]> code.delx.au - gnu-emacs/blob - src/lisp.h
Port to 32-bit Sun C 5.12 sparc
[gnu-emacs] / src / lisp.h
1 /* Fundamental definitions for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2015 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #ifndef EMACS_LISP_H
22 #define EMACS_LISP_H
23
24 #include <setjmp.h>
25 #include <stdalign.h>
26 #include <stdarg.h>
27 #include <stddef.h>
28 #include <float.h>
29 #include <inttypes.h>
30 #include <limits.h>
31
32 #include <intprops.h>
33 #include <verify.h>
34
35 INLINE_HEADER_BEGIN
36
37 /* Define a TYPE constant ID as an externally visible name. Use like this:
38
39 DEFINE_GDB_SYMBOL_BEGIN (TYPE, ID)
40 # define ID (some integer preprocessor expression of type TYPE)
41 DEFINE_GDB_SYMBOL_END (ID)
42
43 This hack is for the benefit of compilers that do not make macro
44 definitions or enums visible to the debugger. It's used for symbols
45 that .gdbinit needs. */
46
47 #define DECLARE_GDB_SYM(type, id) type const id EXTERNALLY_VISIBLE
48 #ifdef MAIN_PROGRAM
49 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) DECLARE_GDB_SYM (type, id)
50 # define DEFINE_GDB_SYMBOL_END(id) = id;
51 #else
52 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) extern DECLARE_GDB_SYM (type, id)
53 # define DEFINE_GDB_SYMBOL_END(val) ;
54 #endif
55
56 /* The ubiquitous max and min macros. */
57 #undef min
58 #undef max
59 #define max(a, b) ((a) > (b) ? (a) : (b))
60 #define min(a, b) ((a) < (b) ? (a) : (b))
61
62 /* Number of elements in an array. */
63 #define ARRAYELTS(arr) (sizeof (arr) / sizeof (arr)[0])
64
65 /* Number of bits in a Lisp_Object tag. */
66 DEFINE_GDB_SYMBOL_BEGIN (int, GCTYPEBITS)
67 #define GCTYPEBITS 3
68 DEFINE_GDB_SYMBOL_END (GCTYPEBITS)
69
70 /* The number of bits needed in an EMACS_INT over and above the number
71 of bits in a pointer. This is 0 on systems where:
72 1. We can specify multiple-of-8 alignment on static variables.
73 2. We know malloc returns a multiple of 8. */
74 #if (defined alignas \
75 && (defined GNU_MALLOC || defined DOUG_LEA_MALLOC || defined __GLIBC__ \
76 || defined DARWIN_OS || defined __sun || defined __MINGW32__ \
77 || defined CYGWIN))
78 # define NONPOINTER_BITS 0
79 #else
80 # define NONPOINTER_BITS GCTYPEBITS
81 #endif
82
83 /* EMACS_INT - signed integer wide enough to hold an Emacs value
84 EMACS_INT_MAX - maximum value of EMACS_INT; can be used in #if
85 pI - printf length modifier for EMACS_INT
86 EMACS_UINT - unsigned variant of EMACS_INT */
87 #ifndef EMACS_INT_MAX
88 # if INTPTR_MAX <= 0
89 # error "INTPTR_MAX misconfigured"
90 # elif INTPTR_MAX <= INT_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
91 typedef int EMACS_INT;
92 typedef unsigned int EMACS_UINT;
93 # define EMACS_INT_MAX INT_MAX
94 # define pI ""
95 # elif INTPTR_MAX <= LONG_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
96 typedef long int EMACS_INT;
97 typedef unsigned long EMACS_UINT;
98 # define EMACS_INT_MAX LONG_MAX
99 # define pI "l"
100 /* Check versus LLONG_MAX, not LLONG_MAX >> NONPOINTER_BITS.
101 In theory this is not safe, but in practice it seems to be OK. */
102 # elif INTPTR_MAX <= LLONG_MAX
103 typedef long long int EMACS_INT;
104 typedef unsigned long long int EMACS_UINT;
105 # define EMACS_INT_MAX LLONG_MAX
106 # define pI "ll"
107 # else
108 # error "INTPTR_MAX too large"
109 # endif
110 #endif
111
112 /* Number of bits to put in each character in the internal representation
113 of bool vectors. This should not vary across implementations. */
114 enum { BOOL_VECTOR_BITS_PER_CHAR =
115 #define BOOL_VECTOR_BITS_PER_CHAR 8
116 BOOL_VECTOR_BITS_PER_CHAR
117 };
118
119 /* An unsigned integer type representing a fixed-length bit sequence,
120 suitable for bool vector words, GC mark bits, etc. Normally it is size_t
121 for speed, but it is unsigned char on weird platforms. */
122 #if BOOL_VECTOR_BITS_PER_CHAR == CHAR_BIT
123 typedef size_t bits_word;
124 # define BITS_WORD_MAX SIZE_MAX
125 enum { BITS_PER_BITS_WORD = CHAR_BIT * sizeof (bits_word) };
126 #else
127 typedef unsigned char bits_word;
128 # define BITS_WORD_MAX ((1u << BOOL_VECTOR_BITS_PER_CHAR) - 1)
129 enum { BITS_PER_BITS_WORD = BOOL_VECTOR_BITS_PER_CHAR };
130 #endif
131 verify (BITS_WORD_MAX >> (BITS_PER_BITS_WORD - 1) == 1);
132
133 /* Number of bits in some machine integer types. */
134 enum
135 {
136 BITS_PER_CHAR = CHAR_BIT,
137 BITS_PER_SHORT = CHAR_BIT * sizeof (short),
138 BITS_PER_LONG = CHAR_BIT * sizeof (long int),
139 BITS_PER_EMACS_INT = CHAR_BIT * sizeof (EMACS_INT)
140 };
141
142 /* printmax_t and uprintmax_t are types for printing large integers.
143 These are the widest integers that are supported for printing.
144 pMd etc. are conversions for printing them.
145 On C99 hosts, there's no problem, as even the widest integers work.
146 Fall back on EMACS_INT on pre-C99 hosts. */
147 #ifdef PRIdMAX
148 typedef intmax_t printmax_t;
149 typedef uintmax_t uprintmax_t;
150 # define pMd PRIdMAX
151 # define pMu PRIuMAX
152 #else
153 typedef EMACS_INT printmax_t;
154 typedef EMACS_UINT uprintmax_t;
155 # define pMd pI"d"
156 # define pMu pI"u"
157 #endif
158
159 /* Use pD to format ptrdiff_t values, which suffice for indexes into
160 buffers and strings. Emacs never allocates objects larger than
161 PTRDIFF_MAX bytes, as they cause problems with pointer subtraction.
162 In C99, pD can always be "t"; configure it here for the sake of
163 pre-C99 libraries such as glibc 2.0 and Solaris 8. */
164 #if PTRDIFF_MAX == INT_MAX
165 # define pD ""
166 #elif PTRDIFF_MAX == LONG_MAX
167 # define pD "l"
168 #elif PTRDIFF_MAX == LLONG_MAX
169 # define pD "ll"
170 #else
171 # define pD "t"
172 #endif
173
174 /* Extra internal type checking? */
175
176 /* Define Emacs versions of <assert.h>'s 'assert (COND)' and <verify.h>'s
177 'assume (COND)'. COND should be free of side effects, as it may or
178 may not be evaluated.
179
180 'eassert (COND)' checks COND at runtime if ENABLE_CHECKING is
181 defined and suppress_checking is false, and does nothing otherwise.
182 Emacs dies if COND is checked and is false. The suppress_checking
183 variable is initialized to 0 in alloc.c. Set it to 1 using a
184 debugger to temporarily disable aborting on detected internal
185 inconsistencies or error conditions.
186
187 In some cases, a good compiler may be able to optimize away the
188 eassert macro even if ENABLE_CHECKING is true, e.g., if XSTRING (x)
189 uses eassert to test STRINGP (x), but a particular use of XSTRING
190 is invoked only after testing that STRINGP (x) is true, making the
191 test redundant.
192
193 eassume is like eassert except that it also causes the compiler to
194 assume that COND is true afterwards, regardless of whether runtime
195 checking is enabled. This can improve performance in some cases,
196 though it can degrade performance in others. It's often suboptimal
197 for COND to call external functions or access volatile storage. */
198
199 #ifndef ENABLE_CHECKING
200 # define eassert(cond) ((void) (false && (cond))) /* Check COND compiles. */
201 # define eassume(cond) assume (cond)
202 #else /* ENABLE_CHECKING */
203
204 extern _Noreturn void die (const char *, const char *, int);
205
206 extern bool suppress_checking EXTERNALLY_VISIBLE;
207
208 # define eassert(cond) \
209 (suppress_checking || (cond) \
210 ? (void) 0 \
211 : die (# cond, __FILE__, __LINE__))
212 # define eassume(cond) \
213 (suppress_checking \
214 ? assume (cond) \
215 : (cond) \
216 ? (void) 0 \
217 : die (# cond, __FILE__, __LINE__))
218 #endif /* ENABLE_CHECKING */
219
220 \f
221 /* Use the configure flag --enable-check-lisp-object-type to make
222 Lisp_Object use a struct type instead of the default int. The flag
223 causes CHECK_LISP_OBJECT_TYPE to be defined. */
224
225 /***** Select the tagging scheme. *****/
226 /* The following option controls the tagging scheme:
227 - USE_LSB_TAG means that we can assume the least 3 bits of pointers are
228 always 0, and we can thus use them to hold tag bits, without
229 restricting our addressing space.
230
231 If ! USE_LSB_TAG, then use the top 3 bits for tagging, thus
232 restricting our possible address range.
233
234 USE_LSB_TAG not only requires the least 3 bits of pointers returned by
235 malloc to be 0 but also needs to be able to impose a mult-of-8 alignment
236 on the few static Lisp_Objects used: lispsym, all the defsubr, and
237 the two special buffers buffer_defaults and buffer_local_symbols. */
238
239 enum Lisp_Bits
240 {
241 /* 2**GCTYPEBITS. This must be a macro that expands to a literal
242 integer constant, for MSVC. */
243 #define GCALIGNMENT 8
244
245 /* Number of bits in a Lisp_Object value, not counting the tag. */
246 VALBITS = BITS_PER_EMACS_INT - GCTYPEBITS,
247
248 /* Number of bits in a Lisp fixnum tag. */
249 INTTYPEBITS = GCTYPEBITS - 1,
250
251 /* Number of bits in a Lisp fixnum value, not counting the tag. */
252 FIXNUM_BITS = VALBITS + 1
253 };
254
255 #if GCALIGNMENT != 1 << GCTYPEBITS
256 # error "GCALIGNMENT and GCTYPEBITS are inconsistent"
257 #endif
258
259 /* The maximum value that can be stored in a EMACS_INT, assuming all
260 bits other than the type bits contribute to a nonnegative signed value.
261 This can be used in #if, e.g., '#if USB_TAG' below expands to an
262 expression involving VAL_MAX. */
263 #define VAL_MAX (EMACS_INT_MAX >> (GCTYPEBITS - 1))
264
265 /* Whether the least-significant bits of an EMACS_INT contain the tag.
266 On hosts where pointers-as-ints do not exceed VAL_MAX / 2, USE_LSB_TAG is:
267 a. unnecessary, because the top bits of an EMACS_INT are unused, and
268 b. slower, because it typically requires extra masking.
269 So, USE_LSB_TAG is true only on hosts where it might be useful. */
270 DEFINE_GDB_SYMBOL_BEGIN (bool, USE_LSB_TAG)
271 #define USE_LSB_TAG (VAL_MAX / 2 < INTPTR_MAX)
272 DEFINE_GDB_SYMBOL_END (USE_LSB_TAG)
273
274 #if !USE_LSB_TAG && !defined WIDE_EMACS_INT
275 # error "USE_LSB_TAG not supported on this platform; please report this." \
276 "Try 'configure --with-wide-int' to work around the problem."
277 error !;
278 #endif
279
280 #ifndef alignas
281 # define alignas(alignment) /* empty */
282 # if USE_LSB_TAG
283 # error "USE_LSB_TAG requires alignas"
284 # endif
285 #endif
286
287 #ifdef HAVE_STRUCT_ATTRIBUTE_ALIGNED
288 # define GCALIGNED __attribute__ ((aligned (GCALIGNMENT)))
289 #else
290 # define GCALIGNED /* empty */
291 #endif
292
293 /* Some operations are so commonly executed that they are implemented
294 as macros, not functions, because otherwise runtime performance would
295 suffer too much when compiling with GCC without optimization.
296 There's no need to inline everything, just the operations that
297 would otherwise cause a serious performance problem.
298
299 For each such operation OP, define a macro lisp_h_OP that contains
300 the operation's implementation. That way, OP can be implemented
301 via a macro definition like this:
302
303 #define OP(x) lisp_h_OP (x)
304
305 and/or via a function definition like this:
306
307 LISP_MACRO_DEFUN (OP, Lisp_Object, (Lisp_Object x), (x))
308
309 which macro-expands to this:
310
311 Lisp_Object (OP) (Lisp_Object x) { return lisp_h_OP (x); }
312
313 without worrying about the implementations diverging, since
314 lisp_h_OP defines the actual implementation. The lisp_h_OP macros
315 are intended to be private to this include file, and should not be
316 used elsewhere.
317
318 FIXME: Remove the lisp_h_OP macros, and define just the inline OP
319 functions, once most developers have access to GCC 4.8 or later and
320 can use "gcc -Og" to debug. Maybe in the year 2016. See
321 Bug#11935.
322
323 Commentary for these macros can be found near their corresponding
324 functions, below. */
325
326 #if CHECK_LISP_OBJECT_TYPE
327 # define lisp_h_XLI(o) ((o).i)
328 # define lisp_h_XIL(i) ((Lisp_Object) { i })
329 #else
330 # define lisp_h_XLI(o) (o)
331 # define lisp_h_XIL(i) (i)
332 #endif
333 #define lisp_h_CHECK_LIST_CONS(x, y) CHECK_TYPE (CONSP (x), Qlistp, y)
334 #define lisp_h_CHECK_NUMBER(x) CHECK_TYPE (INTEGERP (x), Qintegerp, x)
335 #define lisp_h_CHECK_SYMBOL(x) CHECK_TYPE (SYMBOLP (x), Qsymbolp, x)
336 #define lisp_h_CHECK_TYPE(ok, predicate, x) \
337 ((ok) ? (void) 0 : (void) wrong_type_argument (predicate, x))
338 #define lisp_h_CONSP(x) (XTYPE (x) == Lisp_Cons)
339 #define lisp_h_EQ(x, y) (XLI (x) == XLI (y))
340 #define lisp_h_FLOATP(x) (XTYPE (x) == Lisp_Float)
341 #define lisp_h_INTEGERP(x) ((XTYPE (x) & (Lisp_Int0 | ~Lisp_Int1)) == Lisp_Int0)
342 #define lisp_h_MARKERP(x) (MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Marker)
343 #define lisp_h_MISCP(x) (XTYPE (x) == Lisp_Misc)
344 #define lisp_h_NILP(x) EQ (x, Qnil)
345 #define lisp_h_SET_SYMBOL_VAL(sym, v) \
346 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value = (v))
347 #define lisp_h_SYMBOL_CONSTANT_P(sym) (XSYMBOL (sym)->constant)
348 #define lisp_h_SYMBOL_VAL(sym) \
349 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value)
350 #define lisp_h_SYMBOLP(x) (XTYPE (x) == Lisp_Symbol)
351 #define lisp_h_VECTORLIKEP(x) (XTYPE (x) == Lisp_Vectorlike)
352 #define lisp_h_XCAR(c) XCONS (c)->car
353 #define lisp_h_XCDR(c) XCONS (c)->u.cdr
354 #define lisp_h_XCONS(a) \
355 (eassert (CONSP (a)), (struct Lisp_Cons *) XUNTAG (a, Lisp_Cons))
356 #define lisp_h_XHASH(a) XUINT (a)
357 #define lisp_h_XPNTR(a) \
358 (SYMBOLP (a) ? XSYMBOL (a) : (void *) ((intptr_t) (XLI (a) & VALMASK)))
359 #ifndef GC_CHECK_CONS_LIST
360 # define lisp_h_check_cons_list() ((void) 0)
361 #endif
362 #if USE_LSB_TAG
363 # define lisp_h_make_number(n) \
364 XIL ((EMACS_INT) (((EMACS_UINT) (n) << INTTYPEBITS) + Lisp_Int0))
365 # define lisp_h_XFASTINT(a) XINT (a)
366 # define lisp_h_XINT(a) (XLI (a) >> INTTYPEBITS)
367 # define lisp_h_XSYMBOL(a) \
368 (eassert (SYMBOLP (a)), \
369 (struct Lisp_Symbol *) ((uintptr_t) XLI (a) - Lisp_Symbol \
370 + (char *) lispsym))
371 # define lisp_h_XTYPE(a) ((enum Lisp_Type) (XLI (a) & ~VALMASK))
372 # define lisp_h_XUNTAG(a, type) ((void *) (intptr_t) (XLI (a) - (type)))
373 #endif
374
375 /* When compiling via gcc -O0, define the key operations as macros, as
376 Emacs is too slow otherwise. To disable this optimization, compile
377 with -DINLINING=false. */
378 #if (defined __NO_INLINE__ \
379 && ! defined __OPTIMIZE__ && ! defined __OPTIMIZE_SIZE__ \
380 && ! (defined INLINING && ! INLINING))
381 # define XLI(o) lisp_h_XLI (o)
382 # define XIL(i) lisp_h_XIL (i)
383 # define CHECK_LIST_CONS(x, y) lisp_h_CHECK_LIST_CONS (x, y)
384 # define CHECK_NUMBER(x) lisp_h_CHECK_NUMBER (x)
385 # define CHECK_SYMBOL(x) lisp_h_CHECK_SYMBOL (x)
386 # define CHECK_TYPE(ok, predicate, x) lisp_h_CHECK_TYPE (ok, predicate, x)
387 # define CONSP(x) lisp_h_CONSP (x)
388 # define EQ(x, y) lisp_h_EQ (x, y)
389 # define FLOATP(x) lisp_h_FLOATP (x)
390 # define INTEGERP(x) lisp_h_INTEGERP (x)
391 # define MARKERP(x) lisp_h_MARKERP (x)
392 # define MISCP(x) lisp_h_MISCP (x)
393 # define NILP(x) lisp_h_NILP (x)
394 # define SET_SYMBOL_VAL(sym, v) lisp_h_SET_SYMBOL_VAL (sym, v)
395 # define SYMBOL_CONSTANT_P(sym) lisp_h_SYMBOL_CONSTANT_P (sym)
396 # define SYMBOL_VAL(sym) lisp_h_SYMBOL_VAL (sym)
397 # define SYMBOLP(x) lisp_h_SYMBOLP (x)
398 # define VECTORLIKEP(x) lisp_h_VECTORLIKEP (x)
399 # define XCAR(c) lisp_h_XCAR (c)
400 # define XCDR(c) lisp_h_XCDR (c)
401 # define XCONS(a) lisp_h_XCONS (a)
402 # define XHASH(a) lisp_h_XHASH (a)
403 # define XPNTR(a) lisp_h_XPNTR (a)
404 # ifndef GC_CHECK_CONS_LIST
405 # define check_cons_list() lisp_h_check_cons_list ()
406 # endif
407 # if USE_LSB_TAG
408 # define make_number(n) lisp_h_make_number (n)
409 # define XFASTINT(a) lisp_h_XFASTINT (a)
410 # define XINT(a) lisp_h_XINT (a)
411 # define XSYMBOL(a) lisp_h_XSYMBOL (a)
412 # define XTYPE(a) lisp_h_XTYPE (a)
413 # define XUNTAG(a, type) lisp_h_XUNTAG (a, type)
414 # endif
415 #endif
416
417 /* Define NAME as a lisp.h inline function that returns TYPE and has
418 arguments declared as ARGDECLS and passed as ARGS. ARGDECLS and
419 ARGS should be parenthesized. Implement the function by calling
420 lisp_h_NAME ARGS. */
421 #define LISP_MACRO_DEFUN(name, type, argdecls, args) \
422 INLINE type (name) argdecls { return lisp_h_##name args; }
423
424 /* like LISP_MACRO_DEFUN, except NAME returns void. */
425 #define LISP_MACRO_DEFUN_VOID(name, argdecls, args) \
426 INLINE void (name) argdecls { lisp_h_##name args; }
427
428
429 /* Define the fundamental Lisp data structures. */
430
431 /* This is the set of Lisp data types. If you want to define a new
432 data type, read the comments after Lisp_Fwd_Type definition
433 below. */
434
435 /* Lisp integers use 2 tags, to give them one extra bit, thus
436 extending their range from, e.g., -2^28..2^28-1 to -2^29..2^29-1. */
437 #define INTMASK (EMACS_INT_MAX >> (INTTYPEBITS - 1))
438 #define case_Lisp_Int case Lisp_Int0: case Lisp_Int1
439
440 /* Idea stolen from GDB. Pedantic GCC complains about enum bitfields,
441 MSVC doesn't support them, and xlc and Oracle Studio c99 complain
442 vociferously about them. */
443 #if (defined __STRICT_ANSI__ || defined _MSC_VER || defined __IBMC__ \
444 || (defined __SUNPRO_C && __STDC__))
445 #define ENUM_BF(TYPE) unsigned int
446 #else
447 #define ENUM_BF(TYPE) enum TYPE
448 #endif
449
450
451 enum Lisp_Type
452 {
453 /* Symbol. XSYMBOL (object) points to a struct Lisp_Symbol. */
454 Lisp_Symbol = 0,
455
456 /* Miscellaneous. XMISC (object) points to a union Lisp_Misc,
457 whose first member indicates the subtype. */
458 Lisp_Misc = 1,
459
460 /* Integer. XINT (obj) is the integer value. */
461 Lisp_Int0 = 2,
462 Lisp_Int1 = USE_LSB_TAG ? 6 : 3,
463
464 /* String. XSTRING (object) points to a struct Lisp_String.
465 The length of the string, and its contents, are stored therein. */
466 Lisp_String = 4,
467
468 /* Vector of Lisp objects, or something resembling it.
469 XVECTOR (object) points to a struct Lisp_Vector, which contains
470 the size and contents. The size field also contains the type
471 information, if it's not a real vector object. */
472 Lisp_Vectorlike = 5,
473
474 /* Cons. XCONS (object) points to a struct Lisp_Cons. */
475 Lisp_Cons = USE_LSB_TAG ? 3 : 6,
476
477 Lisp_Float = 7
478 };
479
480 /* This is the set of data types that share a common structure.
481 The first member of the structure is a type code from this set.
482 The enum values are arbitrary, but we'll use large numbers to make it
483 more likely that we'll spot the error if a random word in memory is
484 mistakenly interpreted as a Lisp_Misc. */
485 enum Lisp_Misc_Type
486 {
487 Lisp_Misc_Free = 0x5eab,
488 Lisp_Misc_Marker,
489 Lisp_Misc_Overlay,
490 Lisp_Misc_Save_Value,
491 /* Currently floats are not a misc type,
492 but let's define this in case we want to change that. */
493 Lisp_Misc_Float,
494 /* This is not a type code. It is for range checking. */
495 Lisp_Misc_Limit
496 };
497
498 /* These are the types of forwarding objects used in the value slot
499 of symbols for special built-in variables whose value is stored in
500 C variables. */
501 enum Lisp_Fwd_Type
502 {
503 Lisp_Fwd_Int, /* Fwd to a C `int' variable. */
504 Lisp_Fwd_Bool, /* Fwd to a C boolean var. */
505 Lisp_Fwd_Obj, /* Fwd to a C Lisp_Object variable. */
506 Lisp_Fwd_Buffer_Obj, /* Fwd to a Lisp_Object field of buffers. */
507 Lisp_Fwd_Kboard_Obj /* Fwd to a Lisp_Object field of kboards. */
508 };
509
510 /* If you want to define a new Lisp data type, here are some
511 instructions. See the thread at
512 http://lists.gnu.org/archive/html/emacs-devel/2012-10/msg00561.html
513 for more info.
514
515 First, there are already a couple of Lisp types that can be used if
516 your new type does not need to be exposed to Lisp programs nor
517 displayed to users. These are Lisp_Save_Value, a Lisp_Misc
518 subtype; and PVEC_OTHER, a kind of vectorlike object. The former
519 is suitable for temporarily stashing away pointers and integers in
520 a Lisp object. The latter is useful for vector-like Lisp objects
521 that need to be used as part of other objects, but which are never
522 shown to users or Lisp code (search for PVEC_OTHER in xterm.c for
523 an example).
524
525 These two types don't look pretty when printed, so they are
526 unsuitable for Lisp objects that can be exposed to users.
527
528 To define a new data type, add one more Lisp_Misc subtype or one
529 more pseudovector subtype. Pseudovectors are more suitable for
530 objects with several slots that need to support fast random access,
531 while Lisp_Misc types are for everything else. A pseudovector object
532 provides one or more slots for Lisp objects, followed by struct
533 members that are accessible only from C. A Lisp_Misc object is a
534 wrapper for a C struct that can contain anything you like.
