extern void syms_of_syntax (void);
3490
3491 /* Defined in fns.c. */
3492 enum { NEXT_ALMOST_PRIME_LIMIT = 11 };
3493 extern EMACS_INT next_almost_prime (EMACS_INT) ATTRIBUTE_CONST;
3494 extern Lisp_Object larger_vector (Lisp_Object, ptrdiff_t, ptrdiff_t);
3495 extern void sweep_weak_hash_tables (void);
3496 EMACS_UINT hash_string (char const *, ptrdiff_t);
3497 EMACS_UINT sxhash (Lisp_Object, int);
3498 Lisp_Object make_hash_table (struct hash_table_test, Lisp_Object, Lisp_Object,
3499 Lisp_Object, Lisp_Object);
3500 ptrdiff_t hash_lookup (struct Lisp_Hash_Table *, Lisp_Object, EMACS_UINT *);
3501 ptrdiff_t hash_put (struct Lisp_Hash_Table *, Lisp_Object, Lisp_Object,
3502 EMACS_UINT);
3503 extern struct hash_table_test hashtest_eql, hashtest_equal;
3504 extern void validate_subarray (Lisp_Object, Lisp_Object, Lisp_Object,
3505 ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
3506 extern Lisp_Object substring_both (Lisp_Object, ptrdiff_t, ptrdiff_t,
3507 ptrdiff_t, ptrdiff_t);
3508 extern Lisp_Object merge (Lisp_Object, Lisp_Object, Lisp_Object);
3509 extern Lisp_Object do_yes_or_no_p (Lisp_Object);
3510 extern Lisp_Object concat2 (Lisp_Object, Lisp_Object);
3511 extern Lisp_Object concat3 (Lisp_Object, Lisp_Object, Lisp_Object);
3512 extern Lisp_Object nconc2 (Lisp_Object, Lisp_Object);
3513 extern Lisp_Object assq_no_quit (Lisp_Object, Lisp_Object);
3514 extern Lisp_Object assoc_no_quit (Lisp_Object, Lisp_Object);
3515 extern void clear_string_char_byte_cache (void);
3516 extern ptrdiff_t string_char_to_byte (Lisp_Object, ptrdiff_t);
3517 extern ptrdiff_t string_byte_to_char (Lisp_Object, ptrdiff_t);
3518 extern Lisp_Object string_to_multibyte (Lisp_Object);
3519 extern Lisp_Object string_make_unibyte (Lisp_Object);
3520 extern void syms_of_fns (void);
3521
3522 /* Defined in floatfns.c. */
3523 extern void syms_of_floatfns (void);
3524 extern Lisp_Object fmod_float (Lisp_Object x, Lisp_Object y);
3525
3526 /* Defined in fringe.c. */
3527 extern void syms_of_fringe (void);
3528 extern void init_fringe (void);
3529 #ifdef HAVE_WINDOW_SYSTEM
3530 extern void mark_fringe_data (void);
3531 extern void init_fringe_once (void);
3532 #endif /* HAVE_WINDOW_SYSTEM */
3533
3534 /* Defined in image.c. */
3535 extern int x_bitmap_mask (struct frame *, ptrdiff_t);
3536 extern void reset_image_types (void);
3537 extern void syms_of_image (void);
3538
3539 /* Defined in insdel.c. */
3540 extern void move_gap_both (ptrdiff_t, ptrdiff_t);
3541 extern _Noreturn void buffer_overflow (void);
3542 extern void make_gap (ptrdiff_t);
3543 extern void make_gap_1 (struct buffer *, ptrdiff_t);
3544 extern ptrdiff_t copy_text (const unsigned char *, unsigned char *,
3545 ptrdiff_t, bool, bool);
3546 extern int count_combining_before (const unsigned char *,
3547 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3548 extern int count_combining_after (const unsigned char *,
3549 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3550 extern void insert (const char *, ptrdiff_t);
3551 extern void insert_and_inherit (const char *, ptrdiff_t);
3552 extern void insert_1_both (const char *, ptrdiff_t, ptrdiff_t,
3553 bool, bool, bool);
3554 extern void insert_from_gap (ptrdiff_t, ptrdiff_t, bool text_at_gap_tail);
3555 extern void insert_from_string (Lisp_Object, ptrdiff_t, ptrdiff_t,
3556 ptrdiff_t, ptrdiff_t, bool);
3557 extern void insert_from_buffer (struct buffer *, ptrdiff_t, ptrdiff_t, bool);
3558 extern void insert_char (int);
3559 extern void insert_string (const char *);
3560 extern void insert_before_markers (const char *, ptrdiff_t);
3561 extern void insert_before_markers_and_inherit (const char *, ptrdiff_t);
3562 extern void insert_from_string_before_markers (Lisp_Object, ptrdiff_t,
3563 ptrdiff_t, ptrdiff_t,
3564 ptrdiff_t, bool);
3565 extern void del_range (ptrdiff_t, ptrdiff_t);
3566 extern Lisp_Object del_range_1 (ptrdiff_t, ptrdiff_t, bool, bool);
3567 extern void del_range_byte (ptrdiff_t, ptrdiff_t, bool);
3568 extern void del_range_both (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t, bool);
3569 extern Lisp_Object del_range_2 (ptrdiff_t, ptrdiff_t,
3570 ptrdiff_t, ptrdiff_t, bool);
3571 extern void modify_text (ptrdiff_t, ptrdiff_t);
3572 extern void prepare_to_modify_buffer (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3573 extern void prepare_to_modify_buffer_1 (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3574 extern void invalidate_buffer_caches (struct buffer *, ptrdiff_t, ptrdiff_t);
3575 extern void signal_after_change (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3576 extern void adjust_after_insert (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3577 ptrdiff_t, ptrdiff_t);
3578 extern void adjust_markers_for_delete (ptrdiff_t, ptrdiff_t,
3579 ptrdiff_t, ptrdiff_t);
3580 extern void replace_range (ptrdiff_t, ptrdiff_t, Lisp_Object, bool, bool, bool);
3581 extern void replace_range_2 (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3582 const char *, ptrdiff_t, ptrdiff_t, bool);
3583 extern void syms_of_insdel (void);
3584
3585 /* Defined in dispnew.c. */
3586 #if (defined PROFILING \
3587 && (defined __FreeBSD__ || defined GNU_LINUX || defined __MINGW32__))
3588 _Noreturn void __executable_start (void);
3589 #endif
3590 extern Lisp_Object Vwindow_system;
3591 extern Lisp_Object sit_for (Lisp_Object, bool, int);
3592
3593 /* Defined in xdisp.c. */
3594 extern bool noninteractive_need_newline;
3595 extern Lisp_Object echo_area_buffer[2];
3596 extern void add_to_log (const char *, Lisp_Object, Lisp_Object);
3597 extern void check_message_stack (void);
3598 extern void setup_echo_area_for_printing (int);
3599 extern bool push_message (void);
3600 extern void pop_message_unwind (void);
3601 extern Lisp_Object restore_message_unwind (Lisp_Object);
3602 extern void restore_message (void);
3603 extern Lisp_Object current_message (void);
3604 extern void clear_message (bool, bool);
