]> code.delx.au - gnu-emacs/blob - lisp/emacs-lisp/byte-opt.el
(byte-compile-inline-expand): Fix the arg of `load' again.
[gnu-emacs] / lisp / emacs-lisp / byte-opt.el
1 ;;; byte-opt.el --- the optimization passes of the emacs-lisp byte compiler.
2
3 ;;; Copyright (c) 1991, 1994, 2000, 2001 Free Software Foundation, Inc.
4
5 ;; Author: Jamie Zawinski <jwz@lucid.com>
6 ;; Hallvard Furuseth <hbf@ulrik.uio.no>
7 ;; Maintainer: FSF
8 ;; Keywords: internal
9
10 ;; This file is part of GNU Emacs.
11
12 ;; GNU Emacs is free software; you can redistribute it and/or modify
13 ;; it under the terms of the GNU General Public License as published by
14 ;; the Free Software Foundation; either version 2, or (at your option)
15 ;; any later version.
16
17 ;; GNU Emacs is distributed in the hope that it will be useful,
18 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
19 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 ;; GNU General Public License for more details.
21
22 ;; You should have received a copy of the GNU General Public License
23 ;; along with GNU Emacs; see the file COPYING. If not, write to the
24 ;; Free Software Foundation, Inc., 59 Temple Place - Suite 330,
25 ;; Boston, MA 02111-1307, USA.
26
27 ;;; Commentary:
28
29 ;; ========================================================================
30 ;; "No matter how hard you try, you can't make a racehorse out of a pig.
31 ;; You can, however, make a faster pig."
32 ;;
33 ;; Or, to put it another way, the emacs byte compiler is a VW Bug. This code
34 ;; makes it be a VW Bug with fuel injection and a turbocharger... You're
35 ;; still not going to make it go faster than 70 mph, but it might be easier
36 ;; to get it there.
37 ;;
38
39 ;; TO DO:
40 ;;
41 ;; (apply (lambda (x &rest y) ...) 1 (foo))
42 ;;
43 ;; maintain a list of functions known not to access any global variables
44 ;; (actually, give them a 'dynamically-safe property) and then
45 ;; (let ( v1 v2 ... vM vN ) <...dynamically-safe...> ) ==>
46 ;; (let ( v1 v2 ... vM ) vN <...dynamically-safe...> )
47 ;; by recursing on this, we might be able to eliminate the entire let.
48 ;; However certain variables should never have their bindings optimized
49 ;; away, because they affect everything.
50 ;; (put 'debug-on-error 'binding-is-magic t)
51 ;; (put 'debug-on-abort 'binding-is-magic t)
52 ;; (put 'debug-on-next-call 'binding-is-magic t)
53 ;; (put 'mocklisp-arguments 'binding-is-magic t)
54 ;; (put 'inhibit-quit 'binding-is-magic t)
55 ;; (put 'quit-flag 'binding-is-magic t)
56 ;; (put 't 'binding-is-magic t)
57 ;; (put 'nil 'binding-is-magic t)
58 ;; possibly also
59 ;; (put 'gc-cons-threshold 'binding-is-magic t)
60 ;; (put 'track-mouse 'binding-is-magic t)
61 ;; others?
62 ;;
63 ;; Simple defsubsts often produce forms like
64 ;; (let ((v1 (f1)) (v2 (f2)) ...)
65 ;; (FN v1 v2 ...))
66 ;; It would be nice if we could optimize this to
67 ;; (FN (f1) (f2) ...)
68 ;; but we can't unless FN is dynamically-safe (it might be dynamically
69 ;; referring to the bindings that the lambda arglist established.)
70 ;; One of the uncountable lossages introduced by dynamic scope...
71 ;;
72 ;; Maybe there should be a control-structure that says "turn on
73 ;; fast-and-loose type-assumptive optimizations here." Then when
74 ;; we see a form like (car foo) we can from then on assume that
75 ;; the variable foo is of type cons, and optimize based on that.
76 ;; But, this won't win much because of (you guessed it) dynamic
77 ;; scope. Anything down the stack could change the value.
78 ;; (Another reason it doesn't work is that it is perfectly valid
79 ;; to call car with a null argument.) A better approach might
80 ;; be to allow type-specification of the form
81 ;; (put 'foo 'arg-types '(float (list integer) dynamic))
82 ;; (put 'foo 'result-type 'bool)
83 ;; It should be possible to have these types checked to a certain
84 ;; degree.
85 ;;
86 ;; collapse common subexpressions
87 ;;
88 ;; It would be nice if redundant sequences could be factored out as well,
89 ;; when they are known to have no side-effects:
90 ;; (list (+ a b c) (+ a b c)) --> a b add c add dup list-2
91 ;; but beware of traps like
92 ;; (cons (list x y) (list x y))
93 ;;
94 ;; Tail-recursion elimination is not really possible in Emacs Lisp.
95 ;; Tail-recursion elimination is almost always impossible when all variables
96 ;; have dynamic scope, but given that the "return" byteop requires the
97 ;; binding stack to be empty (rather than emptying it itself), there can be
98 ;; no truly tail-recursive Emacs Lisp functions that take any arguments or
99 ;; make any bindings.
100 ;;
101 ;; Here is an example of an Emacs Lisp function which could safely be
102 ;; byte-compiled tail-recursively:
103 ;;
104 ;; (defun tail-map (fn list)
105 ;; (cond (list
106 ;; (funcall fn (car list))
107 ;; (tail-map fn (cdr list)))))
108 ;;
109 ;; However, if there was even a single let-binding around the COND,
110 ;; it could not be byte-compiled, because there would be an "unbind"
111 ;; byte-op between the final "call" and "return." Adding a
112 ;; Bunbind_all byteop would fix this.
113 ;;
114 ;; (defun foo (x y z) ... (foo a b c))
115 ;; ... (const foo) (varref a) (varref b) (varref c) (call 3) END: (return)
116 ;; ... (varref a) (varbind x) (varref b) (varbind y) (varref c) (varbind z) (goto 0) END: (unbind-all) (return)
117 ;; ... (varref a) (varset x) (varref b) (varset y) (varref c) (varset z) (goto 0) END: (return)
118 ;;
119 ;; this also can be considered tail recursion:
120 ;;
121 ;; ... (const foo) (varref a) (call 1) (goto X) ... X: (return)
122 ;; could generalize this by doing the optimization
123 ;; (goto X) ... X: (return) --> (return)
124 ;;
125 ;; But this doesn't solve all of the problems: although by doing tail-
126 ;; recursion elimination in this way, the call-stack does not grow, the
127 ;; binding-stack would grow with each recursive step, and would eventually
128 ;; overflow. I don't believe there is any way around this without lexical
129 ;; scope.
130 ;;
131 ;; Wouldn't it be nice if Emacs Lisp had lexical scope.
132 ;;
133 ;; Idea: the form (lexical-scope) in a file means that the file may be
134 ;; compiled lexically. This proclamation is file-local. Then, within
135 ;; that file, "let" would establish lexical bindings, and "let-dynamic"
136 ;; would do things the old way. (Or we could use CL "declare" forms.)
137 ;; We'd have to notice defvars and defconsts, since those variables should
138 ;; always be dynamic, and attempting to do a lexical binding of them
139 ;; should simply do a dynamic binding instead.
140 ;; But! We need to know about variables that were not necessarily defvarred
141 ;; in the file being compiled (doing a boundp check isn't good enough.)
142 ;; Fdefvar() would have to be modified to add something to the plist.
143 ;;
144 ;; A major disadvantage of this scheme is that the interpreter and compiler
145 ;; would have different semantics for files compiled with (dynamic-scope).
146 ;; Since this would be a file-local optimization, there would be no way to
147 ;; modify the interpreter to obey this (unless the loader was hacked
148 ;; in some grody way, but that's a really bad idea.)
149
150 ;; Other things to consider:
151
152 ;;;;; Associative math should recognize subcalls to identical function:
153 ;;;(disassemble (lambda (x) (+ (+ (foo) 1) (+ (bar) 2))))
154 ;;;;; This should generate the same as (1+ x) and (1- x)
155
156 ;;;(disassemble (lambda (x) (cons (+ x 1) (- x 1))))
157 ;;;;; An awful lot of functions always return a non-nil value. If they're
158 ;;;;; error free also they may act as true-constants.
159
160 ;;;(disassemble (lambda (x) (and (point) (foo))))
161 ;;;;; When
162 ;;;;; - all but one arguments to a function are constant
163 ;;;;; - the non-constant argument is an if-expression (cond-expression?)
164 ;;;;; then the outer function can be distributed. If the guarding
165 ;;;;; condition is side-effect-free [assignment-free] then the other
166 ;;;;; arguments may be any expressions. Since, however, the code size
167 ;;;;; can increase this way they should be "simple". Compare:
168
169 ;;;(disassemble (lambda (x) (eq (if (point) 'a 'b) 'c)))
170 ;;;(disassemble (lambda (x) (if (point) (eq 'a 'c) (eq 'b 'c))))
171
172 ;;;;; (car (cons A B)) -> (progn B A)
173 ;;;(disassemble (lambda (x) (car (cons (foo) 42))))
174
175 ;;;;; (cdr (cons A B)) -> (progn A B)
176 ;;;(disassemble (lambda (x) (cdr (cons 42 (foo)))))
177
178 ;;;;; (car (list A B ...)) -> (progn B ... A)
179 ;;;(disassemble (lambda (x) (car (list (foo) 42 (bar)))))
180
181 ;;;;; (cdr (list A B ...)) -> (progn A (list B ...))
182 ;;;(disassemble (lambda (x) (cdr (list 42 (foo) (bar)))))
183
184
185 ;;; Code:
186
187 (require 'bytecomp)
188
189 (defun byte-compile-log-lap-1 (format &rest args)
190 (if (aref byte-code-vector 0)
191 (error "The old version of the disassembler is loaded. Reload new-bytecomp as well."))
192 (byte-compile-log-1
193 (apply 'format format
194 (let (c a)
195 (mapcar (lambda (arg)
196 (if (not (consp arg))
197 (if (and (symbolp arg)
198 (string-match "^byte-" (symbol-name arg)))
199 (intern (substring (symbol-name arg) 5))
200 arg)
201 (if (integerp (setq c (car arg)))
202 (error "non-symbolic byte-op %s" c))
203 (if (eq c 'TAG)
204 (setq c arg)
205 (setq a (cond ((memq c byte-goto-ops)
206 (car (cdr (cdr arg))))
207 ((memq c byte-constref-ops)
208 (car (cdr arg)))
209 (t (cdr arg))))
210 (setq c (symbol-name c))
211 (if (string-match "^byte-." c)
212 (setq c (intern (substring c 5)))))
213 (if (eq c 'constant) (setq c 'const))
214 (if (and (eq (cdr arg) 0)
215 (not (memq c '(unbind call const))))
216 c
217 (format "(%s %s)" c a))))
218 args)))))
219
220 (defmacro byte-compile-log-lap (format-string &rest args)
221 (list 'and
222 '(memq byte-optimize-log '(t byte))
223 (cons 'byte-compile-log-lap-1
224 (cons format-string args))))
225
226 \f
227 ;;; byte-compile optimizers to support inlining
228
229 (put 'inline 'byte-optimizer 'byte-optimize-inline-handler)
230
231 (defun byte-optimize-inline-handler (form)
232 "byte-optimize-handler for the `inline' special-form."
