]> code.delx.au - gnu-emacs/blob - lisp/emacs-lisp/byte-opt.el
Merge from emacs--devo--0
[gnu-emacs] / lisp / emacs-lisp / byte-opt.el
1 ;;; byte-opt.el --- the optimization passes of the emacs-lisp byte compiler
2
3 ;; Copyright (C) 1991, 1994, 2000, 2001, 2002, 2003, 2004,
4 ;; 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 ;; Author: Jamie Zawinski <jwz@lucid.com>
7 ;; Hallvard Furuseth <hbf@ulrik.uio.no>
8 ;; Maintainer: FSF
9 ;; Keywords: internal
10
11 ;; This file is part of GNU Emacs.
12
13 ;; GNU Emacs is free software; you can redistribute it and/or modify
14 ;; it under the terms of the GNU General Public License as published by
15 ;; the Free Software Foundation; either version 3, or (at your option)
16 ;; any later version.
17
18 ;; GNU Emacs is distributed in the hope that it will be useful,
19 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
20 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 ;; GNU General Public License for more details.
22
23 ;; You should have received a copy of the GNU General Public License
24 ;; along with GNU Emacs; see the file COPYING. If not, write to the
25 ;; Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
26 ;; Boston, MA 02110-1301, USA.
27
28 ;;; Commentary:
29
30 ;; ========================================================================
31 ;; "No matter how hard you try, you can't make a racehorse out of a pig.
32 ;; You can, however, make a faster pig."
33 ;;
34 ;; Or, to put it another way, the Emacs byte compiler is a VW Bug. This code
35 ;; makes it be a VW Bug with fuel injection and a turbocharger... You're
36 ;; still not going to make it go faster than 70 mph, but it might be easier
37 ;; to get it there.
38 ;;
39
40 ;; TO DO:
41 ;;
42 ;; (apply (lambda (x &rest y) ...) 1 (foo))
43 ;;
44 ;; maintain a list of functions known not to access any global variables
45 ;; (actually, give them a 'dynamically-safe property) and then
46 ;; (let ( v1 v2 ... vM vN ) <...dynamically-safe...> ) ==>
47 ;; (let ( v1 v2 ... vM ) vN <...dynamically-safe...> )
48 ;; by recursing on this, we might be able to eliminate the entire let.
49 ;; However certain variables should never have their bindings optimized
50 ;; away, because they affect everything.
51 ;; (put 'debug-on-error 'binding-is-magic t)
52 ;; (put 'debug-on-abort 'binding-is-magic t)
53 ;; (put 'debug-on-next-call 'binding-is-magic t)
54 ;; (put 'inhibit-quit 'binding-is-magic t)
55 ;; (put 'quit-flag 'binding-is-magic t)
56 ;; (put 't 'binding-is-magic t)
57 ;; (put 'nil 'binding-is-magic t)
58 ;; possibly also
59 ;; (put 'gc-cons-threshold 'binding-is-magic t)
60 ;; (put 'track-mouse 'binding-is-magic t)
61 ;; others?
62 ;;
63 ;; Simple defsubsts often produce forms like
64 ;; (let ((v1 (f1)) (v2 (f2)) ...)
65 ;; (FN v1 v2 ...))
66 ;; It would be nice if we could optimize this to
67 ;; (FN (f1) (f2) ...)
68 ;; but we can't unless FN is dynamically-safe (it might be dynamically
69 ;; referring to the bindings that the lambda arglist established.)
70 ;; One of the uncountable lossages introduced by dynamic scope...
71 ;;
72 ;; Maybe there should be a control-structure that says "turn on
73 ;; fast-and-loose type-assumptive optimizations here." Then when
74 ;; we see a form like (car foo) we can from then on assume that
75 ;; the variable foo is of type cons, and optimize based on that.
76 ;; But, this won't win much because of (you guessed it) dynamic
77 ;; scope. Anything down the stack could change the value.
78 ;; (Another reason it doesn't work is that it is perfectly valid
79 ;; to call car with a null argument.) A better approach might
80 ;; be to allow type-specification of the form
81 ;; (put 'foo 'arg-types '(float (list integer) dynamic))
82 ;; (put 'foo 'result-type 'bool)
83 ;; It should be possible to have these types checked to a certain
84 ;; degree.
85 ;;
86 ;; collapse common subexpressions
87 ;;
88 ;; It would be nice if redundant sequences could be factored out as well,
89 ;; when they are known to have no side-effects:
90 ;; (list (+ a b c) (+ a b c)) --> a b add c add dup list-2
91 ;; but beware of traps like
92 ;; (cons (list x y) (list x y))
93 ;;
94 ;; Tail-recursion elimination is not really possible in Emacs Lisp.
95 ;; Tail-recursion elimination is almost always impossible when all variables
96 ;; have dynamic scope, but given that the "return" byteop requires the
97 ;; binding stack to be empty (rather than emptying it itself), there can be
98 ;; no truly tail-recursive Emacs Lisp functions that take any arguments or
99 ;; make any bindings.
100 ;;
101 ;; Here is an example of an Emacs Lisp function which could safely be
102 ;; byte-compiled tail-recursively:
103 ;;
104 ;; (defun tail-map (fn list)
105 ;; (cond (list
106 ;; (funcall fn (car list))
107 ;; (tail-map fn (cdr list)))))
108 ;;
109 ;; However, if there was even a single let-binding around the COND,
110 ;; it could not be byte-compiled, because there would be an "unbind"
111 ;; byte-op between the final "call" and "return." Adding a
112 ;; Bunbind_all byteop would fix this.
113 ;;
114 ;; (defun foo (x y z) ... (foo a b c))
115 ;; ... (const foo) (varref a) (varref b) (varref c) (call 3) END: (return)
116 ;; ... (varref a) (varbind x) (varref b) (varbind y) (varref c) (varbind z) (goto 0) END: (unbind-all) (return)
117 ;; ... (varref a) (varset x) (varref b) (varset y) (varref c) (varset z) (goto 0) END: (return)
118 ;;
119 ;; this also can be considered tail recursion:
120 ;;
121 ;; ... (const foo) (varref a) (call 1) (goto X) ... X: (return)
122 ;; could generalize this by doing the optimization
123 ;; (goto X) ... X: (return) --> (return)
124 ;;
125 ;; But this doesn't solve all of the problems: although by doing tail-
126 ;; recursion elimination in this way, the call-stack does not grow, the
127 ;; binding-stack would grow with each recursive step, and would eventually
128 ;; overflow. I don't believe there is any way around this without lexical
129 ;; scope.
130 ;;
131 ;; Wouldn't it be nice if Emacs Lisp had lexical scope.
132 ;;
133 ;; Idea: the form (lexical-scope) in a file means that the file may be
134 ;; compiled lexically. This proclamation is file-local. Then, within
135 ;; that file, "let" would establish lexical bindings, and "let-dynamic"
136 ;; would do things the old way. (Or we could use CL "declare" forms.)
137 ;; We'd have to notice defvars and defconsts, since those variables should
138 ;; always be dynamic, and attempting to do a lexical binding of them
139 ;; should simply do a dynamic binding instead.
140 ;; But! We need to know about variables that were not necessarily defvarred
141 ;; in the file being compiled (doing a boundp check isn't good enough.)
142 ;; Fdefvar() would have to be modified to add something to the plist.
143 ;;
144 ;; A major disadvantage of this scheme is that the interpreter and compiler
145 ;; would have different semantics for files compiled with (dynamic-scope).
146 ;; Since this would be a file-local optimization, there would be no way to
147 ;; modify the interpreter to obey this (unless the loader was hacked
148 ;; in some grody way, but that's a really bad idea.)
149
150 ;; Other things to consider:
151
152 ;; ;; Associative math should recognize subcalls to identical function:
153 ;; (disassemble (lambda (x) (+ (+ (foo) 1) (+ (bar) 2))))
154 ;; ;; This should generate the same as (1+ x) and (1- x)
155
156 ;; (disassemble (lambda (x) (cons (+ x 1) (- x 1))))
157 ;; ;; An awful lot of functions always return a non-nil value. If they're
158 ;; ;; error free also they may act as true-constants.
159
160 ;; (disassemble (lambda (x) (and (point) (foo))))
161 ;; ;; When
162 ;; ;; - all but one arguments to a function are constant
163 ;; ;; - the non-constant argument is an if-expression (cond-expression?)
164 ;; ;; then the outer function can be distributed. If the guarding
165 ;; ;; condition is side-effect-free [assignment-free] then the other
166 ;; ;; arguments may be any expressions. Since, however, the code size
167 ;; ;; can increase this way they should be "simple". Compare:
168
169 ;; (disassemble (lambda (x) (eq (if (point) 'a 'b) 'c)))
170 ;; (disassemble (lambda (x) (if (point) (eq 'a 'c) (eq 'b 'c))))
171
172 ;; ;; (car (cons A B)) -> (prog1 A B)
173 ;; (disassemble (lambda (x) (car (cons (foo) 42))))
174
175 ;; ;; (cdr (cons A B)) -> (progn A B)
176 ;; (disassemble (lambda (x) (cdr (cons 42 (foo)))))
177
178 ;; ;; (car (list A B ...)) -> (prog1 A B ...)
179 ;; (disassemble (lambda (x) (car (list (foo) 42 (bar)))))
180
181 ;; ;; (cdr (list A B ...)) -> (progn A (list B ...))
