]> code.delx.au - gnu-emacs/blob - src/ccl.c
(command-line-processed): Doc fix.
[gnu-emacs] / src / ccl.c
1 /* CCL (Code Conversion Language) interpreter.
2 Copyright (C) 1995, 1997 Electrotechnical Laboratory, JAPAN.
3 Copyright (C) 2001 Free Software Foundation, Inc.
4 Licensed to the Free Software Foundation.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs; see the file COPYING. If not, write to
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #ifdef emacs
24 #include <config.h>
25 #endif
26
27 #include <stdio.h>
28
29 #ifdef emacs
30
31 #include "lisp.h"
32 #include "charset.h"
33 #include "ccl.h"
34 #include "coding.h"
35
36 #else /* not emacs */
37
38 #include "mulelib.h"
39
40 #endif /* not emacs */
41
42 /* This contains all code conversion map available to CCL. */
43 Lisp_Object Vcode_conversion_map_vector;
44
45 /* Alist of fontname patterns vs corresponding CCL program. */
46 Lisp_Object Vfont_ccl_encoder_alist;
47
48 /* This symbol is a property which assocates with ccl program vector.
49 Ex: (get 'ccl-big5-encoder 'ccl-program) returns ccl program vector. */
50 Lisp_Object Qccl_program;
51
52 /* These symbols are properties which associate with code conversion
53 map and their ID respectively. */
54 Lisp_Object Qcode_conversion_map;
55 Lisp_Object Qcode_conversion_map_id;
56
57 /* Symbols of ccl program have this property, a value of the property
58 is an index for Vccl_protram_table. */
59 Lisp_Object Qccl_program_idx;
60
61 /* Table of registered CCL programs. Each element is a vector of
62 NAME, CCL_PROG, and RESOLVEDP where NAME (symbol) is the name of
63 the program, CCL_PROG (vector) is the compiled code of the program,
64 RESOLVEDP (t or nil) is the flag to tell if symbols in CCL_PROG is
65 already resolved to index numbers or not. */
66 Lisp_Object Vccl_program_table;
67
68 /* CCL (Code Conversion Language) is a simple language which has
69 operations on one input buffer, one output buffer, and 7 registers.
70 The syntax of CCL is described in `ccl.el'. Emacs Lisp function
71 `ccl-compile' compiles a CCL program and produces a CCL code which
72 is a vector of integers. The structure of this vector is as
73 follows: The 1st element: buffer-magnification, a factor for the
74 size of output buffer compared with the size of input buffer. The
75 2nd element: address of CCL code to be executed when encountered
76 with end of input stream. The 3rd and the remaining elements: CCL
77 codes. */
78
79 /* Header of CCL compiled code */
80 #define CCL_HEADER_BUF_MAG 0
81 #define CCL_HEADER_EOF 1
82 #define CCL_HEADER_MAIN 2
83
84 /* CCL code is a sequence of 28-bit non-negative integers (i.e. the
85 MSB is always 0), each contains CCL command and/or arguments in the
86 following format:
87
88 |----------------- integer (28-bit) ------------------|
89 |------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -|
90 |--constant argument--|-register-|-register-|-command-|
91 ccccccccccccccccc RRR rrr XXXXX
92 or
93 |------- relative address -------|-register-|-command-|
94 cccccccccccccccccccc rrr XXXXX
95 or
96 |------------- constant or other args ----------------|
97 cccccccccccccccccccccccccccc
98
99 where, `cc...c' is a non-negative integer indicating constant value
100 (the left most `c' is always 0) or an absolute jump address, `RRR'
101 and `rrr' are CCL register number, `XXXXX' is one of the following
102 CCL commands. */
103
104 /* CCL commands
105
106 Each comment fields shows one or more lines for command syntax and
107 the following lines for semantics of the command. In semantics, IC
108 stands for Instruction Counter. */
109
110 #define CCL_SetRegister 0x00 /* Set register a register value:
111 1:00000000000000000RRRrrrXXXXX
112 ------------------------------
113 reg[rrr] = reg[RRR];
114 */
115
116 #define CCL_SetShortConst 0x01 /* Set register a short constant value:
117 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
118 ------------------------------
119 reg[rrr] = CCCCCCCCCCCCCCCCCCC;
120 */
121
122 #define CCL_SetConst 0x02 /* Set register a constant value:
123 1:00000000000000000000rrrXXXXX
124 2:CONSTANT
125 ------------------------------
126 reg[rrr] = CONSTANT;
127 IC++;
128 */
129
130 #define CCL_SetArray 0x03 /* Set register an element of array:
131 1:CCCCCCCCCCCCCCCCCRRRrrrXXXXX
132 2:ELEMENT[0]
133 3:ELEMENT[1]
134 ...
135 ------------------------------
136 if (0 <= reg[RRR] < CC..C)
137 reg[rrr] = ELEMENT[reg[RRR]];
138 IC += CC..C;
139 */
140
141 #define CCL_Jump 0x04 /* Jump:
142 1:A--D--D--R--E--S--S-000XXXXX
143 ------------------------------
144 IC += ADDRESS;
145 */
146
147 /* Note: If CC..C is greater than 0, the second code is omitted. */
148
149 #define CCL_JumpCond 0x05 /* Jump conditional:
150 1:A--D--D--R--E--S--S-rrrXXXXX
151 ------------------------------
152 if (!reg[rrr])
153 IC += ADDRESS;
154 */
155
156
157 #define CCL_WriteRegisterJump 0x06 /* Write register and jump:
158 1:A--D--D--R--E--S--S-rrrXXXXX
159 ------------------------------
160 write (reg[rrr]);
161 IC += ADDRESS;
162 */
163
164 #define CCL_WriteRegisterReadJump 0x07 /* Write register, read, and jump:
165 1:A--D--D--R--E--S--S-rrrXXXXX
166 2:A--D--D--R--E--S--S-rrrYYYYY
167 -----------------------------
168 write (reg[rrr]);
169 IC++;
170 read (reg[rrr]);
171 IC += ADDRESS;
172 */
173 /* Note: If read is suspended, the resumed execution starts from the
174 second code (YYYYY == CCL_ReadJump). */
175
176 #define CCL_WriteConstJump 0x08 /* Write constant and jump:
177 1:A--D--D--R--E--S--S-000XXXXX
178 2:CONST
179 ------------------------------
180 write (CONST);
181 IC += ADDRESS;
182 */
183
184 #define CCL_WriteConstReadJump 0x09 /* Write constant, read, and jump:
185 1:A--D--D--R--E--S--S-rrrXXXXX
186 2:CONST
187 3:A--D--D--R--E--S--S-rrrYYYYY
188 -----------------------------
189 write (CONST);
190 IC += 2;
191 read (reg[rrr]);
192 IC += ADDRESS;
193 */
194 /* Note: If read is suspended, the resumed execution starts from the
195 second code (YYYYY == CCL_ReadJump). */
196
197 #define CCL_WriteStringJump 0x0A /* Write string and jump:
198 1:A--D--D--R--E--S--S-000XXXXX
199 2:LENGTH
200 3:0000STRIN[0]STRIN[1]STRIN[2]
201 ...
202 ------------------------------
203 write_string (STRING, LENGTH);
204 IC += ADDRESS;
205 */
206
207 #define CCL_WriteArrayReadJump 0x0B /* Write an array element, read, and jump:
208 1:A--D--D--R--E--S--S-rrrXXXXX
209 2:LENGTH
210 3:ELEMENET[0]
211 4:ELEMENET[1]
212 ...
213 N:A--D--D--R--E--S--S-rrrYYYYY
214 ------------------------------
215 if (0 <= reg[rrr] < LENGTH)
216 write (ELEMENT[reg[rrr]]);
217 IC += LENGTH + 2; (... pointing at N+1)
218 read (reg[rrr]);
219 IC += ADDRESS;
220 */
221 /* Note: If read is suspended, the resumed execution starts from the
222 Nth code (YYYYY == CCL_ReadJump). */
223
224 #define CCL_ReadJump 0x0C /* Read and jump:
225 1:A--D--D--R--E--S--S-rrrYYYYY
226 -----------------------------
227 read (reg[rrr]);
228 IC += ADDRESS;
229 */
230
231 #define CCL_Branch 0x0D /* Jump by branch table:
232 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
233 2:A--D--D--R--E-S-S[0]000XXXXX
234 3:A--D--D--R--E-S-S[1]000XXXXX
235 ...
236 ------------------------------
237 if (0 <= reg[rrr] < CC..C)
238 IC += ADDRESS[reg[rrr]];
239 else
240 IC += ADDRESS[CC..C];
241 */
242
243 #define CCL_ReadRegister 0x0E /* Read bytes into registers:
244 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
245 2:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
246 ...
247 ------------------------------
248 while (CCC--)
249 read (reg[rrr]);
250 */
251
252 #define CCL_WriteExprConst 0x0F /* write result of expression:
253 1:00000OPERATION000RRR000XXXXX
254 2:CONSTANT
255 ------------------------------
256 write (reg[RRR] OPERATION CONSTANT);
257 IC++;
258 */
259
260 /* Note: If the Nth read is suspended, the resumed execution starts
261 from the Nth code. */
262
263 #define CCL_ReadBranch 0x10 /* Read one byte into a register,
264 and jump by branch table:
265 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
266 2:A--D--D--R--E-S-S[0]000XXXXX
267 3:A--D--D--R--E-S-S[1]000XXXXX
268 ...
269 ------------------------------
270 read (read[rrr]);
271 if (0 <= reg[rrr] < CC..C)
272 IC += ADDRESS[reg[rrr]];
273 else
274 IC += ADDRESS[CC..C];
275 */
276
277 #define CCL_WriteRegister 0x11 /* Write registers:
278 1:CCCCCCCCCCCCCCCCCCCrrrXXXXX
279 2:CCCCCCCCCCCCCCCCCCCrrrXXXXX
280 ...
281 ------------------------------
282 while (CCC--)
283 write (reg[rrr]);
284 ...
285 */
286
287 /* Note: If the Nth write is suspended, the resumed execution
288 starts from the Nth code. */
289
290 #define CCL_WriteExprRegister 0x12 /* Write result of expression
291 1:00000OPERATIONRrrRRR000XXXXX
292 ------------------------------
293 write (reg[RRR] OPERATION reg[Rrr]);
294 */
295
296 #define CCL_Call 0x13 /* Call the CCL program whose ID is
297 CC..C or cc..c.
298 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX
299 [2:00000000cccccccccccccccccccc]
300 ------------------------------
301 if (FFF)
302 call (cc..c)
303 IC++;
304 else
305 call (CC..C)
306 */
307
308 #define CCL_WriteConstString 0x14 /* Write a constant or a string:
309 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
310 [2:0000STRIN[0]STRIN[1]STRIN[2]]
311 [...]
