]> code.delx.au - gnu-emacs/blob - src/regex.c
(set_properties, add_properties, remove_properties):
[gnu-emacs] / src / regex.c
1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P10003.2/D11.2, except for
3 internationalization features.)
4
5 Copyright (C) 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
20 USA. */
21
22 /* AIX requires this to be the first thing in the file. */
23 #if defined (_AIX) && !defined (REGEX_MALLOC)
24 #pragma alloca
25 #endif
26
27 #undef _GNU_SOURCE
28 #define _GNU_SOURCE
29
30 #ifdef HAVE_CONFIG_H
31 #include <config.h>
32 #endif
33
34 /* We need this for `regex.h', and perhaps for the Emacs include files. */
35 #include <sys/types.h>
36
37 /* This is for other GNU distributions with internationalized messages. */
38 #if HAVE_LIBINTL_H || defined (_LIBC)
39 # include <libintl.h>
40 #else
41 # define gettext(msgid) (msgid)
42 #endif
43
44 #ifndef gettext_noop
45 /* This define is so xgettext can find the internationalizable
46 strings. */
47 #define gettext_noop(String) String
48 #endif
49
50 /* The `emacs' switch turns on certain matching commands
51 that make sense only in Emacs. */
52 #ifdef emacs
53
54 #include "lisp.h"
55 #include "buffer.h"
56 #include "syntax.h"
57
58 #else /* not emacs */
59
60 /* If we are not linking with Emacs proper,
61 we can't use the relocating allocator
62 even if config.h says that we can. */
63 #undef REL_ALLOC
64
65 #if defined (STDC_HEADERS) || defined (_LIBC)
66 #include <stdlib.h>
67 #else
68 char *malloc ();
69 char *realloc ();
70 #endif
71
72 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
73 If nothing else has been done, use the method below. */
74 #ifdef INHIBIT_STRING_HEADER
75 #if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY))
76 #if !defined (bzero) && !defined (bcopy)
77 #undef INHIBIT_STRING_HEADER
78 #endif
79 #endif
80 #endif
81
82 /* This is the normal way of making sure we have a bcopy and a bzero.
83 This is used in most programs--a few other programs avoid this
84 by defining INHIBIT_STRING_HEADER. */
85 #ifndef INHIBIT_STRING_HEADER
86 #if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC)
87 #include <string.h>
88 #ifndef bcmp
89 #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
90 #endif
91 #ifndef bcopy
92 #define bcopy(s, d, n) memcpy ((d), (s), (n))
93 #endif
94 #ifndef bzero
95 #define bzero(s, n) memset ((s), 0, (n))
96 #endif
97 #else
98 #include <strings.h>
99 #endif
100 #endif
101
102 /* Define the syntax stuff for \<, \>, etc. */
103
104 /* This must be nonzero for the wordchar and notwordchar pattern
105 commands in re_match_2. */
106 #ifndef Sword
107 #define Sword 1
108 #endif
109
110 #ifdef SWITCH_ENUM_BUG
111 #define SWITCH_ENUM_CAST(x) ((int)(x))
112 #else
113 #define SWITCH_ENUM_CAST(x) (x)
114 #endif
115
116 #ifdef SYNTAX_TABLE
117
118 extern char *re_syntax_table;
119
120 #else /* not SYNTAX_TABLE */
121
122 /* How many characters in the character set. */
123 #define CHAR_SET_SIZE 256
124
125 static char re_syntax_table[CHAR_SET_SIZE];
126
127 static void
128 init_syntax_once ()
129 {
130 register int c;
131 static int done = 0;
132
133 if (done)
134 return;
135
136 bzero (re_syntax_table, sizeof re_syntax_table);
137
138 for (c = 'a'; c <= 'z'; c++)
139 re_syntax_table[c] = Sword;
140
141 for (c = 'A'; c <= 'Z'; c++)
142 re_syntax_table[c] = Sword;
143
144 for (c = '0'; c <= '9'; c++)
145 re_syntax_table[c] = Sword;
146
147 re_syntax_table['_'] = Sword;
148
149 done = 1;
150 }
151
152 #endif /* not SYNTAX_TABLE */
153
154 #define SYNTAX(c) re_syntax_table[c]
155
156 #endif /* not emacs */
157 \f
158 /* Get the interface, including the syntax bits. */
159 #include "regex.h"
160
161 /* isalpha etc. are used for the character classes. */
162 #include <ctype.h>
163
164 /* Jim Meyering writes:
165
166 "... Some ctype macros are valid only for character codes that
167 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
168 using /bin/cc or gcc but without giving an ansi option). So, all
169 ctype uses should be through macros like ISPRINT... If
170 STDC_HEADERS is defined, then autoconf has verified that the ctype
171 macros don't need to be guarded with references to isascii. ...
172 Defining isascii to 1 should let any compiler worth its salt
173 eliminate the && through constant folding." */
174
175 #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
176 #define ISASCII(c) 1
177 #else
178 #define ISASCII(c) isascii(c)
179 #endif
180
181 #ifdef isblank
182 #define ISBLANK(c) (ISASCII (c) && isblank (c))
183 #else
184 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
185 #endif
186 #ifdef isgraph
187 #define ISGRAPH(c) (ISASCII (c) && isgraph (c))
188 #else
189 #define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
190 #endif
191
192 #define ISPRINT(c) (ISASCII (c) && isprint (c))
193 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
194 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
195 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
196 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
197 #define ISLOWER(c) (ISASCII (c) && islower (c))
198 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
199 #define ISSPACE(c) (ISASCII (c) && isspace (c))
200 #define ISUPPER(c) (ISASCII (c) && isupper (c))
201 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
202
203 #ifndef NULL
204 #define NULL (void *)0
205 #endif
206
207 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
208 since ours (we hope) works properly with all combinations of
209 machines, compilers, `char' and `unsigned char' argument types.
210 (Per Bothner suggested the basic approach.) */
211 #undef SIGN_EXTEND_CHAR
212 #if __STDC__
213 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
214 #else /* not __STDC__ */
215 /* As in Harbison and Steele. */
216 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
217 #endif
218 \f
219 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
220 use `alloca' instead of `malloc'. This is because using malloc in
221 re_search* or re_match* could cause memory leaks when C-g is used in
222 Emacs; also, malloc is slower and causes storage fragmentation. On
223 the other hand, malloc is more portable, and easier to debug.
224
225 Because we sometimes use alloca, some routines have to be macros,
226 not functions -- `alloca'-allocated space disappears at the end of the
227 function it is called in. */
228
229 #ifdef REGEX_MALLOC
230
231 #define REGEX_ALLOCATE malloc
232 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
233 #define REGEX_FREE free
234
235 #else /* not REGEX_MALLOC */
236
237 /* Emacs already defines alloca, sometimes. */
238 #ifndef alloca
239
240 /* Make alloca work the best possible way. */
241 #ifdef __GNUC__
242 #define alloca __builtin_alloca
243 #else /* not __GNUC__ */
244 #if HAVE_ALLOCA_H
245 #include <alloca.h>
246 #else /* not __GNUC__ or HAVE_ALLOCA_H */
247 #if 0 /* It is a bad idea to declare alloca. We always cast the result. */
248 #ifndef _AIX /* Already did AIX, up at the top. */
249 char *alloca ();
250 #endif /* not _AIX */
251 #endif
252 #endif /* not HAVE_ALLOCA_H */
253 #endif /* not __GNUC__ */
254
255 #endif /* not alloca */
256
257 #define REGEX_ALLOCATE alloca
258
259 /* Assumes a `char *destination' variable. */
260 #define REGEX_REALLOCATE(source, osize, nsize) \
261 (destination = (char *) alloca (nsize), \
262 bcopy (source, destination, osize), \
263 destination)
264
265 /* No need to do anything to free, after alloca. */
266 #define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
267
268 #endif /* not REGEX_MALLOC */
269
270 /* Define how to allocate the failure stack. */
271
272 #if defined (REL_ALLOC) && defined (REGEX_MALLOC)
273
274 #define REGEX_ALLOCATE_STACK(size) \
275 r_alloc (&failure_stack_ptr, (size))
276 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
277 r_re_alloc (&failure_stack_ptr, (nsize))
278 #define REGEX_FREE_STACK(ptr) \
279 r_alloc_free (&failure_stack_ptr)
280
281 #else /* not using relocating allocator */
282
283 #ifdef REGEX_MALLOC
284
285 #define REGEX_ALLOCATE_STACK malloc
286 #define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
287 #define REGEX_FREE_STACK free
288
289 #else /* not REGEX_MALLOC */
290
291 #define REGEX_ALLOCATE_STACK alloca
292
293 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
294 REGEX_REALLOCATE (source, osize, nsize)
295 /* No need to explicitly free anything. */
296 #define REGEX_FREE_STACK(arg)
297
298 #endif /* not REGEX_MALLOC */
299 #endif /* not using relocating allocator */
300
301
302 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
303 `string1' or just past its end. This works if PTR is NULL, which is
304 a good thing. */
305 #define FIRST_STRING_P(ptr) \
306 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
307
308 /* (Re)Allocate N items of type T using malloc, or fail. */
309 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
310 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
311 #define RETALLOC_IF(addr, n, t) \
312 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
313 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
314
315 #define BYTEWIDTH 8 /* In bits. */
316
317 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
318
319 #undef MAX
320 #undef MIN
321 #define MAX(a, b) ((a) > (b) ? (a) : (b))
322 #define MIN(a, b) ((a) < (b) ? (a) : (b))
323
324 typedef char boolean;
325 #define false 0
326 #define true 1
327
328 static int re_match_2_internal ();
329 \f
330 /* These are the command codes that appear in compiled regular
331 expressions. Some opcodes are followed by argument bytes. A
332 command code can specify any interpretation whatsoever for its
333 arguments. Zero bytes may appear in the compiled regular expression. */
334
335 typedef enum
336 {
337 no_op = 0,
338
339 /* Succeed right away--no more backtracking. */
340 succeed,
341
342 /* Followed by one byte giving n, then by n literal bytes. */
343 exactn,
344
345 /* Matches any (more or less) character. */
346 anychar,
347
348 /* Matches any one char belonging to specified set. First
349 following byte is number of bitmap bytes. Then come bytes
350 for a bitmap saying which chars are in. Bits in each byte
351 are ordered low-bit-first. A character is in the set if its
352 bit is 1. A character too large to have a bit in the map is
353 automatically not in the set. */
354 charset,
355
356 /* Same parameters as charset, but match any character that is
357 not one of those specified. */
358 charset_not,
359
360 /* Start remembering the text that is matched, for storing in a
361 register. Followed by one byte with the register number, in
362 the range 0 to one less than the pattern buffer's re_nsub
363 field. Then followed by one byte with the number of groups
364 inner to this one. (This last has to be part of the
365 start_memory only because we need it in the on_failure_jump
366 of re_match_2.) */
367 start_memory,
368
369 /* Stop remembering the text that is matched and store it in a
370 memory register. Followed by one byte with the register
371 number, in the range 0 to one less than `re_nsub' in the
372 pattern buffer, and one byte with the number of inner groups,
373 just like `start_memory'. (We need the number of inner
374 groups here because we don't have any easy way of finding the
375 corresponding start_memory when we're at a stop_memory.) */
376 stop_memory,
377
378 /* Match a duplicate of something remembered. Followed by one
379 byte containing the register number. */
380 duplicate,
381
382 /* Fail unless at beginning of line. */
383 begline,
384
385 /* Fail unless at end of line. */
386 endline,
387
388 /* Succeeds if at beginning of buffer (if emacs) or at beginning
389 of string to be matched (if not). */
390 begbuf,
391
392 /* Analogously, for end of buffer/string. */
393 endbuf,
394
395 /* Followed by two byte relative address to which to jump. */
396 jump,
397
398 /* Same as jump, but marks the end of an alternative. */
399 jump_past_alt,
400
401 /* Followed by two-byte relative address of place to resume at
402 in case of failure. */
403 on_failure_jump,
404
405 /* Like on_failure_jump, but pushes a placeholder instead of the
406 current string position when executed. */
407 on_failure_keep_string_jump,
408
409 /* Throw away latest failure point and then jump to following
410 two-byte relative address. */
411 pop_failure_jump,
412
413 /* Change to pop_failure_jump if know won't have to backtrack to
414 match; otherwise change to jump. This is used to jump
415 back to the beginning of a repeat. If what follows this jump
416 clearly won't match what the repeat does, such that we can be
417 sure that there is no use backtracking out of repetitions
418 already matched, then we change it to a pop_failure_jump.
419 Followed by two-byte address. */
420 maybe_pop_jump,
421
422 /* Jump to following two-byte address, and push a dummy failure
423 point. This failure point will be thrown away if an attempt
424 is made to use it for a failure. A `+' construct makes this
425 before the first repeat. Also used as an intermediary kind
426 of jump when compiling an alternative. */
427 dummy_failure_jump,
428
429 /* Push a dummy failure point and continue. Used at the end of
430 alternatives. */
431 push_dummy_failure,
432
433 /* Followed by two-byte relative address and two-byte number n.
434 After matching N times, jump to the address upon failure. */
435 succeed_n,
436
437 /* Followed by two-byte relative address, and two-byte number n.
438 Jump to the address N times, then fail. */
439 jump_n,
440
441 /* Set the following two-byte relative address to the
442 subsequent two-byte number. The address *includes* the two
443 bytes of number. */
444 set_number_at,
445
446 wordchar, /* Matches any word-constituent character. */
447 notwordchar, /* Matches any char that is not a word-constituent. */
448
449 wordbeg, /* Succeeds if at word beginning. */
450 wordend, /* Succeeds if at word end. */
451
452 wordbound, /* Succeeds if at a word boundary. */
453 notwordbound /* Succeeds if not at a word boundary. */
454
455 #ifdef emacs
456 ,before_dot, /* Succeeds if before point. */
457 at_dot, /* Succeeds if at point. */
458 after_dot, /* Succeeds if after point. */
459
460 /* Matches any character whose syntax is specified. Followed by
461 a byte which contains a syntax code, e.g., Sword. */
462 syntaxspec,
463
464 /* Matches any character whose syntax is not that specified. */
465 notsyntaxspec
466 #endif /* emacs */
467 } re_opcode_t;
468 \f
469 /* Common operations on the compiled pattern. */
470
471 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
472
473 #define STORE_NUMBER(destination, number) \
474 do { \
475 (destination)[0] = (number) & 0377; \
476 (destination)[1] = (number) >> 8; \
477 } while (0)
478
479 /* Same as STORE_NUMBER, except increment DESTINATION to
480 the byte after where the number is stored. Therefore, DESTINATION
481 must be an lvalue. */
482
483 #define STORE_NUMBER_AND_INCR(destination, number) \
484 do { \
485 STORE_NUMBER (destination, number); \
486 (destination) += 2; \
487 } while (0)
488
489 /* Put into DESTINATION a number stored in two contiguous bytes starting
490 at SOURCE. */
491
492 #define EXTRACT_NUMBER(destination, source) \
493 do { \
494 (destination) = *(source) & 0377; \
495 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
496 } while (0)
497
498 #ifdef DEBUG
499 static void
500 extract_number (dest, source)
501 int *dest;
502 unsigned char *source;
503 {
504 int temp = SIGN_EXTEND_CHAR (*(source + 1));
505 *dest = *source & 0377;
506 *dest += temp << 8;
507 }
508
509 #ifndef EXTRACT_MACROS /* To debug the macros. */
510 #undef EXTRACT_NUMBER
511 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
512 #endif /* not EXTRACT_MACROS */
513
514 #endif /* DEBUG */
515
516 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
517 SOURCE must be an lvalue. */
518
519 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
520 do { \
521 EXTRACT_NUMBER (destination, source); \
522 (source) += 2; \
523 } while (0)
524
525 #ifdef DEBUG
526 static void
527 extract_number_and_incr (destination, source)
528 int *destination;
529 unsigned char **source;
530 {
531 extract_number (destination, *source);
532 *source += 2;
533 }
534
535 #ifndef EXTRACT_MACROS
536 #undef EXTRACT_NUMBER_AND_INCR
537 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
538 extract_number_and_incr (&dest, &src)
539 #endif /* not EXTRACT_MACROS */
540
541 #endif /* DEBUG */
542 \f
543 /* If DEBUG is defined, Regex prints many voluminous messages about what
544 it is doing (if the variable `debug' is nonzero). If linked with the
545 main program in `iregex.c', you can enter patterns and strings
546 interactively. And if linked with the main program in `main.c' and
547 the other test files, you can run the already-written tests. */
548
549 #ifdef DEBUG
550
551 /* We use standard I/O for debugging. */
552 #include <stdio.h>
553
554 /* It is useful to test things that ``must'' be true when debugging. */
555 #include <assert.h>
556
557 static int debug = 0;
558
559 #define DEBUG_STATEMENT(e) e
560 #define DEBUG_PRINT1(x) if (debug) printf (x)
561 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
562 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
563 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
564 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
565 if (debug) print_partial_compiled_pattern (s, e)
566 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
567 if (debug) print_double_string (w, s1, sz1, s2, sz2)
568
569
570 /* Print the fastmap in human-readable form. */
571
572 void
573 print_fastmap (fastmap)
574 char *fastmap;
575 {
576 unsigned was_a_range = 0;
577 unsigned i = 0;
578
579 while (i < (1 << BYTEWIDTH))
580 {
581 if (fastmap[i++])
582 {
583 was_a_range = 0;
584 putchar (i - 1);
585 while (i < (1 << BYTEWIDTH) && fastmap[i])
586 {
587 was_a_range = 1;
588 i++;
589 }
590 if (was_a_range)
591 {
592 printf ("-");
593 putchar (i - 1);
594 }
595 }
596 }
597 putchar ('\n');
598 }
599
600
601 /* Print a compiled pattern string in human-readable form, starting at
602 the START pointer into it and ending just before the pointer END. */
603
604 void
605 print_partial_compiled_pattern (start, end)
606 unsigned char *start;
607 unsigned char *end;
608 {
609 int mcnt, mcnt2;
610 unsigned char *p = start;
611 unsigned char *pend = end;
612
613 if (start == NULL)
614 {
615 printf ("(null)\n");
616 return;
617 }
618
619 /* Loop over pattern commands. */
620 while (p < pend)
621 {
622 printf ("%d:\t", p - start);
623
624 switch ((re_opcode_t) *p++)
625 {
626 case no_op:
627 printf ("/no_op");
628 break;
629
630 case exactn:
631 mcnt = *p++;
632 printf ("/exactn/%d", mcnt);
633 do
634 {
635 putchar ('/');
636 putchar (*p++);
637 }
638 while (--mcnt);
639 break;
640
641 case start_memory:
642 mcnt = *p++;
643 printf ("/start_memory/%d/%d", mcnt, *p++);
644 break;
645
646 case stop_memory:
647 mcnt = *p++;
648 printf ("/stop_memory/%d/%d", mcnt, *p++);
649 break;
650
651 case duplicate:
652 printf ("/duplicate/%d", *p++);
653 break;
654
655 case anychar:
656 printf ("/anychar");
657 break;
658
659 case charset:
660 case charset_not:
661 {
662 register int c, last = -100;
663 register int in_range = 0;
664
665 printf ("/charset [%s",
666 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
667
668 assert (p + *p < pend);
669
670 for (c = 0; c < 256; c++)
671 if (c / 8 < *p
672 && (p[1 + (c/8)] & (1 << (c % 8))))
673 {
674 /* Are we starting a range? */
675 if (last + 1 == c && ! in_range)
676 {
677 putchar ('-');
678 in_range = 1;
679 }
680 /* Have we broken a range? */
681 else if (last + 1 != c && in_range)
682 {
683 putchar (last);
684 in_range = 0;
685 }
686
687 if (! in_range)
688 putchar (c);
689
690 last = c;
691 }
692
693 if (in_range)
694 putchar (last);
695
696 putchar (']');
697
698 p += 1 + *p;
699 }
700 break;
701
702 case begline:
703 printf ("/begline");
704 break;
705
706 case endline:
707 printf ("/endline");
708 break;
709
710 case on_failure_jump:
711 extract_number_and_incr (&mcnt, &p);
712 printf ("/on_failure_jump to %d", p + mcnt - start);
713 break;
714
715 case on_failure_keep_string_jump:
716 extract_number_and_incr (&mcnt, &p);
717 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
718 break;
719
720 case dummy_failure_jump:
721 extract_number_and_incr (&mcnt, &p);
722 printf ("/dummy_failure_jump to %d", p + mcnt - start);
723 break;
724
725 case push_dummy_failure:
726 printf ("/push_dummy_failure");
727 break;
728
729 case maybe_pop_jump:
730 extract_number_and_incr (&mcnt, &p);
731 printf ("/maybe_pop_jump to %d", p + mcnt - start);
732 break;
733
734 case pop_failure_jump:
735 extract_number_and_incr (&mcnt, &p);
736 printf ("/pop_failure_jump to %d", p + mcnt - start);
737 break;
738
739 case jump_past_alt:
740 extract_number_and_incr (&mcnt, &p);
741 printf ("/jump_past_alt to %d", p + mcnt - start);
742 break;
743
744 case jump:
745 extract_number_and_incr (&mcnt, &p);
746 printf ("/jump to %d", p + mcnt - start);
747 break;
748
749 case succeed_n:
750 extract_number_and_incr (&mcnt, &p);
751 extract_number_and_incr (&mcnt2, &p);
752 printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2);
753 break;
754
755 case jump_n:
756 extract_number_and_incr (&mcnt, &p);
757 extract_number_and_incr (&mcnt2, &p);
758 printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2);
759 break;
760
761 case set_number_at:
762 extract_number_and_incr (&mcnt, &p);
763 extract_number_and_incr (&mcnt2, &p);
764 printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2);
765 break;
766
767 case wordbound:
768 printf ("/wordbound");
769 break;
770
771 case notwordbound:
772 printf ("/notwordbound");
773 break;
774
775 case wordbeg:
776 printf ("/wordbeg");
777 break;
778
779 case wordend:
780 printf ("/wordend");
781
782 #ifdef emacs
783 case before_dot:
784 printf ("/before_dot");
785 break;
786
787 case at_dot:
788 printf ("/at_dot");
789 break;
790
791 case after_dot:
792 printf ("/after_dot");
793 break;
794
795 case syntaxspec:
796 printf ("/syntaxspec");
797 mcnt = *p++;
798 printf ("/%d", mcnt);
799 break;
800
801 case notsyntaxspec:
802 printf ("/notsyntaxspec");
803 mcnt = *p++;
804 printf ("/%d", mcnt);
805 break;
806 #endif /* emacs */
807
808 case wordchar:
809 printf ("/wordchar");
810 break;
811
812 case notwordchar:
813 printf ("/notwordchar");
814 break;
815
816 case begbuf:
817 printf ("/begbuf");
818 break;
819
820 case endbuf:
821 printf ("/endbuf");
822 break;
823
824 default:
825 printf ("?%d", *(p-1));
826 }
827
828 putchar ('\n');
829 }
830
831 printf ("%d:\tend of pattern.\n", p - start);
832 }
833
834
835 void
836 print_compiled_pattern (bufp)
837 struct re_pattern_buffer *bufp;
838 {
839 unsigned char *buffer = bufp->buffer;
840
841 print_partial_compiled_pattern (buffer, buffer + bufp->used);
842 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
843
844 if (bufp->fastmap_accurate && bufp->fastmap)
845 {
846 printf ("fastmap: ");
847 print_fastmap (bufp->fastmap);
848 }
849
850 printf ("re_nsub: %d\t", bufp->re_nsub);
851 printf ("regs_alloc: %d\t", bufp->regs_allocated);
852 printf ("can_be_null: %d\t", bufp->can_be_null);
853 printf ("newline_anchor: %d\n", bufp->newline_anchor);
854 printf ("no_sub: %d\t", bufp->no_sub);
855 printf ("not_bol: %d\t", bufp->not_bol);
856 printf ("not_eol: %d\t", bufp->not_eol);
857 printf ("syntax: %d\n", bufp->syntax);
858 /* Perhaps we should print the translate table? */
859 }
860
861
862 void
863 print_double_string (where, string1, size1, string2, size2)
864 const char *where;
865 const char *string1;
866 const char *string2;
867 int size1;
868 int size2;
869 {
870 unsigned this_char;
871
872 if (where == NULL)
873 printf ("(null)");
874 else
875 {
876 if (FIRST_STRING_P (where))
877 {
878 for (this_char = where - string1; this_char < size1; this_char++)
879 putchar (string1[this_char]);
880
881 where = string2;
882 }
883
884 for (this_char = where - string2; this_char < size2; this_char++)
885 putchar (string2[this_char]);
886 }
887 }
888
889 #else /* not DEBUG */
890
891 #undef assert
892 #define assert(e)
893
894 #define DEBUG_STATEMENT(e)
895 #define DEBUG_PRINT1(x)
896 #define DEBUG_PRINT2(x1, x2)
897 #define DEBUG_PRINT3(x1, x2, x3)
898 #define DEBUG_PRINT4(x1, x2, x3, x4)
899 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
900 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
901
902 #endif /* not DEBUG */
903 \f
904 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
905 also be assigned to arbitrarily: each pattern buffer stores its own
906 syntax, so it can be changed between regex compilations. */
907 /* This has no initializer because initialized variables in Emacs
908 become read-only after dumping. */
909 reg_syntax_t re_syntax_options;
910
911
912 /* Specify the precise syntax of regexps for compilation. This provides
913 for compatibility for various utilities which historically have
914 different, incompatible syntaxes.