182 ;; (disassemble (lambda (x) (cdr (list 42 (foo) (bar)))))
183
184
185 ;;; Code:
186
187 (require 'bytecomp)
188
189 (defun byte-compile-log-lap-1 (format &rest args)
190 (if (aref byte-code-vector 0)
191 (error "The old version of the disassembler is loaded. Reload new-bytecomp as well"))
192 (byte-compile-log-1
193 (apply 'format format
194 (let (c a)
195 (mapcar (lambda (arg)
196 (if (not (consp arg))
197 (if (and (symbolp arg)
198 (string-match "^byte-" (symbol-name arg)))
199 (intern (substring (symbol-name arg) 5))
200 arg)
201 (if (integerp (setq c (car arg)))
202 (error "non-symbolic byte-op %s" c))
203 (if (eq c 'TAG)
204 (setq c arg)
205 (setq a (cond ((memq c byte-goto-ops)
206 (car (cdr (cdr arg))))
207 ((memq c byte-constref-ops)
208 (car (cdr arg)))
209 (t (cdr arg))))
210 (setq c (symbol-name c))
211 (if (string-match "^byte-." c)
212 (setq c (intern (substring c 5)))))
213 (if (eq c 'constant) (setq c 'const))
214 (if (and (eq (cdr arg) 0)
215 (not (memq c '(unbind call const))))
216 c
217 (format "(%s %s)" c a))))
218 args)))))
219
220 (defmacro byte-compile-log-lap (format-string &rest args)
221 `(and (memq byte-optimize-log '(t byte))
222 (byte-compile-log-lap-1 ,format-string ,@args)))
223
224 \f
225 ;;; byte-compile optimizers to support inlining
226
227 (put 'inline 'byte-optimizer 'byte-optimize-inline-handler)
228
229 (defun byte-optimize-inline-handler (form)
230 "byte-optimize-handler for the `inline' special-form."
231 (cons 'progn
232 (mapcar
233 (lambda (sexp)
234 (let ((f (car-safe sexp)))
235 (if (and (symbolp f)
236 (or (cdr (assq f byte-compile-function-environment))
237 (not (or (not (fboundp f))
238 (cdr (assq f byte-compile-macro-environment))
239 (and (consp (setq f (symbol-function f)))
240 (eq (car f) 'macro))
241 (subrp f)))))
242 (byte-compile-inline-expand sexp)
243 sexp)))
244 (cdr form))))
245
246
247 ;; Splice the given lap code into the current instruction stream.
248 ;; If it has any labels in it, you're responsible for making sure there
249 ;; are no collisions, and that byte-compile-tag-number is reasonable
250 ;; after this is spliced in. The provided list is destroyed.
251 (defun byte-inline-lapcode (lap)
252 (setq byte-compile-output (nconc (nreverse lap) byte-compile-output)))
253
254 (defun byte-compile-inline-expand (form)
255 (let* ((name (car form))
256 (fn (or (cdr (assq name byte-compile-function-environment))
257 (and (fboundp name) (symbol-function name)))))
258 (if (null fn)
259 (progn
260 (byte-compile-warn "attempt to inline `%s' before it was defined"
261 name)
262 form)
263 ;; else
264 (when (and (consp fn) (eq (car fn) 'autoload))
265 (load (nth 1 fn))
266 (setq fn (or (and (fboundp name) (symbol-function name))
267 (cdr (assq name byte-compile-function-environment)))))
268 (if (and (consp fn) (eq (car fn) 'autoload))
269 (error "File `%s' didn't define `%s'" (nth 1 fn) name))
270 (if (and (symbolp fn) (not (eq fn t)))
271 (byte-compile-inline-expand (cons fn (cdr form)))
272 (if (byte-code-function-p fn)
273 (let (string)
274 (fetch-bytecode fn)
275 (setq string (aref fn 1))
276 ;; Isn't it an error for `string' not to be unibyte?? --stef
277 (if (fboundp 'string-as-unibyte)
278 (setq string (string-as-unibyte string)))
279 (cons `(lambda ,(aref fn 0)
280 (byte-code ,string ,(aref fn 2) ,(aref fn 3)))
281 (cdr form)))
282 (if (eq (car-safe fn) 'lambda)
283 (cons fn (cdr form))
284 ;; Give up on inlining.
285 form))))))
286
287 ;; ((lambda ...) ...)
288 (defun byte-compile-unfold-lambda (form &optional name)
289 (or name (setq name "anonymous lambda"))
290 (let ((lambda (car form))
291 (values (cdr form)))
292 (if (byte-code-function-p lambda)
293 (setq lambda (list 'lambda (aref lambda 0)
294 (list 'byte-code (aref lambda 1)
295 (aref lambda 2) (aref lambda 3)))))
296 (let ((arglist (nth 1 lambda))
297 (body (cdr (cdr lambda)))
298 optionalp restp
299 bindings)
300 (if (and (stringp (car body)) (cdr body))
301 (setq body (cdr body)))
302 (if (and (consp (car body)) (eq 'interactive (car (car body))))
303 (setq body (cdr body)))
304 (while arglist
305 (cond ((eq (car arglist) '&optional)
306 ;; ok, I'll let this slide because funcall_lambda() does...
307 ;; (if optionalp (error "multiple &optional keywords in %s" name))
308 (if restp (error "&optional found after &rest in %s" name))
309 (if (null (cdr arglist))
310 (error "nothing after &optional in %s" name))
311 (setq optionalp t))
312 ((eq (car arglist) '&rest)
313 ;; ...but it is by no stretch of the imagination a reasonable
314 ;; thing that funcall_lambda() allows (&rest x y) and
315 ;; (&rest x &optional y) in arglists.
316 (if (null (cdr arglist))
317 (error "nothing after &rest in %s" name))
318 (if (cdr (cdr arglist))
319 (error "multiple vars after &rest in %s" name))
320 (setq restp t))
321 (restp
322 (setq bindings (cons (list (car arglist)
323 (and values (cons 'list values)))
324 bindings)
325 values nil))
326 ((and (not optionalp) (null values))
327 (byte-compile-warn "attempt to open-code `%s' with too few arguments" name)
328 (setq arglist nil values 'too-few))
329 (t
330 (setq bindings (cons (list (car arglist) (car values))
331 bindings)
332 values (cdr values))))
333 (setq arglist (cdr arglist)))
334 (if values
335 (progn
336 (or (eq values 'too-few)
337 (byte-compile-warn
338 "attempt to open-code `%s' with too many arguments" name))
339 form)
340
341 ;; The following leads to infinite recursion when loading a
342 ;; file containing `(defsubst f () (f))', and then trying to
343 ;; byte-compile that file.
344 ;(setq body (mapcar 'byte-optimize-form body)))
345
346 (let ((newform
347 (if bindings
348 (cons 'let (cons (nreverse bindings) body))
349 (cons 'progn body))))
350 (byte-compile-log " %s\t==>\t%s" form newform)
351 newform)))))
352
353 \f
354 ;;; implementing source-level optimizers
355
356 (defun byte-optimize-form-code-walker (form for-effect)
357 ;;
358 ;; For normal function calls, We can just mapcar the optimizer the cdr. But
359 ;; we need to have special knowledge of the syntax of the special forms
360 ;; like let and defun (that's why they're special forms :-). (Actually,
361 ;; the important aspect is that they are subrs that don't evaluate all of
362 ;; their args.)
363 ;;
364 (let ((fn (car-safe form))
365 tmp)
366 (cond ((not (consp form))
367 (if (not (and for-effect
368 (or byte-compile-delete-errors
369 (not (symbolp form))
370 (eq form t))))
371 form))
372 ((eq fn 'quote)
373 (if (cdr (cdr form))
374 (byte-compile-warn "malformed quote form: `%s'"
375 (prin1-to-string form)))
376 ;; map (quote nil) to nil to simplify optimizer logic.
377 ;; map quoted constants to nil if for-effect (just because).
378 (and (nth 1 form)
379 (not for-effect)
380 form))
381 ((or (byte-code-function-p fn)
382 (eq 'lambda (car-safe fn)))
383 (byte-compile-unfold-lambda form))
384 ((memq fn '(let let*))
385 ;; recursively enter the optimizer for the bindings and body
386 ;; of a let or let*. This for depth-firstness: forms that
387 ;; are more deeply nested are optimized first.
388 (cons fn
389 (cons
390 (mapcar (lambda (binding)
391 (if (symbolp binding)
392 binding
393 (if (cdr (cdr binding))
394 (byte-compile-warn "malformed let binding: `%s'"
395 (prin1-to-string binding)))
396 (list (car binding)
397 (byte-optimize-form (nth 1 binding) nil))))
398 (nth 1 form))
399 (byte-optimize-body (cdr (cdr form)) for-effect))))
400 ((eq fn 'cond)
401 (cons fn
402 (mapcar (lambda (clause)
403 (if (consp clause)
404 (cons
405 (byte-optimize-form (car clause) nil)
406 (byte-optimize-body (cdr clause) for-effect))
407 (byte-compile-warn "malformed cond form: `%s'"
408 (prin1-to-string clause))
409 clause))
410 (cdr form))))
411 ((eq fn 'progn)
412 ;; as an extra added bonus, this simplifies (progn <x>) --> <x>
413 (if (cdr (cdr form))
414 (progn
415 (setq tmp (byte-optimize-body (cdr form) for-effect))
416 (if (cdr tmp) (cons 'progn tmp) (car tmp)))
417 (byte-optimize-form (nth 1 form) for-effect)))
418 ((eq fn 'prog1)
419 (if (cdr (cdr form))
420 (cons 'prog1
421 (cons (byte-optimize-form (nth 1 form) for-effect)
422 (byte-optimize-body (cdr (cdr form)) t)))
423 (byte-optimize-form (nth 1 form) for-effect)))
424 ((eq fn 'prog2)
425 (cons 'prog2
426 (cons (byte-optimize-form (nth 1 form) t)
427 (cons (byte-optimize-form (nth 2 form) for-effect)
428 (byte-optimize-body (cdr (cdr (cdr form))) t)))))
429
430 ((memq fn '(save-excursion save-restriction save-current-buffer))
431 ;; those subrs which have an implicit progn; it's not quite good
432 ;; enough to treat these like normal function calls.