233 (cons 'progn
234 (mapcar
235 (lambda (sexp)
236 (let ((fn (car-safe sexp)))
237 (if (and (symbolp fn)
238 (or (cdr (assq fn byte-compile-function-environment))
239 (and (fboundp fn)
240 (not (or (cdr (assq fn byte-compile-macro-environment))
241 (and (consp (setq fn (symbol-function fn)))
242 (eq (car fn) 'macro))
243 (subrp fn))))))
244 (byte-compile-inline-expand sexp)
245 sexp)))
246 (cdr form))))
247
248
249 ;; Splice the given lap code into the current instruction stream.
250 ;; If it has any labels in it, you're responsible for making sure there
251 ;; are no collisions, and that byte-compile-tag-number is reasonable
252 ;; after this is spliced in. The provided list is destroyed.
253 (defun byte-inline-lapcode (lap)
254 (setq byte-compile-output (nconc (nreverse lap) byte-compile-output)))
255
256
257 (defun byte-compile-inline-expand (form)
258 (let* ((name (car form))
259 (fn (or (cdr (assq name byte-compile-function-environment))
260 (and (fboundp name) (symbol-function name)))))
261 (if (null fn)
262 (progn
263 (byte-compile-warn "Attempt to inline `%s' before it was defined"
264 name)
265 form)
266 ;; else
267 (when (and (consp fn) (eq (car fn) 'autoload))
268 (load (nth 1 fn))
269 (setq fn (or (and (fboundp name) (symbol-function name))
270 (cdr (assq name byte-compile-function-environment)))))
271 (if (and (consp fn) (eq (car fn) 'autoload))
272 (error "File `%s' didn't define `%s'" (nth 2 fn) name))
273 (if (symbolp fn)
274 (byte-compile-inline-expand (cons fn (cdr form)))
275 (if (byte-code-function-p fn)
276 (let (string)
277 (fetch-bytecode fn)
278 (setq string (aref fn 1))
279 (if (fboundp 'string-as-unibyte)
280 (setq string (string-as-unibyte string)))
281 (cons (list 'lambda (aref fn 0)
282 (list 'byte-code string (aref fn 2) (aref fn 3)))
283 (cdr form)))
284 (if (eq (car-safe fn) 'lambda)
285 (cons fn (cdr form))
286 ;; Give up on inlining.
287 form))))))
288
289 ;;; ((lambda ...) ...)
290 ;;;
291 (defun byte-compile-unfold-lambda (form &optional name)
292 (or name (setq name "anonymous lambda"))
293 (let ((lambda (car form))
294 (values (cdr form)))
295 (if (byte-code-function-p lambda)
296 (setq lambda (list 'lambda (aref lambda 0)
297 (list 'byte-code (aref lambda 1)
298 (aref lambda 2) (aref lambda 3)))))
299 (let ((arglist (nth 1 lambda))
300 (body (cdr (cdr lambda)))
301 optionalp restp
302 bindings)
303 (if (and (stringp (car body)) (cdr body))
304 (setq body (cdr body)))
305 (if (and (consp (car body)) (eq 'interactive (car (car body))))
306 (setq body (cdr body)))
307 (while arglist
308 (cond ((eq (car arglist) '&optional)
309 ;; ok, I'll let this slide because funcall_lambda() does...
310 ;; (if optionalp (error "multiple &optional keywords in %s" name))
311 (if restp (error "&optional found after &rest in %s" name))
312 (if (null (cdr arglist))
313 (error "nothing after &optional in %s" name))
314 (setq optionalp t))
315 ((eq (car arglist) '&rest)
316 ;; ...but it is by no stretch of the imagination a reasonable
317 ;; thing that funcall_lambda() allows (&rest x y) and
318 ;; (&rest x &optional y) in arglists.
319 (if (null (cdr arglist))
320 (error "nothing after &rest in %s" name))
321 (if (cdr (cdr arglist))
322 (error "multiple vars after &rest in %s" name))
323 (setq restp t))
324 (restp
325 (setq bindings (cons (list (car arglist)
326 (and values (cons 'list values)))
327 bindings)
328 values nil))
329 ((and (not optionalp) (null values))
330 (byte-compile-warn "Attempt to open-code `%s' with too few arguments" name)
331 (setq arglist nil values 'too-few))
332 (t
333 (setq bindings (cons (list (car arglist) (car values))
334 bindings)
335 values (cdr values))))
336 (setq arglist (cdr arglist)))
337 (if values
338 (progn
339 (or (eq values 'too-few)
340 (byte-compile-warn
341 "Attempt to open-code `%s' with too many arguments" name))
342 form)
343
344 ;; The following leads to infinite recursion when loading a
345 ;; file containing `(defsubst f () (f))', and then trying to
346 ;; byte-compile that file.
347 ;(setq body (mapcar 'byte-optimize-form body)))
348
349 (let ((newform
350 (if bindings
351 (cons 'let (cons (nreverse bindings) body))
352 (cons 'progn body))))
353 (byte-compile-log " %s\t==>\t%s" form newform)
354 newform)))))
355
356 \f
357 ;;; implementing source-level optimizers
358
359 (defun byte-optimize-form-code-walker (form for-effect)
360 ;;
361 ;; For normal function calls, We can just mapcar the optimizer the cdr. But
362 ;; we need to have special knowledge of the syntax of the special forms
363 ;; like let and defun (that's why they're special forms :-). (Actually,
364 ;; the important aspect is that they are subrs that don't evaluate all of
365 ;; their args.)
366 ;;
367 (let ((fn (car-safe form))
368 tmp)
369 (cond ((not (consp form))
370 (if (not (and for-effect
371 (or byte-compile-delete-errors
372 (not (symbolp form))
373 (eq form t))))
374 form))
375 ((eq fn 'quote)
376 (if (cdr (cdr form))
377 (byte-compile-warn "Malformed quote form: `%s'"
378 (prin1-to-string form)))
379 ;; map (quote nil) to nil to simplify optimizer logic.
380 ;; map quoted constants to nil if for-effect (just because).
381 (and (nth 1 form)
382 (not for-effect)
383 form))
384 ((or (byte-code-function-p fn)
385 (eq 'lambda (car-safe fn)))
386 (byte-compile-unfold-lambda form))
387 ((memq fn '(let let*))
388 ;; recursively enter the optimizer for the bindings and body
389 ;; of a let or let*. This for depth-firstness: forms that
390 ;; are more deeply nested are optimized first.
391 (cons fn
392 (cons
393 (mapcar (lambda (binding)
394 (if (symbolp binding)
395 binding
396 (if (cdr (cdr binding))
397 (byte-compile-warn "Malformed let binding: `%s'"
398 (prin1-to-string binding)))
399 (list (car binding)
400 (byte-optimize-form (nth 1 binding) nil))))
401 (nth 1 form))
402 (byte-optimize-body (cdr (cdr form)) for-effect))))
403 ((eq fn 'cond)
404 (cons fn
405 (mapcar (lambda (clause)
406 (if (consp clause)
407 (cons
408 (byte-optimize-form (car clause) nil)
409 (byte-optimize-body (cdr clause) for-effect))
410 (byte-compile-warn "Malformed cond form: `%s'"
411 (prin1-to-string clause))
412 clause))
413 (cdr form))))
414 ((eq fn 'progn)
415 ;; as an extra added bonus, this simplifies (progn <x>) --> <x>
416 (if (cdr (cdr form))
417 (progn
418 (setq tmp (byte-optimize-body (cdr form) for-effect))
419 (if (cdr tmp) (cons 'progn tmp) (car tmp)))
420 (byte-optimize-form (nth 1 form) for-effect)))
421 ((eq fn 'prog1)
422 (if (cdr (cdr form))
423 (cons 'prog1
424 (cons (byte-optimize-form (nth 1 form) for-effect)
425 (byte-optimize-body (cdr (cdr form)) t)))
426 (byte-optimize-form (nth 1 form) for-effect)))
427 ((eq fn 'prog2)
428 (cons 'prog2
429 (cons (byte-optimize-form (nth 1 form) t)
430 (cons (byte-optimize-form (nth 2 form) for-effect)
431 (byte-optimize-body (cdr (cdr (cdr form))) t)))))
432
433 ((memq fn '(save-excursion save-restriction save-current-buffer))
434 ;; those subrs which have an implicit progn; it's not quite good
435 ;; enough to treat these like normal function calls.
436 ;; This can turn (save-excursion ...) into (save-excursion) which
437 ;; will be optimized away in the lap-optimize pass.
438 (cons fn (byte-optimize-body (cdr form) for-effect)))
439
440 ((eq fn 'with-output-to-temp-buffer)
441 ;; this is just like the above, except for the first argument.
442 (cons fn
443 (cons
444 (byte-optimize-form (nth 1 form) nil)
445 (byte-optimize-body (cdr (cdr form)) for-effect))))
446
447 ((eq fn 'if)
448 (when (< (length form) 3)
449 (byte-compile-warn "Too few arguments for `if'"))
450 (cons fn
451 (cons (byte-optimize-form (nth 1 form) nil)
452 (cons
453 (byte-optimize-form (nth 2 form) for-effect)
454 (byte-optimize-body (nthcdr 3 form) for-effect)))))
455
456 ((memq fn '(and or)) ; remember, and/or are control structures.
457 ;; take forms off the back until we can't any more.
458 ;; In the future it could conceivably be a problem that the
459 ;; subexpressions of these forms are optimized in the reverse
460 ;; order, but it's ok for now.
461 (if for-effect
462 (let ((backwards (reverse (cdr form))))
463 (while (and backwards
464 (null (setcar backwards
465 (byte-optimize-form (car backwards)
466 for-effect))))
467 (setq backwards (cdr backwards)))
468 (if (and (cdr form) (null backwards))
469 (byte-compile-log
470 " all subforms of %s called for effect; deleted" form))
471 (and backwards
472 (cons fn (nreverse backwards))))
473 (cons fn (mapcar 'byte-optimize-form (cdr form)))))
474
475 ((eq fn 'interactive)
476 (byte-compile-warn "Misplaced interactive spec: `%s'"
477 (prin1-to-string form))
478 nil)
479
480 ((memq fn '(defun defmacro function
481 condition-case save-window-excursion))
482 ;; These forms are compiled as constants or by breaking out
483 ;; all the subexpressions and compiling them separately.
484 form)
485
486 ((eq fn 'unwind-protect)
487 ;; the "protected" part of an unwind-protect is compiled (and thus
488 ;; optimized) as a top-level form, so don't do it here. But the
489 ;; non-protected part has the same for-effect status as the
490 ;; unwind-protect itself. (The protected part is always for effect,
491 ;; but that isn't handled properly yet.)
492 (cons fn
493 (cons (byte-optimize-form (nth 1 form) for-effect)
494 (cdr (cdr form)))))
495
496 ((eq fn 'catch)
497 ;; the body of a catch is compiled (and thus optimized) as a
498 ;; top-level form, so don't do it here. The tag is never
499 ;; for-effect. The body should have the same for-effect status
500 ;; as the catch form itself, but that isn't handled properly yet.
501 (cons fn
502 (cons (byte-optimize-form (nth 1 form) nil)
503 (cdr (cdr form)))))
504
505 ;; If optimization is on, this is the only place that macros are
506 ;; expanded. If optimization is off, then macroexpansion happens
507 ;; in byte-compile-form. Otherwise, the macros are already expanded
508 ;; by the time that is reached.