915
916 The argument SYNTAX is a bit mask comprised of the various bits
917 defined in regex.h. We return the old syntax. */
918
919 reg_syntax_t
920 re_set_syntax (syntax)
921 reg_syntax_t syntax;
922 {
923 reg_syntax_t ret = re_syntax_options;
924
925 re_syntax_options = syntax;
926 return ret;
927 }
928 \f
929 /* This table gives an error message for each of the error codes listed
930 in regex.h. Obviously the order here has to be same as there.
931 POSIX doesn't require that we do anything for REG_NOERROR,
932 but why not be nice? */
933
934 static const char *re_error_msgid[] =
935 {
936 gettext_noop ("Success"), /* REG_NOERROR */
937 gettext_noop ("No match"), /* REG_NOMATCH */
938 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
939 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
940 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
941 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
942 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
943 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
944 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
945 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
946 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
947 gettext_noop ("Invalid range end"), /* REG_ERANGE */
948 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
949 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
950 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
951 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
952 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
953 };
954 \f
955 /* Avoiding alloca during matching, to placate r_alloc. */
956
957 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
958 searching and matching functions should not call alloca. On some
959 systems, alloca is implemented in terms of malloc, and if we're
960 using the relocating allocator routines, then malloc could cause a
961 relocation, which might (if the strings being searched are in the
962 ralloc heap) shift the data out from underneath the regexp
963 routines.
964
965 Here's another reason to avoid allocation: Emacs
966 processes input from X in a signal handler; processing X input may
967 call malloc; if input arrives while a matching routine is calling
968 malloc, then we're scrod. But Emacs can't just block input while
969 calling matching routines; then we don't notice interrupts when
970 they come in. So, Emacs blocks input around all regexp calls
971 except the matching calls, which it leaves unprotected, in the
972 faith that they will not malloc. */
973
974 /* Normally, this is fine. */
975 #define MATCH_MAY_ALLOCATE
976
977 /* When using GNU C, we are not REALLY using the C alloca, no matter
978 what config.h may say. So don't take precautions for it. */
979 #ifdef __GNUC__
980 #undef C_ALLOCA
981 #endif
982
983 /* The match routines may not allocate if (1) they would do it with malloc
984 and (2) it's not safe for them to use malloc.
985 Note that if REL_ALLOC is defined, matching would not use malloc for the
986 failure stack, but we would still use it for the register vectors;
987 so REL_ALLOC should not affect this. */
988 #if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs)
989 #undef MATCH_MAY_ALLOCATE
990 #endif
991
992 \f
993 /* Failure stack declarations and macros; both re_compile_fastmap and
994 re_match_2 use a failure stack. These have to be macros because of
995 REGEX_ALLOCATE_STACK. */
996
997
998 /* Number of failure points for which to initially allocate space
999 when matching. If this number is exceeded, we allocate more
1000 space, so it is not a hard limit. */
1001 #ifndef INIT_FAILURE_ALLOC
1002 #define INIT_FAILURE_ALLOC 5
1003 #endif
1004
1005 /* Roughly the maximum number of failure points on the stack. Would be
1006 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1007 This is a variable only so users of regex can assign to it; we never
1008 change it ourselves. */
1009 #if defined (MATCH_MAY_ALLOCATE)
1010 /* 4400 was enough to cause a crash on Alpha OSF/1,
1011 whose default stack limit is 2mb. */
1012 int re_max_failures = 20000;
1013 #else
1014 int re_max_failures = 2000;
1015 #endif
1016
1017 union fail_stack_elt
1018 {
1019 unsigned char *pointer;
1020 int integer;
1021 };
1022
1023 typedef union fail_stack_elt fail_stack_elt_t;
1024
1025 typedef struct
1026 {
1027 fail_stack_elt_t *stack;
1028 unsigned size;
1029 unsigned avail; /* Offset of next open position. */
1030 } fail_stack_type;
1031
1032 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1033 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1034 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1035
1036
1037 /* Define macros to initialize and free the failure stack.
1038 Do `return -2' if the alloc fails. */
1039
1040 #ifdef MATCH_MAY_ALLOCATE
1041 #define INIT_FAIL_STACK() \
1042 do { \
1043 fail_stack.stack = (fail_stack_elt_t *) \
1044 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1045 \
1046 if (fail_stack.stack == NULL) \
1047 return -2; \
1048 \
1049 fail_stack.size = INIT_FAILURE_ALLOC; \
1050 fail_stack.avail = 0; \
1051 } while (0)
1052
1053 #define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1054 #else
1055 #define INIT_FAIL_STACK() \
1056 do { \
1057 fail_stack.avail = 0; \
1058 } while (0)
1059
1060 #define RESET_FAIL_STACK()
1061 #endif
1062
1063
1064 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1065
1066 Return 1 if succeeds, and 0 if either ran out of memory
1067 allocating space for it or it was already too large.
1068
1069 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1070
1071 #define DOUBLE_FAIL_STACK(fail_stack) \
1072 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
1073 ? 0 \
1074 : ((fail_stack).stack = (fail_stack_elt_t *) \
1075 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1076 (fail_stack).size * sizeof (fail_stack_elt_t), \
1077 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1078 \
1079 (fail_stack).stack == NULL \
1080 ? 0 \
1081 : ((fail_stack).size <<= 1, \
1082 1)))
1083
1084
1085 /* Push pointer POINTER on FAIL_STACK.
1086 Return 1 if was able to do so and 0 if ran out of memory allocating
1087 space to do so. */
1088 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1089 ((FAIL_STACK_FULL () \
1090 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1091 ? 0 \
1092 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1093 1))
1094
1095 /* Push a pointer value onto the failure stack.
1096 Assumes the variable `fail_stack'. Probably should only
1097 be called from within `PUSH_FAILURE_POINT'. */
1098 #define PUSH_FAILURE_POINTER(item) \
1099 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1100
1101 /* This pushes an integer-valued item onto the failure stack.
1102 Assumes the variable `fail_stack'. Probably should only
1103 be called from within `PUSH_FAILURE_POINT'. */
1104 #define PUSH_FAILURE_INT(item) \
1105 fail_stack.stack[fail_stack.avail++].integer = (item)
1106
1107 /* Push a fail_stack_elt_t value onto the failure stack.
1108 Assumes the variable `fail_stack'. Probably should only
1109 be called from within `PUSH_FAILURE_POINT'. */
1110 #define PUSH_FAILURE_ELT(item) \
1111 fail_stack.stack[fail_stack.avail++] = (item)
1112
1113 /* These three POP... operations complement the three PUSH... operations.
1114 All assume that `fail_stack' is nonempty. */
1115 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1116 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1117 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1118
1119 /* Used to omit pushing failure point id's when we're not debugging. */
1120 #ifdef DEBUG
1121 #define DEBUG_PUSH PUSH_FAILURE_INT
1122 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1123 #else
1124 #define DEBUG_PUSH(item)
1125 #define DEBUG_POP(item_addr)
1126 #endif
1127
1128
1129 /* Push the information about the state we will need
1130 if we ever fail back to it.
1131
1132 Requires variables fail_stack, regstart, regend, reg_info, and
1133 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
1134 declared.
1135
1136 Does `return FAILURE_CODE' if runs out of memory. */
1137
1138 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1139 do { \
1140 char *destination; \
1141 /* Must be int, so when we don't save any registers, the arithmetic \
1142 of 0 + -1 isn't done as unsigned. */ \
1143 int this_reg; \
1144 \
1145 DEBUG_STATEMENT (failure_id++); \
1146 DEBUG_STATEMENT (nfailure_points_pushed++); \
1147 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1148 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1149 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1150 \
1151 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
1152 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1153 \
1154 /* Ensure we have enough space allocated for what we will push. */ \
1155 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1156 { \
1157 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1158 return failure_code; \
1159 \
1160 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1161 (fail_stack).size); \
1162 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1163 } \
1164 \
1165 /* Push the info, starting with the registers. */ \
1166 DEBUG_PRINT1 ("\n"); \
1167 \
1168 if (1) \
1169 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1170 this_reg++) \
1171 { \
1172 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
1173 DEBUG_STATEMENT (num_regs_pushed++); \
1174 \
1175 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1176 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1177 \
1178 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1179 PUSH_FAILURE_POINTER (regend[this_reg]); \
1180 \
1181 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
1182 DEBUG_PRINT2 (" match_null=%d", \
1183 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1184 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1185 DEBUG_PRINT2 (" matched_something=%d", \
1186 MATCHED_SOMETHING (reg_info[this_reg])); \
1187 DEBUG_PRINT2 (" ever_matched=%d", \
1188 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1189 DEBUG_PRINT1 ("\n"); \
1190 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1191 } \
1192 \
1193 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
1194 PUSH_FAILURE_INT (lowest_active_reg); \
1195 \
1196 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
1197 PUSH_FAILURE_INT (highest_active_reg); \
1198 \
1199 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
1200 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1201 PUSH_FAILURE_POINTER (pattern_place); \
1202 \
1203 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
1204 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1205 size2); \
1206 DEBUG_PRINT1 ("'\n"); \
1207 PUSH_FAILURE_POINTER (string_place); \
1208 \
1209 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1210 DEBUG_PUSH (failure_id); \
1211 } while (0)
1212
1213 /* This is the number of items that are pushed and popped on the stack
1214 for each register. */
1215 #define NUM_REG_ITEMS 3
1216
1217 /* Individual items aside from the registers. */
1218 #ifdef DEBUG
1219 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1220 #else
1221 #define NUM_NONREG_ITEMS 4
1222 #endif
1223
1224 /* We push at most this many items on the stack. */
1225 /* We used to use (num_regs - 1), which is the number of registers
1226 this regexp will save; but that was changed to 5
1227 to avoid stack overflow for a regexp with lots of parens. */
1228 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1229
1230 /* We actually push this many items. */
1231 #define NUM_FAILURE_ITEMS \
1232 (((0 \
1233 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1234 * NUM_REG_ITEMS) \
1235 + NUM_NONREG_ITEMS)
1236
1237 /* How many items can still be added to the stack without overflowing it. */
1238 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1239
1240
1241 /* Pops what PUSH_FAIL_STACK pushes.
1242
1243 We restore into the parameters, all of which should be lvalues:
1244 STR -- the saved data position.
1245 PAT -- the saved pattern position.
1246 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1247 REGSTART, REGEND -- arrays of string positions.
1248 REG_INFO -- array of information about each subexpression.
1249
1250 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1251 `pend', `string1', `size1', `string2', and `size2'. */
1252
1253 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1254 { \
1255 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
1256 int this_reg; \
1257 const unsigned char *string_temp; \
1258 \
1259 assert (!FAIL_STACK_EMPTY ()); \
1260 \
1261 /* Remove failure points and point to how many regs pushed. */ \
1262 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1263 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1264 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1265 \
1266 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1267 \
1268 DEBUG_POP (&failure_id); \
1269 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1270 \
1271 /* If the saved string location is NULL, it came from an \
1272 on_failure_keep_string_jump opcode, and we want to throw away the \
1273 saved NULL, thus retaining our current position in the string. */ \
1274 string_temp = POP_FAILURE_POINTER (); \
1275 if (string_temp != NULL) \
1276 str = (const char *) string_temp; \
1277 \
1278 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
1279 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1280 DEBUG_PRINT1 ("'\n"); \
1281 \
1282 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1283 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
1284 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1285 \
1286 /* Restore register info. */ \
1287 high_reg = (unsigned) POP_FAILURE_INT (); \
1288 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
1289 \
1290 low_reg = (unsigned) POP_FAILURE_INT (); \
1291 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
1292 \
1293 if (1) \
1294 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1295 { \
1296 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
1297 \
1298 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1299 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
1300 \
1301 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1302 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1303 \
1304 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1305 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1306 } \
1307 else \
1308 { \
1309 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1310 { \
1311 reg_info[this_reg].word.integer = 0; \
1312 regend[this_reg] = 0; \
1313 regstart[this_reg] = 0; \
1314 } \
1315 highest_active_reg = high_reg; \
1316 } \
1317 \
1318 set_regs_matched_done = 0; \
1319 DEBUG_STATEMENT (nfailure_points_popped++); \
1320 } /* POP_FAILURE_POINT */
1321
1322
1323 \f
1324 /* Structure for per-register (a.k.a. per-group) information.
1325 Other register information, such as the
1326 starting and ending positions (which are addresses), and the list of
1327 inner groups (which is a bits list) are maintained in separate
1328 variables.