535
536 Explicit freeing is discouraged for Lisp objects in general. But if
537 you really need to exploit this, use Lisp_Misc (check free_misc in
538 alloc.c to see why). There is no way to free a vectorlike object.
539
540 To add a new pseudovector type, extend the pvec_type enumeration;
541 to add a new Lisp_Misc, extend the Lisp_Misc_Type enumeration.
542
543 For a Lisp_Misc, you will also need to add your entry to union
544 Lisp_Misc (but make sure the first word has the same structure as
545 the others, starting with a 16-bit member of the Lisp_Misc_Type
546 enumeration and a 1-bit GC markbit) and make sure the overall size
547 of the union is not increased by your addition.
548
549 For a new pseudovector, it's highly desirable to limit the size
550 of your data type by VBLOCK_BYTES_MAX bytes (defined in alloc.c).
551 Otherwise you will need to change sweep_vectors (also in alloc.c).
552
553 Then you will need to add switch branches in print.c (in
554 print_object, to print your object, and possibly also in
555 print_preprocess) and to alloc.c, to mark your object (in
556 mark_object) and to free it (in gc_sweep). The latter is also the
557 right place to call any code specific to your data type that needs
558 to run when the object is recycled -- e.g., free any additional
559 resources allocated for it that are not Lisp objects. You can even
560 make a pointer to the function that frees the resources a slot in
561 your object -- this way, the same object could be used to represent
562 several disparate C structures. */
563
564 #ifdef CHECK_LISP_OBJECT_TYPE
565
566 typedef struct { EMACS_INT i; } Lisp_Object;
567
568 #define LISP_INITIALLY(i) {i}
569
570 #undef CHECK_LISP_OBJECT_TYPE
571 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = true };
572 #else /* CHECK_LISP_OBJECT_TYPE */
573
574 /* If a struct type is not wanted, define Lisp_Object as just a number. */
575
576 typedef EMACS_INT Lisp_Object;
577 #define LISP_INITIALLY(i) (i)
578 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = false };
579 #endif /* CHECK_LISP_OBJECT_TYPE */
580
581 #define LISP_INITIALLY_ZERO LISP_INITIALLY (0)
582 \f
583 /* Forward declarations. */
584
585 /* Defined in this file. */
586 union Lisp_Fwd;
587 INLINE bool BOOL_VECTOR_P (Lisp_Object);
588 INLINE bool BUFFER_OBJFWDP (union Lisp_Fwd *);
589 INLINE bool BUFFERP (Lisp_Object);
590 INLINE bool CHAR_TABLE_P (Lisp_Object);
591 INLINE Lisp_Object CHAR_TABLE_REF_ASCII (Lisp_Object, ptrdiff_t);
592 INLINE bool (CONSP) (Lisp_Object);
593 INLINE bool (FLOATP) (Lisp_Object);
594 INLINE bool functionp (Lisp_Object);
595 INLINE bool (INTEGERP) (Lisp_Object);
596 INLINE bool (MARKERP) (Lisp_Object);
597 INLINE bool (MISCP) (Lisp_Object);
598 INLINE bool (NILP) (Lisp_Object);
599 INLINE bool OVERLAYP (Lisp_Object);
600 INLINE bool PROCESSP (Lisp_Object);
601 INLINE bool PSEUDOVECTORP (Lisp_Object, int);
602 INLINE bool SAVE_VALUEP (Lisp_Object);
603 INLINE void set_sub_char_table_contents (Lisp_Object, ptrdiff_t,
604 Lisp_Object);
605 INLINE bool STRINGP (Lisp_Object);
606 INLINE bool SUB_CHAR_TABLE_P (Lisp_Object);
607 INLINE bool SUBRP (Lisp_Object);
608 INLINE bool (SYMBOLP) (Lisp_Object);
609 INLINE bool (VECTORLIKEP) (Lisp_Object);
610 INLINE bool WINDOWP (Lisp_Object);
611 INLINE struct Lisp_Save_Value *XSAVE_VALUE (Lisp_Object);
612 INLINE struct Lisp_Symbol *(XSYMBOL) (Lisp_Object);
613 INLINE void *(XUNTAG) (Lisp_Object, int);
614
615 /* Defined in chartab.c. */
616 extern Lisp_Object char_table_ref (Lisp_Object, int);
617 extern void char_table_set (Lisp_Object, int, Lisp_Object);
618
619 /* Defined in data.c. */
620 extern _Noreturn Lisp_Object wrong_type_argument (Lisp_Object, Lisp_Object);
621 extern _Noreturn void wrong_choice (Lisp_Object, Lisp_Object);
622
623 /* Defined in emacs.c. */
624 extern bool might_dump;
625 /* True means Emacs has already been initialized.
626 Used during startup to detect startup of dumped Emacs. */
627 extern bool initialized;
628
629 /* Defined in floatfns.c. */
630 extern double extract_float (Lisp_Object);
631
632 \f
633 /* Interned state of a symbol. */
634
635 enum symbol_interned
636 {
637 SYMBOL_UNINTERNED = 0,
638 SYMBOL_INTERNED = 1,
639 SYMBOL_INTERNED_IN_INITIAL_OBARRAY = 2
640 };
641
642 enum symbol_redirect
643 {
644 SYMBOL_PLAINVAL = 4,
645 SYMBOL_VARALIAS = 1,
646 SYMBOL_LOCALIZED = 2,
647 SYMBOL_FORWARDED = 3
648 };
649
650 struct Lisp_Symbol
651 {
652 bool_bf gcmarkbit : 1;
653
654 /* Indicates where the value can be found:
655 0 : it's a plain var, the value is in the `value' field.
656 1 : it's a varalias, the value is really in the `alias' symbol.
657 2 : it's a localized var, the value is in the `blv' object.
658 3 : it's a forwarding variable, the value is in `forward'. */
659 ENUM_BF (symbol_redirect) redirect : 3;
660
661 /* Non-zero means symbol is constant, i.e. changing its value
662 should signal an error. If the value is 3, then the var
663 can be changed, but only by `defconst'. */
664 unsigned constant : 2;
665
666 /* Interned state of the symbol. This is an enumerator from
667 enum symbol_interned. */
668 unsigned interned : 2;
669
670 /* True means that this variable has been explicitly declared
671 special (with `defvar' etc), and shouldn't be lexically bound. */
672 bool_bf declared_special : 1;
673
674 /* True if pointed to from purespace and hence can't be GC'd. */
675 bool_bf pinned : 1;
676
677 /* The symbol's name, as a Lisp string. */
678 Lisp_Object name;
679
680 /* Value of the symbol or Qunbound if unbound. Which alternative of the
681 union is used depends on the `redirect' field above. */
682 union {
683 Lisp_Object value;
684 struct Lisp_Symbol *alias;
685 struct Lisp_Buffer_Local_Value *blv;
686 union Lisp_Fwd *fwd;
687 } val;
688
689 /* Function value of the symbol or Qnil if not fboundp. */
690 Lisp_Object function;
691
692 /* The symbol's property list. */
693 Lisp_Object plist;
694
695 /* Next symbol in obarray bucket, if the symbol is interned. */
696 struct Lisp_Symbol *next;
697 };
698
699 /* Declare a Lisp-callable function. The MAXARGS parameter has the same
700 meaning as in the DEFUN macro, and is used to construct a prototype. */
701 /* We can use the same trick as in the DEFUN macro to generate the
702 appropriate prototype. */
703 #define EXFUN(fnname, maxargs) \
704 extern Lisp_Object fnname DEFUN_ARGS_ ## maxargs
705
706 /* Note that the weird token-substitution semantics of ANSI C makes
707 this work for MANY and UNEVALLED. */
708 #define DEFUN_ARGS_MANY (ptrdiff_t, Lisp_Object *)
709 #define DEFUN_ARGS_UNEVALLED (Lisp_Object)
710 #define DEFUN_ARGS_0 (void)
711 #define DEFUN_ARGS_1 (Lisp_Object)
712 #define DEFUN_ARGS_2 (Lisp_Object, Lisp_Object)
713 #define DEFUN_ARGS_3 (Lisp_Object, Lisp_Object, Lisp_Object)
714 #define DEFUN_ARGS_4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
715 #define DEFUN_ARGS_5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
716 Lisp_Object)
717 #define DEFUN_ARGS_6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
718 Lisp_Object, Lisp_Object)
719 #define DEFUN_ARGS_7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
720 Lisp_Object, Lisp_Object, Lisp_Object)
721 #define DEFUN_ARGS_8 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
722 Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
723
724 /* Yield an integer that contains TAG along with PTR. */
725 #define TAG_PTR(tag, ptr) \
726 ((USE_LSB_TAG ? (tag) : (EMACS_UINT) (tag) << VALBITS) + (uintptr_t) (ptr))
727
728 /* Yield an integer that tags PTR as a symbol. */
729 #define TAG_SYMPTR(ptr) \
730 TAG_PTR (Lisp_Symbol, \
731 ((uintptr_t) ((char *) (ptr) - (char *) lispsym) \
732 >> (USE_LSB_TAG ? 0 : GCTYPEBITS)))
733
734 /* Declare extern constants for Lisp symbols. These can be helpful
735 when using a debugger like GDB, on older platforms where the debug
736 format does not represent C macros. However, they don't work with
737 GCC if INTPTR_MAX != EMACS_INT_MAX. */
738 #if EMACS_INT_MAX == INTPTR_MAX
739 # define DEFINE_LISP_SYMBOL_BEGIN(name) \
740 DEFINE_GDB_SYMBOL_BEGIN (Lisp_Object, name)
741 # define DEFINE_LISP_SYMBOL_END(name) \
742 DEFINE_GDB_SYMBOL_END (LISP_INITIALLY (TAG_SYMPTR (name)))
743 #else
744 # define DEFINE_LISP_SYMBOL_BEGIN(name) /* empty */
745 # define DEFINE_LISP_SYMBOL_END(name) /* empty */
746 #endif
747
748 #include "globals.h"
749
750 /* Convert a Lisp_Object to the corresponding EMACS_INT and vice versa.
751 At the machine level, these operations are no-ops. */
752 LISP_MACRO_DEFUN (XLI, EMACS_INT, (Lisp_Object o), (o))
753 LISP_MACRO_DEFUN (XIL, Lisp_Object, (EMACS_INT i), (i))
754
755 /* In the size word of a vector, this bit means the vector has been marked. */
756
757 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, ARRAY_MARK_FLAG)
758 # define ARRAY_MARK_FLAG PTRDIFF_MIN
759 DEFINE_GDB_SYMBOL_END (ARRAY_MARK_FLAG)
760
761 /* In the size word of a struct Lisp_Vector, this bit means it's really
762 some other vector-like object. */
763 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, PSEUDOVECTOR_FLAG)
764 # define PSEUDOVECTOR_FLAG (PTRDIFF_MAX - PTRDIFF_MAX / 2)
765 DEFINE_GDB_SYMBOL_END (PSEUDOVECTOR_FLAG)
766
767 /* In a pseudovector, the size field actually contains a word with one
768 PSEUDOVECTOR_FLAG bit set, and one of the following values extracted
769 with PVEC_TYPE_MASK to indicate the actual type. */
770 enum pvec_type
771 {
772 PVEC_NORMAL_VECTOR,
773 PVEC_FREE,
774 PVEC_PROCESS,
775 PVEC_FRAME,
776 PVEC_WINDOW,
777 PVEC_BOOL_VECTOR,
778 PVEC_BUFFER,
779 PVEC_HASH_TABLE,
780 PVEC_TERMINAL,
781 PVEC_WINDOW_CONFIGURATION,
782 PVEC_SUBR,
783 PVEC_OTHER,
784 /* These should be last, check internal_equal to see why. */
785 PVEC_COMPILED,
786 PVEC_CHAR_TABLE,
787 PVEC_SUB_CHAR_TABLE,
788 PVEC_FONT /* Should be last because it's used for range checking. */
789 };
790
791 enum More_Lisp_Bits
792 {
793 /* For convenience, we also store the number of elements in these bits.
794 Note that this size is not necessarily the memory-footprint size, but
795 only the number of Lisp_Object fields (that need to be traced by GC).
796 The distinction is used, e.g., by Lisp_Process, which places extra
797 non-Lisp_Object fields at the end of the structure. */
798 PSEUDOVECTOR_SIZE_BITS = 12,
799 PSEUDOVECTOR_SIZE_MASK = (1 << PSEUDOVECTOR_SIZE_BITS) - 1,
800
801 /* To calculate the memory footprint of the pseudovector, it's useful
802 to store the size of non-Lisp area in word_size units here. */
803 PSEUDOVECTOR_REST_BITS = 12,
804 PSEUDOVECTOR_REST_MASK = (((1 << PSEUDOVECTOR_REST_BITS) - 1)
805 << PSEUDOVECTOR_SIZE_BITS),
806
807 /* Used to extract pseudovector subtype information. */
808 PSEUDOVECTOR_AREA_BITS = PSEUDOVECTOR_SIZE_BITS + PSEUDOVECTOR_REST_BITS,
809 PVEC_TYPE_MASK = 0x3f << PSEUDOVECTOR_AREA_BITS
810 };
811 \f
812 /* These functions extract various sorts of values from a Lisp_Object.
813 For example, if tem is a Lisp_Object whose type is Lisp_Cons,
814 XCONS (tem) is the struct Lisp_Cons * pointing to the memory for
815 that cons. */
816
817 /* Mask for the value (as opposed to the type bits) of a Lisp object. */
818 DEFINE_GDB_SYMBOL_BEGIN (EMACS_INT, VALMASK)
819 # define VALMASK (USE_LSB_TAG ? - (1 << GCTYPEBITS) : VAL_MAX)
820 DEFINE_GDB_SYMBOL_END (VALMASK)
821
822 /* Largest and smallest representable fixnum values. These are the C
823 values. They are macros for use in static initializers. */
824 #define MOST_POSITIVE_FIXNUM (EMACS_INT_MAX >> INTTYPEBITS)
825 #define MOST_NEGATIVE_FIXNUM (-1 - MOST_POSITIVE_FIXNUM)
826
827 /* Extract the pointer hidden within A. */
828 LISP_MACRO_DEFUN (XPNTR, void *, (Lisp_Object a), (a))
829
830 #if USE_LSB_TAG
831
832 LISP_MACRO_DEFUN (make_number, Lisp_Object, (EMACS_INT n), (n))
833 LISP_MACRO_DEFUN (XINT, EMACS_INT, (Lisp_Object a), (a))
834 LISP_MACRO_DEFUN (XFASTINT, EMACS_INT, (Lisp_Object a), (a))
835 LISP_MACRO_DEFUN (XSYMBOL, struct Lisp_Symbol *, (Lisp_Object a), (a))
836 LISP_MACRO_DEFUN (XTYPE, enum Lisp_Type, (Lisp_Object a), (a))
837 LISP_MACRO_DEFUN (XUNTAG, void *, (Lisp_Object a, int type), (a, type))
838
839 #else /* ! USE_LSB_TAG */
840
841 /* Although compiled only if ! USE_LSB_TAG, the following functions
842 also work when USE_LSB_TAG; this is to aid future maintenance when
843 the lisp_h_* macros are eventually removed. */
844
845 /* Make a Lisp integer representing the value of the low order
846 bits of N. */
847 INLINE Lisp_Object
848 make_number (EMACS_INT n)
849 {
850 EMACS_INT int0 = Lisp_Int0;
851 if (USE_LSB_TAG)
852 {
853 EMACS_UINT u = n;
854 n = u << INTTYPEBITS;
855 n += int0;
856 }
857 else
858 {
859 n &= INTMASK;
860 n += (int0 << VALBITS);
861 }
862 return XIL (n);
863 }
864
865 /* Extract A's value as a signed integer. */
866 INLINE EMACS_INT
867 XINT (Lisp_Object a)
868 {
869 EMACS_INT i = XLI (a);
870 if (! USE_LSB_TAG)
871 {
872 EMACS_UINT u = i;
873 i = u << INTTYPEBITS;
874 }
875 return i >> INTTYPEBITS;
876 }
877
878 /* Like XINT (A), but may be faster. A must be nonnegative.
879 If ! USE_LSB_TAG, this takes advantage of the fact that Lisp
880 integers have zero-bits in their tags. */
881 INLINE EMACS_INT
882 XFASTINT (Lisp_Object a)
883 {
884 EMACS_INT int0 = Lisp_Int0;
885 EMACS_INT n = USE_LSB_TAG ? XINT (a) : XLI (a) - (int0 << VALBITS);
886 eassert (0 <= n);
887 return n;
888 }
889
890 /* Extract A's value as a symbol. */
891 INLINE struct Lisp_Symbol *
892 XSYMBOL (Lisp_Object a)
893 {
894 uintptr_t i = (uintptr_t) XUNTAG (a, Lisp_Symbol);
895 if (! USE_LSB_TAG)
896 i <<= GCTYPEBITS;
897 void *p = (char *) lispsym + i;
898 return p;
899 }
900
901 /* Extract A's type. */
902 INLINE enum Lisp_Type
903 XTYPE (Lisp_Object a)
904 {
905 EMACS_UINT i = XLI (a);
906 return USE_LSB_TAG ? i & ~VALMASK : i >> VALBITS;
907 }
908
909 /* Extract A's pointer value, assuming A's type is TYPE. */
910 INLINE void *
911 XUNTAG (Lisp_Object a, int type)
912 {
913 intptr_t i = USE_LSB_TAG ? XLI (a) - type : XLI (a) & VALMASK;
914 return (void *) i;
915 }
916
917 #endif /* ! USE_LSB_TAG */
918
919 /* Extract A's value as an unsigned integer. */
920 INLINE EMACS_UINT
921 XUINT (Lisp_Object a)
922 {
923 EMACS_UINT i = XLI (a);
924 return USE_LSB_TAG ? i >> INTTYPEBITS : i & INTMASK;
925 }
926
927 /* Return A's (Lisp-integer sized) hash. Happens to be like XUINT
928 right now, but XUINT should only be applied to objects we know are
929 integers. */
930 LISP_MACRO_DEFUN (XHASH, EMACS_INT, (Lisp_Object a), (a))
931
932 /* Like make_number (N), but may be faster. N must be in nonnegative range. */
933 INLINE Lisp_Object
934 make_natnum (EMACS_INT n)
935 {
936 eassert (0 <= n && n <= MOST_POSITIVE_FIXNUM);
937 EMACS_INT int0 = Lisp_Int0;
938 return USE_LSB_TAG ? make_number (n) : XIL (n + (int0 << VALBITS));
939 }
940
941 /* Return true if X and Y are the same object. */
942 LISP_MACRO_DEFUN (EQ, bool, (Lisp_Object x, Lisp_Object y), (x, y))
943
944 /* Value is true if I doesn't fit into a Lisp fixnum. It is
945 written this way so that it also works if I is of unsigned
946 type or if I is a NaN. */
947
948 #define FIXNUM_OVERFLOW_P(i) \
949 (! ((0 <= (i) || MOST_NEGATIVE_FIXNUM <= (i)) && (i) <= MOST_POSITIVE_FIXNUM))
950
951 INLINE ptrdiff_t
952 clip_to_bounds (ptrdiff_t lower, EMACS_INT num, ptrdiff_t upper)
953 {
954 return num < lower ? lower : num <= upper ? num : upper;
955 }
956 \f
957
958 /* Extract a value or address from a Lisp_Object. */
959
960 LISP_MACRO_DEFUN (XCONS, struct Lisp_Cons *, (Lisp_Object a), (a))
961
962 INLINE struct Lisp_Vector *
963 XVECTOR (Lisp_Object a)
964 {
965 eassert (VECTORLIKEP (a));
966 return XUNTAG (a, Lisp_Vectorlike);
967 }
968
969 INLINE struct Lisp_String *
970 XSTRING (Lisp_Object a)
971 {
972 eassert (STRINGP (a));
973 return XUNTAG (a, Lisp_String);
974 }
975
976 /* XSYMBOL_INIT (Qfoo) is like XSYMBOL (Qfoo), except it is valid in
977 static initializers, and SYM must be a C-defined symbol. */
978 #define XSYMBOL_INIT(sym) a##sym
979
980 INLINE struct Lisp_Float *
981 XFLOAT (Lisp_Object a)
982 {
983 eassert (FLOATP (a));
984 return XUNTAG (a, Lisp_Float);
985 }
986
987 /* Pseudovector types. */
988
989 INLINE struct Lisp_Process *
990 XPROCESS (Lisp_Object a)
991 {
992 eassert (PROCESSP (a));
993 return XUNTAG (a, Lisp_Vectorlike);
994 }
995
996 INLINE struct window *
997 XWINDOW (Lisp_Object a)
998 {
999 eassert (WINDOWP (a));
1000 return XUNTAG (a, Lisp_Vectorlike);
1001 }
1002
1003 INLINE struct terminal *
1004 XTERMINAL (Lisp_Object a)
1005 {
1006 return XUNTAG (a, Lisp_Vectorlike);
1007 }
1008
1009 INLINE struct Lisp_Subr *
1010 XSUBR (Lisp_Object a)
1011 {
1012 eassert (SUBRP (a));
1013 return XUNTAG (a, Lisp_Vectorlike);
1014 }
1015
1016 INLINE struct buffer *
1017 XBUFFER (Lisp_Object a)
1018 {
1019 eassert (BUFFERP (a));
1020 return XUNTAG (a, Lisp_Vectorlike);
1021 }
1022
1023 INLINE struct Lisp_Char_Table *
1024 XCHAR_TABLE (Lisp_Object a)
1025 {
1026 eassert (CHAR_TABLE_P (a));
1027 return XUNTAG (a, Lisp_Vectorlike);
1028 }
1029
1030 INLINE struct Lisp_Sub_Char_Table *
1031 XSUB_CHAR_TABLE (Lisp_Object a)
1032 {
1033 eassert (SUB_CHAR_TABLE_P (a));
1034 return XUNTAG (a, Lisp_Vectorlike);
1035 }
1036
1037 INLINE struct Lisp_Bool_Vector *
1038 XBOOL_VECTOR (Lisp_Object a)
1039 {
1040 eassert (BOOL_VECTOR_P (a));
1041 return XUNTAG (a, Lisp_Vectorlike);
1042 }
1043
1044 /* Construct a Lisp_Object from a value or address. */
1045
1046 INLINE Lisp_Object
1047 make_lisp_ptr (void *ptr, enum Lisp_Type type)
1048 {
1049 Lisp_Object a = XIL (TAG_PTR (type, ptr));
1050 eassert (XTYPE (a) == type && XUNTAG (a, type) == ptr);
1051 return a;
1052 }
1053
1054 INLINE Lisp_Object
1055 make_lisp_symbol (struct Lisp_Symbol *sym)
1056 {
1057 Lisp_Object a = XIL (TAG_SYMPTR (sym));
1058 eassert (XSYMBOL (a) == sym);
1059 return a;
1060 }
1061
1062 INLINE Lisp_Object
1063 make_lisp_proc (struct Lisp_Process *p)
1064 {
1065 return make_lisp_ptr (p, Lisp_Vectorlike);
1066 }
1067
1068 #define XSETINT(a, b) ((a) = make_number (b))
1069 #define XSETFASTINT(a, b) ((a) = make_natnum (b))
1070 #define XSETCONS(a, b) ((a) = make_lisp_ptr (b, Lisp_Cons))
1071 #define XSETVECTOR(a, b) ((a) = make_lisp_ptr (b, Lisp_Vectorlike))
1072 #define XSETSTRING(a, b) ((a) = make_lisp_ptr (b, Lisp_String))
1073 #define XSETSYMBOL(a, b) ((a) = make_lisp_symbol (b))
1074 #define XSETFLOAT(a, b) ((a) = make_lisp_ptr (b, Lisp_Float))
1075 #define XSETMISC(a, b) ((a) = make_lisp_ptr (b, Lisp_Misc))
1076
1077 /* Pseudovector types. */
1078
1079 #define XSETPVECTYPE(v, code) \
1080 ((v)->header.size |= PSEUDOVECTOR_FLAG | ((code) << PSEUDOVECTOR_AREA_BITS))
1081 #define XSETPVECTYPESIZE(v, code, lispsize, restsize) \
1082 ((v)->header.size = (PSEUDOVECTOR_FLAG \
1083 | ((code) << PSEUDOVECTOR_AREA_BITS) \
1084 | ((restsize) << PSEUDOVECTOR_SIZE_BITS) \
1085 | (lispsize)))
1086
1087 /* The cast to struct vectorlike_header * avoids aliasing issues. */
1088 #define XSETPSEUDOVECTOR(a, b, code) \
1089 XSETTYPED_PSEUDOVECTOR (a, b, \
1090 (((struct vectorlike_header *) \
1091 XUNTAG (a, Lisp_Vectorlike)) \
1092 ->size), \
1093 code)
1094 #define XSETTYPED_PSEUDOVECTOR(a, b, size, code) \
1095 (XSETVECTOR (a, b), \
1096 eassert ((size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK)) \
1097 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS))))
1098
1099 #define XSETWINDOW_CONFIGURATION(a, b) \
1100 (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW_CONFIGURATION))
1101 #define XSETPROCESS(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_PROCESS))
1102 #define XSETWINDOW(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW))
1103 #define XSETTERMINAL(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_TERMINAL))
1104 #define XSETSUBR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUBR))
1105 #define XSETCOMPILED(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_COMPILED))
1106 #define XSETBUFFER(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BUFFER))
1107 #define XSETCHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_CHAR_TABLE))
1108 #define XSETBOOL_VECTOR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BOOL_VECTOR))
1109 #define XSETSUB_CHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUB_CHAR_TABLE))
1110
1111 /* Efficiently convert a pointer to a Lisp object and back. The
1112 pointer is represented as a Lisp integer, so the garbage collector
1113 does not know about it. The pointer should not have both Lisp_Int1
1114 bits set, which makes this conversion inherently unportable. */
1115
1116 INLINE void *
1117 XINTPTR (Lisp_Object a)
1118 {
1119 return XUNTAG (a, Lisp_Int0);
1120 }
1121
1122 INLINE Lisp_Object
1123 make_pointer_integer (void *p)
1124 {
1125 Lisp_Object a = XIL (TAG_PTR (Lisp_Int0, p));
1126 eassert (INTEGERP (a) && XINTPTR (a) == p);
1127 return a;
1128 }
1129
1130 /* Type checking. */
1131
1132 LISP_MACRO_DEFUN_VOID (CHECK_TYPE,
1133 (int ok, Lisp_Object predicate, Lisp_Object x),
1134 (ok, predicate, x))
1135
1136 /* Deprecated and will be removed soon. */
1137
1138 #define INTERNAL_FIELD(field) field ## _
1139
1140 /* See the macros in intervals.h. */
1141
1142 typedef struct interval *INTERVAL;
1143
1144 struct GCALIGNED Lisp_Cons
1145 {
1146 /* Car of this cons cell. */
1147 Lisp_Object car;
1148
1149 union
1150 {
1151 /* Cdr of this cons cell. */
1152 Lisp_Object cdr;
1153
1154 /* Used to chain conses on a free list. */
1155 struct Lisp_Cons *chain;
1156 } u;
1157 };
1158
1159 /* Take the car or cdr of something known to be a cons cell. */
1160 /* The _addr functions shouldn't be used outside of the minimal set
1161 of code that has to know what a cons cell looks like. Other code not
1162 part of the basic lisp implementation should assume that the car and cdr
1163 fields are not accessible. (What if we want to switch to
1164 a copying collector someday? Cached cons cell field addresses may be
1165 invalidated at arbitrary points.) */
1166 INLINE Lisp_Object *
1167 xcar_addr (Lisp_Object c)
1168 {
1169 return &XCONS (c)->car;
1170 }
1171 INLINE Lisp_Object *
1172 xcdr_addr (Lisp_Object c)
1173 {
1174 return &XCONS (c)->u.cdr;
1175 }
1176
1177 /* Use these from normal code. */
1178 LISP_MACRO_DEFUN (XCAR, Lisp_Object, (Lisp_Object c), (c))
1179 LISP_MACRO_DEFUN (XCDR, Lisp_Object, (Lisp_Object c), (c))
1180
1181 /* Use these to set the fields of a cons cell.