433 ;; This can turn (save-excursion ...) into (save-excursion) which
434 ;; will be optimized away in the lap-optimize pass.
435 (cons fn (byte-optimize-body (cdr form) for-effect)))
436
437 ((eq fn 'with-output-to-temp-buffer)
438 ;; this is just like the above, except for the first argument.
439 (cons fn
440 (cons
441 (byte-optimize-form (nth 1 form) nil)
442 (byte-optimize-body (cdr (cdr form)) for-effect))))
443
444 ((eq fn 'if)
445 (when (< (length form) 3)
446 (byte-compile-warn "too few arguments for `if'"))
447 (cons fn
448 (cons (byte-optimize-form (nth 1 form) nil)
449 (cons
450 (byte-optimize-form (nth 2 form) for-effect)
451 (byte-optimize-body (nthcdr 3 form) for-effect)))))
452
453 ((memq fn '(and or)) ; remember, and/or are control structures.
454 ;; take forms off the back until we can't any more.
455 ;; In the future it could conceivably be a problem that the
456 ;; subexpressions of these forms are optimized in the reverse
457 ;; order, but it's ok for now.
458 (if for-effect
459 (let ((backwards (reverse (cdr form))))
460 (while (and backwards
461 (null (setcar backwards
462 (byte-optimize-form (car backwards)
463 for-effect))))
464 (setq backwards (cdr backwards)))
465 (if (and (cdr form) (null backwards))
466 (byte-compile-log
467 " all subforms of %s called for effect; deleted" form))
468 (and backwards
469 (cons fn (nreverse (mapcar 'byte-optimize-form backwards)))))
470 (cons fn (mapcar 'byte-optimize-form (cdr form)))))
471
472 ((eq fn 'interactive)
473 (byte-compile-warn "misplaced interactive spec: `%s'"
474 (prin1-to-string form))
475 nil)
476
477 ((memq fn '(defun defmacro function
478 condition-case save-window-excursion))
479 ;; These forms are compiled as constants or by breaking out
480 ;; all the subexpressions and compiling them separately.
481 form)
482
483 ((eq fn 'unwind-protect)
484 ;; the "protected" part of an unwind-protect is compiled (and thus
485 ;; optimized) as a top-level form, so don't do it here. But the
486 ;; non-protected part has the same for-effect status as the
487 ;; unwind-protect itself. (The protected part is always for effect,
488 ;; but that isn't handled properly yet.)
489 (cons fn
490 (cons (byte-optimize-form (nth 1 form) for-effect)
491 (cdr (cdr form)))))
492
493 ((eq fn 'catch)
494 ;; the body of a catch is compiled (and thus optimized) as a
495 ;; top-level form, so don't do it here. The tag is never
496 ;; for-effect. The body should have the same for-effect status
497 ;; as the catch form itself, but that isn't handled properly yet.
498 (cons fn
499 (cons (byte-optimize-form (nth 1 form) nil)
500 (cdr (cdr form)))))
501
502 ((eq fn 'ignore)
503 ;; Don't treat the args to `ignore' as being
504 ;; computed for effect. We want to avoid the warnings
505 ;; that might occur if they were treated that way.
506 ;; However, don't actually bother calling `ignore'.
507 `(prog1 nil . ,(mapcar 'byte-optimize-form (cdr form))))
508
509 ;; If optimization is on, this is the only place that macros are
510 ;; expanded. If optimization is off, then macroexpansion happens
511 ;; in byte-compile-form. Otherwise, the macros are already expanded
512 ;; by the time that is reached.
513 ((not (eq form
514 (setq form (macroexpand form
515 byte-compile-macro-environment))))
516 (byte-optimize-form form for-effect))
517
518 ;; Support compiler macros as in cl.el.
519 ((and (fboundp 'compiler-macroexpand)
520 (symbolp (car-safe form))
521 (get (car-safe form) 'cl-compiler-macro)
522 (not (eq form
523 (with-no-warnings
524 (setq form (compiler-macroexpand form))))))
525 (byte-optimize-form form for-effect))
526
527 ((not (symbolp fn))
528 (byte-compile-warn "`%s' is a malformed function"
529 (prin1-to-string fn))
530 form)
531
532 ((and for-effect (setq tmp (get fn 'side-effect-free))
533 (or byte-compile-delete-errors
534 (eq tmp 'error-free)
535 ;; Detect the expansion of (pop foo).
536 ;; There is no need to compile the call to `car' there.
537 (and (eq fn 'car)
538 (eq (car-safe (cadr form)) 'prog1)
539 (let ((var (cadr (cadr form)))
540 (last (nth 2 (cadr form))))
541 (and (symbolp var)
542 (null (nthcdr 3 (cadr form)))
543 (eq (car-safe last) 'setq)
544 (eq (cadr last) var)
545 (eq (car-safe (nth 2 last)) 'cdr)
546 (eq (cadr (nth 2 last)) var))))
547 (progn
548 (byte-compile-warn "value returned from %s is unused"
549 (prin1-to-string form))
550 nil)))
551 (byte-compile-log " %s called for effect; deleted" fn)
552 ;; appending a nil here might not be necessary, but it can't hurt.
553 (byte-optimize-form
554 (cons 'progn (append (cdr form) '(nil))) t))
555
556 (t
557 ;; Otherwise, no args can be considered to be for-effect,
558 ;; even if the called function is for-effect, because we
559 ;; don't know anything about that function.
560 (let ((args (mapcar #'byte-optimize-form (cdr form))))
561 (if (and (get fn 'pure)
562 (byte-optimize-all-constp args))
563 (list 'quote (apply fn (mapcar #'eval args)))
564 (cons fn args)))))))
565
566 (defun byte-optimize-all-constp (list)
567 "Non-nil if all elements of LIST satisfy `byte-compile-constp'."
568 (let ((constant t))
569 (while (and list constant)
570 (unless (byte-compile-constp (car list))
571 (setq constant nil))
572 (setq list (cdr list)))
573 constant))
574
575 (defun byte-optimize-form (form &optional for-effect)
576 "The source-level pass of the optimizer."
577 ;;
578 ;; First, optimize all sub-forms of this one.
579 (setq form (byte-optimize-form-code-walker form for-effect))
580 ;;
581 ;; after optimizing all subforms, optimize this form until it doesn't
582 ;; optimize any further. This means that some forms will be passed through
583 ;; the optimizer many times, but that's necessary to make the for-effect
584 ;; processing do as much as possible.
585 ;;
586 (let (opt new)
587 (if (and (consp form)
588 (symbolp (car form))
589 (or (and for-effect
590 ;; we don't have any of these yet, but we might.
591 (setq opt (get (car form) 'byte-for-effect-optimizer)))
592 (setq opt (get (car form) 'byte-optimizer)))
593 (not (eq form (setq new (funcall opt form)))))
594 (progn
595 ;; (if (equal form new) (error "bogus optimizer -- %s" opt))
596 (byte-compile-log " %s\t==>\t%s" form new)
597 (setq new (byte-optimize-form new for-effect))
598 new)
599 form)))
600
601
602 (defun byte-optimize-body (forms all-for-effect)
603 ;; optimize the cdr of a progn or implicit progn; all forms is a list of
604 ;; forms, all but the last of which are optimized with the assumption that
605 ;; they are being called for effect. the last is for-effect as well if
606 ;; all-for-effect is true. returns a new list of forms.
607 (let ((rest forms)
608 (result nil)
609 fe new)
610 (while rest
611 (setq fe (or all-for-effect (cdr rest)))
612 (setq new (and (car rest) (byte-optimize-form (car rest) fe)))
613 (if (or new (not fe))
614 (setq result (cons new result)))
615 (setq rest (cdr rest)))
616 (nreverse result)))
617
618 \f
619 ;; some source-level optimizers
620 ;;
621 ;; when writing optimizers, be VERY careful that the optimizer returns
622 ;; something not EQ to its argument if and ONLY if it has made a change.
623 ;; This implies that you cannot simply destructively modify the list;
624 ;; you must return something not EQ to it if you make an optimization.
625 ;;
626 ;; It is now safe to optimize code such that it introduces new bindings.
627
628 ;; I'd like this to be a defsubst, but let's not be self-referential...
629 (defmacro byte-compile-trueconstp (form)
630 ;; Returns non-nil if FORM is a non-nil constant.
631 `(cond ((consp ,form) (eq (car ,form) 'quote))
632 ((not (symbolp ,form)))
633 ((eq ,form t))
634 ((keywordp ,form))))
635
636 ;; If the function is being called with constant numeric args,
637 ;; evaluate as much as possible at compile-time. This optimizer
638 ;; assumes that the function is associative, like + or *.