3605 extern void message (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3606 extern void message1 (const char *);
3607 extern void message1_nolog (const char *);
3608 extern void message3 (Lisp_Object);
3609 extern void message3_nolog (Lisp_Object);
3610 extern void message_dolog (const char *, ptrdiff_t, bool, bool);
3611 extern void message_with_string (const char *, Lisp_Object, int);
3612 extern void message_log_maybe_newline (void);
3613 extern void update_echo_area (void);
3614 extern void truncate_echo_area (ptrdiff_t);
3615 extern void redisplay (void);
3616
3617 void set_frame_cursor_types (struct frame *, Lisp_Object);
3618 extern void syms_of_xdisp (void);
3619 extern void init_xdisp (void);
3620 extern Lisp_Object safe_eval (Lisp_Object);
3621 extern int pos_visible_p (struct window *, ptrdiff_t, int *,
3622 int *, int *, int *, int *, int *);
3623
3624 /* Defined in xsettings.c. */
3625 extern void syms_of_xsettings (void);
3626
3627 /* Defined in vm-limit.c. */
3628 extern void memory_warnings (void *, void (*warnfun) (const char *));
3629
3630 /* Defined in character.c. */
3631 extern void parse_str_as_multibyte (const unsigned char *, ptrdiff_t,
3632 ptrdiff_t *, ptrdiff_t *);
3633
3634 /* Defined in alloc.c. */
3635 extern void check_pure_size (void);
3636 extern void free_misc (Lisp_Object);
3637 extern void allocate_string_data (struct Lisp_String *, EMACS_INT, EMACS_INT);
3638 extern void malloc_warning (const char *);
3639 extern _Noreturn void memory_full (size_t);
3640 extern _Noreturn void buffer_memory_full (ptrdiff_t);
3641 extern bool survives_gc_p (Lisp_Object);
3642 extern void mark_object (Lisp_Object);
3643 #if defined REL_ALLOC && !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3644 extern void refill_memory_reserve (void);
3645 #endif
3646 extern const char *pending_malloc_warning;
3647 extern Lisp_Object zero_vector;
3648 extern Lisp_Object *stack_base;
3649 extern EMACS_INT consing_since_gc;
3650 extern EMACS_INT gc_relative_threshold;
3651 extern EMACS_INT memory_full_cons_threshold;
3652 extern Lisp_Object list1 (Lisp_Object);
3653 extern Lisp_Object list2 (Lisp_Object, Lisp_Object);
3654 extern Lisp_Object list3 (Lisp_Object, Lisp_Object, Lisp_Object);
3655 extern Lisp_Object list4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3656 extern Lisp_Object list5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object,
3657 Lisp_Object);
3658 enum constype {CONSTYPE_HEAP, CONSTYPE_PURE};
3659 extern Lisp_Object listn (enum constype, ptrdiff_t, Lisp_Object, ...);
3660
3661 /* Build a frequently used 2/3/4-integer lists. */
3662
3663 INLINE Lisp_Object
3664 list2i (EMACS_INT x, EMACS_INT y)
3665 {
3666 return list2 (make_number (x), make_number (y));
3667 }
3668
3669 INLINE Lisp_Object
3670 list3i (EMACS_INT x, EMACS_INT y, EMACS_INT w)
3671 {
3672 return list3 (make_number (x), make_number (y), make_number (w));
3673 }
3674
3675 INLINE Lisp_Object
3676 list4i (EMACS_INT x, EMACS_INT y, EMACS_INT w, EMACS_INT h)
3677 {
3678 return list4 (make_number (x), make_number (y),
3679 make_number (w), make_number (h));
3680 }
3681
3682 extern Lisp_Object make_uninit_bool_vector (EMACS_INT);
3683 extern Lisp_Object bool_vector_fill (Lisp_Object, Lisp_Object);
3684 extern _Noreturn void string_overflow (void);
3685 extern Lisp_Object make_string (const char *, ptrdiff_t);
3686 extern Lisp_Object make_formatted_string (char *, const char *, ...)
3687 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3688 extern Lisp_Object make_unibyte_string (const char *, ptrdiff_t);
3689
3690 /* Make unibyte string from C string when the length isn't known. */
3691
3692 INLINE Lisp_Object
3693 build_unibyte_string (const char *str)
3694 {
3695 return make_unibyte_string (str, strlen (str));
3696 }
3697
3698 extern Lisp_Object make_multibyte_string (const char *, ptrdiff_t, ptrdiff_t);
3699 extern Lisp_Object make_event_array (ptrdiff_t, Lisp_Object *);
3700 extern Lisp_Object make_uninit_string (EMACS_INT);
3701 extern Lisp_Object make_uninit_multibyte_string (EMACS_INT, EMACS_INT);
3702 extern Lisp_Object make_string_from_bytes (const char *, ptrdiff_t, ptrdiff_t);
3703 extern Lisp_Object make_specified_string (const char *,
3704 ptrdiff_t, ptrdiff_t, bool);
3705 extern Lisp_Object make_pure_string (const char *, ptrdiff_t, ptrdiff_t, bool);
3706 extern Lisp_Object make_pure_c_string (const char *, ptrdiff_t);
3707
3708 /* Make a string allocated in pure space, use STR as string data. */
3709
3710 INLINE Lisp_Object
3711 build_pure_c_string (const char *str)
3712 {
3713 return make_pure_c_string (str, strlen (str));
3714 }
3715
3716 /* Make a string from the data at STR, treating it as multibyte if the
3717 data warrants. */
3718
3719 INLINE Lisp_Object
3720 build_string (const char *str)
3721 {
3722 return make_string (str, strlen (str));
3723 }
3724
3725 extern Lisp_Object pure_cons (Lisp_Object, Lisp_Object);
3726 extern void make_byte_code (struct Lisp_Vector *);
3727 extern struct Lisp_Vector *allocate_vector (EMACS_INT);
3728
3729 /* Make an uninitialized vector for SIZE objects. NOTE: you must
3730 be sure that GC cannot happen until the vector is completely
3731 initialized. E.g. the following code is likely to crash:
3732
3733 v = make_uninit_vector (3);
3734 ASET (v, 0, obj0);
3735 ASET (v, 1, Ffunction_can_gc ());
3736 ASET (v, 2, obj1); */
3737
3738 INLINE Lisp_Object
3739 make_uninit_vector (ptrdiff_t size)
3740 {
3741 Lisp_Object v;
3742 struct Lisp_Vector *p;
3743
3744 p = allocate_vector (size);
3745 XSETVECTOR (v, p);
3746 return v;
3747 }
3748
3749 /* Like above, but special for sub char-tables. */
3750
3751 INLINE Lisp_Object
3752 make_uninit_sub_char_table (int depth, int min_char)
3753 {
3754 int slots = SUB_CHAR_TABLE_OFFSET + chartab_size[depth];
3755 Lisp_Object v = make_uninit_vector (slots);
3756
3757 XSETPVECTYPE (XVECTOR (v), PVEC_SUB_CHAR_TABLE);