1182
1183 Note that both arguments may refer to the same object, so 'n'
1184 should not be read after 'c' is first modified. */
1185 INLINE void
1186 XSETCAR (Lisp_Object c, Lisp_Object n)
1187 {
1188 *xcar_addr (c) = n;
1189 }
1190 INLINE void
1191 XSETCDR (Lisp_Object c, Lisp_Object n)
1192 {
1193 *xcdr_addr (c) = n;
1194 }
1195
1196 /* Take the car or cdr of something whose type is not known. */
1197 INLINE Lisp_Object
1198 CAR (Lisp_Object c)
1199 {
1200 return (CONSP (c) ? XCAR (c)
1201 : NILP (c) ? Qnil
1202 : wrong_type_argument (Qlistp, c));
1203 }
1204 INLINE Lisp_Object
1205 CDR (Lisp_Object c)
1206 {
1207 return (CONSP (c) ? XCDR (c)
1208 : NILP (c) ? Qnil
1209 : wrong_type_argument (Qlistp, c));
1210 }
1211
1212 /* Take the car or cdr of something whose type is not known. */
1213 INLINE Lisp_Object
1214 CAR_SAFE (Lisp_Object c)
1215 {
1216 return CONSP (c) ? XCAR (c) : Qnil;
1217 }
1218 INLINE Lisp_Object
1219 CDR_SAFE (Lisp_Object c)
1220 {
1221 return CONSP (c) ? XCDR (c) : Qnil;
1222 }
1223
1224 /* In a string or vector, the sign bit of the `size' is the gc mark bit. */
1225
1226 struct GCALIGNED Lisp_String
1227 {
1228 ptrdiff_t size;
1229 ptrdiff_t size_byte;
1230 INTERVAL intervals; /* Text properties in this string. */
1231 unsigned char *data;
1232 };
1233
1234 /* True if STR is a multibyte string. */
1235 INLINE bool
1236 STRING_MULTIBYTE (Lisp_Object str)
1237 {
1238 return 0 <= XSTRING (str)->size_byte;
1239 }
1240
1241 /* An upper bound on the number of bytes in a Lisp string, not
1242 counting the terminating null. This a tight enough bound to
1243 prevent integer overflow errors that would otherwise occur during
1244 string size calculations. A string cannot contain more bytes than
1245 a fixnum can represent, nor can it be so long that C pointer
1246 arithmetic stops working on the string plus its terminating null.
1247 Although the actual size limit (see STRING_BYTES_MAX in alloc.c)
1248 may be a bit smaller than STRING_BYTES_BOUND, calculating it here
1249 would expose alloc.c internal details that we'd rather keep
1250 private.
1251
1252 This is a macro for use in static initializers. The cast to
1253 ptrdiff_t ensures that the macro is signed. */
1254 #define STRING_BYTES_BOUND \
1255 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, min (SIZE_MAX, PTRDIFF_MAX) - 1))
1256
1257 /* Mark STR as a unibyte string. */
1258 #define STRING_SET_UNIBYTE(STR) \
1259 do { \
1260 if (EQ (STR, empty_multibyte_string)) \
1261 (STR) = empty_unibyte_string; \
1262 else \
1263 XSTRING (STR)->size_byte = -1; \
1264 } while (false)
1265
1266 /* Mark STR as a multibyte string. Assure that STR contains only
1267 ASCII characters in advance. */
1268 #define STRING_SET_MULTIBYTE(STR) \
1269 do { \
1270 if (EQ (STR, empty_unibyte_string)) \
1271 (STR) = empty_multibyte_string; \
1272 else \
1273 XSTRING (STR)->size_byte = XSTRING (STR)->size; \
1274 } while (false)
1275
1276 /* Convenience functions for dealing with Lisp strings. */
1277
1278 INLINE unsigned char *
1279 SDATA (Lisp_Object string)
1280 {
1281 return XSTRING (string)->data;
1282 }
1283 INLINE char *
1284 SSDATA (Lisp_Object string)
1285 {
1286 /* Avoid "differ in sign" warnings. */
1287 return (char *) SDATA (string);
1288 }
1289 INLINE unsigned char
1290 SREF (Lisp_Object string, ptrdiff_t index)
1291 {
1292 return SDATA (string)[index];
1293 }
1294 INLINE void
1295 SSET (Lisp_Object string, ptrdiff_t index, unsigned char new)
1296 {
1297 SDATA (string)[index] = new;
1298 }
1299 INLINE ptrdiff_t
1300 SCHARS (Lisp_Object string)
1301 {
1302 return XSTRING (string)->size;
1303 }
1304
1305 #ifdef GC_CHECK_STRING_BYTES
1306 extern ptrdiff_t string_bytes (struct Lisp_String *);
1307 #endif
1308 INLINE ptrdiff_t
1309 STRING_BYTES (struct Lisp_String *s)
1310 {
1311 #ifdef GC_CHECK_STRING_BYTES
1312 return string_bytes (s);
1313 #else
1314 return s->size_byte < 0 ? s->size : s->size_byte;
1315 #endif
1316 }
1317
1318 INLINE ptrdiff_t
1319 SBYTES (Lisp_Object string)
1320 {
1321 return STRING_BYTES (XSTRING (string));
1322 }
1323 INLINE void
1324 STRING_SET_CHARS (Lisp_Object string, ptrdiff_t newsize)
1325 {
1326 XSTRING (string)->size = newsize;
1327 }
1328
1329 /* Header of vector-like objects. This documents the layout constraints on
1330 vectors and pseudovectors (objects of PVEC_xxx subtype). It also prevents
1331 compilers from being fooled by Emacs's type punning: XSETPSEUDOVECTOR
1332 and PSEUDOVECTORP cast their pointers to struct vectorlike_header *,
1333 because when two such pointers potentially alias, a compiler won't
1334 incorrectly reorder loads and stores to their size fields. See
1335 Bug#8546. */
1336 struct vectorlike_header
1337 {
1338 /* The only field contains various pieces of information:
1339 - The MSB (ARRAY_MARK_FLAG) holds the gcmarkbit.
1340 - The next bit (PSEUDOVECTOR_FLAG) indicates whether this is a plain
1341 vector (0) or a pseudovector (1).
1342 - If PSEUDOVECTOR_FLAG is 0, the rest holds the size (number
1343 of slots) of the vector.
1344 - If PSEUDOVECTOR_FLAG is 1, the rest is subdivided into three fields:
1345 - a) pseudovector subtype held in PVEC_TYPE_MASK field;
1346 - b) number of Lisp_Objects slots at the beginning of the object
1347 held in PSEUDOVECTOR_SIZE_MASK field. These objects are always
1348 traced by the GC;
1349 - c) size of the rest fields held in PSEUDOVECTOR_REST_MASK and
1350 measured in word_size units. Rest fields may also include
1351 Lisp_Objects, but these objects usually needs some special treatment
1352 during GC.
1353 There are some exceptions. For PVEC_FREE, b) is always zero. For
1354 PVEC_BOOL_VECTOR and PVEC_SUBR, both b) and c) are always zero.
1355 Current layout limits the pseudovectors to 63 PVEC_xxx subtypes,
1356 4095 Lisp_Objects in GC-ed area and 4095 word-sized other slots. */
1357 ptrdiff_t size;
1358 };
1359
1360 /* A regular vector is just a header plus an array of Lisp_Objects. */
1361
1362 struct Lisp_Vector
1363 {
1364 struct vectorlike_header header;
1365 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1366 };
1367
1368 /* C11 prohibits alignof (struct Lisp_Vector), so compute it manually. */
1369 enum
1370 {
1371 ALIGNOF_STRUCT_LISP_VECTOR
1372 = alignof (union { struct vectorlike_header a; Lisp_Object b; })
1373 };
1374
1375 /* A boolvector is a kind of vectorlike, with contents like a string. */
1376
1377 struct Lisp_Bool_Vector
1378 {
1379 /* HEADER.SIZE is the vector's size field. It doesn't have the real size,
1380 just the subtype information. */
1381 struct vectorlike_header header;
1382 /* This is the size in bits. */
1383 EMACS_INT size;
1384 /* The actual bits, packed into bytes.
1385 Zeros fill out the last word if needed.
1386 The bits are in little-endian order in the bytes, and
1387 the bytes are in little-endian order in the words. */
1388 bits_word data[FLEXIBLE_ARRAY_MEMBER];
1389 };
1390
1391 INLINE EMACS_INT
1392 bool_vector_size (Lisp_Object a)
1393 {
1394 EMACS_INT size = XBOOL_VECTOR (a)->size;
1395 eassume (0 <= size);
1396 return size;
1397 }
1398
1399 INLINE bits_word *
1400 bool_vector_data (Lisp_Object a)
1401 {
1402 return XBOOL_VECTOR (a)->data;
1403 }
1404
1405 INLINE unsigned char *
1406 bool_vector_uchar_data (Lisp_Object a)
1407 {
1408 return (unsigned char *) bool_vector_data (a);
1409 }
1410
1411 /* The number of data words and bytes in a bool vector with SIZE bits. */
1412
1413 INLINE EMACS_INT
1414 bool_vector_words (EMACS_INT size)
1415 {
1416 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1417 return (size + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
1418 }
1419
1420 INLINE EMACS_INT
1421 bool_vector_bytes (EMACS_INT size)
1422 {
1423 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1424 return (size + BOOL_VECTOR_BITS_PER_CHAR - 1) / BOOL_VECTOR_BITS_PER_CHAR;
1425 }
1426
1427 /* True if A's Ith bit is set. */
1428
1429 INLINE bool
1430 bool_vector_bitref (Lisp_Object a, EMACS_INT i)
1431 {
1432 eassume (0 <= i && i < bool_vector_size (a));
1433 return !! (bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR]
1434 & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR)));
1435 }
1436
1437 INLINE Lisp_Object
1438 bool_vector_ref (Lisp_Object a, EMACS_INT i)
1439 {
1440 return bool_vector_bitref (a, i) ? Qt : Qnil;
1441 }
1442
1443 /* Set A's Ith bit to B. */
1444
1445 INLINE void
1446 bool_vector_set (Lisp_Object a, EMACS_INT i, bool b)
1447 {
1448 unsigned char *addr;
1449
1450 eassume (0 <= i && i < bool_vector_size (a));
1451 addr = &bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR];
1452
1453 if (b)
1454 *addr |= 1 << (i % BOOL_VECTOR_BITS_PER_CHAR);
1455 else
1456 *addr &= ~ (1 << (i % BOOL_VECTOR_BITS_PER_CHAR));
1457 }
1458
1459 /* Some handy constants for calculating sizes
1460 and offsets, mostly of vectorlike objects. */
1461
1462 enum
1463 {
1464 header_size = offsetof (struct Lisp_Vector, contents),
1465 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
1466 word_size = sizeof (Lisp_Object)
1467 };
1468
1469 /* Conveniences for dealing with Lisp arrays. */
1470
1471 INLINE Lisp_Object
1472 AREF (Lisp_Object array, ptrdiff_t idx)
1473 {
1474 return XVECTOR (array)->contents[idx];
1475 }
1476
1477 INLINE Lisp_Object *
1478 aref_addr (Lisp_Object array, ptrdiff_t idx)
1479 {
1480 return & XVECTOR (array)->contents[idx];
1481 }
1482
1483 INLINE ptrdiff_t
1484 ASIZE (Lisp_Object array)
1485 {
1486 return XVECTOR (array)->header.size;
1487 }
1488
1489 INLINE void
1490 ASET (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1491 {
1492 eassert (0 <= idx && idx < ASIZE (array));
1493 XVECTOR (array)->contents[idx] = val;
1494 }
1495
1496 INLINE void
1497 gc_aset (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1498 {
1499 /* Like ASET, but also can be used in the garbage collector:
1500 sweep_weak_table calls set_hash_key etc. while the table is marked. */
1501 eassert (0 <= idx && idx < (ASIZE (array) & ~ARRAY_MARK_FLAG));
1502 XVECTOR (array)->contents[idx] = val;
1503 }
1504
1505 /* If a struct is made to look like a vector, this macro returns the length
1506 of the shortest vector that would hold that struct. */
1507
1508 #define VECSIZE(type) \
1509 ((sizeof (type) - header_size + word_size - 1) / word_size)
1510
1511 /* Like VECSIZE, but used when the pseudo-vector has non-Lisp_Object fields
1512 at the end and we need to compute the number of Lisp_Object fields (the
1513 ones that the GC needs to trace). */
1514
1515 #define PSEUDOVECSIZE(type, nonlispfield) \
1516 ((offsetof (type, nonlispfield) - header_size) / word_size)
1517
1518 /* Compute A OP B, using the unsigned comparison operator OP. A and B
1519 should be integer expressions. This is not the same as
1520 mathematical comparison; for example, UNSIGNED_CMP (0, <, -1)
1521 returns true. For efficiency, prefer plain unsigned comparison if A
1522 and B's sizes both fit (after integer promotion). */
1523 #define UNSIGNED_CMP(a, op, b) \
1524 (max (sizeof ((a) + 0), sizeof ((b) + 0)) <= sizeof (unsigned) \
1525 ? ((a) + (unsigned) 0) op ((b) + (unsigned) 0) \
1526 : ((a) + (uintmax_t) 0) op ((b) + (uintmax_t) 0))
1527
1528 /* True iff C is an ASCII character. */
1529 #define ASCII_CHAR_P(c) UNSIGNED_CMP (c, <, 0x80)
1530
1531 /* A char-table is a kind of vectorlike, with contents are like a
1532 vector but with a few other slots. For some purposes, it makes
1533 sense to handle a char-table with type struct Lisp_Vector. An
1534 element of a char table can be any Lisp objects, but if it is a sub
1535 char-table, we treat it a table that contains information of a
1536 specific range of characters. A sub char-table is like a vector but
1537 with two integer fields between the header and Lisp data, which means
1538 that it has to be marked with some precautions (see mark_char_table
1539 in alloc.c). A sub char-table appears only in an element of a char-table,
1540 and there's no way to access it directly from Emacs Lisp program. */
1541
1542 enum CHARTAB_SIZE_BITS
1543 {
1544 CHARTAB_SIZE_BITS_0 = 6,
1545 CHARTAB_SIZE_BITS_1 = 4,
1546 CHARTAB_SIZE_BITS_2 = 5,
1547 CHARTAB_SIZE_BITS_3 = 7
1548 };
1549
1550 extern const int chartab_size[4];
1551
1552 struct Lisp_Char_Table
1553 {
1554 /* HEADER.SIZE is the vector's size field, which also holds the
1555 pseudovector type information. It holds the size, too.
1556 The size counts the defalt, parent, purpose, ascii,
1557 contents, and extras slots. */
1558 struct vectorlike_header header;
1559
1560 /* This holds a default value,
1561 which is used whenever the value for a specific character is nil. */
1562 Lisp_Object defalt;
1563
1564 /* This points to another char table, which we inherit from when the
1565 value for a specific character is nil. The `defalt' slot takes
1566 precedence over this. */
1567 Lisp_Object parent;
1568
1569 /* This is a symbol which says what kind of use this char-table is
1570 meant for. */
1571 Lisp_Object purpose;
1572
1573 /* The bottom sub char-table for characters of the range 0..127. It
1574 is nil if none of ASCII character has a specific value. */
1575 Lisp_Object ascii;
1576
1577 Lisp_Object contents[(1 << CHARTAB_SIZE_BITS_0)];
1578
1579 /* These hold additional data. It is a vector. */
1580 Lisp_Object extras[FLEXIBLE_ARRAY_MEMBER];
1581 };
1582
1583 struct Lisp_Sub_Char_Table
1584 {
1585 /* HEADER.SIZE is the vector's size field, which also holds the
1586 pseudovector type information. It holds the size, too. */
1587 struct vectorlike_header header;
1588
1589 /* Depth of this sub char-table. It should be 1, 2, or 3. A sub
1590 char-table of depth 1 contains 16 elements, and each element
1591 covers 4096 (128*32) characters. A sub char-table of depth 2
1592 contains 32 elements, and each element covers 128 characters. A
1593 sub char-table of depth 3 contains 128 elements, and each element
1594 is for one character. */
1595 int depth;
1596
1597 /* Minimum character covered by the sub char-table. */
1598 int min_char;
1599
1600 /* Use set_sub_char_table_contents to set this. */
1601 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1602 };
1603
1604 INLINE Lisp_Object
1605 CHAR_TABLE_REF_ASCII (Lisp_Object ct, ptrdiff_t idx)
1606 {
1607 struct Lisp_Char_Table *tbl = NULL;
1608 Lisp_Object val;
1609 do
1610 {
1611 tbl = tbl ? XCHAR_TABLE (tbl->parent) : XCHAR_TABLE (ct);
1612 val = (! SUB_CHAR_TABLE_P (tbl->ascii) ? tbl->ascii
1613 : XSUB_CHAR_TABLE (tbl->ascii)->contents[idx]);
1614 if (NILP (val))
1615 val = tbl->defalt;
1616 }
1617 while (NILP (val) && ! NILP (tbl->parent));
1618
1619 return val;
1620 }
1621
1622 /* Almost equivalent to Faref (CT, IDX) with optimization for ASCII
1623 characters. Do not check validity of CT. */
1624 INLINE Lisp_Object
1625 CHAR_TABLE_REF (Lisp_Object ct, int idx)
1626 {
1627 return (ASCII_CHAR_P (idx)
1628 ? CHAR_TABLE_REF_ASCII (ct, idx)
1629 : char_table_ref (ct, idx));
1630 }
1631
1632 /* Equivalent to Faset (CT, IDX, VAL) with optimization for ASCII and
1633 8-bit European characters. Do not check validity of CT. */
1634 INLINE void
1635 CHAR_TABLE_SET (Lisp_Object ct, int idx, Lisp_Object val)
1636 {
1637 if (ASCII_CHAR_P (idx) && SUB_CHAR_TABLE_P (XCHAR_TABLE (ct)->ascii))
1638 set_sub_char_table_contents (XCHAR_TABLE (ct)->ascii, idx, val);
1639 else
1640 char_table_set (ct, idx, val);
1641 }
1642
1643 /* This structure describes a built-in function.