312 -----------------------------
313 if (!rrr)
314 write (CC..C)
315 else
316 write_string (STRING, CC..C);
317 IC += (CC..C + 2) / 3;
318 */
319
320 #define CCL_WriteArray 0x15 /* Write an element of array:
321 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
322 2:ELEMENT[0]
323 3:ELEMENT[1]
324 ...
325 ------------------------------
326 if (0 <= reg[rrr] < CC..C)
327 write (ELEMENT[reg[rrr]]);
328 IC += CC..C;
329 */
330
331 #define CCL_End 0x16 /* Terminate:
332 1:00000000000000000000000XXXXX
333 ------------------------------
334 terminate ();
335 */
336
337 /* The following two codes execute an assignment arithmetic/logical
338 operation. The form of the operation is like REG OP= OPERAND. */
339
340 #define CCL_ExprSelfConst 0x17 /* REG OP= constant:
341 1:00000OPERATION000000rrrXXXXX
342 2:CONSTANT
343 ------------------------------
344 reg[rrr] OPERATION= CONSTANT;
345 */
346
347 #define CCL_ExprSelfReg 0x18 /* REG1 OP= REG2:
348 1:00000OPERATION000RRRrrrXXXXX
349 ------------------------------
350 reg[rrr] OPERATION= reg[RRR];
351 */
352
353 /* The following codes execute an arithmetic/logical operation. The
354 form of the operation is like REG_X = REG_Y OP OPERAND2. */
355
356 #define CCL_SetExprConst 0x19 /* REG_X = REG_Y OP constant:
357 1:00000OPERATION000RRRrrrXXXXX
358 2:CONSTANT
359 ------------------------------
360 reg[rrr] = reg[RRR] OPERATION CONSTANT;
361 IC++;
362 */
363
364 #define CCL_SetExprReg 0x1A /* REG1 = REG2 OP REG3:
365 1:00000OPERATIONRrrRRRrrrXXXXX
366 ------------------------------
367 reg[rrr] = reg[RRR] OPERATION reg[Rrr];
368 */
369
370 #define CCL_JumpCondExprConst 0x1B /* Jump conditional according to
371 an operation on constant:
372 1:A--D--D--R--E--S--S-rrrXXXXX
373 2:OPERATION
374 3:CONSTANT
375 -----------------------------
376 reg[7] = reg[rrr] OPERATION CONSTANT;
377 if (!(reg[7]))
378 IC += ADDRESS;
379 else
380 IC += 2
381 */
382
383 #define CCL_JumpCondExprReg 0x1C /* Jump conditional according to
384 an operation on register:
385 1:A--D--D--R--E--S--S-rrrXXXXX
386 2:OPERATION
387 3:RRR
388 -----------------------------
389 reg[7] = reg[rrr] OPERATION reg[RRR];
390 if (!reg[7])
391 IC += ADDRESS;
392 else
393 IC += 2;
394 */
395
396 #define CCL_ReadJumpCondExprConst 0x1D /* Read and jump conditional according
397 to an operation on constant:
398 1:A--D--D--R--E--S--S-rrrXXXXX
399 2:OPERATION
400 3:CONSTANT
401 -----------------------------
402 read (reg[rrr]);
403 reg[7] = reg[rrr] OPERATION CONSTANT;
404 if (!reg[7])
405 IC += ADDRESS;
406 else
407 IC += 2;
408 */
409
410 #define CCL_ReadJumpCondExprReg 0x1E /* Read and jump conditional according
411 to an operation on register:
412 1:A--D--D--R--E--S--S-rrrXXXXX
413 2:OPERATION
414 3:RRR
415 -----------------------------
416 read (reg[rrr]);
417 reg[7] = reg[rrr] OPERATION reg[RRR];
418 if (!reg[7])
419 IC += ADDRESS;
420 else
421 IC += 2;
422 */
423
424 #define CCL_Extension 0x1F /* Extended CCL code
425 1:ExtendedCOMMNDRrrRRRrrrXXXXX
426 2:ARGUEMENT
427 3:...
428 ------------------------------
429 extended_command (rrr,RRR,Rrr,ARGS)
430 */
431
432 /*
433 Here after, Extended CCL Instructions.
434 Bit length of extended command is 14.
435 Therefore, the instruction code range is 0..16384(0x3fff).
436 */
437
438 /* Read a multibyte characeter.
439 A code point is stored into reg[rrr]. A charset ID is stored into
440 reg[RRR]. */
441
442 #define CCL_ReadMultibyteChar2 0x00 /* Read Multibyte Character
443 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
444
445 /* Write a multibyte character.
446 Write a character whose code point is reg[rrr] and the charset ID
447 is reg[RRR]. */
448
449 #define CCL_WriteMultibyteChar2 0x01 /* Write Multibyte Character
450 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
451
452 /* Translate a character whose code point is reg[rrr] and the charset
453 ID is reg[RRR] by a translation table whose ID is reg[Rrr].
454
455 A translated character is set in reg[rrr] (code point) and reg[RRR]
456 (charset ID). */
457
458 #define CCL_TranslateCharacter 0x02 /* Translate a multibyte character
459 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
460
461 /* Translate a character whose code point is reg[rrr] and the charset
462 ID is reg[RRR] by a translation table whose ID is ARGUMENT.
463
464 A translated character is set in reg[rrr] (code point) and reg[RRR]
465 (charset ID). */
466
467 #define CCL_TranslateCharacterConstTbl 0x03 /* Translate a multibyte character
468 1:ExtendedCOMMNDRrrRRRrrrXXXXX
469 2:ARGUMENT(Translation Table ID)
470 */
471
472 /* Iterate looking up MAPs for reg[rrr] starting from the Nth (N =
473 reg[RRR]) MAP until some value is found.
474
475 Each MAP is a Lisp vector whose element is number, nil, t, or
476 lambda.
477 If the element is nil, ignore the map and proceed to the next map.
478 If the element is t or lambda, finish without changing reg[rrr].
479 If the element is a number, set reg[rrr] to the number and finish.
480
481 Detail of the map structure is descibed in the comment for
482 CCL_MapMultiple below. */
483
484 #define CCL_IterateMultipleMap 0x10 /* Iterate multiple maps
485 1:ExtendedCOMMNDXXXRRRrrrXXXXX
486 2:NUMBER of MAPs
487 3:MAP-ID1
488 4:MAP-ID2
489 ...
490 */
491
492 /* Map the code in reg[rrr] by MAPs starting from the Nth (N =
493 reg[RRR]) map.
494
495 MAPs are supplied in the succeeding CCL codes as follows:
496
497 When CCL program gives this nested structure of map to this command:
498 ((MAP-ID11
499 MAP-ID12
500 (MAP-ID121 MAP-ID122 MAP-ID123)
501 MAP-ID13)
502 (MAP-ID21
503 (MAP-ID211 (MAP-ID2111) MAP-ID212)
504 MAP-ID22)),
505 the compiled CCL codes has this sequence:
506 CCL_MapMultiple (CCL code of this command)
507 16 (total number of MAPs and SEPARATORs)
508 -7 (1st SEPARATOR)
509 MAP-ID11
510 MAP-ID12
511 -3 (2nd SEPARATOR)
512 MAP-ID121
513 MAP-ID122
514 MAP-ID123
515 MAP-ID13
516 -7 (3rd SEPARATOR)
517 MAP-ID21
518 -4 (4th SEPARATOR)
519 MAP-ID211
520 -1 (5th SEPARATOR)
521 MAP_ID2111
522 MAP-ID212
523 MAP-ID22
524
525 A value of each SEPARATOR follows this rule:
526 MAP-SET := SEPARATOR [(MAP-ID | MAP-SET)]+
527 SEPARATOR := -(number of MAP-IDs and SEPARATORs in the MAP-SET)
528
529 (*)....Nest level of MAP-SET must not be over than MAX_MAP_SET_LEVEL.
530
531 When some map fails to map (i.e. it doesn't have a value for
532 reg[rrr]), the mapping is treated as identity.
533
534 The mapping is iterated for all maps in each map set (set of maps
535 separated by SEPARATOR) except in the case that lambda is
536 encountered. More precisely, the mapping proceeds as below:
537
538 At first, VAL0 is set to reg[rrr], and it is translated by the
539 first map to VAL1. Then, VAL1 is translated by the next map to
540 VAL2. This mapping is iterated until the last map is used. The
541 result of the mapping is the last value of VAL?. When the mapping
542 process reached to the end of the map set, it moves to the next
543 map set. If the next does not exit, the mapping process terminates,
544 and regard the last value as a result.
545
546 But, when VALm is mapped to VALn and VALn is not a number, the
547 mapping proceed as below:
548
549 If VALn is nil, the lastest map is ignored and the mapping of VALm
550 proceed to the next map.
551
552 In VALn is t, VALm is reverted to reg[rrr] and the mapping of VALm
553 proceed to the next map.
554
555 If VALn is lambda, move to the next map set like reaching to the
556 end of the current map set.
557
558 If VALn is a symbol, call the CCL program refered by it.
559 Then, use reg[rrr] as a mapped value except for -1, -2 and -3.
560 Such special values are regarded as nil, t, and lambda respectively.
561
562 Each map is a Lisp vector of the following format (a) or (b):
563 (a)......[STARTPOINT VAL1 VAL2 ...]
564 (b)......[t VAL STARTPOINT ENDPOINT],
565 where
566 STARTPOINT is an offset to be used for indexing a map,
567 ENDPOINT is a maximum index number of a map,
568 VAL and VALn is a number, nil, t, or lambda.
569
570 Valid index range of a map of type (a) is:
571 STARTPOINT <= index < STARTPOINT + map_size - 1
572 Valid index range of a map of type (b) is:
573 STARTPOINT <= index < ENDPOINT */
574
575 #define CCL_MapMultiple 0x11 /* Mapping by multiple code conversion maps
576 1:ExtendedCOMMNDXXXRRRrrrXXXXX
577 2:N-2
578 3:SEPARATOR_1 (< 0)
579 4:MAP-ID_1
580 5:MAP-ID_2
581 ...
582 M:SEPARATOR_x (< 0)
583 M+1:MAP-ID_y
584 ...