639 (defun byte-optimize-associative-math (form)
640 (let ((args nil)
641 (constants nil)
642 (rest (cdr form)))
643 (while rest
644 (if (numberp (car rest))
645 (setq constants (cons (car rest) constants))
646 (setq args (cons (car rest) args)))
647 (setq rest (cdr rest)))
648 (if (cdr constants)
649 (if args
650 (list (car form)
651 (apply (car form) constants)
652 (if (cdr args)
653 (cons (car form) (nreverse args))
654 (car args)))
655 (apply (car form) constants))
656 form)))
657
658 ;; If the function is being called with constant numeric args,
659 ;; evaluate as much as possible at compile-time. This optimizer
660 ;; assumes that the function satisfies
661 ;; (op x1 x2 ... xn) == (op ...(op (op x1 x2) x3) ...xn)
662 ;; like - and /.
663 (defun byte-optimize-nonassociative-math (form)
664 (if (or (not (numberp (car (cdr form))))
665 (not (numberp (car (cdr (cdr form))))))
666 form
667 (let ((constant (car (cdr form)))
668 (rest (cdr (cdr form))))
669 (while (numberp (car rest))
670 (setq constant (funcall (car form) constant (car rest))
671 rest (cdr rest)))
672 (if rest
673 (cons (car form) (cons constant rest))
674 constant))))
675
676 ;;(defun byte-optimize-associative-two-args-math (form)
677 ;; (setq form (byte-optimize-associative-math form))
678 ;; (if (consp form)
679 ;; (byte-optimize-two-args-left form)
680 ;; form))
681
682 ;;(defun byte-optimize-nonassociative-two-args-math (form)
683 ;; (setq form (byte-optimize-nonassociative-math form))
684 ;; (if (consp form)
685 ;; (byte-optimize-two-args-right form)
686 ;; form))
687
688 (defun byte-optimize-approx-equal (x y)
689 (<= (* (abs (- x y)) 100) (abs (+ x y))))
690
691 ;; Collect all the constants from FORM, after the STARTth arg,
692 ;; and apply FUN to them to make one argument at the end.
693 ;; For functions that can handle floats, that optimization
694 ;; can be incorrect because reordering can cause an overflow
695 ;; that would otherwise be avoided by encountering an arg that is a float.
696 ;; We avoid this problem by (1) not moving float constants and
697 ;; (2) not moving anything if it would cause an overflow.
698 (defun byte-optimize-delay-constants-math (form start fun)
699 ;; Merge all FORM's constants from number START, call FUN on them
700 ;; and put the result at the end.
701 (let ((rest (nthcdr (1- start) form))
702 (orig form)
703 ;; t means we must check for overflow.
704 (overflow (memq fun '(+ *))))
705 (while (cdr (setq rest (cdr rest)))
706 (if (integerp (car rest))
707 (let (constants)
708 (setq form (copy-sequence form)
709 rest (nthcdr (1- start) form))
710 (while (setq rest (cdr rest))
711 (cond ((integerp (car rest))
712 (setq constants (cons (car rest) constants))
713 (setcar rest nil))))
714 ;; If necessary, check now for overflow
715 ;; that might be caused by reordering.
716 (if (and overflow
717 ;; We have overflow if the result of doing the arithmetic
718 ;; on floats is not even close to the result
719 ;; of doing it on integers.
720 (not (byte-optimize-approx-equal
721 (apply fun (mapcar 'float constants))
722 (float (apply fun constants)))))
723 (setq form orig)
724 (setq form (nconc (delq nil form)
725 (list (apply fun (nreverse constants)))))))))
726 form))
727
728 (defun byte-optimize-plus (form)
729 (setq form (byte-optimize-delay-constants-math form 1 '+))
730 (if (memq 0 form) (setq form (delq 0 (copy-sequence form))))
731 ;;(setq form (byte-optimize-associative-two-args-math form))
732 (cond ((null (cdr form))
733 (condition-case ()
734 (eval form)
735 (error form)))
736 ;;; It is not safe to delete the function entirely
737 ;;; (actually, it would be safe if we know the sole arg
738 ;;; is not a marker).
739 ;;; ((null (cdr (cdr form))) (nth 1 form))
740 ((null (cddr form))
741 (if (numberp (nth 1 form))
742 (nth 1 form)
743 form))
744 ((and (null (nthcdr 3 form))
745 (or (memq (nth 1 form) '(1 -1))
746 (memq (nth 2 form) '(1 -1))))
747 ;; Optimize (+ x 1) into (1+ x) and (+ x -1) into (1- x).
748 (let ((integer
749 (if (memq (nth 1 form) '(1 -1))
750 (nth 1 form)
751 (nth 2 form)))
752 (other
753 (if (memq (nth 1 form) '(1 -1))
754 (nth 2 form)
755 (nth 1 form))))
756 (list (if (eq integer 1) '1+ '1-)
757 other)))
758 (t form)))
759
760 (defun byte-optimize-minus (form)
761 ;; Put constants at the end, except the last constant.
762 (setq form (byte-optimize-delay-constants-math form 2 '+))
763 ;; Now only first and last element can be a number.
764 (let ((last (car (reverse (nthcdr 3 form)))))
765 (cond ((eq 0 last)
766 ;; (- x y ... 0) --> (- x y ...)
767 (setq form (copy-sequence form))
768 (setcdr (cdr (cdr form)) (delq 0 (nthcdr 3 form))))
769 ((equal (nthcdr 2 form) '(1))
770 (setq form (list '1- (nth 1 form))))
771 ((equal (nthcdr 2 form) '(-1))
772 (setq form (list '1+ (nth 1 form))))
773 ;; If form is (- CONST foo... CONST), merge first and last.
774 ((and (numberp (nth 1 form))
775 (numberp last))
776 (setq form (nconc (list '- (- (nth 1 form) last) (nth 2 form))
777 (delq last (copy-sequence (nthcdr 3 form))))))))
778 ;;; It is not safe to delete the function entirely
779 ;;; (actually, it would be safe if we know the sole arg
780 ;;; is not a marker).
781 ;;; (if (eq (nth 2 form) 0)
782 ;;; (nth 1 form) ; (- x 0) --> x
783 (byte-optimize-predicate
784 (if (and (null (cdr (cdr (cdr form))))
785 (eq (nth 1 form) 0)) ; (- 0 x) --> (- x)
786 (cons (car form) (cdr (cdr form)))
787 form))
788 ;;; )
789 )
790
791 (defun byte-optimize-multiply (form)
792 (setq form (byte-optimize-delay-constants-math form 1 '*))
793 ;; If there is a constant in FORM, it is now the last element.
794 (cond ((null (cdr form)) 1)
795 ;;; It is not safe to delete the function entirely
796 ;;; (actually, it would be safe if we know the sole arg
797 ;;; is not a marker or if it appears in other arithmetic).
798 ;;; ((null (cdr (cdr form))) (nth 1 form))
799 ((let ((last (car (reverse form))))
800 (cond ((eq 0 last) (cons 'progn (cdr form)))
801 ((eq 1 last) (delq 1 (copy-sequence form)))
802 ((eq -1 last) (list '- (delq -1 (copy-sequence form))))
803 ((and (eq 2 last)
804 (memq t (mapcar 'symbolp (cdr form))))
805 (prog1 (setq form (delq 2 (copy-sequence form)))
806 (while (not (symbolp (car (setq form (cdr form))))))
807 (setcar form (list '+ (car form) (car form)))))
808 (form))))))
809
810 (defsubst byte-compile-butlast (form)
811 (nreverse (cdr (reverse form))))
812
813 (defun byte-optimize-divide (form)
814 (setq form (byte-optimize-delay-constants-math form 2 '*))
815 (let ((last (car (reverse (cdr (cdr form))))))
816 (if (numberp last)
817 (cond ((= (length form) 3)
818 (if (and (numberp (nth 1 form))
819 (not (zerop last))
820 (condition-case nil
821 (/ (nth 1 form) last)
822 (error nil)))
823 (setq form (list 'progn (/ (nth 1 form) last)))))
824 ((= last 1)
825 (setq form (byte-compile-butlast form)))
826 ((numberp (nth 1 form))
827 (setq form (cons (car form)
828 (cons (/ (nth 1 form) last)
829 (byte-compile-butlast (cdr (cdr form)))))
830 last nil))))
831 (cond
832 ;;; ((null (cdr (cdr form)))
833 ;;; (nth 1 form))
834 ((eq (nth 1 form) 0)
835 (append '(progn) (cdr (cdr form)) '(0)))
836 ((eq last -1)
837 (list '- (if (nthcdr 3 form)
838 (byte-compile-butlast form)
839 (nth 1 form))))
840 (form))))
841
842 (defun byte-optimize-logmumble (form)
843 (setq form (byte-optimize-delay-constants-math form 1 (car form)))
844 (byte-optimize-predicate
845 (cond ((memq 0 form)
846 (setq form (if (eq (car form) 'logand)
847 (cons 'progn (cdr form))
848 (delq 0 (copy-sequence form)))))
849 ((and (eq (car-safe form) 'logior)
850 (memq -1 form))
851 (cons 'progn (cdr form)))
852 (form))))
853
854
855 (defun byte-optimize-binary-predicate (form)
856 (if (byte-compile-constp (nth 1 form))
857 (if (byte-compile-constp (nth 2 form))
858 (condition-case ()
859 (list 'quote (eval form))
860 (error form))
861 ;; This can enable some lapcode optimizations.
