]> code.delx.au - gnu-emacs/blob - src/fns.c
* mh-letter.el (mh-letter-mode-map, mh-letter-complete)
[gnu-emacs] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985-1987, 1993-1995, 1997-2011
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21
22 #include <unistd.h>
23 #include <time.h>
24 #include <setjmp.h>
25
26 #include <intprops.h>
27
28 #include "lisp.h"
29 #include "commands.h"
30 #include "character.h"
31 #include "coding.h"
32 #include "buffer.h"
33 #include "keyboard.h"
34 #include "keymap.h"
35 #include "intervals.h"
36 #include "frame.h"
37 #include "window.h"
38 #include "blockinput.h"
39 #ifdef HAVE_MENUS
40 #if defined (HAVE_X_WINDOWS)
41 #include "xterm.h"
42 #endif
43 #endif /* HAVE_MENUS */
44
45 #ifndef NULL
46 #define NULL ((POINTER_TYPE *)0)
47 #endif
48
49 Lisp_Object Qstring_lessp;
50 static Lisp_Object Qprovide, Qrequire;
51 static Lisp_Object Qyes_or_no_p_history;
52 Lisp_Object Qcursor_in_echo_area;
53 static Lisp_Object Qwidget_type;
54 static Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
55
56 static Lisp_Object Qmd5, Qsha1, Qsha224, Qsha256, Qsha384, Qsha512;
57
58 static int internal_equal (Lisp_Object , Lisp_Object, int, int);
59
60 #ifndef HAVE_UNISTD_H
61 extern long time ();
62 #endif
63 \f
64 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
65 doc: /* Return the argument unchanged. */)
66 (Lisp_Object arg)
67 {
68 return arg;
69 }
70
71 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
72 doc: /* Return a pseudo-random number.
73 All integers representable in Lisp are equally likely.
74 On most systems, this is 29 bits' worth.
75 With positive integer LIMIT, return random number in interval [0,LIMIT).
76 With argument t, set the random number seed from the current time and pid.
77 Other values of LIMIT are ignored. */)
78 (Lisp_Object limit)
79 {
80 EMACS_INT val;
81 Lisp_Object lispy_val;
82 EMACS_UINT denominator;
83
84 if (EQ (limit, Qt))
85 seed_random (getpid () + time (NULL));
86 if (NATNUMP (limit) && XFASTINT (limit) != 0)
87 {
88 /* Try to take our random number from the higher bits of VAL,
89 not the lower, since (says Gentzel) the low bits of `random'
90 are less random than the higher ones. We do this by using the
91 quotient rather than the remainder. At the high end of the RNG
92 it's possible to get a quotient larger than n; discarding
93 these values eliminates the bias that would otherwise appear
94 when using a large n. */
95 denominator = ((EMACS_UINT) 1 << VALBITS) / XFASTINT (limit);
96 do
97 val = get_random () / denominator;
98 while (val >= XFASTINT (limit));
99 }
100 else
101 val = get_random ();
102 XSETINT (lispy_val, val);
103 return lispy_val;
104 }
105 \f
106 /* Heuristic on how many iterations of a tight loop can be safely done
107 before it's time to do a QUIT. This must be a power of 2. */
108 enum { QUIT_COUNT_HEURISTIC = 1 << 16 };
109
110 /* Random data-structure functions */
111
112 DEFUN ("length", Flength, Slength, 1, 1, 0,
113 doc: /* Return the length of vector, list or string SEQUENCE.
114 A byte-code function object is also allowed.
115 If the string contains multibyte characters, this is not necessarily
116 the number of bytes in the string; it is the number of characters.
117 To get the number of bytes, use `string-bytes'. */)
118 (register Lisp_Object sequence)
119 {
120 register Lisp_Object val;
121
122 if (STRINGP (sequence))
123 XSETFASTINT (val, SCHARS (sequence));
124 else if (VECTORP (sequence))
125 XSETFASTINT (val, ASIZE (sequence));
126 else if (CHAR_TABLE_P (sequence))
127 XSETFASTINT (val, MAX_CHAR);
128 else if (BOOL_VECTOR_P (sequence))
129 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
130 else if (COMPILEDP (sequence))
131 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
132 else if (CONSP (sequence))
133 {
134 EMACS_INT i = 0;
135
136 do
137 {
138 ++i;
139 if ((i & (QUIT_COUNT_HEURISTIC - 1)) == 0)
140 {
141 if (MOST_POSITIVE_FIXNUM < i)
142 error ("List too long");
143 QUIT;
144 }
145 sequence = XCDR (sequence);
146 }
147 while (CONSP (sequence));
148
149 CHECK_LIST_END (sequence, sequence);
150
151 val = make_number (i);
152 }
153 else if (NILP (sequence))
154 XSETFASTINT (val, 0);
155 else
156 wrong_type_argument (Qsequencep, sequence);
157
158 return val;
159 }
160
161 /* This does not check for quits. That is safe since it must terminate. */
162
163 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
164 doc: /* Return the length of a list, but avoid error or infinite loop.
165 This function never gets an error. If LIST is not really a list,
166 it returns 0. If LIST is circular, it returns a finite value
167 which is at least the number of distinct elements. */)
168 (Lisp_Object list)
169 {
170 Lisp_Object tail, halftail;
171 double hilen = 0;
172 uintmax_t lolen = 1;
173
174 if (! CONSP (list))
175 return make_number (0);
176
177 /* halftail is used to detect circular lists. */
178 for (tail = halftail = list; ; )
179 {
180 tail = XCDR (tail);
181 if (! CONSP (tail))
182 break;
183 if (EQ (tail, halftail))
184 break;
185 lolen++;
186 if ((lolen & 1) == 0)
187 {
188 halftail = XCDR (halftail);
189 if ((lolen & (QUIT_COUNT_HEURISTIC - 1)) == 0)
190 {
191 QUIT;
192 if (lolen == 0)
193 hilen += UINTMAX_MAX + 1.0;
194 }
195 }
196 }
197
198 /* If the length does not fit into a fixnum, return a float.
199 On all known practical machines this returns an upper bound on
200 the true length. */
201 return hilen ? make_float (hilen + lolen) : make_fixnum_or_float (lolen);
202 }
203
204 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
205 doc: /* Return the number of bytes in STRING.
206 If STRING is multibyte, this may be greater than the length of STRING. */)
207 (Lisp_Object string)
208 {
209 CHECK_STRING (string);
210 return make_number (SBYTES (string));
211 }
212
213 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
214 doc: /* Return t if two strings have identical contents.
215 Case is significant, but text properties are ignored.
216 Symbols are also allowed; their print names are used instead. */)
217 (register Lisp_Object s1, Lisp_Object s2)
218 {
219 if (SYMBOLP (s1))
220 s1 = SYMBOL_NAME (s1);
221 if (SYMBOLP (s2))
222 s2 = SYMBOL_NAME (s2);
223 CHECK_STRING (s1);
224 CHECK_STRING (s2);
225
226 if (SCHARS (s1) != SCHARS (s2)
227 || SBYTES (s1) != SBYTES (s2)
228 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
229 return Qnil;
230 return Qt;
231 }
232
233 DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
234 doc: /* Compare the contents of two strings, converting to multibyte if needed.
235 In string STR1, skip the first START1 characters and stop at END1.
236 In string STR2, skip the first START2 characters and stop at END2.
237 END1 and END2 default to the full lengths of the respective strings.
238
239 Case is significant in this comparison if IGNORE-CASE is nil.
240 Unibyte strings are converted to multibyte for comparison.
241
242 The value is t if the strings (or specified portions) match.
243 If string STR1 is less, the value is a negative number N;
244 - 1 - N is the number of characters that match at the beginning.
245 If string STR1 is greater, the value is a positive number N;
246 N - 1 is the number of characters that match at the beginning. */)
247 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2, Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
248 {
249 register EMACS_INT end1_char, end2_char;
250 register EMACS_INT i1, i1_byte, i2, i2_byte;
251
252 CHECK_STRING (str1);
253 CHECK_STRING (str2);
254 if (NILP (start1))
255 start1 = make_number (0);
256 if (NILP (start2))
257 start2 = make_number (0);
258 CHECK_NATNUM (start1);
259 CHECK_NATNUM (start2);
260 if (! NILP (end1))
261 CHECK_NATNUM (end1);
262 if (! NILP (end2))
263 CHECK_NATNUM (end2);
264
265 i1 = XINT (start1);
266 i2 = XINT (start2);
267
268 i1_byte = string_char_to_byte (str1, i1);
269 i2_byte = string_char_to_byte (str2, i2);
270
271 end1_char = SCHARS (str1);
272 if (! NILP (end1) && end1_char > XINT (end1))
273 end1_char = XINT (end1);
274
275 end2_char = SCHARS (str2);
276 if (! NILP (end2) && end2_char > XINT (end2))
277 end2_char = XINT (end2);
278
279 while (i1 < end1_char && i2 < end2_char)
280 {
281 /* When we find a mismatch, we must compare the
282 characters, not just the bytes. */
283 int c1, c2;
284
285 if (STRING_MULTIBYTE (str1))
286 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
287 else
288 {
289 c1 = SREF (str1, i1++);
290 MAKE_CHAR_MULTIBYTE (c1);
291 }
292
293 if (STRING_MULTIBYTE (str2))
294 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
295 else
296 {
297 c2 = SREF (str2, i2++);
298 MAKE_CHAR_MULTIBYTE (c2);
299 }
300
301 if (c1 == c2)
302 continue;
303
304 if (! NILP (ignore_case))
305 {
306 Lisp_Object tem;
307
308 tem = Fupcase (make_number (c1));
309 c1 = XINT (tem);
310 tem = Fupcase (make_number (c2));
311 c2 = XINT (tem);
312 }
313
314 if (c1 == c2)
315 continue;
316
317 /* Note that I1 has already been incremented
318 past the character that we are comparing;
319 hence we don't add or subtract 1 here. */
320 if (c1 < c2)
321 return make_number (- i1 + XINT (start1));
322 else
323 return make_number (i1 - XINT (start1));
324 }
325
326 if (i1 < end1_char)
327 return make_number (i1 - XINT (start1) + 1);
328 if (i2 < end2_char)
329 return make_number (- i1 + XINT (start1) - 1);
330
331 return Qt;
332 }
333
334 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
335 doc: /* Return t if first arg string is less than second in lexicographic order.
336 Case is significant.
337 Symbols are also allowed; their print names are used instead. */)
338 (register Lisp_Object s1, Lisp_Object s2)
339 {
340 register EMACS_INT end;
341 register EMACS_INT i1, i1_byte, i2, i2_byte;
342
343 if (SYMBOLP (s1))
344 s1 = SYMBOL_NAME (s1);
345 if (SYMBOLP (s2))
346 s2 = SYMBOL_NAME (s2);
347 CHECK_STRING (s1);
348 CHECK_STRING (s2);
349
350 i1 = i1_byte = i2 = i2_byte = 0;
351
352 end = SCHARS (s1);
353 if (end > SCHARS (s2))
354 end = SCHARS (s2);
355
356 while (i1 < end)
357 {
358 /* When we find a mismatch, we must compare the
359 characters, not just the bytes. */
360 int c1, c2;
361
362 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
363 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
364
365 if (c1 != c2)
366 return c1 < c2 ? Qt : Qnil;
367 }
368 return i1 < SCHARS (s2) ? Qt : Qnil;
369 }
370 \f
371 static Lisp_Object concat (ptrdiff_t nargs, Lisp_Object *args,
372 enum Lisp_Type target_type, int last_special);
373
374 /* ARGSUSED */
375 Lisp_Object
376 concat2 (Lisp_Object s1, Lisp_Object s2)
377 {
378 Lisp_Object args[2];
379 args[0] = s1;
380 args[1] = s2;
381 return concat (2, args, Lisp_String, 0);
382 }
383
384 /* ARGSUSED */
385 Lisp_Object
386 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
387 {
388 Lisp_Object args[3];
389 args[0] = s1;
390 args[1] = s2;
391 args[2] = s3;
392 return concat (3, args, Lisp_String, 0);
393 }
394
395 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
396 doc: /* Concatenate all the arguments and make the result a list.
397 The result is a list whose elements are the elements of all the arguments.
398 Each argument may be a list, vector or string.
399 The last argument is not copied, just used as the tail of the new list.
400 usage: (append &rest SEQUENCES) */)
401 (ptrdiff_t nargs, Lisp_Object *args)
402 {
403 return concat (nargs, args, Lisp_Cons, 1);
404 }
405
406 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
407 doc: /* Concatenate all the arguments and make the result a string.
408 The result is a string whose elements are the elements of all the arguments.
409 Each argument may be a string or a list or vector of characters (integers).
410 usage: (concat &rest SEQUENCES) */)
411 (ptrdiff_t nargs, Lisp_Object *args)
412 {
413 return concat (nargs, args, Lisp_String, 0);
414 }
415
416 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
417 doc: /* Concatenate all the arguments and make the result a vector.
418 The result is a vector whose elements are the elements of all the arguments.
419 Each argument may be a list, vector or string.
420 usage: (vconcat &rest SEQUENCES) */)
421 (ptrdiff_t nargs, Lisp_Object *args)
422 {
423 return concat (nargs, args, Lisp_Vectorlike, 0);
424 }
425
426
427 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
428 doc: /* Return a copy of a list, vector, string or char-table.
429 The elements of a list or vector are not copied; they are shared
430 with the original. */)
431 (Lisp_Object arg)
432 {
433 if (NILP (arg)) return arg;
434
435 if (CHAR_TABLE_P (arg))
436 {
437 return copy_char_table (arg);
438 }
439
440 if (BOOL_VECTOR_P (arg))
441 {
442 Lisp_Object val;
443 ptrdiff_t size_in_chars
444 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
445 / BOOL_VECTOR_BITS_PER_CHAR);
446
447 val = Fmake_bool_vector (Flength (arg), Qnil);
448 memcpy (XBOOL_VECTOR (val)->data, XBOOL_VECTOR (arg)->data,
449 size_in_chars);
450 return val;
451 }
452
453 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
454 wrong_type_argument (Qsequencep, arg);
455
456 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
457 }
458
459 /* This structure holds information of an argument of `concat' that is
460 a string and has text properties to be copied. */
461 struct textprop_rec
462 {
463 ptrdiff_t argnum; /* refer to ARGS (arguments of `concat') */
464 EMACS_INT from; /* refer to ARGS[argnum] (argument string) */
465 EMACS_INT to; /* refer to VAL (the target string) */
466 };
467
468 static Lisp_Object
469 concat (ptrdiff_t nargs, Lisp_Object *args,
470 enum Lisp_Type target_type, int last_special)
471 {
472 Lisp_Object val;
473 register Lisp_Object tail;
474 register Lisp_Object this;
475 EMACS_INT toindex;
476 EMACS_INT toindex_byte = 0;
477 register EMACS_INT result_len;
478 register EMACS_INT result_len_byte;
479 ptrdiff_t argnum;
480 Lisp_Object last_tail;
481 Lisp_Object prev;
482 int some_multibyte;
483 /* When we make a multibyte string, we can't copy text properties
484 while concatenating each string because the length of resulting
485 string can't be decided until we finish the whole concatenation.
486 So, we record strings that have text properties to be copied
487 here, and copy the text properties after the concatenation. */
488 struct textprop_rec *textprops = NULL;
489 /* Number of elements in textprops. */
490 ptrdiff_t num_textprops = 0;
491 USE_SAFE_ALLOCA;
492
493 tail = Qnil;
494
495 /* In append, the last arg isn't treated like the others */
496 if (last_special && nargs > 0)
497 {
498 nargs--;
499 last_tail = args[nargs];
500 }
501 else
502 last_tail = Qnil;
503
504 /* Check each argument. */
505 for (argnum = 0; argnum < nargs; argnum++)
506 {
507 this = args[argnum];
508 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
509 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
510 wrong_type_argument (Qsequencep, this);
511 }
512
513 /* Compute total length in chars of arguments in RESULT_LEN.