585 N:SEPARATOR_z (< 0)
586 */
587
588 #define MAX_MAP_SET_LEVEL 30
589
590 typedef struct
591 {
592 int rest_length;
593 int orig_val;
594 } tr_stack;
595
596 static tr_stack mapping_stack[MAX_MAP_SET_LEVEL];
597 static tr_stack *mapping_stack_pointer;
598
599 /* If this variable is non-zero, it indicates the stack_idx
600 of immediately called by CCL_MapMultiple. */
601 static int stack_idx_of_map_multiple;
602
603 #define PUSH_MAPPING_STACK(restlen, orig) \
604 do \
605 { \
606 mapping_stack_pointer->rest_length = (restlen); \
607 mapping_stack_pointer->orig_val = (orig); \
608 mapping_stack_pointer++; \
609 } \
610 while (0)
611
612 #define POP_MAPPING_STACK(restlen, orig) \
613 do \
614 { \
615 mapping_stack_pointer--; \
616 (restlen) = mapping_stack_pointer->rest_length; \
617 (orig) = mapping_stack_pointer->orig_val; \
618 } \
619 while (0)
620
621 #define CCL_CALL_FOR_MAP_INSTRUCTION(symbol, ret_ic) \
622 do \
623 { \
624 struct ccl_program called_ccl; \
625 if (stack_idx >= 256 \
626 || (setup_ccl_program (&called_ccl, (symbol)) != 0)) \
627 { \
628 if (stack_idx > 0) \
629 { \
630 ccl_prog = ccl_prog_stack_struct[0].ccl_prog; \
631 ic = ccl_prog_stack_struct[0].ic; \
632 } \
633 CCL_INVALID_CMD; \
634 } \
635 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog; \
636 ccl_prog_stack_struct[stack_idx].ic = (ret_ic); \
637 stack_idx++; \
638 ccl_prog = called_ccl.prog; \
639 ic = CCL_HEADER_MAIN; \
640 goto ccl_repeat; \
641 } \
642 while (0)
643
644 #define CCL_MapSingle 0x12 /* Map by single code conversion map
645 1:ExtendedCOMMNDXXXRRRrrrXXXXX
646 2:MAP-ID
647 ------------------------------
648 Map reg[rrr] by MAP-ID.
649 If some valid mapping is found,
650 set reg[rrr] to the result,
651 else
652 set reg[RRR] to -1.
653 */
654
655 /* CCL arithmetic/logical operators. */
656 #define CCL_PLUS 0x00 /* X = Y + Z */
657 #define CCL_MINUS 0x01 /* X = Y - Z */
658 #define CCL_MUL 0x02 /* X = Y * Z */
659 #define CCL_DIV 0x03 /* X = Y / Z */
660 #define CCL_MOD 0x04 /* X = Y % Z */
661 #define CCL_AND 0x05 /* X = Y & Z */
662 #define CCL_OR 0x06 /* X = Y | Z */
663 #define CCL_XOR 0x07 /* X = Y ^ Z */
664 #define CCL_LSH 0x08 /* X = Y << Z */
665 #define CCL_RSH 0x09 /* X = Y >> Z */
666 #define CCL_LSH8 0x0A /* X = (Y << 8) | Z */
667 #define CCL_RSH8 0x0B /* X = Y >> 8, r[7] = Y & 0xFF */
668 #define CCL_DIVMOD 0x0C /* X = Y / Z, r[7] = Y % Z */
669 #define CCL_LS 0x10 /* X = (X < Y) */
670 #define CCL_GT 0x11 /* X = (X > Y) */
671 #define CCL_EQ 0x12 /* X = (X == Y) */
672 #define CCL_LE 0x13 /* X = (X <= Y) */
673 #define CCL_GE 0x14 /* X = (X >= Y) */
674 #define CCL_NE 0x15 /* X = (X != Y) */
675
676 #define CCL_DECODE_SJIS 0x16 /* X = HIGHER_BYTE (DE-SJIS (Y, Z))
677 r[7] = LOWER_BYTE (DE-SJIS (Y, Z)) */
678 #define CCL_ENCODE_SJIS 0x17 /* X = HIGHER_BYTE (SJIS (Y, Z))
679 r[7] = LOWER_BYTE (SJIS (Y, Z) */
680
681 /* Terminate CCL program successfully. */
682 #define CCL_SUCCESS \
683 do \
684 { \
685 ccl->status = CCL_STAT_SUCCESS; \
686 goto ccl_finish; \
687 } \
688 while(0)
689
690 /* Suspend CCL program because of reading from empty input buffer or
691 writing to full output buffer. When this program is resumed, the
692 same I/O command is executed. */
693 #define CCL_SUSPEND(stat) \
694 do \
695 { \
696 ic--; \
697 ccl->status = stat; \
698 goto ccl_finish; \
699 } \
700 while (0)
701
702 /* Terminate CCL program because of invalid command. Should not occur
703 in the normal case. */
704 #define CCL_INVALID_CMD \
705 do \
706 { \
707 ccl->status = CCL_STAT_INVALID_CMD; \
708 goto ccl_error_handler; \
709 } \
710 while(0)
711
712 /* Encode one character CH to multibyte form and write to the current
713 output buffer. If CH is less than 256, CH is written as is. */
714 #define CCL_WRITE_CHAR(ch) \
715 do { \
716 int bytes = SINGLE_BYTE_CHAR_P (ch) ? 1: CHAR_BYTES (ch); \
717 if (!dst) \
718 CCL_INVALID_CMD; \
719 else if (dst + bytes + extra_bytes < (dst_bytes ? dst_end : src)) \
720 { \
721 if (bytes == 1) \
722 { \
723 *dst++ = (ch); \
724 if ((ch) >= 0x80 && (ch) < 0xA0) \
725 /* We may have to convert this eight-bit char to \
726 multibyte form later. */ \
727 extra_bytes++; \
728 } \
729 else if (CHAR_VALID_P (ch, 0)) \
730 dst += CHAR_STRING (ch, dst); \
731 else \
732 CCL_INVALID_CMD; \
733 } \
734 else \
735 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
736 } while (0)
737
738 /* Encode one character CH to multibyte form and write to the current
739 output buffer. The output bytes always forms a valid multibyte
740 sequence. */
741 #define CCL_WRITE_MULTIBYTE_CHAR(ch) \
742 do { \
743 int bytes = CHAR_BYTES (ch); \
744 if (!dst) \
745 CCL_INVALID_CMD; \
746 else if (dst + bytes + extra_bytes < (dst_bytes ? dst_end : src)) \
747 { \
748 if (CHAR_VALID_P ((ch), 0)) \
749 dst += CHAR_STRING ((ch), dst); \
750 else \
751 CCL_INVALID_CMD; \
752 } \
753 else \
754 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
755 } while (0)
756
757 /* Write a string at ccl_prog[IC] of length LEN to the current output
758 buffer. */
759 #define CCL_WRITE_STRING(len) \
760 do { \
761 if (!dst) \
762 CCL_INVALID_CMD; \
763 else if (dst + len <= (dst_bytes ? dst_end : src)) \
764 for (i = 0; i < len; i++) \
765 *dst++ = ((XFASTINT (ccl_prog[ic + (i / 3)])) \
766 >> ((2 - (i % 3)) * 8)) & 0xFF; \
767 else \
768 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
769 } while (0)
770
771 /* Read one byte from the current input buffer into REGth register. */
772 #define CCL_READ_CHAR(REG) \
773 do { \
774 if (!src) \
775 CCL_INVALID_CMD; \
776 else if (src < src_end) \
777 { \
778 REG = *src++; \
779 if (REG == '\n' \
780 && ccl->eol_type != CODING_EOL_LF) \
781 { \
782 /* We are encoding. */ \
783 if (ccl->eol_type == CODING_EOL_CRLF) \
784 { \
785 if (ccl->cr_consumed) \
786 ccl->cr_consumed = 0; \
787 else \
788 { \
789 ccl->cr_consumed = 1; \
790 REG = '\r'; \
791 src--; \
792 } \
793 } \
794 else \
795 REG = '\r'; \
796 } \
797 if (REG == LEADING_CODE_8_BIT_CONTROL \
798 && ccl->multibyte) \
799 REG = *src++ - 0x20; \
800 } \
801 else if (ccl->last_block) \
802 { \
803 ic = ccl->eof_ic; \
804 goto ccl_repeat; \
805 } \
806 else \
807 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC); \
808 } while (0)
809
810
811 /* Set C to the character code made from CHARSET and CODE. This is
812 like MAKE_CHAR but check the validity of CHARSET and CODE. If they
813 are not valid, set C to (CODE & 0xFF) because that is usually the
814 case that CCL_ReadMultibyteChar2 read an invalid code and it set
815 CODE to that invalid byte. */
816
817 #define CCL_MAKE_CHAR(charset, code, c) \
818 do { \
819 if (charset == CHARSET_ASCII) \
820 c = code & 0xFF; \
821 else if (CHARSET_DEFINED_P (charset) \
822 && (code & 0x7F) >= 32 \
823 && (code < 256 || ((code >> 7) & 0x7F) >= 32)) \
824 { \
825 int c1 = code & 0x7F, c2 = 0; \
826 \
827 if (code >= 256) \
828 c2 = c1, c1 = (code >> 7) & 0x7F; \
829 c = MAKE_CHAR (charset, c1, c2); \
830 } \
831 else \
832 c = code & 0xFF; \
833 } while (0)
834
835
836 /* Execute CCL code on SRC_BYTES length text at SOURCE. The resulting
837 text goes to a place pointed by DESTINATION, the length of which
838 should not exceed DST_BYTES. The bytes actually processed is
839 returned as *CONSUMED. The return value is the length of the
840 resulting text. As a side effect, the contents of CCL registers
841 are updated. If SOURCE or DESTINATION is NULL, only operations on
842 registers are permitted. */
843
844 #ifdef CCL_DEBUG
845 #define CCL_DEBUG_BACKTRACE_LEN 256
846 int ccl_backtrace_table[CCL_BACKTRACE_TABLE];
847 int ccl_backtrace_idx;
848 #endif
849
850 struct ccl_prog_stack
851 {
852 Lisp_Object *ccl_prog; /* Pointer to an array of CCL code. */
853 int ic; /* Instruction Counter. */
854 };
855
856 /* For the moment, we only support depth 256 of stack. */
857 static struct ccl_prog_stack ccl_prog_stack_struct[256];
858
859 int
860 ccl_driver (ccl, source, destination, src_bytes, dst_bytes, consumed)
861 struct ccl_program *ccl;
862 unsigned char *source, *destination;
863 int src_bytes, dst_bytes;
864 int *consumed;
865 {
866 register int *reg = ccl->reg;
867 register int ic = ccl->ic;
868 register int code = 0, field1, field2;
869 register Lisp_Object *ccl_prog = ccl->prog;
870 unsigned char *src = source, *src_end = src + src_bytes;
871 unsigned char *dst = destination, *dst_end = dst + dst_bytes;
872 int jump_address;
873 int i = 0, j, op;