509 ((not (eq form
510 (setq form (macroexpand form
511 byte-compile-macro-environment))))
512 (byte-optimize-form form for-effect))
513
514 ;; Support compiler macros as in cl.el.
515 ((and (fboundp 'compiler-macroexpand)
516 (symbolp (car-safe form))
517 (get (car-safe form) 'cl-compiler-macro)
518 (not (eq form
519 (setq form (compiler-macroexpand form)))))
520 (byte-optimize-form form for-effect))
521
522 ((not (symbolp fn))
523 (or (eq 'mocklisp (car-safe fn)) ; ha!
524 (byte-compile-warn "`%s' is a malformed function"
525 (prin1-to-string fn)))
526 form)
527
528 ((and for-effect (setq tmp (get fn 'side-effect-free))
529 (or byte-compile-delete-errors
530 (eq tmp 'error-free)
531 (progn
532 (byte-compile-warn "`%s' called for effect"
533 (prin1-to-string form))
534 nil)))
535 (byte-compile-log " %s called for effect; deleted" fn)
536 ;; appending a nil here might not be necessary, but it can't hurt.
537 (byte-optimize-form
538 (cons 'progn (append (cdr form) '(nil))) t))
539
540 (t
541 ;; Otherwise, no args can be considered to be for-effect,
542 ;; even if the called function is for-effect, because we
543 ;; don't know anything about that function.
544 (cons fn (mapcar 'byte-optimize-form (cdr form)))))))
545
546
547 (defun byte-optimize-form (form &optional for-effect)
548 "The source-level pass of the optimizer."
549 ;;
550 ;; First, optimize all sub-forms of this one.
551 (setq form (byte-optimize-form-code-walker form for-effect))
552 ;;
553 ;; after optimizing all subforms, optimize this form until it doesn't
554 ;; optimize any further. This means that some forms will be passed through
555 ;; the optimizer many times, but that's necessary to make the for-effect
556 ;; processing do as much as possible.
557 ;;
558 (let (opt new)
559 (if (and (consp form)
560 (symbolp (car form))
561 (or (and for-effect
562 ;; we don't have any of these yet, but we might.
563 (setq opt (get (car form) 'byte-for-effect-optimizer)))
564 (setq opt (get (car form) 'byte-optimizer)))
565 (not (eq form (setq new (funcall opt form)))))
566 (progn
567 ;; (if (equal form new) (error "bogus optimizer -- %s" opt))
568 (byte-compile-log " %s\t==>\t%s" form new)
569 (setq new (byte-optimize-form new for-effect))
570 new)
571 form)))
572
573
574 (defun byte-optimize-body (forms all-for-effect)
575 ;; optimize the cdr of a progn or implicit progn; all forms is a list of
576 ;; forms, all but the last of which are optimized with the assumption that
577 ;; they are being called for effect. the last is for-effect as well if
578 ;; all-for-effect is true. returns a new list of forms.
579 (let ((rest forms)
580 (result nil)
581 fe new)
582 (while rest
583 (setq fe (or all-for-effect (cdr rest)))
584 (setq new (and (car rest) (byte-optimize-form (car rest) fe)))
585 (if (or new (not fe))
586 (setq result (cons new result)))
587 (setq rest (cdr rest)))
588 (nreverse result)))
589
590 \f
591 ;;; some source-level optimizers
592 ;;;
593 ;;; when writing optimizers, be VERY careful that the optimizer returns
594 ;;; something not EQ to its argument if and ONLY if it has made a change.
595 ;;; This implies that you cannot simply destructively modify the list;
596 ;;; you must return something not EQ to it if you make an optimization.
597 ;;;
598 ;;; It is now safe to optimize code such that it introduces new bindings.
599
600 ;; I'd like this to be a defsubst, but let's not be self-referential...
601 (defmacro byte-compile-trueconstp (form)
602 ;; Returns non-nil if FORM is a non-nil constant.
603 `(cond ((consp ,form) (eq (car ,form) 'quote))
604 ((not (symbolp ,form)))
605 ((eq ,form t))
606 ((keywordp ,form))))
607
608 ;; If the function is being called with constant numeric args,
609 ;; evaluate as much as possible at compile-time. This optimizer
610 ;; assumes that the function is associative, like + or *.
611 (defun byte-optimize-associative-math (form)
612 (let ((args nil)
613 (constants nil)
614 (rest (cdr form)))
615 (while rest
616 (if (numberp (car rest))
617 (setq constants (cons (car rest) constants))
618 (setq args (cons (car rest) args)))
619 (setq rest (cdr rest)))
620 (if (cdr constants)
621 (if args
622 (list (car form)
623 (apply (car form) constants)
624 (if (cdr args)
625 (cons (car form) (nreverse args))
626 (car args)))
627 (apply (car form) constants))
628 form)))
629
630 ;; If the function is being called with constant numeric args,
631 ;; evaluate as much as possible at compile-time. This optimizer
632 ;; assumes that the function satisfies
633 ;; (op x1 x2 ... xn) == (op ...(op (op x1 x2) x3) ...xn)
634 ;; like - and /.
635 (defun byte-optimize-nonassociative-math (form)
636 (if (or (not (numberp (car (cdr form))))
637 (not (numberp (car (cdr (cdr form))))))
638 form
639 (let ((constant (car (cdr form)))
640 (rest (cdr (cdr form))))
641 (while (numberp (car rest))
642 (setq constant (funcall (car form) constant (car rest))
643 rest (cdr rest)))
644 (if rest
645 (cons (car form) (cons constant rest))
646 constant))))
647
648 ;;(defun byte-optimize-associative-two-args-math (form)
649 ;; (setq form (byte-optimize-associative-math form))
650 ;; (if (consp form)
651 ;; (byte-optimize-two-args-left form)
652 ;; form))
653
654 ;;(defun byte-optimize-nonassociative-two-args-math (form)
655 ;; (setq form (byte-optimize-nonassociative-math form))
656 ;; (if (consp form)
657 ;; (byte-optimize-two-args-right form)
658 ;; form))
659
660 (defun byte-optimize-approx-equal (x y)
661 (<= (* (abs (- x y)) 100) (abs (+ x y))))
662
663 ;; Collect all the constants from FORM, after the STARTth arg,
664 ;; and apply FUN to them to make one argument at the end.
665 ;; For functions that can handle floats, that optimization
666 ;; can be incorrect because reordering can cause an overflow
667 ;; that would otherwise be avoided by encountering an arg that is a float.
668 ;; We avoid this problem by (1) not moving float constants and
669 ;; (2) not moving anything if it would cause an overflow.
670 (defun byte-optimize-delay-constants-math (form start fun)
671 ;; Merge all FORM's constants from number START, call FUN on them
672 ;; and put the result at the end.
673 (let ((rest (nthcdr (1- start) form))
674 (orig form)
675 ;; t means we must check for overflow.
676 (overflow (memq fun '(+ *))))
677 (while (cdr (setq rest (cdr rest)))
678 (if (integerp (car rest))
679 (let (constants)
680 (setq form (copy-sequence form)
681 rest (nthcdr (1- start) form))
682 (while (setq rest (cdr rest))
683 (cond ((integerp (car rest))
684 (setq constants (cons (car rest) constants))
685 (setcar rest nil))))
686 ;; If necessary, check now for overflow
687 ;; that might be caused by reordering.
688 (if (and overflow
689 ;; We have overflow if the result of doing the arithmetic
690 ;; on floats is not even close to the result
691 ;; of doing it on integers.
692 (not (byte-optimize-approx-equal
693 (apply fun (mapcar 'float constants))
694 (float (apply fun constants)))))
695 (setq form orig)
696 (setq form (nconc (delq nil form)
697 (list (apply fun (nreverse constants)))))))))
698 form))
699
700 (defun byte-optimize-plus (form)
701 (setq form (byte-optimize-delay-constants-math form 1 '+))
702 (if (memq 0 form) (setq form (delq 0 (copy-sequence form))))
703 ;;(setq form (byte-optimize-associative-two-args-math form))
704 (cond ((null (cdr form))
705 (condition-case ()
706 (eval form)
707 (error form)))
708 ;;; It is not safe to delete the function entirely
709 ;;; (actually, it would be safe if we know the sole arg
710 ;;; is not a marker).
711 ;; ((null (cdr (cdr form))) (nth 1 form))
712 ((null (cddr form))
713 (if (numberp (nth 1 form))
714 (nth 1 form)
715 form))
716 ((and (null (nthcdr 3 form))
717 (or (memq (nth 1 form) '(1 -1))
718 (memq (nth 2 form) '(1 -1))))
719 ;; Optimize (+ x 1) into (1+ x) and (+ x -1) into (1- x).
720 (let ((integer
721 (if (memq (nth 1 form) '(1 -1))
722 (nth 1 form)
723 (nth 2 form)))
724 (other
725 (if (memq (nth 1 form) '(1 -1))
726 (nth 2 form)
727 (nth 1 form))))
728 (list (if (eq integer 1) '1+ '1-)
729 other)))
730 (t form)))
731
732 (defun byte-optimize-minus (form)
733 ;; Put constants at the end, except the last constant.
734 (setq form (byte-optimize-delay-constants-math form 2 '+))
735 ;; Now only first and last element can be a number.
736 (let ((last (car (reverse (nthcdr 3 form)))))
737 (cond ((eq 0 last)
738 ;; (- x y ... 0) --> (- x y ...)
739 (setq form (copy-sequence form))
740 (setcdr (cdr (cdr form)) (delq 0 (nthcdr 3 form))))
741 ((equal (nthcdr 2 form) '(1))
742 (setq form (list '1- (nth 1 form))))
743 ((equal (nthcdr 2 form) '(-1))
744 (setq form (list '1+ (nth 1 form))))
745 ;; If form is (- CONST foo... CONST), merge first and last.
746 ((and (numberp (nth 1 form))
747 (numberp last))
748 (setq form (nconc (list '- (- (nth 1 form) last) (nth 2 form))
749 (delq last (copy-sequence (nthcdr 3 form))))))))
750 ;;; It is not safe to delete the function entirely
751 ;;; (actually, it would be safe if we know the sole arg
752 ;;; is not a marker).
753 ;;; (if (eq (nth 2 form) 0)
754 ;;; (nth 1 form) ; (- x 0) --> x
755 (byte-optimize-predicate
756 (if (and (null (cdr (cdr (cdr form))))
757 (eq (nth 1 form) 0)) ; (- 0 x) --> (- x)
758 (cons (car form) (cdr (cdr form)))
759 form))
760 ;;; )
761 )
762
763 (defun byte-optimize-multiply (form)
764 (setq form (byte-optimize-delay-constants-math form 1 '*))
765 ;; If there is a constant in FORM, it is now the last element.
766 (cond ((null (cdr form)) 1)
767 ;;; It is not safe to delete the function entirely
768 ;;; (actually, it would be safe if we know the sole arg
769 ;;; is not a marker or if it appears in other arithmetic).