1329
1330 We are making a (strictly speaking) nonportable assumption here: that
1331 the compiler will pack our bit fields into something that fits into
1332 the type of `word', i.e., is something that fits into one item on the
1333 failure stack. */
1334
1335 typedef union
1336 {
1337 fail_stack_elt_t word;
1338 struct
1339 {
1340 /* This field is one if this group can match the empty string,
1341 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1342 #define MATCH_NULL_UNSET_VALUE 3
1343 unsigned match_null_string_p : 2;
1344 unsigned is_active : 1;
1345 unsigned matched_something : 1;
1346 unsigned ever_matched_something : 1;
1347 } bits;
1348 } register_info_type;
1349
1350 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1351 #define IS_ACTIVE(R) ((R).bits.is_active)
1352 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1353 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1354
1355
1356 /* Call this when have matched a real character; it sets `matched' flags
1357 for the subexpressions which we are currently inside. Also records
1358 that those subexprs have matched. */
1359 #define SET_REGS_MATCHED() \
1360 do \
1361 { \
1362 if (!set_regs_matched_done) \
1363 { \
1364 unsigned r; \
1365 set_regs_matched_done = 1; \
1366 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1367 { \
1368 MATCHED_SOMETHING (reg_info[r]) \
1369 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1370 = 1; \
1371 } \
1372 } \
1373 } \
1374 while (0)
1375
1376 /* Registers are set to a sentinel when they haven't yet matched. */
1377 static char reg_unset_dummy;
1378 #define REG_UNSET_VALUE (&reg_unset_dummy)
1379 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1380 \f
1381 /* Subroutine declarations and macros for regex_compile. */
1382
1383 static void store_op1 (), store_op2 ();
1384 static void insert_op1 (), insert_op2 ();
1385 static boolean at_begline_loc_p (), at_endline_loc_p ();
1386 static boolean group_in_compile_stack ();
1387 static reg_errcode_t compile_range ();
1388
1389 /* Fetch the next character in the uncompiled pattern---translating it
1390 if necessary. Also cast from a signed character in the constant
1391 string passed to us by the user to an unsigned char that we can use
1392 as an array index (in, e.g., `translate'). */
1393 #ifndef PATFETCH
1394 #define PATFETCH(c) \
1395 do {if (p == pend) return REG_EEND; \
1396 c = (unsigned char) *p++; \
1397 if (translate) c = (unsigned char) translate[c]; \
1398 } while (0)
1399 #endif
1400
1401 /* Fetch the next character in the uncompiled pattern, with no
1402 translation. */
1403 #define PATFETCH_RAW(c) \
1404 do {if (p == pend) return REG_EEND; \
1405 c = (unsigned char) *p++; \
1406 } while (0)
1407
1408 /* Go backwards one character in the pattern. */
1409 #define PATUNFETCH p--
1410
1411
1412 /* If `translate' is non-null, return translate[D], else just D. We
1413 cast the subscript to translate because some data is declared as
1414 `char *', to avoid warnings when a string constant is passed. But
1415 when we use a character as a subscript we must make it unsigned. */
1416 #ifndef TRANSLATE
1417 #define TRANSLATE(d) \
1418 (translate ? (char) translate[(unsigned char) (d)] : (d))
1419 #endif
1420
1421
1422 /* Macros for outputting the compiled pattern into `buffer'. */
1423
1424 /* If the buffer isn't allocated when it comes in, use this. */
1425 #define INIT_BUF_SIZE 32
1426
1427 /* Make sure we have at least N more bytes of space in buffer. */
1428 #define GET_BUFFER_SPACE(n) \
1429 while (b - bufp->buffer + (n) > bufp->allocated) \
1430 EXTEND_BUFFER ()
1431
1432 /* Make sure we have one more byte of buffer space and then add C to it. */
1433 #define BUF_PUSH(c) \
1434 do { \
1435 GET_BUFFER_SPACE (1); \
1436 *b++ = (unsigned char) (c); \
1437 } while (0)
1438
1439
1440 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1441 #define BUF_PUSH_2(c1, c2) \
1442 do { \
1443 GET_BUFFER_SPACE (2); \
1444 *b++ = (unsigned char) (c1); \
1445 *b++ = (unsigned char) (c2); \
1446 } while (0)
1447
1448
1449 /* As with BUF_PUSH_2, except for three bytes. */
1450 #define BUF_PUSH_3(c1, c2, c3) \
1451 do { \
1452 GET_BUFFER_SPACE (3); \
1453 *b++ = (unsigned char) (c1); \
1454 *b++ = (unsigned char) (c2); \
1455 *b++ = (unsigned char) (c3); \
1456 } while (0)
1457
1458
1459 /* Store a jump with opcode OP at LOC to location TO. We store a
1460 relative address offset by the three bytes the jump itself occupies. */
1461 #define STORE_JUMP(op, loc, to) \
1462 store_op1 (op, loc, (to) - (loc) - 3)
1463
1464 /* Likewise, for a two-argument jump. */
1465 #define STORE_JUMP2(op, loc, to, arg) \
1466 store_op2 (op, loc, (to) - (loc) - 3, arg)
1467
1468 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1469 #define INSERT_JUMP(op, loc, to) \
1470 insert_op1 (op, loc, (to) - (loc) - 3, b)
1471
1472 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1473 #define INSERT_JUMP2(op, loc, to, arg) \
1474 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1475
1476
1477 /* This is not an arbitrary limit: the arguments which represent offsets
1478 into the pattern are two bytes long. So if 2^16 bytes turns out to
1479 be too small, many things would have to change. */
1480 #define MAX_BUF_SIZE (1L << 16)
1481
1482
1483 /* Extend the buffer by twice its current size via realloc and
1484 reset the pointers that pointed into the old block to point to the
1485 correct places in the new one. If extending the buffer results in it
1486 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1487 #define EXTEND_BUFFER() \
1488 do { \
1489 unsigned char *old_buffer = bufp->buffer; \
1490 if (bufp->allocated == MAX_BUF_SIZE) \
1491 return REG_ESIZE; \
1492 bufp->allocated <<= 1; \
1493 if (bufp->allocated > MAX_BUF_SIZE) \
1494 bufp->allocated = MAX_BUF_SIZE; \
1495 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1496 if (bufp->buffer == NULL) \
1497 return REG_ESPACE; \
1498 /* If the buffer moved, move all the pointers into it. */ \
1499 if (old_buffer != bufp->buffer) \
1500 { \
1501 b = (b - old_buffer) + bufp->buffer; \
1502 begalt = (begalt - old_buffer) + bufp->buffer; \
1503 if (fixup_alt_jump) \
1504 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1505 if (laststart) \
1506 laststart = (laststart - old_buffer) + bufp->buffer; \
1507 if (pending_exact) \
1508 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1509 } \
1510 } while (0)
1511
1512
1513 /* Since we have one byte reserved for the register number argument to
1514 {start,stop}_memory, the maximum number of groups we can report
1515 things about is what fits in that byte. */
1516 #define MAX_REGNUM 255
1517
1518 /* But patterns can have more than `MAX_REGNUM' registers. We just
1519 ignore the excess. */
1520 typedef unsigned regnum_t;
1521
1522
1523 /* Macros for the compile stack. */
1524
1525 /* Since offsets can go either forwards or backwards, this type needs to
1526 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1527 typedef int pattern_offset_t;
1528
1529 typedef struct
1530 {
1531 pattern_offset_t begalt_offset;
1532 pattern_offset_t fixup_alt_jump;
1533 pattern_offset_t inner_group_offset;
1534 pattern_offset_t laststart_offset;
1535 regnum_t regnum;
1536 } compile_stack_elt_t;
1537
1538
1539 typedef struct
1540 {
1541 compile_stack_elt_t *stack;
1542 unsigned size;
1543 unsigned avail; /* Offset of next open position. */
1544 } compile_stack_type;
1545
1546
1547 #define INIT_COMPILE_STACK_SIZE 32
1548
1549 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1550 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1551
1552 /* The next available element. */
1553 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1554
1555
1556 /* Set the bit for character C in a list. */
1557 #define SET_LIST_BIT(c) \
1558 (b[((unsigned char) (c)) / BYTEWIDTH] \
1559 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1560
1561
1562 /* Get the next unsigned number in the uncompiled pattern. */
1563 #define GET_UNSIGNED_NUMBER(num) \
1564 { if (p != pend) \
1565 { \
1566 PATFETCH (c); \
1567 while (ISDIGIT (c)) \
1568 { \
1569 if (num < 0) \
1570 num = 0; \
1571 num = num * 10 + c - '0'; \
1572 if (p == pend) \
1573 break; \
1574 PATFETCH (c); \
1575 } \
1576 } \
1577 }
1578
1579 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1580
1581 #define IS_CHAR_CLASS(string) \
1582 (STREQ (string, "alpha") || STREQ (string, "upper") \
1583 || STREQ (string, "lower") || STREQ (string, "digit") \
1584 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1585 || STREQ (string, "space") || STREQ (string, "print") \
1586 || STREQ (string, "punct") || STREQ (string, "graph") \
1587 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1588 \f
1589 #ifndef MATCH_MAY_ALLOCATE
1590
1591 /* If we cannot allocate large objects within re_match_2_internal,
1592 we make the fail stack and register vectors global.
1593 The fail stack, we grow to the maximum size when a regexp
1594 is compiled.
1595 The register vectors, we adjust in size each time we
1596 compile a regexp, according to the number of registers it needs. */
1597
1598 static fail_stack_type fail_stack;
1599
1600 /* Size with which the following vectors are currently allocated.
1601 That is so we can make them bigger as needed,
1602 but never make them smaller. */
1603 static int regs_allocated_size;
1604
1605 static const char ** regstart, ** regend;
1606 static const char ** old_regstart, ** old_regend;
1607 static const char **best_regstart, **best_regend;
1608 static register_info_type *reg_info;
1609 static const char **reg_dummy;
1610 static register_info_type *reg_info_dummy;
1611
1612 /* Make the register vectors big enough for NUM_REGS registers,
1613 but don't make them smaller. */
1614
1615 static
1616 regex_grow_registers (num_regs)
1617 int num_regs;
1618 {
1619 if (num_regs > regs_allocated_size)
1620 {
1621 RETALLOC_IF (regstart, num_regs, const char *);
1622 RETALLOC_IF (regend, num_regs, const char *);
1623 RETALLOC_IF (old_regstart, num_regs, const char *);
1624 RETALLOC_IF (old_regend, num_regs, const char *);
1625 RETALLOC_IF (best_regstart, num_regs, const char *);
1626 RETALLOC_IF (best_regend, num_regs, const char *);
1627 RETALLOC_IF (reg_info, num_regs, register_info_type);
1628 RETALLOC_IF (reg_dummy, num_regs, const char *);
1629 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1630
1631 regs_allocated_size = num_regs;
1632 }
1633 }
1634
1635 #endif /* not MATCH_MAY_ALLOCATE */
1636 \f
1637 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1638 Returns one of error codes defined in `regex.h', or zero for success.
1639
1640 Assumes the `allocated' (and perhaps `buffer') and `translate'
1641 fields are set in BUFP on entry.
1642
1643 If it succeeds, results are put in BUFP (if it returns an error, the
1644 contents of BUFP are undefined):
1645 `buffer' is the compiled pattern;
1646 `syntax' is set to SYNTAX;
1647 `used' is set to the length of the compiled pattern;
1648 `fastmap_accurate' is zero;
1649 `re_nsub' is the number of subexpressions in PATTERN;
1650 `not_bol' and `not_eol' are zero;
1651
1652 The `fastmap' and `newline_anchor' fields are neither
1653 examined nor set. */
1654
1655 /* Return, freeing storage we allocated. */
1656 #define FREE_STACK_RETURN(value) \
1657 return (free (compile_stack.stack), value)
1658
1659 static reg_errcode_t
1660 regex_compile (pattern, size, syntax, bufp)
1661 const char *pattern;
1662 int size;
1663 reg_syntax_t syntax;
1664 struct re_pattern_buffer *bufp;
1665 {
1666 /* We fetch characters from PATTERN here. Even though PATTERN is
1667 `char *' (i.e., signed), we declare these variables as unsigned, so
1668 they can be reliably used as array indices. */
1669 register unsigned char c, c1;
1670
1671 /* A random temporary spot in PATTERN. */
1672 const char *p1;
1673
1674 /* Points to the end of the buffer, where we should append. */
1675 register unsigned char *b;
1676
1677 /* Keeps track of unclosed groups. */
1678 compile_stack_type compile_stack;
1679
1680 /* Points to the current (ending) position in the pattern. */
1681 const char *p = pattern;
1682 const char *pend = pattern + size;
1683
1684 /* How to translate the characters in the pattern. */
1685 RE_TRANSLATE_TYPE translate = bufp->translate;
1686
1687 /* Address of the count-byte of the most recently inserted `exactn'
1688 command. This makes it possible to tell if a new exact-match
1689 character can be added to that command or if the character requires
1690 a new `exactn' command. */
1691 unsigned char *pending_exact = 0;
1692
1693 /* Address of start of the most recently finished expression.
1694 This tells, e.g., postfix * where to find the start of its
1695 operand. Reset at the beginning of groups and alternatives. */
1696 unsigned char *laststart = 0;
1697
1698 /* Address of beginning of regexp, or inside of last group. */
1699 unsigned char *begalt;
1700
1701 /* Place in the uncompiled pattern (i.e., the {) to
1702 which to go back if the interval is invalid. */
1703 const char *beg_interval;
1704
1705 /* Address of the place where a forward jump should go to the end of
1706 the containing expression. Each alternative of an `or' -- except the
1707 last -- ends with a forward jump of this sort. */
1708 unsigned char *fixup_alt_jump = 0;
1709
1710 /* Counts open-groups as they are encountered. Remembered for the
1711 matching close-group on the compile stack, so the same register
1712 number is put in the stop_memory as the start_memory. */
1713 regnum_t regnum = 0;
1714
1715 #ifdef DEBUG
1716 DEBUG_PRINT1 ("\nCompiling pattern: ");
1717 if (debug)
1718 {
1719 unsigned debug_count;
1720
1721 for (debug_count = 0; debug_count < size; debug_count++)
1722 putchar (pattern[debug_count]);
1723 putchar ('\n');
1724 }
1725 #endif /* DEBUG */
1726
1727 /* Initialize the compile stack. */
1728 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1729 if (compile_stack.stack == NULL)
1730 return REG_ESPACE;
1731
1732 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1733 compile_stack.avail = 0;
1734
1735 /* Initialize the pattern buffer. */
1736 bufp->syntax = syntax;
1737 bufp->fastmap_accurate = 0;
1738 bufp->not_bol = bufp->not_eol = 0;
1739
1740 /* Set `used' to zero, so that if we return an error, the pattern
1741 printer (for debugging) will think there's no pattern. We reset it
1742 at the end. */
1743 bufp->used = 0;
1744
1745 /* Always count groups, whether or not bufp->no_sub is set. */
1746 bufp->re_nsub = 0;
1747
1748 #if !defined (emacs) && !defined (SYNTAX_TABLE)
1749 /* Initialize the syntax table. */
1750 init_syntax_once ();
1751 #endif
1752
1753 if (bufp->allocated == 0)
1754 {
1755 if (bufp->buffer)
1756 { /* If zero allocated, but buffer is non-null, try to realloc
1757 enough space. This loses if buffer's address is bogus, but
1758 that is the user's responsibility. */
1759 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1760 }
1761 else
1762 { /* Caller did not allocate a buffer. Do it for them. */
1763 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1764 }
1765 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1766
1767 bufp->allocated = INIT_BUF_SIZE;
1768 }
1769
1770 begalt = b = bufp->buffer;
1771
1772 /* Loop through the uncompiled pattern until we're at the end. */
1773 while (p != pend)
1774 {
1775 PATFETCH (c);
1776
1777 switch (c)
1778 {
1779 case '^':
1780 {
1781 if ( /* If at start of pattern, it's an operator. */
1782 p == pattern + 1
1783 /* If context independent, it's an operator. */
1784 || syntax & RE_CONTEXT_INDEP_ANCHORS
1785 /* Otherwise, depends on what's come before. */
1786 || at_begline_loc_p (pattern, p, syntax))
1787 BUF_PUSH (begline);
1788 else
1789 goto normal_char;
1790 }
1791 break;
1792
1793
1794 case '$':
1795 {
1796 if ( /* If at end of pattern, it's an operator. */
1797 p == pend
1798 /* If context independent, it's an operator. */
1799 || syntax & RE_CONTEXT_INDEP_ANCHORS
1800 /* Otherwise, depends on what's next. */
1801 || at_endline_loc_p (p, pend, syntax))
1802 BUF_PUSH (endline);
1803 else
1804 goto normal_char;
1805 }
1806 break;
1807
1808
1809 case '+':
1810 case '?':
1811 if ((syntax & RE_BK_PLUS_QM)
1812 || (syntax & RE_LIMITED_OPS))
1813 goto normal_char;
1814 handle_plus:
1815 case '*':
1816 /* If there is no previous pattern... */
1817 if (!laststart)
1818 {
1819 if (syntax & RE_CONTEXT_INVALID_OPS)
1820 FREE_STACK_RETURN (REG_BADRPT);
1821 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1822 goto normal_char;
1823 }
1824
1825 {
1826 /* Are we optimizing this jump? */
1827 boolean keep_string_p = false;
1828
1829 /* 1 means zero (many) matches is allowed. */
1830 char zero_times_ok = 0, many_times_ok = 0;
1831
1832 /* If there is a sequence of repetition chars, collapse it
1833 down to just one (the right one). We can't combine
1834 interval operators with these because of, e.g., `a{2}*',
1835 which should only match an even number of `a's. */
1836
1837 for (;;)
1838 {
1839 zero_times_ok |= c != '+';
1840 many_times_ok |= c != '?';
1841
1842 if (p == pend)
1843 break;
1844
1845 PATFETCH (c);
1846
1847 if (c == '*'
1848 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1849 ;
1850
1851 else if (syntax & RE_BK_PLUS_QM && c == '\\')
1852 {
1853 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
1854
1855 PATFETCH (c1);
1856 if (!(c1 == '+' || c1 == '?'))
1857 {
1858 PATUNFETCH;
1859 PATUNFETCH;
1860 break;
1861 }
1862
1863 c = c1;
1864 }
1865 else
1866 {
1867 PATUNFETCH;
1868 break;
1869 }
1870
1871 /* If we get here, we found another repeat character. */
1872 }
1873
1874 /* Star, etc. applied to an empty pattern is equivalent
1875 to an empty pattern. */
1876 if (!laststart)
1877 break;
1878
1879 /* Now we know whether or not zero matches is allowed
1880 and also whether or not two or more matches is allowed. */
1881 if (many_times_ok)
1882 { /* More than one repetition is allowed, so put in at the
1883 end a backward relative jump from `b' to before the next
1884 jump we're going to put in below (which jumps from
1885 laststart to after this jump).