1644 It is generated by the DEFUN macro only.
1645 defsubr makes it into a Lisp object. */
1646
1647 struct Lisp_Subr
1648 {
1649 struct vectorlike_header header;
1650 union {
1651 Lisp_Object (*a0) (void);
1652 Lisp_Object (*a1) (Lisp_Object);
1653 Lisp_Object (*a2) (Lisp_Object, Lisp_Object);
1654 Lisp_Object (*a3) (Lisp_Object, Lisp_Object, Lisp_Object);
1655 Lisp_Object (*a4) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1656 Lisp_Object (*a5) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1657 Lisp_Object (*a6) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1658 Lisp_Object (*a7) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1659 Lisp_Object (*a8) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1660 Lisp_Object (*aUNEVALLED) (Lisp_Object args);
1661 Lisp_Object (*aMANY) (ptrdiff_t, Lisp_Object *);
1662 } function;
1663 short min_args, max_args;
1664 const char *symbol_name;
1665 const char *intspec;
1666 const char *doc;
1667 };
1668
1669 enum char_table_specials
1670 {
1671 /* This is the number of slots that every char table must have. This
1672 counts the ordinary slots and the top, defalt, parent, and purpose
1673 slots. */
1674 CHAR_TABLE_STANDARD_SLOTS = PSEUDOVECSIZE (struct Lisp_Char_Table, extras),
1675
1676 /* This is an index of first Lisp_Object field in Lisp_Sub_Char_Table
1677 when the latter is treated as an ordinary Lisp_Vector. */
1678 SUB_CHAR_TABLE_OFFSET = PSEUDOVECSIZE (struct Lisp_Sub_Char_Table, contents)
1679 };
1680
1681 /* Return the number of "extra" slots in the char table CT. */
1682
1683 INLINE int
1684 CHAR_TABLE_EXTRA_SLOTS (struct Lisp_Char_Table *ct)
1685 {
1686 return ((ct->header.size & PSEUDOVECTOR_SIZE_MASK)
1687 - CHAR_TABLE_STANDARD_SLOTS);
1688 }
1689
1690 /* Make sure that sub char-table contents slot
1691 is aligned on a multiple of Lisp_Objects. */
1692 verify ((offsetof (struct Lisp_Sub_Char_Table, contents)
1693 - offsetof (struct Lisp_Sub_Char_Table, depth)) % word_size == 0);
1694
1695 /***********************************************************************
1696 Symbols
1697 ***********************************************************************/
1698
1699 /* Value is name of symbol. */
1700
1701 LISP_MACRO_DEFUN (SYMBOL_VAL, Lisp_Object, (struct Lisp_Symbol *sym), (sym))
1702
1703 INLINE struct Lisp_Symbol *
1704 SYMBOL_ALIAS (struct Lisp_Symbol *sym)
1705 {
1706 eassert (sym->redirect == SYMBOL_VARALIAS);
1707 return sym->val.alias;
1708 }
1709 INLINE struct Lisp_Buffer_Local_Value *
1710 SYMBOL_BLV (struct Lisp_Symbol *sym)
1711 {
1712 eassert (sym->redirect == SYMBOL_LOCALIZED);
1713 return sym->val.blv;
1714 }
1715 INLINE union Lisp_Fwd *
1716 SYMBOL_FWD (struct Lisp_Symbol *sym)
1717 {
1718 eassert (sym->redirect == SYMBOL_FORWARDED);
1719 return sym->val.fwd;
1720 }
1721
1722 LISP_MACRO_DEFUN_VOID (SET_SYMBOL_VAL,
1723 (struct Lisp_Symbol *sym, Lisp_Object v), (sym, v))
1724
1725 INLINE void
1726 SET_SYMBOL_ALIAS (struct Lisp_Symbol *sym, struct Lisp_Symbol *v)
1727 {
1728 eassert (sym->redirect == SYMBOL_VARALIAS);
1729 sym->val.alias = v;
1730 }
1731 INLINE void
1732 SET_SYMBOL_BLV (struct Lisp_Symbol *sym, struct Lisp_Buffer_Local_Value *v)
1733 {
1734 eassert (sym->redirect == SYMBOL_LOCALIZED);
1735 sym->val.blv = v;
1736 }
1737 INLINE void
1738 SET_SYMBOL_FWD (struct Lisp_Symbol *sym, union Lisp_Fwd *v)
1739 {
1740 eassert (sym->redirect == SYMBOL_FORWARDED);
1741 sym->val.fwd = v;
1742 }
1743
1744 INLINE Lisp_Object
1745 SYMBOL_NAME (Lisp_Object sym)
1746 {
1747 return XSYMBOL (sym)->name;
1748 }
1749
1750 /* Value is true if SYM is an interned symbol. */
1751
1752 INLINE bool
1753 SYMBOL_INTERNED_P (Lisp_Object sym)
1754 {
1755 return XSYMBOL (sym)->interned != SYMBOL_UNINTERNED;
1756 }
1757
1758 /* Value is true if SYM is interned in initial_obarray. */
1759
1760 INLINE bool
1761 SYMBOL_INTERNED_IN_INITIAL_OBARRAY_P (Lisp_Object sym)
1762 {
1763 return XSYMBOL (sym)->interned == SYMBOL_INTERNED_IN_INITIAL_OBARRAY;
1764 }
1765
1766 /* Value is non-zero if symbol is considered a constant, i.e. its
1767 value cannot be changed (there is an exception for keyword symbols,
1768 whose value can be set to the keyword symbol itself). */
1769
1770 LISP_MACRO_DEFUN (SYMBOL_CONSTANT_P, int, (Lisp_Object sym), (sym))
1771
1772 /* Placeholder for make-docfile to process. The actual symbol
1773 definition is done by lread.c's defsym. */
1774 #define DEFSYM(sym, name) /* empty */
1775
1776 \f
1777 /***********************************************************************
1778 Hash Tables
1779 ***********************************************************************/
1780
1781 /* The structure of a Lisp hash table. */
1782
1783 struct hash_table_test
1784 {
1785 /* Name of the function used to compare keys. */
1786 Lisp_Object name;
1787
1788 /* User-supplied hash function, or nil. */
1789 Lisp_Object user_hash_function;
1790
1791 /* User-supplied key comparison function, or nil. */
1792 Lisp_Object user_cmp_function;
1793
1794 /* C function to compare two keys. */
1795 bool (*cmpfn) (struct hash_table_test *t, Lisp_Object, Lisp_Object);
1796
1797 /* C function to compute hash code. */
1798 EMACS_UINT (*hashfn) (struct hash_table_test *t, Lisp_Object);
1799 };
1800
1801 struct Lisp_Hash_Table
1802 {
1803 /* This is for Lisp; the hash table code does not refer to it. */
1804 struct vectorlike_header header;
1805
1806 /* Nil if table is non-weak. Otherwise a symbol describing the
1807 weakness of the table. */
1808 Lisp_Object weak;
1809
1810 /* When the table is resized, and this is an integer, compute the
1811 new size by adding this to the old size. If a float, compute the
1812 new size by multiplying the old size with this factor. */
1813 Lisp_Object rehash_size;
1814
1815 /* Resize hash table when number of entries/ table size is >= this
1816 ratio, a float. */
1817 Lisp_Object rehash_threshold;
1818
1819 /* Vector of hash codes. If hash[I] is nil, this means that the
1820 I-th entry is unused. */
1821 Lisp_Object hash;
1822
1823 /* Vector used to chain entries. If entry I is free, next[I] is the
1824 entry number of the next free item. If entry I is non-free,
1825 next[I] is the index of the next entry in the collision chain. */
1826 Lisp_Object next;
1827
1828 /* Index of first free entry in free list. */
1829 Lisp_Object next_free;
1830
1831 /* Bucket vector. A non-nil entry is the index of the first item in
1832 a collision chain. This vector's size can be larger than the
1833 hash table size to reduce collisions. */
1834 Lisp_Object index;
1835
1836 /* Only the fields above are traced normally by the GC. The ones below
1837 `count' are special and are either ignored by the GC or traced in
1838 a special way (e.g. because of weakness). */
1839
1840 /* Number of key/value entries in the table. */
1841 ptrdiff_t count;
1842
1843 /* Vector of keys and values. The key of item I is found at index
1844 2 * I, the value is found at index 2 * I + 1.
1845 This is gc_marked specially if the table is weak. */
1846 Lisp_Object key_and_value;
1847
1848 /* The comparison and hash functions. */
1849 struct hash_table_test test;
1850
1851 /* Next weak hash table if this is a weak hash table. The head
1852 of the list is in weak_hash_tables. */
1853 struct Lisp_Hash_Table *next_weak;
1854 };
1855
1856
1857 INLINE struct Lisp_Hash_Table *
1858 XHASH_TABLE (Lisp_Object a)
1859 {
1860 return XUNTAG (a, Lisp_Vectorlike);
1861 }
1862
1863 #define XSET_HASH_TABLE(VAR, PTR) \
1864 (XSETPSEUDOVECTOR (VAR, PTR, PVEC_HASH_TABLE))
1865
1866 INLINE bool
1867 HASH_TABLE_P (Lisp_Object a)
1868 {
1869 return PSEUDOVECTORP (a, PVEC_HASH_TABLE);
1870 }
1871
1872 /* Value is the key part of entry IDX in hash table H. */
1873 INLINE Lisp_Object
1874 HASH_KEY (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1875 {
1876 return AREF (h->key_and_value, 2 * idx);
1877 }
1878
1879 /* Value is the value part of entry IDX in hash table H. */
1880 INLINE Lisp_Object
1881 HASH_VALUE (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1882 {
1883 return AREF (h->key_and_value, 2 * idx + 1);
1884 }
1885
1886 /* Value is the index of the next entry following the one at IDX
1887 in hash table H. */
1888 INLINE Lisp_Object
1889 HASH_NEXT (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1890 {
1891 return AREF (h->next, idx);
1892 }
1893
1894 /* Value is the hash code computed for entry IDX in hash table H. */
1895 INLINE Lisp_Object
1896 HASH_HASH (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1897 {
1898 return AREF (h->hash, idx);
1899 }
1900
1901 /* Value is the index of the element in hash table H that is the
1902 start of the collision list at index IDX in the index vector of H. */
1903 INLINE Lisp_Object
1904 HASH_INDEX (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1905 {
1906 return AREF (h->index, idx);
1907 }
1908
1909 /* Value is the size of hash table H. */
1910 INLINE ptrdiff_t
1911 HASH_TABLE_SIZE (struct Lisp_Hash_Table *h)
1912 {
1913 return ASIZE (h->next);
1914 }
1915
1916 /* Default size for hash tables if not specified. */
1917
1918 enum DEFAULT_HASH_SIZE { DEFAULT_HASH_SIZE = 65 };
1919
1920 /* Default threshold specifying when to resize a hash table. The
1921 value gives the ratio of current entries in the hash table and the
1922 size of the hash table. */
1923
1924 static double const DEFAULT_REHASH_THRESHOLD = 0.8;
1925
1926 /* Default factor by which to increase the size of a hash table. */
1927
1928 static double const DEFAULT_REHASH_SIZE = 1.5;
1929
1930 /* Combine two integers X and Y for hashing. The result might not fit
1931 into a Lisp integer. */
1932
1933 INLINE EMACS_UINT
1934 sxhash_combine (EMACS_UINT x, EMACS_UINT y)
1935 {
1936 return (x << 4) + (x >> (BITS_PER_EMACS_INT - 4)) + y;
1937 }
1938
1939 /* Hash X, returning a value that fits into a fixnum. */
1940
1941 INLINE EMACS_UINT
1942 SXHASH_REDUCE (EMACS_UINT x)
1943 {
1944 return (x ^ x >> (BITS_PER_EMACS_INT - FIXNUM_BITS)) & INTMASK;
1945 }
1946
1947 /* These structures are used for various misc types. */
1948
1949 struct Lisp_Misc_Any /* Supertype of all Misc types. */
1950 {
1951 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_??? */
1952 bool_bf gcmarkbit : 1;
1953 unsigned spacer : 15;
1954 };
1955
1956 struct Lisp_Marker
1957 {
1958 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Marker */
1959 bool_bf gcmarkbit : 1;
1960 unsigned spacer : 13;
1961 /* This flag is temporarily used in the functions
1962 decode/encode_coding_object to record that the marker position
1963 must be adjusted after the conversion. */
1964 bool_bf need_adjustment : 1;
1965 /* True means normal insertion at the marker's position
1966 leaves the marker after the inserted text. */
1967 bool_bf insertion_type : 1;
1968 /* This is the buffer that the marker points into, or 0 if it points nowhere.
1969 Note: a chain of markers can contain markers pointing into different
1970 buffers (the chain is per buffer_text rather than per buffer, so it's
1971 shared between indirect buffers). */
1972 /* This is used for (other than NULL-checking):
1973 - Fmarker_buffer
1974 - Fset_marker: check eq(oldbuf, newbuf) to avoid unchain+rechain.
1975 - unchain_marker: to find the list from which to unchain.
1976 - Fkill_buffer: to only unchain the markers of current indirect buffer.
1977 */
1978 struct buffer *buffer;
1979
1980 /* The remaining fields are meaningless in a marker that
1981 does not point anywhere. */
1982
1983 /* For markers that point somewhere,
1984 this is used to chain of all the markers in a given buffer. */
1985 /* We could remove it and use an array in buffer_text instead.
1986 That would also allow to preserve it ordered. */
1987 struct Lisp_Marker *next;
1988 /* This is the char position where the marker points. */
1989 ptrdiff_t charpos;
1990 /* This is the byte position.
1991 It's mostly used as a charpos<->bytepos cache (i.e. it's not directly
1992 used to implement the functionality of markers, but rather to (ab)use
1993 markers as a cache for char<->byte mappings). */
1994 ptrdiff_t bytepos;
1995 };
1996
1997 /* START and END are markers in the overlay's buffer, and
1998 PLIST is the overlay's property list. */
1999 struct Lisp_Overlay
2000 /* An overlay's real data content is:
2001 - plist
2002 - buffer (really there are two buffer pointers, one per marker,
2003 and both points to the same buffer)
2004 - insertion type of both ends (per-marker fields)
2005 - start & start byte (of start marker)
2006 - end & end byte (of end marker)
2007 - next (singly linked list of overlays)
2008 - next fields of start and end markers (singly linked list of markers).
2009 I.e. 9words plus 2 bits, 3words of which are for external linked lists.
2010 */
2011 {
2012 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Overlay */
2013 bool_bf gcmarkbit : 1;
2014 unsigned spacer : 15;
2015 struct Lisp_Overlay *next;
2016 Lisp_Object start;
2017 Lisp_Object end;
2018 Lisp_Object plist;
2019 };
2020
2021 /* Types of data which may be saved in a Lisp_Save_Value. */
2022
2023 enum
2024 {
2025 SAVE_UNUSED,
2026 SAVE_INTEGER,
2027 SAVE_FUNCPOINTER,
2028 SAVE_POINTER,
2029 SAVE_OBJECT
2030 };
2031
2032 /* Number of bits needed to store one of the above values. */
2033 enum { SAVE_SLOT_BITS = 3 };
2034
2035 /* Number of slots in a save value where save_type is nonzero. */
2036 enum { SAVE_VALUE_SLOTS = 4 };
2037
2038 /* Bit-width and values for struct Lisp_Save_Value's save_type member. */
2039
2040 enum { SAVE_TYPE_BITS = SAVE_VALUE_SLOTS * SAVE_SLOT_BITS + 1 };
2041
2042 enum Lisp_Save_Type
2043 {
2044 SAVE_TYPE_INT_INT = SAVE_INTEGER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2045 SAVE_TYPE_INT_INT_INT
2046 = (SAVE_INTEGER + (SAVE_TYPE_INT_INT << SAVE_SLOT_BITS)),
2047 SAVE_TYPE_OBJ_OBJ = SAVE_OBJECT + (SAVE_OBJECT << SAVE_SLOT_BITS),
2048 SAVE_TYPE_OBJ_OBJ_OBJ = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ << SAVE_SLOT_BITS),
2049 SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
2050 = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ_OBJ << SAVE_SLOT_BITS),
2051 SAVE_TYPE_PTR_INT = SAVE_POINTER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2052 SAVE_TYPE_PTR_OBJ = SAVE_POINTER + (SAVE_OBJECT << SAVE_SLOT_BITS),
2053 SAVE_TYPE_PTR_PTR = SAVE_POINTER + (SAVE_POINTER << SAVE_SLOT_BITS),
2054 SAVE_TYPE_FUNCPTR_PTR_OBJ
2055 = SAVE_FUNCPOINTER + (SAVE_TYPE_PTR_OBJ << SAVE_SLOT_BITS),
2056
2057 /* This has an extra bit indicating it's raw memory. */
2058 SAVE_TYPE_MEMORY = SAVE_TYPE_PTR_INT + (1 << (SAVE_TYPE_BITS - 1))
2059 };
2060
2061 /* Special object used to hold a different values for later use.
2062
2063 This is mostly used to package C integers and pointers to call
2064 record_unwind_protect when two or more values need to be saved.
2065 For example:
2066
2067 ...
2068 struct my_data *md = get_my_data ();
2069 ptrdiff_t mi = get_my_integer ();
2070 record_unwind_protect (my_unwind, make_save_ptr_int (md, mi));
2071 ...
2072
2073 Lisp_Object my_unwind (Lisp_Object arg)
2074 {
2075 struct my_data *md = XSAVE_POINTER (arg, 0);
2076 ptrdiff_t mi = XSAVE_INTEGER (arg, 1);
2077 ...
2078 }
2079
2080 If ENABLE_CHECKING is in effect, XSAVE_xxx macros do type checking of the
2081 saved objects and raise eassert if type of the saved object doesn't match
2082 the type which is extracted. In the example above, XSAVE_INTEGER (arg, 2)
2083 and XSAVE_OBJECT (arg, 0) are wrong because nothing was saved in slot 2 and
2084 slot 0 is a pointer. */
2085
2086 typedef void (*voidfuncptr) (void);
2087
2088 struct Lisp_Save_Value
2089 {
2090 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Save_Value */
2091 bool_bf gcmarkbit : 1;
2092 unsigned spacer : 32 - (16 + 1 + SAVE_TYPE_BITS);
2093
2094 /* V->data may hold up to SAVE_VALUE_SLOTS entries. The type of
2095 V's data entries are determined by V->save_type. E.g., if
2096 V->save_type == SAVE_TYPE_PTR_OBJ, V->data[0] is a pointer,
2097 V->data[1] is an integer, and V's other data entries are unused.
2098
2099 If V->save_type == SAVE_TYPE_MEMORY, V->data[0].pointer is the address of
2100 a memory area containing V->data[1].integer potential Lisp_Objects. */
2101 ENUM_BF (Lisp_Save_Type) save_type : SAVE_TYPE_BITS;
2102 union {
2103 void *pointer;
2104 voidfuncptr funcpointer;
2105 ptrdiff_t integer;
2106 Lisp_Object object;
2107 } data[SAVE_VALUE_SLOTS];
2108 };
2109
2110 /* Return the type of V's Nth saved value. */
2111 INLINE int
2112 save_type (struct Lisp_Save_Value *v, int n)
2113 {
2114 eassert (0 <= n && n < SAVE_VALUE_SLOTS);
2115 return (v->save_type >> (SAVE_SLOT_BITS * n) & ((1 << SAVE_SLOT_BITS) - 1));
2116 }
2117
2118 /* Get and set the Nth saved pointer. */
2119
2120 INLINE void *
2121 XSAVE_POINTER (Lisp_Object obj, int n)
2122 {
2123 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2124 return XSAVE_VALUE (obj)->data[n].pointer;
2125 }
2126 INLINE void
2127 set_save_pointer (Lisp_Object obj, int n, void *val)
2128 {
2129 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2130 XSAVE_VALUE (obj)->data[n].pointer = val;
2131 }
2132 INLINE voidfuncptr
2133 XSAVE_FUNCPOINTER (Lisp_Object obj, int n)
2134 {
2135 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_FUNCPOINTER);
2136 return XSAVE_VALUE (obj)->data[n].funcpointer;
2137 }
2138
2139 /* Likewise for the saved integer. */
2140
2141 INLINE ptrdiff_t
2142 XSAVE_INTEGER (Lisp_Object obj, int n)
2143 {
2144 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2145 return XSAVE_VALUE (obj)->data[n].integer;
2146 }
2147 INLINE void
2148 set_save_integer (Lisp_Object obj, int n, ptrdiff_t val)
2149 {
2150 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2151 XSAVE_VALUE (obj)->data[n].integer = val;
2152 }
2153
2154 /* Extract Nth saved object. */
2155
2156 INLINE Lisp_Object
2157 XSAVE_OBJECT (Lisp_Object obj, int n)
2158 {
2159 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_OBJECT);
2160 return XSAVE_VALUE (obj)->data[n].object;
2161 }
2162
2163 /* A miscellaneous object, when it's on the free list. */
2164 struct Lisp_Free
2165 {
2166 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Free */
2167 bool_bf gcmarkbit : 1;
2168 unsigned spacer : 15;
2169 union Lisp_Misc *chain;
2170 };
2171
2172 /* To get the type field of a union Lisp_Misc, use XMISCTYPE.
2173 It uses one of these struct subtypes to get the type field. */
2174
2175 union Lisp_Misc
2176 {
2177 struct Lisp_Misc_Any u_any; /* Supertype of all Misc types. */
2178 struct Lisp_Free u_free;
2179 struct Lisp_Marker u_marker;
2180 struct Lisp_Overlay u_overlay;
2181 struct Lisp_Save_Value u_save_value;
2182 };
2183
2184 INLINE union Lisp_Misc *
2185 XMISC (Lisp_Object a)
2186 {
2187 return XUNTAG (a, Lisp_Misc);
2188 }
2189
2190 INLINE struct Lisp_Misc_Any *
2191 XMISCANY (Lisp_Object a)
2192 {
2193 eassert (MISCP (a));
2194 return & XMISC (a)->u_any;
2195 }
2196
2197 INLINE enum Lisp_Misc_Type
2198 XMISCTYPE (Lisp_Object a)
2199 {
2200 return XMISCANY (a)->type;
2201 }
2202
2203 INLINE struct Lisp_Marker *
2204 XMARKER (Lisp_Object a)
2205 {
2206 eassert (MARKERP (a));
2207 return & XMISC (a)->u_marker;
2208 }
2209
2210 INLINE struct Lisp_Overlay *
2211 XOVERLAY (Lisp_Object a)
2212 {
2213 eassert (OVERLAYP (a));
2214 return & XMISC (a)->u_overlay;
2215 }
2216
2217 INLINE struct Lisp_Save_Value *
2218 XSAVE_VALUE (Lisp_Object a)
2219 {
2220 eassert (SAVE_VALUEP (a));
2221 return & XMISC (a)->u_save_value;
2222 }
2223 \f
2224 /* Forwarding pointer to an int variable.
2225 This is allowed only in the value cell of a symbol,
2226 and it means that the symbol's value really lives in the
2227 specified int variable. */
2228 struct Lisp_Intfwd
2229 {
2230 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Int */
2231 EMACS_INT *intvar;
2232 };
2233
2234 /* Boolean forwarding pointer to an int variable.
2235 This is like Lisp_Intfwd except that the ostensible
2236 "value" of the symbol is t if the bool variable is true,
2237 nil if it is false. */
2238 struct Lisp_Boolfwd
2239 {
2240 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Bool */
2241 bool *boolvar;
2242 };
2243
2244 /* Forwarding pointer to a Lisp_Object variable.
2245 This is allowed only in the value cell of a symbol,
2246 and it means that the symbol's value really lives in the
2247 specified variable. */
2248 struct Lisp_Objfwd
2249 {
2250 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Obj */
2251 Lisp_Object *objvar;
2252 };
2253
2254 /* Like Lisp_Objfwd except that value lives in a slot in the
2255 current buffer. Value is byte index of slot within buffer. */
2256 struct Lisp_Buffer_Objfwd
2257 {
2258 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Buffer_Obj */
2259 int offset;
2260 /* One of Qnil, Qintegerp, Qsymbolp, Qstringp, Qfloatp or Qnumberp. */
2261 Lisp_Object predicate;
2262 };
2263
2264 /* struct Lisp_Buffer_Local_Value is used in a symbol value cell when
2265 the symbol has buffer-local or frame-local bindings. (Exception:
2266 some buffer-local variables are built-in, with their values stored
2267 in the buffer structure itself. They are handled differently,
2268 using struct Lisp_Buffer_Objfwd.)
2269
2270 The `realvalue' slot holds the variable's current value, or a
2271 forwarding pointer to where that value is kept. This value is the
2272 one that corresponds to the loaded binding. To read or set the
2273 variable, you must first make sure the right binding is loaded;
2274 then you can access the value in (or through) `realvalue'.
2275
2276 `buffer' and `frame' are the buffer and frame for which the loaded
2277 binding was found. If those have changed, to make sure the right
2278 binding is loaded it is necessary to find which binding goes with
2279 the current buffer and selected frame, then load it. To load it,
2280 first unload the previous binding, then copy the value of the new
2281 binding into `realvalue' (or through it). Also update
2282 LOADED-BINDING to point to the newly loaded binding.
2283
2284 `local_if_set' indicates that merely setting the variable creates a
2285 local binding for the current buffer. Otherwise the latter, setting
2286 the variable does not do that; only make-local-variable does that. */
2287
2288 struct Lisp_Buffer_Local_Value
2289 {
2290 /* True means that merely setting the variable creates a local
2291 binding for the current buffer. */
2292 bool_bf local_if_set : 1;
2293 /* True means this variable can have frame-local bindings, otherwise, it is
2294 can have buffer-local bindings. The two cannot be combined. */
2295 bool_bf frame_local : 1;
2296 /* True means that the binding now loaded was found.
2297 Presumably equivalent to (defcell!=valcell). */
2298 bool_bf found : 1;
2299 /* If non-NULL, a forwarding to the C var where it should also be set. */
2300 union Lisp_Fwd *fwd; /* Should never be (Buffer|Kboard)_Objfwd. */
2301 /* The buffer or frame for which the loaded binding was found. */
2302 Lisp_Object where;
2303 /* A cons cell that holds the default value. It has the form
2304 (SYMBOL . DEFAULT-VALUE). */
2305 Lisp_Object defcell;
2306 /* The cons cell from `where's parameter alist.
2307 It always has the form (SYMBOL . VALUE)
2308 Note that if `forward' is non-nil, VALUE may be out of date.
2309 Also if the currently loaded binding is the default binding, then
2310 this is `eq'ual to defcell. */
2311 Lisp_Object valcell;
2312 };
2313
2314 /* Like Lisp_Objfwd except that value lives in a slot in the
2315 current kboard. */
2316 struct Lisp_Kboard_Objfwd
2317 {
2318 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Kboard_Obj */
2319 int offset;
2320 };
2321
2322 union Lisp_Fwd
2323 {
2324 struct Lisp_Intfwd u_intfwd;
2325 struct Lisp_Boolfwd u_boolfwd;
2326 struct Lisp_Objfwd u_objfwd;
2327 struct Lisp_Buffer_Objfwd u_buffer_objfwd;
2328 struct Lisp_Kboard_Objfwd u_kboard_objfwd;
2329 };
2330
2331 INLINE enum Lisp_Fwd_Type
2332 XFWDTYPE (union Lisp_Fwd *a)
2333 {
2334 return a->u_intfwd.type;
2335 }
2336
2337 INLINE struct Lisp_Buffer_Objfwd *
2338 XBUFFER_OBJFWD (union Lisp_Fwd *a)
2339 {
2340 eassert (BUFFER_OBJFWDP (a));
2341 return &a->u_buffer_objfwd;
2342 }
2343 \f
2344 /* Lisp floating point type. */
2345 struct Lisp_Float
2346 {
2347 union
2348 {
2349 double data;
2350 struct Lisp_Float *chain;
2351 } u;
2352 };
2353
2354 INLINE double
2355 XFLOAT_DATA (Lisp_Object f)
2356 {
2357 return XFLOAT (f)->u.data;
2358 }
2359
2360 /* Most hosts nowadays use IEEE floating point, so they use IEC 60559
2361 representations, have infinities and NaNs, and do not trap on
2362 exceptions. Define IEEE_FLOATING_POINT if this host is one of the
2363 typical ones. The C11 macro __STDC_IEC_559__ is close to what is
2364 wanted here, but is not quite right because Emacs does not require
2365 all the features of C11 Annex F (and does not require C11 at all,
2366 for that matter). */
2367 enum
2368 {
2369 IEEE_FLOATING_POINT
2370 = (FLT_RADIX == 2 && FLT_MANT_DIG == 24
2371 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
2372 };
2373
2374 /* A character, declared with the following typedef, is a member
2375 of some character set associated with the current buffer. */
2376 #ifndef _UCHAR_T /* Protect against something in ctab.h on AIX. */
2377 #define _UCHAR_T
2378 typedef unsigned char UCHAR;
2379 #endif
2380
2381 /* Meanings of slots in a Lisp_Compiled: */
2382
2383 enum Lisp_Compiled
2384 {
2385 COMPILED_ARGLIST = 0,
2386 COMPILED_BYTECODE = 1,
2387 COMPILED_CONSTANTS = 2,
2388 COMPILED_STACK_DEPTH = 3,
2389 COMPILED_DOC_STRING = 4,
2390 COMPILED_INTERACTIVE = 5
2391 };
2392
2393 /* Flag bits in a character. These also get used in termhooks.h.