770 ;;; ((null (cdr (cdr form))) (nth 1 form))
771 ((let ((last (car (reverse form))))
772 (cond ((eq 0 last) (cons 'progn (cdr form)))
773 ((eq 1 last) (delq 1 (copy-sequence form)))
774 ((eq -1 last) (list '- (delq -1 (copy-sequence form))))
775 ((and (eq 2 last)
776 (memq t (mapcar 'symbolp (cdr form))))
777 (prog1 (setq form (delq 2 (copy-sequence form)))
778 (while (not (symbolp (car (setq form (cdr form))))))
779 (setcar form (list '+ (car form) (car form)))))
780 (form))))))
781
782 (defsubst byte-compile-butlast (form)
783 (nreverse (cdr (reverse form))))
784
785 (defun byte-optimize-divide (form)
786 (setq form (byte-optimize-delay-constants-math form 2 '*))
787 (let ((last (car (reverse (cdr (cdr form))))))
788 (if (numberp last)
789 (cond ((= (length form) 3)
790 (if (and (numberp (nth 1 form))
791 (not (zerop last))
792 (condition-case nil
793 (/ (nth 1 form) last)
794 (error nil)))
795 (setq form (list 'progn (/ (nth 1 form) last)))))
796 ((= last 1)
797 (setq form (byte-compile-butlast form)))
798 ((numberp (nth 1 form))
799 (setq form (cons (car form)
800 (cons (/ (nth 1 form) last)
801 (byte-compile-butlast (cdr (cdr form)))))
802 last nil))))
803 (cond
804 ;;; ((null (cdr (cdr form)))
805 ;;; (nth 1 form))
806 ((eq (nth 1 form) 0)
807 (append '(progn) (cdr (cdr form)) '(0)))
808 ((eq last -1)
809 (list '- (if (nthcdr 3 form)
810 (byte-compile-butlast form)
811 (nth 1 form))))
812 (form))))
813
814 (defun byte-optimize-logmumble (form)
815 (setq form (byte-optimize-delay-constants-math form 1 (car form)))
816 (byte-optimize-predicate
817 (cond ((memq 0 form)
818 (setq form (if (eq (car form) 'logand)
819 (cons 'progn (cdr form))
820 (delq 0 (copy-sequence form)))))
821 ((and (eq (car-safe form) 'logior)
822 (memq -1 form))
823 (cons 'progn (cdr form)))
824 (form))))
825
826
827 (defun byte-optimize-binary-predicate (form)
828 (if (byte-compile-constp (nth 1 form))
829 (if (byte-compile-constp (nth 2 form))
830 (condition-case ()
831 (list 'quote (eval form))
832 (error form))
833 ;; This can enable some lapcode optimizations.
834 (list (car form) (nth 2 form) (nth 1 form)))
835 form))
836
837 (defun byte-optimize-predicate (form)
838 (let ((ok t)
839 (rest (cdr form)))
840 (while (and rest ok)
841 (setq ok (byte-compile-constp (car rest))
842 rest (cdr rest)))
843 (if ok
844 (condition-case ()
845 (list 'quote (eval form))
846 (error form))
847 form)))
848
849 (defun byte-optimize-identity (form)
850 (if (and (cdr form) (null (cdr (cdr form))))
851 (nth 1 form)
852 (byte-compile-warn "Identity called with %d arg%s, but requires 1"
853 (length (cdr form))
854 (if (= 1 (length (cdr form))) "" "s"))
855 form))
856
857 (put 'identity 'byte-optimizer 'byte-optimize-identity)
858
859 (put '+ 'byte-optimizer 'byte-optimize-plus)
860 (put '* 'byte-optimizer 'byte-optimize-multiply)
861 (put '- 'byte-optimizer 'byte-optimize-minus)
862 (put '/ 'byte-optimizer 'byte-optimize-divide)
863 (put 'max 'byte-optimizer 'byte-optimize-associative-math)
864 (put 'min 'byte-optimizer 'byte-optimize-associative-math)
865
866 (put '= 'byte-optimizer 'byte-optimize-binary-predicate)
867 (put 'eq 'byte-optimizer 'byte-optimize-binary-predicate)
868 (put 'equal 'byte-optimizer 'byte-optimize-binary-predicate)
869 (put 'string= 'byte-optimizer 'byte-optimize-binary-predicate)
870 (put 'string-equal 'byte-optimizer 'byte-optimize-binary-predicate)
871
872 (put '< 'byte-optimizer 'byte-optimize-predicate)
873 (put '> 'byte-optimizer 'byte-optimize-predicate)
874 (put '<= 'byte-optimizer 'byte-optimize-predicate)
875 (put '>= 'byte-optimizer 'byte-optimize-predicate)
876 (put '1+ 'byte-optimizer 'byte-optimize-predicate)
877 (put '1- 'byte-optimizer 'byte-optimize-predicate)
878 (put 'not 'byte-optimizer 'byte-optimize-predicate)
879 (put 'null 'byte-optimizer 'byte-optimize-predicate)
880 (put 'memq 'byte-optimizer 'byte-optimize-predicate)
881 (put 'consp 'byte-optimizer 'byte-optimize-predicate)
882 (put 'listp 'byte-optimizer 'byte-optimize-predicate)
883 (put 'symbolp 'byte-optimizer 'byte-optimize-predicate)
884 (put 'stringp 'byte-optimizer 'byte-optimize-predicate)
885 (put 'string< 'byte-optimizer 'byte-optimize-predicate)
886 (put 'string-lessp 'byte-optimizer 'byte-optimize-predicate)
887
888 (put 'logand 'byte-optimizer 'byte-optimize-logmumble)
889 (put 'logior 'byte-optimizer 'byte-optimize-logmumble)
890 (put 'logxor 'byte-optimizer 'byte-optimize-logmumble)
891 (put 'lognot 'byte-optimizer 'byte-optimize-predicate)
892
893 (put 'car 'byte-optimizer 'byte-optimize-predicate)
894 (put 'cdr 'byte-optimizer 'byte-optimize-predicate)
895 (put 'car-safe 'byte-optimizer 'byte-optimize-predicate)
896 (put 'cdr-safe 'byte-optimizer 'byte-optimize-predicate)
897
898
899 ;; I'm not convinced that this is necessary. Doesn't the optimizer loop
900 ;; take care of this? - Jamie
901 ;; I think this may some times be necessary to reduce ie (quote 5) to 5,
902 ;; so arithmetic optimizers recognize the numeric constant. - Hallvard
903 (put 'quote 'byte-optimizer 'byte-optimize-quote)
904 (defun byte-optimize-quote (form)
905 (if (or (consp (nth 1 form))
906 (and (symbolp (nth 1 form))
907 (not (byte-compile-const-symbol-p form))))
908 form
909 (nth 1 form)))
910
911 (defun byte-optimize-zerop (form)
912 (cond ((numberp (nth 1 form))
913 (eval form))
914 (byte-compile-delete-errors
915 (list '= (nth 1 form) 0))
916 (form)))
917
918 (put 'zerop 'byte-optimizer 'byte-optimize-zerop)
919
920 (defun byte-optimize-and (form)
921 ;; Simplify if less than 2 args.
922 ;; if there is a literal nil in the args to `and', throw it and following
923 ;; forms away, and surround the `and' with (progn ... nil).
924 (cond ((null (cdr form)))
925 ((memq nil form)
926 (list 'progn
927 (byte-optimize-and
928 (prog1 (setq form (copy-sequence form))
929 (while (nth 1 form)
930 (setq form (cdr form)))
931 (setcdr form nil)))
932 nil))
933 ((null (cdr (cdr form)))
934 (nth 1 form))
935 ((byte-optimize-predicate form))))
936
937 (defun byte-optimize-or (form)
938 ;; Throw away nil's, and simplify if less than 2 args.
939 ;; If there is a literal non-nil constant in the args to `or', throw away all
940 ;; following forms.
941 (if (memq nil form)
942 (setq form (delq nil (copy-sequence form))))
943 (let ((rest form))
944 (while (cdr (setq rest (cdr rest)))
945 (if (byte-compile-trueconstp (car rest))
946 (setq form (copy-sequence form)
947 rest (setcdr (memq (car rest) form) nil))))
948 (if (cdr (cdr form))
949 (byte-optimize-predicate form)
950 (nth 1 form))))
951
952 (defun byte-optimize-cond (form)
953 ;; if any clauses have a literal nil as their test, throw them away.
954 ;; if any clause has a literal non-nil constant as its test, throw
955 ;; away all following clauses.
956 (let (rest)
957 ;; This must be first, to reduce (cond (t ...) (nil)) to (progn t ...)
958 (while (setq rest (assq nil (cdr form)))
959 (setq form (delq rest (copy-sequence form))))
960 (if (memq nil (cdr form))
961 (setq form (delq nil (copy-sequence form))))
962 (setq rest form)
963 (while (setq rest (cdr rest))
964 (cond ((byte-compile-trueconstp (car-safe (car rest)))
965 (cond ((eq rest (cdr form))
966 (setq form
967 (if (cdr (car rest))
968 (if (cdr (cdr (car rest)))
969 (cons 'progn (cdr (car rest)))
970 (nth 1 (car rest)))
971 (car (car rest)))))
972 ((cdr rest)
973 (setq form (copy-sequence form))
974 (setcdr (memq (car rest) form) nil)))
975 (setq rest nil)))))
976 ;;
977 ;; Turn (cond (( <x> )) ... ) into (or <x> (cond ... ))
978 (if (eq 'cond (car-safe form))
979 (let ((clauses (cdr form)))
980 (if (and (consp (car clauses))
981 (null (cdr (car clauses))))
982 (list 'or (car (car clauses))
983 (byte-optimize-cond
984 (cons (car form) (cdr (cdr form)))))
985 form))
986 form))
987
988 (defun byte-optimize-if (form)
989 ;; (if <true-constant> <then> <else...>) ==> <then>
990 ;; (if <false-constant> <then> <else...>) ==> (progn <else...>)
991 ;; (if <test> nil <else...>) ==> (if (not <test>) (progn <else...>))
992 ;; (if <test> <then> nil) ==> (if <test> <then>)
993 (let ((clause (nth 1 form)))
994 (cond ((byte-compile-trueconstp clause)
995 (nth 2 form))
996 ((null clause)
997 (if (nthcdr 4 form)
998 (cons 'progn (nthcdr 3 form))
999 (nth 3 form)))
1000 ((nth 2 form)
1001 (if (equal '(nil) (nthcdr 3 form))
1002 (list 'if clause (nth 2 form))
1003 form))
1004 ((or (nth 3 form) (nthcdr 4 form))
1005 (list 'if
1006 ;; Don't make a double negative;
1007 ;; instead, take away the one that is there.
1008 (if (and (consp clause) (memq (car clause) '(not null))
1009 (= (length clause) 2)) ; (not xxxx) or (not (xxxx))
1010 (nth 1 clause)
1011 (list 'not clause))
1012 (if (nthcdr 4 form)
1013 (cons 'progn (nthcdr 3 form))
1014 (nth 3 form))))
1015 (t
1016 (list 'progn clause nil)))))
1017
1018 (defun byte-optimize-while (form)
1019 (when (< (length form) 2)
1020 (byte-compile-warn "Too few arguments for `while'"))
1021 (if (nth 1 form)
1022 form))
1023
1024 (put 'and 'byte-optimizer 'byte-optimize-and)
1025 (put 'or 'byte-optimizer 'byte-optimize-or)
1026 (put 'cond 'byte-optimizer 'byte-optimize-cond)
1027 (put 'if 'byte-optimizer 'byte-optimize-if)
1028 (put 'while 'byte-optimizer 'byte-optimize-while)
1029
1030 ;; byte-compile-negation-optimizer lives in bytecomp.el
1031 (put '/= 'byte-optimizer 'byte-compile-negation-optimizer)
1032 (put 'atom 'byte-optimizer 'byte-compile-negation-optimizer)
1033 (put 'nlistp 'byte-optimizer 'byte-compile-negation-optimizer)
1034
1035
1036 (defun byte-optimize-funcall (form)
1037 ;; (funcall (lambda ...) ...) ==> ((lambda ...) ...)