514 If desired output is a string, also compute length in bytes
515 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
516 whether the result should be a multibyte string. */
517 result_len_byte = 0;
518 result_len = 0;
519 some_multibyte = 0;
520 for (argnum = 0; argnum < nargs; argnum++)
521 {
522 EMACS_INT len;
523 this = args[argnum];
524 len = XFASTINT (Flength (this));
525 if (target_type == Lisp_String)
526 {
527 /* We must count the number of bytes needed in the string
528 as well as the number of characters. */
529 EMACS_INT i;
530 Lisp_Object ch;
531 int c;
532 EMACS_INT this_len_byte;
533
534 if (VECTORP (this) || COMPILEDP (this))
535 for (i = 0; i < len; i++)
536 {
537 ch = AREF (this, i);
538 CHECK_CHARACTER (ch);
539 c = XFASTINT (ch);
540 this_len_byte = CHAR_BYTES (c);
541 result_len_byte += this_len_byte;
542 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
543 some_multibyte = 1;
544 }
545 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
546 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
547 else if (CONSP (this))
548 for (; CONSP (this); this = XCDR (this))
549 {
550 ch = XCAR (this);
551 CHECK_CHARACTER (ch);
552 c = XFASTINT (ch);
553 this_len_byte = CHAR_BYTES (c);
554 result_len_byte += this_len_byte;
555 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
556 some_multibyte = 1;
557 }
558 else if (STRINGP (this))
559 {
560 if (STRING_MULTIBYTE (this))
561 {
562 some_multibyte = 1;
563 result_len_byte += SBYTES (this);
564 }
565 else
566 result_len_byte += count_size_as_multibyte (SDATA (this),
567 SCHARS (this));
568 }
569 }
570
571 result_len += len;
572 if (STRING_BYTES_BOUND < result_len)
573 string_overflow ();
574 }
575
576 if (! some_multibyte)
577 result_len_byte = result_len;
578
579 /* Create the output object. */
580 if (target_type == Lisp_Cons)
581 val = Fmake_list (make_number (result_len), Qnil);
582 else if (target_type == Lisp_Vectorlike)
583 val = Fmake_vector (make_number (result_len), Qnil);
584 else if (some_multibyte)
585 val = make_uninit_multibyte_string (result_len, result_len_byte);
586 else
587 val = make_uninit_string (result_len);
588
589 /* In `append', if all but last arg are nil, return last arg. */
590 if (target_type == Lisp_Cons && EQ (val, Qnil))
591 return last_tail;
592
593 /* Copy the contents of the args into the result. */
594 if (CONSP (val))
595 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
596 else
597 toindex = 0, toindex_byte = 0;
598
599 prev = Qnil;
600 if (STRINGP (val))
601 SAFE_ALLOCA (textprops, struct textprop_rec *, sizeof (struct textprop_rec) * nargs);
602
603 for (argnum = 0; argnum < nargs; argnum++)
604 {
605 Lisp_Object thislen;
606 EMACS_INT thisleni = 0;
607 register EMACS_INT thisindex = 0;
608 register EMACS_INT thisindex_byte = 0;
609
610 this = args[argnum];
611 if (!CONSP (this))
612 thislen = Flength (this), thisleni = XINT (thislen);
613
614 /* Between strings of the same kind, copy fast. */
615 if (STRINGP (this) && STRINGP (val)
616 && STRING_MULTIBYTE (this) == some_multibyte)
617 {
618 EMACS_INT thislen_byte = SBYTES (this);
619
620 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
621 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
622 {
623 textprops[num_textprops].argnum = argnum;
624 textprops[num_textprops].from = 0;
625 textprops[num_textprops++].to = toindex;
626 }
627 toindex_byte += thislen_byte;
628 toindex += thisleni;
629 }
630 /* Copy a single-byte string to a multibyte string. */
631 else if (STRINGP (this) && STRINGP (val))
632 {
633 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
634 {
635 textprops[num_textprops].argnum = argnum;
636 textprops[num_textprops].from = 0;
637 textprops[num_textprops++].to = toindex;
638 }
639 toindex_byte += copy_text (SDATA (this),
640 SDATA (val) + toindex_byte,
641 SCHARS (this), 0, 1);
642 toindex += thisleni;
643 }
644 else
645 /* Copy element by element. */
646 while (1)
647 {
648 register Lisp_Object elt;
649
650 /* Fetch next element of `this' arg into `elt', or break if
651 `this' is exhausted. */
652 if (NILP (this)) break;
653 if (CONSP (this))
654 elt = XCAR (this), this = XCDR (this);
655 else if (thisindex >= thisleni)
656 break;
657 else if (STRINGP (this))
658 {
659 int c;
660 if (STRING_MULTIBYTE (this))
661 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
662 thisindex,
663 thisindex_byte);
664 else
665 {
666 c = SREF (this, thisindex); thisindex++;
667 if (some_multibyte && !ASCII_CHAR_P (c))
668 c = BYTE8_TO_CHAR (c);
669 }
670 XSETFASTINT (elt, c);
671 }
672 else if (BOOL_VECTOR_P (this))
673 {
674 int byte;
675 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
676 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
677 elt = Qt;
678 else
679 elt = Qnil;
680 thisindex++;
681 }
682 else
683 {
684 elt = AREF (this, thisindex);
685 thisindex++;
686 }
687
688 /* Store this element into the result. */
689 if (toindex < 0)
690 {
691 XSETCAR (tail, elt);
692 prev = tail;
693 tail = XCDR (tail);
694 }
695 else if (VECTORP (val))
696 {
697 ASET (val, toindex, elt);
698 toindex++;
699 }
700 else
701 {
702 int c;
703 CHECK_CHARACTER (elt);
704 c = XFASTINT (elt);
705 if (some_multibyte)
706 toindex_byte += CHAR_STRING (c, SDATA (val) + toindex_byte);
707 else
708 SSET (val, toindex_byte++, c);
709 toindex++;
710 }
711 }
712 }
713 if (!NILP (prev))
714 XSETCDR (prev, last_tail);
715
716 if (num_textprops > 0)
717 {
718 Lisp_Object props;
719 EMACS_INT last_to_end = -1;
720
721 for (argnum = 0; argnum < num_textprops; argnum++)
722 {
723 this = args[textprops[argnum].argnum];
724 props = text_property_list (this,
725 make_number (0),
726 make_number (SCHARS (this)),
727 Qnil);
728 /* If successive arguments have properties, be sure that the
729 value of `composition' property be the copy. */
730 if (last_to_end == textprops[argnum].to)
731 make_composition_value_copy (props);
732 add_text_properties_from_list (val, props,
733 make_number (textprops[argnum].to));
734 last_to_end = textprops[argnum].to + SCHARS (this);
735 }
736 }
737
738 SAFE_FREE ();
739 return val;
740 }
741 \f
742 static Lisp_Object string_char_byte_cache_string;
743 static EMACS_INT string_char_byte_cache_charpos;
744 static EMACS_INT string_char_byte_cache_bytepos;
745
746 void
747 clear_string_char_byte_cache (void)
748 {
749 string_char_byte_cache_string = Qnil;
750 }
751
752 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
753
754 EMACS_INT
755 string_char_to_byte (Lisp_Object string, EMACS_INT char_index)
756 {
757 EMACS_INT i_byte;
758 EMACS_INT best_below, best_below_byte;
759 EMACS_INT best_above, best_above_byte;
760
761 best_below = best_below_byte = 0;
762 best_above = SCHARS (string);
763 best_above_byte = SBYTES (string);
764 if (best_above == best_above_byte)
765 return char_index;
766
767 if (EQ (string, string_char_byte_cache_string))
768 {
769 if (string_char_byte_cache_charpos < char_index)
770 {
771 best_below = string_char_byte_cache_charpos;
772 best_below_byte = string_char_byte_cache_bytepos;
773 }
774 else
775 {
776 best_above = string_char_byte_cache_charpos;
777 best_above_byte = string_char_byte_cache_bytepos;
778 }
779 }
780
781 if (char_index - best_below < best_above - char_index)
782 {
783 unsigned char *p = SDATA (string) + best_below_byte;
784
785 while (best_below < char_index)
786 {
787 p += BYTES_BY_CHAR_HEAD (*p);
788 best_below++;
789 }
790 i_byte = p - SDATA (string);
791 }
792 else
793 {
794 unsigned char *p = SDATA (string) + best_above_byte;
795
796 while (best_above > char_index)
797 {
798 p--;
799 while (!CHAR_HEAD_P (*p)) p--;
800 best_above--;
801 }
802 i_byte = p - SDATA (string);
803 }
804
805 string_char_byte_cache_bytepos = i_byte;
806 string_char_byte_cache_charpos = char_index;
807 string_char_byte_cache_string = string;
808
809 return i_byte;
810 }
811 \f
812 /* Return the character index corresponding to BYTE_INDEX in STRING. */
813
814 EMACS_INT
815 string_byte_to_char (Lisp_Object string, EMACS_INT byte_index)
816 {
817 EMACS_INT i, i_byte;
818 EMACS_INT best_below, best_below_byte;
819 EMACS_INT best_above, best_above_byte;
820
821 best_below = best_below_byte = 0;
822 best_above = SCHARS (string);
823 best_above_byte = SBYTES (string);
824 if (best_above == best_above_byte)
825 return byte_index;
826
827 if (EQ (string, string_char_byte_cache_string))
828 {
829 if (string_char_byte_cache_bytepos < byte_index)
830 {
831 best_below = string_char_byte_cache_charpos;
832 best_below_byte = string_char_byte_cache_bytepos;
833 }
834 else
835 {
836 best_above = string_char_byte_cache_charpos;
837 best_above_byte = string_char_byte_cache_bytepos;
838 }
839 }
840
841 if (byte_index - best_below_byte < best_above_byte - byte_index)
842 {
843 unsigned char *p = SDATA (string) + best_below_byte;
844 unsigned char *pend = SDATA (string) + byte_index;
845
846 while (p < pend)
847 {
848 p += BYTES_BY_CHAR_HEAD (*p);
849 best_below++;
850 }
851 i = best_below;
852 i_byte = p - SDATA (string);
853 }
854 else
855 {
856 unsigned char *p = SDATA (string) + best_above_byte;
857 unsigned char *pbeg = SDATA (string) + byte_index;
858
859 while (p > pbeg)
860 {
861 p--;
862 while (!CHAR_HEAD_P (*p)) p--;
863 best_above--;
864 }
865 i = best_above;
866 i_byte = p - SDATA (string);
867 }
868
869 string_char_byte_cache_bytepos = i_byte;
870 string_char_byte_cache_charpos = i;
871 string_char_byte_cache_string = string;
872
873 return i;
874 }
875 \f
876 /* Convert STRING to a multibyte string. */
877
878 static Lisp_Object
879 string_make_multibyte (Lisp_Object string)
880 {
881 unsigned char *buf;
882 EMACS_INT nbytes;
883 Lisp_Object ret;
884 USE_SAFE_ALLOCA;
885
886 if (STRING_MULTIBYTE (string))
887 return string;
888
889 nbytes = count_size_as_multibyte (SDATA (string),
890 SCHARS (string));
891 /* If all the chars are ASCII, they won't need any more bytes
892 once converted. In that case, we can return STRING itself. */
893 if (nbytes == SBYTES (string))
894 return string;
895
896 SAFE_ALLOCA (buf, unsigned char *, nbytes);
897 copy_text (SDATA (string), buf, SBYTES (string),
898 0, 1);
899
900 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
901 SAFE_FREE ();
902
903 return ret;
904 }
905
906
907 /* Convert STRING (if unibyte) to a multibyte string without changing
908 the number of characters. Characters 0200 trough 0237 are
909 converted to eight-bit characters. */
910
911 Lisp_Object
912 string_to_multibyte (Lisp_Object string)
913 {
914 unsigned char *buf;
915 EMACS_INT nbytes;
916 Lisp_Object ret;
917 USE_SAFE_ALLOCA;
918
919 if (STRING_MULTIBYTE (string))
920 return string;
921
922 nbytes = count_size_as_multibyte (SDATA (string), SBYTES (string));
923 /* If all the chars are ASCII, they won't need any more bytes once
924 converted. */
925 if (nbytes == SBYTES (string))
926 return make_multibyte_string (SSDATA (string), nbytes, nbytes);
927
928 SAFE_ALLOCA (buf, unsigned char *, nbytes);
929 memcpy (buf, SDATA (string), SBYTES (string));
930 str_to_multibyte (buf, nbytes, SBYTES (string));
931
932 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
933 SAFE_FREE ();
934
935 return ret;
936 }
937
938
939 /* Convert STRING to a single-byte string. */
940
941 Lisp_Object
942 string_make_unibyte (Lisp_Object string)
943 {
944 EMACS_INT nchars;
945 unsigned char *buf;
946 Lisp_Object ret;
947 USE_SAFE_ALLOCA;
948
949 if (! STRING_MULTIBYTE (string))
950 return string;
951
952 nchars = SCHARS (string);
953
954 SAFE_ALLOCA (buf, unsigned char *, nchars);
955 copy_text (SDATA (string), buf, SBYTES (string),
956 1, 0);
957
958 ret = make_unibyte_string ((char *) buf, nchars);
959 SAFE_FREE ();
960
961 return ret;
962 }
963
964 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
965 1, 1, 0,
966 doc: /* Return the multibyte equivalent of STRING.
967 If STRING is unibyte and contains non-ASCII characters, the function
968 `unibyte-char-to-multibyte' is used to convert each unibyte character
969 to a multibyte character. In this case, the returned string is a
970 newly created string with no text properties. If STRING is multibyte
971 or entirely ASCII, it is returned unchanged. In particular, when
972 STRING is unibyte and entirely ASCII, the returned string is unibyte.
973 \(When the characters are all ASCII, Emacs primitives will treat the
974 string the same way whether it is unibyte or multibyte.) */)
975 (Lisp_Object string)
976 {
977 CHECK_STRING (string);
978
979 return string_make_multibyte (string);
980 }
981
982 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
983 1, 1, 0,
984 doc: /* Return the unibyte equivalent of STRING.
985 Multibyte character codes are converted to unibyte according to
986 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
987 If the lookup in the translation table fails, this function takes just
988 the low 8 bits of each character. */)
989 (Lisp_Object string)
990 {
991 CHECK_STRING (string);
992
993 return string_make_unibyte (string);
994 }
995
996 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
997 1, 1, 0,
998 doc: /* Return a unibyte string with the same individual bytes as STRING.
999 If STRING is unibyte, the result is STRING itself.
1000 Otherwise it is a newly created string, with no text properties.
1001 If STRING is multibyte and contains a character of charset
1002 `eight-bit', it is converted to the corresponding single byte. */)
1003 (Lisp_Object string)
1004 {
1005 CHECK_STRING (string);
1006
1007 if (STRING_MULTIBYTE (string))
1008 {
1009 EMACS_INT bytes = SBYTES (string);
1010 unsigned char *str = (unsigned char *) xmalloc (bytes);
1011
1012 memcpy (str, SDATA (string), bytes);
1013 bytes = str_as_unibyte (str, bytes);
1014 string = make_unibyte_string ((char *) str, bytes);
1015 xfree (str);
1016 }
1017 return string;
1018 }
1019
1020 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1021 1, 1, 0,
1022 doc: /* Return a multibyte string with the same individual bytes as STRING.
1023 If STRING is multibyte, the result is STRING itself.
1024 Otherwise it is a newly created string, with no text properties.
1025
1026 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1027 part of a correct utf-8 sequence), it is converted to the corresponding
1028 multibyte character of charset `eight-bit'.
1029 See also `string-to-multibyte'.
1030
1031 Beware, this often doesn't really do what you think it does.
1032 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1033 If you're not sure, whether to use `string-as-multibyte' or
1034 `string-to-multibyte', use `string-to-multibyte'. */)
1035 (Lisp_Object string)
1036 {
1037 CHECK_STRING (string);
1038
1039 if (! STRING_MULTIBYTE (string))
1040 {
1041 Lisp_Object new_string;
1042 EMACS_INT nchars, nbytes;
1043
1044 parse_str_as_multibyte (SDATA (string),
1045 SBYTES (string),
1046 &nchars, &nbytes);
1047 new_string = make_uninit_multibyte_string (nchars, nbytes);
1048 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1049 if (nbytes != SBYTES (string))
1050 str_as_multibyte (SDATA (new_string), nbytes,
1051 SBYTES (string), NULL);
1052 string = new_string;
1053 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1054 }
1055 return string;
1056 }
1057
1058 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1059 1, 1, 0,
1060 doc: /* Return a multibyte string with the same individual chars as STRING.
1061 If STRING is multibyte, the result is STRING itself.
1062 Otherwise it is a newly created string, with no text properties.
1063
1064 If STRING is unibyte and contains an 8-bit byte, it is converted to
1065 the corresponding multibyte character of charset `eight-bit'.
1066
1067 This differs from `string-as-multibyte' by converting each byte of a correct
1068 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1069 correct sequence. */)
1070 (Lisp_Object string)
1071 {
1072 CHECK_STRING (string);
1073
1074 return string_to_multibyte (string);
1075 }
1076
1077 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1078 1, 1, 0,
1079 doc: /* Return a unibyte string with the same individual chars as STRING.
1080 If STRING is unibyte, the result is STRING itself.
1081 Otherwise it is a newly created string, with no text properties,
1082 where each `eight-bit' character is converted to the corresponding byte.
1083 If STRING contains a non-ASCII, non-`eight-bit' character,
1084 an error is signaled. */)
1085 (Lisp_Object string)
1086 {
1087 CHECK_STRING (string);
1088
1089 if (STRING_MULTIBYTE (string))
1090 {
1091 EMACS_INT chars = SCHARS (string);
1092 unsigned char *str = (unsigned char *) xmalloc (chars);
1093 EMACS_INT converted = str_to_unibyte (SDATA (string), str, chars, 0);
1094
1095 if (converted < chars)
1096 error ("Can't convert the %"pI"dth character to unibyte", converted);
1097 string = make_unibyte_string ((char *) str, chars);
1098 xfree (str);
1099 }
1100 return string;
1101 }
1102
1103 \f
1104 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1105 doc: /* Return a copy of ALIST.
1106 This is an alist which represents the same mapping from objects to objects,
1107 but does not share the alist structure with ALIST.
1108 The objects mapped (cars and cdrs of elements of the alist)
1109 are shared, however.
1110 Elements of ALIST that are not conses are also shared. */)
1111 (Lisp_Object alist)
1112 {
1113 register Lisp_Object tem;
1114
1115 CHECK_LIST (alist);
1116 if (NILP (alist))
1117 return alist;
1118 alist = concat (1, &alist, Lisp_Cons, 0);
1119 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1120 {
1121 register Lisp_Object car;
1122 car = XCAR (tem);
1123
1124 if (CONSP (car))
1125 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1126 }
1127 return alist;
1128 }
1129
1130 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1131 doc: /* Return a new string whose contents are a substring of STRING.
1132 The returned string consists of the characters between index FROM
1133 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1134 zero-indexed: 0 means the first character of STRING. Negative values
1135 are counted from the end of STRING. If TO is nil, the substring runs
1136 to the end of STRING.
1137
1138 The STRING argument may also be a vector. In that case, the return
1139 value is a new vector that contains the elements between index FROM
1140 \(inclusive) and index TO (exclusive) of that vector argument. */)
1141 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1142 {
1143 Lisp_Object res;
1144 EMACS_INT size;
1145 EMACS_INT size_byte = 0;
1146 EMACS_INT from_char, to_char;
1147 EMACS_INT from_byte = 0, to_byte = 0;
1148
1149 CHECK_VECTOR_OR_STRING (string);
1150 CHECK_NUMBER (from);
1151
1152 if (STRINGP (string))
1153 {
1154 size = SCHARS (string);
1155 size_byte = SBYTES (string);
1156 }
1157 else
1158 size = ASIZE (string);
1159
1160 if (NILP (to))
1161 {
1162 to_char = size;
1163 to_byte = size_byte;
1164 }
1165 else
1166 {
1167 CHECK_NUMBER (to);
1168
1169 to_char = XINT (to);
1170 if (to_char < 0)
1171 to_char += size;
1172
1173 if (STRINGP (string))
1174 to_byte = string_char_to_byte (string, to_char);
1175 }
1176
1177 from_char = XINT (from);
1178 if (from_char < 0)
1179 from_char += size;
1180 if (STRINGP (string))
1181 from_byte = string_char_to_byte (string, from_char);
1182
1183 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1184 args_out_of_range_3 (string, make_number (from_char),
1185 make_number (to_char));
1186
1187 if (STRINGP (string))
1188 {
1189 res = make_specified_string (SSDATA (string) + from_byte,
1190 to_char - from_char, to_byte - from_byte,
1191 STRING_MULTIBYTE (string));
1192 copy_text_properties (make_number (from_char), make_number (to_char),
1193 string, make_number (0), res, Qnil);
1194 }
1195 else
1196 res = Fvector (to_char - from_char, &AREF (string, from_char));
1197
1198 return res;
1199 }
1200
1201
1202 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1203 doc: /* Return a substring of STRING, without text properties.
1204 It starts at index FROM and ends before TO.
1205 TO may be nil or omitted; then the substring runs to the end of STRING.
1206 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1207 If FROM or TO is negative, it counts from the end.
1208
1209 With one argument, just copy STRING without its properties. */)
1210 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1211 {
1212 EMACS_INT size, size_byte;
1213 EMACS_INT from_char, to_char;
1214 EMACS_INT from_byte, to_byte;
1215
1216 CHECK_STRING (string);
1217
1218 size = SCHARS (string);
1219 size_byte = SBYTES (string);
1220
1221 if (NILP (from))
1222 from_char = from_byte = 0;
1223 else
1224 {
1225 CHECK_NUMBER (from);
1226 from_char = XINT (from);
1227 if (from_char < 0)
1228 from_char += size;
1229
1230 from_byte = string_char_to_byte (string, from_char);
1231 }
1232
1233 if (NILP (to))
1234 {
1235 to_char = size;
1236 to_byte = size_byte;
1237 }
1238 else
1239 {
1240 CHECK_NUMBER (to);
1241
1242 to_char = XINT (to);
1243 if (to_char < 0)
1244 to_char += size;
1245
1246 to_byte = string_char_to_byte (string, to_char);
1247 }
1248
1249 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1250 args_out_of_range_3 (string, make_number (from_char),
1251 make_number (to_char));
1252
1253 return make_specified_string (SSDATA (string) + from_byte,
1254 to_char - from_char, to_byte - from_byte,
1255 STRING_MULTIBYTE (string));
1256 }
1257
1258 /* Extract a substring of STRING, giving start and end positions
1259 both in characters and in bytes. */
1260
1261 Lisp_Object
1262 substring_both (Lisp_Object string, EMACS_INT from, EMACS_INT from_byte,
1263 EMACS_INT to, EMACS_INT to_byte)
1264 {
1265 Lisp_Object res;
1266 EMACS_INT size;
1267
1268 CHECK_VECTOR_OR_STRING (string);
1269
1270 size = STRINGP (string) ? SCHARS (string) : ASIZE (string);
1271
1272 if (!(0 <= from && from <= to && to <= size))
1273 args_out_of_range_3 (string, make_number (from), make_number (to));
1274
1275 if (STRINGP (string))
1276 {
1277 res = make_specified_string (SSDATA (string) + from_byte,
1278 to - from, to_byte - from_byte,
1279 STRING_MULTIBYTE (string));
1280 copy_text_properties (make_number (from), make_number (to),
1281 string, make_number (0), res, Qnil);
1282 }
1283 else
1284 res = Fvector (to - from, &AREF (string, from));
1285
1286 return res;
1287 }
1288 \f
1289 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1290 doc: /* Take cdr N times on LIST, return the result. */)
1291 (Lisp_Object n, Lisp_Object list)
1292 {
1293 EMACS_INT i, num;
1294 CHECK_NUMBER (n);
1295 num = XINT (n);
1296 for (i = 0; i < num && !NILP (list); i++)
1297 {
1298 QUIT;
1299 CHECK_LIST_CONS (list, list);
1300 list = XCDR (list);
1301 }
1302 return list;
1303 }
1304
1305 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1306 doc: /* Return the Nth element of LIST.