2394 Richard Stallman <rms@gnu.ai.mit.edu> thinks that MULE
2395 (MUlti-Lingual Emacs) might need 22 bits for the character value
2396 itself, so we probably shouldn't use any bits lower than 0x0400000. */
2397 enum char_bits
2398 {
2399 CHAR_ALT = 0x0400000,
2400 CHAR_SUPER = 0x0800000,
2401 CHAR_HYPER = 0x1000000,
2402 CHAR_SHIFT = 0x2000000,
2403 CHAR_CTL = 0x4000000,
2404 CHAR_META = 0x8000000,
2405
2406 CHAR_MODIFIER_MASK =
2407 CHAR_ALT | CHAR_SUPER | CHAR_HYPER | CHAR_SHIFT | CHAR_CTL | CHAR_META,
2408
2409 /* Actually, the current Emacs uses 22 bits for the character value
2410 itself. */
2411 CHARACTERBITS = 22
2412 };
2413 \f
2414 /* Data type checking. */
2415
2416 LISP_MACRO_DEFUN (NILP, bool, (Lisp_Object x), (x))
2417
2418 INLINE bool
2419 NUMBERP (Lisp_Object x)
2420 {
2421 return INTEGERP (x) || FLOATP (x);
2422 }
2423 INLINE bool
2424 NATNUMP (Lisp_Object x)
2425 {
2426 return INTEGERP (x) && 0 <= XINT (x);
2427 }
2428
2429 INLINE bool
2430 RANGED_INTEGERP (intmax_t lo, Lisp_Object x, intmax_t hi)
2431 {
2432 return INTEGERP (x) && lo <= XINT (x) && XINT (x) <= hi;
2433 }
2434
2435 #define TYPE_RANGED_INTEGERP(type, x) \
2436 (INTEGERP (x) \
2437 && (TYPE_SIGNED (type) ? TYPE_MINIMUM (type) <= XINT (x) : 0 <= XINT (x)) \
2438 && XINT (x) <= TYPE_MAXIMUM (type))
2439
2440 LISP_MACRO_DEFUN (CONSP, bool, (Lisp_Object x), (x))
2441 LISP_MACRO_DEFUN (FLOATP, bool, (Lisp_Object x), (x))
2442 LISP_MACRO_DEFUN (MISCP, bool, (Lisp_Object x), (x))
2443 LISP_MACRO_DEFUN (SYMBOLP, bool, (Lisp_Object x), (x))
2444 LISP_MACRO_DEFUN (INTEGERP, bool, (Lisp_Object x), (x))
2445 LISP_MACRO_DEFUN (VECTORLIKEP, bool, (Lisp_Object x), (x))
2446 LISP_MACRO_DEFUN (MARKERP, bool, (Lisp_Object x), (x))
2447
2448 INLINE bool
2449 STRINGP (Lisp_Object x)
2450 {
2451 return XTYPE (x) == Lisp_String;
2452 }
2453 INLINE bool
2454 VECTORP (Lisp_Object x)
2455 {
2456 return VECTORLIKEP (x) && ! (ASIZE (x) & PSEUDOVECTOR_FLAG);
2457 }
2458 INLINE bool
2459 OVERLAYP (Lisp_Object x)
2460 {
2461 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Overlay;
2462 }
2463 INLINE bool
2464 SAVE_VALUEP (Lisp_Object x)
2465 {
2466 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Save_Value;
2467 }
2468
2469 INLINE bool
2470 AUTOLOADP (Lisp_Object x)
2471 {
2472 return CONSP (x) && EQ (Qautoload, XCAR (x));
2473 }
2474
2475 INLINE bool
2476 BUFFER_OBJFWDP (union Lisp_Fwd *a)
2477 {
2478 return XFWDTYPE (a) == Lisp_Fwd_Buffer_Obj;
2479 }
2480
2481 INLINE bool
2482 PSEUDOVECTOR_TYPEP (struct vectorlike_header *a, int code)
2483 {
2484 return ((a->size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK))
2485 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS)));
2486 }
2487
2488 /* True if A is a pseudovector whose code is CODE. */
2489 INLINE bool
2490 PSEUDOVECTORP (Lisp_Object a, int code)
2491 {
2492 if (! VECTORLIKEP (a))
2493 return false;
2494 else
2495 {
2496 /* Converting to struct vectorlike_header * avoids aliasing issues. */
2497 struct vectorlike_header *h = XUNTAG (a, Lisp_Vectorlike);
2498 return PSEUDOVECTOR_TYPEP (h, code);
2499 }
2500 }
2501
2502
2503 /* Test for specific pseudovector types. */
2504
2505 INLINE bool
2506 WINDOW_CONFIGURATIONP (Lisp_Object a)
2507 {
2508 return PSEUDOVECTORP (a, PVEC_WINDOW_CONFIGURATION);
2509 }
2510
2511 INLINE bool
2512 PROCESSP (Lisp_Object a)
2513 {
2514 return PSEUDOVECTORP (a, PVEC_PROCESS);
2515 }
2516
2517 INLINE bool
2518 WINDOWP (Lisp_Object a)
2519 {
2520 return PSEUDOVECTORP (a, PVEC_WINDOW);
2521 }
2522
2523 INLINE bool
2524 TERMINALP (Lisp_Object a)
2525 {
2526 return PSEUDOVECTORP (a, PVEC_TERMINAL);
2527 }
2528
2529 INLINE bool
2530 SUBRP (Lisp_Object a)
2531 {
2532 return PSEUDOVECTORP (a, PVEC_SUBR);
2533 }
2534
2535 INLINE bool
2536 COMPILEDP (Lisp_Object a)
2537 {
2538 return PSEUDOVECTORP (a, PVEC_COMPILED);
2539 }
2540
2541 INLINE bool
2542 BUFFERP (Lisp_Object a)
2543 {
2544 return PSEUDOVECTORP (a, PVEC_BUFFER);
2545 }
2546
2547 INLINE bool
2548 CHAR_TABLE_P (Lisp_Object a)
2549 {
2550 return PSEUDOVECTORP (a, PVEC_CHAR_TABLE);
2551 }
2552
2553 INLINE bool
2554 SUB_CHAR_TABLE_P (Lisp_Object a)
2555 {
2556 return PSEUDOVECTORP (a, PVEC_SUB_CHAR_TABLE);
2557 }
2558
2559 INLINE bool
2560 BOOL_VECTOR_P (Lisp_Object a)
2561 {
2562 return PSEUDOVECTORP (a, PVEC_BOOL_VECTOR);
2563 }
2564
2565 INLINE bool
2566 FRAMEP (Lisp_Object a)
2567 {
2568 return PSEUDOVECTORP (a, PVEC_FRAME);
2569 }
2570
2571 /* Test for image (image . spec) */
2572 INLINE bool
2573 IMAGEP (Lisp_Object x)
2574 {
2575 return CONSP (x) && EQ (XCAR (x), Qimage);
2576 }
2577
2578 /* Array types. */
2579 INLINE bool
2580 ARRAYP (Lisp_Object x)
2581 {
2582 return VECTORP (x) || STRINGP (x) || CHAR_TABLE_P (x) || BOOL_VECTOR_P (x);
2583 }
2584 \f
2585 INLINE void
2586 CHECK_LIST (Lisp_Object x)
2587 {
2588 CHECK_TYPE (CONSP (x) || NILP (x), Qlistp, x);
2589 }
2590
2591 LISP_MACRO_DEFUN_VOID (CHECK_LIST_CONS, (Lisp_Object x, Lisp_Object y), (x, y))
2592 LISP_MACRO_DEFUN_VOID (CHECK_SYMBOL, (Lisp_Object x), (x))
2593 LISP_MACRO_DEFUN_VOID (CHECK_NUMBER, (Lisp_Object x), (x))
2594
2595 INLINE void
2596 CHECK_STRING (Lisp_Object x)
2597 {
2598 CHECK_TYPE (STRINGP (x), Qstringp, x);
2599 }
2600 INLINE void
2601 CHECK_STRING_CAR (Lisp_Object x)
2602 {
2603 CHECK_TYPE (STRINGP (XCAR (x)), Qstringp, XCAR (x));
2604 }
2605 INLINE void
2606 CHECK_CONS (Lisp_Object x)
2607 {
2608 CHECK_TYPE (CONSP (x), Qconsp, x);
2609 }
2610 INLINE void
2611 CHECK_VECTOR (Lisp_Object x)
2612 {
2613 CHECK_TYPE (VECTORP (x), Qvectorp, x);
2614 }
2615 INLINE void
2616 CHECK_BOOL_VECTOR (Lisp_Object x)
2617 {
2618 CHECK_TYPE (BOOL_VECTOR_P (x), Qbool_vector_p, x);
2619 }
2620 /* This is a bit special because we always need size afterwards. */
2621 INLINE ptrdiff_t
2622 CHECK_VECTOR_OR_STRING (Lisp_Object x)
2623 {
2624 if (VECTORP (x))
2625 return ASIZE (x);
2626 if (STRINGP (x))
2627 return SCHARS (x);
2628 wrong_type_argument (Qarrayp, x);
2629 }
2630 INLINE void
2631 CHECK_ARRAY (Lisp_Object x, Lisp_Object predicate)
2632 {
2633 CHECK_TYPE (ARRAYP (x), predicate, x);
2634 }
2635 INLINE void
2636 CHECK_BUFFER (Lisp_Object x)
2637 {
2638 CHECK_TYPE (BUFFERP (x), Qbufferp, x);
2639 }
2640 INLINE void
2641 CHECK_WINDOW (Lisp_Object x)
2642 {
2643 CHECK_TYPE (WINDOWP (x), Qwindowp, x);
2644 }
2645 #ifdef subprocesses
2646 INLINE void
2647 CHECK_PROCESS (Lisp_Object x)
2648 {
2649 CHECK_TYPE (PROCESSP (x), Qprocessp, x);
2650 }
2651 #endif
2652 INLINE void
2653 CHECK_NATNUM (Lisp_Object x)
2654 {
2655 CHECK_TYPE (NATNUMP (x), Qwholenump, x);
2656 }
2657
2658 #define CHECK_RANGED_INTEGER(x, lo, hi) \
2659 do { \
2660 CHECK_NUMBER (x); \
2661 if (! ((lo) <= XINT (x) && XINT (x) <= (hi))) \
2662 args_out_of_range_3 \
2663 (x, \
2664 make_number ((lo) < 0 && (lo) < MOST_NEGATIVE_FIXNUM \
2665 ? MOST_NEGATIVE_FIXNUM \
2666 : (lo)), \
2667 make_number (min (hi, MOST_POSITIVE_FIXNUM))); \
2668 } while (false)
2669 #define CHECK_TYPE_RANGED_INTEGER(type, x) \
2670 do { \
2671 if (TYPE_SIGNED (type)) \
2672 CHECK_RANGED_INTEGER (x, TYPE_MINIMUM (type), TYPE_MAXIMUM (type)); \
2673 else \
2674 CHECK_RANGED_INTEGER (x, 0, TYPE_MAXIMUM (type)); \
2675 } while (false)
2676
2677 #define CHECK_NUMBER_COERCE_MARKER(x) \
2678 do { \
2679 if (MARKERP ((x))) \
2680 XSETFASTINT (x, marker_position (x)); \
2681 else \
2682 CHECK_TYPE (INTEGERP (x), Qinteger_or_marker_p, x); \
2683 } while (false)
2684
2685 INLINE double
2686 XFLOATINT (Lisp_Object n)
2687 {
2688 return extract_float (n);
2689 }
2690
2691 INLINE void
2692 CHECK_NUMBER_OR_FLOAT (Lisp_Object x)
2693 {
2694 CHECK_TYPE (FLOATP (x) || INTEGERP (x), Qnumberp, x);
2695 }
2696
2697 #define CHECK_NUMBER_OR_FLOAT_COERCE_MARKER(x) \
2698 do { \
2699 if (MARKERP (x)) \
2700 XSETFASTINT (x, marker_position (x)); \
2701 else \
2702 CHECK_TYPE (INTEGERP (x) || FLOATP (x), Qnumber_or_marker_p, x); \
2703 } while (false)
2704
2705 /* Since we can't assign directly to the CAR or CDR fields of a cons
2706 cell, use these when checking that those fields contain numbers. */
2707 INLINE void
2708 CHECK_NUMBER_CAR (Lisp_Object x)
2709 {
2710 Lisp_Object tmp = XCAR (x);
2711 CHECK_NUMBER (tmp);
2712 XSETCAR (x, tmp);
2713 }
2714
2715 INLINE void
2716 CHECK_NUMBER_CDR (Lisp_Object x)
2717 {
2718 Lisp_Object tmp = XCDR (x);
2719 CHECK_NUMBER (tmp);
2720 XSETCDR (x, tmp);
2721 }
2722 \f
2723 /* Define a built-in function for calling from Lisp.
2724 `lname' should be the name to give the function in Lisp,
2725 as a null-terminated C string.
2726 `fnname' should be the name of the function in C.
2727 By convention, it starts with F.
2728 `sname' should be the name for the C constant structure
2729 that records information on this function for internal use.
2730 By convention, it should be the same as `fnname' but with S instead of F.
2731 It's too bad that C macros can't compute this from `fnname'.
2732 `minargs' should be a number, the minimum number of arguments allowed.
2733 `maxargs' should be a number, the maximum number of arguments allowed,
2734 or else MANY or UNEVALLED.
2735 MANY means pass a vector of evaluated arguments,
2736 in the form of an integer number-of-arguments
2737 followed by the address of a vector of Lisp_Objects
2738 which contains the argument values.
2739 UNEVALLED means pass the list of unevaluated arguments
2740 `intspec' says how interactive arguments are to be fetched.
2741 If the string starts with a `(', `intspec' is evaluated and the resulting
2742 list is the list of arguments.
2743 If it's a string that doesn't start with `(', the value should follow
2744 the one of the doc string for `interactive'.
2745 A null string means call interactively with no arguments.
2746 `doc' is documentation for the user. */
2747
2748 /* This version of DEFUN declares a function prototype with the right
2749 arguments, so we can catch errors with maxargs at compile-time. */
2750 #ifdef _MSC_VER
2751 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2752 Lisp_Object fnname DEFUN_ARGS_ ## maxargs ; \
2753 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2754 { { (PVEC_SUBR << PSEUDOVECTOR_AREA_BITS) \
2755 | (sizeof (struct Lisp_Subr) / sizeof (EMACS_INT)) }, \
2756 { (Lisp_Object (__cdecl *)(void))fnname }, \
2757 minargs, maxargs, lname, intspec, 0}; \
2758 Lisp_Object fnname
2759 #else /* not _MSC_VER */
2760 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2761 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2762 { { PVEC_SUBR << PSEUDOVECTOR_AREA_BITS }, \
2763 { .a ## maxargs = fnname }, \
2764 minargs, maxargs, lname, intspec, 0}; \
2765 Lisp_Object fnname
2766 #endif
2767
2768 /* True if OBJ is a Lisp function. */
2769 INLINE bool
2770 FUNCTIONP (Lisp_Object obj)
2771 {
2772 return functionp (obj);
2773 }
2774
2775 /* defsubr (Sname);
2776 is how we define the symbol for function `name' at start-up time. */
2777 extern void defsubr (struct Lisp_Subr *);
2778
2779 enum maxargs
2780 {
2781 MANY = -2,
2782 UNEVALLED = -1
2783 };
2784
2785 extern void defvar_lisp (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2786 extern void defvar_lisp_nopro (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2787 extern void defvar_bool (struct Lisp_Boolfwd *, const char *, bool *);
2788 extern void defvar_int (struct Lisp_Intfwd *, const char *, EMACS_INT *);
2789 extern void defvar_kboard (struct Lisp_Kboard_Objfwd *, const char *, int);
2790
2791 /* Macros we use to define forwarded Lisp variables.
2792 These are used in the syms_of_FILENAME functions.
2793
2794 An ordinary (not in buffer_defaults, per-buffer, or per-keyboard)
2795 lisp variable is actually a field in `struct emacs_globals'. The
2796 field's name begins with "f_", which is a convention enforced by
2797 these macros. Each such global has a corresponding #define in
2798 globals.h; the plain name should be used in the code.
2799
2800 E.g., the global "cons_cells_consed" is declared as "int
2801 f_cons_cells_consed" in globals.h, but there is a define:
2802
2803 #define cons_cells_consed globals.f_cons_cells_consed
2804
2805 All C code uses the `cons_cells_consed' name. This is all done
2806 this way to support indirection for multi-threaded Emacs. */
2807
2808 #define DEFVAR_LISP(lname, vname, doc) \
2809 do { \
2810 static struct Lisp_Objfwd o_fwd; \
2811 defvar_lisp (&o_fwd, lname, &globals.f_ ## vname); \
2812 } while (false)
2813 #define DEFVAR_LISP_NOPRO(lname, vname, doc) \
2814 do { \
2815 static struct Lisp_Objfwd o_fwd; \
2816 defvar_lisp_nopro (&o_fwd, lname, &globals.f_ ## vname); \
2817 } while (false)
2818 #define DEFVAR_BOOL(lname, vname, doc) \
2819 do { \
2820 static struct Lisp_Boolfwd b_fwd; \
2821 defvar_bool (&b_fwd, lname, &globals.f_ ## vname); \
2822 } while (false)
2823 #define DEFVAR_INT(lname, vname, doc) \
2824 do { \
2825 static struct Lisp_Intfwd i_fwd; \
2826 defvar_int (&i_fwd, lname, &globals.f_ ## vname); \
2827 } while (false)
2828
2829 #define DEFVAR_BUFFER_DEFAULTS(lname, vname, doc) \
2830 do { \
2831 static struct Lisp_Objfwd o_fwd; \
2832 defvar_lisp_nopro (&o_fwd, lname, &BVAR (&buffer_defaults, vname)); \
2833 } while (false)
2834
2835 #define DEFVAR_KBOARD(lname, vname, doc) \
2836 do { \
2837 static struct Lisp_Kboard_Objfwd ko_fwd; \
2838 defvar_kboard (&ko_fwd, lname, offsetof (KBOARD, vname ## _)); \
2839 } while (false)
2840 \f
2841 /* Save and restore the instruction and environment pointers,
2842 without affecting the signal mask. */
2843
2844 #ifdef HAVE__SETJMP
2845 typedef jmp_buf sys_jmp_buf;
2846 # define sys_setjmp(j) _setjmp (j)
2847 # define sys_longjmp(j, v) _longjmp (j, v)
2848 #elif defined HAVE_SIGSETJMP
2849 typedef sigjmp_buf sys_jmp_buf;
2850 # define sys_setjmp(j) sigsetjmp (j, 0)
2851 # define sys_longjmp(j, v) siglongjmp (j, v)
2852 #else
2853 /* A platform that uses neither _longjmp nor siglongjmp; assume
2854 longjmp does not affect the sigmask. */
2855 typedef jmp_buf sys_jmp_buf;
2856 # define sys_setjmp(j) setjmp (j)
2857 # define sys_longjmp(j, v) longjmp (j, v)
2858 #endif
2859
2860 \f
2861 /* Elisp uses several stacks:
2862 - the C stack.
2863 - the bytecode stack: used internally by the bytecode interpreter.
2864 Allocated from the C stack.
2865 - The specpdl stack: keeps track of active unwind-protect and
2866 dynamic-let-bindings. Allocated from the `specpdl' array, a manually
2867 managed stack.
2868 - The handler stack: keeps track of active catch tags and condition-case
2869 handlers. Allocated in a manually managed stack implemented by a
2870 doubly-linked list allocated via xmalloc and never freed. */
2871
2872 /* Structure for recording Lisp call stack for backtrace purposes. */
2873
2874 /* The special binding stack holds the outer values of variables while
2875 they are bound by a function application or a let form, stores the
2876 code to be executed for unwind-protect forms.
2877
2878 NOTE: The specbinding union is defined here, because SPECPDL_INDEX is
2879 used all over the place, needs to be fast, and needs to know the size of
2880 union specbinding. But only eval.c should access it. */
2881
2882 enum specbind_tag {
2883 SPECPDL_UNWIND, /* An unwind_protect function on Lisp_Object. */
2884 SPECPDL_UNWIND_PTR, /* Likewise, on void *. */
2885 SPECPDL_UNWIND_INT, /* Likewise, on int. */
2886 SPECPDL_UNWIND_VOID, /* Likewise, with no arg. */
2887 SPECPDL_BACKTRACE, /* An element of the backtrace. */
2888 SPECPDL_LET, /* A plain and simple dynamic let-binding. */
2889 /* Tags greater than SPECPDL_LET must be "subkinds" of LET. */
2890 SPECPDL_LET_LOCAL, /* A buffer-local let-binding. */
2891 SPECPDL_LET_DEFAULT /* A global binding for a localized var. */
2892 };
2893
2894 union specbinding
2895 {
2896 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2897 struct {
2898 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2899 void (*func) (Lisp_Object);
2900 Lisp_Object arg;
2901 } unwind;
2902 struct {
2903 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2904 void (*func) (void *);
2905 void *arg;
2906 } unwind_ptr;
2907 struct {
2908 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2909 void (*func) (int);
2910 int arg;
2911 } unwind_int;
2912 struct {
2913 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2914 void (*func) (void);
2915 } unwind_void;
2916 struct {
2917 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2918 /* `where' is not used in the case of SPECPDL_LET. */
2919 Lisp_Object symbol, old_value, where;
2920 } let;
2921 struct {
2922 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2923 bool_bf debug_on_exit : 1;
2924 Lisp_Object function;
2925 Lisp_Object *args;
2926 ptrdiff_t nargs;
2927 } bt;
2928 };
2929
2930 extern union specbinding *specpdl;
2931 extern union specbinding *specpdl_ptr;
2932 extern ptrdiff_t specpdl_size;
2933
2934 INLINE ptrdiff_t
2935 SPECPDL_INDEX (void)
2936 {
2937 return specpdl_ptr - specpdl;
2938 }
2939
2940 /* This structure helps implement the `catch/throw' and `condition-case/signal'
2941 control structures. A struct handler contains all the information needed to
2942 restore the state of the interpreter after a non-local jump.
2943
2944 handler structures are chained together in a doubly linked list; the `next'
2945 member points to the next outer catchtag and the `nextfree' member points in
2946 the other direction to the next inner element (which is typically the next
2947 free element since we mostly use it on the deepest handler).
2948
2949 A call like (throw TAG VAL) searches for a catchtag whose `tag_or_ch'
2950 member is TAG, and then unbinds to it. The `val' member is used to
2951 hold VAL while the stack is unwound; `val' is returned as the value
2952 of the catch form.
2953
2954 All the other members are concerned with restoring the interpreter
2955 state.
2956
2957 Members are volatile if their values need to survive _longjmp when
2958 a 'struct handler' is a local variable. */
2959
2960 enum handlertype { CATCHER, CONDITION_CASE };
2961
2962 struct handler
2963 {
2964 enum handlertype type;
2965 Lisp_Object tag_or_ch;
2966 Lisp_Object val;
2967 struct handler *next;
2968 struct handler *nextfree;
2969
2970 /* The bytecode interpreter can have several handlers active at the same
2971 time, so when we longjmp to one of them, it needs to know which handler
2972 this was and what was the corresponding internal state. This is stored
2973 here, and when we longjmp we make sure that handlerlist points to the
2974 proper handler. */
2975 Lisp_Object *bytecode_top;
2976 int bytecode_dest;
2977
2978 /* Most global vars are reset to their value via the specpdl mechanism,
2979 but a few others are handled by storing their value here. */
2980 #if true /* GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS, but defined later. */
2981 struct gcpro *gcpro;
2982 #endif
2983 sys_jmp_buf jmp;
2984 EMACS_INT lisp_eval_depth;
2985 ptrdiff_t pdlcount;
2986 int poll_suppress_count;
2987 int interrupt_input_blocked;
2988 struct byte_stack *byte_stack;
2989 };
2990
2991 /* Fill in the components of c, and put it on the list. */
2992 #define PUSH_HANDLER(c, tag_ch_val, handlertype) \
2993 if (handlerlist->nextfree) \
2994 (c) = handlerlist->nextfree; \
2995 else \
2996 { \
2997 (c) = xmalloc (sizeof (struct handler)); \
2998 (c)->nextfree = NULL; \
2999 handlerlist->nextfree = (c); \
3000 } \
3001 (c)->type = (handlertype); \
3002 (c)->tag_or_ch = (tag_ch_val); \
3003 (c)->val = Qnil; \
3004 (c)->next = handlerlist; \
3005 (c)->lisp_eval_depth = lisp_eval_depth; \
3006 (c)->pdlcount = SPECPDL_INDEX (); \
3007 (c)->poll_suppress_count = poll_suppress_count; \
3008 (c)->interrupt_input_blocked = interrupt_input_blocked;\
3009 (c)->gcpro = gcprolist; \
3010 (c)->byte_stack = byte_stack_list; \
3011 handlerlist = (c);
3012
3013
3014 extern Lisp_Object memory_signal_data;
3015
3016 /* An address near the bottom of the stack.