1038 ;; (funcall foo ...) ==> (foo ...)
1039 (let ((fn (nth 1 form)))
1040 (if (memq (car-safe fn) '(quote function))
1041 (cons (nth 1 fn) (cdr (cdr form)))
1042 form)))
1043
1044 (defun byte-optimize-apply (form)
1045 ;; If the last arg is a literal constant, turn this into a funcall.
1046 ;; The funcall optimizer can then transform (funcall 'foo ...) -> (foo ...).
1047 (let ((fn (nth 1 form))
1048 (last (nth (1- (length form)) form))) ; I think this really is fastest
1049 (or (if (or (null last)
1050 (eq (car-safe last) 'quote))
1051 (if (listp (nth 1 last))
1052 (let ((butlast (nreverse (cdr (reverse (cdr (cdr form)))))))
1053 (nconc (list 'funcall fn) butlast
1054 (mapcar (lambda (x) (list 'quote x)) (nth 1 last))))
1055 (byte-compile-warn
1056 "Last arg to apply can't be a literal atom: `%s'"
1057 (prin1-to-string last))
1058 nil))
1059 form)))
1060
1061 (put 'funcall 'byte-optimizer 'byte-optimize-funcall)
1062 (put 'apply 'byte-optimizer 'byte-optimize-apply)
1063
1064
1065 (put 'let 'byte-optimizer 'byte-optimize-letX)
1066 (put 'let* 'byte-optimizer 'byte-optimize-letX)
1067 (defun byte-optimize-letX (form)
1068 (cond ((null (nth 1 form))
1069 ;; No bindings
1070 (cons 'progn (cdr (cdr form))))
1071 ((or (nth 2 form) (nthcdr 3 form))
1072 form)
1073 ;; The body is nil
1074 ((eq (car form) 'let)
1075 (append '(progn) (mapcar 'car-safe (mapcar 'cdr-safe (nth 1 form)))
1076 '(nil)))
1077 (t
1078 (let ((binds (reverse (nth 1 form))))
1079 (list 'let* (reverse (cdr binds)) (nth 1 (car binds)) nil)))))
1080
1081
1082 (put 'nth 'byte-optimizer 'byte-optimize-nth)
1083 (defun byte-optimize-nth (form)
1084 (if (and (= (safe-length form) 3) (memq (nth 1 form) '(0 1)))
1085 (list 'car (if (zerop (nth 1 form))
1086 (nth 2 form)
1087 (list 'cdr (nth 2 form))))
1088 (byte-optimize-predicate form)))
1089
1090 (put 'nthcdr 'byte-optimizer 'byte-optimize-nthcdr)
1091 (defun byte-optimize-nthcdr (form)
1092 (if (and (= (safe-length form) 3) (not (memq (nth 1 form) '(0 1 2))))
1093 (byte-optimize-predicate form)
1094 (let ((count (nth 1 form)))
1095 (setq form (nth 2 form))
1096 (while (>= (setq count (1- count)) 0)
1097 (setq form (list 'cdr form)))
1098 form)))
1099
1100 (put 'concat 'byte-optimizer 'byte-optimize-concat)
1101 (defun byte-optimize-concat (form)
1102 (let ((args (cdr form))
1103 (constant t))
1104 (while (and args constant)
1105 (or (byte-compile-constp (car args))
1106 (setq constant nil))
1107 (setq args (cdr args)))
1108 (if constant
1109 (eval form)
1110 form)))
1111
1112 ;; Avoid having to write forward-... with a negative arg for speed.
1113 (put 'backward-char 'byte-optimizer 'byte-optimize-backward-char)
1114 (defun byte-optimize-backward-char (form)
1115 (cond ((and (= 2 (safe-length form))
1116 (numberp (nth 1 form)))
1117 (list 'forward-char (eval (- (nth 1 form)))))
1118 ((= 1 (safe-length form))
1119 '(forward-char -1))
1120 (t form)))
1121
1122 (put 'backward-word 'byte-optimizer 'byte-optimize-backward-word)
1123 (defun byte-optimize-backward-word (form)
1124 (cond ((and (= 2 (safe-length form))
1125 (numberp (nth 1 form)))
1126 (list 'forward-word (eval (- (nth 1 form)))))
1127 ((= 1 (safe-length form))
1128 '(forward-char -1))
1129 (t form)))
1130
1131 (put 'char-before 'byte-optimizer 'byte-optimize-char-before)
1132 (defun byte-optimize-char-before (form)
1133 (cond ((= 2 (safe-length form))
1134 `(char-after (1- ,(nth 1 form))))
1135 ((= 1 (safe-length form))
1136 '(char-after (1- (point))))
1137 (t form)))
1138 \f
1139 ;;; enumerating those functions which need not be called if the returned
1140 ;;; value is not used. That is, something like
1141 ;;; (progn (list (something-with-side-effects) (yow))
1142 ;;; (foo))
1143 ;;; may safely be turned into
1144 ;;; (progn (progn (something-with-side-effects) (yow))
1145 ;;; (foo))
1146 ;;; Further optimizations will turn (progn (list 1 2 3) 'foo) into 'foo.
1147
1148 ;;; I wonder if I missed any :-\)
1149 (let ((side-effect-free-fns
1150 '(% * + - / /= 1+ 1- < <= = > >= abs acos append aref ash asin atan
1151 assoc assq
1152 boundp buffer-file-name buffer-local-variables buffer-modified-p
1153 buffer-substring
1154 capitalize car-less-than-car car cdr ceiling char-after char-before
1155 concat coordinates-in-window-p
1156 char-width copy-marker cos count-lines
1157 default-boundp default-value documentation downcase
1158 elt exp expt fboundp featurep
1159 file-directory-p file-exists-p file-locked-p file-name-absolute-p
1160 file-newer-than-file-p file-readable-p file-symlink-p file-writable-p
1161 float floor format frame-visible-p
1162 get gethash get-buffer get-buffer-window getenv get-file-buffer
1163 hash-table-count
1164 int-to-string
1165 keymap-parent
1166 length local-variable-if-set-p local-variable-p log log10 logand
1167 logb logior lognot logxor lsh
1168 marker-buffer max member memq min mod
1169 next-window nth nthcdr number-to-string
1170 parse-colon-path prefix-numeric-value previous-window propertize
1171 radians-to-degrees rassq regexp-quote reverse round
1172 sin sqrt string string< string= string-equal string-lessp string-to-char
1173 string-to-int string-to-number substring symbol-function symbol-plist
1174 symbol-value
1175 tan unibyte-char-to-multibyte upcase user-variable-p vconcat
1176 window-buffer window-dedicated-p window-edges window-height
1177 window-hscroll window-minibuffer-p window-width
1178 zerop))
1179 (side-effect-and-error-free-fns
1180 '(arrayp atom
1181 bobp bolp buffer-end buffer-list buffer-size buffer-string bufferp
1182 car-safe case-table-p cdr-safe char-or-string-p commandp cons consp
1183 current-buffer current-global-map current-indentation
1184 current-local-map current-minor-mode-maps
1185 dot dot-marker eobp eolp eq equal eventp
1186 floatp following-char framep
1187 get-largest-window get-lru-window
1188 hash-table-p
1189 identity ignore integerp integer-or-marker-p interactive-p
1190 invocation-directory invocation-name
1191 keymapp
1192 line-beginning-position line-end-position list listp
1193 make-marker mark mark-marker markerp memory-limit minibuffer-window
1194 mouse-movement-p
1195 natnump nlistp not null number-or-marker-p numberp
1196 one-window-p overlayp
1197 point point-marker point-min point-max preceding-char processp
1198 recent-keys recursion-depth
1199 selected-frame selected-window sequencep stringp subrp symbolp
1200 standard-case-table standard-syntax-table syntax-table-p
1201 this-command-keys this-command-keys-vector this-single-command-keys
1202 this-single-command-raw-keys
1203 user-full-name user-login-name user-original-login-name
1204 user-real-login-name user-real-uid user-uid
1205 vector vectorp visible-frame-list
1206 window-configuration-p window-live-p windowp)))
1207 (while side-effect-free-fns
1208 (put (car side-effect-free-fns) 'side-effect-free t)
1209 (setq side-effect-free-fns (cdr side-effect-free-fns)))
1210 (while side-effect-and-error-free-fns
1211 (put (car side-effect-and-error-free-fns) 'side-effect-free 'error-free)
1212 (setq side-effect-and-error-free-fns (cdr side-effect-and-error-free-fns)))
1213 nil)
1214
1215
1216 (defun byte-compile-splice-in-already-compiled-code (form)
1217 ;; form is (byte-code "..." [...] n)
1218 (if (not (memq byte-optimize '(t lap)))
1219 (byte-compile-normal-call form)
1220 (byte-inline-lapcode
1221 (byte-decompile-bytecode-1 (nth 1 form) (nth 2 form) t))
1222 (setq byte-compile-maxdepth (max (+ byte-compile-depth (nth 3 form))
1223 byte-compile-maxdepth))
1224 (setq byte-compile-depth (1+ byte-compile-depth))))
1225
1226 (put 'byte-code 'byte-compile 'byte-compile-splice-in-already-compiled-code)
1227
1228 \f
1229 (defconst byte-constref-ops
1230 '(byte-constant byte-constant2 byte-varref byte-varset byte-varbind))
1231
1232 ;;; This function extracts the bitfields from variable-length opcodes.
1233 ;;; Originally defined in disass.el (which no longer uses it.)
1234
1235 (defun disassemble-offset ()
1236 "Don't call this!"
1237 ;; fetch and return the offset for the current opcode.
1238 ;; return NIL if this opcode has no offset
1239 ;; OP, PTR and BYTES are used and set dynamically
1240 (defvar op)
1241 (defvar ptr)
1242 (defvar bytes)
1243 (cond ((< op byte-nth)
1244 (let ((tem (logand op 7)))
1245 (setq op (logand op 248))
1246 (cond ((eq tem 6)
1247 (setq ptr (1+ ptr)) ;offset in next byte
1248 (aref bytes ptr))
1249 ((eq tem 7)
1250 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1251 (+ (aref bytes ptr)
1252 (progn (setq ptr (1+ ptr))
1253 (lsh (aref bytes ptr) 8))))
1254 (t tem)))) ;offset was in opcode
1255 ((>= op byte-constant)
1256 (prog1 (- op byte-constant) ;offset in opcode
1257 (setq op byte-constant)))
1258 ((and (>= op byte-constant2)
1259 (<= op byte-goto-if-not-nil-else-pop))
1260 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1261 (+ (aref bytes ptr)
1262 (progn (setq ptr (1+ ptr))
1263 (lsh (aref bytes ptr) 8))))
1264 ((and (>= op byte-listN)
1265 (<= op byte-insertN))
1266 (setq ptr (1+ ptr)) ;offset in next byte
1267 (aref bytes ptr))))
1268
1269
1270 ;;; This de-compiler is used for inline expansion of compiled functions,
1271 ;;; and by the disassembler.