1886
1887 But if we are at the `*' in the exact sequence `.*\n',
1888 insert an unconditional jump backwards to the .,
1889 instead of the beginning of the loop. This way we only
1890 push a failure point once, instead of every time
1891 through the loop. */
1892 assert (p - 1 > pattern);
1893
1894 /* Allocate the space for the jump. */
1895 GET_BUFFER_SPACE (3);
1896
1897 /* We know we are not at the first character of the pattern,
1898 because laststart was nonzero. And we've already
1899 incremented `p', by the way, to be the character after
1900 the `*'. Do we have to do something analogous here
1901 for null bytes, because of RE_DOT_NOT_NULL? */
1902 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
1903 && zero_times_ok
1904 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
1905 && !(syntax & RE_DOT_NEWLINE))
1906 { /* We have .*\n. */
1907 STORE_JUMP (jump, b, laststart);
1908 keep_string_p = true;
1909 }
1910 else
1911 /* Anything else. */
1912 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
1913
1914 /* We've added more stuff to the buffer. */
1915 b += 3;
1916 }
1917
1918 /* On failure, jump from laststart to b + 3, which will be the
1919 end of the buffer after this jump is inserted. */
1920 GET_BUFFER_SPACE (3);
1921 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
1922 : on_failure_jump,
1923 laststart, b + 3);
1924 pending_exact = 0;
1925 b += 3;
1926
1927 if (!zero_times_ok)
1928 {
1929 /* At least one repetition is required, so insert a
1930 `dummy_failure_jump' before the initial
1931 `on_failure_jump' instruction of the loop. This
1932 effects a skip over that instruction the first time
1933 we hit that loop. */
1934 GET_BUFFER_SPACE (3);
1935 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
1936 b += 3;
1937 }
1938 }
1939 break;
1940
1941
1942 case '.':
1943 laststart = b;
1944 BUF_PUSH (anychar);
1945 break;
1946
1947
1948 case '[':
1949 {
1950 boolean had_char_class = false;
1951
1952 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
1953
1954 /* Ensure that we have enough space to push a charset: the
1955 opcode, the length count, and the bitset; 34 bytes in all. */
1956 GET_BUFFER_SPACE (34);
1957
1958 laststart = b;
1959
1960 /* We test `*p == '^' twice, instead of using an if
1961 statement, so we only need one BUF_PUSH. */
1962 BUF_PUSH (*p == '^' ? charset_not : charset);
1963 if (*p == '^')
1964 p++;
1965
1966 /* Remember the first position in the bracket expression. */
1967 p1 = p;
1968
1969 /* Push the number of bytes in the bitmap. */
1970 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
1971
1972 /* Clear the whole map. */
1973 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
1974
1975 /* charset_not matches newline according to a syntax bit. */
1976 if ((re_opcode_t) b[-2] == charset_not
1977 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
1978 SET_LIST_BIT ('\n');
1979
1980 /* Read in characters and ranges, setting map bits. */
1981 for (;;)
1982 {
1983 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
1984
1985 PATFETCH (c);
1986
1987 /* \ might escape characters inside [...] and [^...]. */
1988 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
1989 {
1990 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
1991
1992 PATFETCH (c1);
1993 SET_LIST_BIT (c1);
1994 continue;
1995 }
1996
1997 /* Could be the end of the bracket expression. If it's
1998 not (i.e., when the bracket expression is `[]' so
1999 far), the ']' character bit gets set way below. */
2000 if (c == ']' && p != p1 + 1)
2001 break;
2002
2003 /* Look ahead to see if it's a range when the last thing
2004 was a character class. */
2005 if (had_char_class && c == '-' && *p != ']')
2006 FREE_STACK_RETURN (REG_ERANGE);
2007
2008 /* Look ahead to see if it's a range when the last thing
2009 was a character: if this is a hyphen not at the
2010 beginning or the end of a list, then it's the range
2011 operator. */
2012 if (c == '-'
2013 && !(p - 2 >= pattern && p[-2] == '[')
2014 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2015 && *p != ']')
2016 {
2017 reg_errcode_t ret
2018 = compile_range (&p, pend, translate, syntax, b);
2019 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2020 }
2021
2022 else if (p[0] == '-' && p[1] != ']')
2023 { /* This handles ranges made up of characters only. */
2024 reg_errcode_t ret;
2025
2026 /* Move past the `-'. */
2027 PATFETCH (c1);
2028
2029 ret = compile_range (&p, pend, translate, syntax, b);
2030 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2031 }
2032
2033 /* See if we're at the beginning of a possible character
2034 class. */
2035
2036 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2037 { /* Leave room for the null. */
2038 char str[CHAR_CLASS_MAX_LENGTH + 1];
2039
2040 PATFETCH (c);
2041 c1 = 0;
2042
2043 /* If pattern is `[[:'. */
2044 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2045
2046 for (;;)
2047 {
2048 PATFETCH (c);
2049 if (c == ':' || c == ']' || p == pend
2050 || c1 == CHAR_CLASS_MAX_LENGTH)
2051 break;
2052 str[c1++] = c;
2053 }
2054 str[c1] = '\0';
2055
2056 /* If isn't a word bracketed by `[:' and:`]':
2057 undo the ending character, the letters, and leave
2058 the leading `:' and `[' (but set bits for them). */
2059 if (c == ':' && *p == ']')
2060 {
2061 int ch;
2062 boolean is_alnum = STREQ (str, "alnum");
2063 boolean is_alpha = STREQ (str, "alpha");
2064 boolean is_blank = STREQ (str, "blank");
2065 boolean is_cntrl = STREQ (str, "cntrl");
2066 boolean is_digit = STREQ (str, "digit");
2067 boolean is_graph = STREQ (str, "graph");
2068 boolean is_lower = STREQ (str, "lower");
2069 boolean is_print = STREQ (str, "print");
2070 boolean is_punct = STREQ (str, "punct");
2071 boolean is_space = STREQ (str, "space");
2072 boolean is_upper = STREQ (str, "upper");
2073 boolean is_xdigit = STREQ (str, "xdigit");
2074
2075 if (!IS_CHAR_CLASS (str))
2076 FREE_STACK_RETURN (REG_ECTYPE);
2077
2078 /* Throw away the ] at the end of the character
2079 class. */
2080 PATFETCH (c);
2081
2082 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2083
2084 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2085 {
2086 int translated = TRANSLATE (ch);
2087 /* This was split into 3 if's to
2088 avoid an arbitrary limit in some compiler. */
2089 if ( (is_alnum && ISALNUM (ch))
2090 || (is_alpha && ISALPHA (ch))
2091 || (is_blank && ISBLANK (ch))
2092 || (is_cntrl && ISCNTRL (ch)))
2093 SET_LIST_BIT (translated);
2094 if ( (is_digit && ISDIGIT (ch))
2095 || (is_graph && ISGRAPH (ch))
2096 || (is_lower && ISLOWER (ch))
2097 || (is_print && ISPRINT (ch)))
2098 SET_LIST_BIT (translated);
2099 if ( (is_punct && ISPUNCT (ch))
2100 || (is_space && ISSPACE (ch))
2101 || (is_upper && ISUPPER (ch))
2102 || (is_xdigit && ISXDIGIT (ch)))
2103 SET_LIST_BIT (translated);
2104 }
2105 had_char_class = true;
2106 }
2107 else
2108 {
2109 c1++;
2110 while (c1--)
2111 PATUNFETCH;
2112 SET_LIST_BIT ('[');
2113 SET_LIST_BIT (':');
2114 had_char_class = false;
2115 }
2116 }
2117 else
2118 {
2119 had_char_class = false;
2120 SET_LIST_BIT (c);
2121 }
2122 }
2123
2124 /* Discard any (non)matching list bytes that are all 0 at the
2125 end of the map. Decrease the map-length byte too. */
2126 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2127 b[-1]--;
2128 b += b[-1];
2129 }
2130 break;
2131
2132
2133 case '(':
2134 if (syntax & RE_NO_BK_PARENS)
2135 goto handle_open;
2136 else
2137 goto normal_char;
2138
2139
2140 case ')':
2141 if (syntax & RE_NO_BK_PARENS)
2142 goto handle_close;
2143 else
2144 goto normal_char;
2145
2146
2147 case '\n':
2148 if (syntax & RE_NEWLINE_ALT)
2149 goto handle_alt;
2150 else
2151 goto normal_char;
2152
2153
2154 case '|':
2155 if (syntax & RE_NO_BK_VBAR)
2156 goto handle_alt;
2157 else
2158 goto normal_char;
2159
2160
2161 case '{':
2162 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2163 goto handle_interval;
2164 else
2165 goto normal_char;
2166
2167
2168 case '\\':
2169 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2170
2171 /* Do not translate the character after the \, so that we can
2172 distinguish, e.g., \B from \b, even if we normally would
2173 translate, e.g., B to b. */
2174 PATFETCH_RAW (c);
2175
2176 switch (c)
2177 {
2178 case '(':
2179 if (syntax & RE_NO_BK_PARENS)
2180 goto normal_backslash;
2181
2182 handle_open:
2183 bufp->re_nsub++;
2184 regnum++;
2185
2186 if (COMPILE_STACK_FULL)
2187 {
2188 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2189 compile_stack_elt_t);
2190 if (compile_stack.stack == NULL) return REG_ESPACE;
2191
2192 compile_stack.size <<= 1;
2193 }
2194
2195 /* These are the values to restore when we hit end of this
2196 group. They are all relative offsets, so that if the
2197 whole pattern moves because of realloc, they will still
2198 be valid. */
2199 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2200 COMPILE_STACK_TOP.fixup_alt_jump
2201 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2202 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2203 COMPILE_STACK_TOP.regnum = regnum;
2204
2205 /* We will eventually replace the 0 with the number of
2206 groups inner to this one. But do not push a
2207 start_memory for groups beyond the last one we can
2208 represent in the compiled pattern. */
2209 if (regnum <= MAX_REGNUM)
2210 {
2211 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2212 BUF_PUSH_3 (start_memory, regnum, 0);
2213 }
2214
2215 compile_stack.avail++;
2216
2217 fixup_alt_jump = 0;
2218 laststart = 0;
2219 begalt = b;
2220 /* If we've reached MAX_REGNUM groups, then this open
2221 won't actually generate any code, so we'll have to
2222 clear pending_exact explicitly. */
2223 pending_exact = 0;
2224 break;
2225
2226
2227 case ')':
2228 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2229
2230 if (COMPILE_STACK_EMPTY)
2231 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2232 goto normal_backslash;
2233 else
2234 FREE_STACK_RETURN (REG_ERPAREN);
2235
2236 handle_close:
2237 if (fixup_alt_jump)
2238 { /* Push a dummy failure point at the end of the
2239 alternative for a possible future
2240 `pop_failure_jump' to pop. See comments at
2241 `push_dummy_failure' in `re_match_2'. */
2242 BUF_PUSH (push_dummy_failure);
2243
2244 /* We allocated space for this jump when we assigned
2245 to `fixup_alt_jump', in the `handle_alt' case below. */
2246 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2247 }
2248
2249 /* See similar code for backslashed left paren above. */
2250 if (COMPILE_STACK_EMPTY)
2251 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2252 goto normal_char;
2253 else
2254 FREE_STACK_RETURN (REG_ERPAREN);
2255
2256 /* Since we just checked for an empty stack above, this
2257 ``can't happen''. */
2258 assert (compile_stack.avail != 0);
2259 {
2260 /* We don't just want to restore into `regnum', because
2261 later groups should continue to be numbered higher,
2262 as in `(ab)c(de)' -- the second group is #2. */
2263 regnum_t this_group_regnum;
2264
2265 compile_stack.avail--;
2266 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2267 fixup_alt_jump
2268 = COMPILE_STACK_TOP.fixup_alt_jump
2269 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2270 : 0;
2271 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2272 this_group_regnum = COMPILE_STACK_TOP.regnum;
2273 /* If we've reached MAX_REGNUM groups, then this open
2274 won't actually generate any code, so we'll have to
2275 clear pending_exact explicitly. */
2276 pending_exact = 0;
2277
2278 /* We're at the end of the group, so now we know how many
2279 groups were inside this one. */
2280 if (this_group_regnum <= MAX_REGNUM)
2281 {
2282 unsigned char *inner_group_loc
2283 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2284
2285 *inner_group_loc = regnum - this_group_regnum;
2286 BUF_PUSH_3 (stop_memory, this_group_regnum,
2287 regnum - this_group_regnum);
2288 }
2289 }
2290 break;
2291
2292
2293 case '|': /* `\|'. */
2294 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2295 goto normal_backslash;
2296 handle_alt:
2297 if (syntax & RE_LIMITED_OPS)
2298 goto normal_char;
2299
2300 /* Insert before the previous alternative a jump which
2301 jumps to this alternative if the former fails. */
2302 GET_BUFFER_SPACE (3);
2303 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2304 pending_exact = 0;
2305 b += 3;
2306
2307 /* The alternative before this one has a jump after it
2308 which gets executed if it gets matched. Adjust that
2309 jump so it will jump to this alternative's analogous
2310 jump (put in below, which in turn will jump to the next
2311 (if any) alternative's such jump, etc.). The last such
2312 jump jumps to the correct final destination. A picture:
2313 _____ _____
2314 | | | |
2315 | v | v
2316 a | b | c
2317
2318 If we are at `b', then fixup_alt_jump right now points to a
2319 three-byte space after `a'. We'll put in the jump, set
2320 fixup_alt_jump to right after `b', and leave behind three
2321 bytes which we'll fill in when we get to after `c'. */
2322
2323 if (fixup_alt_jump)
2324 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2325
2326 /* Mark and leave space for a jump after this alternative,
2327 to be filled in later either by next alternative or
2328 when know we're at the end of a series of alternatives. */
2329 fixup_alt_jump = b;
2330 GET_BUFFER_SPACE (3);
2331 b += 3;
2332
2333 laststart = 0;
2334 begalt = b;
2335 break;
2336
2337
2338 case '{':
2339 /* If \{ is a literal. */
2340 if (!(syntax & RE_INTERVALS)
2341 /* If we're at `\{' and it's not the open-interval
2342 operator. */
2343 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2344 || (p - 2 == pattern && p == pend))
2345 goto normal_backslash;
2346
2347 handle_interval:
2348 {
2349 /* If got here, then the syntax allows intervals. */
2350
2351 /* At least (most) this many matches must be made. */
2352 int lower_bound = -1, upper_bound = -1;
2353
2354 beg_interval = p - 1;
2355
2356 if (p == pend)
2357 {
2358 if (syntax & RE_NO_BK_BRACES)
2359 goto unfetch_interval;
2360 else
2361 FREE_STACK_RETURN (REG_EBRACE);
2362 }
2363
2364 GET_UNSIGNED_NUMBER (lower_bound);
2365
2366 if (c == ',')
2367 {
2368 GET_UNSIGNED_NUMBER (upper_bound);
2369 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2370 }
2371 else
2372 /* Interval such as `{1}' => match exactly once. */
2373 upper_bound = lower_bound;
2374
2375 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2376 || lower_bound > upper_bound)
2377 {
2378 if (syntax & RE_NO_BK_BRACES)
2379 goto unfetch_interval;
2380 else
2381 FREE_STACK_RETURN (REG_BADBR);
2382 }
2383
2384 if (!(syntax & RE_NO_BK_BRACES))
2385 {
2386 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2387
2388 PATFETCH (c);
2389 }
2390
2391 if (c != '}')
2392 {
2393 if (syntax & RE_NO_BK_BRACES)
2394 goto unfetch_interval;
2395 else
2396 FREE_STACK_RETURN (REG_BADBR);
2397 }
2398
2399 /* We just parsed a valid interval. */
2400
2401 /* If it's invalid to have no preceding re. */
2402 if (!laststart)
2403 {
2404 if (syntax & RE_CONTEXT_INVALID_OPS)
2405 FREE_STACK_RETURN (REG_BADRPT);
2406 else if (syntax & RE_CONTEXT_INDEP_OPS)
2407 laststart = b;
2408 else
2409 goto unfetch_interval;
2410 }
2411
2412 /* If the upper bound is zero, don't want to succeed at
2413 all; jump from `laststart' to `b + 3', which will be
2414 the end of the buffer after we insert the jump. */
2415 if (upper_bound == 0)
2416 {
2417 GET_BUFFER_SPACE (3);
2418 INSERT_JUMP (jump, laststart, b + 3);
2419 b += 3;
2420 }
2421
2422 /* Otherwise, we have a nontrivial interval. When
2423 we're all done, the pattern will look like:
2424 set_number_at <jump count> <upper bound>
2425 set_number_at <succeed_n count> <lower bound>
2426 succeed_n <after jump addr> <succeed_n count>
2427 <body of loop>
2428 jump_n <succeed_n addr> <jump count>
2429 (The upper bound and `jump_n' are omitted if
2430 `upper_bound' is 1, though.) */
2431 else
2432 { /* If the upper bound is > 1, we need to insert
2433 more at the end of the loop. */
2434 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2435
2436 GET_BUFFER_SPACE (nbytes);
2437
2438 /* Initialize lower bound of the `succeed_n', even
2439 though it will be set during matching by its
2440 attendant `set_number_at' (inserted next),
2441 because `re_compile_fastmap' needs to know.
2442 Jump to the `jump_n' we might insert below. */
2443 INSERT_JUMP2 (succeed_n, laststart,
2444 b + 5 + (upper_bound > 1) * 5,
2445 lower_bound);
2446 b += 5;
2447
2448 /* Code to initialize the lower bound. Insert
2449 before the `succeed_n'. The `5' is the last two
2450 bytes of this `set_number_at', plus 3 bytes of
2451 the following `succeed_n'. */
2452 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2453 b += 5;
2454
2455 if (upper_bound > 1)
2456 { /* More than one repetition is allowed, so
2457 append a backward jump to the `succeed_n'
2458 that starts this interval.
2459
2460 When we've reached this during matching,
2461 we'll have matched the interval once, so
2462 jump back only `upper_bound - 1' times. */
2463 STORE_JUMP2 (jump_n, b, laststart + 5,
2464 upper_bound - 1);
2465 b += 5;
2466
2467 /* The location we want to set is the second
2468 parameter of the `jump_n'; that is `b-2' as
2469 an absolute address. `laststart' will be
2470 the `set_number_at' we're about to insert;
2471 `laststart+3' the number to set, the source
2472 for the relative address. But we are
2473 inserting into the middle of the pattern --
2474 so everything is getting moved up by 5.
2475 Conclusion: (b - 2) - (laststart + 3) + 5,
2476 i.e., b - laststart.
2477
2478 We insert this at the beginning of the loop
2479 so that if we fail during matching, we'll
2480 reinitialize the bounds. */
2481 insert_op2 (set_number_at, laststart, b - laststart,
2482 upper_bound - 1, b);
2483 b += 5;
2484 }
2485 }
2486 pending_exact = 0;
2487 beg_interval = NULL;
2488 }
2489 break;
2490
2491 unfetch_interval:
2492 /* If an invalid interval, match the characters as literals. */
2493 assert (beg_interval);
2494 p = beg_interval;
2495 beg_interval = NULL;
2496
2497 /* normal_char and normal_backslash need `c'. */
2498 PATFETCH (c);
2499
2500 if (!(syntax & RE_NO_BK_BRACES))
2501 {
2502 if (p > pattern && p[-1] == '\\')
2503 goto normal_backslash;
2504 }
2505 goto normal_char;
2506
2507 #ifdef emacs
2508 /* There is no way to specify the before_dot and after_dot
2509 operators. rms says this is ok. --karl */
2510 case '=':
2511 BUF_PUSH (at_dot);
2512 break;
2513
2514 case 's':
2515 laststart = b;
2516 PATFETCH (c);
2517 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2518 break;
2519
2520 case 'S':
2521 laststart = b;
2522 PATFETCH (c);
2523 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2524 break;
2525 #endif /* emacs */
2526
2527
2528 case 'w':
2529 laststart = b;
2530 BUF_PUSH (wordchar);
2531 break;
2532
2533
2534 case 'W':
2535 laststart = b;
2536 BUF_PUSH (notwordchar);
2537 break;
2538
2539
2540 case '<':
2541 BUF_PUSH (wordbeg);
2542 break;
2543
2544 case '>':
2545 BUF_PUSH (wordend);
2546 break;
2547
2548 case 'b':
2549 BUF_PUSH (wordbound);
2550 break;
2551
2552 case 'B':
2553 BUF_PUSH (notwordbound);
2554 break;
2555
2556 case '`':
2557 BUF_PUSH (begbuf);
2558 break;
2559
2560 case '\'':
2561 BUF_PUSH (endbuf);
2562 break;
2563
2564 case '1': case '2': case '3': case '4': case '5':
2565 case '6': case '7': case '8': case '9':
2566 if (syntax & RE_NO_BK_REFS)
2567 goto normal_char;
2568
2569 c1 = c - '0';
2570
2571 if (c1 > regnum)
2572 FREE_STACK_RETURN (REG_ESUBREG);
2573
2574 /* Can't back reference to a subexpression if inside of it. */
2575 if (group_in_compile_stack (compile_stack, c1))
2576 goto normal_char;
2577
2578 laststart = b;
2579 BUF_PUSH_2 (duplicate, c1);
2580 break;
2581
2582
2583 case '+':
2584 case '?':
2585 if (syntax & RE_BK_PLUS_QM)
2586 goto handle_plus;
2587 else
2588 goto normal_backslash;
2589
2590 default:
2591 normal_backslash:
2592 /* You might think it would be useful for \ to mean
2593 not to translate; but if we don't translate it
2594 it will never match anything. */
2595 c = TRANSLATE (c);
2596 goto normal_char;
2597 }
2598 break;
2599
2600
2601 default:
2602 /* Expects the character in `c'. */
2603 normal_char:
2604 /* If no exactn currently being built. */
2605 if (!pending_exact
2606
2607 /* If last exactn not at current position. */
2608 || pending_exact + *pending_exact + 1 != b
2609
2610 /* We have only one byte following the exactn for the count. */
2611 || *pending_exact == (1 << BYTEWIDTH) - 1
2612
2613 /* If followed by a repetition operator. */
2614 || *p == '*' || *p == '^'
2615 || ((syntax & RE_BK_PLUS_QM)
2616 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2617 : (*p == '+' || *p == '?'))
2618 || ((syntax & RE_INTERVALS)
2619 && ((syntax & RE_NO_BK_BRACES)
2620 ? *p == '{'
2621 : (p[0] == '\\' && p[1] == '{'))))
2622 {
2623 /* Start building a new exactn. */
2624
2625 laststart = b;
2626
2627 BUF_PUSH_2 (exactn, 0);
2628 pending_exact = b - 1;
2629 }
2630
2631 BUF_PUSH (c);
2632 (*pending_exact)++;
2633 break;
2634 } /* switch (c) */
2635 } /* while p != pend */
2636
2637
2638 /* Through the pattern now. */
2639
2640 if (fixup_alt_jump)
2641 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2642
2643 if (!COMPILE_STACK_EMPTY)
2644 FREE_STACK_RETURN (REG_EPAREN);
2645
2646 /* If we don't want backtracking, force success
2647 the first time we reach the end of the compiled pattern. */
2648 if (syntax & RE_NO_POSIX_BACKTRACKING)
2649 BUF_PUSH (succeed);
2650
2651 free (compile_stack.stack);
2652
2653 /* We have succeeded; set the length of the buffer. */
2654 bufp->used = b - bufp->buffer;
2655
2656 #ifdef DEBUG
2657 if (debug)
2658 {
2659 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2660 print_compiled_pattern (bufp);
2661 }
2662 #endif /* DEBUG */
2663
2664 #ifndef MATCH_MAY_ALLOCATE
2665 /* Initialize the failure stack to the largest possible stack. This
2666 isn't necessary unless we're trying to avoid calling alloca in
2667 the search and match routines. */
2668 {
2669 int num_regs = bufp->re_nsub + 1;
2670
2671 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2672 is strictly greater than re_max_failures, the largest possible stack
2673 is 2 * re_max_failures failure points. */
2674 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2675 {
2676 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2677
2678 #ifdef emacs
2679 if (! fail_stack.stack)
2680 fail_stack.stack
2681 = (fail_stack_elt_t *) xmalloc (fail_stack.size
2682 * sizeof (fail_stack_elt_t));
2683 else
2684 fail_stack.stack
2685 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2686 (fail_stack.size
2687 * sizeof (fail_stack_elt_t)));
2688 #else /* not emacs */
2689 if (! fail_stack.stack)
2690 fail_stack.stack
2691 = (fail_stack_elt_t *) malloc (fail_stack.size
2692 * sizeof (fail_stack_elt_t));
2693 else
2694 fail_stack.stack
2695 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2696 (fail_stack.size
2697 * sizeof (fail_stack_elt_t)));
2698 #endif /* not emacs */
2699 }
2700
2701 regex_grow_registers (num_regs);
2702 }
2703 #endif /* not MATCH_MAY_ALLOCATE */
2704
2705 return REG_NOERROR;
2706 } /* regex_compile */
2707 \f
2708 /* Subroutines for `regex_compile'. */
2709
2710 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2711
2712 static void
2713 store_op1 (op, loc, arg)
2714 re_opcode_t op;
2715 unsigned char *loc;
2716 int arg;
2717 {
2718 *loc = (unsigned char) op;
2719 STORE_NUMBER (loc + 1, arg);
2720 }
2721
2722
2723 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2724
2725 static void
2726 store_op2 (op, loc, arg1, arg2)
2727 re_opcode_t op;
2728 unsigned char *loc;
2729 int arg1, arg2;
2730 {
2731 *loc = (unsigned char) op;
2732 STORE_NUMBER (loc + 1, arg1);
2733 STORE_NUMBER (loc + 3, arg2);
2734 }
2735
2736
2737 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2738 for OP followed by two-byte integer parameter ARG. */
2739
2740 static void
2741 insert_op1 (op, loc, arg, end)
2742 re_opcode_t op;
2743 unsigned char *loc;
2744 int arg;
2745 unsigned char *end;
2746 {
2747 register unsigned char *pfrom = end;
2748 register unsigned char *pto = end + 3;
2749
2750 while (pfrom != loc)
2751 *--pto = *--pfrom;
2752
2753 store_op1 (op, loc, arg);
2754 }
2755
2756
2757 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2758
2759 static void
2760 insert_op2 (op, loc, arg1, arg2, end)
2761 re_opcode_t op;
2762 unsigned char *loc;
2763 int arg1, arg2;
2764 unsigned char *end;
2765 {
2766 register unsigned char *pfrom = end;
2767 register unsigned char *pto = end + 5;
2768
2769 while (pfrom != loc)
2770 *--pto = *--pfrom;
2771
2772 store_op2 (op, loc, arg1, arg2);
2773 }
2774
2775
2776 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2777 after an alternative or a begin-subexpression. We assume there is at
2778 least one character before the ^. */
2779
2780 static boolean
2781 at_begline_loc_p (pattern, p, syntax)
2782 const char *pattern, *p;
2783 reg_syntax_t syntax;
2784 {
2785 const char *prev = p - 2;
2786 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2787
2788 return
2789 /* After a subexpression? */
2790 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2791 /* After an alternative? */
2792 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2793 }
2794
2795
2796 /* The dual of at_begline_loc_p. This one is for $. We assume there is
2797 at least one character after the $, i.e., `P < PEND'. */
2798
2799 static boolean
2800 at_endline_loc_p (p, pend, syntax)
2801 const char *p, *pend;
2802 int syntax;
2803 {
2804 const char *next = p;
2805 boolean next_backslash = *next == '\\';
2806 const char *next_next = p + 1 < pend ? p + 1 : 0;
2807
2808 return
2809 /* Before a subexpression? */
2810 (syntax & RE_NO_BK_PARENS ? *next == ')'
2811 : next_backslash && next_next && *next_next == ')')
2812 /* Before an alternative? */
2813 || (syntax & RE_NO_BK_VBAR ? *next == '|'
2814 : next_backslash && next_next && *next_next == '|');
2815 }
2816
2817
2818 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2819 false if it's not. */
2820
2821 static boolean
2822 group_in_compile_stack (compile_stack, regnum)
2823 compile_stack_type compile_stack;
2824 regnum_t regnum;
2825 {
2826 int this_element;
2827
2828 for (this_element = compile_stack.avail - 1;
2829 this_element >= 0;
2830 this_element--)
2831 if (compile_stack.stack[this_element].regnum == regnum)
2832 return true;
2833
2834 return false;
2835 }
2836
2837
2838 /* Read the ending character of a range (in a bracket expression) from the
2839 uncompiled pattern *P_PTR (which ends at PEND). We assume the
2840 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
2841 Then we set the translation of all bits between the starting and
2842 ending characters (inclusive) in the compiled pattern B.