874 int stack_idx = ccl->stack_idx;
875 /* Instruction counter of the current CCL code. */
876 int this_ic = 0;
877 /* CCL_WRITE_CHAR will produce 8-bit code of range 0x80..0x9F. But,
878 each of them will be converted to multibyte form of 2-byte
879 sequence. For that conversion, we remember how many more bytes
880 we must keep in DESTINATION in this variable. */
881 int extra_bytes = 0;
882
883 if (ic >= ccl->eof_ic)
884 ic = CCL_HEADER_MAIN;
885
886 if (ccl->buf_magnification == 0) /* We can't produce any bytes. */
887 dst = NULL;
888
889 /* Set mapping stack pointer. */
890 mapping_stack_pointer = mapping_stack;
891
892 #ifdef CCL_DEBUG
893 ccl_backtrace_idx = 0;
894 #endif
895
896 for (;;)
897 {
898 ccl_repeat:
899 #ifdef CCL_DEBUG
900 ccl_backtrace_table[ccl_backtrace_idx++] = ic;
901 if (ccl_backtrace_idx >= CCL_DEBUG_BACKTRACE_LEN)
902 ccl_backtrace_idx = 0;
903 ccl_backtrace_table[ccl_backtrace_idx] = 0;
904 #endif
905
906 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
907 {
908 /* We can't just signal Qquit, instead break the loop as if
909 the whole data is processed. Don't reset Vquit_flag, it
910 must be handled later at a safer place. */
911 if (consumed)
912 src = source + src_bytes;
913 ccl->status = CCL_STAT_QUIT;
914 break;
915 }
916
917 this_ic = ic;
918 code = XINT (ccl_prog[ic]); ic++;
919 field1 = code >> 8;
920 field2 = (code & 0xFF) >> 5;
921
922 #define rrr field2
923 #define RRR (field1 & 7)
924 #define Rrr ((field1 >> 3) & 7)
925 #define ADDR field1
926 #define EXCMD (field1 >> 6)
927
928 switch (code & 0x1F)
929 {
930 case CCL_SetRegister: /* 00000000000000000RRRrrrXXXXX */
931 reg[rrr] = reg[RRR];
932 break;
933
934 case CCL_SetShortConst: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
935 reg[rrr] = field1;
936 break;
937
938 case CCL_SetConst: /* 00000000000000000000rrrXXXXX */
939 reg[rrr] = XINT (ccl_prog[ic]);
940 ic++;
941 break;
942
943 case CCL_SetArray: /* CCCCCCCCCCCCCCCCCCCCRRRrrrXXXXX */
944 i = reg[RRR];
945 j = field1 >> 3;
946 if ((unsigned int) i < j)
947 reg[rrr] = XINT (ccl_prog[ic + i]);
948 ic += j;
949 break;
950
951 case CCL_Jump: /* A--D--D--R--E--S--S-000XXXXX */
952 ic += ADDR;
953 break;
954
955 case CCL_JumpCond: /* A--D--D--R--E--S--S-rrrXXXXX */
956 if (!reg[rrr])
957 ic += ADDR;
958 break;
959
960 case CCL_WriteRegisterJump: /* A--D--D--R--E--S--S-rrrXXXXX */
961 i = reg[rrr];
962 CCL_WRITE_CHAR (i);
963 ic += ADDR;
964 break;
965
966 case CCL_WriteRegisterReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
967 i = reg[rrr];
968 CCL_WRITE_CHAR (i);
969 ic++;
970 CCL_READ_CHAR (reg[rrr]);
971 ic += ADDR - 1;
972 break;
973
974 case CCL_WriteConstJump: /* A--D--D--R--E--S--S-000XXXXX */
975 i = XINT (ccl_prog[ic]);
976 CCL_WRITE_CHAR (i);
977 ic += ADDR;
978 break;
979
980 case CCL_WriteConstReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
981 i = XINT (ccl_prog[ic]);
982 CCL_WRITE_CHAR (i);
983 ic++;
984 CCL_READ_CHAR (reg[rrr]);
985 ic += ADDR - 1;
986 break;
987
988 case CCL_WriteStringJump: /* A--D--D--R--E--S--S-000XXXXX */
989 j = XINT (ccl_prog[ic]);
990 ic++;
991 CCL_WRITE_STRING (j);
992 ic += ADDR - 1;
993 break;
994
995 case CCL_WriteArrayReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
996 i = reg[rrr];
997 j = XINT (ccl_prog[ic]);
998 if ((unsigned int) i < j)
999 {
1000 i = XINT (ccl_prog[ic + 1 + i]);
1001 CCL_WRITE_CHAR (i);
1002 }
1003 ic += j + 2;
1004 CCL_READ_CHAR (reg[rrr]);
1005 ic += ADDR - (j + 2);
1006 break;
1007
1008 case CCL_ReadJump: /* A--D--D--R--E--S--S-rrrYYYYY */
1009 CCL_READ_CHAR (reg[rrr]);
1010 ic += ADDR;
1011 break;
1012
1013 case CCL_ReadBranch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1014 CCL_READ_CHAR (reg[rrr]);
1015 /* fall through ... */
1016 case CCL_Branch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1017 if ((unsigned int) reg[rrr] < field1)
1018 ic += XINT (ccl_prog[ic + reg[rrr]]);
1019 else
1020 ic += XINT (ccl_prog[ic + field1]);
1021 break;
1022
1023 case CCL_ReadRegister: /* CCCCCCCCCCCCCCCCCCCCrrXXXXX */
1024 while (1)
1025 {
1026 CCL_READ_CHAR (reg[rrr]);
1027 if (!field1) break;
1028 code = XINT (ccl_prog[ic]); ic++;
1029 field1 = code >> 8;
1030 field2 = (code & 0xFF) >> 5;
1031 }
1032 break;
1033
1034 case CCL_WriteExprConst: /* 1:00000OPERATION000RRR000XXXXX */
1035 rrr = 7;
1036 i = reg[RRR];
1037 j = XINT (ccl_prog[ic]);
1038 op = field1 >> 6;
1039 jump_address = ic + 1;
1040 goto ccl_set_expr;
1041
1042 case CCL_WriteRegister: /* CCCCCCCCCCCCCCCCCCCrrrXXXXX */
1043 while (1)
1044 {
1045 i = reg[rrr];
1046 CCL_WRITE_CHAR (i);
1047 if (!field1) break;
1048 code = XINT (ccl_prog[ic]); ic++;
1049 field1 = code >> 8;
1050 field2 = (code & 0xFF) >> 5;
1051 }
1052 break;
1053
1054 case CCL_WriteExprRegister: /* 1:00000OPERATIONRrrRRR000XXXXX */
1055 rrr = 7;
1056 i = reg[RRR];
1057 j = reg[Rrr];
1058 op = field1 >> 6;
1059 jump_address = ic;
1060 goto ccl_set_expr;
1061
1062 case CCL_Call: /* 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX */
1063 {
1064 Lisp_Object slot;
1065 int prog_id;
1066
1067 /* If FFF is nonzero, the CCL program ID is in the
1068 following code. */
1069 if (rrr)
1070 {
1071 prog_id = XINT (ccl_prog[ic]);
1072 ic++;
1073 }
1074 else
1075 prog_id = field1;
1076
1077 if (stack_idx >= 256
1078 || prog_id < 0
1079 || prog_id >= XVECTOR (Vccl_program_table)->size
1080 || (slot = XVECTOR (Vccl_program_table)->contents[prog_id],
1081 !VECTORP (slot))
1082 || !VECTORP (XVECTOR (slot)->contents[1]))
1083 {
1084 if (stack_idx > 0)
1085 {
1086 ccl_prog = ccl_prog_stack_struct[0].ccl_prog;
1087 ic = ccl_prog_stack_struct[0].ic;
1088 }
1089 CCL_INVALID_CMD;
1090 }
1091
1092 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog;
1093 ccl_prog_stack_struct[stack_idx].ic = ic;
1094 stack_idx++;
1095 ccl_prog = XVECTOR (XVECTOR (slot)->contents[1])->contents;
1096 ic = CCL_HEADER_MAIN;
1097 }
1098 break;
1099
1100 case CCL_WriteConstString: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1101 if (!rrr)
1102 CCL_WRITE_CHAR (field1);
1103 else
1104 {
1105 CCL_WRITE_STRING (field1);
1106 ic += (field1 + 2) / 3;
1107 }
1108 break;
1109
1110 case CCL_WriteArray: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1111 i = reg[rrr];
1112 if ((unsigned int) i < field1)
1113 {
1114 j = XINT (ccl_prog[ic + i]);
1115 CCL_WRITE_CHAR (j);
1116 }
1117 ic += field1;
1118 break;
1119
1120 case CCL_End: /* 0000000000000000000000XXXXX */
1121 if (stack_idx > 0)
1122 {
1123 stack_idx--;
1124 ccl_prog = ccl_prog_stack_struct[stack_idx].ccl_prog;
1125 ic = ccl_prog_stack_struct[stack_idx].ic;
1126 break;
1127 }
1128 if (src)
1129 src = src_end;
1130 /* ccl->ic should points to this command code again to
1131 suppress further processing. */
1132 ic--;
1133 CCL_SUCCESS;
1134
1135 case CCL_ExprSelfConst: /* 00000OPERATION000000rrrXXXXX */
1136 i = XINT (ccl_prog[ic]);
1137 ic++;
1138 op = field1 >> 6;
1139 goto ccl_expr_self;
1140
1141 case CCL_ExprSelfReg: /* 00000OPERATION000RRRrrrXXXXX */
1142 i = reg[RRR];
1143 op = field1 >> 6;
1144
1145 ccl_expr_self:
1146 switch (op)
1147 {
1148 case CCL_PLUS: reg[rrr] += i; break;
1149 case CCL_MINUS: reg[rrr] -= i; break;
1150 case CCL_MUL: reg[rrr] *= i; break;
1151 case CCL_DIV: reg[rrr] /= i; break;
1152 case CCL_MOD: reg[rrr] %= i; break;
1153 case CCL_AND: reg[rrr] &= i; break;
1154 case CCL_OR: reg[rrr] |= i; break;
1155 case CCL_XOR: reg[rrr] ^= i; break;
1156 case CCL_LSH: reg[rrr] <<= i; break;
1157 case CCL_RSH: reg[rrr] >>= i; break;
1158 case CCL_LSH8: reg[rrr] <<= 8; reg[rrr] |= i; break;
1159 case CCL_RSH8: reg[7] = reg[rrr] & 0xFF; reg[rrr] >>= 8; break;
1160 case CCL_DIVMOD: reg[7] = reg[rrr] % i; reg[rrr] /= i; break;
1161 case CCL_LS: reg[rrr] = reg[rrr] < i; break;
1162 case CCL_GT: reg[rrr] = reg[rrr] > i; break;
1163 case CCL_EQ: reg[rrr] = reg[rrr] == i; break;
1164 case CCL_LE: reg[rrr] = reg[rrr] <= i; break;
1165 case CCL_GE: reg[rrr] = reg[rrr] >= i; break;
1166 case CCL_NE: reg[rrr] = reg[rrr] != i; break;
1167 default: CCL_INVALID_CMD;
1168 }
1169 break;
1170
1171 case CCL_SetExprConst: /* 00000OPERATION000RRRrrrXXXXX */
1172 i = reg[RRR];
1173 j = XINT (ccl_prog[ic]);
1174 op = field1 >> 6;
1175 jump_address = ++ic;
1176 goto ccl_set_expr;
1177
1178 case CCL_SetExprReg: /* 00000OPERATIONRrrRRRrrrXXXXX */
1179 i = reg[RRR];
1180 j = reg[Rrr];
1181 op = field1 >> 6;
1182 jump_address = ic;
1183 goto ccl_set_expr;
1184
1185 case CCL_ReadJumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