3758 XSUB_CHAR_TABLE (v)->depth = depth;
3759 XSUB_CHAR_TABLE (v)->min_char = min_char;
3760 return v;
3761 }
3762
3763 extern struct Lisp_Vector *allocate_pseudovector (int, int, enum pvec_type);
3764 #define ALLOCATE_PSEUDOVECTOR(typ,field,tag) \
3765 ((typ*) \
3766 allocate_pseudovector \
3767 (VECSIZE (typ), PSEUDOVECSIZE (typ, field), tag))
3768 extern struct Lisp_Hash_Table *allocate_hash_table (void);
3769 extern struct window *allocate_window (void);
3770 extern struct frame *allocate_frame (void);
3771 extern struct Lisp_Process *allocate_process (void);
3772 extern struct terminal *allocate_terminal (void);
3773 extern bool gc_in_progress;
3774 extern bool abort_on_gc;
3775 extern Lisp_Object make_float (double);
3776 extern void display_malloc_warning (void);
3777 extern ptrdiff_t inhibit_garbage_collection (void);
3778 extern Lisp_Object make_save_int_int_int (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3779 extern Lisp_Object make_save_obj_obj_obj_obj (Lisp_Object, Lisp_Object,
3780 Lisp_Object, Lisp_Object);
3781 extern Lisp_Object make_save_ptr (void *);
3782 extern Lisp_Object make_save_ptr_int (void *, ptrdiff_t);
3783 extern Lisp_Object make_save_ptr_ptr (void *, void *);
3784 extern Lisp_Object make_save_funcptr_ptr_obj (void (*) (void), void *,
3785 Lisp_Object);
3786 extern Lisp_Object make_save_memory (Lisp_Object *, ptrdiff_t);
3787 extern void free_save_value (Lisp_Object);
3788 extern Lisp_Object build_overlay (Lisp_Object, Lisp_Object, Lisp_Object);
3789 extern void free_marker (Lisp_Object);
3790 extern void free_cons (struct Lisp_Cons *);
3791 extern void init_alloc_once (void);
3792 extern void init_alloc (void);
3793 extern void syms_of_alloc (void);
3794 extern struct buffer * allocate_buffer (void);
3795 extern int valid_lisp_object_p (Lisp_Object);
3796 extern int relocatable_string_data_p (const char *);
3797 #ifdef GC_CHECK_CONS_LIST
3798 extern void check_cons_list (void);
3799 #else
3800 INLINE void (check_cons_list) (void) { lisp_h_check_cons_list (); }
3801 #endif
3802
3803 #ifdef REL_ALLOC
3804 /* Defined in ralloc.c. */
3805 extern void *r_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3806 extern void r_alloc_free (void **);
3807 extern void *r_re_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3808 extern void r_alloc_reset_variable (void **, void **);
3809 extern void r_alloc_inhibit_buffer_relocation (int);
3810 #endif
3811
3812 /* Defined in chartab.c. */
3813 extern Lisp_Object copy_char_table (Lisp_Object);
3814 extern Lisp_Object char_table_ref_and_range (Lisp_Object, int,
3815 int *, int *);
3816 extern void char_table_set_range (Lisp_Object, int, int, Lisp_Object);
3817 extern void map_char_table (void (*) (Lisp_Object, Lisp_Object,
3818 Lisp_Object),
3819 Lisp_Object, Lisp_Object, Lisp_Object);
3820 extern void map_char_table_for_charset (void (*c_function) (Lisp_Object, Lisp_Object),
3821 Lisp_Object, Lisp_Object,
3822 Lisp_Object, struct charset *,
3823 unsigned, unsigned);
3824 extern Lisp_Object uniprop_table (Lisp_Object);
3825 extern void syms_of_chartab (void);
3826
3827 /* Defined in print.c. */
3828 extern Lisp_Object Vprin1_to_string_buffer;
3829 extern void debug_print (Lisp_Object) EXTERNALLY_VISIBLE;
3830 extern void temp_output_buffer_setup (const char *);
3831 extern int print_level;
3832 extern void write_string (const char *, int);
3833 extern void print_error_message (Lisp_Object, Lisp_Object, const char *,
3834 Lisp_Object);
3835 extern Lisp_Object internal_with_output_to_temp_buffer
3836 (const char *, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3837 #define FLOAT_TO_STRING_BUFSIZE 350
3838 extern int float_to_string (char *, double);
3839 extern void init_print_once (void);
3840 extern void syms_of_print (void);
3841
3842 /* Defined in doprnt.c. */
3843 extern ptrdiff_t doprnt (char *, ptrdiff_t, const char *, const char *,
3844 va_list);
3845 extern ptrdiff_t esprintf (char *, char const *, ...)
3846 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3847 extern ptrdiff_t exprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3848 char const *, ...)
3849 ATTRIBUTE_FORMAT_PRINTF (5, 6);
3850 extern ptrdiff_t evxprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3851 char const *, va_list)
3852 ATTRIBUTE_FORMAT_PRINTF (5, 0);
3853
3854 /* Defined in lread.c. */
3855 extern Lisp_Object check_obarray (Lisp_Object);
3856 extern Lisp_Object intern_1 (const char *, ptrdiff_t);
3857 extern Lisp_Object intern_c_string_1 (const char *, ptrdiff_t);
3858 extern Lisp_Object intern_driver (Lisp_Object, Lisp_Object, Lisp_Object);
3859 extern void init_symbol (Lisp_Object, Lisp_Object);
3860 extern Lisp_Object oblookup (Lisp_Object, const char *, ptrdiff_t, ptrdiff_t);
3861 INLINE void
3862 LOADHIST_ATTACH (Lisp_Object x)
3863 {
3864 if (initialized)
3865 Vcurrent_load_list = Fcons (x, Vcurrent_load_list);
3866 }
3867 extern int openp (Lisp_Object, Lisp_Object, Lisp_Object,
3868 Lisp_Object *, Lisp_Object, bool);
3869 extern Lisp_Object string_to_number (char const *, int, bool);
3870 extern void map_obarray (Lisp_Object, void (*) (Lisp_Object, Lisp_Object),
3871 Lisp_Object);
3872 extern void dir_warning (const char *, Lisp_Object);
3873 extern void init_obarray (void);
3874 extern void init_lread (void);
3875 extern void syms_of_lread (void);
3876
3877 INLINE Lisp_Object
3878 intern (const char *str)
3879 {
3880 return intern_1 (str, strlen (str));
3881 }
3882
3883 INLINE Lisp_Object
3884 intern_c_string (const char *str)
3885 {
3886 return intern_c_string_1 (str, strlen (str));
3887 }
3888
3889 /* Defined in eval.c. */
3890 extern EMACS_INT lisp_eval_depth;
3891 extern Lisp_Object Vautoload_queue;
3892 extern Lisp_Object Vrun_hooks;
3893 extern Lisp_Object Vsignaling_function;
3894 extern Lisp_Object inhibit_lisp_code;
3895 extern struct handler *handlerlist;
3896
3897 /* To run a normal hook, use the appropriate function from the list below.