862 (list (car form) (nth 2 form) (nth 1 form)))
863 form))
864
865 (defun byte-optimize-predicate (form)
866 (let ((ok t)
867 (rest (cdr form)))
868 (while (and rest ok)
869 (setq ok (byte-compile-constp (car rest))
870 rest (cdr rest)))
871 (if ok
872 (condition-case ()
873 (list 'quote (eval form))
874 (error form))
875 form)))
876
877 (defun byte-optimize-identity (form)
878 (if (and (cdr form) (null (cdr (cdr form))))
879 (nth 1 form)
880 (byte-compile-warn "identity called with %d arg%s, but requires 1"
881 (length (cdr form))
882 (if (= 1 (length (cdr form))) "" "s"))
883 form))
884
885 (put 'identity 'byte-optimizer 'byte-optimize-identity)
886
887 (put '+ 'byte-optimizer 'byte-optimize-plus)
888 (put '* 'byte-optimizer 'byte-optimize-multiply)
889 (put '- 'byte-optimizer 'byte-optimize-minus)
890 (put '/ 'byte-optimizer 'byte-optimize-divide)
891 (put 'max 'byte-optimizer 'byte-optimize-associative-math)
892 (put 'min 'byte-optimizer 'byte-optimize-associative-math)
893
894 (put '= 'byte-optimizer 'byte-optimize-binary-predicate)
895 (put 'eq 'byte-optimizer 'byte-optimize-binary-predicate)
896 (put 'equal 'byte-optimizer 'byte-optimize-binary-predicate)
897 (put 'string= 'byte-optimizer 'byte-optimize-binary-predicate)
898 (put 'string-equal 'byte-optimizer 'byte-optimize-binary-predicate)
899
900 (put '< 'byte-optimizer 'byte-optimize-predicate)
901 (put '> 'byte-optimizer 'byte-optimize-predicate)
902 (put '<= 'byte-optimizer 'byte-optimize-predicate)
903 (put '>= 'byte-optimizer 'byte-optimize-predicate)
904 (put '1+ 'byte-optimizer 'byte-optimize-predicate)
905 (put '1- 'byte-optimizer 'byte-optimize-predicate)
906 (put 'not 'byte-optimizer 'byte-optimize-predicate)
907 (put 'null 'byte-optimizer 'byte-optimize-predicate)
908 (put 'memq 'byte-optimizer 'byte-optimize-predicate)
909 (put 'consp 'byte-optimizer 'byte-optimize-predicate)
910 (put 'listp 'byte-optimizer 'byte-optimize-predicate)
911 (put 'symbolp 'byte-optimizer 'byte-optimize-predicate)
912 (put 'stringp 'byte-optimizer 'byte-optimize-predicate)
913 (put 'string< 'byte-optimizer 'byte-optimize-predicate)
914 (put 'string-lessp 'byte-optimizer 'byte-optimize-predicate)
915
916 (put 'logand 'byte-optimizer 'byte-optimize-logmumble)
917 (put 'logior 'byte-optimizer 'byte-optimize-logmumble)
918 (put 'logxor 'byte-optimizer 'byte-optimize-logmumble)
919 (put 'lognot 'byte-optimizer 'byte-optimize-predicate)
920
921 (put 'car 'byte-optimizer 'byte-optimize-predicate)
922 (put 'cdr 'byte-optimizer 'byte-optimize-predicate)
923 (put 'car-safe 'byte-optimizer 'byte-optimize-predicate)
924 (put 'cdr-safe 'byte-optimizer 'byte-optimize-predicate)
925
926
927 ;; I'm not convinced that this is necessary. Doesn't the optimizer loop
928 ;; take care of this? - Jamie
929 ;; I think this may some times be necessary to reduce ie (quote 5) to 5,
930 ;; so arithmetic optimizers recognize the numeric constant. - Hallvard
931 (put 'quote 'byte-optimizer 'byte-optimize-quote)
932 (defun byte-optimize-quote (form)
933 (if (or (consp (nth 1 form))
934 (and (symbolp (nth 1 form))
935 (not (byte-compile-const-symbol-p form))))
936 form
937 (nth 1 form)))
938
939 (defun byte-optimize-zerop (form)
940 (cond ((numberp (nth 1 form))
941 (eval form))
942 (byte-compile-delete-errors
943 (list '= (nth 1 form) 0))
944 (form)))
945
946 (put 'zerop 'byte-optimizer 'byte-optimize-zerop)
947
948 (defun byte-optimize-and (form)
949 ;; Simplify if less than 2 args.
950 ;; if there is a literal nil in the args to `and', throw it and following
951 ;; forms away, and surround the `and' with (progn ... nil).
952 (cond ((null (cdr form)))
953 ((memq nil form)
954 (list 'progn
955 (byte-optimize-and
956 (prog1 (setq form (copy-sequence form))
957 (while (nth 1 form)
958 (setq form (cdr form)))
959 (setcdr form nil)))
960 nil))
961 ((null (cdr (cdr form)))
962 (nth 1 form))
963 ((byte-optimize-predicate form))))
964
965 (defun byte-optimize-or (form)
966 ;; Throw away nil's, and simplify if less than 2 args.
967 ;; If there is a literal non-nil constant in the args to `or', throw away all
968 ;; following forms.
969 (if (memq nil form)
970 (setq form (delq nil (copy-sequence form))))
971 (let ((rest form))
972 (while (cdr (setq rest (cdr rest)))
973 (if (byte-compile-trueconstp (car rest))
974 (setq form (copy-sequence form)
975 rest (setcdr (memq (car rest) form) nil))))
976 (if (cdr (cdr form))
977 (byte-optimize-predicate form)
978 (nth 1 form))))
979
980 (defun byte-optimize-cond (form)
981 ;; if any clauses have a literal nil as their test, throw them away.
982 ;; if any clause has a literal non-nil constant as its test, throw
983 ;; away all following clauses.
984 (let (rest)
985 ;; This must be first, to reduce (cond (t ...) (nil)) to (progn t ...)
986 (while (setq rest (assq nil (cdr form)))
987 (setq form (delq rest (copy-sequence form))))
988 (if (memq nil (cdr form))
989 (setq form (delq nil (copy-sequence form))))
990 (setq rest form)
991 (while (setq rest (cdr rest))
992 (cond ((byte-compile-trueconstp (car-safe (car rest)))
993 (cond ((eq rest (cdr form))
994 (setq form
995 (if (cdr (car rest))
996 (if (cdr (cdr (car rest)))
997 (cons 'progn (cdr (car rest)))
998 (nth 1 (car rest)))
999 (car (car rest)))))
1000 ((cdr rest)
1001 (setq form (copy-sequence form))
1002 (setcdr (memq (car rest) form) nil)))
1003 (setq rest nil)))))
1004 ;;
1005 ;; Turn (cond (( <x> )) ... ) into (or <x> (cond ... ))
1006 (if (eq 'cond (car-safe form))
1007 (let ((clauses (cdr form)))
1008 (if (and (consp (car clauses))
1009 (null (cdr (car clauses))))
1010 (list 'or (car (car clauses))
1011 (byte-optimize-cond
1012 (cons (car form) (cdr (cdr form)))))
1013 form))
1014 form))
1015
1016 (defun byte-optimize-if (form)
1017 ;; (if (progn <insts> <test>) <rest>) ==> (progn <insts> (if <test> <rest>))
1018 ;; (if <true-constant> <then> <else...>) ==> <then>
1019 ;; (if <false-constant> <then> <else...>) ==> (progn <else...>)
1020 ;; (if <test> nil <else...>) ==> (if (not <test>) (progn <else...>))
1021 ;; (if <test> <then> nil) ==> (if <test> <then>)
1022 (let ((clause (nth 1 form)))
1023 (cond ((and (eq (car-safe clause) 'progn)
1024 ;; `clause' is a proper list.
1025 (null (cdr (last clause))))
1026 (if (null (cddr clause))
1027 ;; A trivial `progn'.
1028 (byte-optimize-if `(if ,(cadr clause) ,@(nthcdr 2 form)))
1029 (nconc (butlast clause)
1030 (list
1031 (byte-optimize-if
1032 `(if ,(car (last clause)) ,@(nthcdr 2 form)))))))
1033 ((byte-compile-trueconstp clause)
1034 (nth 2 form))
1035 ((null clause)
1036 (if (nthcdr 4 form)
1037 (cons 'progn (nthcdr 3 form))
1038 (nth 3 form)))
1039 ((nth 2 form)
1040 (if (equal '(nil) (nthcdr 3 form))
1041 (list 'if clause (nth 2 form))
1042 form))
1043 ((or (nth 3 form) (nthcdr 4 form))
1044 (list 'if
1045 ;; Don't make a double negative;
1046 ;; instead, take away the one that is there.