1307 N counts from zero. If LIST is not that long, nil is returned. */)
1308 (Lisp_Object n, Lisp_Object list)
1309 {
1310 return Fcar (Fnthcdr (n, list));
1311 }
1312
1313 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1314 doc: /* Return element of SEQUENCE at index N. */)
1315 (register Lisp_Object sequence, Lisp_Object n)
1316 {
1317 CHECK_NUMBER (n);
1318 if (CONSP (sequence) || NILP (sequence))
1319 return Fcar (Fnthcdr (n, sequence));
1320
1321 /* Faref signals a "not array" error, so check here. */
1322 CHECK_ARRAY (sequence, Qsequencep);
1323 return Faref (sequence, n);
1324 }
1325
1326 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1327 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1328 The value is actually the tail of LIST whose car is ELT. */)
1329 (register Lisp_Object elt, Lisp_Object list)
1330 {
1331 register Lisp_Object tail;
1332 for (tail = list; CONSP (tail); tail = XCDR (tail))
1333 {
1334 register Lisp_Object tem;
1335 CHECK_LIST_CONS (tail, list);
1336 tem = XCAR (tail);
1337 if (! NILP (Fequal (elt, tem)))
1338 return tail;
1339 QUIT;
1340 }
1341 return Qnil;
1342 }
1343
1344 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1345 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1346 The value is actually the tail of LIST whose car is ELT. */)
1347 (register Lisp_Object elt, Lisp_Object list)
1348 {
1349 while (1)
1350 {
1351 if (!CONSP (list) || EQ (XCAR (list), elt))
1352 break;
1353
1354 list = XCDR (list);
1355 if (!CONSP (list) || EQ (XCAR (list), elt))
1356 break;
1357
1358 list = XCDR (list);
1359 if (!CONSP (list) || EQ (XCAR (list), elt))
1360 break;
1361
1362 list = XCDR (list);
1363 QUIT;
1364 }
1365
1366 CHECK_LIST (list);
1367 return list;
1368 }
1369
1370 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1371 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1372 The value is actually the tail of LIST whose car is ELT. */)
1373 (register Lisp_Object elt, Lisp_Object list)
1374 {
1375 register Lisp_Object tail;
1376
1377 if (!FLOATP (elt))
1378 return Fmemq (elt, list);
1379
1380 for (tail = list; CONSP (tail); tail = XCDR (tail))
1381 {
1382 register Lisp_Object tem;
1383 CHECK_LIST_CONS (tail, list);
1384 tem = XCAR (tail);
1385 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1386 return tail;
1387 QUIT;
1388 }
1389 return Qnil;
1390 }
1391
1392 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1393 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1394 The value is actually the first element of LIST whose car is KEY.
1395 Elements of LIST that are not conses are ignored. */)
1396 (Lisp_Object key, Lisp_Object list)
1397 {
1398 while (1)
1399 {
1400 if (!CONSP (list)
1401 || (CONSP (XCAR (list))
1402 && EQ (XCAR (XCAR (list)), key)))
1403 break;
1404
1405 list = XCDR (list);
1406 if (!CONSP (list)
1407 || (CONSP (XCAR (list))
1408 && EQ (XCAR (XCAR (list)), key)))
1409 break;
1410
1411 list = XCDR (list);
1412 if (!CONSP (list)
1413 || (CONSP (XCAR (list))
1414 && EQ (XCAR (XCAR (list)), key)))
1415 break;
1416
1417 list = XCDR (list);
1418 QUIT;
1419 }
1420
1421 return CAR (list);
1422 }
1423
1424 /* Like Fassq but never report an error and do not allow quits.
1425 Use only on lists known never to be circular. */
1426
1427 Lisp_Object
1428 assq_no_quit (Lisp_Object key, Lisp_Object list)
1429 {
1430 while (CONSP (list)
1431 && (!CONSP (XCAR (list))
1432 || !EQ (XCAR (XCAR (list)), key)))
1433 list = XCDR (list);
1434
1435 return CAR_SAFE (list);
1436 }
1437
1438 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1439 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1440 The value is actually the first element of LIST whose car equals KEY. */)
1441 (Lisp_Object key, Lisp_Object list)
1442 {
1443 Lisp_Object car;
1444
1445 while (1)
1446 {
1447 if (!CONSP (list)
1448 || (CONSP (XCAR (list))
1449 && (car = XCAR (XCAR (list)),
1450 EQ (car, key) || !NILP (Fequal (car, key)))))
1451 break;
1452
1453 list = XCDR (list);
1454 if (!CONSP (list)
1455 || (CONSP (XCAR (list))
1456 && (car = XCAR (XCAR (list)),
1457 EQ (car, key) || !NILP (Fequal (car, key)))))
1458 break;
1459
1460 list = XCDR (list);
1461 if (!CONSP (list)
1462 || (CONSP (XCAR (list))
1463 && (car = XCAR (XCAR (list)),
1464 EQ (car, key) || !NILP (Fequal (car, key)))))
1465 break;
1466
1467 list = XCDR (list);
1468 QUIT;
1469 }
1470
1471 return CAR (list);
1472 }
1473
1474 /* Like Fassoc but never report an error and do not allow quits.
1475 Use only on lists known never to be circular. */
1476
1477 Lisp_Object
1478 assoc_no_quit (Lisp_Object key, Lisp_Object list)
1479 {
1480 while (CONSP (list)
1481 && (!CONSP (XCAR (list))
1482 || (!EQ (XCAR (XCAR (list)), key)
1483 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1484 list = XCDR (list);
1485
1486 return CONSP (list) ? XCAR (list) : Qnil;
1487 }
1488
1489 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1490 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1491 The value is actually the first element of LIST whose cdr is KEY. */)
1492 (register Lisp_Object key, Lisp_Object list)
1493 {
1494 while (1)
1495 {
1496 if (!CONSP (list)
1497 || (CONSP (XCAR (list))
1498 && EQ (XCDR (XCAR (list)), key)))
1499 break;
1500
1501 list = XCDR (list);
1502 if (!CONSP (list)
1503 || (CONSP (XCAR (list))
1504 && EQ (XCDR (XCAR (list)), key)))
1505 break;
1506
1507 list = XCDR (list);
1508 if (!CONSP (list)
1509 || (CONSP (XCAR (list))
1510 && EQ (XCDR (XCAR (list)), key)))
1511 break;
1512
1513 list = XCDR (list);
1514 QUIT;
1515 }
1516
1517 return CAR (list);
1518 }
1519
1520 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1521 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1522 The value is actually the first element of LIST whose cdr equals KEY. */)
1523 (Lisp_Object key, Lisp_Object list)
1524 {
1525 Lisp_Object cdr;
1526
1527 while (1)
1528 {
1529 if (!CONSP (list)
1530 || (CONSP (XCAR (list))
1531 && (cdr = XCDR (XCAR (list)),
1532 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1533 break;
1534
1535 list = XCDR (list);
1536 if (!CONSP (list)
1537 || (CONSP (XCAR (list))
1538 && (cdr = XCDR (XCAR (list)),
1539 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1540 break;
1541
1542 list = XCDR (list);
1543 if (!CONSP (list)
1544 || (CONSP (XCAR (list))
1545 && (cdr = XCDR (XCAR (list)),
1546 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1547 break;
1548
1549 list = XCDR (list);
1550 QUIT;
1551 }
1552
1553 return CAR (list);
1554 }
1555 \f
1556 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1557 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1558 The modified LIST is returned. Comparison is done with `eq'.
1559 If the first member of LIST is ELT, there is no way to remove it by side effect;
1560 therefore, write `(setq foo (delq element foo))'
1561 to be sure of changing the value of `foo'. */)
1562 (register Lisp_Object elt, Lisp_Object list)
1563 {
1564 register Lisp_Object tail, prev;
1565 register Lisp_Object tem;
1566
1567 tail = list;
1568 prev = Qnil;
1569 while (!NILP (tail))
1570 {
1571 CHECK_LIST_CONS (tail, list);
1572 tem = XCAR (tail);
1573 if (EQ (elt, tem))
1574 {
1575 if (NILP (prev))
1576 list = XCDR (tail);
1577 else
1578 Fsetcdr (prev, XCDR (tail));
1579 }
1580 else
1581 prev = tail;
1582 tail = XCDR (tail);
1583 QUIT;
1584 }
1585 return list;
1586 }
1587
1588 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1589 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1590 SEQ must be a list, a vector, or a string.
1591 The modified SEQ is returned. Comparison is done with `equal'.
1592 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1593 is not a side effect; it is simply using a different sequence.
1594 Therefore, write `(setq foo (delete element foo))'
1595 to be sure of changing the value of `foo'. */)
1596 (Lisp_Object elt, Lisp_Object seq)
1597 {
1598 if (VECTORP (seq))
1599 {
1600 EMACS_INT i, n;
1601
1602 for (i = n = 0; i < ASIZE (seq); ++i)
1603 if (NILP (Fequal (AREF (seq, i), elt)))
1604 ++n;
1605
1606 if (n != ASIZE (seq))
1607 {
1608 struct Lisp_Vector *p = allocate_vector (n);
1609
1610 for (i = n = 0; i < ASIZE (seq); ++i)
1611 if (NILP (Fequal (AREF (seq, i), elt)))
1612 p->contents[n++] = AREF (seq, i);
1613
1614 XSETVECTOR (seq, p);
1615 }
1616 }
1617 else if (STRINGP (seq))
1618 {
1619 EMACS_INT i, ibyte, nchars, nbytes, cbytes;
1620 int c;
1621
1622 for (i = nchars = nbytes = ibyte = 0;
1623 i < SCHARS (seq);
1624 ++i, ibyte += cbytes)
1625 {
1626 if (STRING_MULTIBYTE (seq))
1627 {
1628 c = STRING_CHAR (SDATA (seq) + ibyte);
1629 cbytes = CHAR_BYTES (c);
1630 }
1631 else
1632 {
1633 c = SREF (seq, i);
1634 cbytes = 1;
1635 }
1636
1637 if (!INTEGERP (elt) || c != XINT (elt))
1638 {
1639 ++nchars;
1640 nbytes += cbytes;
1641 }
1642 }
1643
1644 if (nchars != SCHARS (seq))
1645 {
1646 Lisp_Object tem;
1647
1648 tem = make_uninit_multibyte_string (nchars, nbytes);
1649 if (!STRING_MULTIBYTE (seq))
1650 STRING_SET_UNIBYTE (tem);
1651
1652 for (i = nchars = nbytes = ibyte = 0;
1653 i < SCHARS (seq);
1654 ++i, ibyte += cbytes)
1655 {
1656 if (STRING_MULTIBYTE (seq))
1657 {
1658 c = STRING_CHAR (SDATA (seq) + ibyte);
1659 cbytes = CHAR_BYTES (c);
1660 }
1661 else
1662 {
1663 c = SREF (seq, i);
1664 cbytes = 1;
1665 }
1666
1667 if (!INTEGERP (elt) || c != XINT (elt))
1668 {
1669 unsigned char *from = SDATA (seq) + ibyte;
1670 unsigned char *to = SDATA (tem) + nbytes;
1671 EMACS_INT n;
1672
1673 ++nchars;
1674 nbytes += cbytes;
1675
1676 for (n = cbytes; n--; )
1677 *to++ = *from++;
1678 }
1679 }
1680
1681 seq = tem;
1682 }
1683 }
1684 else
1685 {
1686 Lisp_Object tail, prev;
1687
1688 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1689 {
1690 CHECK_LIST_CONS (tail, seq);
1691
1692 if (!NILP (Fequal (elt, XCAR (tail))))
1693 {
1694 if (NILP (prev))
1695 seq = XCDR (tail);
1696 else
1697 Fsetcdr (prev, XCDR (tail));
1698 }
1699 else
1700 prev = tail;
1701 QUIT;
1702 }
1703 }
1704
1705 return seq;
1706 }
1707
1708 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1709 doc: /* Reverse LIST by modifying cdr pointers.
1710 Return the reversed list. */)
1711 (Lisp_Object list)
1712 {
1713 register Lisp_Object prev, tail, next;
1714
1715 if (NILP (list)) return list;
1716 prev = Qnil;
1717 tail = list;
1718 while (!NILP (tail))
1719 {
1720 QUIT;
1721 CHECK_LIST_CONS (tail, list);
1722 next = XCDR (tail);
1723 Fsetcdr (tail, prev);
1724 prev = tail;
1725 tail = next;
1726 }
1727 return prev;
1728 }
1729
1730 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1731 doc: /* Reverse LIST, copying. Return the reversed list.
1732 See also the function `nreverse', which is used more often. */)
1733 (Lisp_Object list)
1734 {
1735 Lisp_Object new;
1736
1737 for (new = Qnil; CONSP (list); list = XCDR (list))
1738 {
1739 QUIT;
1740 new = Fcons (XCAR (list), new);
1741 }
1742 CHECK_LIST_END (list, list);
1743 return new;
1744 }
1745 \f
1746 Lisp_Object merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred);
1747
1748 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1749 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1750 Returns the sorted list. LIST is modified by side effects.
1751 PREDICATE is called with two elements of LIST, and should return non-nil
1752 if the first element should sort before the second. */)
1753 (Lisp_Object list, Lisp_Object predicate)
1754 {
1755 Lisp_Object front, back;
1756 register Lisp_Object len, tem;
1757 struct gcpro gcpro1, gcpro2;
1758 EMACS_INT length;
1759
1760 front = list;
1761 len = Flength (list);
1762 length = XINT (len);
1763 if (length < 2)
1764 return list;
1765
1766 XSETINT (len, (length / 2) - 1);
1767 tem = Fnthcdr (len, list);
1768 back = Fcdr (tem);
1769 Fsetcdr (tem, Qnil);
1770
1771 GCPRO2 (front, back);
1772 front = Fsort (front, predicate);
1773 back = Fsort (back, predicate);
1774 UNGCPRO;
1775 return merge (front, back, predicate);
1776 }
1777
1778 Lisp_Object
1779 merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
1780 {
1781 Lisp_Object value;
1782 register Lisp_Object tail;
1783 Lisp_Object tem;
1784 register Lisp_Object l1, l2;
1785 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1786
1787 l1 = org_l1;
1788 l2 = org_l2;
1789 tail = Qnil;
1790 value = Qnil;
1791
1792 /* It is sufficient to protect org_l1 and org_l2.
1793 When l1 and l2 are updated, we copy the new values
1794 back into the org_ vars. */
1795 GCPRO4 (org_l1, org_l2, pred, value);
1796
1797 while (1)
1798 {
1799 if (NILP (l1))
1800 {
1801 UNGCPRO;
1802 if (NILP (tail))
1803 return l2;
1804 Fsetcdr (tail, l2);
1805 return value;
1806 }
1807 if (NILP (l2))
1808 {
1809 UNGCPRO;
1810 if (NILP (tail))
1811 return l1;
1812 Fsetcdr (tail, l1);
1813 return value;
1814 }
1815 tem = call2 (pred, Fcar (l2), Fcar (l1));
1816 if (NILP (tem))
1817 {
1818 tem = l1;
1819 l1 = Fcdr (l1);
1820 org_l1 = l1;
1821 }
1822 else
1823 {
1824 tem = l2;
1825 l2 = Fcdr (l2);
1826 org_l2 = l2;
1827 }
1828 if (NILP (tail))
1829 value = tem;
1830 else
1831 Fsetcdr (tail, tem);
1832 tail = tem;
1833 }
1834 }
1835
1836 \f
1837 /* This does not check for quits. That is safe since it must terminate. */
1838
1839 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1840 doc: /* Extract a value from a property list.
1841 PLIST is a property list, which is a list of the form
1842 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1843 corresponding to the given PROP, or nil if PROP is not one of the
1844 properties on the list. This function never signals an error. */)
1845 (Lisp_Object plist, Lisp_Object prop)
1846 {
1847 Lisp_Object tail, halftail;
1848
1849 /* halftail is used to detect circular lists. */
1850 tail = halftail = plist;
1851 while (CONSP (tail) && CONSP (XCDR (tail)))
1852 {
1853 if (EQ (prop, XCAR (tail)))
1854 return XCAR (XCDR (tail));
1855
1856 tail = XCDR (XCDR (tail));
1857 halftail = XCDR (halftail);
1858 if (EQ (tail, halftail))
1859 break;
1860
1861 #if 0 /* Unsafe version. */
1862 /* This function can be called asynchronously
1863 (setup_coding_system). Don't QUIT in that case. */
1864 if (!interrupt_input_blocked)
1865 QUIT;
1866 #endif
1867 }
1868
1869 return Qnil;
1870 }
1871
1872 DEFUN ("get", Fget, Sget, 2, 2, 0,
1873 doc: /* Return the value of SYMBOL's PROPNAME property.
1874 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1875 (Lisp_Object symbol, Lisp_Object propname)
1876 {
1877 CHECK_SYMBOL (symbol);
1878 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1879 }
1880
1881 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1882 doc: /* Change value in PLIST of PROP to VAL.
1883 PLIST is a property list, which is a list of the form
1884 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1885 If PROP is already a property on the list, its value is set to VAL,
1886 otherwise the new PROP VAL pair is added. The new plist is returned;
1887 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1888 The PLIST is modified by side effects. */)
1889 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1890 {
1891 register Lisp_Object tail, prev;
1892 Lisp_Object newcell;
1893 prev = Qnil;
1894 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1895 tail = XCDR (XCDR (tail)))
1896 {
1897 if (EQ (prop, XCAR (tail)))
1898 {
1899 Fsetcar (XCDR (tail), val);
1900 return plist;
1901 }
1902
1903 prev = tail;
1904 QUIT;
1905 }
1906 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
1907 if (NILP (prev))
1908 return newcell;
1909 else
1910 Fsetcdr (XCDR (prev), newcell);
1911 return plist;
1912 }
1913
1914 DEFUN ("put", Fput, Sput, 3, 3, 0,
1915 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
1916 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1917 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
1918 {
1919 CHECK_SYMBOL (symbol);
1920 XSYMBOL (symbol)->plist
1921 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
1922 return value;
1923 }
1924 \f
1925 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
1926 doc: /* Extract a value from a property list, comparing with `equal'.