3017 Tells GC how to save a copy of the stack. */
3018 extern char *stack_bottom;
3019
3020 /* Check quit-flag and quit if it is non-nil.
3021 Typing C-g does not directly cause a quit; it only sets Vquit_flag.
3022 So the program needs to do QUIT at times when it is safe to quit.
3023 Every loop that might run for a long time or might not exit
3024 ought to do QUIT at least once, at a safe place.
3025 Unless that is impossible, of course.
3026 But it is very desirable to avoid creating loops where QUIT is impossible.
3027
3028 Exception: if you set immediate_quit to true,
3029 then the handler that responds to the C-g does the quit itself.
3030 This is a good thing to do around a loop that has no side effects
3031 and (in particular) cannot call arbitrary Lisp code.
3032
3033 If quit-flag is set to `kill-emacs' the SIGINT handler has received
3034 a request to exit Emacs when it is safe to do. */
3035
3036 extern void process_pending_signals (void);
3037 extern bool volatile pending_signals;
3038
3039 extern void process_quit_flag (void);
3040 #define QUIT \
3041 do { \
3042 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
3043 process_quit_flag (); \
3044 else if (pending_signals) \
3045 process_pending_signals (); \
3046 } while (false)
3047
3048
3049 /* True if ought to quit now. */
3050
3051 #define QUITP (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
3052 \f
3053 extern Lisp_Object Vascii_downcase_table;
3054 extern Lisp_Object Vascii_canon_table;
3055 \f
3056 /* Structure for recording stack slots that need marking. */
3057
3058 /* This is a chain of structures, each of which points at a Lisp_Object
3059 variable whose value should be marked in garbage collection.
3060 Normally every link of the chain is an automatic variable of a function,
3061 and its `val' points to some argument or local variable of the function.
3062 On exit to the function, the chain is set back to the value it had on entry.
3063 This way, no link remains in the chain when the stack frame containing the
3064 link disappears.
3065
3066 Every function that can call Feval must protect in this fashion all
3067 Lisp_Object variables whose contents will be used again. */
3068
3069 extern struct gcpro *gcprolist;
3070
3071 struct gcpro
3072 {
3073 struct gcpro *next;
3074
3075 /* Address of first protected variable. */
3076 volatile Lisp_Object *var;
3077
3078 /* Number of consecutive protected variables. */
3079 ptrdiff_t nvars;
3080
3081 #ifdef DEBUG_GCPRO
3082 /* File name where this record is used. */
3083 const char *name;
3084
3085 /* Line number in this file. */
3086 int lineno;
3087
3088 /* Index in the local chain of records. */
3089 int idx;
3090
3091 /* Nesting level. */
3092 int level;
3093 #endif
3094 };
3095
3096 /* Values of GC_MARK_STACK during compilation:
3097
3098 0 Use GCPRO as before
3099 1 Do the real thing, make GCPROs and UNGCPRO no-ops.
3100 2 Mark the stack, and check that everything GCPRO'd is
3101 marked.
3102 3 Mark using GCPRO's, mark stack last, and count how many
3103 dead objects are kept alive.
3104
3105 Formerly, method 0 was used. Currently, method 1 is used unless
3106 otherwise specified by hand when building, e.g.,
3107 "make CPPFLAGS='-DGC_MARK_STACK=GC_USE_GCPROS_AS_BEFORE'".
3108 Methods 2 and 3 are present mainly to debug the transition from 0 to 1. */
3109
3110 #define GC_USE_GCPROS_AS_BEFORE 0
3111 #define GC_MAKE_GCPROS_NOOPS 1
3112 #define GC_MARK_STACK_CHECK_GCPROS 2
3113 #define GC_USE_GCPROS_CHECK_ZOMBIES 3
3114
3115 #ifndef GC_MARK_STACK
3116 #define GC_MARK_STACK GC_MAKE_GCPROS_NOOPS
3117 #endif
3118
3119 /* Whether we do the stack marking manually. */
3120 #define BYTE_MARK_STACK !(GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
3121 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
3122
3123
3124 #if GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS
3125
3126 /* Do something silly with gcproN vars just so gcc shuts up. */
3127 /* You get warnings from MIPSPro... */
3128
3129 #define GCPRO1(varname) ((void) gcpro1)
3130 #define GCPRO2(varname1, varname2) ((void) gcpro2, (void) gcpro1)
3131 #define GCPRO3(varname1, varname2, varname3) \
3132 ((void) gcpro3, (void) gcpro2, (void) gcpro1)
3133 #define GCPRO4(varname1, varname2, varname3, varname4) \
3134 ((void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3135 #define GCPRO5(varname1, varname2, varname3, varname4, varname5) \
3136 ((void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3137 #define GCPRO6(varname1, varname2, varname3, varname4, varname5, varname6) \
3138 ((void) gcpro6, (void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, \
3139 (void) gcpro1)
3140 #define GCPRO7(a, b, c, d, e, f, g) (GCPRO6 (a, b, c, d, e, f), (void) gcpro7)
3141 #define UNGCPRO ((void) 0)
3142
3143 #else /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3144
3145 #ifndef DEBUG_GCPRO
3146
3147 #define GCPRO1(a) \
3148 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3149 gcprolist = &gcpro1; }
3150
3151 #define GCPRO2(a, b) \
3152 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3153 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3154 gcprolist = &gcpro2; }
3155
3156 #define GCPRO3(a, b, c) \
3157 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3158 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3159 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3160 gcprolist = &gcpro3; }
3161
3162 #define GCPRO4(a, b, c, d) \
3163 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3164 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3165 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3166 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3167 gcprolist = &gcpro4; }
3168
3169 #define GCPRO5(a, b, c, d, e) \
3170 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3171 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3172 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3173 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3174 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3175 gcprolist = &gcpro5; }
3176
3177 #define GCPRO6(a, b, c, d, e, f) \
3178 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3179 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3180 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3181 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3182 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3183 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3184 gcprolist = &gcpro6; }
3185
3186 #define GCPRO7(a, b, c, d, e, f, g) \
3187 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3188 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3189 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3190 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3191 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3192 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3193 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3194 gcprolist = &gcpro7; }
3195
3196 #define UNGCPRO (gcprolist = gcpro1.next)
3197
3198 #else /* !DEBUG_GCPRO */
3199
3200 extern int gcpro_level;
3201
3202 #define GCPRO1(a) \
3203 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3204 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3205 gcpro1.level = gcpro_level++; \
3206 gcprolist = &gcpro1; }
3207
3208 #define GCPRO2(a, b) \
3209 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3210 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3211 gcpro1.level = gcpro_level; \
3212 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3213 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3214 gcpro2.level = gcpro_level++; \
3215 gcprolist = &gcpro2; }
3216
3217 #define GCPRO3(a, b, c) \
3218 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3219 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3220 gcpro1.level = gcpro_level; \
3221 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3222 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3223 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3224 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3225 gcpro3.level = gcpro_level++; \
3226 gcprolist = &gcpro3; }
3227
3228 #define GCPRO4(a, b, c, d) \
3229 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3230 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3231 gcpro1.level = gcpro_level; \
3232 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3233 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3234 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3235 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3236 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3237 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3238 gcpro4.level = gcpro_level++; \
3239 gcprolist = &gcpro4; }
3240
3241 #define GCPRO5(a, b, c, d, e) \
3242 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3243 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3244 gcpro1.level = gcpro_level; \
3245 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3246 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3247 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3248 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3249 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3250 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3251 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3252 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3253 gcpro5.level = gcpro_level++; \
3254 gcprolist = &gcpro5; }
3255
3256 #define GCPRO6(a, b, c, d, e, f) \
3257 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3258 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3259 gcpro1.level = gcpro_level; \
3260 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3261 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3262 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3263 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3264 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3265 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3266 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3267 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3268 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3269 gcpro6.name = __FILE__; gcpro6.lineno = __LINE__; gcpro6.idx = 6; \
3270 gcpro6.level = gcpro_level++; \
3271 gcprolist = &gcpro6; }
3272
3273 #define GCPRO7(a, b, c, d, e, f, g) \
3274 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3275 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3276 gcpro1.level = gcpro_level; \
3277 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3278 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3279 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3280 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3281 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3282 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3283 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3284 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3285 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3286 gcpro6.name = __FILE__; gcpro6.lineno = __LINE__; gcpro6.idx = 6; \
3287 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3288 gcpro7.name = __FILE__; gcpro7.lineno = __LINE__; gcpro7.idx = 7; \
3289 gcpro7.level = gcpro_level++; \
3290 gcprolist = &gcpro7; }
3291
3292 #define UNGCPRO \
3293 (--gcpro_level != gcpro1.level \
3294 ? emacs_abort () \
3295 : (void) (gcprolist = gcpro1.next))
3296
3297 #endif /* DEBUG_GCPRO */
3298 #endif /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3299
3300
3301 /* Evaluate expr, UNGCPRO, and then return the value of expr. */
3302 #define RETURN_UNGCPRO(expr) \
3303 do \
3304 { \
3305 Lisp_Object ret_ungc_val; \
3306 ret_ungc_val = (expr); \
3307 UNGCPRO; \
3308 return ret_ungc_val; \
3309 } \
3310 while (false)
3311
3312 /* Call staticpro (&var) to protect static variable `var'. */
3313
3314 void staticpro (Lisp_Object *);
3315 \f
3316 /* Forward declarations for prototypes. */
3317 struct window;
3318 struct frame;
3319
3320 /* Copy COUNT Lisp_Objects from ARGS to contents of V starting from OFFSET. */
3321
3322 INLINE void
3323 vcopy (Lisp_Object v, ptrdiff_t offset, Lisp_Object *args, ptrdiff_t count)
3324 {
3325 eassert (0 <= offset && 0 <= count && offset + count <= ASIZE (v));
3326 memcpy (XVECTOR (v)->contents + offset, args, count * sizeof *args);
3327 }
3328
3329 /* Functions to modify hash tables. */
3330
3331 INLINE void
3332 set_hash_key_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3333 {
3334 gc_aset (h->key_and_value, 2 * idx, val);
3335 }
3336
3337 INLINE void
3338 set_hash_value_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3339 {
3340 gc_aset (h->key_and_value, 2 * idx + 1, val);
3341 }
3342
3343 /* Use these functions to set Lisp_Object
3344 or pointer slots of struct Lisp_Symbol. */
3345
3346 INLINE void
3347 set_symbol_function (Lisp_Object sym, Lisp_Object function)
3348 {
3349 XSYMBOL (sym)->function = function;
3350 }
3351
3352 INLINE void
3353 set_symbol_plist (Lisp_Object sym, Lisp_Object plist)
3354 {
3355 XSYMBOL (sym)->plist = plist;
3356 }
3357
3358 INLINE void
3359 set_symbol_next (Lisp_Object sym, struct Lisp_Symbol *next)
3360 {
3361 XSYMBOL (sym)->next = next;
3362 }
3363
3364 /* Buffer-local (also frame-local) variable access functions. */
3365
3366 INLINE int
3367 blv_found (struct Lisp_Buffer_Local_Value *blv)
3368 {
3369 eassert (blv->found == !EQ (blv->defcell, blv->valcell));
3370 return blv->found;
3371 }
3372
3373 /* Set overlay's property list. */
3374
3375 INLINE void
3376 set_overlay_plist (Lisp_Object overlay, Lisp_Object plist)
3377 {
3378 XOVERLAY (overlay)->plist = plist;
3379 }
3380
3381 /* Get text properties of S. */
3382
3383 INLINE INTERVAL
3384 string_intervals (Lisp_Object s)
3385 {
3386 return XSTRING (s)->intervals;
3387 }
3388
3389 /* Set text properties of S to I. */
3390
3391 INLINE void
3392 set_string_intervals (Lisp_Object s, INTERVAL i)
3393 {
3394 XSTRING (s)->intervals = i;
3395 }
3396
3397 /* Set a Lisp slot in TABLE to VAL. Most code should use this instead
3398 of setting slots directly. */
3399
3400 INLINE void
3401 set_char_table_defalt (Lisp_Object table, Lisp_Object val)
3402 {
3403 XCHAR_TABLE (table)->defalt = val;
3404 }
3405 INLINE void
3406 set_char_table_purpose (Lisp_Object table, Lisp_Object val)
3407 {
3408 XCHAR_TABLE (table)->purpose = val;
3409 }
3410
3411 /* Set different slots in (sub)character tables. */
3412
3413 INLINE void
3414 set_char_table_extras (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3415 {
3416 eassert (0 <= idx && idx < CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (table)));
3417 XCHAR_TABLE (table)->extras[idx] = val;
3418 }
3419
3420 INLINE void
3421 set_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3422 {
3423 eassert (0 <= idx && idx < (1 << CHARTAB_SIZE_BITS_0));
3424 XCHAR_TABLE (table)->contents[idx] = val;
3425 }
3426
3427 INLINE void
3428 set_sub_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3429 {
3430 XSUB_CHAR_TABLE (table)->contents[idx] = val;
3431 }
3432
3433 /* Defined in data.c. */
3434 extern Lisp_Object indirect_function (Lisp_Object);
3435 extern Lisp_Object find_symbol_value (Lisp_Object);
3436 enum Arith_Comparison {
3437 ARITH_EQUAL,
3438 ARITH_NOTEQUAL,
3439 ARITH_LESS,
3440 ARITH_GRTR,
3441 ARITH_LESS_OR_EQUAL,
3442 ARITH_GRTR_OR_EQUAL
3443 };
3444 extern Lisp_Object arithcompare (Lisp_Object num1, Lisp_Object num2,
3445 enum Arith_Comparison comparison);
3446
3447 /* Convert the integer I to an Emacs representation, either the integer
3448 itself, or a cons of two or three integers, or if all else fails a float.
3449 I should not have side effects. */
3450 #define INTEGER_TO_CONS(i) \
3451 (! FIXNUM_OVERFLOW_P (i) \
3452 ? make_number (i) \
3453 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16) \
3454 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16)) \
3455 && FIXNUM_OVERFLOW_P ((i) >> 16)) \
3456 ? Fcons (make_number ((i) >> 16), make_number ((i) & 0xffff)) \
3457 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16 >> 24) \
3458 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16 >> 24)) \
3459 && FIXNUM_OVERFLOW_P ((i) >> 16 >> 24)) \
3460 ? Fcons (make_number ((i) >> 16 >> 24), \
3461 Fcons (make_number ((i) >> 16 & 0xffffff), \
3462 make_number ((i) & 0xffff))) \
3463 : make_float (i))
3464
3465 /* Convert the Emacs representation CONS back to an integer of type
3466 TYPE, storing the result the variable VAR. Signal an error if CONS
3467 is not a valid representation or is out of range for TYPE. */
3468 #define CONS_TO_INTEGER(cons, type, var) \
3469 (TYPE_SIGNED (type) \
3470 ? ((var) = cons_to_signed (cons, TYPE_MINIMUM (type), TYPE_MAXIMUM (type))) \
3471 : ((var) = cons_to_unsigned (cons, TYPE_MAXIMUM (type))))
3472 extern intmax_t cons_to_signed (Lisp_Object, intmax_t, intmax_t);
3473 extern uintmax_t cons_to_unsigned (Lisp_Object, uintmax_t);
3474
3475 extern struct Lisp_Symbol *indirect_variable (struct Lisp_Symbol *);
3476 extern _Noreturn void args_out_of_range (Lisp_Object, Lisp_Object);
3477 extern _Noreturn void args_out_of_range_3 (Lisp_Object, Lisp_Object,
3478 Lisp_Object);
3479 extern Lisp_Object do_symval_forwarding (union Lisp_Fwd *);
3480 extern void set_internal (Lisp_Object, Lisp_Object, Lisp_Object, bool);
3481 extern void syms_of_data (void);
3482 extern void swap_in_global_binding (struct Lisp_Symbol *);
3483
3484 /* Defined in cmds.c */
3485 extern void syms_of_cmds (void);
3486 extern void keys_of_cmds (void);
3487
3488 /* Defined in coding.c. */
3489 extern Lisp_Object detect_coding_system (const unsigned char *, ptrdiff_t,
3490 ptrdiff_t, bool, bool, Lisp_Object);
3491 extern void init_coding (void);
3492 extern void init_coding_once (void);
3493 extern void syms_of_coding (void);
3494
3495 /* Defined in character.c. */
3496 extern ptrdiff_t chars_in_text (const unsigned char *, ptrdiff_t);
3497 extern ptrdiff_t multibyte_chars_in_text (const unsigned char *, ptrdiff_t);
3498 extern void syms_of_character (void);
3499
3500 /* Defined in charset.c. */
3501 extern void init_charset (void);
3502 extern void init_charset_once (void);
3503 extern void syms_of_charset (void);
3504 /* Structure forward declarations. */
3505 struct charset;
3506
3507 /* Defined in syntax.c. */
3508 extern void init_syntax_once (void);
3509 extern void syms_of_syntax (void);
3510
3511 /* Defined in fns.c. */
3512 enum { NEXT_ALMOST_PRIME_LIMIT = 11 };
3513 extern EMACS_INT next_almost_prime (EMACS_INT) ATTRIBUTE_CONST;
3514 extern Lisp_Object larger_vector (Lisp_Object, ptrdiff_t, ptrdiff_t);
3515 extern void sweep_weak_hash_tables (void);
3516 EMACS_UINT hash_string (char const *, ptrdiff_t);
3517 EMACS_UINT sxhash (Lisp_Object, int);
3518 Lisp_Object make_hash_table (struct hash_table_test, Lisp_Object, Lisp_Object,
3519 Lisp_Object, Lisp_Object);
3520 ptrdiff_t hash_lookup (struct Lisp_Hash_Table *, Lisp_Object, EMACS_UINT *);
3521 ptrdiff_t hash_put (struct Lisp_Hash_Table *, Lisp_Object, Lisp_Object,
3522 EMACS_UINT);
3523 extern struct hash_table_test hashtest_eql, hashtest_equal;
3524 extern void validate_subarray (Lisp_Object, Lisp_Object, Lisp_Object,
3525 ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
3526 extern Lisp_Object substring_both (Lisp_Object, ptrdiff_t, ptrdiff_t,
3527 ptrdiff_t, ptrdiff_t);
3528 extern Lisp_Object merge (Lisp_Object, Lisp_Object, Lisp_Object);
3529 extern Lisp_Object do_yes_or_no_p (Lisp_Object);
3530 extern Lisp_Object concat2 (Lisp_Object, Lisp_Object);
3531 extern Lisp_Object concat3 (Lisp_Object, Lisp_Object, Lisp_Object);
3532 extern Lisp_Object nconc2 (Lisp_Object, Lisp_Object);
3533 extern Lisp_Object assq_no_quit (Lisp_Object, Lisp_Object);
3534 extern Lisp_Object assoc_no_quit (Lisp_Object, Lisp_Object);
3535 extern void clear_string_char_byte_cache (void);
3536 extern ptrdiff_t string_char_to_byte (Lisp_Object, ptrdiff_t);
3537 extern ptrdiff_t string_byte_to_char (Lisp_Object, ptrdiff_t);
3538 extern Lisp_Object string_to_multibyte (Lisp_Object);
3539 extern Lisp_Object string_make_unibyte (Lisp_Object);
3540 extern void syms_of_fns (void);
3541
3542 /* Defined in floatfns.c. */
3543 extern void syms_of_floatfns (void);
3544 extern Lisp_Object fmod_float (Lisp_Object x, Lisp_Object y);
3545
3546 /* Defined in fringe.c. */
3547 extern void syms_of_fringe (void);
3548 extern void init_fringe (void);
3549 #ifdef HAVE_WINDOW_SYSTEM
3550 extern void mark_fringe_data (void);
3551 extern void init_fringe_once (void);
3552 #endif /* HAVE_WINDOW_SYSTEM */
3553
3554 /* Defined in image.c. */
3555 extern int x_bitmap_mask (struct frame *, ptrdiff_t);
3556 extern void reset_image_types (void);
3557 extern void syms_of_image (void);
3558
3559 /* Defined in insdel.c. */
3560 extern void move_gap_both (ptrdiff_t, ptrdiff_t);
3561 extern _Noreturn void buffer_overflow (void);
3562 extern void make_gap (ptrdiff_t);
3563 extern void make_gap_1 (struct buffer *, ptrdiff_t);
3564 extern ptrdiff_t copy_text (const unsigned char *, unsigned char *,
3565 ptrdiff_t, bool, bool);
3566 extern int count_combining_before (const unsigned char *,
3567 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3568 extern int count_combining_after (const unsigned char *,
3569 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3570 extern void insert (const char *, ptrdiff_t);
3571 extern void insert_and_inherit (const char *, ptrdiff_t);
3572 extern void insert_1_both (const char *, ptrdiff_t, ptrdiff_t,
3573 bool, bool, bool);
3574 extern void insert_from_gap (ptrdiff_t, ptrdiff_t, bool text_at_gap_tail);
3575 extern void insert_from_string (Lisp_Object, ptrdiff_t, ptrdiff_t,
3576 ptrdiff_t, ptrdiff_t, bool);
3577 extern void insert_from_buffer (struct buffer *, ptrdiff_t, ptrdiff_t, bool);
3578 extern void insert_char (int);
3579 extern void insert_string (const char *);
3580 extern void insert_before_markers (const char *, ptrdiff_t);
3581 extern void insert_before_markers_and_inherit (const char *, ptrdiff_t);
3582 extern void insert_from_string_before_markers (Lisp_Object, ptrdiff_t,
3583 ptrdiff_t, ptrdiff_t,
3584 ptrdiff_t, bool);
3585 extern void del_range (ptrdiff_t, ptrdiff_t);
3586 extern Lisp_Object del_range_1 (ptrdiff_t, ptrdiff_t, bool, bool);
3587 extern void del_range_byte (ptrdiff_t, ptrdiff_t, bool);
3588 extern void del_range_both (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t, bool);
3589 extern Lisp_Object del_range_2 (ptrdiff_t, ptrdiff_t,
3590 ptrdiff_t, ptrdiff_t, bool);
3591 extern void modify_text (ptrdiff_t, ptrdiff_t);
3592 extern void prepare_to_modify_buffer (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3593 extern void prepare_to_modify_buffer_1 (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3594 extern void invalidate_buffer_caches (struct buffer *, ptrdiff_t, ptrdiff_t);
3595 extern void signal_after_change (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3596 extern void adjust_after_insert (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3597 ptrdiff_t, ptrdiff_t);
3598 extern void adjust_markers_for_delete (ptrdiff_t, ptrdiff_t,
3599 ptrdiff_t, ptrdiff_t);
3600 extern void replace_range (ptrdiff_t, ptrdiff_t, Lisp_Object, bool, bool, bool);
3601 extern void replace_range_2 (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3602 const char *, ptrdiff_t, ptrdiff_t, bool);
3603 extern void syms_of_insdel (void);
3604
3605 /* Defined in dispnew.c. */
3606 #if (defined PROFILING \
3607 && (defined __FreeBSD__ || defined GNU_LINUX || defined __MINGW32__))
3608 _Noreturn void __executable_start (void);
3609 #endif
3610 extern Lisp_Object Vwindow_system;
3611 extern Lisp_Object sit_for (Lisp_Object, bool, int);
3612
3613 /* Defined in xdisp.c. */
3614 extern bool noninteractive_need_newline;
3615 extern Lisp_Object echo_area_buffer[2];
3616 extern void add_to_log (const char *, Lisp_Object, Lisp_Object);
3617 extern void check_message_stack (void);
3618 extern void setup_echo_area_for_printing (int);
3619 extern bool push_message (void);
3620 extern void pop_message_unwind (void);
3621 extern Lisp_Object restore_message_unwind (Lisp_Object);
3622 extern void restore_message (void);
3623 extern Lisp_Object current_message (void);
3624 extern void clear_message (bool, bool);
3625 extern void message (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3626 extern void message1 (const char *);
3627 extern void message1_nolog (const char *);
3628 extern void message3 (Lisp_Object);
3629 extern void message3_nolog (Lisp_Object);
3630 extern void message_dolog (const char *, ptrdiff_t, bool, bool);
3631 extern void message_with_string (const char *, Lisp_Object, int);
3632 extern void message_log_maybe_newline (void);
3633 extern void update_echo_area (void);
3634 extern void truncate_echo_area (ptrdiff_t);
3635 extern void redisplay (void);
3636
3637 void set_frame_cursor_types (struct frame *, Lisp_Object);
3638 extern void syms_of_xdisp (void);
3639 extern void init_xdisp (void);
3640 extern Lisp_Object safe_eval (Lisp_Object);
3641 extern int pos_visible_p (struct window *, ptrdiff_t, int *,
3642 int *, int *, int *, int *, int *);
3643
3644 /* Defined in xsettings.c. */
3645 extern void syms_of_xsettings (void);
3646
3647 /* Defined in vm-limit.c. */
3648 extern void memory_warnings (void *, void (*warnfun) (const char *));
3649
3650 /* Defined in character.c. */
3651 extern void parse_str_as_multibyte (const unsigned char *, ptrdiff_t,
3652 ptrdiff_t *, ptrdiff_t *);
3653
3654 /* Defined in alloc.c. */
3655 extern void check_pure_size (void);
3656 extern void free_misc (Lisp_Object);
3657 extern void allocate_string_data (struct Lisp_String *, EMACS_INT, EMACS_INT);
3658 extern void malloc_warning (const char *);
3659 extern _Noreturn void memory_full (size_t);
3660 extern _Noreturn void buffer_memory_full (ptrdiff_t);
3661 extern bool survives_gc_p (Lisp_Object);
3662 extern void mark_object (Lisp_Object);
3663 #if defined REL_ALLOC && !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3664 extern void refill_memory_reserve (void);
3665 #endif
3666 extern const char *pending_malloc_warning;
3667 extern Lisp_Object zero_vector;
3668 extern Lisp_Object *stack_base;
3669 extern EMACS_INT consing_since_gc;
3670 extern EMACS_INT gc_relative_threshold;
3671 extern EMACS_INT memory_full_cons_threshold;
3672 extern Lisp_Object list1 (Lisp_Object);
3673 extern Lisp_Object list2 (Lisp_Object, Lisp_Object);
3674 extern Lisp_Object list3 (Lisp_Object, Lisp_Object, Lisp_Object);
3675 extern Lisp_Object list4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3676 extern Lisp_Object list5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object,
3677 Lisp_Object);
3678 enum constype {CONSTYPE_HEAP, CONSTYPE_PURE};
3679 extern Lisp_Object listn (enum constype, ptrdiff_t, Lisp_Object, ...);
3680
3681 /* Build a frequently used 2/3/4-integer lists. */
3682
3683 INLINE Lisp_Object
3684 list2i (EMACS_INT x, EMACS_INT y)
3685 {
3686 return list2 (make_number (x), make_number (y));
3687 }
3688
3689 INLINE Lisp_Object
3690 list3i (EMACS_INT x, EMACS_INT y, EMACS_INT w)
3691 {
3692 return list3 (make_number (x), make_number (y), make_number (w));
3693 }
3694
3695 INLINE Lisp_Object
3696 list4i (EMACS_INT x, EMACS_INT y, EMACS_INT w, EMACS_INT h)
3697 {
3698 return list4 (make_number (x), make_number (y),
3699 make_number (w), make_number (h));
3700 }
3701
3702 extern Lisp_Object make_uninit_bool_vector (EMACS_INT);
3703 extern Lisp_Object bool_vector_fill (Lisp_Object, Lisp_Object);
3704 extern _Noreturn void string_overflow (void);
3705 extern Lisp_Object make_string (const char *, ptrdiff_t);
3706 extern Lisp_Object make_formatted_string (char *, const char *, ...)