2843
2844 Return an error code.
2845
2846 We use these short variable names so we can use the same macros as
2847 `regex_compile' itself. */
2848
2849 static reg_errcode_t
2850 compile_range (p_ptr, pend, translate, syntax, b)
2851 const char **p_ptr, *pend;
2852 RE_TRANSLATE_TYPE translate;
2853 reg_syntax_t syntax;
2854 unsigned char *b;
2855 {
2856 unsigned this_char;
2857
2858 const char *p = *p_ptr;
2859 int range_start, range_end;
2860
2861 if (p == pend)
2862 return REG_ERANGE;
2863
2864 /* Even though the pattern is a signed `char *', we need to fetch
2865 with unsigned char *'s; if the high bit of the pattern character
2866 is set, the range endpoints will be negative if we fetch using a
2867 signed char *.
2868
2869 We also want to fetch the endpoints without translating them; the
2870 appropriate translation is done in the bit-setting loop below. */
2871 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
2872 range_start = ((const unsigned char *) p)[-2];
2873 range_end = ((const unsigned char *) p)[0];
2874
2875 /* Have to increment the pointer into the pattern string, so the
2876 caller isn't still at the ending character. */
2877 (*p_ptr)++;
2878
2879 /* If the start is after the end, the range is empty. */
2880 if (range_start > range_end)
2881 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
2882
2883 /* Here we see why `this_char' has to be larger than an `unsigned
2884 char' -- the range is inclusive, so if `range_end' == 0xff
2885 (assuming 8-bit characters), we would otherwise go into an infinite
2886 loop, since all characters <= 0xff. */
2887 for (this_char = range_start; this_char <= range_end; this_char++)
2888 {
2889 SET_LIST_BIT (TRANSLATE (this_char));
2890 }
2891
2892 return REG_NOERROR;
2893 }
2894 \f
2895 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2896 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
2897 characters can start a string that matches the pattern. This fastmap
2898 is used by re_search to skip quickly over impossible starting points.
2899
2900 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2901 area as BUFP->fastmap.
2902
2903 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2904 the pattern buffer.
2905
2906 Returns 0 if we succeed, -2 if an internal error. */
2907
2908 int
2909 re_compile_fastmap (bufp)
2910 struct re_pattern_buffer *bufp;
2911 {
2912 int j, k;
2913 #ifdef MATCH_MAY_ALLOCATE
2914 fail_stack_type fail_stack;
2915 #endif
2916 #ifndef REGEX_MALLOC
2917 char *destination;
2918 #endif
2919 /* We don't push any register information onto the failure stack. */
2920 unsigned num_regs = 0;
2921
2922 register char *fastmap = bufp->fastmap;
2923 unsigned char *pattern = bufp->buffer;
2924 unsigned long size = bufp->used;
2925 unsigned char *p = pattern;
2926 register unsigned char *pend = pattern + size;
2927
2928 /* This holds the pointer to the failure stack, when
2929 it is allocated relocatably. */
2930 fail_stack_elt_t *failure_stack_ptr;
2931
2932 /* Assume that each path through the pattern can be null until
2933 proven otherwise. We set this false at the bottom of switch
2934 statement, to which we get only if a particular path doesn't
2935 match the empty string. */
2936 boolean path_can_be_null = true;
2937
2938 /* We aren't doing a `succeed_n' to begin with. */
2939 boolean succeed_n_p = false;
2940
2941 assert (fastmap != NULL && p != NULL);
2942
2943 INIT_FAIL_STACK ();
2944 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
2945 bufp->fastmap_accurate = 1; /* It will be when we're done. */
2946 bufp->can_be_null = 0;
2947
2948 while (1)
2949 {
2950 if (p == pend || *p == succeed)
2951 {
2952 /* We have reached the (effective) end of pattern. */
2953 if (!FAIL_STACK_EMPTY ())
2954 {
2955 bufp->can_be_null |= path_can_be_null;
2956
2957 /* Reset for next path. */
2958 path_can_be_null = true;
2959
2960 p = fail_stack.stack[--fail_stack.avail].pointer;
2961
2962 continue;
2963 }
2964 else
2965 break;
2966 }
2967
2968 /* We should never be about to go beyond the end of the pattern. */
2969 assert (p < pend);
2970
2971 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
2972 {
2973
2974 /* I guess the idea here is to simply not bother with a fastmap
2975 if a backreference is used, since it's too hard to figure out
2976 the fastmap for the corresponding group. Setting
2977 `can_be_null' stops `re_search_2' from using the fastmap, so
2978 that is all we do. */
2979 case duplicate:
2980 bufp->can_be_null = 1;
2981 goto done;
2982
2983
2984 /* Following are the cases which match a character. These end
2985 with `break'. */
2986
2987 case exactn:
2988 fastmap[p[1]] = 1;
2989 break;
2990
2991
2992 case charset:
2993 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2994 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
2995 fastmap[j] = 1;
2996 break;
2997
2998
2999 case charset_not:
3000 /* Chars beyond end of map must be allowed. */
3001 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
3002 fastmap[j] = 1;
3003
3004 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3005 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3006 fastmap[j] = 1;
3007 break;
3008
3009
3010 case wordchar:
3011 for (j = 0; j < (1 << BYTEWIDTH); j++)
3012 if (SYNTAX (j) == Sword)
3013 fastmap[j] = 1;
3014 break;
3015
3016
3017 case notwordchar:
3018 for (j = 0; j < (1 << BYTEWIDTH); j++)
3019 if (SYNTAX (j) != Sword)
3020 fastmap[j] = 1;
3021 break;
3022
3023
3024 case anychar:
3025 {
3026 int fastmap_newline = fastmap['\n'];
3027
3028 /* `.' matches anything ... */
3029 for (j = 0; j < (1 << BYTEWIDTH); j++)
3030 fastmap[j] = 1;
3031
3032 /* ... except perhaps newline. */
3033 if (!(bufp->syntax & RE_DOT_NEWLINE))
3034 fastmap['\n'] = fastmap_newline;
3035
3036 /* Return if we have already set `can_be_null'; if we have,
3037 then the fastmap is irrelevant. Something's wrong here. */
3038 else if (bufp->can_be_null)
3039 goto done;
3040
3041 /* Otherwise, have to check alternative paths. */
3042 break;
3043 }
3044
3045 #ifdef emacs
3046 case syntaxspec:
3047 k = *p++;
3048 for (j = 0; j < (1 << BYTEWIDTH); j++)
3049 if (SYNTAX (j) == (enum syntaxcode) k)
3050 fastmap[j] = 1;
3051 break;
3052
3053
3054 case notsyntaxspec:
3055 k = *p++;
3056 for (j = 0; j < (1 << BYTEWIDTH); j++)
3057 if (SYNTAX (j) != (enum syntaxcode) k)
3058 fastmap[j] = 1;
3059 break;
3060
3061
3062 /* All cases after this match the empty string. These end with
3063 `continue'. */
3064
3065
3066 case before_dot:
3067 case at_dot:
3068 case after_dot:
3069 continue;
3070 #endif /* emacs */
3071
3072
3073 case no_op:
3074 case begline:
3075 case endline:
3076 case begbuf:
3077 case endbuf:
3078 case wordbound:
3079 case notwordbound:
3080 case wordbeg:
3081 case wordend:
3082 case push_dummy_failure:
3083 continue;
3084
3085
3086 case jump_n:
3087 case pop_failure_jump:
3088 case maybe_pop_jump:
3089 case jump:
3090 case jump_past_alt:
3091 case dummy_failure_jump:
3092 EXTRACT_NUMBER_AND_INCR (j, p);
3093 p += j;
3094 if (j > 0)
3095 continue;
3096
3097 /* Jump backward implies we just went through the body of a
3098 loop and matched nothing. Opcode jumped to should be
3099 `on_failure_jump' or `succeed_n'. Just treat it like an
3100 ordinary jump. For a * loop, it has pushed its failure
3101 point already; if so, discard that as redundant. */
3102 if ((re_opcode_t) *p != on_failure_jump
3103 && (re_opcode_t) *p != succeed_n)
3104 continue;
3105
3106 p++;
3107 EXTRACT_NUMBER_AND_INCR (j, p);
3108 p += j;
3109
3110 /* If what's on the stack is where we are now, pop it. */
3111 if (!FAIL_STACK_EMPTY ()
3112 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3113 fail_stack.avail--;
3114
3115 continue;
3116
3117
3118 case on_failure_jump:
3119 case on_failure_keep_string_jump:
3120 handle_on_failure_jump:
3121 EXTRACT_NUMBER_AND_INCR (j, p);
3122
3123 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3124 end of the pattern. We don't want to push such a point,
3125 since when we restore it above, entering the switch will
3126 increment `p' past the end of the pattern. We don't need
3127 to push such a point since we obviously won't find any more
3128 fastmap entries beyond `pend'. Such a pattern can match
3129 the null string, though. */
3130 if (p + j < pend)
3131 {
3132 if (!PUSH_PATTERN_OP (p + j, fail_stack))
3133 {
3134 RESET_FAIL_STACK ();
3135 return -2;
3136 }
3137 }
3138 else
3139 bufp->can_be_null = 1;
3140
3141 if (succeed_n_p)
3142 {
3143 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
3144 succeed_n_p = false;
3145 }
3146
3147 continue;
3148
3149
3150 case succeed_n:
3151 /* Get to the number of times to succeed. */
3152 p += 2;
3153
3154 /* Increment p past the n for when k != 0. */
3155 EXTRACT_NUMBER_AND_INCR (k, p);
3156 if (k == 0)
3157 {
3158 p -= 4;
3159 succeed_n_p = true; /* Spaghetti code alert. */
3160 goto handle_on_failure_jump;
3161 }
3162 continue;
3163
3164
3165 case set_number_at:
3166 p += 4;
3167 continue;
3168
3169
3170 case start_memory:
3171 case stop_memory:
3172 p += 2;
3173 continue;
3174
3175
3176 default:
3177 abort (); /* We have listed all the cases. */
3178 } /* switch *p++ */
3179
3180 /* Getting here means we have found the possible starting
3181 characters for one path of the pattern -- and that the empty
3182 string does not match. We need not follow this path further.
3183 Instead, look at the next alternative (remembered on the
3184 stack), or quit if no more. The test at the top of the loop
3185 does these things. */
3186 path_can_be_null = false;
3187 p = pend;
3188 } /* while p */
3189
3190 /* Set `can_be_null' for the last path (also the first path, if the
3191 pattern is empty). */
3192 bufp->can_be_null |= path_can_be_null;
3193
3194 done:
3195 RESET_FAIL_STACK ();
3196 return 0;
3197 } /* re_compile_fastmap */
3198 \f
3199 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3200 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3201 this memory for recording register information. STARTS and ENDS
3202 must be allocated using the malloc library routine, and must each
3203 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3204
3205 If NUM_REGS == 0, then subsequent matches should allocate their own
3206 register data.
3207
3208 Unless this function is called, the first search or match using
3209 PATTERN_BUFFER will allocate its own register data, without
3210 freeing the old data. */
3211
3212 void
3213 re_set_registers (bufp, regs, num_regs, starts, ends)
3214 struct re_pattern_buffer *bufp;
3215 struct re_registers *regs;
3216 unsigned num_regs;
3217 regoff_t *starts, *ends;
3218 {
3219 if (num_regs)
3220 {
3221 bufp->regs_allocated = REGS_REALLOCATE;
3222 regs->num_regs = num_regs;
3223 regs->start = starts;
3224 regs->end = ends;
3225 }
3226 else
3227 {
3228 bufp->regs_allocated = REGS_UNALLOCATED;
3229 regs->num_regs = 0;
3230 regs->start = regs->end = (regoff_t *) 0;
3231 }
3232 }
3233 \f
3234 /* Searching routines. */
3235
3236 /* Like re_search_2, below, but only one string is specified, and
3237 doesn't let you say where to stop matching. */
3238
3239 int
3240 re_search (bufp, string, size, startpos, range, regs)
3241 struct re_pattern_buffer *bufp;
3242 const char *string;
3243 int size, startpos, range;
3244 struct re_registers *regs;
3245 {
3246 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3247 regs, size);
3248 }
3249
3250
3251 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3252 virtual concatenation of STRING1 and STRING2, starting first at index
3253 STARTPOS, then at STARTPOS + 1, and so on.
3254
3255 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3256
3257 RANGE is how far to scan while trying to match. RANGE = 0 means try
3258 only at STARTPOS; in general, the last start tried is STARTPOS +
3259 RANGE.
3260
3261 In REGS, return the indices of the virtual concatenation of STRING1
3262 and STRING2 that matched the entire BUFP->buffer and its contained
3263 subexpressions.
3264
3265 Do not consider matching one past the index STOP in the virtual
3266 concatenation of STRING1 and STRING2.
3267
3268 We return either the position in the strings at which the match was
3269 found, -1 if no match, or -2 if error (such as failure
3270 stack overflow). */
3271
3272 int
3273 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3274 struct re_pattern_buffer *bufp;
3275 const char *string1, *string2;
3276 int size1, size2;
3277 int startpos;
3278 int range;
3279 struct re_registers *regs;
3280 int stop;
3281 {
3282 int val;
3283 register char *fastmap = bufp->fastmap;
3284 register RE_TRANSLATE_TYPE translate = bufp->translate;
3285 int total_size = size1 + size2;
3286 int endpos = startpos + range;
3287 int anchored_start = 0;
3288
3289 /* Check for out-of-range STARTPOS. */
3290 if (startpos < 0 || startpos > total_size)
3291 return -1;
3292
3293 /* Fix up RANGE if it might eventually take us outside
3294 the virtual concatenation of STRING1 and STRING2.
3295 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3296 if (endpos < 0)
3297 range = 0 - startpos;
3298 else if (endpos > total_size)
3299 range = total_size - startpos;
3300
3301 /* If the search isn't to be a backwards one, don't waste time in a
3302 search for a pattern that must be anchored. */
3303 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3304 {
3305 if (startpos > 0)
3306 return -1;
3307 else
3308 range = 1;
3309 }
3310
3311 #ifdef emacs
3312 /* In a forward search for something that starts with \=.
3313 don't keep searching past point. */
3314 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3315 {
3316 range = PT - startpos;
3317 if (range <= 0)
3318 return -1;
3319 }
3320 #endif /* emacs */
3321
3322 /* Update the fastmap now if not correct already. */
3323 if (fastmap && !bufp->fastmap_accurate)
3324 if (re_compile_fastmap (bufp) == -2)
3325 return -2;
3326
3327 /* See whether the pattern is anchored. */
3328 if (bufp->buffer[0] == begline)
3329 anchored_start = 1;
3330
3331 /* Loop through the string, looking for a place to start matching. */
3332 for (;;)
3333 {
3334 /* If the pattern is anchored,
3335 skip quickly past places we cannot match.
3336 We don't bother to treat startpos == 0 specially
3337 because that case doesn't repeat. */
3338 if (anchored_start && startpos > 0)
3339 {
3340 if (! (bufp->newline_anchor
3341 && ((startpos <= size1 ? string1[startpos - 1]
3342 : string2[startpos - size1 - 1])
3343 == '\n')))
3344 goto advance;
3345 }
3346
3347 /* If a fastmap is supplied, skip quickly over characters that
3348 cannot be the start of a match. If the pattern can match the
3349 null string, however, we don't need to skip characters; we want
3350 the first null string. */
3351 if (fastmap && startpos < total_size && !bufp->can_be_null)
3352 {
3353 if (range > 0) /* Searching forwards. */
3354 {
3355 register const char *d;
3356 register int lim = 0;
3357 int irange = range;
3358
3359 if (startpos < size1 && startpos + range >= size1)
3360 lim = range - (size1 - startpos);
3361
3362 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
3363
3364 /* Written out as an if-else to avoid testing `translate'
3365 inside the loop. */
3366 if (translate)
3367 while (range > lim
3368 && !fastmap[(unsigned char)
3369 translate[(unsigned char) *d++]])
3370 range--;
3371 else
3372 while (range > lim && !fastmap[(unsigned char) *d++])
3373 range--;
3374
3375 startpos += irange - range;
3376 }
3377 else /* Searching backwards. */
3378 {
3379 register char c = (size1 == 0 || startpos >= size1
3380 ? string2[startpos - size1]
3381 : string1[startpos]);
3382
3383 if (!fastmap[(unsigned char) TRANSLATE (c)])
3384 goto advance;
3385 }
3386 }
3387
3388 /* If can't match the null string, and that's all we have left, fail. */
3389 if (range >= 0 && startpos == total_size && fastmap
3390 && !bufp->can_be_null)
3391 return -1;
3392
3393 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3394 startpos, regs, stop);
3395 #ifndef REGEX_MALLOC
3396 #ifdef C_ALLOCA
3397 alloca (0);
3398 #endif
3399 #endif
3400
3401 if (val >= 0)
3402 return startpos;
3403
3404 if (val == -2)
3405 return -2;
3406
3407 advance:
3408 if (!range)
3409 break;
3410 else if (range > 0)
3411 {
3412 range--;
3413 startpos++;
3414 }
3415 else
3416 {
3417 range++;
3418 startpos--;
3419 }
3420 }
3421 return -1;
3422 } /* re_search_2 */
3423 \f
3424 /* Declarations and macros for re_match_2. */
3425
3426 static int bcmp_translate ();
3427 static boolean alt_match_null_string_p (),
3428 common_op_match_null_string_p (),
3429 group_match_null_string_p ();
3430
3431 /* This converts PTR, a pointer into one of the search strings `string1'
3432 and `string2' into an offset from the beginning of that string. */
3433 #define POINTER_TO_OFFSET(ptr) \
3434 (FIRST_STRING_P (ptr) \
3435 ? ((regoff_t) ((ptr) - string1)) \
3436 : ((regoff_t) ((ptr) - string2 + size1)))
3437
3438 /* Macros for dealing with the split strings in re_match_2. */
3439
3440 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3441
3442 /* Call before fetching a character with *d. This switches over to
3443 string2 if necessary. */
3444 #define PREFETCH() \
3445 while (d == dend) \
3446 { \
3447 /* End of string2 => fail. */ \
3448 if (dend == end_match_2) \
3449 goto fail; \
3450 /* End of string1 => advance to string2. */ \
3451 d = string2; \
3452 dend = end_match_2; \
3453 }
3454
3455
3456 /* Test if at very beginning or at very end of the virtual concatenation
3457 of `string1' and `string2'. If only one string, it's `string2'. */
3458 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3459 #define AT_STRINGS_END(d) ((d) == end2)
3460
3461
3462 /* Test if D points to a character which is word-constituent. We have
3463 two special cases to check for: if past the end of string1, look at
3464 the first character in string2; and if before the beginning of
3465 string2, look at the last character in string1. */
3466 #define WORDCHAR_P(d) \
3467 (SYNTAX ((d) == end1 ? *string2 \
3468 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3469 == Sword)
3470
3471 /* Disabled due to a compiler bug -- see comment at case wordbound */
3472 #if 0
3473 /* Test if the character before D and the one at D differ with respect
3474 to being word-constituent. */
3475 #define AT_WORD_BOUNDARY(d) \
3476 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3477 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3478 #endif
3479
3480 /* Free everything we malloc. */
3481 #ifdef MATCH_MAY_ALLOCATE
3482 #define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
3483 #define FREE_VARIABLES() \
3484 do { \
3485 REGEX_FREE_STACK (fail_stack.stack); \
3486 FREE_VAR (regstart); \
3487 FREE_VAR (regend); \
3488 FREE_VAR (old_regstart); \
3489 FREE_VAR (old_regend); \
3490 FREE_VAR (best_regstart); \
3491 FREE_VAR (best_regend); \
3492 FREE_VAR (reg_info); \
3493 FREE_VAR (reg_dummy); \
3494 FREE_VAR (reg_info_dummy); \
3495 } while (0)
3496 #else
3497 #define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3498 #endif /* not MATCH_MAY_ALLOCATE */
3499
3500 /* These values must meet several constraints. They must not be valid
3501 register values; since we have a limit of 255 registers (because
3502 we use only one byte in the pattern for the register number), we can
3503 use numbers larger than 255. They must differ by 1, because of
3504 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3505 be larger than the value for the highest register, so we do not try
3506 to actually save any registers when none are active. */
3507 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3508 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3509 \f
3510 /* Matching routines. */
3511
3512 #ifndef emacs /* Emacs never uses this. */
3513 /* re_match is like re_match_2 except it takes only a single string. */
3514
3515 int
3516 re_match (bufp, string, size, pos, regs)
3517 struct re_pattern_buffer *bufp;
3518 const char *string;
3519 int size, pos;
3520 struct re_registers *regs;
3521 {
3522 int result = re_match_2_internal (bufp, NULL, 0, string, size,
3523 pos, regs, size);
3524 alloca (0);
3525 return result;
3526 }
3527 #endif /* not emacs */
3528
3529
3530 /* re_match_2 matches the compiled pattern in BUFP against the
3531 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3532 and SIZE2, respectively). We start matching at POS, and stop
3533 matching at STOP.