1927 PLIST is a property list, which is a list of the form
1928 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1929 corresponding to the given PROP, or nil if PROP is not
1930 one of the properties on the list. */)
1931 (Lisp_Object plist, Lisp_Object prop)
1932 {
1933 Lisp_Object tail;
1934
1935 for (tail = plist;
1936 CONSP (tail) && CONSP (XCDR (tail));
1937 tail = XCDR (XCDR (tail)))
1938 {
1939 if (! NILP (Fequal (prop, XCAR (tail))))
1940 return XCAR (XCDR (tail));
1941
1942 QUIT;
1943 }
1944
1945 CHECK_LIST_END (tail, prop);
1946
1947 return Qnil;
1948 }
1949
1950 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
1951 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1952 PLIST is a property list, which is a list of the form
1953 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1954 If PROP is already a property on the list, its value is set to VAL,
1955 otherwise the new PROP VAL pair is added. The new plist is returned;
1956 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1957 The PLIST is modified by side effects. */)
1958 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1959 {
1960 register Lisp_Object tail, prev;
1961 Lisp_Object newcell;
1962 prev = Qnil;
1963 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1964 tail = XCDR (XCDR (tail)))
1965 {
1966 if (! NILP (Fequal (prop, XCAR (tail))))
1967 {
1968 Fsetcar (XCDR (tail), val);
1969 return plist;
1970 }
1971
1972 prev = tail;
1973 QUIT;
1974 }
1975 newcell = Fcons (prop, Fcons (val, Qnil));
1976 if (NILP (prev))
1977 return newcell;
1978 else
1979 Fsetcdr (XCDR (prev), newcell);
1980 return plist;
1981 }
1982 \f
1983 DEFUN ("eql", Feql, Seql, 2, 2, 0,
1984 doc: /* Return t if the two args are the same Lisp object.
1985 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
1986 (Lisp_Object obj1, Lisp_Object obj2)
1987 {
1988 if (FLOATP (obj1))
1989 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
1990 else
1991 return EQ (obj1, obj2) ? Qt : Qnil;
1992 }
1993
1994 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
1995 doc: /* Return t if two Lisp objects have similar structure and contents.
1996 They must have the same data type.
1997 Conses are compared by comparing the cars and the cdrs.
1998 Vectors and strings are compared element by element.
1999 Numbers are compared by value, but integers cannot equal floats.
2000 (Use `=' if you want integers and floats to be able to be equal.)
2001 Symbols must match exactly. */)
2002 (register Lisp_Object o1, Lisp_Object o2)
2003 {
2004 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
2005 }
2006
2007 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
2008 doc: /* Return t if two Lisp objects have similar structure and contents.
2009 This is like `equal' except that it compares the text properties
2010 of strings. (`equal' ignores text properties.) */)
2011 (register Lisp_Object o1, Lisp_Object o2)
2012 {
2013 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
2014 }
2015
2016 /* DEPTH is current depth of recursion. Signal an error if it
2017 gets too deep.
2018 PROPS, if non-nil, means compare string text properties too. */
2019
2020 static int
2021 internal_equal (register Lisp_Object o1, register Lisp_Object o2, int depth, int props)
2022 {
2023 if (depth > 200)
2024 error ("Stack overflow in equal");
2025
2026 tail_recurse:
2027 QUIT;
2028 if (EQ (o1, o2))
2029 return 1;
2030 if (XTYPE (o1) != XTYPE (o2))
2031 return 0;
2032
2033 switch (XTYPE (o1))
2034 {
2035 case Lisp_Float:
2036 {
2037 double d1, d2;
2038
2039 d1 = extract_float (o1);
2040 d2 = extract_float (o2);
2041 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2042 though they are not =. */
2043 return d1 == d2 || (d1 != d1 && d2 != d2);
2044 }
2045
2046 case Lisp_Cons:
2047 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2048 return 0;
2049 o1 = XCDR (o1);
2050 o2 = XCDR (o2);
2051 goto tail_recurse;
2052
2053 case Lisp_Misc:
2054 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2055 return 0;
2056 if (OVERLAYP (o1))
2057 {
2058 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2059 depth + 1, props)
2060 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2061 depth + 1, props))
2062 return 0;
2063 o1 = XOVERLAY (o1)->plist;
2064 o2 = XOVERLAY (o2)->plist;
2065 goto tail_recurse;
2066 }
2067 if (MARKERP (o1))
2068 {
2069 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2070 && (XMARKER (o1)->buffer == 0
2071 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2072 }
2073 break;
2074
2075 case Lisp_Vectorlike:
2076 {
2077 register int i;
2078 EMACS_INT size = ASIZE (o1);
2079 /* Pseudovectors have the type encoded in the size field, so this test
2080 actually checks that the objects have the same type as well as the
2081 same size. */
2082 if (ASIZE (o2) != size)
2083 return 0;
2084 /* Boolvectors are compared much like strings. */
2085 if (BOOL_VECTOR_P (o1))
2086 {
2087 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2088 return 0;
2089 if (memcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2090 ((XBOOL_VECTOR (o1)->size
2091 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2092 / BOOL_VECTOR_BITS_PER_CHAR)))
2093 return 0;
2094 return 1;
2095 }
2096 if (WINDOW_CONFIGURATIONP (o1))
2097 return compare_window_configurations (o1, o2, 0);
2098
2099 /* Aside from them, only true vectors, char-tables, compiled
2100 functions, and fonts (font-spec, font-entity, font-object)
2101 are sensible to compare, so eliminate the others now. */
2102 if (size & PSEUDOVECTOR_FLAG)
2103 {
2104 if (!(size & (PVEC_COMPILED
2105 | PVEC_CHAR_TABLE | PVEC_SUB_CHAR_TABLE | PVEC_FONT)))
2106 return 0;
2107 size &= PSEUDOVECTOR_SIZE_MASK;
2108 }
2109 for (i = 0; i < size; i++)
2110 {
2111 Lisp_Object v1, v2;
2112 v1 = AREF (o1, i);
2113 v2 = AREF (o2, i);
2114 if (!internal_equal (v1, v2, depth + 1, props))
2115 return 0;
2116 }
2117 return 1;
2118 }
2119 break;
2120
2121 case Lisp_String:
2122 if (SCHARS (o1) != SCHARS (o2))
2123 return 0;
2124 if (SBYTES (o1) != SBYTES (o2))
2125 return 0;
2126 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2127 return 0;
2128 if (props && !compare_string_intervals (o1, o2))
2129 return 0;
2130 return 1;
2131
2132 default:
2133 break;
2134 }
2135
2136 return 0;
2137 }
2138 \f
2139
2140 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2141 doc: /* Store each element of ARRAY with ITEM.
2142 ARRAY is a vector, string, char-table, or bool-vector. */)
2143 (Lisp_Object array, Lisp_Object item)
2144 {
2145 register EMACS_INT size, idx;
2146
2147 if (VECTORP (array))
2148 {
2149 register Lisp_Object *p = XVECTOR (array)->contents;
2150 size = ASIZE (array);
2151 for (idx = 0; idx < size; idx++)
2152 p[idx] = item;
2153 }
2154 else if (CHAR_TABLE_P (array))
2155 {
2156 int i;
2157
2158 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2159 XCHAR_TABLE (array)->contents[i] = item;
2160 XCHAR_TABLE (array)->defalt = item;
2161 }
2162 else if (STRINGP (array))
2163 {
2164 register unsigned char *p = SDATA (array);
2165 int charval;
2166 CHECK_CHARACTER (item);
2167 charval = XFASTINT (item);
2168 size = SCHARS (array);
2169 if (STRING_MULTIBYTE (array))
2170 {
2171 unsigned char str[MAX_MULTIBYTE_LENGTH];
2172 int len = CHAR_STRING (charval, str);
2173 EMACS_INT size_byte = SBYTES (array);
2174
2175 if (INT_MULTIPLY_OVERFLOW (SCHARS (array), len)
2176 || SCHARS (array) * len != size_byte)
2177 error ("Attempt to change byte length of a string");
2178 for (idx = 0; idx < size_byte; idx++)
2179 *p++ = str[idx % len];
2180 }
2181 else
2182 for (idx = 0; idx < size; idx++)
2183 p[idx] = charval;
2184 }
2185 else if (BOOL_VECTOR_P (array))
2186 {
2187 register unsigned char *p = XBOOL_VECTOR (array)->data;
2188 EMACS_INT size_in_chars;
2189 size = XBOOL_VECTOR (array)->size;
2190 size_in_chars
2191 = ((size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2192 / BOOL_VECTOR_BITS_PER_CHAR);
2193
2194 if (size_in_chars)
2195 {
2196 memset (p, ! NILP (item) ? -1 : 0, size_in_chars);
2197
2198 /* Clear any extraneous bits in the last byte. */
2199 p[size_in_chars - 1] &= (1 << (size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2200 }
2201 }
2202 else
2203 wrong_type_argument (Qarrayp, array);
2204 return array;
2205 }
2206
2207 DEFUN ("clear-string", Fclear_string, Sclear_string,
2208 1, 1, 0,
2209 doc: /* Clear the contents of STRING.
2210 This makes STRING unibyte and may change its length. */)
2211 (Lisp_Object string)
2212 {
2213 EMACS_INT len;
2214 CHECK_STRING (string);
2215 len = SBYTES (string);
2216 memset (SDATA (string), 0, len);
2217 STRING_SET_CHARS (string, len);
2218 STRING_SET_UNIBYTE (string);
2219 return Qnil;
2220 }
2221 \f
2222 /* ARGSUSED */
2223 Lisp_Object
2224 nconc2 (Lisp_Object s1, Lisp_Object s2)
2225 {
2226 Lisp_Object args[2];
2227 args[0] = s1;
2228 args[1] = s2;
2229 return Fnconc (2, args);
2230 }
2231
2232 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2233 doc: /* Concatenate any number of lists by altering them.
2234 Only the last argument is not altered, and need not be a list.
2235 usage: (nconc &rest LISTS) */)
2236 (ptrdiff_t nargs, Lisp_Object *args)
2237 {
2238 ptrdiff_t argnum;
2239 register Lisp_Object tail, tem, val;
2240
2241 val = tail = Qnil;
2242
2243 for (argnum = 0; argnum < nargs; argnum++)
2244 {
2245 tem = args[argnum];
2246 if (NILP (tem)) continue;
2247
2248 if (NILP (val))
2249 val = tem;
2250
2251 if (argnum + 1 == nargs) break;
2252
2253 CHECK_LIST_CONS (tem, tem);
2254
2255 while (CONSP (tem))
2256 {
2257 tail = tem;
2258 tem = XCDR (tail);
2259 QUIT;
2260 }
2261
2262 tem = args[argnum + 1];
2263 Fsetcdr (tail, tem);
2264 if (NILP (tem))
2265 args[argnum + 1] = tail;
2266 }
2267
2268 return val;
2269 }
2270 \f
2271 /* This is the guts of all mapping functions.
2272 Apply FN to each element of SEQ, one by one,
2273 storing the results into elements of VALS, a C vector of Lisp_Objects.
2274 LENI is the length of VALS, which should also be the length of SEQ. */
2275
2276 static void
2277 mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2278 {
2279 register Lisp_Object tail;
2280 Lisp_Object dummy;
2281 register EMACS_INT i;
2282 struct gcpro gcpro1, gcpro2, gcpro3;
2283
2284 if (vals)
2285 {
2286 /* Don't let vals contain any garbage when GC happens. */
2287 for (i = 0; i < leni; i++)
2288 vals[i] = Qnil;
2289
2290 GCPRO3 (dummy, fn, seq);
2291 gcpro1.var = vals;
2292 gcpro1.nvars = leni;
2293 }
2294 else
2295 GCPRO2 (fn, seq);
2296 /* We need not explicitly protect `tail' because it is used only on lists, and
2297 1) lists are not relocated and 2) the list is marked via `seq' so will not
2298 be freed */
2299
2300 if (VECTORP (seq) || COMPILEDP (seq))
2301 {
2302 for (i = 0; i < leni; i++)
2303 {
2304 dummy = call1 (fn, AREF (seq, i));
2305 if (vals)
2306 vals[i] = dummy;
2307 }
2308 }
2309 else if (BOOL_VECTOR_P (seq))
2310 {
2311 for (i = 0; i < leni; i++)
2312 {
2313 unsigned char byte;
2314 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2315 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
2316 dummy = call1 (fn, dummy);
2317 if (vals)
2318 vals[i] = dummy;
2319 }
2320 }
2321 else if (STRINGP (seq))
2322 {
2323 EMACS_INT i_byte;
2324
2325 for (i = 0, i_byte = 0; i < leni;)
2326 {
2327 int c;
2328 EMACS_INT i_before = i;
2329
2330 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2331 XSETFASTINT (dummy, c);
2332 dummy = call1 (fn, dummy);
2333 if (vals)
2334 vals[i_before] = dummy;
2335 }
2336 }
2337 else /* Must be a list, since Flength did not get an error */
2338 {
2339 tail = seq;
2340 for (i = 0; i < leni && CONSP (tail); i++)
2341 {
2342 dummy = call1 (fn, XCAR (tail));
2343 if (vals)
2344 vals[i] = dummy;
2345 tail = XCDR (tail);
2346 }
2347 }
2348
2349 UNGCPRO;
2350 }
2351
2352 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2353 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2354 In between each pair of results, stick in SEPARATOR. Thus, " " as
2355 SEPARATOR results in spaces between the values returned by FUNCTION.
2356 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2357 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2358 {
2359 Lisp_Object len;
2360 register EMACS_INT leni;
2361 ptrdiff_t i, nargs;
2362 register Lisp_Object *args;
2363 struct gcpro gcpro1;
2364 Lisp_Object ret;
2365 USE_SAFE_ALLOCA;
2366
2367 len = Flength (sequence);
2368 if (CHAR_TABLE_P (sequence))
2369 wrong_type_argument (Qlistp, sequence);
2370 leni = XINT (len);
2371 nargs = leni + leni - 1;
2372 if (nargs < 0) return empty_unibyte_string;
2373
2374 SAFE_ALLOCA_LISP (args, nargs);
2375
2376 GCPRO1 (separator);
2377 mapcar1 (leni, args, function, sequence);
2378 UNGCPRO;
2379
2380 for (i = leni - 1; i > 0; i--)
2381 args[i + i] = args[i];
2382
2383 for (i = 1; i < nargs; i += 2)
2384 args[i] = separator;
2385
2386 ret = Fconcat (nargs, args);
2387 SAFE_FREE ();
2388
2389 return ret;
2390 }
2391
2392 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2393 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2394 The result is a list just as long as SEQUENCE.
2395 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2396 (Lisp_Object function, Lisp_Object sequence)
2397 {
2398 register Lisp_Object len;
2399 register EMACS_INT leni;
2400 register Lisp_Object *args;
2401 Lisp_Object ret;
2402 USE_SAFE_ALLOCA;
2403
2404 len = Flength (sequence);
2405 if (CHAR_TABLE_P (sequence))
2406 wrong_type_argument (Qlistp, sequence);
2407 leni = XFASTINT (len);
2408
2409 SAFE_ALLOCA_LISP (args, leni);
2410
2411 mapcar1 (leni, args, function, sequence);
2412
2413 ret = Flist (leni, args);
2414 SAFE_FREE ();
2415
2416 return ret;
2417 }
2418
2419 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2420 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2421 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2422 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2423 (Lisp_Object function, Lisp_Object sequence)
2424 {
2425 register EMACS_INT leni;
2426
2427 leni = XFASTINT (Flength (sequence));
2428 if (CHAR_TABLE_P (sequence))
2429 wrong_type_argument (Qlistp, sequence);
2430 mapcar1 (leni, 0, function, sequence);
2431
2432 return sequence;
2433 }
2434 \f
2435 /* This is how C code calls `yes-or-no-p' and allows the user
2436 to redefined it.
2437
2438 Anything that calls this function must protect from GC! */
2439
2440 Lisp_Object
2441 do_yes_or_no_p (Lisp_Object prompt)
2442 {
2443 return call1 (intern ("yes-or-no-p"), prompt);
2444 }
2445
2446 /* Anything that calls this function must protect from GC! */
2447
2448 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2449 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2450 PROMPT is the string to display to ask the question. It should end in
2451 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2452
2453 The user must confirm the answer with RET, and can edit it until it
2454 has been confirmed.
2455
2456 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2457 is nil, and `use-dialog-box' is non-nil. */)
2458 (Lisp_Object prompt)
2459 {
2460 register Lisp_Object ans;
2461 Lisp_Object args[2];
2462 struct gcpro gcpro1;
2463
2464 CHECK_STRING (prompt);
2465
2466 #ifdef HAVE_MENUS
2467 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2468 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2469 && use_dialog_box
2470 && have_menus_p ())
2471 {
2472 Lisp_Object pane, menu, obj;
2473 redisplay_preserve_echo_area (4);
2474 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2475 Fcons (Fcons (build_string ("No"), Qnil),
2476 Qnil));
2477 GCPRO1 (pane);
2478 menu = Fcons (prompt, pane);
2479 obj = Fx_popup_dialog (Qt, menu, Qnil);
2480 UNGCPRO;
2481 return obj;
2482 }
2483 #endif /* HAVE_MENUS */
2484
2485 args[0] = prompt;
2486 args[1] = build_string ("(yes or no) ");
2487 prompt = Fconcat (2, args);
2488
2489 GCPRO1 (prompt);
2490
2491 while (1)
2492 {
2493 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2494 Qyes_or_no_p_history, Qnil,
2495 Qnil));
2496 if (SCHARS (ans) == 3 && !strcmp (SSDATA (ans), "yes"))
2497 {
2498 UNGCPRO;
2499 return Qt;
2500 }
2501 if (SCHARS (ans) == 2 && !strcmp (SSDATA (ans), "no"))
2502 {
2503 UNGCPRO;
2504 return Qnil;
2505 }
2506
2507 Fding (Qnil);
2508 Fdiscard_input ();
2509 message ("Please answer yes or no.");
2510 Fsleep_for (make_number (2), Qnil);
2511 }
2512 }
2513 \f
2514 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2515 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2516
2517 Each of the three load averages is multiplied by 100, then converted
2518 to integer.
2519
2520 When USE-FLOATS is non-nil, floats will be used instead of integers.
2521 These floats are not multiplied by 100.
2522
2523 If the 5-minute or 15-minute load averages are not available, return a
2524 shortened list, containing only those averages which are available.
2525
2526 An error is thrown if the load average can't be obtained. In some
2527 cases making it work would require Emacs being installed setuid or
2528 setgid so that it can read kernel information, and that usually isn't
2529 advisable. */)
2530 (Lisp_Object use_floats)
2531 {
2532 double load_ave[3];
2533 int loads = getloadavg (load_ave, 3);
2534 Lisp_Object ret = Qnil;
2535
2536 if (loads < 0)
2537 error ("load-average not implemented for this operating system");
2538
2539 while (loads-- > 0)
2540 {
2541 Lisp_Object load = (NILP (use_floats)
2542 ? make_number (100.0 * load_ave[loads])
2543 : make_float (load_ave[loads]));
2544 ret = Fcons (load, ret);
2545 }
2546
2547 return ret;
2548 }
2549 \f
2550 static Lisp_Object Qsubfeatures;
2551
2552 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2553 doc: /* Return t if FEATURE is present in this Emacs.
2554
2555 Use this to conditionalize execution of lisp code based on the
2556 presence or absence of Emacs or environment extensions.
2557 Use `provide' to declare that a feature is available. This function
2558 looks at the value of the variable `features'. The optional argument
2559 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2560 (Lisp_Object feature, Lisp_Object subfeature)
2561 {
2562 register Lisp_Object tem;
2563 CHECK_SYMBOL (feature);
2564 tem = Fmemq (feature, Vfeatures);
2565 if (!NILP (tem) && !NILP (subfeature))
2566 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2567 return (NILP (tem)) ? Qnil : Qt;
2568 }
2569
2570 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2571 doc: /* Announce that FEATURE is a feature of the current Emacs.