3707 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3708 extern Lisp_Object make_unibyte_string (const char *, ptrdiff_t);
3709
3710 /* Make unibyte string from C string when the length isn't known. */
3711
3712 INLINE Lisp_Object
3713 build_unibyte_string (const char *str)
3714 {
3715 return make_unibyte_string (str, strlen (str));
3716 }
3717
3718 extern Lisp_Object make_multibyte_string (const char *, ptrdiff_t, ptrdiff_t);
3719 extern Lisp_Object make_event_array (ptrdiff_t, Lisp_Object *);
3720 extern Lisp_Object make_uninit_string (EMACS_INT);
3721 extern Lisp_Object make_uninit_multibyte_string (EMACS_INT, EMACS_INT);
3722 extern Lisp_Object make_string_from_bytes (const char *, ptrdiff_t, ptrdiff_t);
3723 extern Lisp_Object make_specified_string (const char *,
3724 ptrdiff_t, ptrdiff_t, bool);
3725 extern Lisp_Object make_pure_string (const char *, ptrdiff_t, ptrdiff_t, bool);
3726 extern Lisp_Object make_pure_c_string (const char *, ptrdiff_t);
3727
3728 /* Make a string allocated in pure space, use STR as string data. */
3729
3730 INLINE Lisp_Object
3731 build_pure_c_string (const char *str)
3732 {
3733 return make_pure_c_string (str, strlen (str));
3734 }
3735
3736 /* Make a string from the data at STR, treating it as multibyte if the
3737 data warrants. */
3738
3739 INLINE Lisp_Object
3740 build_string (const char *str)
3741 {
3742 return make_string (str, strlen (str));
3743 }
3744
3745 extern Lisp_Object pure_cons (Lisp_Object, Lisp_Object);
3746 extern void make_byte_code (struct Lisp_Vector *);
3747 extern struct Lisp_Vector *allocate_vector (EMACS_INT);
3748
3749 /* Make an uninitialized vector for SIZE objects. NOTE: you must
3750 be sure that GC cannot happen until the vector is completely
3751 initialized. E.g. the following code is likely to crash:
3752
3753 v = make_uninit_vector (3);
3754 ASET (v, 0, obj0);
3755 ASET (v, 1, Ffunction_can_gc ());
3756 ASET (v, 2, obj1); */
3757
3758 INLINE Lisp_Object
3759 make_uninit_vector (ptrdiff_t size)
3760 {
3761 Lisp_Object v;
3762 struct Lisp_Vector *p;
3763
3764 p = allocate_vector (size);
3765 XSETVECTOR (v, p);
3766 return v;
3767 }
3768
3769 /* Like above, but special for sub char-tables. */
3770
3771 INLINE Lisp_Object
3772 make_uninit_sub_char_table (int depth, int min_char)
3773 {
3774 int slots = SUB_CHAR_TABLE_OFFSET + chartab_size[depth];
3775 Lisp_Object v = make_uninit_vector (slots);
3776
3777 XSETPVECTYPE (XVECTOR (v), PVEC_SUB_CHAR_TABLE);
3778 XSUB_CHAR_TABLE (v)->depth = depth;
3779 XSUB_CHAR_TABLE (v)->min_char = min_char;
3780 return v;
3781 }
3782
3783 extern struct Lisp_Vector *allocate_pseudovector (int, int, enum pvec_type);
3784 #define ALLOCATE_PSEUDOVECTOR(typ,field,tag) \
3785 ((typ*) \
3786 allocate_pseudovector \
3787 (VECSIZE (typ), PSEUDOVECSIZE (typ, field), tag))
3788 extern struct Lisp_Hash_Table *allocate_hash_table (void);
3789 extern struct window *allocate_window (void);
3790 extern struct frame *allocate_frame (void);
3791 extern struct Lisp_Process *allocate_process (void);
3792 extern struct terminal *allocate_terminal (void);
3793 extern bool gc_in_progress;
3794 extern bool abort_on_gc;
3795 extern Lisp_Object make_float (double);
3796 extern void display_malloc_warning (void);
3797 extern ptrdiff_t inhibit_garbage_collection (void);
3798 extern Lisp_Object make_save_int_int_int (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3799 extern Lisp_Object make_save_obj_obj_obj_obj (Lisp_Object, Lisp_Object,
3800 Lisp_Object, Lisp_Object);
3801 extern Lisp_Object make_save_ptr (void *);
3802 extern Lisp_Object make_save_ptr_int (void *, ptrdiff_t);
3803 extern Lisp_Object make_save_ptr_ptr (void *, void *);
3804 extern Lisp_Object make_save_funcptr_ptr_obj (void (*) (void), void *,
3805 Lisp_Object);
3806 extern Lisp_Object make_save_memory (Lisp_Object *, ptrdiff_t);
3807 extern void free_save_value (Lisp_Object);
3808 extern Lisp_Object build_overlay (Lisp_Object, Lisp_Object, Lisp_Object);
3809 extern void free_marker (Lisp_Object);
3810 extern void free_cons (struct Lisp_Cons *);
3811 extern void init_alloc_once (void);
3812 extern void init_alloc (void);
3813 extern void syms_of_alloc (void);
3814 extern struct buffer * allocate_buffer (void);
3815 extern int valid_lisp_object_p (Lisp_Object);
3816 extern int relocatable_string_data_p (const char *);
3817 #ifdef GC_CHECK_CONS_LIST
3818 extern void check_cons_list (void);
3819 #else
3820 INLINE void (check_cons_list) (void) { lisp_h_check_cons_list (); }
3821 #endif
3822
3823 #ifdef REL_ALLOC
3824 /* Defined in ralloc.c. */
3825 extern void *r_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3826 extern void r_alloc_free (void **);
3827 extern void *r_re_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3828 extern void r_alloc_reset_variable (void **, void **);
3829 extern void r_alloc_inhibit_buffer_relocation (int);
3830 #endif
3831
3832 /* Defined in chartab.c. */
3833 extern Lisp_Object copy_char_table (Lisp_Object);
3834 extern Lisp_Object char_table_ref_and_range (Lisp_Object, int,
3835 int *, int *);
3836 extern void char_table_set_range (Lisp_Object, int, int, Lisp_Object);
3837 extern void map_char_table (void (*) (Lisp_Object, Lisp_Object,
3838 Lisp_Object),
3839 Lisp_Object, Lisp_Object, Lisp_Object);
3840 extern void map_char_table_for_charset (void (*c_function) (Lisp_Object, Lisp_Object),
3841 Lisp_Object, Lisp_Object,
3842 Lisp_Object, struct charset *,
3843 unsigned, unsigned);
3844 extern Lisp_Object uniprop_table (Lisp_Object);
3845 extern void syms_of_chartab (void);
3846
3847 /* Defined in print.c. */
3848 extern Lisp_Object Vprin1_to_string_buffer;
3849 extern void debug_print (Lisp_Object) EXTERNALLY_VISIBLE;
3850 extern void temp_output_buffer_setup (const char *);
3851 extern int print_level;
3852 extern void write_string (const char *, int);
3853 extern void print_error_message (Lisp_Object, Lisp_Object, const char *,
3854 Lisp_Object);
3855 extern Lisp_Object internal_with_output_to_temp_buffer
3856 (const char *, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3857 #define FLOAT_TO_STRING_BUFSIZE 350
3858 extern int float_to_string (char *, double);
3859 extern void init_print_once (void);
3860 extern void syms_of_print (void);
3861
3862 /* Defined in doprnt.c. */
3863 extern ptrdiff_t doprnt (char *, ptrdiff_t, const char *, const char *,
3864 va_list);
3865 extern ptrdiff_t esprintf (char *, char const *, ...)
3866 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3867 extern ptrdiff_t exprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3868 char const *, ...)
3869 ATTRIBUTE_FORMAT_PRINTF (5, 6);
3870 extern ptrdiff_t evxprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3871 char const *, va_list)
3872 ATTRIBUTE_FORMAT_PRINTF (5, 0);
3873
3874 /* Defined in lread.c. */
3875 extern Lisp_Object check_obarray (Lisp_Object);
3876 extern Lisp_Object intern_1 (const char *, ptrdiff_t);
3877 extern Lisp_Object intern_c_string_1 (const char *, ptrdiff_t);
3878 extern Lisp_Object intern_driver (Lisp_Object, Lisp_Object, Lisp_Object);
3879 extern void init_symbol (Lisp_Object, Lisp_Object);
3880 extern Lisp_Object oblookup (Lisp_Object, const char *, ptrdiff_t, ptrdiff_t);
3881 INLINE void
3882 LOADHIST_ATTACH (Lisp_Object x)
3883 {
3884 if (initialized)
3885 Vcurrent_load_list = Fcons (x, Vcurrent_load_list);
3886 }
3887 extern int openp (Lisp_Object, Lisp_Object, Lisp_Object,
3888 Lisp_Object *, Lisp_Object, bool);
3889 extern Lisp_Object string_to_number (char const *, int, bool);
3890 extern void map_obarray (Lisp_Object, void (*) (Lisp_Object, Lisp_Object),
3891 Lisp_Object);
3892 extern void dir_warning (const char *, Lisp_Object);
3893 extern void init_obarray (void);
3894 extern void init_lread (void);
3895 extern void syms_of_lread (void);
3896
3897 INLINE Lisp_Object
3898 intern (const char *str)
3899 {
3900 return intern_1 (str, strlen (str));
3901 }
3902
3903 INLINE Lisp_Object
3904 intern_c_string (const char *str)
3905 {
3906 return intern_c_string_1 (str, strlen (str));
3907 }
3908
3909 /* Defined in eval.c. */
3910 extern EMACS_INT lisp_eval_depth;
3911 extern Lisp_Object Vautoload_queue;
3912 extern Lisp_Object Vrun_hooks;
3913 extern Lisp_Object Vsignaling_function;
3914 extern Lisp_Object inhibit_lisp_code;
3915 extern struct handler *handlerlist;
3916
3917 /* To run a normal hook, use the appropriate function from the list below.
3918 The calling convention:
3919
3920 if (!NILP (Vrun_hooks))
3921 call1 (Vrun_hooks, Qmy_funny_hook);
3922
3923 should no longer be used. */
3924 extern void run_hook (Lisp_Object);
3925 extern void run_hook_with_args_2 (Lisp_Object, Lisp_Object, Lisp_Object);
3926 extern Lisp_Object run_hook_with_args (ptrdiff_t nargs, Lisp_Object *args,
3927 Lisp_Object (*funcall)
3928 (ptrdiff_t nargs, Lisp_Object *args));
3929 extern _Noreturn void xsignal (Lisp_Object, Lisp_Object);
3930 extern _Noreturn void xsignal0 (Lisp_Object);
3931 extern _Noreturn void xsignal1 (Lisp_Object, Lisp_Object);
3932 extern _Noreturn void xsignal2 (Lisp_Object, Lisp_Object, Lisp_Object);
3933 extern _Noreturn void xsignal3 (Lisp_Object, Lisp_Object, Lisp_Object,
3934 Lisp_Object);
3935 extern _Noreturn void signal_error (const char *, Lisp_Object);
3936 extern Lisp_Object eval_sub (Lisp_Object form);
3937 extern Lisp_Object apply1 (Lisp_Object, Lisp_Object);
3938 extern Lisp_Object call0 (Lisp_Object);
3939 extern Lisp_Object call1 (Lisp_Object, Lisp_Object);
3940 extern Lisp_Object call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3941 extern Lisp_Object call3 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3942 extern Lisp_Object call4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3943 extern Lisp_Object call5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3944 extern Lisp_Object call6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3945 extern Lisp_Object call7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3946 extern Lisp_Object internal_catch (Lisp_Object, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3947 extern Lisp_Object internal_lisp_condition_case (Lisp_Object, Lisp_Object, Lisp_Object);
3948 extern Lisp_Object internal_condition_case (Lisp_Object (*) (void), Lisp_Object, Lisp_Object (*) (Lisp_Object));
3949 extern Lisp_Object internal_condition_case_1 (Lisp_Object (*) (Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3950 extern Lisp_Object internal_condition_case_2 (Lisp_Object (*) (Lisp_Object, Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3951 extern Lisp_Object internal_condition_case_n
3952 (Lisp_Object (*) (ptrdiff_t, Lisp_Object *), ptrdiff_t, Lisp_Object *,
3953 Lisp_Object, Lisp_Object (*) (Lisp_Object, ptrdiff_t, Lisp_Object *));
3954 extern void specbind (Lisp_Object, Lisp_Object);
3955 extern void record_unwind_protect (void (*) (Lisp_Object), Lisp_Object);
3956 extern void record_unwind_protect_ptr (void (*) (void *), void *);
3957 extern void record_unwind_protect_int (void (*) (int), int);
3958 extern void record_unwind_protect_void (void (*) (void));
3959 extern void record_unwind_protect_nothing (void);
3960 extern void clear_unwind_protect (ptrdiff_t);
3961 extern void set_unwind_protect (ptrdiff_t, void (*) (Lisp_Object), Lisp_Object);
3962 extern void set_unwind_protect_ptr (ptrdiff_t, void (*) (void *), void *);
3963 extern Lisp_Object unbind_to (ptrdiff_t, Lisp_Object);
3964 extern _Noreturn void error (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3965 extern _Noreturn void verror (const char *, va_list)
3966 ATTRIBUTE_FORMAT_PRINTF (1, 0);
3967 extern void un_autoload (Lisp_Object);
3968 extern Lisp_Object call_debugger (Lisp_Object arg);
3969 extern void init_eval_once (void);
3970 extern Lisp_Object safe_call (ptrdiff_t, Lisp_Object, ...);
3971 extern Lisp_Object safe_call1 (Lisp_Object, Lisp_Object);
3972 extern Lisp_Object safe_call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3973 extern void init_eval (void);
3974 extern void syms_of_eval (void);
3975 extern void unwind_body (Lisp_Object);
3976 extern ptrdiff_t record_in_backtrace (Lisp_Object, Lisp_Object *, ptrdiff_t);
3977 extern void mark_specpdl (void);
3978 extern void get_backtrace (Lisp_Object array);
3979 Lisp_Object backtrace_top_function (void);
3980 extern bool let_shadows_buffer_binding_p (struct Lisp_Symbol *symbol);
3981 extern bool let_shadows_global_binding_p (Lisp_Object symbol);
3982
3983
3984 /* Defined in editfns.c. */
3985 extern void insert1 (Lisp_Object);
3986 extern Lisp_Object format2 (const char *, Lisp_Object, Lisp_Object);
3987 extern Lisp_Object save_excursion_save (void);
3988 extern Lisp_Object save_restriction_save (void);
3989 extern void save_excursion_restore (Lisp_Object);
3990 extern void save_restriction_restore (Lisp_Object);
3991 extern _Noreturn void time_overflow (void);
3992 extern Lisp_Object make_buffer_string (ptrdiff_t, ptrdiff_t, bool);
3993 extern Lisp_Object make_buffer_string_both (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3994 ptrdiff_t, bool);
3995 extern void init_editfns (void);
3996 extern void syms_of_editfns (void);
3997
3998 /* Defined in buffer.c. */
3999 extern bool mouse_face_overlay_overlaps (Lisp_Object);
4000 extern _Noreturn void nsberror (Lisp_Object);
4001 extern void adjust_overlays_for_insert (ptrdiff_t, ptrdiff_t);
4002 extern void adjust_overlays_for_delete (ptrdiff_t, ptrdiff_t);
4003 extern void fix_start_end_in_overlays (ptrdiff_t, ptrdiff_t);
4004 extern void report_overlay_modification (Lisp_Object, Lisp_Object, bool,
4005 Lisp_Object, Lisp_Object, Lisp_Object);
4006 extern bool overlay_touches_p (ptrdiff_t);
4007 extern Lisp_Object other_buffer_safely (Lisp_Object);
4008 extern Lisp_Object get_truename_buffer (Lisp_Object);
4009 extern void init_buffer_once (void);
4010 extern void init_buffer (int);
4011 extern void syms_of_buffer (void);
4012 extern void keys_of_buffer (void);
4013
4014 /* Defined in marker.c. */
4015
4016 extern ptrdiff_t marker_position (Lisp_Object);
4017 extern ptrdiff_t marker_byte_position (Lisp_Object);
4018 extern void clear_charpos_cache (struct buffer *);
4019 extern ptrdiff_t buf_charpos_to_bytepos (struct buffer *, ptrdiff_t);
4020 extern ptrdiff_t buf_bytepos_to_charpos (struct buffer *, ptrdiff_t);
4021 extern void unchain_marker (struct Lisp_Marker *marker);
4022 extern Lisp_Object set_marker_restricted (Lisp_Object, Lisp_Object, Lisp_Object);
4023 extern Lisp_Object set_marker_both (Lisp_Object, Lisp_Object, ptrdiff_t, ptrdiff_t);
4024 extern Lisp_Object set_marker_restricted_both (Lisp_Object, Lisp_Object,
4025 ptrdiff_t, ptrdiff_t);
4026 extern Lisp_Object build_marker (struct buffer *, ptrdiff_t, ptrdiff_t);
4027 extern void syms_of_marker (void);
4028
4029 /* Defined in fileio.c. */
4030
4031 extern Lisp_Object expand_and_dir_to_file (Lisp_Object, Lisp_Object);
4032 extern Lisp_Object write_region (Lisp_Object, Lisp_Object, Lisp_Object,
4033 Lisp_Object, Lisp_Object, Lisp_Object,
4034 Lisp_Object, int);
4035 extern void close_file_unwind (int);
4036 extern void fclose_unwind (void *);
4037 extern void restore_point_unwind (Lisp_Object);
4038 extern _Noreturn void report_file_errno (const char *, Lisp_Object, int);
4039 extern _Noreturn void report_file_error (const char *, Lisp_Object);
4040 extern bool internal_delete_file (Lisp_Object);
4041 extern Lisp_Object emacs_readlinkat (int, const char *);
4042 extern bool file_directory_p (const char *);
4043 extern bool file_accessible_directory_p (Lisp_Object);
4044 extern void init_fileio (void);
4045 extern void syms_of_fileio (void);
4046 extern Lisp_Object make_temp_name (Lisp_Object, bool);
4047
4048 /* Defined in search.c. */
4049 extern void shrink_regexp_cache (void);
4050 extern void restore_search_regs (void);
4051 extern void record_unwind_save_match_data (void);
4052 struct re_registers;
4053 extern struct re_pattern_buffer *compile_pattern (Lisp_Object,
4054 struct re_registers *,
4055 Lisp_Object, bool, bool);
4056 extern ptrdiff_t fast_string_match (Lisp_Object, Lisp_Object);
4057 extern ptrdiff_t fast_c_string_match_ignore_case (Lisp_Object, const char *,
4058 ptrdiff_t);
4059 extern ptrdiff_t fast_string_match_ignore_case (Lisp_Object, Lisp_Object);
4060 extern ptrdiff_t fast_looking_at (Lisp_Object, ptrdiff_t, ptrdiff_t,
4061 ptrdiff_t, ptrdiff_t, Lisp_Object);
4062 extern ptrdiff_t find_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4063 ptrdiff_t, ptrdiff_t *, ptrdiff_t *, bool);
4064 extern ptrdiff_t scan_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4065 ptrdiff_t, bool);
4066 extern ptrdiff_t scan_newline_from_point (ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
4067 extern ptrdiff_t find_newline_no_quit (ptrdiff_t, ptrdiff_t,
4068 ptrdiff_t, ptrdiff_t *);
4069 extern ptrdiff_t find_before_next_newline (ptrdiff_t, ptrdiff_t,
4070 ptrdiff_t, ptrdiff_t *);
4071 extern void syms_of_search (void);
4072 extern void clear_regexp_cache (void);
4073
4074 /* Defined in minibuf.c. */
4075
4076 extern Lisp_Object Vminibuffer_list;
4077 extern Lisp_Object last_minibuf_string;
4078 extern Lisp_Object get_minibuffer (EMACS_INT);
4079 extern void init_minibuf_once (void);
4080 extern void syms_of_minibuf (void);
4081
4082 /* Defined in callint.c. */
4083
4084 extern void syms_of_callint (void);
4085
4086 /* Defined in casefiddle.c. */
4087
4088 extern void syms_of_casefiddle (void);
4089 extern void keys_of_casefiddle (void);
4090
4091 /* Defined in casetab.c. */
4092
4093 extern void init_casetab_once (void);
4094 extern void syms_of_casetab (void);
4095
4096 /* Defined in keyboard.c. */
4097
4098 extern Lisp_Object echo_message_buffer;
4099 extern struct kboard *echo_kboard;
4100 extern void cancel_echoing (void);
4101 extern Lisp_Object last_undo_boundary;
4102 extern bool input_pending;
4103 #ifdef HAVE_STACK_OVERFLOW_HANDLING
4104 extern sigjmp_buf return_to_command_loop;
4105 #endif
4106 extern Lisp_Object menu_bar_items (Lisp_Object);
4107 extern Lisp_Object tool_bar_items (Lisp_Object, int *);
4108 extern void discard_mouse_events (void);
4109 #ifdef USABLE_SIGIO
4110 void handle_input_available_signal (int);
4111 #endif
4112 extern Lisp_Object pending_funcalls;
4113 extern bool detect_input_pending (void);
4114 extern bool detect_input_pending_ignore_squeezables (void);
4115 extern bool detect_input_pending_run_timers (bool);
4116 extern void safe_run_hooks (Lisp_Object);
4117 extern void cmd_error_internal (Lisp_Object, const char *);
4118 extern Lisp_Object command_loop_1 (void);
4119 extern Lisp_Object read_menu_command (void);
4120 extern Lisp_Object recursive_edit_1 (void);
4121 extern void record_auto_save (void);
4122 extern void force_auto_save_soon (void);
4123 extern void init_keyboard (void);
4124 extern void syms_of_keyboard (void);
4125 extern void keys_of_keyboard (void);
4126
4127 /* Defined in indent.c. */
4128 extern ptrdiff_t current_column (void);
4129 extern void invalidate_current_column (void);
4130 extern bool indented_beyond_p (ptrdiff_t, ptrdiff_t, EMACS_INT);
4131 extern void syms_of_indent (void);
4132
4133 /* Defined in frame.c. */
4134 extern void store_frame_param (struct frame *, Lisp_Object, Lisp_Object);
4135 extern void store_in_alist (Lisp_Object *, Lisp_Object, Lisp_Object);
4136 extern Lisp_Object do_switch_frame (Lisp_Object, int, int, Lisp_Object);
4137 extern Lisp_Object get_frame_param (struct frame *, Lisp_Object);
4138 extern void frames_discard_buffer (Lisp_Object);
4139 extern void syms_of_frame (void);
4140
4141 /* Defined in emacs.c. */
4142 extern char **initial_argv;
4143 extern int initial_argc;
4144 #if defined (HAVE_X_WINDOWS) || defined (HAVE_NS)
4145 extern bool display_arg;
4146 #endif
4147 extern Lisp_Object decode_env_path (const char *, const char *, bool);
4148 extern Lisp_Object empty_unibyte_string, empty_multibyte_string;
4149 extern _Noreturn void terminate_due_to_signal (int, int);
4150 #ifdef WINDOWSNT
4151 extern Lisp_Object Vlibrary_cache;
4152 #endif
4153 #if HAVE_SETLOCALE
4154 void fixup_locale (void);
4155 void synchronize_system_messages_locale (void);
4156 void synchronize_system_time_locale (void);
4157 #else
4158 INLINE void fixup_locale (void) {}
4159 INLINE void synchronize_system_messages_locale (void) {}
4160 INLINE void synchronize_system_time_locale (void) {}
4161 #endif
4162 extern void shut_down_emacs (int, Lisp_Object);
4163
4164 /* True means don't do interactive redisplay and don't change tty modes. */
4165 extern bool noninteractive;
4166
4167 /* True means remove site-lisp directories from load-path. */
4168 extern bool no_site_lisp;
4169
4170 /* Pipe used to send exit notification to the daemon parent at
4171 startup. */
4172 extern int daemon_pipe[2];
4173 #define IS_DAEMON (daemon_pipe[1] != 0)
4174
4175 /* True if handling a fatal error already. */
4176 extern bool fatal_error_in_progress;
4177
4178 /* True means don't do use window-system-specific display code. */
4179 extern bool inhibit_window_system;
4180 /* True means that a filter or a sentinel is running. */
4181 extern bool running_asynch_code;
4182
4183 /* Defined in process.c. */
4184 extern void kill_buffer_processes (Lisp_Object);
4185 extern int wait_reading_process_output (intmax_t, int, int, bool, Lisp_Object,
4186 struct Lisp_Process *, int);
4187 /* Max value for the first argument of wait_reading_process_output. */
4188 #if __GNUC__ == 3 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 5)
4189 /* Work around a bug in GCC 3.4.2, known to be fixed in GCC 4.6.3.