3898 The calling convention:
3899
3900 if (!NILP (Vrun_hooks))
3901 call1 (Vrun_hooks, Qmy_funny_hook);
3902
3903 should no longer be used. */
3904 extern void run_hook (Lisp_Object);
3905 extern void run_hook_with_args_2 (Lisp_Object, Lisp_Object, Lisp_Object);
3906 extern Lisp_Object run_hook_with_args (ptrdiff_t nargs, Lisp_Object *args,
3907 Lisp_Object (*funcall)
3908 (ptrdiff_t nargs, Lisp_Object *args));
3909 extern _Noreturn void xsignal (Lisp_Object, Lisp_Object);
3910 extern _Noreturn void xsignal0 (Lisp_Object);
3911 extern _Noreturn void xsignal1 (Lisp_Object, Lisp_Object);
3912 extern _Noreturn void xsignal2 (Lisp_Object, Lisp_Object, Lisp_Object);
3913 extern _Noreturn void xsignal3 (Lisp_Object, Lisp_Object, Lisp_Object,
3914 Lisp_Object);
3915 extern _Noreturn void signal_error (const char *, Lisp_Object);
3916 extern Lisp_Object eval_sub (Lisp_Object form);
3917 extern Lisp_Object apply1 (Lisp_Object, Lisp_Object);
3918 extern Lisp_Object call0 (Lisp_Object);
3919 extern Lisp_Object call1 (Lisp_Object, Lisp_Object);
3920 extern Lisp_Object call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3921 extern Lisp_Object call3 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3922 extern Lisp_Object call4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3923 extern Lisp_Object call5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3924 extern Lisp_Object call6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3925 extern Lisp_Object call7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3926 extern Lisp_Object internal_catch (Lisp_Object, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3927 extern Lisp_Object internal_lisp_condition_case (Lisp_Object, Lisp_Object, Lisp_Object);
3928 extern Lisp_Object internal_condition_case (Lisp_Object (*) (void), Lisp_Object, Lisp_Object (*) (Lisp_Object));
3929 extern Lisp_Object internal_condition_case_1 (Lisp_Object (*) (Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3930 extern Lisp_Object internal_condition_case_2 (Lisp_Object (*) (Lisp_Object, Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3931 extern Lisp_Object internal_condition_case_n
3932 (Lisp_Object (*) (ptrdiff_t, Lisp_Object *), ptrdiff_t, Lisp_Object *,
3933 Lisp_Object, Lisp_Object (*) (Lisp_Object, ptrdiff_t, Lisp_Object *));
3934 extern void specbind (Lisp_Object, Lisp_Object);
3935 extern void record_unwind_protect (void (*) (Lisp_Object), Lisp_Object);
3936 extern void record_unwind_protect_ptr (void (*) (void *), void *);
3937 extern void record_unwind_protect_int (void (*) (int), int);
3938 extern void record_unwind_protect_void (void (*) (void));
3939 extern void record_unwind_protect_nothing (void);
3940 extern void clear_unwind_protect (ptrdiff_t);
3941 extern void set_unwind_protect (ptrdiff_t, void (*) (Lisp_Object), Lisp_Object);
3942 extern void set_unwind_protect_ptr (ptrdiff_t, void (*) (void *), void *);
3943 extern Lisp_Object unbind_to (ptrdiff_t, Lisp_Object);
3944 extern _Noreturn void error (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3945 extern _Noreturn void verror (const char *, va_list)
3946 ATTRIBUTE_FORMAT_PRINTF (1, 0);
3947 extern void un_autoload (Lisp_Object);
3948 extern Lisp_Object call_debugger (Lisp_Object arg);
3949 extern void init_eval_once (void);
3950 extern Lisp_Object safe_call (ptrdiff_t, Lisp_Object, ...);
3951 extern Lisp_Object safe_call1 (Lisp_Object, Lisp_Object);
3952 extern Lisp_Object safe_call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3953 extern void init_eval (void);
3954 extern void syms_of_eval (void);
3955 extern void unwind_body (Lisp_Object);
3956 extern ptrdiff_t record_in_backtrace (Lisp_Object, Lisp_Object *, ptrdiff_t);
3957 extern void mark_specpdl (void);
3958 extern void get_backtrace (Lisp_Object array);
3959 Lisp_Object backtrace_top_function (void);
3960 extern bool let_shadows_buffer_binding_p (struct Lisp_Symbol *symbol);
3961 extern bool let_shadows_global_binding_p (Lisp_Object symbol);
3962
3963
3964 /* Defined in editfns.c. */
3965 extern void insert1 (Lisp_Object);
3966 extern Lisp_Object format2 (const char *, Lisp_Object, Lisp_Object);
3967 extern Lisp_Object save_excursion_save (void);
3968 extern Lisp_Object save_restriction_save (void);
3969 extern void save_excursion_restore (Lisp_Object);
3970 extern void save_restriction_restore (Lisp_Object);
3971 extern _Noreturn void time_overflow (void);
3972 extern Lisp_Object make_buffer_string (ptrdiff_t, ptrdiff_t, bool);
3973 extern Lisp_Object make_buffer_string_both (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3974 ptrdiff_t, bool);
3975 extern void init_editfns (void);
3976 extern void syms_of_editfns (void);
3977
3978 /* Defined in buffer.c. */
3979 extern bool mouse_face_overlay_overlaps (Lisp_Object);
3980 extern _Noreturn void nsberror (Lisp_Object);
3981 extern void adjust_overlays_for_insert (ptrdiff_t, ptrdiff_t);
3982 extern void adjust_overlays_for_delete (ptrdiff_t, ptrdiff_t);
3983 extern void fix_start_end_in_overlays (ptrdiff_t, ptrdiff_t);
3984 extern void report_overlay_modification (Lisp_Object, Lisp_Object, bool,
3985 Lisp_Object, Lisp_Object, Lisp_Object);
3986 extern bool overlay_touches_p (ptrdiff_t);
3987 extern Lisp_Object other_buffer_safely (Lisp_Object);
3988 extern Lisp_Object get_truename_buffer (Lisp_Object);
3989 extern void init_buffer_once (void);
3990 extern void init_buffer (int);
3991 extern void syms_of_buffer (void);
3992 extern void keys_of_buffer (void);
3993
3994 /* Defined in marker.c. */
3995
3996 extern ptrdiff_t marker_position (Lisp_Object);
3997 extern ptrdiff_t marker_byte_position (Lisp_Object);
3998 extern void clear_charpos_cache (struct buffer *);
3999 extern ptrdiff_t buf_charpos_to_bytepos (struct buffer *, ptrdiff_t);
4000 extern ptrdiff_t buf_bytepos_to_charpos (struct buffer *, ptrdiff_t);
4001 extern void unchain_marker (struct Lisp_Marker *marker);
4002 extern Lisp_Object set_marker_restricted (Lisp_Object, Lisp_Object, Lisp_Object);
4003 extern Lisp_Object set_marker_both (Lisp_Object, Lisp_Object, ptrdiff_t, ptrdiff_t);
4004 extern Lisp_Object set_marker_restricted_both (Lisp_Object, Lisp_Object,
4005 ptrdiff_t, ptrdiff_t);
4006 extern Lisp_Object build_marker (struct buffer *, ptrdiff_t, ptrdiff_t);
4007 extern void syms_of_marker (void);
4008
4009 /* Defined in fileio.c. */
4010
4011 extern Lisp_Object expand_and_dir_to_file (Lisp_Object, Lisp_Object);
4012 extern Lisp_Object write_region (Lisp_Object, Lisp_Object, Lisp_Object,
4013 Lisp_Object, Lisp_Object, Lisp_Object,