1186 CCL_READ_CHAR (reg[rrr]);
1187 case CCL_JumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
1188 i = reg[rrr];
1189 op = XINT (ccl_prog[ic]);
1190 jump_address = ic++ + ADDR;
1191 j = XINT (ccl_prog[ic]);
1192 ic++;
1193 rrr = 7;
1194 goto ccl_set_expr;
1195
1196 case CCL_ReadJumpCondExprReg: /* A--D--D--R--E--S--S-rrrXXXXX */
1197 CCL_READ_CHAR (reg[rrr]);
1198 case CCL_JumpCondExprReg:
1199 i = reg[rrr];
1200 op = XINT (ccl_prog[ic]);
1201 jump_address = ic++ + ADDR;
1202 j = reg[XINT (ccl_prog[ic])];
1203 ic++;
1204 rrr = 7;
1205
1206 ccl_set_expr:
1207 switch (op)
1208 {
1209 case CCL_PLUS: reg[rrr] = i + j; break;
1210 case CCL_MINUS: reg[rrr] = i - j; break;
1211 case CCL_MUL: reg[rrr] = i * j; break;
1212 case CCL_DIV: reg[rrr] = i / j; break;
1213 case CCL_MOD: reg[rrr] = i % j; break;
1214 case CCL_AND: reg[rrr] = i & j; break;
1215 case CCL_OR: reg[rrr] = i | j; break;
1216 case CCL_XOR: reg[rrr] = i ^ j;; break;
1217 case CCL_LSH: reg[rrr] = i << j; break;
1218 case CCL_RSH: reg[rrr] = i >> j; break;
1219 case CCL_LSH8: reg[rrr] = (i << 8) | j; break;
1220 case CCL_RSH8: reg[rrr] = i >> 8; reg[7] = i & 0xFF; break;
1221 case CCL_DIVMOD: reg[rrr] = i / j; reg[7] = i % j; break;
1222 case CCL_LS: reg[rrr] = i < j; break;
1223 case CCL_GT: reg[rrr] = i > j; break;
1224 case CCL_EQ: reg[rrr] = i == j; break;
1225 case CCL_LE: reg[rrr] = i <= j; break;
1226 case CCL_GE: reg[rrr] = i >= j; break;
1227 case CCL_NE: reg[rrr] = i != j; break;
1228 case CCL_DECODE_SJIS: DECODE_SJIS (i, j, reg[rrr], reg[7]); break;
1229 case CCL_ENCODE_SJIS: ENCODE_SJIS (i, j, reg[rrr], reg[7]); break;
1230 default: CCL_INVALID_CMD;
1231 }
1232 code &= 0x1F;
1233 if (code == CCL_WriteExprConst || code == CCL_WriteExprRegister)
1234 {
1235 i = reg[rrr];
1236 CCL_WRITE_CHAR (i);
1237 ic = jump_address;
1238 }
1239 else if (!reg[rrr])
1240 ic = jump_address;
1241 break;
1242
1243 case CCL_Extension:
1244 switch (EXCMD)
1245 {
1246 case CCL_ReadMultibyteChar2:
1247 if (!src)
1248 CCL_INVALID_CMD;
1249
1250 if (src >= src_end)
1251 {
1252 src++;
1253 goto ccl_read_multibyte_character_suspend;
1254 }
1255
1256 if (!ccl->multibyte)
1257 {
1258 int bytes;
1259 if (!UNIBYTE_STR_AS_MULTIBYTE_P (src, src_end - src, bytes))
1260 {
1261 reg[RRR] = CHARSET_8_BIT_CONTROL;
1262 reg[rrr] = *src++;
1263 break;
1264 }
1265 }
1266 i = *src++;
1267 if (i == '\n' && ccl->eol_type != CODING_EOL_LF)
1268 {
1269 /* We are encoding. */
1270 if (ccl->eol_type == CODING_EOL_CRLF)
1271 {
1272 if (ccl->cr_consumed)
1273 ccl->cr_consumed = 0;
1274 else
1275 {
1276 ccl->cr_consumed = 1;
1277 i = '\r';
1278 src--;
1279 }
1280 }
1281 else
1282 i = '\r';
1283 reg[rrr] = i;
1284 reg[RRR] = CHARSET_ASCII;
1285 }
1286 else if (i < 0x80)
1287 {
1288 /* ASCII */
1289 reg[rrr] = i;
1290 reg[RRR] = CHARSET_ASCII;
1291 }
1292 else if (i <= MAX_CHARSET_OFFICIAL_DIMENSION2)
1293 {
1294 int dimension = BYTES_BY_CHAR_HEAD (i) - 1;
1295
1296 if (dimension == 0)
1297 {
1298 /* `i' is a leading code for an undefined charset. */
1299 reg[RRR] = CHARSET_8_BIT_GRAPHIC;
1300 reg[rrr] = i;
1301 }
1302 else if (src + dimension > src_end)
1303 goto ccl_read_multibyte_character_suspend;
1304 else
1305 {
1306 reg[RRR] = i;
1307 i = (*src++ & 0x7F);
1308 if (dimension == 1)
1309 reg[rrr] = i;
1310 else
1311 reg[rrr] = ((i << 7) | (*src++ & 0x7F));
1312 }
1313 }
1314 else if ((i == LEADING_CODE_PRIVATE_11)
1315 || (i == LEADING_CODE_PRIVATE_12))
1316 {
1317 if ((src + 1) >= src_end)
1318 goto ccl_read_multibyte_character_suspend;
1319 reg[RRR] = *src++;
1320 reg[rrr] = (*src++ & 0x7F);
1321 }
1322 else if ((i == LEADING_CODE_PRIVATE_21)
1323 || (i == LEADING_CODE_PRIVATE_22))
1324 {
1325 if ((src + 2) >= src_end)
1326 goto ccl_read_multibyte_character_suspend;
1327 reg[RRR] = *src++;
1328 i = (*src++ & 0x7F);
1329 reg[rrr] = ((i << 7) | (*src & 0x7F));
1330 src++;
1331 }
1332 else if (i == LEADING_CODE_8_BIT_CONTROL)
1333 {
1334 if (src >= src_end)
1335 goto ccl_read_multibyte_character_suspend;
1336 reg[RRR] = CHARSET_8_BIT_CONTROL;
1337 reg[rrr] = (*src++ - 0x20);
1338 }
1339 else if (i >= 0xA0)
1340 {
1341 reg[RRR] = CHARSET_8_BIT_GRAPHIC;
1342 reg[rrr] = i;
1343 }
1344 else
1345 {
1346 /* INVALID CODE. Return a single byte character. */
1347 reg[RRR] = CHARSET_ASCII;
1348 reg[rrr] = i;
1349 }
1350 break;
1351
1352 ccl_read_multibyte_character_suspend:
1353 if (src <= src_end && !ccl->multibyte && ccl->last_block)
1354 {
1355 reg[RRR] = CHARSET_8_BIT_CONTROL;
1356 reg[rrr] = i;
1357 break;
1358 }
1359 src--;
1360 if (ccl->last_block)
1361 {
1362 ic = ccl->eof_ic;
1363 goto ccl_repeat;
1364 }
1365 else
1366 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC);
1367
1368 break;
1369
1370 case CCL_WriteMultibyteChar2:
1371 i = reg[RRR]; /* charset */
1372 if (i == CHARSET_ASCII
1373 || i == CHARSET_8_BIT_CONTROL
1374 || i == CHARSET_8_BIT_GRAPHIC)
1375 i = reg[rrr] & 0xFF;
1376 else if (CHARSET_DIMENSION (i) == 1)
1377 i = ((i - 0x70) << 7) | (reg[rrr] & 0x7F);
1378 else if (i < MIN_CHARSET_PRIVATE_DIMENSION2)
1379 i = ((i - 0x8F) << 14) | reg[rrr];
1380 else
1381 i = ((i - 0xE0) << 14) | reg[rrr];
1382
1383 CCL_WRITE_MULTIBYTE_CHAR (i);
1384
1385 break;
1386
1387 case CCL_TranslateCharacter:
1388 CCL_MAKE_CHAR (reg[RRR], reg[rrr], i);
1389 op = translate_char (GET_TRANSLATION_TABLE (reg[Rrr]),
1390 i, -1, 0, 0);
1391 SPLIT_CHAR (op, reg[RRR], i, j);
1392 if (j != -1)
1393 i = (i << 7) | j;
1394
1395 reg[rrr] = i;
1396 break;
1397
1398 case CCL_TranslateCharacterConstTbl:
1399 op = XINT (ccl_prog[ic]); /* table */
1400 ic++;
1401 CCL_MAKE_CHAR (reg[RRR], reg[rrr], i);
1402 op = translate_char (GET_TRANSLATION_TABLE (op), i, -1, 0, 0);
1403 SPLIT_CHAR (op, reg[RRR], i, j);
1404 if (j != -1)
1405 i = (i << 7) | j;
1406
1407 reg[rrr] = i;
1408 break;
1409
1410 case CCL_IterateMultipleMap:
1411 {
1412 Lisp_Object map, content, attrib, value;
1413 int point, size, fin_ic;
1414
1415 j = XINT (ccl_prog[ic++]); /* number of maps. */
1416 fin_ic = ic + j;
1417 op = reg[rrr];
1418 if ((j > reg[RRR]) && (j >= 0))
1419 {
1420 ic += reg[RRR];
1421 i = reg[RRR];
1422 }
1423 else
1424 {
1425 reg[RRR] = -1;
1426 ic = fin_ic;
1427 break;
1428 }
1429
1430 for (;i < j;i++)
1431 {
1432
1433 size = XVECTOR (Vcode_conversion_map_vector)->size;
1434 point = XINT (ccl_prog[ic++]);
1435 if (point >= size) continue;
1436 map =
1437 XVECTOR (Vcode_conversion_map_vector)->contents[point];
1438
1439 /* Check map varidity. */
1440 if (!CONSP (map)) continue;
1441 map = XCDR (map);
1442 if (!VECTORP (map)) continue;
1443 size = XVECTOR (map)->size;
1444 if (size <= 1) continue;
1445
1446 content = XVECTOR (map)->contents[0];
1447
1448 /* check map type,
1449 [STARTPOINT VAL1 VAL2 ...] or
1450 [t ELELMENT STARTPOINT ENDPOINT] */
1451 if (NUMBERP (content))
1452 {
1453 point = XUINT (content);
1454 point = op - point + 1;
1455 if (!((point >= 1) && (point < size))) continue;
1456 content = XVECTOR (map)->contents[point];
1457 }
1458 else if (EQ (content, Qt))
1459 {
1460 if (size != 4) continue;
1461 if ((op >= XUINT (XVECTOR (map)->contents[2]))
1462 && (op < XUINT (XVECTOR (map)->contents[3])))
1463 content = XVECTOR (map)->contents[1];
1464 else
1465 continue;
1466 }
1467 else
1468 continue;
1469
1470 if (NILP (content))
1471 continue;
1472 else if (NUMBERP (content))
1473 {
1474 reg[RRR] = i;
1475 reg[rrr] = XINT(content);
1476 break;
1477 }
1478 else if (EQ (content, Qt) || EQ (content, Qlambda))
1479 {
1480 reg[RRR] = i;
1481 break;
1482 }
1483 else if (CONSP (content))
1484 {
1485 attrib = XCAR (content);
1486 value = XCDR (content);
1487 if (!NUMBERP (attrib) || !NUMBERP (value))
1488 continue;
1489 reg[RRR] = i;
1490 reg[rrr] = XUINT (value);
1491 break;
1492 }
1493 else if (SYMBOLP (content))
1494 CCL_CALL_FOR_MAP_INSTRUCTION (content, fin_ic);
1495 else
1496 CCL_INVALID_CMD;
1497 }
1498 if (i == j)
1499 reg[RRR] = -1;
1500 ic = fin_ic;
1501 }
1502 break;
1503
1504 case CCL_MapMultiple:
1505 {
1506 Lisp_Object map, content, attrib, value;
1507 int point, size, map_vector_size;
1508 int map_set_rest_length, fin_ic;
1509 int current_ic = this_ic;
1510
1511 /* inhibit recursive call on MapMultiple. */
1512 if (stack_idx_of_map_multiple > 0)
1513 {
1514 if (stack_idx_of_map_multiple <= stack_idx)
1515 {
1516 stack_idx_of_map_multiple = 0;
1517 mapping_stack_pointer = mapping_stack;
1518 CCL_INVALID_CMD;
1519 }
1520 }
1521 else
1522 mapping_stack_pointer = mapping_stack;