2572 The optional argument SUBFEATURES should be a list of symbols listing
2573 particular subfeatures supported in this version of FEATURE. */)
2574 (Lisp_Object feature, Lisp_Object subfeatures)
2575 {
2576 register Lisp_Object tem;
2577 CHECK_SYMBOL (feature);
2578 CHECK_LIST (subfeatures);
2579 if (!NILP (Vautoload_queue))
2580 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2581 Vautoload_queue);
2582 tem = Fmemq (feature, Vfeatures);
2583 if (NILP (tem))
2584 Vfeatures = Fcons (feature, Vfeatures);
2585 if (!NILP (subfeatures))
2586 Fput (feature, Qsubfeatures, subfeatures);
2587 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2588
2589 /* Run any load-hooks for this file. */
2590 tem = Fassq (feature, Vafter_load_alist);
2591 if (CONSP (tem))
2592 Fprogn (XCDR (tem));
2593
2594 return feature;
2595 }
2596 \f
2597 /* `require' and its subroutines. */
2598
2599 /* List of features currently being require'd, innermost first. */
2600
2601 static Lisp_Object require_nesting_list;
2602
2603 static Lisp_Object
2604 require_unwind (Lisp_Object old_value)
2605 {
2606 return require_nesting_list = old_value;
2607 }
2608
2609 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2610 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2611 If FEATURE is not a member of the list `features', then the feature
2612 is not loaded; so load the file FILENAME.
2613 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2614 and `load' will try to load this name appended with the suffix `.elc' or
2615 `.el', in that order. The name without appended suffix will not be used.
2616 If your system supports it, `.elc.gz' and `.el.gz' files will also be
2617 considered. See `get-load-suffixes' for the complete list of suffixes.
2618 If the optional third argument NOERROR is non-nil,
2619 then return nil if the file is not found instead of signaling an error.
2620 Normally the return value is FEATURE.
2621 The normal messages at start and end of loading FILENAME are suppressed. */)
2622 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2623 {
2624 register Lisp_Object tem;
2625 struct gcpro gcpro1, gcpro2;
2626 int from_file = load_in_progress;
2627
2628 CHECK_SYMBOL (feature);
2629
2630 /* Record the presence of `require' in this file
2631 even if the feature specified is already loaded.
2632 But not more than once in any file,
2633 and not when we aren't loading or reading from a file. */
2634 if (!from_file)
2635 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2636 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2637 from_file = 1;
2638
2639 if (from_file)
2640 {
2641 tem = Fcons (Qrequire, feature);
2642 if (NILP (Fmember (tem, Vcurrent_load_list)))
2643 LOADHIST_ATTACH (tem);
2644 }
2645 tem = Fmemq (feature, Vfeatures);
2646
2647 if (NILP (tem))
2648 {
2649 int count = SPECPDL_INDEX ();
2650 int nesting = 0;
2651
2652 /* This is to make sure that loadup.el gives a clear picture
2653 of what files are preloaded and when. */
2654 if (! NILP (Vpurify_flag))
2655 error ("(require %s) while preparing to dump",
2656 SDATA (SYMBOL_NAME (feature)));
2657
2658 /* A certain amount of recursive `require' is legitimate,
2659 but if we require the same feature recursively 3 times,
2660 signal an error. */
2661 tem = require_nesting_list;
2662 while (! NILP (tem))
2663 {
2664 if (! NILP (Fequal (feature, XCAR (tem))))
2665 nesting++;
2666 tem = XCDR (tem);
2667 }
2668 if (nesting > 3)
2669 error ("Recursive `require' for feature `%s'",
2670 SDATA (SYMBOL_NAME (feature)));
2671
2672 /* Update the list for any nested `require's that occur. */
2673 record_unwind_protect (require_unwind, require_nesting_list);
2674 require_nesting_list = Fcons (feature, require_nesting_list);
2675
2676 /* Value saved here is to be restored into Vautoload_queue */
2677 record_unwind_protect (un_autoload, Vautoload_queue);
2678 Vautoload_queue = Qt;
2679
2680 /* Load the file. */
2681 GCPRO2 (feature, filename);
2682 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2683 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2684 UNGCPRO;
2685
2686 /* If load failed entirely, return nil. */
2687 if (NILP (tem))
2688 return unbind_to (count, Qnil);
2689
2690 tem = Fmemq (feature, Vfeatures);
2691 if (NILP (tem))
2692 error ("Required feature `%s' was not provided",
2693 SDATA (SYMBOL_NAME (feature)));
2694
2695 /* Once loading finishes, don't undo it. */
2696 Vautoload_queue = Qt;
2697 feature = unbind_to (count, feature);
2698 }
2699
2700 return feature;
2701 }
2702 \f
2703 /* Primitives for work of the "widget" library.
2704 In an ideal world, this section would not have been necessary.
2705 However, lisp function calls being as slow as they are, it turns
2706 out that some functions in the widget library (wid-edit.el) are the
2707 bottleneck of Widget operation. Here is their translation to C,
2708 for the sole reason of efficiency. */
2709
2710 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2711 doc: /* Return non-nil if PLIST has the property PROP.
2712 PLIST is a property list, which is a list of the form
2713 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2714 Unlike `plist-get', this allows you to distinguish between a missing
2715 property and a property with the value nil.
2716 The value is actually the tail of PLIST whose car is PROP. */)
2717 (Lisp_Object plist, Lisp_Object prop)
2718 {
2719 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2720 {
2721 QUIT;
2722 plist = XCDR (plist);
2723 plist = CDR (plist);
2724 }
2725 return plist;
2726 }
2727
2728 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2729 doc: /* In WIDGET, set PROPERTY to VALUE.
2730 The value can later be retrieved with `widget-get'. */)
2731 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2732 {
2733 CHECK_CONS (widget);
2734 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2735 return value;
2736 }
2737
2738 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2739 doc: /* In WIDGET, get the value of PROPERTY.
2740 The value could either be specified when the widget was created, or
2741 later with `widget-put'. */)
2742 (Lisp_Object widget, Lisp_Object property)
2743 {
2744 Lisp_Object tmp;
2745
2746 while (1)
2747 {
2748 if (NILP (widget))
2749 return Qnil;
2750 CHECK_CONS (widget);
2751 tmp = Fplist_member (XCDR (widget), property);
2752 if (CONSP (tmp))
2753 {
2754 tmp = XCDR (tmp);
2755 return CAR (tmp);
2756 }
2757 tmp = XCAR (widget);
2758 if (NILP (tmp))
2759 return Qnil;
2760 widget = Fget (tmp, Qwidget_type);
2761 }
2762 }
2763
2764 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2765 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2766 ARGS are passed as extra arguments to the function.
2767 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2768 (ptrdiff_t nargs, Lisp_Object *args)
2769 {
2770 /* This function can GC. */
2771 Lisp_Object newargs[3];
2772 struct gcpro gcpro1, gcpro2;
2773 Lisp_Object result;
2774
2775 newargs[0] = Fwidget_get (args[0], args[1]);
2776 newargs[1] = args[0];
2777 newargs[2] = Flist (nargs - 2, args + 2);
2778 GCPRO2 (newargs[0], newargs[2]);
2779 result = Fapply (3, newargs);
2780 UNGCPRO;
2781 return result;
2782 }
2783
2784 #ifdef HAVE_LANGINFO_CODESET
2785 #include <langinfo.h>
2786 #endif
2787
2788 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2789 doc: /* Access locale data ITEM for the current C locale, if available.
2790 ITEM should be one of the following:
2791
2792 `codeset', returning the character set as a string (locale item CODESET);
2793
2794 `days', returning a 7-element vector of day names (locale items DAY_n);
2795
2796 `months', returning a 12-element vector of month names (locale items MON_n);
2797
2798 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2799 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2800
2801 If the system can't provide such information through a call to
2802 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2803
2804 See also Info node `(libc)Locales'.
2805
2806 The data read from the system are decoded using `locale-coding-system'. */)
2807 (Lisp_Object item)
2808 {
2809 char *str = NULL;
2810 #ifdef HAVE_LANGINFO_CODESET
2811 Lisp_Object val;
2812 if (EQ (item, Qcodeset))
2813 {
2814 str = nl_langinfo (CODESET);
2815 return build_string (str);
2816 }
2817 #ifdef DAY_1
2818 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
2819 {
2820 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
2821 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
2822 int i;
2823 struct gcpro gcpro1;
2824 GCPRO1 (v);
2825 synchronize_system_time_locale ();
2826 for (i = 0; i < 7; i++)
2827 {
2828 str = nl_langinfo (days[i]);
2829 val = make_unibyte_string (str, strlen (str));
2830 /* Fixme: Is this coding system necessarily right, even if
2831 it is consistent with CODESET? If not, what to do? */
2832 Faset (v, make_number (i),
2833 code_convert_string_norecord (val, Vlocale_coding_system,
2834 0));
2835 }
2836 UNGCPRO;
2837 return v;
2838 }
2839 #endif /* DAY_1 */
2840 #ifdef MON_1
2841 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
2842 {
2843 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
2844 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
2845 MON_8, MON_9, MON_10, MON_11, MON_12};
2846 int i;
2847 struct gcpro gcpro1;
2848 GCPRO1 (v);
2849 synchronize_system_time_locale ();
2850 for (i = 0; i < 12; i++)
2851 {
2852 str = nl_langinfo (months[i]);
2853 val = make_unibyte_string (str, strlen (str));
2854 Faset (v, make_number (i),
2855 code_convert_string_norecord (val, Vlocale_coding_system, 0));
2856 }
2857 UNGCPRO;
2858 return v;
2859 }
2860 #endif /* MON_1 */
2861 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2862 but is in the locale files. This could be used by ps-print. */
2863 #ifdef PAPER_WIDTH
2864 else if (EQ (item, Qpaper))
2865 {
2866 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
2867 make_number (nl_langinfo (PAPER_HEIGHT)));
2868 }
2869 #endif /* PAPER_WIDTH */
2870 #endif /* HAVE_LANGINFO_CODESET*/
2871 return Qnil;
2872 }
2873 \f
2874 /* base64 encode/decode functions (RFC 2045).
2875 Based on code from GNU recode. */
2876
2877 #define MIME_LINE_LENGTH 76
2878
2879 #define IS_ASCII(Character) \
2880 ((Character) < 128)
2881 #define IS_BASE64(Character) \
2882 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2883 #define IS_BASE64_IGNORABLE(Character) \
2884 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2885 || (Character) == '\f' || (Character) == '\r')
2886
2887 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2888 character or return retval if there are no characters left to
2889 process. */
2890 #define READ_QUADRUPLET_BYTE(retval) \
2891 do \
2892 { \
2893 if (i == length) \
2894 { \
2895 if (nchars_return) \
2896 *nchars_return = nchars; \
2897 return (retval); \
2898 } \
2899 c = from[i++]; \
2900 } \
2901 while (IS_BASE64_IGNORABLE (c))
2902
2903 /* Table of characters coding the 64 values. */
2904 static const char base64_value_to_char[64] =
2905 {
2906 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2907 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2908 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2909 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2910 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2911 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2912 '8', '9', '+', '/' /* 60-63 */
2913 };
2914
2915 /* Table of base64 values for first 128 characters. */
2916 static const short base64_char_to_value[128] =
2917 {
2918 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2919 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2920 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2921 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2922 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2923 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2924 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2925 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2926 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2927 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2928 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2929 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2930 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2931 };
2932
2933 /* The following diagram shows the logical steps by which three octets
2934 get transformed into four base64 characters.
2935
2936 .--------. .--------. .--------.
2937 |aaaaaabb| |bbbbcccc| |ccdddddd|
2938 `--------' `--------' `--------'
2939 6 2 4 4 2 6
2940 .--------+--------+--------+--------.
2941 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2942 `--------+--------+--------+--------'
2943
2944 .--------+--------+--------+--------.
2945 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2946 `--------+--------+--------+--------'
2947
2948 The octets are divided into 6 bit chunks, which are then encoded into
2949 base64 characters. */
2950
2951
2952 static EMACS_INT base64_encode_1 (const char *, char *, EMACS_INT, int, int);
2953 static EMACS_INT base64_decode_1 (const char *, char *, EMACS_INT, int,
2954 EMACS_INT *);
2955
2956 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
2957 2, 3, "r",
2958 doc: /* Base64-encode the region between BEG and END.
2959 Return the length of the encoded text.
2960 Optional third argument NO-LINE-BREAK means do not break long lines
2961 into shorter lines. */)
2962 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
2963 {
2964 char *encoded;
2965 EMACS_INT allength, length;
2966 EMACS_INT ibeg, iend, encoded_length;
2967 EMACS_INT old_pos = PT;
2968 USE_SAFE_ALLOCA;
2969
2970 validate_region (&beg, &end);
2971
2972 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
2973 iend = CHAR_TO_BYTE (XFASTINT (end));
2974 move_gap_both (XFASTINT (beg), ibeg);
2975
2976 /* We need to allocate enough room for encoding the text.
2977 We need 33 1/3% more space, plus a newline every 76
2978 characters, and then we round up. */
2979 length = iend - ibeg;
2980 allength = length + length/3 + 1;
2981 allength += allength / MIME_LINE_LENGTH + 1 + 6;
2982
2983 SAFE_ALLOCA (encoded, char *, allength);
2984 encoded_length = base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg),
2985 encoded, length, NILP (no_line_break),
2986 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
2987 if (encoded_length > allength)
2988 abort ();
2989
2990 if (encoded_length < 0)
2991 {
2992 /* The encoding wasn't possible. */
2993 SAFE_FREE ();
2994 error ("Multibyte character in data for base64 encoding");
2995 }
2996
2997 /* Now we have encoded the region, so we insert the new contents
2998 and delete the old. (Insert first in order to preserve markers.) */
2999 SET_PT_BOTH (XFASTINT (beg), ibeg);
3000 insert (encoded, encoded_length);
3001 SAFE_FREE ();
3002 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
3003
3004 /* If point was outside of the region, restore it exactly; else just
3005 move to the beginning of the region. */
3006 if (old_pos >= XFASTINT (end))
3007 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3008 else if (old_pos > XFASTINT (beg))
3009 old_pos = XFASTINT (beg);
3010 SET_PT (old_pos);
3011
3012 /* We return the length of the encoded text. */
3013 return make_number (encoded_length);
3014 }
3015
3016 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3017 1, 2, 0,
3018 doc: /* Base64-encode STRING and return the result.
3019 Optional second argument NO-LINE-BREAK means do not break long lines
3020 into shorter lines. */)
3021 (Lisp_Object string, Lisp_Object no_line_break)
3022 {
3023 EMACS_INT allength, length, encoded_length;
3024 char *encoded;
3025 Lisp_Object encoded_string;
3026 USE_SAFE_ALLOCA;
3027
3028 CHECK_STRING (string);
3029
3030 /* We need to allocate enough room for encoding the text.
3031 We need 33 1/3% more space, plus a newline every 76
3032 characters, and then we round up. */
3033 length = SBYTES (string);
3034 allength = length + length/3 + 1;
3035 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3036
3037 /* We need to allocate enough room for decoding the text. */
3038 SAFE_ALLOCA (encoded, char *, allength);
3039
3040 encoded_length = base64_encode_1 (SSDATA (string),
3041 encoded, length, NILP (no_line_break),
3042 STRING_MULTIBYTE (string));
3043 if (encoded_length > allength)
3044 abort ();
3045
3046 if (encoded_length < 0)
3047 {
3048 /* The encoding wasn't possible. */
3049 SAFE_FREE ();
3050 error ("Multibyte character in data for base64 encoding");
3051 }
3052
3053 encoded_string = make_unibyte_string (encoded, encoded_length);
3054 SAFE_FREE ();
3055
3056 return encoded_string;
3057 }
3058
3059 static EMACS_INT
3060 base64_encode_1 (const char *from, char *to, EMACS_INT length,
3061 int line_break, int multibyte)
3062 {
3063 int counter = 0;
3064 EMACS_INT i = 0;
3065 char *e = to;
3066 int c;
3067 unsigned int value;
3068 int bytes;
3069
3070 while (i < length)
3071 {
3072 if (multibyte)
3073 {
3074 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3075 if (CHAR_BYTE8_P (c))
3076 c = CHAR_TO_BYTE8 (c);
3077 else if (c >= 256)
3078 return -1;
3079 i += bytes;
3080 }
3081 else
3082 c = from[i++];
3083
3084 /* Wrap line every 76 characters. */
3085
3086 if (line_break)
3087 {
3088 if (counter < MIME_LINE_LENGTH / 4)
3089 counter++;
3090 else
3091 {
3092 *e++ = '\n';
3093 counter = 1;
3094 }
3095 }
3096
3097 /* Process first byte of a triplet. */
3098
3099 *e++ = base64_value_to_char[0x3f & c >> 2];
3100 value = (0x03 & c) << 4;
3101
3102 /* Process second byte of a triplet. */
3103
3104 if (i == length)
3105 {
3106 *e++ = base64_value_to_char[value];
3107 *e++ = '=';
3108 *e++ = '=';
3109 break;
3110 }
3111
3112 if (multibyte)
3113 {
3114 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3115 if (CHAR_BYTE8_P (c))
3116 c = CHAR_TO_BYTE8 (c);
3117 else if (c >= 256)
3118 return -1;
3119 i += bytes;
3120 }
3121 else
3122 c = from[i++];
3123
3124 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3125 value = (0x0f & c) << 2;
3126
3127 /* Process third byte of a triplet. */
3128
3129 if (i == length)
3130 {
3131 *e++ = base64_value_to_char[value];
3132 *e++ = '=';
3133 break;
3134 }
3135
3136 if (multibyte)
3137 {
3138 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3139 if (CHAR_BYTE8_P (c))
3140 c = CHAR_TO_BYTE8 (c);
3141 else if (c >= 256)
3142 return -1;
3143 i += bytes;
3144 }
3145 else
3146 c = from[i++];
3147
3148 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3149 *e++ = base64_value_to_char[0x3f & c];
3150 }
3151
3152 return e - to;
3153 }
3154
3155
3156 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3157 2, 2, "r",
3158 doc: /* Base64-decode the region between BEG and END.