4014 Lisp_Object, int);
4015 extern void close_file_unwind (int);
4016 extern void fclose_unwind (void *);
4017 extern void restore_point_unwind (Lisp_Object);
4018 extern _Noreturn void report_file_errno (const char *, Lisp_Object, int);
4019 extern _Noreturn void report_file_error (const char *, Lisp_Object);
4020 extern bool internal_delete_file (Lisp_Object);
4021 extern Lisp_Object emacs_readlinkat (int, const char *);
4022 extern bool file_directory_p (const char *);
4023 extern bool file_accessible_directory_p (Lisp_Object);
4024 extern void init_fileio (void);
4025 extern void syms_of_fileio (void);
4026 extern Lisp_Object make_temp_name (Lisp_Object, bool);
4027
4028 /* Defined in search.c. */
4029 extern void shrink_regexp_cache (void);
4030 extern void restore_search_regs (void);
4031 extern void record_unwind_save_match_data (void);
4032 struct re_registers;
4033 extern struct re_pattern_buffer *compile_pattern (Lisp_Object,
4034 struct re_registers *,
4035 Lisp_Object, bool, bool);
4036 extern ptrdiff_t fast_string_match (Lisp_Object, Lisp_Object);
4037 extern ptrdiff_t fast_c_string_match_ignore_case (Lisp_Object, const char *,
4038 ptrdiff_t);
4039 extern ptrdiff_t fast_string_match_ignore_case (Lisp_Object, Lisp_Object);
4040 extern ptrdiff_t fast_looking_at (Lisp_Object, ptrdiff_t, ptrdiff_t,
4041 ptrdiff_t, ptrdiff_t, Lisp_Object);
4042 extern ptrdiff_t find_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4043 ptrdiff_t, ptrdiff_t *, ptrdiff_t *, bool);
4044 extern ptrdiff_t scan_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4045 ptrdiff_t, bool);
4046 extern ptrdiff_t scan_newline_from_point (ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
4047 extern ptrdiff_t find_newline_no_quit (ptrdiff_t, ptrdiff_t,
4048 ptrdiff_t, ptrdiff_t *);
4049 extern ptrdiff_t find_before_next_newline (ptrdiff_t, ptrdiff_t,
4050 ptrdiff_t, ptrdiff_t *);
4051 extern void syms_of_search (void);
4052 extern void clear_regexp_cache (void);
4053
4054 /* Defined in minibuf.c. */
4055
4056 extern Lisp_Object Vminibuffer_list;
4057 extern Lisp_Object last_minibuf_string;
4058 extern Lisp_Object get_minibuffer (EMACS_INT);
4059 extern void init_minibuf_once (void);
4060 extern void syms_of_minibuf (void);
4061
4062 /* Defined in callint.c. */
4063
4064 extern void syms_of_callint (void);
4065
4066 /* Defined in casefiddle.c. */
4067
4068 extern void syms_of_casefiddle (void);
4069 extern void keys_of_casefiddle (void);
4070
4071 /* Defined in casetab.c. */
4072
4073 extern void init_casetab_once (void);
4074 extern void syms_of_casetab (void);
4075
4076 /* Defined in keyboard.c. */
4077
4078 extern Lisp_Object echo_message_buffer;
4079 extern struct kboard *echo_kboard;
4080 extern void cancel_echoing (void);
4081 extern Lisp_Object last_undo_boundary;
4082 extern bool input_pending;
4083 #ifdef HAVE_STACK_OVERFLOW_HANDLING
4084 extern sigjmp_buf return_to_command_loop;
4085 #endif
4086 extern Lisp_Object menu_bar_items (Lisp_Object);
4087 extern Lisp_Object tool_bar_items (Lisp_Object, int *);
4088 extern void discard_mouse_events (void);
4089 #ifdef USABLE_SIGIO
4090 void handle_input_available_signal (int);
4091 #endif
4092 extern Lisp_Object pending_funcalls;
4093 extern bool detect_input_pending (void);
4094 extern bool detect_input_pending_ignore_squeezables (void);
4095 extern bool detect_input_pending_run_timers (bool);
4096 extern void safe_run_hooks (Lisp_Object);
4097 extern void cmd_error_internal (Lisp_Object, const char *);
4098 extern Lisp_Object command_loop_1 (void);
4099 extern Lisp_Object read_menu_command (void);
4100 extern Lisp_Object recursive_edit_1 (void);
4101 extern void record_auto_save (void);
4102 extern void force_auto_save_soon (void);
4103 extern void init_keyboard (void);
4104 extern void syms_of_keyboard (void);
4105 extern void keys_of_keyboard (void);
4106
4107 /* Defined in indent.c. */
4108 extern ptrdiff_t current_column (void);
4109 extern void invalidate_current_column (void);
4110 extern bool indented_beyond_p (ptrdiff_t, ptrdiff_t, EMACS_INT);
4111 extern void syms_of_indent (void);
4112
4113 /* Defined in frame.c. */
4114 extern void store_frame_param (struct frame *, Lisp_Object, Lisp_Object);
4115 extern void store_in_alist (Lisp_Object *, Lisp_Object, Lisp_Object);
4116 extern Lisp_Object do_switch_frame (Lisp_Object, int, int, Lisp_Object);
4117 extern Lisp_Object get_frame_param (struct frame *, Lisp_Object);
4118 extern void frames_discard_buffer (Lisp_Object);
4119 extern void syms_of_frame (void);
4120
4121 /* Defined in emacs.c. */
4122 extern char **initial_argv;
4123 extern int initial_argc;
4124 #if defined (HAVE_X_WINDOWS) || defined (HAVE_NS)
4125 extern bool display_arg;
4126 #endif
4127 extern Lisp_Object decode_env_path (const char *, const char *, bool);
4128 extern Lisp_Object empty_unibyte_string, empty_multibyte_string;
4129 extern _Noreturn void terminate_due_to_signal (int, int);
4130 #ifdef WINDOWSNT
4131 extern Lisp_Object Vlibrary_cache;
4132 #endif
4133 #if HAVE_SETLOCALE
4134 void fixup_locale (void);
4135 void synchronize_system_messages_locale (void);
4136 void synchronize_system_time_locale (void);
4137 #else
4138 INLINE void fixup_locale (void) {}
4139 INLINE void synchronize_system_messages_locale (void) {}
4140 INLINE void synchronize_system_time_locale (void) {}
4141 #endif
4142 extern void shut_down_emacs (int, Lisp_Object);
4143
4144 /* True means don't do interactive redisplay and don't change tty modes. */
4145 extern bool noninteractive;
4146
4147 /* True means remove site-lisp directories from load-path. */
4148 extern bool no_site_lisp;
4149
4150 /* Pipe used to send exit notification to the daemon parent at
4151 startup. */
4152 extern int daemon_pipe[2];
4153 #define IS_DAEMON (daemon_pipe[1] != 0)
4154
4155 /* True if handling a fatal error already. */
4156 extern bool fatal_error_in_progress;
4157
4158 /* True means don't do use window-system-specific display code. */
4159 extern bool inhibit_window_system;
4160 /* True means that a filter or a sentinel is running. */
4161 extern bool running_asynch_code;
4162
4163 /* Defined in process.c. */
4164 extern void kill_buffer_processes (Lisp_Object);
4165 extern int wait_reading_process_output (intmax_t, int, int, bool, Lisp_Object,
4166 struct Lisp_Process *, int);
4167 /* Max value for the first argument of wait_reading_process_output. */
4168 #if __GNUC__ == 3 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 5)
4169 /* Work around a bug in GCC 3.4.2, known to be fixed in GCC 4.6.3.