1523 stack_idx_of_map_multiple = 0;
1524
1525 map_set_rest_length =
1526 XINT (ccl_prog[ic++]); /* number of maps and separators. */
1527 fin_ic = ic + map_set_rest_length;
1528 op = reg[rrr];
1529
1530 if ((map_set_rest_length > reg[RRR]) && (reg[RRR] >= 0))
1531 {
1532 ic += reg[RRR];
1533 i = reg[RRR];
1534 map_set_rest_length -= i;
1535 }
1536 else
1537 {
1538 ic = fin_ic;
1539 reg[RRR] = -1;
1540 mapping_stack_pointer = mapping_stack;
1541 break;
1542 }
1543
1544 if (mapping_stack_pointer <= (mapping_stack + 1))
1545 {
1546 /* Set up initial state. */
1547 mapping_stack_pointer = mapping_stack;
1548 PUSH_MAPPING_STACK (0, op);
1549 reg[RRR] = -1;
1550 }
1551 else
1552 {
1553 /* Recover after calling other ccl program. */
1554 int orig_op;
1555
1556 POP_MAPPING_STACK (map_set_rest_length, orig_op);
1557 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1558 switch (op)
1559 {
1560 case -1:
1561 /* Regard it as Qnil. */
1562 op = orig_op;
1563 i++;
1564 ic++;
1565 map_set_rest_length--;
1566 break;
1567 case -2:
1568 /* Regard it as Qt. */
1569 op = reg[rrr];
1570 i++;
1571 ic++;
1572 map_set_rest_length--;
1573 break;
1574 case -3:
1575 /* Regard it as Qlambda. */
1576 op = orig_op;
1577 i += map_set_rest_length;
1578 ic += map_set_rest_length;
1579 map_set_rest_length = 0;
1580 break;
1581 default:
1582 /* Regard it as normal mapping. */
1583 i += map_set_rest_length;
1584 ic += map_set_rest_length;
1585 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1586 break;
1587 }
1588 }
1589 map_vector_size = XVECTOR (Vcode_conversion_map_vector)->size;
1590
1591 do {
1592 for (;map_set_rest_length > 0;i++, ic++, map_set_rest_length--)
1593 {
1594 point = XINT(ccl_prog[ic]);
1595 if (point < 0)
1596 {
1597 /* +1 is for including separator. */
1598 point = -point + 1;
1599 if (mapping_stack_pointer
1600 >= &mapping_stack[MAX_MAP_SET_LEVEL])
1601 CCL_INVALID_CMD;
1602 PUSH_MAPPING_STACK (map_set_rest_length - point,
1603 reg[rrr]);
1604 map_set_rest_length = point;
1605 reg[rrr] = op;
1606 continue;
1607 }
1608
1609 if (point >= map_vector_size) continue;
1610 map = (XVECTOR (Vcode_conversion_map_vector)
1611 ->contents[point]);
1612
1613 /* Check map varidity. */
1614 if (!CONSP (map)) continue;
1615 map = XCDR (map);
1616 if (!VECTORP (map)) continue;
1617 size = XVECTOR (map)->size;
1618 if (size <= 1) continue;
1619
1620 content = XVECTOR (map)->contents[0];
1621
1622 /* check map type,
1623 [STARTPOINT VAL1 VAL2 ...] or
1624 [t ELEMENT STARTPOINT ENDPOINT] */
1625 if (NUMBERP (content))
1626 {
1627 point = XUINT (content);
1628 point = op - point + 1;
1629 if (!((point >= 1) && (point < size))) continue;
1630 content = XVECTOR (map)->contents[point];
1631 }
1632 else if (EQ (content, Qt))
1633 {
1634 if (size != 4) continue;
1635 if ((op >= XUINT (XVECTOR (map)->contents[2])) &&
1636 (op < XUINT (XVECTOR (map)->contents[3])))
1637 content = XVECTOR (map)->contents[1];
1638 else
1639 continue;
1640 }
1641 else
1642 continue;
1643
1644 if (NILP (content))
1645 continue;
1646
1647 reg[RRR] = i;
1648 if (NUMBERP (content))
1649 {
1650 op = XINT (content);
1651 i += map_set_rest_length - 1;
1652 ic += map_set_rest_length - 1;
1653 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1654 map_set_rest_length++;
1655 }
1656 else if (CONSP (content))
1657 {
1658 attrib = XCAR (content);
1659 value = XCDR (content);
1660 if (!NUMBERP (attrib) || !NUMBERP (value))
1661 continue;
1662 op = XUINT (value);
1663 i += map_set_rest_length - 1;
1664 ic += map_set_rest_length - 1;
1665 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1666 map_set_rest_length++;
1667 }
1668 else if (EQ (content, Qt))
1669 {
1670 op = reg[rrr];
1671 }
1672 else if (EQ (content, Qlambda))
1673 {
1674 i += map_set_rest_length;
1675 ic += map_set_rest_length;
1676 break;
1677 }
1678 else if (SYMBOLP (content))
1679 {
1680 if (mapping_stack_pointer
1681 >= &mapping_stack[MAX_MAP_SET_LEVEL])
1682 CCL_INVALID_CMD;
1683 PUSH_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1684 PUSH_MAPPING_STACK (map_set_rest_length, op);
1685 stack_idx_of_map_multiple = stack_idx + 1;
1686 CCL_CALL_FOR_MAP_INSTRUCTION (content, current_ic);
1687 }
1688 else
1689 CCL_INVALID_CMD;
1690 }
1691 if (mapping_stack_pointer <= (mapping_stack + 1))
1692 break;
1693 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1694 i += map_set_rest_length;
1695 ic += map_set_rest_length;
1696 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1697 } while (1);
1698
1699 ic = fin_ic;
1700 }
1701 reg[rrr] = op;
1702 break;
1703
1704 case CCL_MapSingle:
1705 {
1706 Lisp_Object map, attrib, value, content;
1707 int size, point;
1708 j = XINT (ccl_prog[ic++]); /* map_id */
1709 op = reg[rrr];
1710 if (j >= XVECTOR (Vcode_conversion_map_vector)->size)
1711 {
1712 reg[RRR] = -1;
1713 break;
1714 }
1715 map = XVECTOR (Vcode_conversion_map_vector)->contents[j];
1716 if (!CONSP (map))
1717 {
1718 reg[RRR] = -1;
1719 break;
1720 }
1721 map = XCDR (map);
1722 if (!VECTORP (map))
1723 {
1724 reg[RRR] = -1;
1725 break;
1726 }
1727 size = XVECTOR (map)->size;
1728 point = XUINT (XVECTOR (map)->contents[0]);
1729 point = op - point + 1;
1730 reg[RRR] = 0;
1731 if ((size <= 1) ||
1732 (!((point >= 1) && (point < size))))
1733 reg[RRR] = -1;
1734 else
1735 {
1736 reg[RRR] = 0;
1737 content = XVECTOR (map)->contents[point];
1738 if (NILP (content))
1739 reg[RRR] = -1;
1740 else if (NUMBERP (content))
1741 reg[rrr] = XINT (content);
1742 else if (EQ (content, Qt));
1743 else if (CONSP (content))
1744 {
1745 attrib = XCAR (content);
1746 value = XCDR (content);
1747 if (!NUMBERP (attrib) || !NUMBERP (value))
1748 continue;
1749 reg[rrr] = XUINT(value);
1750 break;
1751 }
1752 else if (SYMBOLP (content))
1753 CCL_CALL_FOR_MAP_INSTRUCTION (content, ic);
1754 else
1755 reg[RRR] = -1;
1756 }
1757 }
1758 break;
1759
1760 default:
1761 CCL_INVALID_CMD;
1762 }
1763 break;
1764
1765 default:
1766 CCL_INVALID_CMD;
1767 }
1768 }
1769
1770 ccl_error_handler:
1771 /* The suppress_error member is set when e.g. a CCL-based coding
1772 system is used for terminal output. */
1773 if (!ccl->suppress_error && destination)
1774 {
1775 /* We can insert an error message only if DESTINATION is
1776 specified and we still have a room to store the message
1777 there. */
1778 char msg[256];
1779 int msglen;
1780
1781 if (!dst)
1782 dst = destination;
1783
1784 switch (ccl->status)
1785 {
1786 case CCL_STAT_INVALID_CMD:
1787 sprintf(msg, "\nCCL: Invalid command %x (ccl_code = %x) at %d.",
1788 code & 0x1F, code, this_ic);
1789 #ifdef CCL_DEBUG
1790 {
1791 int i = ccl_backtrace_idx - 1;
1792 int j;
1793
1794 msglen = strlen (msg);
1795 if (dst + msglen <= (dst_bytes ? dst_end : src))
1796 {
1797 bcopy (msg, dst, msglen);
1798 dst += msglen;
1799 }
1800
1801 for (j = 0; j < CCL_DEBUG_BACKTRACE_LEN; j++, i--)
1802 {
1803 if (i < 0) i = CCL_DEBUG_BACKTRACE_LEN - 1;
1804 if (ccl_backtrace_table[i] == 0)
1805 break;
1806 sprintf(msg, " %d", ccl_backtrace_table[i]);
1807 msglen = strlen (msg);
1808 if (dst + msglen > (dst_bytes ? dst_end : src))
1809 break;
1810 bcopy (msg, dst, msglen);
1811 dst += msglen;
1812 }
1813 goto ccl_finish;
1814 }
1815 #endif
1816 break;
1817
1818 case CCL_STAT_QUIT:
1819 sprintf(msg, "\nCCL: Quited.");
1820 break;
1821
1822 default:
1823 sprintf(msg, "\nCCL: Unknown error type (%d).", ccl->status);
1824 }
1825
1826 msglen = strlen (msg);
1827 if (dst + msglen <= (dst_bytes ? dst_end : src))
1828 {
1829 bcopy (msg, dst, msglen);
1830 dst += msglen;
1831 }
1832
1833 if (ccl->status == CCL_STAT_INVALID_CMD)
1834 {
1835 #if 0 /* If the remaining bytes contain 0x80..0x9F, copying them
1836 results in an invalid multibyte sequence. */
1837
1838 /* Copy the remaining source data. */
1839 int i = src_end - src;
1840 if (dst_bytes && (dst_end - dst) < i)
1841 i = dst_end - dst;
1842 bcopy (src, dst, i);
1843 src += i;
1844 dst += i;
1845 #else
1846 /* Signal that we've consumed everything. */
1847 src = src_end;
1848 #endif
1849 }
1850 }
1851
1852 ccl_finish:
1853 ccl->ic = ic;
1854 ccl->stack_idx = stack_idx;
1855 ccl->prog = ccl_prog;
1856 ccl->eight_bit_control = (extra_bytes > 0);
1857 if (consumed)
1858 *consumed = src - source;
1859 return (dst ? dst - destination : 0);
1860 }
1861
1862 /* Resolve symbols in the specified CCL code (Lisp vector). This
1863 function converts symbols of code conversion maps and character
1864 translation tables embeded in the CCL code into their ID numbers.