3534
3535 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3536 store offsets for the substring each group matched in REGS. See the
3537 documentation for exactly how many groups we fill.
3538
3539 We return -1 if no match, -2 if an internal error (such as the
3540 failure stack overflowing). Otherwise, we return the length of the
3541 matched substring. */
3542
3543 int
3544 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3545 struct re_pattern_buffer *bufp;
3546 const char *string1, *string2;
3547 int size1, size2;
3548 int pos;
3549 struct re_registers *regs;
3550 int stop;
3551 {
3552 int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3553 pos, regs, stop);
3554 alloca (0);
3555 return result;
3556 }
3557
3558 /* This is a separate function so that we can force an alloca cleanup
3559 afterwards. */
3560 static int
3561 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3562 struct re_pattern_buffer *bufp;
3563 const char *string1, *string2;
3564 int size1, size2;
3565 int pos;
3566 struct re_registers *regs;
3567 int stop;
3568 {
3569 /* General temporaries. */
3570 int mcnt;
3571 unsigned char *p1;
3572
3573 /* Just past the end of the corresponding string. */
3574 const char *end1, *end2;
3575
3576 /* Pointers into string1 and string2, just past the last characters in
3577 each to consider matching. */
3578 const char *end_match_1, *end_match_2;
3579
3580 /* Where we are in the data, and the end of the current string. */
3581 const char *d, *dend;
3582
3583 /* Where we are in the pattern, and the end of the pattern. */
3584 unsigned char *p = bufp->buffer;
3585 register unsigned char *pend = p + bufp->used;
3586
3587 /* Mark the opcode just after a start_memory, so we can test for an
3588 empty subpattern when we get to the stop_memory. */
3589 unsigned char *just_past_start_mem = 0;
3590
3591 /* We use this to map every character in the string. */
3592 RE_TRANSLATE_TYPE translate = bufp->translate;
3593
3594 /* Failure point stack. Each place that can handle a failure further
3595 down the line pushes a failure point on this stack. It consists of
3596 restart, regend, and reg_info for all registers corresponding to
3597 the subexpressions we're currently inside, plus the number of such
3598 registers, and, finally, two char *'s. The first char * is where
3599 to resume scanning the pattern; the second one is where to resume
3600 scanning the strings. If the latter is zero, the failure point is
3601 a ``dummy''; if a failure happens and the failure point is a dummy,
3602 it gets discarded and the next next one is tried. */
3603 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3604 fail_stack_type fail_stack;
3605 #endif
3606 #ifdef DEBUG
3607 static unsigned failure_id = 0;
3608 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3609 #endif
3610
3611 /* This holds the pointer to the failure stack, when
3612 it is allocated relocatably. */
3613 fail_stack_elt_t *failure_stack_ptr;
3614
3615 /* We fill all the registers internally, independent of what we
3616 return, for use in backreferences. The number here includes
3617 an element for register zero. */
3618 unsigned num_regs = bufp->re_nsub + 1;
3619
3620 /* The currently active registers. */
3621 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3622 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3623
3624 /* Information on the contents of registers. These are pointers into
3625 the input strings; they record just what was matched (on this
3626 attempt) by a subexpression part of the pattern, that is, the
3627 regnum-th regstart pointer points to where in the pattern we began
3628 matching and the regnum-th regend points to right after where we
3629 stopped matching the regnum-th subexpression. (The zeroth register
3630 keeps track of what the whole pattern matches.) */
3631 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3632 const char **regstart, **regend;
3633 #endif
3634
3635 /* If a group that's operated upon by a repetition operator fails to
3636 match anything, then the register for its start will need to be
3637 restored because it will have been set to wherever in the string we
3638 are when we last see its open-group operator. Similarly for a
3639 register's end. */
3640 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3641 const char **old_regstart, **old_regend;
3642 #endif
3643
3644 /* The is_active field of reg_info helps us keep track of which (possibly
3645 nested) subexpressions we are currently in. The matched_something
3646 field of reg_info[reg_num] helps us tell whether or not we have
3647 matched any of the pattern so far this time through the reg_num-th
3648 subexpression. These two fields get reset each time through any
3649 loop their register is in. */
3650 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3651 register_info_type *reg_info;
3652 #endif
3653
3654 /* The following record the register info as found in the above
3655 variables when we find a match better than any we've seen before.
3656 This happens as we backtrack through the failure points, which in
3657 turn happens only if we have not yet matched the entire string. */
3658 unsigned best_regs_set = false;
3659 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3660 const char **best_regstart, **best_regend;
3661 #endif
3662
3663 /* Logically, this is `best_regend[0]'. But we don't want to have to
3664 allocate space for that if we're not allocating space for anything
3665 else (see below). Also, we never need info about register 0 for
3666 any of the other register vectors, and it seems rather a kludge to
3667 treat `best_regend' differently than the rest. So we keep track of
3668 the end of the best match so far in a separate variable. We
3669 initialize this to NULL so that when we backtrack the first time
3670 and need to test it, it's not garbage. */
3671 const char *match_end = NULL;
3672
3673 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
3674 int set_regs_matched_done = 0;
3675
3676 /* Used when we pop values we don't care about. */
3677 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3678 const char **reg_dummy;
3679 register_info_type *reg_info_dummy;
3680 #endif
3681
3682 #ifdef DEBUG
3683 /* Counts the total number of registers pushed. */
3684 unsigned num_regs_pushed = 0;
3685 #endif
3686
3687 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3688
3689 INIT_FAIL_STACK ();
3690
3691 #ifdef MATCH_MAY_ALLOCATE
3692 /* Do not bother to initialize all the register variables if there are
3693 no groups in the pattern, as it takes a fair amount of time. If
3694 there are groups, we include space for register 0 (the whole
3695 pattern), even though we never use it, since it simplifies the
3696 array indexing. We should fix this. */
3697 if (bufp->re_nsub)
3698 {
3699 regstart = REGEX_TALLOC (num_regs, const char *);
3700 regend = REGEX_TALLOC (num_regs, const char *);
3701 old_regstart = REGEX_TALLOC (num_regs, const char *);
3702 old_regend = REGEX_TALLOC (num_regs, const char *);
3703 best_regstart = REGEX_TALLOC (num_regs, const char *);
3704 best_regend = REGEX_TALLOC (num_regs, const char *);
3705 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3706 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3707 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3708
3709 if (!(regstart && regend && old_regstart && old_regend && reg_info
3710 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3711 {
3712 FREE_VARIABLES ();
3713 return -2;
3714 }
3715 }
3716 else
3717 {
3718 /* We must initialize all our variables to NULL, so that
3719 `FREE_VARIABLES' doesn't try to free them. */
3720 regstart = regend = old_regstart = old_regend = best_regstart
3721 = best_regend = reg_dummy = NULL;
3722 reg_info = reg_info_dummy = (register_info_type *) NULL;
3723 }
3724 #endif /* MATCH_MAY_ALLOCATE */
3725
3726 /* The starting position is bogus. */
3727 if (pos < 0 || pos > size1 + size2)
3728 {
3729 FREE_VARIABLES ();
3730 return -1;
3731 }
3732
3733 /* Initialize subexpression text positions to -1 to mark ones that no
3734 start_memory/stop_memory has been seen for. Also initialize the
3735 register information struct. */
3736 for (mcnt = 1; mcnt < num_regs; mcnt++)
3737 {
3738 regstart[mcnt] = regend[mcnt]
3739 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3740
3741 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3742 IS_ACTIVE (reg_info[mcnt]) = 0;
3743 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3744 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3745 }
3746
3747 /* We move `string1' into `string2' if the latter's empty -- but not if
3748 `string1' is null. */
3749 if (size2 == 0 && string1 != NULL)
3750 {
3751 string2 = string1;
3752 size2 = size1;
3753 string1 = 0;
3754 size1 = 0;
3755 }
3756 end1 = string1 + size1;
3757 end2 = string2 + size2;
3758
3759 /* Compute where to stop matching, within the two strings. */
3760 if (stop <= size1)
3761 {
3762 end_match_1 = string1 + stop;
3763 end_match_2 = string2;
3764 }
3765 else
3766 {
3767 end_match_1 = end1;
3768 end_match_2 = string2 + stop - size1;
3769 }
3770
3771 /* `p' scans through the pattern as `d' scans through the data.
3772 `dend' is the end of the input string that `d' points within. `d'
3773 is advanced into the following input string whenever necessary, but
3774 this happens before fetching; therefore, at the beginning of the
3775 loop, `d' can be pointing at the end of a string, but it cannot
3776 equal `string2'. */
3777 if (size1 > 0 && pos <= size1)
3778 {
3779 d = string1 + pos;
3780 dend = end_match_1;
3781 }
3782 else
3783 {
3784 d = string2 + pos - size1;
3785 dend = end_match_2;
3786 }
3787
3788 DEBUG_PRINT1 ("The compiled pattern is: ");
3789 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
3790 DEBUG_PRINT1 ("The string to match is: `");
3791 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
3792 DEBUG_PRINT1 ("'\n");
3793
3794 /* This loops over pattern commands. It exits by returning from the
3795 function if the match is complete, or it drops through if the match
3796 fails at this starting point in the input data. */
3797 for (;;)
3798 {
3799 DEBUG_PRINT2 ("\n0x%x: ", p);
3800
3801 if (p == pend)
3802 { /* End of pattern means we might have succeeded. */
3803 DEBUG_PRINT1 ("end of pattern ... ");
3804
3805 /* If we haven't matched the entire string, and we want the
3806 longest match, try backtracking. */
3807 if (d != end_match_2)
3808 {
3809 /* 1 if this match ends in the same string (string1 or string2)
3810 as the best previous match. */
3811 boolean same_str_p = (FIRST_STRING_P (match_end)
3812 == MATCHING_IN_FIRST_STRING);
3813 /* 1 if this match is the best seen so far. */
3814 boolean best_match_p;
3815
3816 /* AIX compiler got confused when this was combined
3817 with the previous declaration. */
3818 if (same_str_p)
3819 best_match_p = d > match_end;
3820 else
3821 best_match_p = !MATCHING_IN_FIRST_STRING;
3822
3823 DEBUG_PRINT1 ("backtracking.\n");
3824
3825 if (!FAIL_STACK_EMPTY ())
3826 { /* More failure points to try. */
3827
3828 /* If exceeds best match so far, save it. */
3829 if (!best_regs_set || best_match_p)
3830 {
3831 best_regs_set = true;
3832 match_end = d;
3833
3834 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
3835
3836 for (mcnt = 1; mcnt < num_regs; mcnt++)
3837 {
3838 best_regstart[mcnt] = regstart[mcnt];
3839 best_regend[mcnt] = regend[mcnt];
3840 }
3841 }
3842 goto fail;
3843 }
3844
3845 /* If no failure points, don't restore garbage. And if
3846 last match is real best match, don't restore second
3847 best one. */
3848 else if (best_regs_set && !best_match_p)
3849 {
3850 restore_best_regs:
3851 /* Restore best match. It may happen that `dend ==
3852 end_match_1' while the restored d is in string2.
3853 For example, the pattern `x.*y.*z' against the
3854 strings `x-' and `y-z-', if the two strings are
3855 not consecutive in memory. */
3856 DEBUG_PRINT1 ("Restoring best registers.\n");
3857
3858 d = match_end;
3859 dend = ((d >= string1 && d <= end1)
3860 ? end_match_1 : end_match_2);
3861
3862 for (mcnt = 1; mcnt < num_regs; mcnt++)
3863 {
3864 regstart[mcnt] = best_regstart[mcnt];
3865 regend[mcnt] = best_regend[mcnt];
3866 }
3867 }
3868 } /* d != end_match_2 */
3869
3870 succeed_label:
3871 DEBUG_PRINT1 ("Accepting match.\n");
3872
3873 /* If caller wants register contents data back, do it. */
3874 if (regs && !bufp->no_sub)
3875 {
3876 /* Have the register data arrays been allocated? */
3877 if (bufp->regs_allocated == REGS_UNALLOCATED)
3878 { /* No. So allocate them with malloc. We need one
3879 extra element beyond `num_regs' for the `-1' marker
3880 GNU code uses. */
3881 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
3882 regs->start = TALLOC (regs->num_regs, regoff_t);
3883 regs->end = TALLOC (regs->num_regs, regoff_t);
3884 if (regs->start == NULL || regs->end == NULL)
3885 {
3886 FREE_VARIABLES ();
3887 return -2;
3888 }
3889 bufp->regs_allocated = REGS_REALLOCATE;
3890 }
3891 else if (bufp->regs_allocated == REGS_REALLOCATE)
3892 { /* Yes. If we need more elements than were already
3893 allocated, reallocate them. If we need fewer, just
3894 leave it alone. */
3895 if (regs->num_regs < num_regs + 1)
3896 {
3897 regs->num_regs = num_regs + 1;
3898 RETALLOC (regs->start, regs->num_regs, regoff_t);
3899 RETALLOC (regs->end, regs->num_regs, regoff_t);
3900 if (regs->start == NULL || regs->end == NULL)
3901 {
3902 FREE_VARIABLES ();
3903 return -2;
3904 }
3905 }
3906 }
3907 else
3908 {
3909 /* These braces fend off a "empty body in an else-statement"
3910 warning under GCC when assert expands to nothing. */
3911 assert (bufp->regs_allocated == REGS_FIXED);
3912 }
3913
3914 /* Convert the pointer data in `regstart' and `regend' to
3915 indices. Register zero has to be set differently,
3916 since we haven't kept track of any info for it. */
3917 if (regs->num_regs > 0)
3918 {
3919 regs->start[0] = pos;
3920 regs->end[0] = (MATCHING_IN_FIRST_STRING
3921 ? ((regoff_t) (d - string1))
3922 : ((regoff_t) (d - string2 + size1)));
3923 }
3924
3925 /* Go through the first `min (num_regs, regs->num_regs)'
3926 registers, since that is all we initialized. */
3927 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
3928 {
3929 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
3930 regs->start[mcnt] = regs->end[mcnt] = -1;
3931 else
3932 {
3933 regs->start[mcnt]
3934 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
3935 regs->end[mcnt]
3936 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
3937 }
3938 }
3939
3940 /* If the regs structure we return has more elements than
3941 were in the pattern, set the extra elements to -1. If
3942 we (re)allocated the registers, this is the case,
3943 because we always allocate enough to have at least one
3944 -1 at the end. */
3945 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
3946 regs->start[mcnt] = regs->end[mcnt] = -1;
3947 } /* regs && !bufp->no_sub */
3948
3949 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
3950 nfailure_points_pushed, nfailure_points_popped,
3951 nfailure_points_pushed - nfailure_points_popped);
3952 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
3953
3954 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
3955 ? string1
3956 : string2 - size1);
3957
3958 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
3959
3960 FREE_VARIABLES ();
3961 return mcnt;
3962 }
3963
3964 /* Otherwise match next pattern command. */
3965 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3966 {
3967 /* Ignore these. Used to ignore the n of succeed_n's which
3968 currently have n == 0. */
3969 case no_op:
3970 DEBUG_PRINT1 ("EXECUTING no_op.\n");
3971 break;
3972
3973 case succeed:
3974 DEBUG_PRINT1 ("EXECUTING succeed.\n");
3975 goto succeed_label;
3976
3977 /* Match the next n pattern characters exactly. The following
3978 byte in the pattern defines n, and the n bytes after that
3979 are the characters to match. */
3980 case exactn:
3981 mcnt = *p++;
3982 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
3983
3984 /* This is written out as an if-else so we don't waste time
3985 testing `translate' inside the loop. */
3986 if (translate)
3987 {
3988 do
3989 {
3990 PREFETCH ();
3991 if ((unsigned char) translate[(unsigned char) *d++]
3992 != (unsigned char) *p++)
3993 goto fail;
3994 }
3995 while (--mcnt);
3996 }
3997 else
3998 {
3999 do
4000 {
4001 PREFETCH ();
4002 if (*d++ != (char) *p++) goto fail;
4003 }
4004 while (--mcnt);
4005 }
4006 SET_REGS_MATCHED ();
4007 break;
4008
4009
4010 /* Match any character except possibly a newline or a null. */
4011 case anychar:
4012 DEBUG_PRINT1 ("EXECUTING anychar.\n");
4013
4014 PREFETCH ();
4015
4016 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
4017 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
4018 goto fail;
4019
4020 SET_REGS_MATCHED ();
4021 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
4022 d++;
4023 break;
4024
4025
4026 case charset:
4027 case charset_not:
4028 {
4029 register unsigned char c;
4030 boolean not = (re_opcode_t) *(p - 1) == charset_not;
4031
4032 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4033
4034 PREFETCH ();
4035 c = TRANSLATE (*d); /* The character to match. */
4036
4037 /* Cast to `unsigned' instead of `unsigned char' in case the
4038 bit list is a full 32 bytes long. */
4039 if (c < (unsigned) (*p * BYTEWIDTH)
4040 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4041 not = !not;
4042
4043 p += 1 + *p;
4044
4045 if (!not) goto fail;
4046
4047 SET_REGS_MATCHED ();
4048 d++;
4049 break;
4050 }
4051
4052
4053 /* The beginning of a group is represented by start_memory.