4170 The bug merely causes a bogus warning, but the warning is annoying. */
4171 # define WAIT_READING_MAX min (TYPE_MAXIMUM (time_t), INTMAX_MAX)
4172 #else
4173 # define WAIT_READING_MAX INTMAX_MAX
4174 #endif
4175 #ifdef HAVE_TIMERFD
4176 extern void add_timer_wait_descriptor (int);
4177 #endif
4178 extern void add_keyboard_wait_descriptor (int);
4179 extern void delete_keyboard_wait_descriptor (int);
4180 #ifdef HAVE_GPM
4181 extern void add_gpm_wait_descriptor (int);
4182 extern void delete_gpm_wait_descriptor (int);
4183 #endif
4184 extern void init_process_emacs (void);
4185 extern void syms_of_process (void);
4186 extern void setup_process_coding_systems (Lisp_Object);
4187
4188 /* Defined in callproc.c. */
4189 #ifndef DOS_NT
4190 _Noreturn
4191 #endif
4192 extern int child_setup (int, int, int, char **, bool, Lisp_Object);
4193 extern void init_callproc_1 (void);
4194 extern void init_callproc (void);
4195 extern void set_initial_environment (void);
4196 extern void syms_of_callproc (void);
4197
4198 /* Defined in doc.c. */
4199 extern Lisp_Object read_doc_string (Lisp_Object);
4200 extern Lisp_Object get_doc_string (Lisp_Object, bool, bool);
4201 extern void syms_of_doc (void);
4202 extern int read_bytecode_char (bool);
4203
4204 /* Defined in bytecode.c. */
4205 extern void syms_of_bytecode (void);
4206 extern struct byte_stack *byte_stack_list;
4207 #if BYTE_MARK_STACK
4208 extern void mark_byte_stack (void);
4209 #endif
4210 extern void unmark_byte_stack (void);
4211 extern Lisp_Object exec_byte_code (Lisp_Object, Lisp_Object, Lisp_Object,
4212 Lisp_Object, ptrdiff_t, Lisp_Object *);
4213
4214 /* Defined in macros.c. */
4215 extern void init_macros (void);
4216 extern void syms_of_macros (void);
4217
4218 /* Defined in undo.c. */
4219 extern void truncate_undo_list (struct buffer *);
4220 extern void record_insert (ptrdiff_t, ptrdiff_t);
4221 extern void record_delete (ptrdiff_t, Lisp_Object, bool);
4222 extern void record_first_change (void);
4223 extern void record_change (ptrdiff_t, ptrdiff_t);
4224 extern void record_property_change (ptrdiff_t, ptrdiff_t,
4225 Lisp_Object, Lisp_Object,
4226 Lisp_Object);
4227 extern void syms_of_undo (void);
4228
4229 /* Defined in textprop.c. */
4230 extern void report_interval_modification (Lisp_Object, Lisp_Object);
4231
4232 /* Defined in menu.c. */
4233 extern void syms_of_menu (void);
4234
4235 /* Defined in xmenu.c. */
4236 extern void syms_of_xmenu (void);
4237
4238 /* Defined in termchar.h. */
4239 struct tty_display_info;
4240
4241 /* Defined in termhooks.h. */
4242 struct terminal;
4243
4244 /* Defined in sysdep.c. */
4245 #ifndef HAVE_GET_CURRENT_DIR_NAME
4246 extern char *get_current_dir_name (void);
4247 #endif
4248 extern void stuff_char (char c);
4249 extern void init_foreground_group (void);
4250 extern void sys_subshell (void);
4251 extern void sys_suspend (void);
4252 extern void discard_tty_input (void);
4253 extern void init_sys_modes (struct tty_display_info *);
4254 extern void reset_sys_modes (struct tty_display_info *);
4255 extern void init_all_sys_modes (void);
4256 extern void reset_all_sys_modes (void);
4257 extern void child_setup_tty (int);
4258 extern void setup_pty (int);
4259 extern int set_window_size (int, int, int);
4260 extern EMACS_INT get_random (void);
4261 extern void seed_random (void *, ptrdiff_t);
4262 extern void init_random (void);
4263 extern void emacs_backtrace (int);
4264 extern _Noreturn void emacs_abort (void) NO_INLINE;
4265 extern int emacs_open (const char *, int, int);
4266 extern int emacs_pipe (int[2]);
4267 extern int emacs_close (int);
4268 extern ptrdiff_t emacs_read (int, void *, ptrdiff_t);
4269 extern ptrdiff_t emacs_write (int, void const *, ptrdiff_t);
4270 extern ptrdiff_t emacs_write_sig (int, void const *, ptrdiff_t);
4271 extern void emacs_perror (char const *);
4272
4273 extern void unlock_all_files (void);
4274 extern void lock_file (Lisp_Object);
4275 extern void unlock_file (Lisp_Object);
4276 extern void unlock_buffer (struct buffer *);
4277 extern void syms_of_filelock (void);
4278 extern int str_collate (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4279
4280 /* Defined in sound.c. */
4281 extern void syms_of_sound (void);
4282
4283 /* Defined in category.c. */
4284 extern void init_category_once (void);
4285 extern Lisp_Object char_category_set (int);
4286 extern void syms_of_category (void);
4287
4288 /* Defined in ccl.c. */
4289 extern void syms_of_ccl (void);
4290
4291 /* Defined in dired.c. */
4292 extern void syms_of_dired (void);
4293 extern Lisp_Object directory_files_internal (Lisp_Object, Lisp_Object,
4294 Lisp_Object, Lisp_Object,
4295 bool, Lisp_Object);
4296
4297 /* Defined in term.c. */
4298 extern int *char_ins_del_vector;
4299 extern void syms_of_term (void);
4300 extern _Noreturn void fatal (const char *msgid, ...)