1047 (if (and (consp clause) (memq (car clause) '(not null))
1048 (= (length clause) 2)) ; (not xxxx) or (not (xxxx))
1049 (nth 1 clause)
1050 (list 'not clause))
1051 (if (nthcdr 4 form)
1052 (cons 'progn (nthcdr 3 form))
1053 (nth 3 form))))
1054 (t
1055 (list 'progn clause nil)))))
1056
1057 (defun byte-optimize-while (form)
1058 (when (< (length form) 2)
1059 (byte-compile-warn "too few arguments for `while'"))
1060 (if (nth 1 form)
1061 form))
1062
1063 (put 'and 'byte-optimizer 'byte-optimize-and)
1064 (put 'or 'byte-optimizer 'byte-optimize-or)
1065 (put 'cond 'byte-optimizer 'byte-optimize-cond)
1066 (put 'if 'byte-optimizer 'byte-optimize-if)
1067 (put 'while 'byte-optimizer 'byte-optimize-while)
1068
1069 ;; byte-compile-negation-optimizer lives in bytecomp.el
1070 (put '/= 'byte-optimizer 'byte-compile-negation-optimizer)
1071 (put 'atom 'byte-optimizer 'byte-compile-negation-optimizer)
1072 (put 'nlistp 'byte-optimizer 'byte-compile-negation-optimizer)
1073
1074
1075 (defun byte-optimize-funcall (form)
1076 ;; (funcall (lambda ...) ...) ==> ((lambda ...) ...)
1077 ;; (funcall foo ...) ==> (foo ...)
1078 (let ((fn (nth 1 form)))
1079 (if (memq (car-safe fn) '(quote function))
1080 (cons (nth 1 fn) (cdr (cdr form)))
1081 form)))
1082
1083 (defun byte-optimize-apply (form)
1084 ;; If the last arg is a literal constant, turn this into a funcall.
1085 ;; The funcall optimizer can then transform (funcall 'foo ...) -> (foo ...).
1086 (let ((fn (nth 1 form))
1087 (last (nth (1- (length form)) form))) ; I think this really is fastest
1088 (or (if (or (null last)
1089 (eq (car-safe last) 'quote))
1090 (if (listp (nth 1 last))
1091 (let ((butlast (nreverse (cdr (reverse (cdr (cdr form)))))))
1092 (nconc (list 'funcall fn) butlast
1093 (mapcar (lambda (x) (list 'quote x)) (nth 1 last))))
1094 (byte-compile-warn
1095 "last arg to apply can't be a literal atom: `%s'"
1096 (prin1-to-string last))
1097 nil))
1098 form)))
1099
1100 (put 'funcall 'byte-optimizer 'byte-optimize-funcall)
1101 (put 'apply 'byte-optimizer 'byte-optimize-apply)
1102
1103
1104 (put 'let 'byte-optimizer 'byte-optimize-letX)
1105 (put 'let* 'byte-optimizer 'byte-optimize-letX)
1106 (defun byte-optimize-letX (form)
1107 (cond ((null (nth 1 form))
1108 ;; No bindings
1109 (cons 'progn (cdr (cdr form))))
1110 ((or (nth 2 form) (nthcdr 3 form))
1111 form)
1112 ;; The body is nil
1113 ((eq (car form) 'let)
1114 (append '(progn) (mapcar 'car-safe (mapcar 'cdr-safe (nth 1 form)))
1115 '(nil)))
1116 (t
1117 (let ((binds (reverse (nth 1 form))))
1118 (list 'let* (reverse (cdr binds)) (nth 1 (car binds)) nil)))))
1119
1120
1121 (put 'nth 'byte-optimizer 'byte-optimize-nth)
1122 (defun byte-optimize-nth (form)
1123 (if (= (safe-length form) 3)
1124 (if (memq (nth 1 form) '(0 1))
1125 (list 'car (if (zerop (nth 1 form))
1126 (nth 2 form)
1127 (list 'cdr (nth 2 form))))
1128 (byte-optimize-predicate form))
1129 form))
1130
1131 (put 'nthcdr 'byte-optimizer 'byte-optimize-nthcdr)
1132 (defun byte-optimize-nthcdr (form)
1133 (if (= (safe-length form) 3)
1134 (if (memq (nth 1 form) '(0 1 2))
1135 (let ((count (nth 1 form)))
1136 (setq form (nth 2 form))
1137 (while (>= (setq count (1- count)) 0)
1138 (setq form (list 'cdr form)))
1139 form)
1140 (byte-optimize-predicate form))
1141 form))
1142
1143 ;; Fixme: delete-char -> delete-region (byte-coded)
1144 ;; optimize string-as-unibyte, string-as-multibyte, string-make-unibyte,
1145 ;; string-make-multibyte for constant args.
1146
1147 (put 'featurep 'byte-optimizer 'byte-optimize-featurep)
1148 (defun byte-optimize-featurep (form)
1149 ;; Emacs-21's byte-code doesn't run under XEmacs or SXEmacs anyway, so we
1150 ;; can safely optimize away this test.
1151 (if (member (cdr-safe form) '((quote xemacs) (quote sxemacs)))
1152 nil
1153 form))
1154
1155 (put 'set 'byte-optimizer 'byte-optimize-set)
1156 (defun byte-optimize-set (form)
1157 (let ((var (car-safe (cdr-safe form))))
1158 (cond
1159 ((and (eq (car-safe var) 'quote) (consp (cdr var)))
1160 `(setq ,(cadr var) ,@(cddr form)))
1161 ((and (eq (car-safe var) 'make-local-variable)
1162 (eq (car-safe (setq var (car-safe (cdr var)))) 'quote)
1163 (consp (cdr var)))
1164 `(progn ,(cadr form) (setq ,(cadr var) ,@(cddr form))))
1165 (t form))))
1166 \f
1167 ;; enumerating those functions which need not be called if the returned
1168 ;; value is not used. That is, something like
1169 ;; (progn (list (something-with-side-effects) (yow))
1170 ;; (foo))
1171 ;; may safely be turned into
1172 ;; (progn (progn (something-with-side-effects) (yow))
1173 ;; (foo))
1174 ;; Further optimizations will turn (progn (list 1 2 3) 'foo) into 'foo.
1175
1176 ;; Some of these functions have the side effect of allocating memory
1177 ;; and it would be incorrect to replace two calls with one.
1178 ;; But we don't try to do those kinds of optimizations,
1179 ;; so it is safe to list such functions here.
1180 ;; Some of these functions return values that depend on environment
1181 ;; state, so that constant folding them would be wrong,
1182 ;; but we don't do constant folding based on this list.
1183
1184 ;; However, at present the only optimization we normally do
1185 ;; is delete calls that need not occur, and we only do that
1186 ;; with the error-free functions.
1187
1188 ;; I wonder if I missed any :-\)
1189 (let ((side-effect-free-fns
1190 '(% * + - / /= 1+ 1- < <= = > >= abs acos append aref ash asin atan
1191 assoc assq
1192 boundp buffer-file-name buffer-local-variables buffer-modified-p
1193 buffer-substring byte-code-function-p
1194 capitalize car-less-than-car car cdr ceiling char-after char-before
1195 char-equal char-to-string char-width
1196 compare-strings concat coordinates-in-window-p
1197 copy-alist copy-sequence copy-marker cos count-lines
1198 decdoe-char
1199 decode-time default-boundp default-value documentation downcase
1200 elt encode-char exp expt encode-time error-message-string
1201 fboundp fceiling featurep ffloor
1202 file-directory-p file-exists-p file-locked-p file-name-absolute-p
1203 file-newer-than-file-p file-readable-p file-symlink-p file-writable-p
1204 float float-time floor format format-time-string frame-visible-p
1205 fround ftruncate
1206 get gethash get-buffer get-buffer-window getenv get-file-buffer
1207 hash-table-count
1208 int-to-string intern-soft
1209 keymap-parent
1210 length local-variable-if-set-p local-variable-p log log10 logand
1211 logb logior lognot logxor lsh langinfo
1212 make-list make-string make-symbol
1213 marker-buffer max member memq min mod multibyte-char-to-unibyte
1214 next-window nth nthcdr number-to-string
1215 parse-colon-path plist-get plist-member
1216 prefix-numeric-value previous-window prin1-to-string propertize
1217 radians-to-degrees rassq rassoc read-from-string regexp-quote
1218 region-beginning region-end reverse round
1219 sin sqrt string string< string= string-equal string-lessp string-to-char
1220 string-to-int string-to-number substring sxhash symbol-function
1221 symbol-name symbol-plist symbol-value string-make-unibyte
1222 string-make-multibyte string-as-multibyte string-as-unibyte
1223 string-to-multibyte
1224 tan truncate
1225 unibyte-char-to-multibyte upcase user-full-name
1226 user-login-name user-original-login-name user-variable-p
1227 vconcat
1228 window-buffer window-dedicated-p window-edges window-height
1229 window-hscroll window-minibuffer-p window-width
1230 zerop))
1231 (side-effect-and-error-free-fns
1232 '(arrayp atom
1233 bobp bolp bool-vector-p
1234 buffer-end buffer-list buffer-size buffer-string bufferp
1235 car-safe case-table-p cdr-safe char-or-string-p characterp
1236 charsetp commandp cons consp
1237 current-buffer current-global-map current-indentation
1238 current-local-map current-minor-mode-maps current-time
1239 current-time-string current-time-zone
1240 eobp eolp eq equal eventp
1241 floatp following-char framep
1242 get-largest-window get-lru-window
1243 hash-table-p
1244 identity ignore integerp integer-or-marker-p interactive-p
1245 invocation-directory invocation-name
1246 keymapp
1247 line-beginning-position line-end-position list listp
1248 make-marker mark mark-marker markerp max-char
1249 memory-limit minibuffer-window
1250 mouse-movement-p
1251 natnump nlistp not null number-or-marker-p numberp
1252 one-window-p overlayp
1253 point point-marker point-min point-max preceding-char primary-charset
1254 processp
1255 recent-keys recursion-depth
1256 safe-length selected-frame selected-window sequencep
1257 standard-case-table standard-syntax-table stringp subrp symbolp
1258 syntax-table syntax-table-p
1259 this-command-keys this-command-keys-vector this-single-command-keys
1260 this-single-command-raw-keys
1261 user-real-login-name user-real-uid user-uid
1262 vector vectorp visible-frame-list
1263 wholenump window-configuration-p window-live-p windowp)))
1264 (while side-effect-free-fns
1265 (put (car side-effect-free-fns) 'side-effect-free t)
1266 (setq side-effect-free-fns (cdr side-effect-free-fns)))
1267 (while side-effect-and-error-free-fns
1268 (put (car side-effect-and-error-free-fns) 'side-effect-free 'error-free)
1269 (setq side-effect-and-error-free-fns (cdr side-effect-and-error-free-fns)))
1270 nil)
1271
1272 \f
1273 ;; pure functions are side-effect free functions whose values depend
1274 ;; only on their arguments. For these functions, calls with constant
1275 ;; arguments can be evaluated at compile time. This may shift run time
1276 ;; errors to compile time.