4054 The arguments are the register number in the next byte, and the
4055 number of groups inner to this one in the next. The text
4056 matched within the group is recorded (in the internal
4057 registers data structure) under the register number. */
4058 case start_memory:
4059 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4060
4061 /* Find out if this group can match the empty string. */
4062 p1 = p; /* To send to group_match_null_string_p. */
4063
4064 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4065 REG_MATCH_NULL_STRING_P (reg_info[*p])
4066 = group_match_null_string_p (&p1, pend, reg_info);
4067
4068 /* Save the position in the string where we were the last time
4069 we were at this open-group operator in case the group is
4070 operated upon by a repetition operator, e.g., with `(a*)*b'
4071 against `ab'; then we want to ignore where we are now in
4072 the string in case this attempt to match fails. */
4073 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4074 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4075 : regstart[*p];
4076 DEBUG_PRINT2 (" old_regstart: %d\n",
4077 POINTER_TO_OFFSET (old_regstart[*p]));
4078
4079 regstart[*p] = d;
4080 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4081
4082 IS_ACTIVE (reg_info[*p]) = 1;
4083 MATCHED_SOMETHING (reg_info[*p]) = 0;
4084
4085 /* Clear this whenever we change the register activity status. */
4086 set_regs_matched_done = 0;
4087
4088 /* This is the new highest active register. */
4089 highest_active_reg = *p;
4090
4091 /* If nothing was active before, this is the new lowest active
4092 register. */
4093 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4094 lowest_active_reg = *p;
4095
4096 /* Move past the register number and inner group count. */
4097 p += 2;
4098 just_past_start_mem = p;
4099
4100 break;
4101
4102
4103 /* The stop_memory opcode represents the end of a group. Its
4104 arguments are the same as start_memory's: the register
4105 number, and the number of inner groups. */
4106 case stop_memory:
4107 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
4108
4109 /* We need to save the string position the last time we were at
4110 this close-group operator in case the group is operated
4111 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4112 against `aba'; then we want to ignore where we are now in
4113 the string in case this attempt to match fails. */
4114 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4115 ? REG_UNSET (regend[*p]) ? d : regend[*p]
4116 : regend[*p];
4117 DEBUG_PRINT2 (" old_regend: %d\n",
4118 POINTER_TO_OFFSET (old_regend[*p]));
4119
4120 regend[*p] = d;
4121 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4122
4123 /* This register isn't active anymore. */
4124 IS_ACTIVE (reg_info[*p]) = 0;
4125
4126 /* Clear this whenever we change the register activity status. */
4127 set_regs_matched_done = 0;
4128
4129 /* If this was the only register active, nothing is active
4130 anymore. */
4131 if (lowest_active_reg == highest_active_reg)
4132 {
4133 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4134 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4135 }
4136 else
4137 { /* We must scan for the new highest active register, since
4138 it isn't necessarily one less than now: consider
4139 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4140 new highest active register is 1. */
4141 unsigned char r = *p - 1;
4142 while (r > 0 && !IS_ACTIVE (reg_info[r]))
4143 r--;
4144
4145 /* If we end up at register zero, that means that we saved
4146 the registers as the result of an `on_failure_jump', not
4147 a `start_memory', and we jumped to past the innermost
4148 `stop_memory'. For example, in ((.)*) we save
4149 registers 1 and 2 as a result of the *, but when we pop
4150 back to the second ), we are at the stop_memory 1.
4151 Thus, nothing is active. */
4152 if (r == 0)
4153 {
4154 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4155 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4156 }
4157 else
4158 highest_active_reg = r;
4159 }
4160
4161 /* If just failed to match something this time around with a
4162 group that's operated on by a repetition operator, try to
4163 force exit from the ``loop'', and restore the register
4164 information for this group that we had before trying this
4165 last match. */
4166 if ((!MATCHED_SOMETHING (reg_info[*p])
4167 || just_past_start_mem == p - 1)
4168 && (p + 2) < pend)
4169 {
4170 boolean is_a_jump_n = false;
4171
4172 p1 = p + 2;
4173 mcnt = 0;
4174 switch ((re_opcode_t) *p1++)
4175 {
4176 case jump_n:
4177 is_a_jump_n = true;
4178 case pop_failure_jump:
4179 case maybe_pop_jump:
4180 case jump:
4181 case dummy_failure_jump:
4182 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4183 if (is_a_jump_n)
4184 p1 += 2;
4185 break;
4186
4187 default:
4188 /* do nothing */ ;
4189 }
4190 p1 += mcnt;
4191
4192 /* If the next operation is a jump backwards in the pattern
4193 to an on_failure_jump right before the start_memory
4194 corresponding to this stop_memory, exit from the loop
4195 by forcing a failure after pushing on the stack the
4196 on_failure_jump's jump in the pattern, and d. */
4197 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4198 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4199 {
4200 /* If this group ever matched anything, then restore
4201 what its registers were before trying this last
4202 failed match, e.g., with `(a*)*b' against `ab' for
4203 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4204 against `aba' for regend[3].
4205
4206 Also restore the registers for inner groups for,
4207 e.g., `((a*)(b*))*' against `aba' (register 3 would
4208 otherwise get trashed). */
4209
4210 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4211 {
4212 unsigned r;
4213
4214 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
4215
4216 /* Restore this and inner groups' (if any) registers. */
4217 for (r = *p; r < *p + *(p + 1); r++)
4218 {
4219 regstart[r] = old_regstart[r];
4220
4221 /* xx why this test? */
4222 if (old_regend[r] >= regstart[r])
4223 regend[r] = old_regend[r];
4224 }
4225 }
4226 p1++;
4227 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4228 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4229
4230 goto fail;
4231 }
4232 }
4233
4234 /* Move past the register number and the inner group count. */
4235 p += 2;
4236 break;
4237
4238
4239 /* \<digit> has been turned into a `duplicate' command which is
4240 followed by the numeric value of <digit> as the register number. */
4241 case duplicate:
4242 {
4243 register const char *d2, *dend2;
4244 int regno = *p++; /* Get which register to match against. */
4245 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4246
4247 /* Can't back reference a group which we've never matched. */
4248 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4249 goto fail;
4250
4251 /* Where in input to try to start matching. */
4252 d2 = regstart[regno];
4253
4254 /* Where to stop matching; if both the place to start and
4255 the place to stop matching are in the same string, then
4256 set to the place to stop, otherwise, for now have to use
4257 the end of the first string. */
4258
4259 dend2 = ((FIRST_STRING_P (regstart[regno])
4260 == FIRST_STRING_P (regend[regno]))
4261 ? regend[regno] : end_match_1);
4262 for (;;)
4263 {
4264 /* If necessary, advance to next segment in register
4265 contents. */
4266 while (d2 == dend2)
4267 {
4268 if (dend2 == end_match_2) break;
4269 if (dend2 == regend[regno]) break;
4270
4271 /* End of string1 => advance to string2. */
4272 d2 = string2;
4273 dend2 = regend[regno];
4274 }
4275 /* At end of register contents => success */
4276 if (d2 == dend2) break;
4277
4278 /* If necessary, advance to next segment in data. */
4279 PREFETCH ();
4280
4281 /* How many characters left in this segment to match. */
4282 mcnt = dend - d;
4283
4284 /* Want how many consecutive characters we can match in
4285 one shot, so, if necessary, adjust the count. */
4286 if (mcnt > dend2 - d2)
4287 mcnt = dend2 - d2;
4288
4289 /* Compare that many; failure if mismatch, else move
4290 past them. */
4291 if (translate
4292 ? bcmp_translate (d, d2, mcnt, translate)
4293 : bcmp (d, d2, mcnt))
4294 goto fail;
4295 d += mcnt, d2 += mcnt;
4296
4297 /* Do this because we've match some characters. */
4298 SET_REGS_MATCHED ();
4299 }
4300 }
4301 break;
4302
4303
4304 /* begline matches the empty string at the beginning of the string
4305 (unless `not_bol' is set in `bufp'), and, if
4306 `newline_anchor' is set, after newlines. */
4307 case begline:
4308 DEBUG_PRINT1 ("EXECUTING begline.\n");
4309
4310 if (AT_STRINGS_BEG (d))
4311 {
4312 if (!bufp->not_bol) break;
4313 }
4314 else if (d[-1] == '\n' && bufp->newline_anchor)
4315 {
4316 break;
4317 }
4318 /* In all other cases, we fail. */
4319 goto fail;
4320
4321
4322 /* endline is the dual of begline. */
4323 case endline:
4324 DEBUG_PRINT1 ("EXECUTING endline.\n");
4325
4326 if (AT_STRINGS_END (d))
4327 {
4328 if (!bufp->not_eol) break;
4329 }
4330
4331 /* We have to ``prefetch'' the next character. */
4332 else if ((d == end1 ? *string2 : *d) == '\n'
4333 && bufp->newline_anchor)
4334 {
4335 break;
4336 }
4337 goto fail;
4338
4339
4340 /* Match at the very beginning of the data. */
4341 case begbuf:
4342 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4343 if (AT_STRINGS_BEG (d))
4344 break;
4345 goto fail;
4346
4347
4348 /* Match at the very end of the data. */
4349 case endbuf:
4350 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4351 if (AT_STRINGS_END (d))
4352 break;
4353 goto fail;
4354
4355
4356 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4357 pushes NULL as the value for the string on the stack. Then
4358 `pop_failure_point' will keep the current value for the
4359 string, instead of restoring it. To see why, consider
4360 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4361 then the . fails against the \n. But the next thing we want
4362 to do is match the \n against the \n; if we restored the
4363 string value, we would be back at the foo.
4364
4365 Because this is used only in specific cases, we don't need to
4366 check all the things that `on_failure_jump' does, to make
4367 sure the right things get saved on the stack. Hence we don't
4368 share its code. The only reason to push anything on the
4369 stack at all is that otherwise we would have to change
4370 `anychar's code to do something besides goto fail in this
4371 case; that seems worse than this. */
4372 case on_failure_keep_string_jump:
4373 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4374
4375 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4376 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4377
4378 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4379 break;
4380
4381
4382 /* Uses of on_failure_jump:
4383
4384 Each alternative starts with an on_failure_jump that points
4385 to the beginning of the next alternative. Each alternative
4386 except the last ends with a jump that in effect jumps past
4387 the rest of the alternatives. (They really jump to the
4388 ending jump of the following alternative, because tensioning
4389 these jumps is a hassle.)
4390
4391 Repeats start with an on_failure_jump that points past both
4392 the repetition text and either the following jump or
4393 pop_failure_jump back to this on_failure_jump. */
4394 case on_failure_jump:
4395 on_failure:
4396 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4397
4398 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4399 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4400
4401 /* If this on_failure_jump comes right before a group (i.e.,
4402 the original * applied to a group), save the information
4403 for that group and all inner ones, so that if we fail back
4404 to this point, the group's information will be correct.
4405 For example, in \(a*\)*\1, we need the preceding group,
4406 and in \(zz\(a*\)b*\)\2, we need the inner group. */
4407
4408 /* We can't use `p' to check ahead because we push
4409 a failure point to `p + mcnt' after we do this. */
4410 p1 = p;
4411
4412 /* We need to skip no_op's before we look for the
4413 start_memory in case this on_failure_jump is happening as
4414 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4415 against aba. */
4416 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4417 p1++;
4418
4419 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4420 {
4421 /* We have a new highest active register now. This will
4422 get reset at the start_memory we are about to get to,
4423 but we will have saved all the registers relevant to
4424 this repetition op, as described above. */
4425 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4426 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4427 lowest_active_reg = *(p1 + 1);
4428 }
4429
4430 DEBUG_PRINT1 (":\n");
4431 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4432 break;
4433
4434
4435 /* A smart repeat ends with `maybe_pop_jump'.
4436 We change it to either `pop_failure_jump' or `jump'. */
4437 case maybe_pop_jump:
4438 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4439 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4440 {
4441 register unsigned char *p2 = p;
4442
4443 /* Compare the beginning of the repeat with what in the
4444 pattern follows its end. If we can establish that there
4445 is nothing that they would both match, i.e., that we
4446 would have to backtrack because of (as in, e.g., `a*a')
4447 then we can change to pop_failure_jump, because we'll
4448 never have to backtrack.
4449
4450 This is not true in the case of alternatives: in
4451 `(a|ab)*' we do need to backtrack to the `ab' alternative
4452 (e.g., if the string was `ab'). But instead of trying to
4453 detect that here, the alternative has put on a dummy
4454 failure point which is what we will end up popping. */
4455
4456 /* Skip over open/close-group commands.
4457 If what follows this loop is a ...+ construct,
4458 look at what begins its body, since we will have to
4459 match at least one of that. */
4460 while (1)
4461 {
4462 if (p2 + 2 < pend
4463 && ((re_opcode_t) *p2 == stop_memory
4464 || (re_opcode_t) *p2 == start_memory))
4465 p2 += 3;
4466 else if (p2 + 6 < pend
4467 && (re_opcode_t) *p2 == dummy_failure_jump)
4468 p2 += 6;
4469 else
4470 break;
4471 }
4472
4473 p1 = p + mcnt;
4474 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4475 to the `maybe_finalize_jump' of this case. Examine what
4476 follows. */
4477
4478 /* If we're at the end of the pattern, we can change. */
4479 if (p2 == pend)
4480 {
4481 /* Consider what happens when matching ":\(.*\)"
4482 against ":/". I don't really understand this code
4483 yet. */
4484 p[-3] = (unsigned char) pop_failure_jump;
4485 DEBUG_PRINT1
4486 (" End of pattern: change to `pop_failure_jump'.\n");
4487 }
4488
4489 else if ((re_opcode_t) *p2 == exactn
4490 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4491 {
4492 register unsigned char c
4493 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4494
4495 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4496 {
4497 p[-3] = (unsigned char) pop_failure_jump;
4498 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4499 c, p1[5]);
4500 }
4501
4502 else if ((re_opcode_t) p1[3] == charset
4503 || (re_opcode_t) p1[3] == charset_not)
4504 {
4505 int not = (re_opcode_t) p1[3] == charset_not;
4506
4507 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4508 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4509 not = !not;
4510
4511 /* `not' is equal to 1 if c would match, which means
4512 that we can't change to pop_failure_jump. */
4513 if (!not)
4514 {
4515 p[-3] = (unsigned char) pop_failure_jump;
4516 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4517 }
4518 }
4519 }
4520 else if ((re_opcode_t) *p2 == charset)
4521 {
4522 #ifdef DEBUG
4523 register unsigned char c
4524 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4525 #endif
4526
4527 if ((re_opcode_t) p1[3] == exactn
4528 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
4529 && (p2[2 + p1[5] / BYTEWIDTH]
4530 & (1 << (p1[5] % BYTEWIDTH)))))
4531 {
4532 p[-3] = (unsigned char) pop_failure_jump;
4533 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4534 c, p1[5]);
4535 }
4536
4537 else if ((re_opcode_t) p1[3] == charset_not)
4538 {
4539 int idx;
4540 /* We win if the charset_not inside the loop
4541 lists every character listed in the charset after. */
4542 for (idx = 0; idx < (int) p2[1]; idx++)
4543 if (! (p2[2 + idx] == 0
4544 || (idx < (int) p1[4]
4545 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4546 break;
4547
4548 if (idx == p2[1])
4549 {
4550 p[-3] = (unsigned char) pop_failure_jump;
4551 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4552 }
4553 }
4554 else if ((re_opcode_t) p1[3] == charset)
4555 {
4556 int idx;
4557 /* We win if the charset inside the loop
4558 has no overlap with the one after the loop. */
4559 for (idx = 0;
4560 idx < (int) p2[1] && idx < (int) p1[4];
4561 idx++)
4562 if ((p2[2 + idx] & p1[5 + idx]) != 0)
4563 break;
4564
4565 if (idx == p2[1] || idx == p1[4])
4566 {
4567 p[-3] = (unsigned char) pop_failure_jump;
4568 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4569 }
4570 }
4571 }
4572 }
4573 p -= 2; /* Point at relative address again. */
4574 if ((re_opcode_t) p[-1] != pop_failure_jump)
4575 {
4576 p[-1] = (unsigned char) jump;
4577 DEBUG_PRINT1 (" Match => jump.\n");
4578 goto unconditional_jump;
4579 }
4580 /* Note fall through. */
4581
4582
4583 /* The end of a simple repeat has a pop_failure_jump back to
4584 its matching on_failure_jump, where the latter will push a
4585 failure point. The pop_failure_jump takes off failure
4586 points put on by this pop_failure_jump's matching
4587 on_failure_jump; we got through the pattern to here from the
4588 matching on_failure_jump, so didn't fail. */
4589 case pop_failure_jump:
4590 {
4591 /* We need to pass separate storage for the lowest and
4592 highest registers, even though we don't care about the
4593 actual values. Otherwise, we will restore only one
4594 register from the stack, since lowest will == highest in
4595 `pop_failure_point'. */
4596 unsigned dummy_low_reg, dummy_high_reg;
4597 unsigned char *pdummy;
4598 const char *sdummy;
4599
4600 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4601 POP_FAILURE_POINT (sdummy, pdummy,
4602 dummy_low_reg, dummy_high_reg,
4603 reg_dummy, reg_dummy, reg_info_dummy);
4604 }
4605 /* Note fall through. */
4606
4607
4608 /* Unconditionally jump (without popping any failure points). */
4609 case jump:
4610 unconditional_jump:
4611 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4612 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4613 p += mcnt; /* Do the jump. */
4614 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4615 break;
4616
4617
4618 /* We need this opcode so we can detect where alternatives end
4619 in `group_match_null_string_p' et al. */
4620 case jump_past_alt:
4621 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4622 goto unconditional_jump;
4623
4624
4625 /* Normally, the on_failure_jump pushes a failure point, which
4626 then gets popped at pop_failure_jump. We will end up at
4627 pop_failure_jump, also, and with a pattern of, say, `a+', we
4628 are skipping over the on_failure_jump, so we have to push
4629 something meaningless for pop_failure_jump to pop. */
4630 case dummy_failure_jump:
4631 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4632 /* It doesn't matter what we push for the string here. What
4633 the code at `fail' tests is the value for the pattern. */
4634 PUSH_FAILURE_POINT (0, 0, -2);
4635 goto unconditional_jump;
4636
4637
4638 /* At the end of an alternative, we need to push a dummy failure
4639 point in case we are followed by a `pop_failure_jump', because
4640 we don't want the failure point for the alternative to be
4641 popped. For example, matching `(a|ab)*' against `aab'
4642 requires that we match the `ab' alternative. */
4643 case push_dummy_failure:
4644 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4645 /* See comments just above at `dummy_failure_jump' about the
4646 two zeroes. */
4647 PUSH_FAILURE_POINT (0, 0, -2);
4648 break;
4649
4650 /* Have to succeed matching what follows at least n times.