4301 ATTRIBUTE_FORMAT_PRINTF (1, 2);
4302
4303 /* Defined in terminal.c. */
4304 extern void syms_of_terminal (void);
4305
4306 /* Defined in font.c. */
4307 extern void syms_of_font (void);
4308 extern void init_font (void);
4309
4310 #ifdef HAVE_WINDOW_SYSTEM
4311 /* Defined in fontset.c. */
4312 extern void syms_of_fontset (void);
4313 #endif
4314
4315 /* Defined in gfilenotify.c */
4316 #ifdef HAVE_GFILENOTIFY
4317 extern void globals_of_gfilenotify (void);
4318 extern void syms_of_gfilenotify (void);
4319 #endif
4320
4321 /* Defined in inotify.c */
4322 #ifdef HAVE_INOTIFY
4323 extern void syms_of_inotify (void);
4324 #endif
4325
4326 #ifdef HAVE_W32NOTIFY
4327 /* Defined on w32notify.c. */
4328 extern void syms_of_w32notify (void);
4329 #endif
4330
4331 /* Defined in xfaces.c. */
4332 extern Lisp_Object Vface_alternative_font_family_alist;
4333 extern Lisp_Object Vface_alternative_font_registry_alist;
4334 extern void syms_of_xfaces (void);
4335
4336 #ifdef HAVE_X_WINDOWS
4337 /* Defined in xfns.c. */
4338 extern void syms_of_xfns (void);
4339
4340 /* Defined in xsmfns.c. */
4341 extern void syms_of_xsmfns (void);
4342
4343 /* Defined in xselect.c. */
4344 extern void syms_of_xselect (void);
4345
4346 /* Defined in xterm.c. */
4347 extern void init_xterm (void);
4348 extern void syms_of_xterm (void);
4349 #endif /* HAVE_X_WINDOWS */
4350
4351 #ifdef HAVE_WINDOW_SYSTEM
4352 /* Defined in xterm.c, nsterm.m, w32term.c. */
4353 extern char *x_get_keysym_name (int);
4354 #endif /* HAVE_WINDOW_SYSTEM */
4355
4356 #ifdef HAVE_LIBXML2
4357 /* Defined in xml.c. */
4358 extern void syms_of_xml (void);
4359 extern void xml_cleanup_parser (void);
4360 #endif
4361
4362 #ifdef HAVE_ZLIB
4363 /* Defined in decompress.c. */
4364 extern void syms_of_decompress (void);
4365 #endif
4366
4367 #ifdef HAVE_DBUS
4368 /* Defined in dbusbind.c. */
4369 void init_dbusbind (void);
4370 void syms_of_dbusbind (void);
4371 #endif
4372
4373
4374 /* Defined in profiler.c. */
4375 extern bool profiler_memory_running;
4376 extern void malloc_probe (size_t);
4377 extern void syms_of_profiler (void);
4378
4379
4380 #ifdef DOS_NT
4381 /* Defined in msdos.c, w32.c. */
4382 extern char *emacs_root_dir (void);
4383 #endif /* DOS_NT */
4384
4385 /* Defined in lastfile.c. */
4386 extern char my_edata[];
4387 extern char my_endbss[];
4388 extern char *my_endbss_static;
4389
4390 /* True means ^G can quit instantly. */
4391 extern bool immediate_quit;
4392
4393 extern void *xmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4394 extern void *xzalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4395 extern void *xrealloc (void *, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
4396 extern void xfree (void *);
4397 extern void *xnmalloc (ptrdiff_t, ptrdiff_t) ATTRIBUTE_MALLOC_SIZE ((1,2));
4398 extern void *xnrealloc (void *, ptrdiff_t, ptrdiff_t)
4399 ATTRIBUTE_ALLOC_SIZE ((2,3));
4400 extern void *xpalloc (void *, ptrdiff_t *, ptrdiff_t, ptrdiff_t, ptrdiff_t);
4401
4402 extern char *xstrdup (const char *) ATTRIBUTE_MALLOC;
4403 extern char *xlispstrdup (Lisp_Object) ATTRIBUTE_MALLOC;
4404 extern void dupstring (char **, char const *);
4405
4406 /* Make DEST a copy of STRING's data. Return a pointer to DEST's terminating
4407 null byte. This is like stpcpy, except the source is a Lisp string. */
4408
4409 INLINE char *
4410 lispstpcpy (char *dest, Lisp_Object string)
4411 {
4412 ptrdiff_t len = SBYTES (string);
4413 memcpy (dest, SDATA (string), len + 1);
4414 return dest + len;
4415 }
4416
4417 extern void xputenv (const char *);
4418
4419 extern char *egetenv_internal (const char *, ptrdiff_t);
4420
4421 INLINE char *
4422 egetenv (const char *var)
4423 {
4424 /* When VAR is a string literal, strlen can be optimized away. */
4425 return egetenv_internal (var, strlen (var));
4426 }
4427
4428 /* Set up the name of the machine we're running on. */
4429 extern void init_system_name (void);
4430
4431 /* Return the absolute value of X. X should be a signed integer
4432 expression without side effects, and X's absolute value should not
4433 exceed the maximum for its promoted type. This is called 'eabs'
4434 because 'abs' is reserved by the C standard. */
4435 #define eabs(x) ((x) < 0 ? -(x) : (x))
4436
4437 /* Return a fixnum or float, depending on whether VAL fits in a Lisp
4438 fixnum. */
4439
4440 #define make_fixnum_or_float(val) \
4441 (FIXNUM_OVERFLOW_P (val) ? make_float (val) : make_number (val))
4442
4443 /* SAFE_ALLOCA normally allocates memory on the stack, but if size is
4444 larger than MAX_ALLOCA, use xmalloc to avoid overflowing the stack. */
4445
4446 enum MAX_ALLOCA { MAX_ALLOCA = 16 * 1024 };
4447
4448 extern void *record_xmalloc (size_t) ATTRIBUTE_ALLOC_SIZE ((1));
4449
4450 #define USE_SAFE_ALLOCA \
4451 ptrdiff_t sa_avail = MAX_ALLOCA; \
4452 ptrdiff_t sa_count = SPECPDL_INDEX (); bool sa_must_free = false
4453
4454 #define AVAIL_ALLOCA(size) (sa_avail -= (size), alloca (size))
4455
4456 /* SAFE_ALLOCA allocates a simple buffer. */
4457
4458 #define SAFE_ALLOCA(size) ((size) <= sa_avail \
4459 ? AVAIL_ALLOCA (size) \
4460 : (sa_must_free = true, record_xmalloc (size)))
4461
4462 /* SAFE_NALLOCA sets BUF to a newly allocated array of MULTIPLIER *
4463 NITEMS items, each of the same type as *BUF. MULTIPLIER must
4464 positive. The code is tuned for MULTIPLIER being a constant. */
4465
4466 #define SAFE_NALLOCA(buf, multiplier, nitems) \
4467 do { \
4468 if ((nitems) <= sa_avail / sizeof *(buf) / (multiplier)) \
4469 (buf) = AVAIL_ALLOCA (sizeof *(buf) * (multiplier) * (nitems)); \
4470 else \
4471 { \
4472 (buf) = xnmalloc (nitems, sizeof *(buf) * (multiplier)); \
4473 sa_must_free = true; \
4474 record_unwind_protect_ptr (xfree, buf); \
4475 } \
4476 } while (false)
4477
4478 /* SAFE_ALLOCA_STRING allocates a C copy of a Lisp string. */
4479
4480 #define SAFE_ALLOCA_STRING(ptr, string) \
4481 do { \
4482 (ptr) = SAFE_ALLOCA (SBYTES (string) + 1); \
4483 memcpy (ptr, SDATA (string), SBYTES (string) + 1); \
4484 } while (false)
4485
4486 /* SAFE_FREE frees xmalloced memory and enables GC as needed. */
4487
4488 #define SAFE_FREE() \
4489 do { \
4490 if (sa_must_free) { \
4491 sa_must_free = false; \
4492 unbind_to (sa_count, Qnil); \
4493 } \
4494 } while (false)
4495
4496
4497 /* Return floor (NBYTES / WORD_SIZE). */
4498
4499 INLINE ptrdiff_t
4500 lisp_word_count (ptrdiff_t nbytes)
4501 {
4502 if (-1 >> 1 == -1)
4503 switch (word_size)
4504 {
4505 case 2: return nbytes >> 1;
4506 case 4: return nbytes >> 2;
4507 case 8: return nbytes >> 3;
4508 case 16: return nbytes >> 4;
4509 }
4510 return nbytes / word_size - (nbytes % word_size < 0);
4511 }
4512
4513 /* SAFE_ALLOCA_LISP allocates an array of Lisp_Objects. */
4514
4515 #define SAFE_ALLOCA_LISP(buf, nelt) \
4516 do { \
4517 if ((nelt) <= lisp_word_count (sa_avail)) \
4518 (buf) = AVAIL_ALLOCA ((nelt) * word_size); \
4519 else if ((nelt) <= min (PTRDIFF_MAX, SIZE_MAX) / word_size) \
4520 { \
4521 Lisp_Object arg_; \
4522 (buf) = xmalloc ((nelt) * word_size); \
4523 arg_ = make_save_memory (buf, nelt); \
4524 sa_must_free = true; \
4525 record_unwind_protect (free_save_value, arg_); \
4526 } \
4527 else \
4528 memory_full (SIZE_MAX); \
4529 } while (false)
4530
4531
4532 /* If USE_STACK_LISP_OBJECTS, define macros that and functions that allocate
4533 block-scoped conses and strings. These objects are not
4534 managed by the garbage collector, so they are dangerous: passing them
4535 out of their scope (e.g., to user code) results in undefined behavior.