3159 Return the length of the decoded text.
3160 If the region can't be decoded, signal an error and don't modify the buffer. */)
3161 (Lisp_Object beg, Lisp_Object end)
3162 {
3163 EMACS_INT ibeg, iend, length, allength;
3164 char *decoded;
3165 EMACS_INT old_pos = PT;
3166 EMACS_INT decoded_length;
3167 EMACS_INT inserted_chars;
3168 int multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3169 USE_SAFE_ALLOCA;
3170
3171 validate_region (&beg, &end);
3172
3173 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3174 iend = CHAR_TO_BYTE (XFASTINT (end));
3175
3176 length = iend - ibeg;
3177
3178 /* We need to allocate enough room for decoding the text. If we are
3179 working on a multibyte buffer, each decoded code may occupy at
3180 most two bytes. */
3181 allength = multibyte ? length * 2 : length;
3182 SAFE_ALLOCA (decoded, char *, allength);
3183
3184 move_gap_both (XFASTINT (beg), ibeg);
3185 decoded_length = base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg),
3186 decoded, length,
3187 multibyte, &inserted_chars);
3188 if (decoded_length > allength)
3189 abort ();
3190
3191 if (decoded_length < 0)
3192 {
3193 /* The decoding wasn't possible. */
3194 SAFE_FREE ();
3195 error ("Invalid base64 data");
3196 }
3197
3198 /* Now we have decoded the region, so we insert the new contents
3199 and delete the old. (Insert first in order to preserve markers.) */
3200 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3201 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3202 SAFE_FREE ();
3203
3204 /* Delete the original text. */
3205 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3206 iend + decoded_length, 1);
3207
3208 /* If point was outside of the region, restore it exactly; else just
3209 move to the beginning of the region. */
3210 if (old_pos >= XFASTINT (end))
3211 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3212 else if (old_pos > XFASTINT (beg))
3213 old_pos = XFASTINT (beg);
3214 SET_PT (old_pos > ZV ? ZV : old_pos);
3215
3216 return make_number (inserted_chars);
3217 }
3218
3219 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3220 1, 1, 0,
3221 doc: /* Base64-decode STRING and return the result. */)
3222 (Lisp_Object string)
3223 {
3224 char *decoded;
3225 EMACS_INT length, decoded_length;
3226 Lisp_Object decoded_string;
3227 USE_SAFE_ALLOCA;
3228
3229 CHECK_STRING (string);
3230
3231 length = SBYTES (string);
3232 /* We need to allocate enough room for decoding the text. */
3233 SAFE_ALLOCA (decoded, char *, length);
3234
3235 /* The decoded result should be unibyte. */
3236 decoded_length = base64_decode_1 (SSDATA (string), decoded, length,
3237 0, NULL);
3238 if (decoded_length > length)
3239 abort ();
3240 else if (decoded_length >= 0)
3241 decoded_string = make_unibyte_string (decoded, decoded_length);
3242 else
3243 decoded_string = Qnil;
3244
3245 SAFE_FREE ();
3246 if (!STRINGP (decoded_string))
3247 error ("Invalid base64 data");
3248
3249 return decoded_string;
3250 }
3251
3252 /* Base64-decode the data at FROM of LENGHT bytes into TO. If
3253 MULTIBYTE is nonzero, the decoded result should be in multibyte
3254 form. If NCHARS_RETRUN is not NULL, store the number of produced
3255 characters in *NCHARS_RETURN. */
3256
3257 static EMACS_INT
3258 base64_decode_1 (const char *from, char *to, EMACS_INT length,
3259 int multibyte, EMACS_INT *nchars_return)
3260 {
3261 EMACS_INT i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3262 char *e = to;
3263 unsigned char c;
3264 unsigned long value;
3265 EMACS_INT nchars = 0;
3266
3267 while (1)
3268 {
3269 /* Process first byte of a quadruplet. */
3270
3271 READ_QUADRUPLET_BYTE (e-to);
3272
3273 if (!IS_BASE64 (c))
3274 return -1;
3275 value = base64_char_to_value[c] << 18;
3276
3277 /* Process second byte of a quadruplet. */
3278
3279 READ_QUADRUPLET_BYTE (-1);
3280
3281 if (!IS_BASE64 (c))
3282 return -1;
3283 value |= base64_char_to_value[c] << 12;
3284
3285 c = (unsigned char) (value >> 16);
3286 if (multibyte && c >= 128)
3287 e += BYTE8_STRING (c, e);
3288 else
3289 *e++ = c;
3290 nchars++;
3291
3292 /* Process third byte of a quadruplet. */
3293
3294 READ_QUADRUPLET_BYTE (-1);
3295
3296 if (c == '=')
3297 {
3298 READ_QUADRUPLET_BYTE (-1);
3299
3300 if (c != '=')
3301 return -1;
3302 continue;
3303 }
3304
3305 if (!IS_BASE64 (c))
3306 return -1;
3307 value |= base64_char_to_value[c] << 6;
3308
3309 c = (unsigned char) (0xff & value >> 8);
3310 if (multibyte && c >= 128)
3311 e += BYTE8_STRING (c, e);
3312 else
3313 *e++ = c;
3314 nchars++;
3315
3316 /* Process fourth byte of a quadruplet. */
3317
3318 READ_QUADRUPLET_BYTE (-1);
3319
3320 if (c == '=')
3321 continue;
3322
3323 if (!IS_BASE64 (c))
3324 return -1;
3325 value |= base64_char_to_value[c];
3326
3327 c = (unsigned char) (0xff & value);
3328 if (multibyte && c >= 128)
3329 e += BYTE8_STRING (c, e);
3330 else
3331 *e++ = c;
3332 nchars++;
3333 }
3334 }
3335
3336
3337 \f
3338 /***********************************************************************
3339 ***** *****
3340 ***** Hash Tables *****
3341 ***** *****
3342 ***********************************************************************/
3343
3344 /* Implemented by gerd@gnu.org. This hash table implementation was
3345 inspired by CMUCL hash tables. */
3346
3347 /* Ideas:
3348
3349 1. For small tables, association lists are probably faster than
3350 hash tables because they have lower overhead.
3351
3352 For uses of hash tables where the O(1) behavior of table
3353 operations is not a requirement, it might therefore be a good idea
3354 not to hash. Instead, we could just do a linear search in the
3355 key_and_value vector of the hash table. This could be done
3356 if a `:linear-search t' argument is given to make-hash-table. */
3357
3358
3359 /* The list of all weak hash tables. Don't staticpro this one. */
3360
3361 static struct Lisp_Hash_Table *weak_hash_tables;
3362
3363 /* Various symbols. */
3364
3365 static Lisp_Object Qhash_table_p, Qkey, Qvalue;
3366 Lisp_Object Qeq, Qeql, Qequal;
3367 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3368 static Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3369
3370 /* Function prototypes. */
3371
3372 static struct Lisp_Hash_Table *check_hash_table (Lisp_Object);
3373 static ptrdiff_t get_key_arg (Lisp_Object, ptrdiff_t, Lisp_Object *, char *);
3374 static void maybe_resize_hash_table (struct Lisp_Hash_Table *);
3375 static int sweep_weak_table (struct Lisp_Hash_Table *, int);
3376
3377
3378 \f
3379 /***********************************************************************
3380 Utilities
3381 ***********************************************************************/
3382
3383 /* If OBJ is a Lisp hash table, return a pointer to its struct
3384 Lisp_Hash_Table. Otherwise, signal an error. */
3385
3386 static struct Lisp_Hash_Table *
3387 check_hash_table (Lisp_Object obj)
3388 {
3389 CHECK_HASH_TABLE (obj);
3390 return XHASH_TABLE (obj);
3391 }
3392
3393
3394 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3395 number. */
3396
3397 EMACS_INT
3398 next_almost_prime (EMACS_INT n)
3399 {
3400 for (n |= 1; ; n += 2)
3401 if (n % 3 != 0 && n % 5 != 0 && n % 7 != 0)
3402 return n;
3403 }
3404
3405
3406 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3407 which USED[I] is non-zero. If found at index I in ARGS, set
3408 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3409 0. This function is used to extract a keyword/argument pair from
3410 a DEFUN parameter list. */
3411
3412 static ptrdiff_t
3413 get_key_arg (Lisp_Object key, ptrdiff_t nargs, Lisp_Object *args, char *used)
3414 {
3415 ptrdiff_t i;
3416
3417 for (i = 1; i < nargs; i++)
3418 if (!used[i - 1] && EQ (args[i - 1], key))
3419 {
3420 used[i - 1] = 1;
3421 used[i] = 1;
3422 return i;
3423 }
3424
3425 return 0;
3426 }
3427
3428
3429 /* Return a Lisp vector which has the same contents as VEC but has
3430 size NEW_SIZE, NEW_SIZE >= VEC->size. Entries in the resulting
3431 vector that are not copied from VEC are set to INIT. */
3432
3433 Lisp_Object
3434 larger_vector (Lisp_Object vec, EMACS_INT new_size, Lisp_Object init)
3435 {
3436 struct Lisp_Vector *v;
3437 EMACS_INT i, old_size;
3438
3439 xassert (VECTORP (vec));
3440 old_size = ASIZE (vec);
3441 xassert (new_size >= old_size);
3442
3443 v = allocate_vector (new_size);
3444 memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
3445 for (i = old_size; i < new_size; ++i)
3446 v->contents[i] = init;
3447 XSETVECTOR (vec, v);
3448 return vec;
3449 }
3450
3451
3452 /***********************************************************************
3453 Low-level Functions
3454 ***********************************************************************/
3455
3456 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3457 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
3458 KEY2 are the same. */
3459
3460 static int
3461 cmpfn_eql (struct Lisp_Hash_Table *h,
3462 Lisp_Object key1, EMACS_UINT hash1,
3463 Lisp_Object key2, EMACS_UINT hash2)
3464 {
3465 return (FLOATP (key1)
3466 && FLOATP (key2)
3467 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3468 }
3469
3470
3471 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3472 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
3473 KEY2 are the same. */
3474
3475 static int
3476 cmpfn_equal (struct Lisp_Hash_Table *h,
3477 Lisp_Object key1, EMACS_UINT hash1,
3478 Lisp_Object key2, EMACS_UINT hash2)
3479 {
3480 return hash1 == hash2 && !NILP (Fequal (key1, key2));
3481 }
3482
3483
3484 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3485 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
3486 if KEY1 and KEY2 are the same. */
3487
3488 static int
3489 cmpfn_user_defined (struct Lisp_Hash_Table *h,
3490 Lisp_Object key1, EMACS_UINT hash1,
3491 Lisp_Object key2, EMACS_UINT hash2)
3492 {
3493 if (hash1 == hash2)
3494 {
3495 Lisp_Object args[3];
3496
3497 args[0] = h->user_cmp_function;
3498 args[1] = key1;
3499 args[2] = key2;
3500 return !NILP (Ffuncall (3, args));
3501 }
3502 else
3503 return 0;
3504 }
3505
3506
3507 /* Value is a hash code for KEY for use in hash table H which uses
3508 `eq' to compare keys. The hash code returned is guaranteed to fit
3509 in a Lisp integer. */
3510
3511 static EMACS_UINT
3512 hashfn_eq (struct Lisp_Hash_Table *h, Lisp_Object key)
3513 {
3514 EMACS_UINT hash = XUINT (key) ^ XTYPE (key);
3515 xassert ((hash & ~INTMASK) == 0);
3516 return hash;
3517 }
3518
3519
3520 /* Value is a hash code for KEY for use in hash table H which uses
3521 `eql' to compare keys. The hash code returned is guaranteed to fit
3522 in a Lisp integer. */
3523
3524 static EMACS_UINT
3525 hashfn_eql (struct Lisp_Hash_Table *h, Lisp_Object key)
3526 {
3527 EMACS_UINT hash;
3528 if (FLOATP (key))
3529 hash = sxhash (key, 0);
3530 else
3531 hash = XUINT (key) ^ XTYPE (key);
3532 xassert ((hash & ~INTMASK) == 0);
3533 return hash;
3534 }
3535
3536
3537 /* Value is a hash code for KEY for use in hash table H which uses
3538 `equal' to compare keys. The hash code returned is guaranteed to fit
3539 in a Lisp integer. */
3540
3541 static EMACS_UINT
3542 hashfn_equal (struct Lisp_Hash_Table *h, Lisp_Object key)
3543 {
3544 EMACS_UINT hash = sxhash (key, 0);
3545 xassert ((hash & ~INTMASK) == 0);
3546 return hash;
3547 }
3548
3549
3550 /* Value is a hash code for KEY for use in hash table H which uses as
3551 user-defined function to compare keys. The hash code returned is
3552 guaranteed to fit in a Lisp integer. */
3553
3554 static EMACS_UINT
3555 hashfn_user_defined (struct Lisp_Hash_Table *h, Lisp_Object key)
3556 {
3557 Lisp_Object args[2], hash;
3558
3559 args[0] = h->user_hash_function;
3560 args[1] = key;
3561 hash = Ffuncall (2, args);
3562 if (!INTEGERP (hash))
3563 signal_error ("Invalid hash code returned from user-supplied hash function", hash);
3564 return XUINT (hash);
3565 }
3566
3567
3568 /* Create and initialize a new hash table.
3569
3570 TEST specifies the test the hash table will use to compare keys.
3571 It must be either one of the predefined tests `eq', `eql' or
3572 `equal' or a symbol denoting a user-defined test named TEST with
3573 test and hash functions USER_TEST and USER_HASH.
3574
3575 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3576
3577 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3578 new size when it becomes full is computed by adding REHASH_SIZE to
3579 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3580 table's new size is computed by multiplying its old size with
3581 REHASH_SIZE.
3582
3583 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3584 be resized when the ratio of (number of entries in the table) /
3585 (table size) is >= REHASH_THRESHOLD.
3586
3587 WEAK specifies the weakness of the table. If non-nil, it must be
3588 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3589
3590 Lisp_Object
3591 make_hash_table (Lisp_Object test, Lisp_Object size, Lisp_Object rehash_size,
3592 Lisp_Object rehash_threshold, Lisp_Object weak,
3593 Lisp_Object user_test, Lisp_Object user_hash)
3594 {
3595 struct Lisp_Hash_Table *h;
3596 Lisp_Object table;
3597 EMACS_INT index_size, i, sz;
3598 double index_float;
3599
3600 /* Preconditions. */
3601 xassert (SYMBOLP (test));
3602 xassert (INTEGERP (size) && XINT (size) >= 0);
3603 xassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3604 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size)));
3605 xassert (FLOATP (rehash_threshold)
3606 && 0 < XFLOAT_DATA (rehash_threshold)
3607 && XFLOAT_DATA (rehash_threshold) <= 1.0);
3608
3609 if (XFASTINT (size) == 0)
3610 size = make_number (1);
3611
3612 sz = XFASTINT (size);
3613 index_float = sz / XFLOAT_DATA (rehash_threshold);
3614 index_size = (index_float < MOST_POSITIVE_FIXNUM + 1
3615 ? next_almost_prime (index_float)
3616 : MOST_POSITIVE_FIXNUM + 1);
3617 if (MOST_POSITIVE_FIXNUM < max (index_size, 2 * sz))
3618 error ("Hash table too large");
3619
3620 /* Allocate a table and initialize it. */
3621 h = allocate_hash_table ();
3622
3623 /* Initialize hash table slots. */
3624 h->test = test;
3625 if (EQ (test, Qeql))
3626 {
3627 h->cmpfn = cmpfn_eql;
3628 h->hashfn = hashfn_eql;
3629 }
3630 else if (EQ (test, Qeq))
3631 {
3632 h->cmpfn = NULL;
3633 h->hashfn = hashfn_eq;
3634 }
3635 else if (EQ (test, Qequal))
3636 {
3637 h->cmpfn = cmpfn_equal;
3638 h->hashfn = hashfn_equal;
3639 }
3640 else
3641 {
3642 h->user_cmp_function = user_test;
3643 h->user_hash_function = user_hash;
3644 h->cmpfn = cmpfn_user_defined;
3645 h->hashfn = hashfn_user_defined;
3646 }
3647
3648 h->weak = weak;
3649 h->rehash_threshold = rehash_threshold;
3650 h->rehash_size = rehash_size;
3651 h->count = 0;
3652 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3653 h->hash = Fmake_vector (size, Qnil);
3654 h->next = Fmake_vector (size, Qnil);
3655 h->index = Fmake_vector (make_number (index_size), Qnil);
3656
3657 /* Set up the free list. */
3658 for (i = 0; i < sz - 1; ++i)
3659 HASH_NEXT (h, i) = make_number (i + 1);
3660 h->next_free = make_number (0);
3661
3662 XSET_HASH_TABLE (table, h);
3663 xassert (HASH_TABLE_P (table));
3664 xassert (XHASH_TABLE (table) == h);
3665
3666 /* Maybe add this hash table to the list of all weak hash tables. */
3667 if (NILP (h->weak))
3668 h->next_weak = NULL;
3669 else
3670 {
3671 h->next_weak = weak_hash_tables;
3672 weak_hash_tables = h;
3673 }
3674
3675 return table;
3676 }
3677
3678
3679 /* Return a copy of hash table H1. Keys and values are not copied,
3680 only the table itself is. */
3681
3682 static Lisp_Object
3683 copy_hash_table (struct Lisp_Hash_Table *h1)
3684 {
3685 Lisp_Object table;
3686 struct Lisp_Hash_Table *h2;
3687 struct Lisp_Vector *next;
3688
3689 h2 = allocate_hash_table ();
3690 next = h2->header.next.vector;
3691 memcpy (h2, h1, sizeof *h2);
3692 h2->header.next.vector = next;
3693 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3694 h2->hash = Fcopy_sequence (h1->hash);
3695 h2->next = Fcopy_sequence (h1->next);
3696 h2->index = Fcopy_sequence (h1->index);
3697 XSET_HASH_TABLE (table, h2);
3698
3699 /* Maybe add this hash table to the list of all weak hash tables. */
3700 if (!NILP (h2->weak))
3701 {
3702 h2->next_weak = weak_hash_tables;
3703 weak_hash_tables = h2;
3704 }
3705
3706 return table;
3707 }
3708
3709
3710 /* Resize hash table H if it's too full. If H cannot be resized
3711 because it's already too large, throw an error. */
3712
3713 static inline void
3714 maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3715 {
3716 if (NILP (h->next_free))
3717 {
3718 EMACS_INT old_size = HASH_TABLE_SIZE (h);
3719 EMACS_INT i, new_size, index_size;
3720 EMACS_INT nsize;
3721 double index_float;
3722
3723 if (INTEGERP (h->rehash_size))
3724 new_size = old_size + XFASTINT (h->rehash_size);
3725 else
3726 {
3727 double float_new_size = old_size * XFLOAT_DATA (h->rehash_size);
3728 if (float_new_size < MOST_POSITIVE_FIXNUM + 1)
3729 {
3730 new_size = float_new_size;
3731 if (new_size <= old_size)
3732 new_size = old_size + 1;
3733 }
3734 else
3735 new_size = MOST_POSITIVE_FIXNUM + 1;
3736 }
3737 index_float = new_size / XFLOAT_DATA (h->rehash_threshold);
3738 index_size = (index_float < MOST_POSITIVE_FIXNUM + 1
3739 ? next_almost_prime (index_float)
3740 : MOST_POSITIVE_FIXNUM + 1);
3741 nsize = max (index_size, 2 * new_size);
3742 if (nsize > MOST_POSITIVE_FIXNUM)
3743 error ("Hash table too large to resize");
3744
3745 h->key_and_value = larger_vector (h->key_and_value, 2 * new_size, Qnil);
3746 h->next = larger_vector (h->next, new_size, Qnil);
3747 h->hash = larger_vector (h->hash, new_size, Qnil);
3748 h->index = Fmake_vector (make_number (index_size), Qnil);
3749
3750 /* Update the free list. Do it so that new entries are added at
3751 the end of the free list. This makes some operations like
3752 maphash faster. */
3753 for (i = old_size; i < new_size - 1; ++i)
3754 HASH_NEXT (h, i) = make_number (i + 1);
3755
3756 if (!NILP (h->next_free))
3757 {
3758 Lisp_Object last, next;
3759
3760 last = h->next_free;
3761 while (next = HASH_NEXT (h, XFASTINT (last)),
3762 !NILP (next))
3763 last = next;
3764
3765 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
3766 }
3767 else
3768 XSETFASTINT (h->next_free, old_size);
3769
3770 /* Rehash. */
3771 for (i = 0; i < old_size; ++i)
3772 if (!NILP (HASH_HASH (h, i)))
3773 {
3774 EMACS_UINT hash_code = XUINT (HASH_HASH (h, i));
3775 EMACS_INT start_of_bucket = hash_code % ASIZE (h->index);
3776 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
3777 HASH_INDEX (h, start_of_bucket) = make_number (i);
3778 }
3779 }
3780 }
3781
3782
3783 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3784 the hash code of KEY. Value is the index of the entry in H
3785 matching KEY, or -1 if not found. */
3786
3787 EMACS_INT
3788 hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, EMACS_UINT *hash)
3789 {
3790 EMACS_UINT hash_code;
3791 EMACS_INT start_of_bucket;
3792 Lisp_Object idx;
3793
3794 hash_code = h->hashfn (h, key);
3795 if (hash)
3796 *hash = hash_code;
3797
3798 start_of_bucket = hash_code % ASIZE (h->index);
3799 idx = HASH_INDEX (h, start_of_bucket);
3800
3801 /* We need not gcpro idx since it's either an integer or nil. */
3802 while (!NILP (idx))
3803 {
3804 EMACS_INT i = XFASTINT (idx);
3805 if (EQ (key, HASH_KEY (h, i))
3806 || (h->cmpfn
3807 && h->cmpfn (h, key, hash_code,
3808 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3809 break;
3810 idx = HASH_NEXT (h, i);
3811 }
3812
3813 return NILP (idx) ? -1 : XFASTINT (idx);
3814 }
3815
3816
3817 /* Put an entry into hash table H that associates KEY with VALUE.