1277
1278 (let ((pure-fns
1279 '(concat symbol-name regexp-opt regexp-quote string-to-syntax)))
1280 (while pure-fns
1281 (put (car pure-fns) 'pure t)
1282 (setq pure-fns (cdr pure-fns)))
1283 nil)
1284
1285 (defun byte-compile-splice-in-already-compiled-code (form)
1286 ;; form is (byte-code "..." [...] n)
1287 (if (not (memq byte-optimize '(t lap)))
1288 (byte-compile-normal-call form)
1289 (byte-inline-lapcode
1290 (byte-decompile-bytecode-1 (nth 1 form) (nth 2 form) t))
1291 (setq byte-compile-maxdepth (max (+ byte-compile-depth (nth 3 form))
1292 byte-compile-maxdepth))
1293 (setq byte-compile-depth (1+ byte-compile-depth))))
1294
1295 (put 'byte-code 'byte-compile 'byte-compile-splice-in-already-compiled-code)
1296
1297 \f
1298 (defconst byte-constref-ops
1299 '(byte-constant byte-constant2 byte-varref byte-varset byte-varbind))
1300
1301 ;; This function extracts the bitfields from variable-length opcodes.
1302 ;; Originally defined in disass.el (which no longer uses it.)
1303
1304 (defun disassemble-offset ()
1305 "Don't call this!"
1306 ;; fetch and return the offset for the current opcode.
1307 ;; return nil if this opcode has no offset
1308 ;; OP, PTR and BYTES are used and set dynamically
1309 (defvar op)
1310 (defvar ptr)
1311 (defvar bytes)
1312 (cond ((< op byte-nth)
1313 (let ((tem (logand op 7)))
1314 (setq op (logand op 248))
1315 (cond ((eq tem 6)
1316 (setq ptr (1+ ptr)) ;offset in next byte
1317 (aref bytes ptr))
1318 ((eq tem 7)
1319 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1320 (+ (aref bytes ptr)
1321 (progn (setq ptr (1+ ptr))
1322 (lsh (aref bytes ptr) 8))))
1323 (t tem)))) ;offset was in opcode
1324 ((>= op byte-constant)
1325 (prog1 (- op byte-constant) ;offset in opcode
1326 (setq op byte-constant)))
1327 ((and (>= op byte-constant2)
1328 (<= op byte-goto-if-not-nil-else-pop))
1329 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1330 (+ (aref bytes ptr)
1331 (progn (setq ptr (1+ ptr))
1332 (lsh (aref bytes ptr) 8))))
1333 ((and (>= op byte-listN)
1334 (<= op byte-insertN))
1335 (setq ptr (1+ ptr)) ;offset in next byte
1336 (aref bytes ptr))))
1337
1338
1339 ;; This de-compiler is used for inline expansion of compiled functions,
1340 ;; and by the disassembler.
1341 ;;
1342 ;; This list contains numbers, which are pc values,
1343 ;; before each instruction.
1344 (defun byte-decompile-bytecode (bytes constvec)
1345 "Turn BYTECODE into lapcode, referring to CONSTVEC."
1346 (let ((byte-compile-constants nil)
1347 (byte-compile-variables nil)
1348 (byte-compile-tag-number 0))
1349 (byte-decompile-bytecode-1 bytes constvec)))
1350
1351 ;; As byte-decompile-bytecode, but updates
1352 ;; byte-compile-{constants, variables, tag-number}.
1353 ;; If MAKE-SPLICEABLE is true, then `return' opcodes are replaced
1354 ;; with `goto's destined for the end of the code.
1355 ;; That is for use by the compiler.
1356 ;; If MAKE-SPLICEABLE is nil, we are being called for the disassembler.
1357 ;; In that case, we put a pc value into the list
1358 ;; before each insn (or its label).
1359 (defun byte-decompile-bytecode-1 (bytes constvec &optional make-spliceable)
1360 (let ((length (length bytes))
1361 (ptr 0) optr tags op offset
1362 lap tmp
1363 endtag)
1364 (while (not (= ptr length))
1365 (or make-spliceable
1366 (setq lap (cons ptr lap)))
1367 (setq op (aref bytes ptr)
1368 optr ptr
1369 offset (disassemble-offset)) ; this does dynamic-scope magic
1370 (setq op (aref byte-code-vector op))
1371 (cond ((memq op byte-goto-ops)
1372 ;; it's a pc
1373 (setq offset
1374 (cdr (or (assq offset tags)
1375 (car (setq tags
1376 (cons (cons offset
1377 (byte-compile-make-tag))
1378 tags)))))))
1379 ((cond ((eq op 'byte-constant2) (setq op 'byte-constant) t)
1380 ((memq op byte-constref-ops)))
1381 (setq tmp (if (>= offset (length constvec))
1382 (list 'out-of-range offset)
1383 (aref constvec offset))
1384 offset (if (eq op 'byte-constant)
1385 (byte-compile-get-constant tmp)
1386 (or (assq tmp byte-compile-variables)
1387 (car (setq byte-compile-variables
1388 (cons (list tmp)
1389 byte-compile-variables)))))))
1390 ((and make-spliceable
1391 (eq op 'byte-return))
1392 (if (= ptr (1- length))
1393 (setq op nil)
1394 (setq offset (or endtag (setq endtag (byte-compile-make-tag)))
1395 op 'byte-goto))))
1396 ;; lap = ( [ (pc . (op . arg)) ]* )
1397 (setq lap (cons (cons optr (cons op (or offset 0)))
1398 lap))
1399 (setq ptr (1+ ptr)))
1400 ;; take off the dummy nil op that we replaced a trailing "return" with.
1401 (let ((rest lap))
1402 (while rest
1403 (cond ((numberp (car rest)))
1404 ((setq tmp (assq (car (car rest)) tags))
1405 ;; this addr is jumped to
1406 (setcdr rest (cons (cons nil (cdr tmp))
1407 (cdr rest)))
1408 (setq tags (delq tmp tags))
1409 (setq rest (cdr rest))))
1410 (setq rest (cdr rest))))
1411 (if tags (error "optimizer error: missed tags %s" tags))
1412 (if (null (car (cdr (car lap))))
1413 (setq lap (cdr lap)))
1414 (if endtag
1415 (setq lap (cons (cons nil endtag) lap)))
1416 ;; remove addrs, lap = ( [ (op . arg) | (TAG tagno) ]* )
1417 (mapcar (function (lambda (elt)
1418 (if (numberp elt)
1419 elt
1420 (cdr elt))))
1421 (nreverse lap))))
1422
1423 \f
1424 ;;; peephole optimizer
1425
1426 (defconst byte-tagref-ops (cons 'TAG byte-goto-ops))
1427
1428 (defconst byte-conditional-ops
1429 '(byte-goto-if-nil byte-goto-if-not-nil byte-goto-if-nil-else-pop
1430 byte-goto-if-not-nil-else-pop))
1431
1432 (defconst byte-after-unbind-ops
1433 '(byte-constant byte-dup
1434 byte-symbolp byte-consp byte-stringp byte-listp byte-numberp byte-integerp
1435 byte-eq byte-not
1436 byte-cons byte-list1 byte-list2 ; byte-list3 byte-list4
1437 byte-interactive-p)
1438 ;; How about other side-effect-free-ops? Is it safe to move an
1439 ;; error invocation (such as from nth) out of an unwind-protect?
1440 ;; No, it is not, because the unwind-protect forms can alter
1441 ;; the inside of the object to which nth would apply.
1442 ;; For the same reason, byte-equal was deleted from this list.
1443 "Byte-codes that can be moved past an unbind.")