4536 Conversely, they have better performance because GC is not involved.
4537
4538 This feature is experimental and requires careful debugging.
4539 Build with CPPFLAGS='-DUSE_STACK_LISP_OBJECTS=0' to disable it. */
4540
4541 #ifndef USE_STACK_LISP_OBJECTS
4542 # define USE_STACK_LISP_OBJECTS true
4543 #endif
4544
4545 /* USE_STACK_LISP_OBJECTS requires GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS. */
4546
4547 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
4548 # undef USE_STACK_LISP_OBJECTS
4549 # define USE_STACK_LISP_OBJECTS false
4550 #endif
4551
4552 #ifdef GC_CHECK_STRING_BYTES
4553 enum { defined_GC_CHECK_STRING_BYTES = true };
4554 #else
4555 enum { defined_GC_CHECK_STRING_BYTES = false };
4556 #endif
4557
4558 /* Struct inside unions that are typically no larger and aligned enough. */
4559
4560 union Aligned_Cons
4561 {
4562 struct Lisp_Cons s;
4563 double d; intmax_t i; void *p;
4564 };
4565
4566 union Aligned_String
4567 {
4568 struct Lisp_String s;
4569 double d; intmax_t i; void *p;
4570 };
4571
4572 /* True for stack-based cons and string implementations, respectively.
4573 Use stack-based strings only if stack-based cons also works.
4574 Otherwise, STACK_CONS would create heap-based cons cells that
4575 could point to stack-based strings, which is a no-no. */
4576
4577 enum
4578 {
4579 USE_STACK_CONS = (USE_STACK_LISP_OBJECTS
4580 && alignof (union Aligned_Cons) % GCALIGNMENT == 0),
4581 USE_STACK_STRING = (USE_STACK_CONS
4582 && !defined_GC_CHECK_STRING_BYTES
4583 && alignof (union Aligned_String) % GCALIGNMENT == 0)
4584 };
4585
4586 /* Auxiliary macros used for auto allocation of Lisp objects. Please
4587 use these only in macros like AUTO_CONS that declare a local
4588 variable whose lifetime will be clear to the programmer. */
4589 #define STACK_CONS(a, b) \
4590 make_lisp_ptr (&(union Aligned_Cons) { { a, { b } } }.s, Lisp_Cons)
4591 #define AUTO_CONS_EXPR(a, b) \
4592 (USE_STACK_CONS ? STACK_CONS (a, b) : Fcons (a, b))
4593
4594 /* Declare NAME as an auto Lisp cons or short list if possible, a
4595 GC-based one otherwise. This is in the sense of the C keyword
4596 'auto'; i.e., the object has the lifetime of the containing block.
4597 The resulting object should not be made visible to user Lisp code. */
4598
4599 #define AUTO_CONS(name, a, b) Lisp_Object name = AUTO_CONS_EXPR (a, b)
4600 #define AUTO_LIST1(name, a) \
4601 Lisp_Object name = (USE_STACK_CONS ? STACK_CONS (a, Qnil) : list1 (a))
4602 #define AUTO_LIST2(name, a, b) \
4603 Lisp_Object name = (USE_STACK_CONS \
4604 ? STACK_CONS (a, STACK_CONS (b, Qnil)) \
4605 : list2 (a, b))
4606 #define AUTO_LIST3(name, a, b, c) \
4607 Lisp_Object name = (USE_STACK_CONS \
4608 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, Qnil))) \
4609 : list3 (a, b, c))
4610 #define AUTO_LIST4(name, a, b, c, d) \
4611 Lisp_Object name \
4612 = (USE_STACK_CONS \
4613 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, \
4614 STACK_CONS (d, Qnil)))) \
4615 : list4 (a, b, c, d))
4616
4617 /* Check whether stack-allocated strings are ASCII-only. */
4618
4619 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
4620 extern const char *verify_ascii (const char *);
4621 #else
4622 # define verify_ascii(str) (str)
4623 #endif
4624
4625 /* Declare NAME as an auto Lisp string if possible, a GC-based one if not.
4626 Take its value from STR. STR is not necessarily copied and should
4627 contain only ASCII characters. The resulting Lisp string should
4628 not be modified or made visible to user code. */
4629
4630 #define AUTO_STRING(name, str) \
4631 Lisp_Object name = \
4632 (USE_STACK_STRING \
4633 ? (make_lisp_ptr \
4634 ((&(union Aligned_String) \
4635 {{strlen (str), -1, 0, (unsigned char *) verify_ascii (str)}}.s), \
4636 Lisp_String)) \
4637 : build_string (verify_ascii (str)))
4638
4639 /* Loop over all tails of a list, checking for cycles.
4640 FIXME: Make tortoise and n internal declarations.
4641 FIXME: Unroll the loop body so we don't need `n'. */
4642 #define FOR_EACH_TAIL(hare, list, tortoise, n) \
4643 for ((tortoise) = (hare) = (list), (n) = true; \
4644 CONSP (hare); \
4645 (hare = XCDR (hare), (n) = !(n), \
4646 ((n) \
4647 ? (EQ (hare, tortoise) \
4648 ? xsignal1 (Qcircular_list, list) \
4649 : (void) 0) \
4650 /* Move tortoise before the next iteration, in case */ \
4651 /* the next iteration does an Fsetcdr. */ \
4652 : (void) ((tortoise) = XCDR (tortoise)))))
4653
4654 /* Do a `for' loop over alist values. */
4655
4656 #define FOR_EACH_ALIST_VALUE(head_var, list_var, value_var) \
4657 for ((list_var) = (head_var); \
4658 (CONSP (list_var) && ((value_var) = XCDR (XCAR (list_var)), true)); \
4659 (list_var) = XCDR (list_var))
4660
4661 /* Check whether it's time for GC, and run it if so. */
4662
4663 INLINE void
4664 maybe_gc (void)
4665 {
4666 if ((consing_since_gc > gc_cons_threshold
4667 && consing_since_gc > gc_relative_threshold)
4668 || (!NILP (Vmemory_full)
4669 && consing_since_gc > memory_full_cons_threshold))
4670 Fgarbage_collect ();
4671 }
4672
4673 INLINE bool
4674 functionp (Lisp_Object object)
4675 {
4676 if (SYMBOLP (object) && !NILP (Ffboundp (object)))
4677 {
4678 object = Findirect_function (object, Qt);
4679
4680 if (CONSP (object) && EQ (XCAR (object), Qautoload))
4681 {
4682 /* Autoloaded symbols are functions, except if they load
4683 macros or keymaps. */
4684 int i;
4685 for (i = 0; i < 4 && CONSP (object); i++)
4686 object = XCDR (object);
4687
4688 return ! (CONSP (object) && !NILP (XCAR (object)));
4689 }
4690 }
4691
4692 if (SUBRP (object))
4693 return XSUBR (object)->max_args != UNEVALLED;
4694 else if (COMPILEDP (object))
4695 return true;
4696 else if (CONSP (object))
4697 {
4698 Lisp_Object car = XCAR (object);
4699 return EQ (car, Qlambda) || EQ (car, Qclosure);
4700 }
4701 else
4702 return false;
4703 }
4704
4705 INLINE_HEADER_END
4706
4707 #endif /* EMACS_LISP_H */