3818 HASH is a previously computed hash code of KEY.
3819 Value is the index of the entry in H matching KEY. */
3820
3821 EMACS_INT
3822 hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value,
3823 EMACS_UINT hash)
3824 {
3825 EMACS_INT start_of_bucket, i;
3826
3827 xassert ((hash & ~INTMASK) == 0);
3828
3829 /* Increment count after resizing because resizing may fail. */
3830 maybe_resize_hash_table (h);
3831 h->count++;
3832
3833 /* Store key/value in the key_and_value vector. */
3834 i = XFASTINT (h->next_free);
3835 h->next_free = HASH_NEXT (h, i);
3836 HASH_KEY (h, i) = key;
3837 HASH_VALUE (h, i) = value;
3838
3839 /* Remember its hash code. */
3840 HASH_HASH (h, i) = make_number (hash);
3841
3842 /* Add new entry to its collision chain. */
3843 start_of_bucket = hash % ASIZE (h->index);
3844 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
3845 HASH_INDEX (h, start_of_bucket) = make_number (i);
3846 return i;
3847 }
3848
3849
3850 /* Remove the entry matching KEY from hash table H, if there is one. */
3851
3852 static void
3853 hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
3854 {
3855 EMACS_UINT hash_code;
3856 EMACS_INT start_of_bucket;
3857 Lisp_Object idx, prev;
3858
3859 hash_code = h->hashfn (h, key);
3860 start_of_bucket = hash_code % ASIZE (h->index);
3861 idx = HASH_INDEX (h, start_of_bucket);
3862 prev = Qnil;
3863
3864 /* We need not gcpro idx, prev since they're either integers or nil. */
3865 while (!NILP (idx))
3866 {
3867 EMACS_INT i = XFASTINT (idx);
3868
3869 if (EQ (key, HASH_KEY (h, i))
3870 || (h->cmpfn
3871 && h->cmpfn (h, key, hash_code,
3872 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3873 {
3874 /* Take entry out of collision chain. */
3875 if (NILP (prev))
3876 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
3877 else
3878 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
3879
3880 /* Clear slots in key_and_value and add the slots to
3881 the free list. */
3882 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
3883 HASH_NEXT (h, i) = h->next_free;
3884 h->next_free = make_number (i);
3885 h->count--;
3886 xassert (h->count >= 0);
3887 break;
3888 }
3889 else
3890 {
3891 prev = idx;
3892 idx = HASH_NEXT (h, i);
3893 }
3894 }
3895 }
3896
3897
3898 /* Clear hash table H. */
3899
3900 static void
3901 hash_clear (struct Lisp_Hash_Table *h)
3902 {
3903 if (h->count > 0)
3904 {
3905 EMACS_INT i, size = HASH_TABLE_SIZE (h);
3906
3907 for (i = 0; i < size; ++i)
3908 {
3909 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
3910 HASH_KEY (h, i) = Qnil;
3911 HASH_VALUE (h, i) = Qnil;
3912 HASH_HASH (h, i) = Qnil;
3913 }
3914
3915 for (i = 0; i < ASIZE (h->index); ++i)
3916 ASET (h->index, i, Qnil);
3917
3918 h->next_free = make_number (0);
3919 h->count = 0;
3920 }
3921 }
3922
3923
3924 \f
3925 /************************************************************************
3926 Weak Hash Tables
3927 ************************************************************************/
3928
3929 void
3930 init_weak_hash_tables (void)
3931 {
3932 weak_hash_tables = NULL;
3933 }
3934
3935 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
3936 entries from the table that don't survive the current GC.
3937 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
3938 non-zero if anything was marked. */
3939
3940 static int
3941 sweep_weak_table (struct Lisp_Hash_Table *h, int remove_entries_p)
3942 {
3943 EMACS_INT bucket, n;
3944 int marked;
3945
3946 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
3947 marked = 0;
3948
3949 for (bucket = 0; bucket < n; ++bucket)
3950 {
3951 Lisp_Object idx, next, prev;
3952
3953 /* Follow collision chain, removing entries that
3954 don't survive this garbage collection. */
3955 prev = Qnil;
3956 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
3957 {
3958 EMACS_INT i = XFASTINT (idx);
3959 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
3960 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
3961 int remove_p;
3962
3963 if (EQ (h->weak, Qkey))
3964 remove_p = !key_known_to_survive_p;
3965 else if (EQ (h->weak, Qvalue))
3966 remove_p = !value_known_to_survive_p;
3967 else if (EQ (h->weak, Qkey_or_value))
3968 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
3969 else if (EQ (h->weak, Qkey_and_value))
3970 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
3971 else
3972 abort ();
3973
3974 next = HASH_NEXT (h, i);
3975
3976 if (remove_entries_p)
3977 {
3978 if (remove_p)
3979 {
3980 /* Take out of collision chain. */
3981 if (NILP (prev))
3982 HASH_INDEX (h, bucket) = next;
3983 else
3984 HASH_NEXT (h, XFASTINT (prev)) = next;
3985
3986 /* Add to free list. */
3987 HASH_NEXT (h, i) = h->next_free;
3988 h->next_free = idx;
3989
3990 /* Clear key, value, and hash. */
3991 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
3992 HASH_HASH (h, i) = Qnil;
3993
3994 h->count--;
3995 }
3996 else
3997 {
3998 prev = idx;
3999 }
4000 }
4001 else
4002 {
4003 if (!remove_p)
4004 {
4005 /* Make sure key and value survive. */
4006 if (!key_known_to_survive_p)
4007 {
4008 mark_object (HASH_KEY (h, i));
4009 marked = 1;
4010 }
4011
4012 if (!value_known_to_survive_p)
4013 {
4014 mark_object (HASH_VALUE (h, i));
4015 marked = 1;
4016 }
4017 }
4018 }
4019 }
4020 }
4021
4022 return marked;
4023 }
4024
4025 /* Remove elements from weak hash tables that don't survive the
4026 current garbage collection. Remove weak tables that don't survive
4027 from Vweak_hash_tables. Called from gc_sweep. */
4028
4029 void
4030 sweep_weak_hash_tables (void)
4031 {
4032 struct Lisp_Hash_Table *h, *used, *next;
4033 int marked;
4034
4035 /* Mark all keys and values that are in use. Keep on marking until
4036 there is no more change. This is necessary for cases like
4037 value-weak table A containing an entry X -> Y, where Y is used in a
4038 key-weak table B, Z -> Y. If B comes after A in the list of weak
4039 tables, X -> Y might be removed from A, although when looking at B
4040 one finds that it shouldn't. */
4041 do
4042 {
4043 marked = 0;
4044 for (h = weak_hash_tables; h; h = h->next_weak)
4045 {
4046 if (h->header.size & ARRAY_MARK_FLAG)
4047 marked |= sweep_weak_table (h, 0);
4048 }
4049 }
4050 while (marked);
4051
4052 /* Remove tables and entries that aren't used. */
4053 for (h = weak_hash_tables, used = NULL; h; h = next)
4054 {
4055 next = h->next_weak;
4056
4057 if (h->header.size & ARRAY_MARK_FLAG)
4058 {
4059 /* TABLE is marked as used. Sweep its contents. */
4060 if (h->count > 0)
4061 sweep_weak_table (h, 1);
4062
4063 /* Add table to the list of used weak hash tables. */
4064 h->next_weak = used;
4065 used = h;
4066 }
4067 }
4068
4069 weak_hash_tables = used;
4070 }
4071
4072
4073 \f
4074 /***********************************************************************
4075 Hash Code Computation
4076 ***********************************************************************/
4077
4078 /* Maximum depth up to which to dive into Lisp structures. */
4079
4080 #define SXHASH_MAX_DEPTH 3
4081
4082 /* Maximum length up to which to take list and vector elements into
4083 account. */
4084
4085 #define SXHASH_MAX_LEN 7
4086
4087 /* Combine two integers X and Y for hashing. The result might not fit
4088 into a Lisp integer. */
4089
4090 #define SXHASH_COMBINE(X, Y) \
4091 ((((EMACS_UINT) (X) << 4) + ((EMACS_UINT) (X) >> (BITS_PER_EMACS_INT - 4))) \
4092 + (EMACS_UINT) (Y))
4093
4094 /* Hash X, returning a value that fits into a Lisp integer. */
4095 #define SXHASH_REDUCE(X) \
4096 ((((X) ^ (X) >> (BITS_PER_EMACS_INT - FIXNUM_BITS))) & INTMASK)
4097
4098 /* Return a hash for string PTR which has length LEN. The hash
4099 code returned is guaranteed to fit in a Lisp integer. */
4100
4101 static EMACS_UINT
4102 sxhash_string (unsigned char *ptr, EMACS_INT len)
4103 {
4104 unsigned char *p = ptr;
4105 unsigned char *end = p + len;
4106 unsigned char c;
4107 EMACS_UINT hash = 0;
4108
4109 while (p != end)
4110 {
4111 c = *p++;
4112 if (c >= 0140)
4113 c -= 40;
4114 hash = SXHASH_COMBINE (hash, c);
4115 }
4116
4117 return SXHASH_REDUCE (hash);
4118 }
4119
4120 /* Return a hash for the floating point value VAL. */
4121
4122 static EMACS_INT
4123 sxhash_float (double val)
4124 {
4125 EMACS_UINT hash = 0;
4126 enum {
4127 WORDS_PER_DOUBLE = (sizeof val / sizeof hash
4128 + (sizeof val % sizeof hash != 0))
4129 };
4130 union {
4131 double val;
4132 EMACS_UINT word[WORDS_PER_DOUBLE];
4133 } u;
4134 int i;
4135 u.val = val;
4136 memset (&u.val + 1, 0, sizeof u - sizeof u.val);
4137 for (i = 0; i < WORDS_PER_DOUBLE; i++)
4138 hash = SXHASH_COMBINE (hash, u.word[i]);
4139 return SXHASH_REDUCE (hash);
4140 }
4141
4142 /* Return a hash for list LIST. DEPTH is the current depth in the
4143 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4144
4145 static EMACS_UINT
4146 sxhash_list (Lisp_Object list, int depth)
4147 {
4148 EMACS_UINT hash = 0;
4149 int i;
4150
4151 if (depth < SXHASH_MAX_DEPTH)
4152 for (i = 0;
4153 CONSP (list) && i < SXHASH_MAX_LEN;
4154 list = XCDR (list), ++i)
4155 {
4156 EMACS_UINT hash2 = sxhash (XCAR (list), depth + 1);
4157 hash = SXHASH_COMBINE (hash, hash2);
4158 }
4159
4160 if (!NILP (list))
4161 {
4162 EMACS_UINT hash2 = sxhash (list, depth + 1);
4163 hash = SXHASH_COMBINE (hash, hash2);
4164 }
4165
4166 return SXHASH_REDUCE (hash);
4167 }
4168
4169
4170 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4171 the Lisp structure. */
4172
4173 static EMACS_UINT
4174 sxhash_vector (Lisp_Object vec, int depth)
4175 {
4176 EMACS_UINT hash = ASIZE (vec);
4177 int i, n;
4178
4179 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4180 for (i = 0; i < n; ++i)
4181 {
4182 EMACS_UINT hash2 = sxhash (AREF (vec, i), depth + 1);
4183 hash = SXHASH_COMBINE (hash, hash2);
4184 }
4185
4186 return SXHASH_REDUCE (hash);
4187 }
4188
4189 /* Return a hash for bool-vector VECTOR. */
4190
4191 static EMACS_UINT
4192 sxhash_bool_vector (Lisp_Object vec)
4193 {
4194 EMACS_UINT hash = XBOOL_VECTOR (vec)->size;
4195 int i, n;
4196
4197 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->header.size);
4198 for (i = 0; i < n; ++i)
4199 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4200
4201 return SXHASH_REDUCE (hash);
4202 }
4203
4204
4205 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4206 structure. Value is an unsigned integer clipped to INTMASK. */
4207
4208 EMACS_UINT
4209 sxhash (Lisp_Object obj, int depth)
4210 {
4211 EMACS_UINT hash;
4212
4213 if (depth > SXHASH_MAX_DEPTH)
4214 return 0;
4215
4216 switch (XTYPE (obj))
4217 {
4218 case_Lisp_Int:
4219 hash = XUINT (obj);
4220 break;
4221
4222 case Lisp_Misc:
4223 hash = XUINT (obj);
4224 break;
4225
4226 case Lisp_Symbol:
4227 obj = SYMBOL_NAME (obj);
4228 /* Fall through. */
4229
4230 case Lisp_String:
4231 hash = sxhash_string (SDATA (obj), SCHARS (obj));
4232 break;
4233
4234 /* This can be everything from a vector to an overlay. */
4235 case Lisp_Vectorlike:
4236 if (VECTORP (obj))
4237 /* According to the CL HyperSpec, two arrays are equal only if
4238 they are `eq', except for strings and bit-vectors. In
4239 Emacs, this works differently. We have to compare element
4240 by element. */
4241 hash = sxhash_vector (obj, depth);
4242 else if (BOOL_VECTOR_P (obj))
4243 hash = sxhash_bool_vector (obj);
4244 else
4245 /* Others are `equal' if they are `eq', so let's take their
4246 address as hash. */
4247 hash = XUINT (obj);
4248 break;
4249
4250 case Lisp_Cons:
4251 hash = sxhash_list (obj, depth);
4252 break;
4253
4254 case Lisp_Float:
4255 hash = sxhash_float (XFLOAT_DATA (obj));
4256 break;
4257
4258 default:
4259 abort ();
4260 }
4261
4262 return hash;
4263 }
4264
4265
4266 \f
4267 /***********************************************************************
4268 Lisp Interface
4269 ***********************************************************************/
4270
4271
4272 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4273 doc: /* Compute a hash code for OBJ and return it as integer. */)
4274 (Lisp_Object obj)
4275 {
4276 EMACS_UINT hash = sxhash (obj, 0);
4277 return make_number (hash);
4278 }
4279
4280
4281 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4282 doc: /* Create and return a new hash table.
4283
4284 Arguments are specified as keyword/argument pairs. The following
4285 arguments are defined:
4286
4287 :test TEST -- TEST must be a symbol that specifies how to compare
4288 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4289 `equal'. User-supplied test and hash functions can be specified via
4290 `define-hash-table-test'.
4291
4292 :size SIZE -- A hint as to how many elements will be put in the table.
4293 Default is 65.
4294
4295 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4296 fills up. If REHASH-SIZE is an integer, increase the size by that
4297 amount. If it is a float, it must be > 1.0, and the new size is the
4298 old size multiplied by that factor. Default is 1.5.
4299
4300 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4301 Resize the hash table when the ratio (number of entries / table size)
4302 is greater than or equal to THRESHOLD. Default is 0.8.
4303
4304 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4305 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4306 returned is a weak table. Key/value pairs are removed from a weak
4307 hash table when there are no non-weak references pointing to their
4308 key, value, one of key or value, or both key and value, depending on
4309 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4310 is nil.
4311
4312 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4313 (ptrdiff_t nargs, Lisp_Object *args)
4314 {
4315 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4316 Lisp_Object user_test, user_hash;
4317 char *used;
4318 ptrdiff_t i;
4319
4320 /* The vector `used' is used to keep track of arguments that
4321 have been consumed. */
4322 used = (char *) alloca (nargs * sizeof *used);
4323 memset (used, 0, nargs * sizeof *used);
4324
4325 /* See if there's a `:test TEST' among the arguments. */
4326 i = get_key_arg (QCtest, nargs, args, used);
4327 test = i ? args[i] : Qeql;
4328 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
4329 {
4330 /* See if it is a user-defined test. */
4331 Lisp_Object prop;
4332
4333 prop = Fget (test, Qhash_table_test);
4334 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4335 signal_error ("Invalid hash table test", test);
4336 user_test = XCAR (prop);
4337 user_hash = XCAR (XCDR (prop));
4338 }
4339 else
4340 user_test = user_hash = Qnil;
4341
4342 /* See if there's a `:size SIZE' argument. */
4343 i = get_key_arg (QCsize, nargs, args, used);
4344 size = i ? args[i] : Qnil;
4345 if (NILP (size))
4346 size = make_number (DEFAULT_HASH_SIZE);
4347 else if (!INTEGERP (size) || XINT (size) < 0)
4348 signal_error ("Invalid hash table size", size);
4349
4350 /* Look for `:rehash-size SIZE'. */
4351 i = get_key_arg (QCrehash_size, nargs, args, used);
4352 rehash_size = i ? args[i] : make_float (DEFAULT_REHASH_SIZE);
4353 if (! ((INTEGERP (rehash_size) && 0 < XINT (rehash_size))
4354 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size))))
4355 signal_error ("Invalid hash table rehash size", rehash_size);
4356
4357 /* Look for `:rehash-threshold THRESHOLD'. */
4358 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4359 rehash_threshold = i ? args[i] : make_float (DEFAULT_REHASH_THRESHOLD);
4360 if (! (FLOATP (rehash_threshold)
4361 && 0 < XFLOAT_DATA (rehash_threshold)
4362 && XFLOAT_DATA (rehash_threshold) <= 1))
4363 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4364
4365 /* Look for `:weakness WEAK'. */
4366 i = get_key_arg (QCweakness, nargs, args, used);
4367 weak = i ? args[i] : Qnil;
4368 if (EQ (weak, Qt))
4369 weak = Qkey_and_value;
4370 if (!NILP (weak)
4371 && !EQ (weak, Qkey)
4372 && !EQ (weak, Qvalue)
4373 && !EQ (weak, Qkey_or_value)
4374 && !EQ (weak, Qkey_and_value))
4375 signal_error ("Invalid hash table weakness", weak);
4376
4377 /* Now, all args should have been used up, or there's a problem. */
4378 for (i = 0; i < nargs; ++i)
4379 if (!used[i])
4380 signal_error ("Invalid argument list", args[i]);
4381
4382 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4383 user_test, user_hash);
4384 }
4385
4386
4387 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4388 doc: /* Return a copy of hash table TABLE. */)
4389 (Lisp_Object table)
4390 {
4391 return copy_hash_table (check_hash_table (table));
4392 }
4393
4394
4395 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4396 doc: /* Return the number of elements in TABLE. */)
4397 (Lisp_Object table)
4398 {
4399 return make_number (check_hash_table (table)->count);
4400 }
4401
4402
4403 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4404 Shash_table_rehash_size, 1, 1, 0,
4405 doc: /* Return the current rehash size of TABLE. */)
4406 (Lisp_Object table)
4407 {
4408 return check_hash_table (table)->rehash_size;
4409 }
4410
4411
4412 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4413 Shash_table_rehash_threshold, 1, 1, 0,
4414 doc: /* Return the current rehash threshold of TABLE. */)
4415 (Lisp_Object table)
4416 {
4417 return check_hash_table (table)->rehash_threshold;
4418 }
4419
4420
4421 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4422 doc: /* Return the size of TABLE.