1865
1866 The return value is a vector (CCL itself or a new vector in which
1867 all symbols are resolved), Qt if resolving of some symbol failed,
1868 or nil if CCL contains invalid data. */
1869
1870 static Lisp_Object
1871 resolve_symbol_ccl_program (ccl)
1872 Lisp_Object ccl;
1873 {
1874 int i, veclen, unresolved = 0;
1875 Lisp_Object result, contents, val;
1876
1877 result = ccl;
1878 veclen = XVECTOR (result)->size;
1879
1880 for (i = 0; i < veclen; i++)
1881 {
1882 contents = XVECTOR (result)->contents[i];
1883 if (INTEGERP (contents))
1884 continue;
1885 else if (CONSP (contents)
1886 && SYMBOLP (XCAR (contents))
1887 && SYMBOLP (XCDR (contents)))
1888 {
1889 /* This is the new style for embedding symbols. The form is
1890 (SYMBOL . PROPERTY). (get SYMBOL PROPERTY) should give
1891 an index number. */
1892
1893 if (EQ (result, ccl))
1894 result = Fcopy_sequence (ccl);
1895
1896 val = Fget (XCAR (contents), XCDR (contents));
1897 if (NATNUMP (val))
1898 XVECTOR (result)->contents[i] = val;
1899 else
1900 unresolved = 1;
1901 continue;
1902 }
1903 else if (SYMBOLP (contents))
1904 {
1905 /* This is the old style for embedding symbols. This style
1906 may lead to a bug if, for instance, a translation table
1907 and a code conversion map have the same name. */
1908 if (EQ (result, ccl))
1909 result = Fcopy_sequence (ccl);
1910
1911 val = Fget (contents, Qtranslation_table_id);
1912 if (NATNUMP (val))
1913 XVECTOR (result)->contents[i] = val;
1914 else
1915 {
1916 val = Fget (contents, Qcode_conversion_map_id);
1917 if (NATNUMP (val))
1918 XVECTOR (result)->contents[i] = val;
1919 else
1920 {
1921 val = Fget (contents, Qccl_program_idx);
1922 if (NATNUMP (val))
1923 XVECTOR (result)->contents[i] = val;
1924 else
1925 unresolved = 1;
1926 }
1927 }
1928 continue;
1929 }
1930 return Qnil;
1931 }
1932
1933 return (unresolved ? Qt : result);
1934 }
1935
1936 /* Return the compiled code (vector) of CCL program CCL_PROG.
1937 CCL_PROG is a name (symbol) of the program or already compiled
1938 code. If necessary, resolve symbols in the compiled code to index
1939 numbers. If we failed to get the compiled code or to resolve
1940 symbols, return Qnil. */
1941
1942 static Lisp_Object
1943 ccl_get_compiled_code (ccl_prog)
1944 Lisp_Object ccl_prog;
1945 {
1946 Lisp_Object val, slot;
1947
1948 if (VECTORP (ccl_prog))
1949 {
1950 val = resolve_symbol_ccl_program (ccl_prog);
1951 return (VECTORP (val) ? val : Qnil);
1952 }
1953 if (!SYMBOLP (ccl_prog))
1954 return Qnil;
1955
1956 val = Fget (ccl_prog, Qccl_program_idx);
1957 if (! NATNUMP (val)
1958 || XINT (val) >= XVECTOR (Vccl_program_table)->size)
1959 return Qnil;
1960 slot = XVECTOR (Vccl_program_table)->contents[XINT (val)];
1961 if (! VECTORP (slot)
1962 || XVECTOR (slot)->size != 3
1963 || ! VECTORP (XVECTOR (slot)->contents[1]))
1964 return Qnil;
1965 if (NILP (XVECTOR (slot)->contents[2]))
1966 {
1967 val = resolve_symbol_ccl_program (XVECTOR (slot)->contents[1]);
1968 if (! VECTORP (val))
1969 return Qnil;
1970 XVECTOR (slot)->contents[1] = val;
1971 XVECTOR (slot)->contents[2] = Qt;
1972 }
1973 return XVECTOR (slot)->contents[1];
1974 }
1975
1976 /* Setup fields of the structure pointed by CCL appropriately for the
1977 execution of CCL program CCL_PROG. CCL_PROG is the name (symbol)
1978 of the CCL program or the already compiled code (vector).
1979 Return 0 if we succeed this setup, else return -1.
1980
1981 If CCL_PROG is nil, we just reset the structure pointed by CCL. */
1982 int
1983 setup_ccl_program (ccl, ccl_prog)
1984 struct ccl_program *ccl;
1985 Lisp_Object ccl_prog;
1986 {
1987 int i;
1988
1989 if (! NILP (ccl_prog))
1990 {
1991 struct Lisp_Vector *vp;
1992
1993 ccl_prog = ccl_get_compiled_code (ccl_prog);
1994 if (! VECTORP (ccl_prog))
1995 return -1;
1996 vp = XVECTOR (ccl_prog);
1997 ccl->size = vp->size;
1998 ccl->prog = vp->contents;
1999 ccl->eof_ic = XINT (vp->contents[CCL_HEADER_EOF]);
2000 ccl->buf_magnification = XINT (vp->contents[CCL_HEADER_BUF_MAG]);
2001 }
2002 ccl->ic = CCL_HEADER_MAIN;
2003 for (i = 0; i < 8; i++)
2004 ccl->reg[i] = 0;
2005 ccl->last_block = 0;
2006 ccl->private_state = 0;
2007 ccl->status = 0;
2008 ccl->stack_idx = 0;
2009 ccl->eol_type = CODING_EOL_LF;
2010 ccl->suppress_error = 0;
2011 return 0;
2012 }
2013
2014 #ifdef emacs
2015
2016 DEFUN ("ccl-program-p", Fccl_program_p, Sccl_program_p, 1, 1, 0,
2017 doc: /* Return t if OBJECT is a CCL program name or a compiled CCL program code.
2018 See the documentation of `define-ccl-program' for the detail of CCL program. */)
2019 (object)
2020 Lisp_Object object;
2021 {
2022 Lisp_Object val;
2023
2024 if (VECTORP (object))
2025 {
2026 val = resolve_symbol_ccl_program (object);
2027 return (VECTORP (val) ? Qt : Qnil);
2028 }
2029 if (!SYMBOLP (object))
2030 return Qnil;
2031
2032 val = Fget (object, Qccl_program_idx);
2033 return ((! NATNUMP (val)
2034 || XINT (val) >= XVECTOR (Vccl_program_table)->size)
2035 ? Qnil : Qt);
2036 }
2037
2038 DEFUN ("ccl-execute", Fccl_execute, Sccl_execute, 2, 2, 0,
2039 doc: /* Execute CCL-PROGRAM with registers initialized by REGISTERS.
2040
2041 CCL-PROGRAM is a CCL program name (symbol)
2042 or compiled code generated by `ccl-compile' (for backward compatibility.
2043 In the latter case, the execution overhead is bigger than in the former).
2044 No I/O commands should appear in CCL-PROGRAM.
2045
2046 REGISTERS is a vector of [R0 R1 ... R7] where RN is an initial value
2047 for the Nth register.
2048
2049 As side effect, each element of REGISTERS holds the value of
2050 the corresponding register after the execution.
2051
2052 See the documentation of `define-ccl-program' for a definition of CCL
2053 programs. */)
2054 (ccl_prog, reg)
2055 Lisp_Object ccl_prog, reg;
2056 {
2057 struct ccl_program ccl;
2058 int i;
2059
2060 if (setup_ccl_program (&ccl, ccl_prog) < 0)
2061 error ("Invalid CCL program");
2062
2063 CHECK_VECTOR (reg);
2064 if (XVECTOR (reg)->size != 8)
2065 error ("Length of vector REGISTERS is not 8");
2066
2067 for (i = 0; i < 8; i++)
2068 ccl.reg[i] = (INTEGERP (XVECTOR (reg)->contents[i])
2069 ? XINT (XVECTOR (reg)->contents[i])
2070 : 0);
2071
2072 ccl_driver (&ccl, (unsigned char *)0, (unsigned char *)0, 0, 0, (int *)0);
2073 QUIT;
2074 if (ccl.status != CCL_STAT_SUCCESS)
2075 error ("Error in CCL program at %dth code", ccl.ic);
2076
2077 for (i = 0; i < 8; i++)
2078 XSETINT (XVECTOR (reg)->contents[i], ccl.reg[i]);
2079 return Qnil;
2080 }
2081
2082 DEFUN ("ccl-execute-on-string", Fccl_execute_on_string, Sccl_execute_on_string,
2083 3, 5, 0,
2084 doc: /* Execute CCL-PROGRAM with initial STATUS on STRING.