1272 ;;;
1273 ;;; This list contains numbers, which are pc values,
1274 ;;; before each instruction.
1275 (defun byte-decompile-bytecode (bytes constvec)
1276 "Turns BYTECODE into lapcode, referring to CONSTVEC."
1277 (let ((byte-compile-constants nil)
1278 (byte-compile-variables nil)
1279 (byte-compile-tag-number 0))
1280 (byte-decompile-bytecode-1 bytes constvec)))
1281
1282 ;; As byte-decompile-bytecode, but updates
1283 ;; byte-compile-{constants, variables, tag-number}.
1284 ;; If MAKE-SPLICEABLE is true, then `return' opcodes are replaced
1285 ;; with `goto's destined for the end of the code.
1286 ;; That is for use by the compiler.
1287 ;; If MAKE-SPLICEABLE is nil, we are being called for the disassembler.
1288 ;; In that case, we put a pc value into the list
1289 ;; before each insn (or its label).
1290 (defun byte-decompile-bytecode-1 (bytes constvec &optional make-spliceable)
1291 (let ((length (length bytes))
1292 (ptr 0) optr tag tags op offset
1293 lap tmp
1294 endtag
1295 (retcount 0))
1296 (while (not (= ptr length))
1297 (or make-spliceable
1298 (setq lap (cons ptr lap)))
1299 (setq op (aref bytes ptr)
1300 optr ptr
1301 offset (disassemble-offset)) ; this does dynamic-scope magic
1302 (setq op (aref byte-code-vector op))
1303 (cond ((memq op byte-goto-ops)
1304 ;; it's a pc
1305 (setq offset
1306 (cdr (or (assq offset tags)
1307 (car (setq tags
1308 (cons (cons offset
1309 (byte-compile-make-tag))
1310 tags)))))))
1311 ((cond ((eq op 'byte-constant2) (setq op 'byte-constant) t)
1312 ((memq op byte-constref-ops)))
1313 (setq tmp (if (>= offset (length constvec))
1314 (list 'out-of-range offset)
1315 (aref constvec offset))
1316 offset (if (eq op 'byte-constant)
1317 (byte-compile-get-constant tmp)
1318 (or (assq tmp byte-compile-variables)
1319 (car (setq byte-compile-variables
1320 (cons (list tmp)
1321 byte-compile-variables)))))))
1322 ((and make-spliceable
1323 (eq op 'byte-return))
1324 (if (= ptr (1- length))
1325 (setq op nil)
1326 (setq offset (or endtag (setq endtag (byte-compile-make-tag)))
1327 op 'byte-goto))))
1328 ;; lap = ( [ (pc . (op . arg)) ]* )
1329 (setq lap (cons (cons optr (cons op (or offset 0)))
1330 lap))
1331 (setq ptr (1+ ptr)))
1332 ;; take off the dummy nil op that we replaced a trailing "return" with.
1333 (let ((rest lap))
1334 (while rest
1335 (cond ((numberp (car rest)))
1336 ((setq tmp (assq (car (car rest)) tags))
1337 ;; this addr is jumped to
1338 (setcdr rest (cons (cons nil (cdr tmp))
1339 (cdr rest)))
1340 (setq tags (delq tmp tags))
1341 (setq rest (cdr rest))))
1342 (setq rest (cdr rest))))
1343 (if tags (error "optimizer error: missed tags %s" tags))
1344 (if (null (car (cdr (car lap))))
1345 (setq lap (cdr lap)))
1346 (if endtag
1347 (setq lap (cons (cons nil endtag) lap)))
1348 ;; remove addrs, lap = ( [ (op . arg) | (TAG tagno) ]* )
1349 (mapcar (function (lambda (elt)
1350 (if (numberp elt)
1351 elt
1352 (cdr elt))))
1353 (nreverse lap))))
1354
1355 \f
1356 ;;; peephole optimizer
1357
1358 (defconst byte-tagref-ops (cons 'TAG byte-goto-ops))
1359
1360 (defconst byte-conditional-ops
1361 '(byte-goto-if-nil byte-goto-if-not-nil byte-goto-if-nil-else-pop
1362 byte-goto-if-not-nil-else-pop))
1363
1364 (defconst byte-after-unbind-ops
1365 '(byte-constant byte-dup
1366 byte-symbolp byte-consp byte-stringp byte-listp byte-numberp byte-integerp
1367 byte-eq byte-not
1368 byte-cons byte-list1 byte-list2 ; byte-list3 byte-list4
1369 byte-interactive-p)
1370 ;; How about other side-effect-free-ops? Is it safe to move an
1371 ;; error invocation (such as from nth) out of an unwind-protect?
1372 ;; No, it is not, because the unwind-protect forms can alter
1373 ;; the inside of the object to which nth would apply.
1374 ;; For the same reason, byte-equal was deleted from this list.
1375 "Byte-codes that can be moved past an unbind.")
1376
1377 (defconst byte-compile-side-effect-and-error-free-ops
1378 '(byte-constant byte-dup byte-symbolp byte-consp byte-stringp byte-listp
1379 byte-integerp byte-numberp byte-eq byte-equal byte-not byte-car-safe
1380 byte-cdr-safe byte-cons byte-list1 byte-list2 byte-point byte-point-max
1381 byte-point-min byte-following-char byte-preceding-char
1382 byte-current-column byte-eolp byte-eobp byte-bolp byte-bobp
1383 byte-current-buffer byte-interactive-p))
1384
1385 (defconst byte-compile-side-effect-free-ops
1386 (nconc
1387 '(byte-varref byte-nth byte-memq byte-car byte-cdr byte-length byte-aref
1388 byte-symbol-value byte-get byte-concat2 byte-concat3 byte-sub1 byte-add1
1389 byte-eqlsign byte-gtr byte-lss byte-leq byte-geq byte-diff byte-negate
1390 byte-plus byte-max byte-min byte-mult byte-char-after byte-char-syntax
1391 byte-buffer-substring byte-string= byte-string< byte-nthcdr byte-elt
1392 byte-member byte-assq byte-quo byte-rem)
1393 byte-compile-side-effect-and-error-free-ops))
1394
1395 ;;; This crock is because of the way DEFVAR_BOOL variables work.
1396 ;;; Consider the code
1397 ;;;
1398 ;;; (defun foo (flag)
1399 ;;; (let ((old-pop-ups pop-up-windows)
1400 ;;; (pop-up-windows flag))
1401 ;;; (cond ((not (eq pop-up-windows old-pop-ups))
1402 ;;; (setq old-pop-ups pop-up-windows)
1403 ;;; ...))))
1404 ;;;
1405 ;;; Uncompiled, old-pop-ups will always be set to nil or t, even if FLAG is
1406 ;;; something else. But if we optimize
1407 ;;;
1408 ;;; varref flag
1409 ;;; varbind pop-up-windows
1410 ;;; varref pop-up-windows
1411 ;;; not
1412 ;;; to
1413 ;;; varref flag
1414 ;;; dup
1415 ;;; varbind pop-up-windows
1416 ;;; not
1417 ;;;
1418 ;;; we break the program, because it will appear that pop-up-windows and
1419 ;;; old-pop-ups are not EQ when really they are. So we have to know what
1420 ;;; the BOOL variables are, and not perform this optimization on them.
1421
1422 ;;; The variable `byte-boolean-vars' is now primitive and updated
1423 ;;; automatically by DEFVAR_BOOL.
1424
1425 (defun byte-optimize-lapcode (lap &optional for-effect)
1426 "Simple peephole optimizer. LAP is both modified and returned."
1427 (let (lap0
1428 lap1
1429 lap2
1430 (keep-going 'first-time)
1431 (add-depth 0)
1432 rest tmp tmp2 tmp3
1433 (side-effect-free (if byte-compile-delete-errors
1434 byte-compile-side-effect-free-ops
1435 byte-compile-side-effect-and-error-free-ops)))
1436 (while keep-going
1437 (or (eq keep-going 'first-time)
1438 (byte-compile-log-lap " ---- next pass"))
1439 (setq rest lap
1440 keep-going nil)
1441 (while rest
1442 (setq lap0 (car rest)
1443 lap1 (nth 1 rest)
1444 lap2 (nth 2 rest))
1445
1446 ;; You may notice that sequences like "dup varset discard" are
1447 ;; optimized but sequences like "dup varset TAG1: discard" are not.
1448 ;; You may be tempted to change this; resist that temptation.
1449 (cond ;;
1450 ;; <side-effect-free> pop --> <deleted>
1451 ;; ...including:
1452 ;; const-X pop --> <deleted>
1453 ;; varref-X pop --> <deleted>
1454 ;; dup pop --> <deleted>
1455 ;;
1456 ((and (eq 'byte-discard (car lap1))
1457 (memq (car lap0) side-effect-free))
1458 (setq keep-going t)
1459 (setq tmp (aref byte-stack+-info (symbol-value (car lap0))))
1460 (setq rest (cdr rest))
1461 (cond ((= tmp 1)
1462 (byte-compile-log-lap
1463 " %s discard\t-->\t<deleted>" lap0)
1464 (setq lap (delq lap0 (delq lap1 lap))))
1465 ((= tmp 0)
1466 (byte-compile-log-lap
1467 " %s discard\t-->\t<deleted> discard" lap0)
1468 (setq lap (delq lap0 lap)))
1469 ((= tmp -1)
1470 (byte-compile-log-lap
1471 " %s discard\t-->\tdiscard discard" lap0)
1472 (setcar lap0 'byte-discard)
1473 (setcdr lap0 0))
1474 ((error "Optimizer error: too much on the stack"))))
1475 ;;
1476 ;; goto*-X X: --> X:
1477 ;;
1478 ((and (memq (car lap0) byte-goto-ops)
1479 (eq (cdr lap0) lap1))
1480 (cond ((eq (car lap0) 'byte-goto)
1481 (setq lap (delq lap0 lap))
1482 (setq tmp "<deleted>"))
1483 ((memq (car lap0) byte-goto-always-pop-ops)
1484 (setcar lap0 (setq tmp 'byte-discard))
1485 (setcdr lap0 0))
1486 ((error "Depth conflict at tag %d" (nth 2 lap0))))
1487 (and (memq byte-optimize-log '(t byte))
1488 (byte-compile-log " (goto %s) %s:\t-->\t%s %s:"
1489 (nth 1 lap1) (nth 1 lap1)
1490 tmp (nth 1 lap1)))
1491 (setq keep-going t))
1492 ;;
1493 ;; varset-X varref-X --> dup varset-X
1494 ;; varbind-X varref-X --> dup varbind-X
1495 ;; const/dup varset-X varref-X --> const/dup varset-X const/dup
1496 ;; const/dup varbind-X varref-X --> const/dup varbind-X const/dup
1497 ;; The latter two can enable other optimizations.