4423 The size can be used as an argument to `make-hash-table' to create
4424 a hash table than can hold as many elements as TABLE holds
4425 without need for resizing. */)
4426 (Lisp_Object table)
4427 {
4428 struct Lisp_Hash_Table *h = check_hash_table (table);
4429 return make_number (HASH_TABLE_SIZE (h));
4430 }
4431
4432
4433 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4434 doc: /* Return the test TABLE uses. */)
4435 (Lisp_Object table)
4436 {
4437 return check_hash_table (table)->test;
4438 }
4439
4440
4441 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4442 1, 1, 0,
4443 doc: /* Return the weakness of TABLE. */)
4444 (Lisp_Object table)
4445 {
4446 return check_hash_table (table)->weak;
4447 }
4448
4449
4450 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4451 doc: /* Return t if OBJ is a Lisp hash table object. */)
4452 (Lisp_Object obj)
4453 {
4454 return HASH_TABLE_P (obj) ? Qt : Qnil;
4455 }
4456
4457
4458 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4459 doc: /* Clear hash table TABLE and return it. */)
4460 (Lisp_Object table)
4461 {
4462 hash_clear (check_hash_table (table));
4463 /* Be compatible with XEmacs. */
4464 return table;
4465 }
4466
4467
4468 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4469 doc: /* Look up KEY in TABLE and return its associated value.
4470 If KEY is not found, return DFLT which defaults to nil. */)
4471 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4472 {
4473 struct Lisp_Hash_Table *h = check_hash_table (table);
4474 EMACS_INT i = hash_lookup (h, key, NULL);
4475 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4476 }
4477
4478
4479 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4480 doc: /* Associate KEY with VALUE in hash table TABLE.
4481 If KEY is already present in table, replace its current value with
4482 VALUE. In any case, return VALUE. */)
4483 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4484 {
4485 struct Lisp_Hash_Table *h = check_hash_table (table);
4486 EMACS_INT i;
4487 EMACS_UINT hash;
4488
4489 i = hash_lookup (h, key, &hash);
4490 if (i >= 0)
4491 HASH_VALUE (h, i) = value;
4492 else
4493 hash_put (h, key, value, hash);
4494
4495 return value;
4496 }
4497
4498
4499 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4500 doc: /* Remove KEY from TABLE. */)
4501 (Lisp_Object key, Lisp_Object table)
4502 {
4503 struct Lisp_Hash_Table *h = check_hash_table (table);
4504 hash_remove_from_table (h, key);
4505 return Qnil;
4506 }
4507
4508
4509 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4510 doc: /* Call FUNCTION for all entries in hash table TABLE.
4511 FUNCTION is called with two arguments, KEY and VALUE. */)
4512 (Lisp_Object function, Lisp_Object table)
4513 {
4514 struct Lisp_Hash_Table *h = check_hash_table (table);
4515 Lisp_Object args[3];
4516 EMACS_INT i;
4517
4518 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4519 if (!NILP (HASH_HASH (h, i)))
4520 {
4521 args[0] = function;
4522 args[1] = HASH_KEY (h, i);
4523 args[2] = HASH_VALUE (h, i);
4524 Ffuncall (3, args);
4525 }
4526
4527 return Qnil;
4528 }
4529
4530
4531 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4532 Sdefine_hash_table_test, 3, 3, 0,
4533 doc: /* Define a new hash table test with name NAME, a symbol.
4534
4535 In hash tables created with NAME specified as test, use TEST to
4536 compare keys, and HASH for computing hash codes of keys.
4537
4538 TEST must be a function taking two arguments and returning non-nil if
4539 both arguments are the same. HASH must be a function taking one
4540 argument and return an integer that is the hash code of the argument.
4541 Hash code computation should use the whole value range of integers,
4542 including negative integers. */)
4543 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4544 {
4545 return Fput (name, Qhash_table_test, list2 (test, hash));
4546 }
4547
4548
4549 \f
4550 /************************************************************************
4551 MD5, SHA-1, and SHA-2
4552 ************************************************************************/
4553
4554 #include "md5.h"
4555 #include "sha1.h"
4556 #include "sha256.h"
4557 #include "sha512.h"
4558
4559 /* ALGORITHM is a symbol: md5, sha1, sha224 and so on. */
4560
4561 static Lisp_Object
4562 secure_hash (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror, Lisp_Object binary)
4563 {
4564 int i;
4565 EMACS_INT size;
4566 EMACS_INT size_byte = 0;
4567 EMACS_INT start_char = 0, end_char = 0;
4568 EMACS_INT start_byte = 0, end_byte = 0;
4569 register EMACS_INT b, e;
4570 register struct buffer *bp;
4571 EMACS_INT temp;
4572 int digest_size;
4573 void *(*hash_func) (const char *, size_t, void *);
4574 Lisp_Object digest;
4575
4576 CHECK_SYMBOL (algorithm);
4577
4578 if (STRINGP (object))
4579 {
4580 if (NILP (coding_system))
4581 {
4582 /* Decide the coding-system to encode the data with. */
4583
4584 if (STRING_MULTIBYTE (object))
4585 /* use default, we can't guess correct value */
4586 coding_system = preferred_coding_system ();
4587 else
4588 coding_system = Qraw_text;
4589 }
4590
4591 if (NILP (Fcoding_system_p (coding_system)))
4592 {
4593 /* Invalid coding system. */
4594
4595 if (!NILP (noerror))
4596 coding_system = Qraw_text;
4597 else
4598 xsignal1 (Qcoding_system_error, coding_system);
4599 }
4600
4601 if (STRING_MULTIBYTE (object))
4602 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4603
4604 size = SCHARS (object);
4605 size_byte = SBYTES (object);
4606
4607 if (!NILP (start))
4608 {
4609 CHECK_NUMBER (start);
4610
4611 start_char = XINT (start);
4612
4613 if (start_char < 0)
4614 start_char += size;
4615
4616 start_byte = string_char_to_byte (object, start_char);
4617 }
4618
4619 if (NILP (end))
4620 {
4621 end_char = size;
4622 end_byte = size_byte;
4623 }
4624 else
4625 {
4626 CHECK_NUMBER (end);
4627
4628 end_char = XINT (end);
4629
4630 if (end_char < 0)
4631 end_char += size;
4632
4633 end_byte = string_char_to_byte (object, end_char);
4634 }
4635
4636 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
4637 args_out_of_range_3 (object, make_number (start_char),
4638 make_number (end_char));
4639 }
4640 else
4641 {
4642 struct buffer *prev = current_buffer;
4643
4644 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
4645
4646 CHECK_BUFFER (object);
4647
4648 bp = XBUFFER (object);
4649 if (bp != current_buffer)
4650 set_buffer_internal (bp);
4651
4652 if (NILP (start))
4653 b = BEGV;
4654 else
4655 {
4656 CHECK_NUMBER_COERCE_MARKER (start);
4657 b = XINT (start);
4658 }
4659
4660 if (NILP (end))
4661 e = ZV;
4662 else
4663 {
4664 CHECK_NUMBER_COERCE_MARKER (end);
4665 e = XINT (end);
4666 }
4667
4668 if (b > e)
4669 temp = b, b = e, e = temp;
4670
4671 if (!(BEGV <= b && e <= ZV))
4672 args_out_of_range (start, end);
4673
4674 if (NILP (coding_system))
4675 {
4676 /* Decide the coding-system to encode the data with.
4677 See fileio.c:Fwrite-region */
4678
4679 if (!NILP (Vcoding_system_for_write))
4680 coding_system = Vcoding_system_for_write;
4681 else
4682 {
4683 int force_raw_text = 0;
4684
4685 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4686 if (NILP (coding_system)
4687 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4688 {
4689 coding_system = Qnil;
4690 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4691 force_raw_text = 1;
4692 }
4693
4694 if (NILP (coding_system) && !NILP (Fbuffer_file_name(object)))
4695 {
4696 /* Check file-coding-system-alist. */
4697 Lisp_Object args[4], val;
4698
4699 args[0] = Qwrite_region; args[1] = start; args[2] = end;
4700 args[3] = Fbuffer_file_name(object);
4701 val = Ffind_operation_coding_system (4, args);
4702 if (CONSP (val) && !NILP (XCDR (val)))
4703 coding_system = XCDR (val);
4704 }
4705
4706 if (NILP (coding_system)
4707 && !NILP (BVAR (XBUFFER (object), buffer_file_coding_system)))
4708 {
4709 /* If we still have not decided a coding system, use the
4710 default value of buffer-file-coding-system. */
4711 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4712 }
4713
4714 if (!force_raw_text
4715 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4716 /* Confirm that VAL can surely encode the current region. */
4717 coding_system = call4 (Vselect_safe_coding_system_function,
4718 make_number (b), make_number (e),
4719 coding_system, Qnil);
4720
4721 if (force_raw_text)
4722 coding_system = Qraw_text;
4723 }
4724
4725 if (NILP (Fcoding_system_p (coding_system)))
4726 {
4727 /* Invalid coding system. */
4728
4729 if (!NILP (noerror))
4730 coding_system = Qraw_text;
4731 else
4732 xsignal1 (Qcoding_system_error, coding_system);
4733 }
4734 }
4735
4736 object = make_buffer_string (b, e, 0);
4737 if (prev != current_buffer)
4738 set_buffer_internal (prev);
4739 /* Discard the unwind protect for recovering the current
4740 buffer. */
4741 specpdl_ptr--;
4742
4743 if (STRING_MULTIBYTE (object))
4744 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4745 }
4746
4747 if (EQ (algorithm, Qmd5))
4748 {
4749 digest_size = MD5_DIGEST_SIZE;
4750 hash_func = md5_buffer;
4751 }
4752 else if (EQ (algorithm, Qsha1))
4753 {
4754 digest_size = SHA1_DIGEST_SIZE;
4755 hash_func = sha1_buffer;
4756 }
4757 else if (EQ (algorithm, Qsha224))
4758 {
4759 digest_size = SHA224_DIGEST_SIZE;
4760 hash_func = sha224_buffer;
4761 }
4762 else if (EQ (algorithm, Qsha256))
4763 {
4764 digest_size = SHA256_DIGEST_SIZE;
4765 hash_func = sha256_buffer;
4766 }
4767 else if (EQ (algorithm, Qsha384))
4768 {
4769 digest_size = SHA384_DIGEST_SIZE;
4770 hash_func = sha384_buffer;
4771 }
4772 else if (EQ (algorithm, Qsha512))
4773 {
4774 digest_size = SHA512_DIGEST_SIZE;
4775 hash_func = sha512_buffer;
4776 }
4777 else
4778 error ("Invalid algorithm arg: %s", SDATA (Fsymbol_name (algorithm)));
4779
4780 /* allocate 2 x digest_size so that it can be re-used to hold the
4781 hexified value */
4782 digest = make_uninit_string (digest_size * 2);
4783
4784 hash_func (SSDATA (object) + start_byte,
4785 SBYTES (object) - (size_byte - end_byte),
4786 SSDATA (digest));
4787
4788 if (NILP (binary))
4789 {
4790 unsigned char *p = SDATA (digest);
4791 for (i = digest_size - 1; i >= 0; i--)
4792 {
4793 static char const hexdigit[16] = "0123456789abcdef";
4794 int p_i = p[i];
4795 p[2 * i] = hexdigit[p_i >> 4];
4796 p[2 * i + 1] = hexdigit[p_i & 0xf];
4797 }
4798 return digest;
4799 }
4800 else
4801 return make_unibyte_string (SSDATA (digest), digest_size);
4802 }
4803
4804 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4805 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4806
4807 A message digest is a cryptographic checksum of a document, and the
4808 algorithm to calculate it is defined in RFC 1321.
4809
4810 The two optional arguments START and END are character positions
4811 specifying for which part of OBJECT the message digest should be
4812 computed. If nil or omitted, the digest is computed for the whole
4813 OBJECT.
4814
4815 The MD5 message digest is computed from the result of encoding the
4816 text in a coding system, not directly from the internal Emacs form of
4817 the text. The optional fourth argument CODING-SYSTEM specifies which
4818 coding system to encode the text with. It should be the same coding
4819 system that you used or will use when actually writing the text into a
4820 file.
4821
4822 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4823 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4824 system would be chosen by default for writing this text into a file.
4825
4826 If OBJECT is a string, the most preferred coding system (see the
4827 command `prefer-coding-system') is used.
4828
4829 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4830 guesswork fails. Normally, an error is signaled in such case. */)
4831 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
4832 {
4833 return secure_hash (Qmd5, object, start, end, coding_system, noerror, Qnil);
4834 }
4835
4836 DEFUN ("secure-hash", Fsecure_hash, Ssecure_hash, 2, 5, 0,
4837 doc: /* Return the secure hash of an OBJECT.
4838 ALGORITHM is a symbol: md5, sha1, sha224, sha256, sha384 or sha512.
4839 OBJECT is either a string or a buffer.
4840 Optional arguments START and END are character positions specifying
4841 which portion of OBJECT for computing the hash. If BINARY is non-nil,
4842 return a string in binary form. */)
4843 (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object binary)
4844 {
4845 return secure_hash (algorithm, object, start, end, Qnil, Qnil, binary);
4846 }
4847 \f
4848 void
4849 syms_of_fns (void)
4850 {
4851 DEFSYM (Qmd5, "md5");
4852 DEFSYM (Qsha1, "sha1");
4853 DEFSYM (Qsha224, "sha224");
4854 DEFSYM (Qsha256, "sha256");
4855 DEFSYM (Qsha384, "sha384");
4856 DEFSYM (Qsha512, "sha512");
4857
4858 /* Hash table stuff. */
4859 DEFSYM (Qhash_table_p, "hash-table-p");
4860 DEFSYM (Qeq, "eq");
4861 DEFSYM (Qeql, "eql");
4862 DEFSYM (Qequal, "equal");
4863 DEFSYM (QCtest, ":test");
4864 DEFSYM (QCsize, ":size");
4865 DEFSYM (QCrehash_size, ":rehash-size");
4866 DEFSYM (QCrehash_threshold, ":rehash-threshold");
4867 DEFSYM (QCweakness, ":weakness");
4868 DEFSYM (Qkey, "key");
4869 DEFSYM (Qvalue, "value");
4870 DEFSYM (Qhash_table_test, "hash-table-test");
4871 DEFSYM (Qkey_or_value, "key-or-value");
4872 DEFSYM (Qkey_and_value, "key-and-value");
4873
4874 defsubr (&Ssxhash);
4875 defsubr (&Smake_hash_table);
4876 defsubr (&Scopy_hash_table);
4877 defsubr (&Shash_table_count);
4878 defsubr (&Shash_table_rehash_size);
4879 defsubr (&Shash_table_rehash_threshold);
4880 defsubr (&Shash_table_size);
4881 defsubr (&Shash_table_test);
4882 defsubr (&Shash_table_weakness);
4883 defsubr (&Shash_table_p);
4884 defsubr (&Sclrhash);
4885 defsubr (&Sgethash);
4886 defsubr (&Sputhash);
4887 defsubr (&Sremhash);
4888 defsubr (&Smaphash);
4889 defsubr (&Sdefine_hash_table_test);
4890
4891 DEFSYM (Qstring_lessp, "string-lessp");
4892 DEFSYM (Qprovide, "provide");
4893 DEFSYM (Qrequire, "require");
4894 DEFSYM (Qyes_or_no_p_history, "yes-or-no-p-history");
4895 DEFSYM (Qcursor_in_echo_area, "cursor-in-echo-area");
4896 DEFSYM (Qwidget_type, "widget-type");
4897
4898 staticpro (&string_char_byte_cache_string);
4899 string_char_byte_cache_string = Qnil;
4900
4901 require_nesting_list = Qnil;
4902 staticpro (&require_nesting_list);
4903
4904 Fset (Qyes_or_no_p_history, Qnil);
4905
4906 DEFVAR_LISP ("features", Vfeatures,
4907 doc: /* A list of symbols which are the features of the executing Emacs.
4908 Used by `featurep' and `require', and altered by `provide'. */);
4909 Vfeatures = Fcons (intern_c_string ("emacs"), Qnil);
4910 DEFSYM (Qsubfeatures, "subfeatures");
4911
4912 #ifdef HAVE_LANGINFO_CODESET
4913 DEFSYM (Qcodeset, "codeset");
4914 DEFSYM (Qdays, "days");
4915 DEFSYM (Qmonths, "months");
4916 DEFSYM (Qpaper, "paper");
4917 #endif /* HAVE_LANGINFO_CODESET */
4918
4919 DEFVAR_BOOL ("use-dialog-box", use_dialog_box,
4920 doc: /* *Non-nil means mouse commands use dialog boxes to ask questions.
4921 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4922 invoked by mouse clicks and mouse menu items.
4923
4924 On some platforms, file selection dialogs are also enabled if this is
4925 non-nil. */);
4926 use_dialog_box = 1;
4927
4928 DEFVAR_BOOL ("use-file-dialog", use_file_dialog,
4929 doc: /* *Non-nil means mouse commands use a file dialog to ask for files.
4930 This applies to commands from menus and tool bar buttons even when
4931 they are initiated from the keyboard. If `use-dialog-box' is nil,
4932 that disables the use of a file dialog, regardless of the value of
4933 this variable. */);
4934 use_file_dialog = 1;
4935
4936 defsubr (&Sidentity);
4937 defsubr (&Srandom);
4938 defsubr (&Slength);
4939 defsubr (&Ssafe_length);
4940 defsubr (&Sstring_bytes);
4941 defsubr (&Sstring_equal);
4942 defsubr (&Scompare_strings);
4943 defsubr (&Sstring_lessp);
4944 defsubr (&Sappend);
4945 defsubr (&Sconcat);
4946 defsubr (&Svconcat);
4947 defsubr (&Scopy_sequence);
4948 defsubr (&Sstring_make_multibyte);
4949 defsubr (&Sstring_make_unibyte);
4950 defsubr (&Sstring_as_multibyte);
4951 defsubr (&Sstring_as_unibyte);
4952 defsubr (&Sstring_to_multibyte);
4953 defsubr (&Sstring_to_unibyte);
4954 defsubr (&Scopy_alist);
4955 defsubr (&Ssubstring);
4956 defsubr (&Ssubstring_no_properties);
4957 defsubr (&Snthcdr);
4958 defsubr (&Snth);
4959 defsubr (&Selt);
4960 defsubr (&Smember);
4961 defsubr (&Smemq);
4962 defsubr (&Smemql);
4963 defsubr (&Sassq);
4964 defsubr (&Sassoc);
4965 defsubr (&Srassq);
4966 defsubr (&Srassoc);
4967 defsubr (&Sdelq);
4968 defsubr (&Sdelete);
4969 defsubr (&Snreverse);
4970 defsubr (&Sreverse);
4971 defsubr (&Ssort);
4972 defsubr (&Splist_get);
4973 defsubr (&Sget);
4974 defsubr (&Splist_put);
4975 defsubr (&Sput);
4976 defsubr (&Slax_plist_get);
4977 defsubr (&Slax_plist_put);
4978 defsubr (&Seql);
4979 defsubr (&Sequal);
4980 defsubr (&Sequal_including_properties);
4981 defsubr (&Sfillarray);
4982 defsubr (&Sclear_string);
4983 defsubr (&Snconc);
4984 defsubr (&Smapcar);
4985 defsubr (&Smapc);
4986 defsubr (&Smapconcat);
4987 defsubr (&Syes_or_no_p);
4988 defsubr (&Sload_average);
4989 defsubr (&Sfeaturep);
4990 defsubr (&Srequire);
4991 defsubr (&Sprovide);
4992 defsubr (&Splist_member);
4993 defsubr (&Swidget_put);
4994 defsubr (&Swidget_get);
4995 defsubr (&Swidget_apply);
4996 defsubr (&Sbase64_encode_region);
4997 defsubr (&Sbase64_decode_region);
4998 defsubr (&Sbase64_encode_string);
4999 defsubr (&Sbase64_decode_string);
5000 defsubr (&Smd5);
5001 defsubr (&Ssecure_hash);
5002 defsubr (&Slocale_info);
5003 }
5004
5005
5006 void
5007 init_fns (void)
5008 {
5009 }