2085
2086 CCL-PROGRAM is a symbol registered by register-ccl-program,
2087 or a compiled code generated by `ccl-compile' (for backward compatibility,
2088 in this case, the execution is slower).
2089
2090 Read buffer is set to STRING, and write buffer is allocated automatically.
2091
2092 STATUS is a vector of [R0 R1 ... R7 IC], where
2093 R0..R7 are initial values of corresponding registers,
2094 IC is the instruction counter specifying from where to start the program.
2095 If R0..R7 are nil, they are initialized to 0.
2096 If IC is nil, it is initialized to head of the CCL program.
2097
2098 If optional 4th arg CONTINUE is non-nil, keep IC on read operation
2099 when read buffer is exausted, else, IC is always set to the end of
2100 CCL-PROGRAM on exit.
2101
2102 It returns the contents of write buffer as a string,
2103 and as side effect, STATUS is updated.
2104 If the optional 5th arg UNIBYTE-P is non-nil, the returned string
2105 is a unibyte string. By default it is a multibyte string.
2106
2107 See the documentation of `define-ccl-program' for the detail of CCL program. */)
2108 (ccl_prog, status, str, contin, unibyte_p)
2109 Lisp_Object ccl_prog, status, str, contin, unibyte_p;
2110 {
2111 Lisp_Object val;
2112 struct ccl_program ccl;
2113 int i, produced;
2114 int outbufsize;
2115 char *outbuf;
2116 struct gcpro gcpro1, gcpro2;
2117
2118 if (setup_ccl_program (&ccl, ccl_prog) < 0)
2119 error ("Invalid CCL program");
2120
2121 CHECK_VECTOR (status);
2122 if (XVECTOR (status)->size != 9)
2123 error ("Length of vector STATUS is not 9");
2124 CHECK_STRING (str);
2125
2126 GCPRO2 (status, str);
2127
2128 for (i = 0; i < 8; i++)
2129 {
2130 if (NILP (XVECTOR (status)->contents[i]))
2131 XSETINT (XVECTOR (status)->contents[i], 0);
2132 if (INTEGERP (XVECTOR (status)->contents[i]))
2133 ccl.reg[i] = XINT (XVECTOR (status)->contents[i]);
2134 }
2135 if (INTEGERP (XVECTOR (status)->contents[i]))
2136 {
2137 i = XFASTINT (XVECTOR (status)->contents[8]);
2138 if (ccl.ic < i && i < ccl.size)
2139 ccl.ic = i;
2140 }
2141 outbufsize = STRING_BYTES (XSTRING (str)) * ccl.buf_magnification + 256;
2142 outbuf = (char *) xmalloc (outbufsize);
2143 ccl.last_block = NILP (contin);
2144 ccl.multibyte = STRING_MULTIBYTE (str);
2145 produced = ccl_driver (&ccl, XSTRING (str)->data, outbuf,
2146 STRING_BYTES (XSTRING (str)), outbufsize, (int *) 0);
2147 for (i = 0; i < 8; i++)
2148 XSET (XVECTOR (status)->contents[i], Lisp_Int, ccl.reg[i]);
2149 XSETINT (XVECTOR (status)->contents[8], ccl.ic);
2150 UNGCPRO;
2151
2152 if (NILP (unibyte_p))
2153 {
2154 int nchars;
2155
2156 produced = str_as_multibyte (outbuf, outbufsize, produced, &nchars);
2157 val = make_multibyte_string (outbuf, nchars, produced);
2158 }
2159 else
2160 val = make_unibyte_string (outbuf, produced);
2161 xfree (outbuf);
2162 QUIT;
2163 if (ccl.status == CCL_STAT_SUSPEND_BY_DST)
2164 error ("Output buffer for the CCL programs overflow");
2165 if (ccl.status != CCL_STAT_SUCCESS
2166 && ccl.status != CCL_STAT_SUSPEND_BY_SRC)
2167 error ("Error in CCL program at %dth code", ccl.ic);
2168
2169 return val;
2170 }
2171
2172 DEFUN ("register-ccl-program", Fregister_ccl_program, Sregister_ccl_program,
2173 2, 2, 0,
2174 doc: /* Register CCL program CCL_PROG as NAME in `ccl-program-table'.
2175 CCL_PROG should be a compiled CCL program (vector), or nil.
2176 If it is nil, just reserve NAME as a CCL program name.
2177 Return index number of the registered CCL program. */)
2178 (name, ccl_prog)
2179 Lisp_Object name, ccl_prog;
2180 {
2181 int len = XVECTOR (Vccl_program_table)->size;
2182 int idx;
2183 Lisp_Object resolved;
2184
2185 CHECK_SYMBOL (name);
2186 resolved = Qnil;
2187 if (!NILP (ccl_prog))
2188 {
2189 CHECK_VECTOR (ccl_prog);
2190 resolved = resolve_symbol_ccl_program (ccl_prog);
2191 if (NILP (resolved))
2192 error ("Error in CCL program");
2193 if (VECTORP (resolved))
2194 {
2195 ccl_prog = resolved;
2196 resolved = Qt;
2197 }
2198 else
2199 resolved = Qnil;
2200 }
2201
2202 for (idx = 0; idx < len; idx++)
2203 {
2204 Lisp_Object slot;
2205
2206 slot = XVECTOR (Vccl_program_table)->contents[idx];
2207 if (!VECTORP (slot))
2208 /* This is the first unsed slot. Register NAME here. */
2209 break;
2210
2211 if (EQ (name, XVECTOR (slot)->contents[0]))
2212 {
2213 /* Update this slot. */
2214 XVECTOR (slot)->contents[1] = ccl_prog;
2215 XVECTOR (slot)->contents[2] = resolved;
2216 return make_number (idx);
2217 }
2218 }
2219
2220 if (idx == len)
2221 {
2222 /* Extend the table. */
2223 Lisp_Object new_table;
2224 int j;
2225
2226 new_table = Fmake_vector (make_number (len * 2), Qnil);
2227 for (j = 0; j < len; j++)
2228 XVECTOR (new_table)->contents[j]
2229 = XVECTOR (Vccl_program_table)->contents[j];
2230 Vccl_program_table = new_table;
2231 }
2232
2233 {
2234 Lisp_Object elt;
2235
2236 elt = Fmake_vector (make_number (3), Qnil);
2237 XVECTOR (elt)->contents[0] = name;
2238 XVECTOR (elt)->contents[1] = ccl_prog;
2239 XVECTOR (elt)->contents[2] = resolved;
2240 XVECTOR (Vccl_program_table)->contents[idx] = elt;
2241 }
2242
2243 Fput (name, Qccl_program_idx, make_number (idx));
2244 return make_number (idx);
2245 }
2246
2247 /* Register code conversion map.
2248 A code conversion map consists of numbers, Qt, Qnil, and Qlambda.
2249 The first element is the start code point.
2250 The other elements are mapped numbers.
2251 Symbol t means to map to an original number before mapping.
2252 Symbol nil means that the corresponding element is empty.
2253 Symbol lambda means to terminate mapping here.
2254 */
2255
2256 DEFUN ("register-code-conversion-map", Fregister_code_conversion_map,
2257 Sregister_code_conversion_map,
2258 2, 2, 0,
2259 doc: /* Register SYMBOL as code conversion map MAP.
2260 Return index number of the registered map. */)
2261 (symbol, map)
2262 Lisp_Object symbol, map;
2263 {
2264 int len = XVECTOR (Vcode_conversion_map_vector)->size;
2265 int i;
2266 Lisp_Object index;
2267
2268 CHECK_SYMBOL (symbol);
2269 CHECK_VECTOR (map);
2270
2271 for (i = 0; i < len; i++)
2272 {
2273 Lisp_Object slot = XVECTOR (Vcode_conversion_map_vector)->contents[i];
2274
2275 if (!CONSP (slot))
2276 break;
2277
2278 if (EQ (symbol, XCAR (slot)))
2279 {
2280 index = make_number (i);
2281 XSETCDR (slot, map);
2282 Fput (symbol, Qcode_conversion_map, map);
2283 Fput (symbol, Qcode_conversion_map_id, index);
2284 return index;
2285 }
2286 }
2287
2288 if (i == len)
2289 {
2290 Lisp_Object new_vector = Fmake_vector (make_number (len * 2), Qnil);
2291 int j;
2292
2293 for (j = 0; j < len; j++)
2294 XVECTOR (new_vector)->contents[j]
2295 = XVECTOR (Vcode_conversion_map_vector)->contents[j];
2296 Vcode_conversion_map_vector = new_vector;
2297 }
2298
2299 index = make_number (i);
2300 Fput (symbol, Qcode_conversion_map, map);
2301 Fput (symbol, Qcode_conversion_map_id, index);
2302 XVECTOR (Vcode_conversion_map_vector)->contents[i] = Fcons (symbol, map);
2303 return index;
2304 }
2305
2306
2307 void
2308 syms_of_ccl ()
2309 {
2310 staticpro (&Vccl_program_table);
2311 Vccl_program_table = Fmake_vector (make_number (32), Qnil);
2312
2313 Qccl_program = intern ("ccl-program");
2314 staticpro (&Qccl_program);
2315
2316 Qccl_program_idx = intern ("ccl-program-idx");
2317 staticpro (&Qccl_program_idx);
2318
2319 Qcode_conversion_map = intern ("code-conversion-map");
2320 staticpro (&Qcode_conversion_map);
2321
2322 Qcode_conversion_map_id = intern ("code-conversion-map-id");
2323 staticpro (&Qcode_conversion_map_id);
2324
2325 DEFVAR_LISP ("code-conversion-map-vector", &Vcode_conversion_map_vector,
2326 doc: /* Vector of code conversion maps. */);
2327 Vcode_conversion_map_vector = Fmake_vector (make_number (16), Qnil);
2328
2329 DEFVAR_LISP ("font-ccl-encoder-alist", &Vfont_ccl_encoder_alist,
2330 doc: /* Alist of fontname patterns vs corresponding CCL program.
2331 Each element looks like (REGEXP . CCL-CODE),
2332 where CCL-CODE is a compiled CCL program.
2333 When a font whose name matches REGEXP is used for displaying a character,
2334 CCL-CODE is executed to calculate the code point in the font
2335 from the charset number and position code(s) of the character which are set
2336 in CCL registers R0, R1, and R2 before the execution.
2337 The code point in the font is set in CCL registers R1 and R2
2338 when the execution terminated.
2339 If the font is single-byte font, the register R2 is not used. */);
2340 Vfont_ccl_encoder_alist = Qnil;
2341
2342 defsubr (&Sccl_program_p);
2343 defsubr (&Sccl_execute);
2344 defsubr (&Sccl_execute_on_string);
2345 defsubr (&Sregister_ccl_program);
2346 defsubr (&Sregister_code_conversion_map);
2347 }
2348
2349 #endif /* emacs */