4190 The bug merely causes a bogus warning, but the warning is annoying. */
4191 # define WAIT_READING_MAX min (TYPE_MAXIMUM (time_t), INTMAX_MAX)
4192 #else
4193 # define WAIT_READING_MAX INTMAX_MAX
4194 #endif
4195 #ifdef HAVE_TIMERFD
4196 extern void add_timer_wait_descriptor (int);
4197 #endif
4198 extern void add_keyboard_wait_descriptor (int);
4199 extern void delete_keyboard_wait_descriptor (int);
4200 #ifdef HAVE_GPM
4201 extern void add_gpm_wait_descriptor (int);
4202 extern void delete_gpm_wait_descriptor (int);
4203 #endif
4204 extern void init_process_emacs (void);
4205 extern void syms_of_process (void);
4206 extern void setup_process_coding_systems (Lisp_Object);
4207
4208 /* Defined in callproc.c. */
4209 #ifndef DOS_NT
4210 _Noreturn
4211 #endif
4212 extern int child_setup (int, int, int, char **, bool, Lisp_Object);
4213 extern void init_callproc_1 (void);
4214 extern void init_callproc (void);
4215 extern void set_initial_environment (void);
4216 extern void syms_of_callproc (void);
4217
4218 /* Defined in doc.c. */
4219 extern Lisp_Object read_doc_string (Lisp_Object);
4220 extern Lisp_Object get_doc_string (Lisp_Object, bool, bool);
4221 extern void syms_of_doc (void);
4222 extern int read_bytecode_char (bool);
4223
4224 /* Defined in bytecode.c. */
4225 extern void syms_of_bytecode (void);
4226 extern struct byte_stack *byte_stack_list;
4227 #if BYTE_MARK_STACK
4228 extern void mark_byte_stack (void);
4229 #endif
4230 extern void unmark_byte_stack (void);
4231 extern Lisp_Object exec_byte_code (Lisp_Object, Lisp_Object, Lisp_Object,
4232 Lisp_Object, ptrdiff_t, Lisp_Object *);
4233
4234 /* Defined in macros.c. */
4235 extern void init_macros (void);
4236 extern void syms_of_macros (void);
4237
4238 /* Defined in undo.c. */
4239 extern void truncate_undo_list (struct buffer *);
4240 extern void record_insert (ptrdiff_t, ptrdiff_t);
4241 extern void record_delete (ptrdiff_t, Lisp_Object, bool);
4242 extern void record_first_change (void);
4243 extern void record_change (ptrdiff_t, ptrdiff_t);
4244 extern void record_property_change (ptrdiff_t, ptrdiff_t,
4245 Lisp_Object, Lisp_Object,
4246 Lisp_Object);
4247 extern void syms_of_undo (void);
4248
4249 /* Defined in textprop.c. */
4250 extern void report_interval_modification (Lisp_Object, Lisp_Object);
4251
4252 /* Defined in menu.c. */
4253 extern void syms_of_menu (void);
4254
4255 /* Defined in xmenu.c. */
4256 extern void syms_of_xmenu (void);
4257
4258 /* Defined in termchar.h. */
4259 struct tty_display_info;
4260
4261 /* Defined in termhooks.h. */
4262 struct terminal;
4263
4264 /* Defined in sysdep.c. */
4265 #ifndef HAVE_GET_CURRENT_DIR_NAME
4266 extern char *get_current_dir_name (void);
4267 #endif
4268 extern void stuff_char (char c);
4269 extern void init_foreground_group (void);
4270 extern void sys_subshell (void);
4271 extern void sys_suspend (void);
4272 extern void discard_tty_input (void);
4273 extern void init_sys_modes (struct tty_display_info *);
4274 extern void reset_sys_modes (struct tty_display_info *);
4275 extern void init_all_sys_modes (void);
4276 extern void reset_all_sys_modes (void);
4277 extern void child_setup_tty (int);
4278 extern void setup_pty (int);
4279 extern int set_window_size (int, int, int);
4280 extern EMACS_INT get_random (void);
4281 extern void seed_random (void *, ptrdiff_t);
4282 extern void init_random (void);
4283 extern void emacs_backtrace (int);
4284 extern _Noreturn void emacs_abort (void) NO_INLINE;
4285 extern int emacs_open (const char *, int, int);
4286 extern int emacs_pipe (int[2]);
4287 extern int emacs_close (int);
4288 extern ptrdiff_t emacs_read (int, void *, ptrdiff_t);
4289 extern ptrdiff_t emacs_write (int, void const *, ptrdiff_t);
4290 extern ptrdiff_t emacs_write_sig (int, void const *, ptrdiff_t);
4291 extern void emacs_perror (char const *);
4292
4293 extern void unlock_all_files (void);
4294 extern void lock_file (Lisp_Object);
4295 extern void unlock_file (Lisp_Object);
4296 extern void unlock_buffer (struct buffer *);
4297 extern void syms_of_filelock (void);
4298 extern int str_collate (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4299
4300 /* Defined in sound.c. */
4301 extern void syms_of_sound (void);
4302
4303 /* Defined in category.c. */
4304 extern void init_category_once (void);
4305 extern Lisp_Object char_category_set (int);
4306 extern void syms_of_category (void);
4307
4308 /* Defined in ccl.c. */
4309 extern void syms_of_ccl (void);
4310
4311 /* Defined in dired.c. */
4312 extern void syms_of_dired (void);
4313 extern Lisp_Object directory_files_internal (Lisp_Object, Lisp_Object,
4314 Lisp_Object, Lisp_Object,
4315 bool, Lisp_Object);
4316
4317 /* Defined in term.c. */
4318 extern int *char_ins_del_vector;
4319 extern void syms_of_term (void);
4320 extern _Noreturn void fatal (const char *msgid, ...)
4321 ATTRIBUTE_FORMAT_PRINTF (1, 2);
4322
4323 /* Defined in terminal.c. */
4324 extern void syms_of_terminal (void);
4325
4326 /* Defined in font.c. */
4327 extern void syms_of_font (void);
4328 extern void init_font (void);
4329
4330 #ifdef HAVE_WINDOW_SYSTEM
4331 /* Defined in fontset.c. */
4332 extern void syms_of_fontset (void);
4333 #endif
4334
4335 /* Defined in gfilenotify.c */
4336 #ifdef HAVE_GFILENOTIFY
4337 extern void globals_of_gfilenotify (void);
4338 extern void syms_of_gfilenotify (void);
4339 #endif
4340
4341 /* Defined in inotify.c */
4342 #ifdef HAVE_INOTIFY
4343 extern void syms_of_inotify (void);
4344 #endif
4345
4346 #ifdef HAVE_W32NOTIFY
4347 /* Defined on w32notify.c. */
4348 extern void syms_of_w32notify (void);
4349 #endif
4350
4351 /* Defined in xfaces.c. */
4352 extern Lisp_Object Vface_alternative_font_family_alist;
4353 extern Lisp_Object Vface_alternative_font_registry_alist;
4354 extern void syms_of_xfaces (void);
4355
4356 #ifdef HAVE_X_WINDOWS
4357 /* Defined in xfns.c. */
4358 extern void syms_of_xfns (void);
4359
4360 /* Defined in xsmfns.c. */
4361 extern void syms_of_xsmfns (void);
4362
4363 /* Defined in xselect.c. */
4364 extern void syms_of_xselect (void);
4365
4366 /* Defined in xterm.c. */
4367 extern void init_xterm (void);
4368 extern void syms_of_xterm (void);
4369 #endif /* HAVE_X_WINDOWS */
4370
4371 #ifdef HAVE_WINDOW_SYSTEM
4372 /* Defined in xterm.c, nsterm.m, w32term.c. */
4373 extern char *x_get_keysym_name (int);
4374 #endif /* HAVE_WINDOW_SYSTEM */
4375
4376 #ifdef HAVE_LIBXML2
4377 /* Defined in xml.c. */
4378 extern void syms_of_xml (void);
4379 extern void xml_cleanup_parser (void);
4380 #endif
4381
4382 #ifdef HAVE_ZLIB
4383 /* Defined in decompress.c. */
4384 extern void syms_of_decompress (void);
4385 #endif
4386
4387 #ifdef HAVE_DBUS
4388 /* Defined in dbusbind.c. */
4389 void init_dbusbind (void);
4390 void syms_of_dbusbind (void);
4391 #endif
4392
4393
4394 /* Defined in profiler.c. */
4395 extern bool profiler_memory_running;
4396 extern void malloc_probe (size_t);
4397 extern void syms_of_profiler (void);
4398
4399
4400 #ifdef DOS_NT
4401 /* Defined in msdos.c, w32.c. */
4402 extern char *emacs_root_dir (void);
4403 #endif /* DOS_NT */
4404
4405 /* Defined in lastfile.c. */
4406 extern char my_edata[];
4407 extern char my_endbss[];
4408 extern char *my_endbss_static;
4409
4410 /* True means ^G can quit instantly. */
4411 extern bool immediate_quit;
4412
4413 extern void *xmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4414 extern void *xzalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4415 extern void *xrealloc (void *, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
4416 extern void xfree (void *);
4417 extern void *xnmalloc (ptrdiff_t, ptrdiff_t) ATTRIBUTE_MALLOC_SIZE ((1,2));
4418 extern void *xnrealloc (void *, ptrdiff_t, ptrdiff_t)
4419 ATTRIBUTE_ALLOC_SIZE ((2,3));
4420 extern void *xpalloc (void *, ptrdiff_t *, ptrdiff_t, ptrdiff_t, ptrdiff_t);
4421
4422 extern char *xstrdup (const char *) ATTRIBUTE_MALLOC;
4423 extern char *xlispstrdup (Lisp_Object) ATTRIBUTE_MALLOC;
4424 extern void dupstring (char **, char const *);
4425
4426 /* Make DEST a copy of STRING's data. Return a pointer to DEST's terminating
4427 null byte. This is like stpcpy, except the source is a Lisp string. */
4428
4429 INLINE char *
4430 lispstpcpy (char *dest, Lisp_Object string)
4431 {
4432 ptrdiff_t len = SBYTES (string);
4433 memcpy (dest, SDATA (string), len + 1);
4434 return dest + len;
4435 }
4436
4437 extern void xputenv (const char *);
4438
4439 extern char *egetenv_internal (const char *, ptrdiff_t);
4440
4441 INLINE char *
4442 egetenv (const char *var)
4443 {
4444 /* When VAR is a string literal, strlen can be optimized away. */
4445 return egetenv_internal (var, strlen (var));
4446 }
4447
4448 /* Set up the name of the machine we're running on. */
4449 extern void init_system_name (void);
4450
4451 /* Return the absolute value of X. X should be a signed integer
4452 expression without side effects, and X's absolute value should not
4453 exceed the maximum for its promoted type. This is called 'eabs'
4454 because 'abs' is reserved by the C standard. */
4455 #define eabs(x) ((x) < 0 ? -(x) : (x))
4456
4457 /* Return a fixnum or float, depending on whether VAL fits in a Lisp
4458 fixnum. */
4459
4460 #define make_fixnum_or_float(val) \
4461 (FIXNUM_OVERFLOW_P (val) ? make_float (val) : make_number (val))
4462
4463 /* SAFE_ALLOCA normally allocates memory on the stack, but if size is
4464 larger than MAX_ALLOCA, use xmalloc to avoid overflowing the stack. */
4465
4466 enum MAX_ALLOCA { MAX_ALLOCA = 16 * 1024 };
4467
4468 extern void *record_xmalloc (size_t) ATTRIBUTE_ALLOC_SIZE ((1));
4469
4470 #define USE_SAFE_ALLOCA \
4471 ptrdiff_t sa_avail = MAX_ALLOCA; \
4472 ptrdiff_t sa_count = SPECPDL_INDEX (); bool sa_must_free = false
4473
4474 #define AVAIL_ALLOCA(size) (sa_avail -= (size), alloca (size))
4475
4476 /* SAFE_ALLOCA allocates a simple buffer. */
4477
4478 #define SAFE_ALLOCA(size) ((size) <= sa_avail \
4479 ? AVAIL_ALLOCA (size) \
4480 : (sa_must_free = true, record_xmalloc (size)))
4481
4482 /* SAFE_NALLOCA sets BUF to a newly allocated array of MULTIPLIER *
4483 NITEMS items, each of the same type as *BUF. MULTIPLIER must
4484 positive. The code is tuned for MULTIPLIER being a constant. */
4485
4486 #define SAFE_NALLOCA(buf, multiplier, nitems) \
4487 do { \
4488 if ((nitems) <= sa_avail / sizeof *(buf) / (multiplier)) \
4489 (buf) = AVAIL_ALLOCA (sizeof *(buf) * (multiplier) * (nitems)); \
4490 else \
4491 { \
4492 (buf) = xnmalloc (nitems, sizeof *(buf) * (multiplier)); \
4493 sa_must_free = true; \
4494 record_unwind_protect_ptr (xfree, buf); \
4495 } \
4496 } while (false)
4497
4498 /* SAFE_ALLOCA_STRING allocates a C copy of a Lisp string. */
4499
4500 #define SAFE_ALLOCA_STRING(ptr, string) \
4501 do { \
4502 (ptr) = SAFE_ALLOCA (SBYTES (string) + 1); \
4503 memcpy (ptr, SDATA (string), SBYTES (string) + 1); \
4504 } while (false)
4505
4506 /* SAFE_FREE frees xmalloced memory and enables GC as needed. */
4507
4508 #define SAFE_FREE() \
4509 do { \
4510 if (sa_must_free) { \
4511 sa_must_free = false; \
4512 unbind_to (sa_count, Qnil); \
4513 } \
4514 } while (false)
4515
4516
4517 /* Return floor (NBYTES / WORD_SIZE). */
4518
4519 INLINE ptrdiff_t
4520 lisp_word_count (ptrdiff_t nbytes)
4521 {
4522 if (-1 >> 1 == -1)
4523 switch (word_size)
4524 {
4525 case 2: return nbytes >> 1;
4526 case 4: return nbytes >> 2;
4527 case 8: return nbytes >> 3;
4528 case 16: return nbytes >> 4;
4529 }
4530 return nbytes / word_size - (nbytes % word_size < 0);
4531 }
4532
4533 /* SAFE_ALLOCA_LISP allocates an array of Lisp_Objects. */
4534
4535 #define SAFE_ALLOCA_LISP(buf, nelt) \
4536 do { \
4537 if ((nelt) <= lisp_word_count (sa_avail)) \
4538 (buf) = AVAIL_ALLOCA ((nelt) * word_size); \
4539 else if ((nelt) <= min (PTRDIFF_MAX, SIZE_MAX) / word_size) \
4540 { \
4541 Lisp_Object arg_; \
4542 (buf) = xmalloc ((nelt) * word_size); \
4543 arg_ = make_save_memory (buf, nelt); \
4544 sa_must_free = true; \
4545 record_unwind_protect (free_save_value, arg_); \
4546 } \
4547 else \
4548 memory_full (SIZE_MAX); \
4549 } while (false)
4550
4551
4552 /* If USE_STACK_LISP_OBJECTS, define macros that and functions that allocate
4553 block-scoped conses and strings. These objects are not
4554 managed by the garbage collector, so they are dangerous: passing them
4555 out of their scope (e.g., to user code) results in undefined behavior.
4556 Conversely, they have better performance because GC is not involved.
4557
4558 This feature is experimental and requires careful debugging.
4559 Build with CPPFLAGS='-DUSE_STACK_LISP_OBJECTS=0' to disable it. */
4560
4561 #ifndef USE_STACK_LISP_OBJECTS
4562 # define USE_STACK_LISP_OBJECTS true
4563 #endif
4564
4565 /* USE_STACK_LISP_OBJECTS requires GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS. */
4566
4567 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
4568 # undef USE_STACK_LISP_OBJECTS
4569 # define USE_STACK_LISP_OBJECTS false
4570 #endif
4571
4572 #ifdef GC_CHECK_STRING_BYTES
4573 enum { defined_GC_CHECK_STRING_BYTES = true };
4574 #else
4575 enum { defined_GC_CHECK_STRING_BYTES = false };
4576 #endif
4577
4578 /* Struct inside unions that are typically no larger and aligned enough. */
4579
4580 union Aligned_Cons
4581 {
4582 struct Lisp_Cons s;
4583 double d; intmax_t i; void *p;
4584 };
4585
4586 union Aligned_String
4587 {
4588 struct Lisp_String s;
4589 double d; intmax_t i; void *p;
4590 };
4591
4592 /* True for stack-based cons and string implementations, respectively.
4593 Use stack-based strings only if stack-based cons also works.
4594 Otherwise, STACK_CONS would create heap-based cons cells that
4595 could point to stack-based strings, which is a no-no. */
4596
4597 enum
4598 {
4599 USE_STACK_CONS = (USE_STACK_LISP_OBJECTS
4600 && alignof (union Aligned_Cons) % GCALIGNMENT == 0),
4601 USE_STACK_STRING = (USE_STACK_CONS
4602 && !defined_GC_CHECK_STRING_BYTES
4603 && alignof (union Aligned_String) % GCALIGNMENT == 0)
4604 };
4605
4606 /* Auxiliary macros used for auto allocation of Lisp objects. Please
4607 use these only in macros like AUTO_CONS that declare a local
4608 variable whose lifetime will be clear to the programmer. */
4609 #define STACK_CONS(a, b) \
4610 make_lisp_ptr (&(union Aligned_Cons) { { a, { b } } }.s, Lisp_Cons)
4611 #define AUTO_CONS_EXPR(a, b) \
4612 (USE_STACK_CONS ? STACK_CONS (a, b) : Fcons (a, b))
4613
4614 /* Declare NAME as an auto Lisp cons or short list if possible, a
4615 GC-based one otherwise. This is in the sense of the C keyword
4616 'auto'; i.e., the object has the lifetime of the containing block.
4617 The resulting object should not be made visible to user Lisp code. */
4618
4619 #define AUTO_CONS(name, a, b) Lisp_Object name = AUTO_CONS_EXPR (a, b)
4620 #define AUTO_LIST1(name, a) \
4621 Lisp_Object name = (USE_STACK_CONS ? STACK_CONS (a, Qnil) : list1 (a))
4622 #define AUTO_LIST2(name, a, b) \
4623 Lisp_Object name = (USE_STACK_CONS \
4624 ? STACK_CONS (a, STACK_CONS (b, Qnil)) \
4625 : list2 (a, b))
4626 #define AUTO_LIST3(name, a, b, c) \
4627 Lisp_Object name = (USE_STACK_CONS \
4628 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, Qnil))) \
4629 : list3 (a, b, c))
4630 #define AUTO_LIST4(name, a, b, c, d) \
4631 Lisp_Object name \
4632 = (USE_STACK_CONS \
4633 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, \
4634 STACK_CONS (d, Qnil)))) \
4635 : list4 (a, b, c, d))
4636
4637 /* Check whether stack-allocated strings are ASCII-only. */
4638
4639 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
4640 extern const char *verify_ascii (const char *);
4641 #else
4642 # define verify_ascii(str) (str)
4643 #endif
4644
4645 /* Declare NAME as an auto Lisp string if possible, a GC-based one if not.
4646 Take its value from STR. STR is not necessarily copied and should
4647 contain only ASCII characters. The resulting Lisp string should
4648 not be modified or made visible to user code. */
4649
4650 #define AUTO_STRING(name, str) \
4651 Lisp_Object name = \
4652 (USE_STACK_STRING \
4653 ? (make_lisp_ptr \
4654 ((&(union Aligned_String) \
4655 {{strlen (str), -1, 0, (unsigned char *) verify_ascii (str)}}.s), \
4656 Lisp_String)) \
4657 : build_string (verify_ascii (str)))
4658
4659 /* Loop over all tails of a list, checking for cycles.
4660 FIXME: Make tortoise and n internal declarations.
4661 FIXME: Unroll the loop body so we don't need `n'. */
4662 #define FOR_EACH_TAIL(hare, list, tortoise, n) \
4663 for ((tortoise) = (hare) = (list), (n) = true; \
4664 CONSP (hare); \
4665 (hare = XCDR (hare), (n) = !(n), \
4666 ((n) \
4667 ? (EQ (hare, tortoise) \
4668 ? xsignal1 (Qcircular_list, list) \
4669 : (void) 0) \
4670 /* Move tortoise before the next iteration, in case */ \
4671 /* the next iteration does an Fsetcdr. */ \
4672 : (void) ((tortoise) = XCDR (tortoise)))))
4673
4674 /* Do a `for' loop over alist values. */
4675
4676 #define FOR_EACH_ALIST_VALUE(head_var, list_var, value_var) \
4677 for ((list_var) = (head_var); \
4678 (CONSP (list_var) && ((value_var) = XCDR (XCAR (list_var)), true)); \
4679 (list_var) = XCDR (list_var))
4680
4681 /* Check whether it's time for GC, and run it if so. */
4682
4683 INLINE void
4684 maybe_gc (void)
4685 {
4686 if ((consing_since_gc > gc_cons_threshold
4687 && consing_since_gc > gc_relative_threshold)
4688 || (!NILP (Vmemory_full)
4689 && consing_since_gc > memory_full_cons_threshold))
4690 Fgarbage_collect ();
4691 }
4692
4693 INLINE bool
4694 functionp (Lisp_Object object)
4695 {
4696 if (SYMBOLP (object) && !NILP (Ffboundp (object)))
4697 {
4698 object = Findirect_function (object, Qt);
4699
4700 if (CONSP (object) && EQ (XCAR (object), Qautoload))
4701 {
4702 /* Autoloaded symbols are functions, except if they load
4703 macros or keymaps. */
4704 int i;
4705 for (i = 0; i < 4 && CONSP (object); i++)
4706 object = XCDR (object);
4707
4708 return ! (CONSP (object) && !NILP (XCAR (object)));
4709 }
4710 }
4711
4712 if (SUBRP (object))
4713 return XSUBR (object)->max_args != UNEVALLED;
4714 else if (COMPILEDP (object))
4715 return true;
4716 else if (CONSP (object))
4717 {
4718 Lisp_Object car = XCAR (object);
4719 return EQ (car, Qlambda) || EQ (car, Qclosure);
4720 }
4721 else
4722 return false;
4723 }
4724
4725 INLINE_HEADER_END
4726
4727 #endif /* EMACS_LISP_H */