1498 ;;
1499 ((and (eq 'byte-varref (car lap2))
1500 (eq (cdr lap1) (cdr lap2))
1501 (memq (car lap1) '(byte-varset byte-varbind)))
1502 (if (and (setq tmp (memq (car (cdr lap2)) byte-boolean-vars))
1503 (not (eq (car lap0) 'byte-constant)))
1504 nil
1505 (setq keep-going t)
1506 (if (memq (car lap0) '(byte-constant byte-dup))
1507 (progn
1508 (setq tmp (if (or (not tmp)
1509 (byte-compile-const-symbol-p
1510 (car (cdr lap0))))
1511 (cdr lap0)
1512 (byte-compile-get-constant t)))
1513 (byte-compile-log-lap " %s %s %s\t-->\t%s %s %s"
1514 lap0 lap1 lap2 lap0 lap1
1515 (cons (car lap0) tmp))
1516 (setcar lap2 (car lap0))
1517 (setcdr lap2 tmp))
1518 (byte-compile-log-lap " %s %s\t-->\tdup %s" lap1 lap2 lap1)
1519 (setcar lap2 (car lap1))
1520 (setcar lap1 'byte-dup)
1521 (setcdr lap1 0)
1522 ;; The stack depth gets locally increased, so we will
1523 ;; increase maxdepth in case depth = maxdepth here.
1524 ;; This can cause the third argument to byte-code to
1525 ;; be larger than necessary.
1526 (setq add-depth 1))))
1527 ;;
1528 ;; dup varset-X discard --> varset-X
1529 ;; dup varbind-X discard --> varbind-X
1530 ;; (the varbind variant can emerge from other optimizations)
1531 ;;
1532 ((and (eq 'byte-dup (car lap0))
1533 (eq 'byte-discard (car lap2))
1534 (memq (car lap1) '(byte-varset byte-varbind)))
1535 (byte-compile-log-lap " dup %s discard\t-->\t%s" lap1 lap1)
1536 (setq keep-going t
1537 rest (cdr rest))
1538 (setq lap (delq lap0 (delq lap2 lap))))
1539 ;;
1540 ;; not goto-X-if-nil --> goto-X-if-non-nil
1541 ;; not goto-X-if-non-nil --> goto-X-if-nil
1542 ;;
1543 ;; it is wrong to do the same thing for the -else-pop variants.
1544 ;;
1545 ((and (eq 'byte-not (car lap0))
1546 (or (eq 'byte-goto-if-nil (car lap1))
1547 (eq 'byte-goto-if-not-nil (car lap1))))
1548 (byte-compile-log-lap " not %s\t-->\t%s"
1549 lap1
1550 (cons
1551 (if (eq (car lap1) 'byte-goto-if-nil)
1552 'byte-goto-if-not-nil
1553 'byte-goto-if-nil)
1554 (cdr lap1)))
1555 (setcar lap1 (if (eq (car lap1) 'byte-goto-if-nil)
1556 'byte-goto-if-not-nil
1557 'byte-goto-if-nil))
1558 (setq lap (delq lap0 lap))
1559 (setq keep-going t))
1560 ;;
1561 ;; goto-X-if-nil goto-Y X: --> goto-Y-if-non-nil X:
1562 ;; goto-X-if-non-nil goto-Y X: --> goto-Y-if-nil X:
1563 ;;
1564 ;; it is wrong to do the same thing for the -else-pop variants.
1565 ;;
1566 ((and (or (eq 'byte-goto-if-nil (car lap0))
1567 (eq 'byte-goto-if-not-nil (car lap0))) ; gotoX
1568 (eq 'byte-goto (car lap1)) ; gotoY
1569 (eq (cdr lap0) lap2)) ; TAG X
1570 (let ((inverse (if (eq 'byte-goto-if-nil (car lap0))
1571 'byte-goto-if-not-nil 'byte-goto-if-nil)))
1572 (byte-compile-log-lap " %s %s %s:\t-->\t%s %s:"
1573 lap0 lap1 lap2
1574 (cons inverse (cdr lap1)) lap2)
1575 (setq lap (delq lap0 lap))
1576 (setcar lap1 inverse)
1577 (setq keep-going t)))
1578 ;;
1579 ;; const goto-if-* --> whatever
1580 ;;
1581 ((and (eq 'byte-constant (car lap0))
1582 (memq (car lap1) byte-conditional-ops))
1583 (cond ((if (or (eq (car lap1) 'byte-goto-if-nil)
1584 (eq (car lap1) 'byte-goto-if-nil-else-pop))
1585 (car (cdr lap0))
1586 (not (car (cdr lap0))))
1587 (byte-compile-log-lap " %s %s\t-->\t<deleted>"
1588 lap0 lap1)
1589 (setq rest (cdr rest)
1590 lap (delq lap0 (delq lap1 lap))))
1591 (t
1592 (if (memq (car lap1) byte-goto-always-pop-ops)
1593 (progn
1594 (byte-compile-log-lap " %s %s\t-->\t%s"
1595 lap0 lap1 (cons 'byte-goto (cdr lap1)))
1596 (setq lap (delq lap0 lap)))
1597 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
1598 (cons 'byte-goto (cdr lap1))))
1599 (setcar lap1 'byte-goto)))
1600 (setq keep-going t))
1601 ;;
1602 ;; varref-X varref-X --> varref-X dup
1603 ;; varref-X [dup ...] varref-X --> varref-X [dup ...] dup
1604 ;; We don't optimize the const-X variations on this here,
1605 ;; because that would inhibit some goto optimizations; we
1606 ;; optimize the const-X case after all other optimizations.
1607 ;;
1608 ((and (eq 'byte-varref (car lap0))
1609 (progn
1610 (setq tmp (cdr rest))
1611 (while (eq (car (car tmp)) 'byte-dup)
1612 (setq tmp (cdr tmp)))
1613 t)
1614 (eq (cdr lap0) (cdr (car tmp)))
1615 (eq 'byte-varref (car (car tmp))))
1616 (if (memq byte-optimize-log '(t byte))
1617 (let ((str ""))
1618 (setq tmp2 (cdr rest))
1619 (while (not (eq tmp tmp2))
1620 (setq tmp2 (cdr tmp2)
1621 str (concat str " dup")))
1622 (byte-compile-log-lap " %s%s %s\t-->\t%s%s dup"
1623 lap0 str lap0 lap0 str)))
1624 (setq keep-going t)
1625 (setcar (car tmp) 'byte-dup)
1626 (setcdr (car tmp) 0)
1627 (setq rest tmp))
1628 ;;
1629 ;; TAG1: TAG2: --> TAG1: <deleted>
1630 ;; (and other references to TAG2 are replaced with TAG1)
1631 ;;
1632 ((and (eq (car lap0) 'TAG)
1633 (eq (car lap1) 'TAG))
1634 (and (memq byte-optimize-log '(t byte))
1635 (byte-compile-log " adjacent tags %d and %d merged"
1636 (nth 1 lap1) (nth 1 lap0)))
1637 (setq tmp3 lap)
1638 (while (setq tmp2 (rassq lap0 tmp3))
1639 (setcdr tmp2 lap1)
1640 (setq tmp3 (cdr (memq tmp2 tmp3))))
1641 (setq lap (delq lap0 lap)
1642 keep-going t))
1643 ;;
1644 ;; unused-TAG: --> <deleted>
1645 ;;
1646 ((and (eq 'TAG (car lap0))
1647 (not (rassq lap0 lap)))
1648 (and (memq byte-optimize-log '(t byte))
1649 (byte-compile-log " unused tag %d removed" (nth 1 lap0)))
1650 (setq lap (delq lap0 lap)
1651 keep-going t))
1652 ;;
1653 ;; goto ... --> goto <delete until TAG or end>
1654 ;; return ... --> return <delete until TAG or end>
1655 ;;
1656 ((and (memq (car lap0) '(byte-goto byte-return))
1657 (not (memq (car lap1) '(TAG nil))))
1658 (setq tmp rest)
1659 (let ((i 0)
1660 (opt-p (memq byte-optimize-log '(t lap)))
1661 str deleted)
1662 (while (and (setq tmp (cdr tmp))
1663 (not (eq 'TAG (car (car tmp)))))
1664 (if opt-p (setq deleted (cons (car tmp) deleted)
1665 str (concat str " %s")
1666 i (1+ i))))
1667 (if opt-p
1668 (let ((tagstr
1669 (if (eq 'TAG (car (car tmp)))
1670 (format "%d:" (car (cdr (car tmp))))
1671 (or (car tmp) ""))))
1672 (if (< i 6)
1673 (apply 'byte-compile-log-lap-1
1674 (concat " %s" str
1675 " %s\t-->\t%s <deleted> %s")
1676 lap0
1677 (nconc (nreverse deleted)
1678 (list tagstr lap0 tagstr)))
1679 (byte-compile-log-lap
1680 " %s <%d unreachable op%s> %s\t-->\t%s <deleted> %s"
1681 lap0 i (if (= i 1) "" "s")
1682 tagstr lap0 tagstr))))
1683 (rplacd rest tmp))
1684 (setq keep-going t))
1685 ;;
1686 ;; <safe-op> unbind --> unbind <safe-op>
1687 ;; (this may enable other optimizations.)
1688 ;;
1689 ((and (eq 'byte-unbind (car lap1))
1690 (memq (car lap0) byte-after-unbind-ops))
1691 (byte-compile-log-lap " %s %s\t-->\t%s %s" lap0 lap1 lap1 lap0)
1692 (setcar rest lap1)
1693 (setcar (cdr rest) lap0)
1694 (setq keep-going t))
1695 ;;
1696 ;; varbind-X unbind-N --> discard unbind-(N-1)
1697 ;; save-excursion unbind-N --> unbind-(N-1)
1698 ;; save-restriction unbind-N --> unbind-(N-1)
1699 ;;
1700 ((and (eq 'byte-unbind (car lap1))
1701 (memq (car lap0) '(byte-varbind byte-save-excursion
1702 byte-save-restriction))
1703 (< 0 (cdr lap1)))
1704 (if (zerop (setcdr lap1 (1- (cdr lap1))))
1705 (delq lap1 rest))
1706 (if (eq (car lap0) 'byte-varbind)
1707 (setcar rest (cons 'byte-discard 0))
1708 (setq lap (delq lap0 lap)))
1709 (byte-compile-log-lap " %s %s\t-->\t%s %s"
1710 lap0 (cons (car lap1) (1+ (cdr lap1)))
1711 (if (eq (car lap0) 'byte-varbind)
1712 (car rest)
1713 (car (cdr rest)))
1714 (if (and (/= 0 (cdr lap1))
1715 (eq (car lap0) 'byte-varbind))
1716 (car (cdr rest))
1717 ""))
1718 (setq keep-going t))
1719 ;;
1720 ;; goto*-X ... X: goto-Y --> goto*-Y
1721 ;; goto-X ... X: return --> return
1722 ;;
1723 ((and (memq (car lap0) byte-goto-ops)
1724 (memq (car (setq tmp (nth 1 (memq (cdr lap0) lap))))
1725 '(byte-goto byte-return)))
1726 (cond ((and (not (eq tmp lap0))
1727 (or (eq (car lap0) 'byte-goto)
1728 (eq (car tmp) 'byte-goto)))
1729 (byte-compile-log-lap " %s [%s]\t-->\t%s"
1730 (car lap0) tmp tmp)
1731 (if (eq (car tmp) 'byte-return)
1732 (setcar lap0 'byte-return))
1733 (setcdr lap0 (cdr tmp))
1734 (setq keep-going t))))
1735 ;;
1736 ;; goto-*-else-pop X ... X: goto-if-* --> whatever
1737 ;; goto-*-else-pop X ... X: discard --> whatever
1738 ;;
1739 ((and (memq (car lap0) '(byte-goto-if-nil-else-pop
1740 byte-goto-if-not-nil-else-pop))
1741 (memq (car (car (setq tmp (cdr (memq (cdr lap0) lap)))))
1742 (eval-when-compile
1743 (cons 'byte-discard byte-conditional-ops)))
1744 (not (eq lap0 (car tmp))))
1745 (setq tmp2 (car tmp))
1746 (setq tmp3 (assq (car lap0) '((byte-goto-if-nil-else-pop
1747 byte-goto-if-nil)
1748 (byte-goto-if-not-nil-else-pop
1749 byte-goto-if-not-nil))))
1750 (if (memq (car tmp2) tmp3)
1751 (progn (setcar lap0 (car tmp2))
1752 (setcdr lap0 (cdr tmp2))
1753 (byte-compile-log-lap " %s-else-pop [%s]\t-->\t%s"
1754 (car lap0) tmp2 lap0))
1755 ;; Get rid of the -else-pop's and jump one step further.