4651 After that, handle like `on_failure_jump'. */
4652 case succeed_n:
4653 EXTRACT_NUMBER (mcnt, p + 2);
4654 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4655
4656 assert (mcnt >= 0);
4657 /* Originally, this is how many times we HAVE to succeed. */
4658 if (mcnt > 0)
4659 {
4660 mcnt--;
4661 p += 2;
4662 STORE_NUMBER_AND_INCR (p, mcnt);
4663 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
4664 }
4665 else if (mcnt == 0)
4666 {
4667 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4668 p[2] = (unsigned char) no_op;
4669 p[3] = (unsigned char) no_op;
4670 goto on_failure;
4671 }
4672 break;
4673
4674 case jump_n:
4675 EXTRACT_NUMBER (mcnt, p + 2);
4676 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4677
4678 /* Originally, this is how many times we CAN jump. */
4679 if (mcnt)
4680 {
4681 mcnt--;
4682 STORE_NUMBER (p + 2, mcnt);
4683 goto unconditional_jump;
4684 }
4685 /* If don't have to jump any more, skip over the rest of command. */
4686 else
4687 p += 4;
4688 break;
4689
4690 case set_number_at:
4691 {
4692 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4693
4694 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4695 p1 = p + mcnt;
4696 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4697 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4698 STORE_NUMBER (p1, mcnt);
4699 break;
4700 }
4701
4702 #if 0
4703 /* The DEC Alpha C compiler 3.x generates incorrect code for the
4704 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4705 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4706 macro and introducing temporary variables works around the bug. */
4707
4708 case wordbound:
4709 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4710 if (AT_WORD_BOUNDARY (d))
4711 break;
4712 goto fail;
4713
4714 case notwordbound:
4715 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4716 if (AT_WORD_BOUNDARY (d))
4717 goto fail;
4718 break;
4719 #else
4720 case wordbound:
4721 {
4722 boolean prevchar, thischar;
4723
4724 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4725 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
4726 break;
4727
4728 prevchar = WORDCHAR_P (d - 1);
4729 thischar = WORDCHAR_P (d);
4730 if (prevchar != thischar)
4731 break;
4732 goto fail;
4733 }
4734
4735 case notwordbound:
4736 {
4737 boolean prevchar, thischar;
4738
4739 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4740 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
4741 goto fail;
4742
4743 prevchar = WORDCHAR_P (d - 1);
4744 thischar = WORDCHAR_P (d);
4745 if (prevchar != thischar)
4746 goto fail;
4747 break;
4748 }
4749 #endif
4750
4751 case wordbeg:
4752 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4753 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
4754 break;
4755 goto fail;
4756
4757 case wordend:
4758 DEBUG_PRINT1 ("EXECUTING wordend.\n");
4759 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
4760 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
4761 break;
4762 goto fail;
4763
4764 #ifdef emacs
4765 case before_dot:
4766 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4767 if (PTR_CHAR_POS ((unsigned char *) d) >= PT)
4768 goto fail;
4769 break;
4770
4771 case at_dot:
4772 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4773 if (PTR_CHAR_POS ((unsigned char *) d) != PT)
4774 goto fail;
4775 break;
4776
4777 case after_dot:
4778 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4779 if (PTR_CHAR_POS ((unsigned char *) d) <= PT)
4780 goto fail;
4781 break;
4782
4783 case syntaxspec:
4784 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
4785 mcnt = *p++;
4786 goto matchsyntax;
4787
4788 case wordchar:
4789 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
4790 mcnt = (int) Sword;
4791 matchsyntax:
4792 PREFETCH ();
4793 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4794 d++;
4795 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
4796 goto fail;
4797 SET_REGS_MATCHED ();
4798 break;
4799
4800 case notsyntaxspec:
4801 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
4802 mcnt = *p++;
4803 goto matchnotsyntax;
4804
4805 case notwordchar:
4806 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
4807 mcnt = (int) Sword;
4808 matchnotsyntax:
4809 PREFETCH ();
4810 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4811 d++;
4812 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
4813 goto fail;
4814 SET_REGS_MATCHED ();
4815 break;
4816
4817 #else /* not emacs */
4818 case wordchar:
4819 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4820 PREFETCH ();
4821 if (!WORDCHAR_P (d))
4822 goto fail;
4823 SET_REGS_MATCHED ();
4824 d++;
4825 break;
4826
4827 case notwordchar:
4828 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4829 PREFETCH ();
4830 if (WORDCHAR_P (d))
4831 goto fail;
4832 SET_REGS_MATCHED ();
4833 d++;
4834 break;
4835 #endif /* not emacs */
4836
4837 default:
4838 abort ();
4839 }
4840 continue; /* Successfully executed one pattern command; keep going. */
4841
4842
4843 /* We goto here if a matching operation fails. */
4844 fail:
4845 if (!FAIL_STACK_EMPTY ())
4846 { /* A restart point is known. Restore to that state. */
4847 DEBUG_PRINT1 ("\nFAIL:\n");
4848 POP_FAILURE_POINT (d, p,
4849 lowest_active_reg, highest_active_reg,
4850 regstart, regend, reg_info);
4851
4852 /* If this failure point is a dummy, try the next one. */
4853 if (!p)
4854 goto fail;
4855
4856 /* If we failed to the end of the pattern, don't examine *p. */
4857 assert (p <= pend);
4858 if (p < pend)
4859 {
4860 boolean is_a_jump_n = false;
4861
4862 /* If failed to a backwards jump that's part of a repetition
4863 loop, need to pop this failure point and use the next one. */
4864 switch ((re_opcode_t) *p)
4865 {
4866 case jump_n:
4867 is_a_jump_n = true;
4868 case maybe_pop_jump:
4869 case pop_failure_jump:
4870 case jump:
4871 p1 = p + 1;
4872 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4873 p1 += mcnt;
4874
4875 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
4876 || (!is_a_jump_n
4877 && (re_opcode_t) *p1 == on_failure_jump))
4878 goto fail;
4879 break;
4880 default:
4881 /* do nothing */ ;
4882 }
4883 }
4884
4885 if (d >= string1 && d <= end1)
4886 dend = end_match_1;
4887 }
4888 else
4889 break; /* Matching at this starting point really fails. */
4890 } /* for (;;) */
4891
4892 if (best_regs_set)
4893 goto restore_best_regs;
4894
4895 FREE_VARIABLES ();
4896
4897 return -1; /* Failure to match. */
4898 } /* re_match_2 */
4899 \f
4900 /* Subroutine definitions for re_match_2. */
4901
4902
4903 /* We are passed P pointing to a register number after a start_memory.
4904
4905 Return true if the pattern up to the corresponding stop_memory can
4906 match the empty string, and false otherwise.
4907
4908 If we find the matching stop_memory, sets P to point to one past its number.
4909 Otherwise, sets P to an undefined byte less than or equal to END.
4910
4911 We don't handle duplicates properly (yet). */
4912
4913 static boolean
4914 group_match_null_string_p (p, end, reg_info)
4915 unsigned char **p, *end;
4916 register_info_type *reg_info;
4917 {
4918 int mcnt;
4919 /* Point to after the args to the start_memory. */
4920 unsigned char *p1 = *p + 2;
4921
4922 while (p1 < end)
4923 {
4924 /* Skip over opcodes that can match nothing, and return true or
4925 false, as appropriate, when we get to one that can't, or to the
4926 matching stop_memory. */
4927
4928 switch ((re_opcode_t) *p1)
4929 {
4930 /* Could be either a loop or a series of alternatives. */
4931 case on_failure_jump:
4932 p1++;
4933 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4934
4935 /* If the next operation is not a jump backwards in the
4936 pattern. */
4937
4938 if (mcnt >= 0)
4939 {
4940 /* Go through the on_failure_jumps of the alternatives,
4941 seeing if any of the alternatives cannot match nothing.
4942 The last alternative starts with only a jump,
4943 whereas the rest start with on_failure_jump and end
4944 with a jump, e.g., here is the pattern for `a|b|c':
4945
4946 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4947 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
4948 /exactn/1/c
4949
4950 So, we have to first go through the first (n-1)
4951 alternatives and then deal with the last one separately. */
4952
4953
4954 /* Deal with the first (n-1) alternatives, which start
4955 with an on_failure_jump (see above) that jumps to right
4956 past a jump_past_alt. */
4957
4958 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
4959 {
4960 /* `mcnt' holds how many bytes long the alternative
4961 is, including the ending `jump_past_alt' and
4962 its number. */
4963
4964 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
4965 reg_info))
4966 return false;
4967
4968 /* Move to right after this alternative, including the
4969 jump_past_alt. */
4970 p1 += mcnt;
4971
4972 /* Break if it's the beginning of an n-th alternative
4973 that doesn't begin with an on_failure_jump. */
4974 if ((re_opcode_t) *p1 != on_failure_jump)
4975 break;
4976
4977 /* Still have to check that it's not an n-th
4978 alternative that starts with an on_failure_jump. */
4979 p1++;
4980 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4981 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
4982 {
4983 /* Get to the beginning of the n-th alternative. */
4984 p1 -= 3;
4985 break;
4986 }
4987 }
4988
4989 /* Deal with the last alternative: go back and get number
4990 of the `jump_past_alt' just before it. `mcnt' contains
4991 the length of the alternative. */
4992 EXTRACT_NUMBER (mcnt, p1 - 2);
4993
4994 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
4995 return false;
4996
4997 p1 += mcnt; /* Get past the n-th alternative. */
4998 } /* if mcnt > 0 */
4999 break;
5000
5001
5002 case stop_memory:
5003 assert (p1[1] == **p);
5004 *p = p1 + 2;
5005 return true;
5006
5007
5008 default:
5009 if (!common_op_match_null_string_p (&p1, end, reg_info))
5010 return false;
5011 }
5012 } /* while p1 < end */
5013
5014 return false;
5015 } /* group_match_null_string_p */
5016
5017
5018 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5019 It expects P to be the first byte of a single alternative and END one
5020 byte past the last. The alternative can contain groups. */
5021
5022 static boolean
5023 alt_match_null_string_p (p, end, reg_info)
5024 unsigned char *p, *end;
5025 register_info_type *reg_info;
5026 {
5027 int mcnt;
5028 unsigned char *p1 = p;
5029
5030 while (p1 < end)
5031 {
5032 /* Skip over opcodes that can match nothing, and break when we get
5033 to one that can't. */
5034
5035 switch ((re_opcode_t) *p1)
5036 {
5037 /* It's a loop. */
5038 case on_failure_jump:
5039 p1++;
5040 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5041 p1 += mcnt;
5042 break;
5043
5044 default:
5045 if (!common_op_match_null_string_p (&p1, end, reg_info))
5046 return false;
5047 }
5048 } /* while p1 < end */
5049
5050 return true;
5051 } /* alt_match_null_string_p */
5052
5053
5054 /* Deals with the ops common to group_match_null_string_p and
5055 alt_match_null_string_p.
5056
5057 Sets P to one after the op and its arguments, if any. */
5058
5059 static boolean
5060 common_op_match_null_string_p (p, end, reg_info)
5061 unsigned char **p, *end;
5062 register_info_type *reg_info;
5063 {
5064 int mcnt;
5065 boolean ret;
5066 int reg_no;
5067 unsigned char *p1 = *p;
5068
5069 switch ((re_opcode_t) *p1++)
5070 {
5071 case no_op:
5072 case begline:
5073 case endline:
5074 case begbuf:
5075 case endbuf:
5076 case wordbeg:
5077 case wordend:
5078 case wordbound:
5079 case notwordbound:
5080 #ifdef emacs
5081 case before_dot:
5082 case at_dot:
5083 case after_dot:
5084 #endif
5085 break;
5086
5087 case start_memory:
5088 reg_no = *p1;
5089 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5090 ret = group_match_null_string_p (&p1, end, reg_info);
5091
5092 /* Have to set this here in case we're checking a group which
5093 contains a group and a back reference to it. */
5094
5095 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
5096 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
5097
5098 if (!ret)
5099 return false;
5100 break;
5101
5102 /* If this is an optimized succeed_n for zero times, make the jump. */
5103 case jump:
5104 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5105 if (mcnt >= 0)
5106 p1 += mcnt;
5107 else
5108 return false;
5109 break;
5110
5111 case succeed_n:
5112 /* Get to the number of times to succeed. */
5113 p1 += 2;
5114 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5115
5116 if (mcnt == 0)
5117 {
5118 p1 -= 4;
5119 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5120 p1 += mcnt;
5121 }
5122 else
5123 return false;
5124 break;
5125
5126 case duplicate:
5127 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5128 return false;
5129 break;
5130
5131 case set_number_at:
5132 p1 += 4;
5133
5134 default:
5135 /* All other opcodes mean we cannot match the empty string. */
5136 return false;
5137 }
5138
5139 *p = p1;
5140 return true;
5141 } /* common_op_match_null_string_p */
5142
5143
5144 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5145 bytes; nonzero otherwise. */
5146
5147 static int
5148 bcmp_translate (s1, s2, len, translate)
5149 unsigned char *s1, *s2;
5150 register int len;
5151 RE_TRANSLATE_TYPE translate;
5152 {
5153 register unsigned char *p1 = s1, *p2 = s2;
5154 while (len)
5155 {
5156 if (translate[*p1++] != translate[*p2++]) return 1;
5157 len--;
5158 }
5159 return 0;
5160 }
5161 \f
5162 /* Entry points for GNU code. */
5163
5164 /* re_compile_pattern is the GNU regular expression compiler: it
5165 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5166 Returns 0 if the pattern was valid, otherwise an error string.
5167
5168 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5169 are set in BUFP on entry.
5170
5171 We call regex_compile to do the actual compilation. */
5172
5173 const char *
5174 re_compile_pattern (pattern, length, bufp)
5175 const char *pattern;
5176 int length;
5177 struct re_pattern_buffer *bufp;
5178 {
5179 reg_errcode_t ret;
5180
5181 /* GNU code is written to assume at least RE_NREGS registers will be set
5182 (and at least one extra will be -1). */
5183 bufp->regs_allocated = REGS_UNALLOCATED;
5184
5185 /* And GNU code determines whether or not to get register information
5186 by passing null for the REGS argument to re_match, etc., not by
5187 setting no_sub. */
5188 bufp->no_sub = 0;
5189
5190 /* Match anchors at newline. */
5191 bufp->newline_anchor = 1;
5192
5193 ret = regex_compile (pattern, length, re_syntax_options, bufp);
5194
5195 if (!ret)
5196 return NULL;
5197 return gettext (re_error_msgid[(int) ret]);
5198 }
5199 \f
5200 /* Entry points compatible with 4.2 BSD regex library. We don't define
5201 them unless specifically requested. */
5202
5203 #if defined (_REGEX_RE_COMP) || defined (_LIBC)
5204
5205 /* BSD has one and only one pattern buffer. */
5206 static struct re_pattern_buffer re_comp_buf;
5207
5208 char *
5209 #ifdef _LIBC
5210 /* Make these definitions weak in libc, so POSIX programs can redefine
5211 these names if they don't use our functions, and still use
5212 regcomp/regexec below without link errors. */
5213 weak_function
5214 #endif
5215 re_comp (s)
5216 const char *s;
5217 {
5218 reg_errcode_t ret;
5219
5220 if (!s)
5221 {
5222 if (!re_comp_buf.buffer)
5223 return gettext ("No previous regular expression");
5224 return 0;
5225 }
5226
5227 if (!re_comp_buf.buffer)
5228 {
5229 re_comp_buf.buffer = (unsigned char *) malloc (200);
5230 if (re_comp_buf.buffer == NULL)
5231 return gettext (re_error_msgid[(int) REG_ESPACE]);
5232 re_comp_buf.allocated = 200;
5233
5234 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5235 if (re_comp_buf.fastmap == NULL)
5236 return gettext (re_error_msgid[(int) REG_ESPACE]);
5237 }
5238
5239 /* Since `re_exec' always passes NULL for the `regs' argument, we
5240 don't need to initialize the pattern buffer fields which affect it. */
5241
5242 /* Match anchors at newlines. */
5243 re_comp_buf.newline_anchor = 1;
5244
5245 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5246
5247 if (!ret)
5248 return NULL;
5249
5250 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5251 return (char *) gettext (re_error_msgid[(int) ret]);
5252 }
5253
5254
5255 int
5256 #ifdef _LIBC
5257 weak_function
5258 #endif
5259 re_exec (s)
5260 const char *s;
5261 {
5262 const int len = strlen (s);
5263 return
5264 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5265 }
5266 #endif /* _REGEX_RE_COMP */
5267 \f
5268 /* POSIX.2 functions. Don't define these for Emacs. */
5269
5270 #ifndef emacs
5271
5272 /* regcomp takes a regular expression as a string and compiles it.
5273
5274 PREG is a regex_t *. We do not expect any fields to be initialized,
5275 since POSIX says we shouldn't. Thus, we set
5276
5277 `buffer' to the compiled pattern;
5278 `used' to the length of the compiled pattern;
5279 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5280 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5281 RE_SYNTAX_POSIX_BASIC;
5282 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5283 `fastmap' and `fastmap_accurate' to zero;
5284 `re_nsub' to the number of subexpressions in PATTERN.
5285
5286 PATTERN is the address of the pattern string.
5287
5288 CFLAGS is a series of bits which affect compilation.
5289
5290 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5291 use POSIX basic syntax.
5292
5293 If REG_NEWLINE is set, then . and [^...] don't match newline.
5294 Also, regexec will try a match beginning after every newline.
5295
5296 If REG_ICASE is set, then we considers upper- and lowercase
5297 versions of letters to be equivalent when matching.
5298
5299 If REG_NOSUB is set, then when PREG is passed to regexec, that
5300 routine will report only success or failure, and nothing about the
5301 registers.
5302
5303 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
5304 the return codes and their meanings.) */
5305
5306 int
5307 regcomp (preg, pattern, cflags)
5308 regex_t *preg;
5309 const char *pattern;
5310 int cflags;
5311 {
5312 reg_errcode_t ret;
5313 unsigned syntax
5314 = (cflags & REG_EXTENDED) ?
5315 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5316
5317 /* regex_compile will allocate the space for the compiled pattern. */
5318 preg->buffer = 0;
5319 preg->allocated = 0;
5320 preg->used = 0;
5321
5322 /* Don't bother to use a fastmap when searching. This simplifies the
5323 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5324 characters after newlines into the fastmap. This way, we just try
5325 every character. */
5326 preg->fastmap = 0;
5327
5328 if (cflags & REG_ICASE)
5329 {
5330 unsigned i;
5331
5332 preg->translate
5333 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
5334 * sizeof (*(RE_TRANSLATE_TYPE)0));
5335 if (preg->translate == NULL)
5336 return (int) REG_ESPACE;
5337
5338 /* Map uppercase characters to corresponding lowercase ones. */
5339 for (i = 0; i < CHAR_SET_SIZE; i++)
5340 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
5341 }
5342 else
5343 preg->translate = NULL;
5344
5345 /* If REG_NEWLINE is set, newlines are treated differently. */
5346 if (cflags & REG_NEWLINE)
5347 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5348 syntax &= ~RE_DOT_NEWLINE;
5349 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5350 /* It also changes the matching behavior. */
5351 preg->newline_anchor = 1;
5352 }
5353 else
5354 preg->newline_anchor = 0;
5355
5356 preg->no_sub = !!(cflags & REG_NOSUB);
5357
5358 /* POSIX says a null character in the pattern terminates it, so we
5359 can use strlen here in compiling the pattern. */
5360 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5361
5362 /* POSIX doesn't distinguish between an unmatched open-group and an
5363 unmatched close-group: both are REG_EPAREN. */
5364 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5365
5366 return (int) ret;
5367 }
5368
5369
5370 /* regexec searches for a given pattern, specified by PREG, in the
5371 string STRING.
5372
5373 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5374 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5375 least NMATCH elements, and we set them to the offsets of the
5376 corresponding matched substrings.
5377
5378 EFLAGS specifies `execution flags' which affect matching: if
5379 REG_NOTBOL is set, then ^ does not match at the beginning of the
5380 string; if REG_NOTEOL is set, then $ does not match at the end.
5381
5382 We return 0 if we find a match and REG_NOMATCH if not. */
5383
5384 int
5385 regexec (preg, string, nmatch, pmatch, eflags)
5386 const regex_t *preg;
5387 const char *string;
5388 size_t nmatch;
5389 regmatch_t pmatch[];
5390 int eflags;
5391 {
5392 int ret;
5393 struct re_registers regs;
5394 regex_t private_preg;
5395 int len = strlen (string);
5396 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5397
5398 private_preg = *preg;
5399
5400 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5401 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5402
5403 /* The user has told us exactly how many registers to return
5404 information about, via `nmatch'. We have to pass that on to the
5405 matching routines. */
5406 private_preg.regs_allocated = REGS_FIXED;
5407
5408 if (want_reg_info)
5409 {
5410 regs.num_regs = nmatch;
5411 regs.start = TALLOC (nmatch, regoff_t);
5412 regs.end = TALLOC (nmatch, regoff_t);
5413 if (regs.start == NULL || regs.end == NULL)
5414 return (int) REG_NOMATCH;
5415 }
5416
5417 /* Perform the searching operation. */
5418 ret = re_search (&private_preg, string, len,
5419 /* start: */ 0, /* range: */ len,
5420 want_reg_info ? &regs : (struct re_registers *) 0);
5421
5422 /* Copy the register information to the POSIX structure. */
5423 if (want_reg_info)
5424 {
5425 if (ret >= 0)
5426 {
5427 unsigned r;
5428
5429 for (r = 0; r < nmatch; r++)
5430 {
5431 pmatch[r].rm_so = regs.start[r];
5432 pmatch[r].rm_eo = regs.end[r];
5433 }
5434 }
5435
5436 /* If we needed the temporary register info, free the space now. */
5437 free (regs.start);
5438 free (regs.end);
5439 }
5440
5441 /* We want zero return to mean success, unlike `re_search'. */
5442 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5443 }
5444
5445
5446 /* Returns a message corresponding to an error code, ERRCODE, returned
5447 from either regcomp or regexec. We don't use PREG here. */
5448
5449 size_t
5450 regerror (errcode, preg, errbuf, errbuf_size)
5451 int errcode;
5452 const regex_t *preg;
5453 char *errbuf;
5454 size_t errbuf_size;
5455 {
5456 const char *msg;
5457 size_t msg_size;
5458
5459 if (errcode < 0
5460 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5461 /* Only error codes returned by the rest of the code should be passed
5462 to this routine. If we are given anything else, or if other regex
5463 code generates an invalid error code, then the program has a bug.
5464 Dump core so we can fix it. */
5465 abort ();
5466
5467 msg = gettext (re_error_msgid[errcode]);
5468
5469 msg_size = strlen (msg) + 1; /* Includes the null. */
5470
5471 if (errbuf_size != 0)
5472 {
5473 if (msg_size > errbuf_size)
5474 {
5475 strncpy (errbuf, msg, errbuf_size - 1);
5476 errbuf[errbuf_size - 1] = 0;
5477 }
5478 else
5479 strcpy (errbuf, msg);
5480 }
5481
5482 return msg_size;
5483 }
5484
5485
5486 /* Free dynamically allocated space used by PREG. */
5487
5488 void
5489 regfree (preg)
5490 regex_t *preg;
5491 {
5492 if (preg->buffer != NULL)
5493 free (preg->buffer);
5494 preg->buffer = NULL;
5495
5496 preg->allocated = 0;
5497 preg->used = 0;
5498
5499 if (preg->fastmap != NULL)
5500 free (preg->fastmap);
5501 preg->fastmap = NULL;
5502 preg->fastmap_accurate = 0;
5503
5504 if (preg->translate != NULL)
5505 free (preg->translate);
5506 preg->translate = NULL;
5507 }
5508
5509 #endif /* not emacs */