1756 (or (eq 'TAG (car (nth 1 tmp)))
1757 (setcdr tmp (cons (byte-compile-make-tag)
1758 (cdr tmp))))
1759 (byte-compile-log-lap " %s [%s]\t-->\t%s <skip>"
1760 (car lap0) tmp2 (nth 1 tmp3))
1761 (setcar lap0 (nth 1 tmp3))
1762 (setcdr lap0 (nth 1 tmp)))
1763 (setq keep-going t))
1764 ;;
1765 ;; const goto-X ... X: goto-if-* --> whatever
1766 ;; const goto-X ... X: discard --> whatever
1767 ;;
1768 ((and (eq (car lap0) 'byte-constant)
1769 (eq (car lap1) 'byte-goto)
1770 (memq (car (car (setq tmp (cdr (memq (cdr lap1) lap)))))
1771 (eval-when-compile
1772 (cons 'byte-discard byte-conditional-ops)))
1773 (not (eq lap1 (car tmp))))
1774 (setq tmp2 (car tmp))
1775 (cond ((memq (car tmp2)
1776 (if (null (car (cdr lap0)))
1777 '(byte-goto-if-nil byte-goto-if-nil-else-pop)
1778 '(byte-goto-if-not-nil
1779 byte-goto-if-not-nil-else-pop)))
1780 (byte-compile-log-lap " %s goto [%s]\t-->\t%s %s"
1781 lap0 tmp2 lap0 tmp2)
1782 (setcar lap1 (car tmp2))
1783 (setcdr lap1 (cdr tmp2))
1784 ;; Let next step fix the (const,goto-if*) sequence.
1785 (setq rest (cons nil rest)))
1786 (t
1787 ;; Jump one step further
1788 (byte-compile-log-lap
1789 " %s goto [%s]\t-->\t<deleted> goto <skip>"
1790 lap0 tmp2)
1791 (or (eq 'TAG (car (nth 1 tmp)))
1792 (setcdr tmp (cons (byte-compile-make-tag)
1793 (cdr tmp))))
1794 (setcdr lap1 (car (cdr tmp)))
1795 (setq lap (delq lap0 lap))))
1796 (setq keep-going t))
1797 ;;
1798 ;; X: varref-Y ... varset-Y goto-X -->
1799 ;; X: varref-Y Z: ... dup varset-Y goto-Z
1800 ;; (varset-X goto-BACK, BACK: varref-X --> copy the varref down.)
1801 ;; (This is so usual for while loops that it is worth handling).
1802 ;;
1803 ((and (eq (car lap1) 'byte-varset)
1804 (eq (car lap2) 'byte-goto)
1805 (not (memq (cdr lap2) rest)) ;Backwards jump
1806 (eq (car (car (setq tmp (cdr (memq (cdr lap2) lap)))))
1807 'byte-varref)
1808 (eq (cdr (car tmp)) (cdr lap1))
1809 (not (memq (car (cdr lap1)) byte-boolean-vars)))
1810 ;;(byte-compile-log-lap " Pulled %s to end of loop" (car tmp))
1811 (let ((newtag (byte-compile-make-tag)))
1812 (byte-compile-log-lap
1813 " %s: %s ... %s %s\t-->\t%s: %s %s: ... %s %s %s"
1814 (nth 1 (cdr lap2)) (car tmp)
1815 lap1 lap2
1816 (nth 1 (cdr lap2)) (car tmp)
1817 (nth 1 newtag) 'byte-dup lap1
1818 (cons 'byte-goto newtag)
1819 )
1820 (setcdr rest (cons (cons 'byte-dup 0) (cdr rest)))
1821 (setcdr tmp (cons (setcdr lap2 newtag) (cdr tmp))))
1822 (setq add-depth 1)
1823 (setq keep-going t))
1824 ;;
1825 ;; goto-X Y: ... X: goto-if*-Y --> goto-if-not-*-X+1 Y:
1826 ;; (This can pull the loop test to the end of the loop)
1827 ;;
1828 ((and (eq (car lap0) 'byte-goto)
1829 (eq (car lap1) 'TAG)
1830 (eq lap1
1831 (cdr (car (setq tmp (cdr (memq (cdr lap0) lap))))))
1832 (memq (car (car tmp))
1833 '(byte-goto byte-goto-if-nil byte-goto-if-not-nil
1834 byte-goto-if-nil-else-pop)))
1835 ;; (byte-compile-log-lap " %s %s, %s %s --> moved conditional"
1836 ;; lap0 lap1 (cdr lap0) (car tmp))
1837 (let ((newtag (byte-compile-make-tag)))
1838 (byte-compile-log-lap
1839 "%s %s: ... %s: %s\t-->\t%s ... %s:"
1840 lap0 (nth 1 lap1) (nth 1 (cdr lap0)) (car tmp)
1841 (cons (cdr (assq (car (car tmp))
1842 '((byte-goto-if-nil . byte-goto-if-not-nil)
1843 (byte-goto-if-not-nil . byte-goto-if-nil)
1844 (byte-goto-if-nil-else-pop .
1845 byte-goto-if-not-nil-else-pop)
1846 (byte-goto-if-not-nil-else-pop .
1847 byte-goto-if-nil-else-pop))))
1848 newtag)
1849
1850 (nth 1 newtag)
1851 )
1852 (setcdr tmp (cons (setcdr lap0 newtag) (cdr tmp)))
1853 (if (eq (car (car tmp)) 'byte-goto-if-nil-else-pop)
1854 ;; We can handle this case but not the -if-not-nil case,
1855 ;; because we won't know which non-nil constant to push.
1856 (setcdr rest (cons (cons 'byte-constant
1857 (byte-compile-get-constant nil))
1858 (cdr rest))))
1859 (setcar lap0 (nth 1 (memq (car (car tmp))
1860 '(byte-goto-if-nil-else-pop
1861 byte-goto-if-not-nil
1862 byte-goto-if-nil
1863 byte-goto-if-not-nil
1864 byte-goto byte-goto))))
1865 )
1866 (setq keep-going t))
1867 )
1868 (setq rest (cdr rest)))
1869 )
1870 ;; Cleanup stage:
1871 ;; Rebuild byte-compile-constants / byte-compile-variables.
1872 ;; Simple optimizations that would inhibit other optimizations if they
1873 ;; were done in the optimizing loop, and optimizations which there is no
1874 ;; need to do more than once.
1875 (setq byte-compile-constants nil
1876 byte-compile-variables nil)
1877 (setq rest lap)
1878 (while rest
1879 (setq lap0 (car rest)
1880 lap1 (nth 1 rest))
1881 (if (memq (car lap0) byte-constref-ops)
1882 (if (not (eq (car lap0) 'byte-constant))
1883 (or (memq (cdr lap0) byte-compile-variables)
1884 (setq byte-compile-variables (cons (cdr lap0)
1885 byte-compile-variables)))
1886 (or (memq (cdr lap0) byte-compile-constants)
1887 (setq byte-compile-constants (cons (cdr lap0)
1888 byte-compile-constants)))))
1889 (cond (;;
1890 ;; const-C varset-X const-C --> const-C dup varset-X
1891 ;; const-C varbind-X const-C --> const-C dup varbind-X
1892 ;;
1893 (and (eq (car lap0) 'byte-constant)
1894 (eq (car (nth 2 rest)) 'byte-constant)
1895 (eq (cdr lap0) (car (nth 2 rest)))
1896 (memq (car lap1) '(byte-varbind byte-varset)))
1897 (byte-compile-log-lap " %s %s %s\t-->\t%s dup %s"
1898 lap0 lap1 lap0 lap0 lap1)
1899 (setcar (cdr (cdr rest)) (cons (car lap1) (cdr lap1)))
1900 (setcar (cdr rest) (cons 'byte-dup 0))
1901 (setq add-depth 1))
1902 ;;
1903 ;; const-X [dup/const-X ...] --> const-X [dup ...] dup
1904 ;; varref-X [dup/varref-X ...] --> varref-X [dup ...] dup
1905 ;;
1906 ((memq (car lap0) '(byte-constant byte-varref))
1907 (setq tmp rest
1908 tmp2 nil)
1909 (while (progn
1910 (while (eq 'byte-dup (car (car (setq tmp (cdr tmp))))))
1911 (and (eq (cdr lap0) (cdr (car tmp)))
1912 (eq (car lap0) (car (car tmp)))))
1913 (setcar tmp (cons 'byte-dup 0))
1914 (setq tmp2 t))
1915 (if tmp2
1916 (byte-compile-log-lap
1917 " %s [dup/%s]...\t-->\t%s dup..." lap0 lap0 lap0)))
1918 ;;
1919 ;; unbind-N unbind-M --> unbind-(N+M)
1920 ;;
1921 ((and (eq 'byte-unbind (car lap0))
1922 (eq 'byte-unbind (car lap1)))
1923 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
1924 (cons 'byte-unbind
1925 (+ (cdr lap0) (cdr lap1))))
1926 (setq keep-going t)
1927 (setq lap (delq lap0 lap))
1928 (setcdr lap1 (+ (cdr lap1) (cdr lap0))))
1929 )
1930 (setq rest (cdr rest)))
1931 (setq byte-compile-maxdepth (+ byte-compile-maxdepth add-depth)))
1932 lap)
1933
1934 (provide 'byte-opt)
1935
1936 \f
1937 ;; To avoid "lisp nesting exceeds max-lisp-eval-depth" when this file compiles
1938 ;; itself, compile some of its most used recursive functions (at load time).
1939 ;;
1940 (eval-when-compile
1941 (or (byte-code-function-p (symbol-function 'byte-optimize-form))
1942 (assq 'byte-code (symbol-function 'byte-optimize-form))
1943 (let ((byte-optimize nil)
1944 (byte-compile-warnings nil))
1945 (mapcar (lambda (x)
1946 (or noninteractive (message "compiling %s..." x))
1947 (byte-compile x)
1948 (or noninteractive (message "compiling %s...done" x)))
1949 '(byte-optimize-form
1950 byte-optimize-body
1951 byte-optimize-predicate
1952 byte-optimize-binary-predicate
1953 ;; Inserted some more than necessary, to speed it up.
1954 byte-optimize-form-code-walker
1955 byte-optimize-lapcode))))
1956 nil)
1957
1958 ;;; byte-opt.el ends here