1444
1445 (defconst byte-compile-side-effect-and-error-free-ops
1446 '(byte-constant byte-dup byte-symbolp byte-consp byte-stringp byte-listp
1447 byte-integerp byte-numberp byte-eq byte-equal byte-not byte-car-safe
1448 byte-cdr-safe byte-cons byte-list1 byte-list2 byte-point byte-point-max
1449 byte-point-min byte-following-char byte-preceding-char
1450 byte-current-column byte-eolp byte-eobp byte-bolp byte-bobp
1451 byte-current-buffer byte-interactive-p))
1452
1453 (defconst byte-compile-side-effect-free-ops
1454 (nconc
1455 '(byte-varref byte-nth byte-memq byte-car byte-cdr byte-length byte-aref
1456 byte-symbol-value byte-get byte-concat2 byte-concat3 byte-sub1 byte-add1
1457 byte-eqlsign byte-gtr byte-lss byte-leq byte-geq byte-diff byte-negate
1458 byte-plus byte-max byte-min byte-mult byte-char-after byte-char-syntax
1459 byte-buffer-substring byte-string= byte-string< byte-nthcdr byte-elt
1460 byte-member byte-assq byte-quo byte-rem)
1461 byte-compile-side-effect-and-error-free-ops))
1462
1463 ;; This crock is because of the way DEFVAR_BOOL variables work.
1464 ;; Consider the code
1465 ;;
1466 ;; (defun foo (flag)
1467 ;; (let ((old-pop-ups pop-up-windows)
1468 ;; (pop-up-windows flag))
1469 ;; (cond ((not (eq pop-up-windows old-pop-ups))
1470 ;; (setq old-pop-ups pop-up-windows)
1471 ;; ...))))
1472 ;;
1473 ;; Uncompiled, old-pop-ups will always be set to nil or t, even if FLAG is
1474 ;; something else. But if we optimize
1475 ;;
1476 ;; varref flag
1477 ;; varbind pop-up-windows
1478 ;; varref pop-up-windows
1479 ;; not
1480 ;; to
1481 ;; varref flag
1482 ;; dup
1483 ;; varbind pop-up-windows
1484 ;; not
1485 ;;
1486 ;; we break the program, because it will appear that pop-up-windows and
1487 ;; old-pop-ups are not EQ when really they are. So we have to know what
1488 ;; the BOOL variables are, and not perform this optimization on them.
1489
1490 ;; The variable `byte-boolean-vars' is now primitive and updated
1491 ;; automatically by DEFVAR_BOOL.
1492
1493 (defun byte-optimize-lapcode (lap &optional for-effect)
1494 "Simple peephole optimizer. LAP is both modified and returned.
1495 If FOR-EFFECT is non-nil, the return value is assumed to be of no importance."
1496 (let (lap0
1497 lap1
1498 lap2
1499 (keep-going 'first-time)
1500 (add-depth 0)
1501 rest tmp tmp2 tmp3
1502 (side-effect-free (if byte-compile-delete-errors
1503 byte-compile-side-effect-free-ops
1504 byte-compile-side-effect-and-error-free-ops)))
1505 (while keep-going
1506 (or (eq keep-going 'first-time)
1507 (byte-compile-log-lap " ---- next pass"))
1508 (setq rest lap
1509 keep-going nil)
1510 (while rest
1511 (setq lap0 (car rest)
1512 lap1 (nth 1 rest)
1513 lap2 (nth 2 rest))
1514
1515 ;; You may notice that sequences like "dup varset discard" are
1516 ;; optimized but sequences like "dup varset TAG1: discard" are not.
1517 ;; You may be tempted to change this; resist that temptation.
1518 (cond ;;
1519 ;; <side-effect-free> pop --> <deleted>
1520 ;; ...including:
1521 ;; const-X pop --> <deleted>
1522 ;; varref-X pop --> <deleted>
1523 ;; dup pop --> <deleted>
1524 ;;
1525 ((and (eq 'byte-discard (car lap1))
1526 (memq (car lap0) side-effect-free))
1527 (setq keep-going t)
1528 (setq tmp (aref byte-stack+-info (symbol-value (car lap0))))
1529 (setq rest (cdr rest))
1530 (cond ((= tmp 1)
1531 (byte-compile-log-lap
1532 " %s discard\t-->\t<deleted>" lap0)
1533 (setq lap (delq lap0 (delq lap1 lap))))
1534 ((= tmp 0)
1535 (byte-compile-log-lap
1536 " %s discard\t-->\t<deleted> discard" lap0)
1537 (setq lap (delq lap0 lap)))
1538 ((= tmp -1)
1539 (byte-compile-log-lap
1540 " %s discard\t-->\tdiscard discard" lap0)
1541 (setcar lap0 'byte-discard)
1542 (setcdr lap0 0))
1543 ((error "Optimizer error: too much on the stack"))))
1544 ;;
1545 ;; goto*-X X: --> X:
1546 ;;
1547 ((and (memq (car lap0) byte-goto-ops)
1548 (eq (cdr lap0) lap1))
1549 (cond ((eq (car lap0) 'byte-goto)
1550 (setq lap (delq lap0 lap))
1551 (setq tmp "<deleted>"))
1552 ((memq (car lap0) byte-goto-always-pop-ops)
1553 (setcar lap0 (setq tmp 'byte-discard))
1554 (setcdr lap0 0))
1555 ((error "Depth conflict at tag %d" (nth 2 lap0))))
1556 (and (memq byte-optimize-log '(t byte))
1557 (byte-compile-log " (goto %s) %s:\t-->\t%s %s:"
1558 (nth 1 lap1) (nth 1 lap1)
1559 tmp (nth 1 lap1)))
1560 (setq keep-going t))
1561 ;;
1562 ;; varset-X varref-X --> dup varset-X
1563 ;; varbind-X varref-X --> dup varbind-X
1564 ;; const/dup varset-X varref-X --> const/dup varset-X const/dup
1565 ;; const/dup varbind-X varref-X --> const/dup varbind-X const/dup
1566 ;; The latter two can enable other optimizations.
1567 ;;
1568 ((and (eq 'byte-varref (car lap2))
1569 (eq (cdr lap1) (cdr lap2))
1570 (memq (car lap1) '(byte-varset byte-varbind)))
1571 (if (and (setq tmp (memq (car (cdr lap2)) byte-boolean-vars))
1572 (not (eq (car lap0) 'byte-constant)))
1573 nil
1574 (setq keep-going t)
1575 (if (memq (car lap0) '(byte-constant byte-dup))
1576 (progn
1577 (setq tmp (if (or (not tmp)
1578 (byte-compile-const-symbol-p
1579 (car (cdr lap0))))
1580 (cdr lap0)
1581 (byte-compile-get-constant t)))
1582 (byte-compile-log-lap " %s %s %s\t-->\t%s %s %s"
1583 lap0 lap1 lap2 lap0 lap1
1584 (cons (car lap0) tmp))
1585 (setcar lap2 (car lap0))
1586 (setcdr lap2 tmp))
1587 (byte-compile-log-lap " %s %s\t-->\tdup %s" lap1 lap2 lap1)
1588 (setcar lap2 (car lap1))
1589 (setcar lap1 'byte-dup)
1590 (setcdr lap1 0)
1591 ;; The stack depth gets locally increased, so we will
1592 ;; increase maxdepth in case depth = maxdepth here.
1593 ;; This can cause the third argument to byte-code to
1594 ;; be larger than necessary.
1595 (setq add-depth 1))))
1596 ;;
1597 ;; dup varset-X discard --> varset-X
1598 ;; dup varbind-X discard --> varbind-X
1599 ;; (the varbind variant can emerge from other optimizations)
1600 ;;
1601 ((and (eq 'byte-dup (car lap0))
1602 (eq 'byte-discard (car lap2))
1603 (memq (car lap1) '(byte-varset byte-varbind)))
1604 (byte-compile-log-lap " dup %s discard\t-->\t%s" lap1 lap1)
1605 (setq keep-going t
1606 rest (cdr rest))
1607 (setq lap (delq lap0 (delq lap2 lap))))
1608 ;;
1609 ;; not goto-X-if-nil --> goto-X-if-non-nil
1610 ;; not goto-X-if-non-nil --> goto-X-if-nil
1611 ;;
1612 ;; it is wrong to do the same thing for the -else-pop variants.
1613 ;;
1614 ((and (eq 'byte-not (car lap0))
1615 (or (eq 'byte-goto-if-nil (car lap1))
1616 (eq 'byte-goto-if-not-nil (car lap1))))
1617 (byte-compile-log-lap " not %s\t-->\t%s"
1618 lap1
1619 (cons
1620 (if (eq (car lap1) 'byte-goto-if-nil)
1621 'byte-goto-if-not-nil
1622 'byte-goto-if-nil)
1623 (cdr lap1)))
1624 (setcar lap1 (if (eq (car lap1) 'byte-goto-if-nil)
1625 'byte-goto-if-not-nil
1626 'byte-goto-if-nil))
1627 (setq lap (delq lap0 lap))
1628 (setq keep-going t))
1629 ;;
1630 ;; goto-X-if-nil goto-Y X: --> goto-Y-if-non-nil X:
1631 ;; goto-X-if-non-nil goto-Y X: --> goto-Y-if-nil X:
1632 ;;
1633 ;; it is wrong to do the same thing for the -else-pop variants.
1634 ;;
1635 ((and (or (eq 'byte-goto-if-nil (car lap0))
1636 (eq 'byte-goto-if-not-nil (car lap0))) ; gotoX
1637 (eq 'byte-goto (car lap1)) ; gotoY
1638 (eq (cdr lap0) lap2)) ; TAG X
1639 (let ((inverse (if (eq 'byte-goto-if-nil (car lap0))
1640 'byte-goto-if-not-nil 'byte-goto-if-nil)))
1641 (byte-compile-log-lap " %s %s %s:\t-->\t%s %s:"
1642 lap0 lap1 lap2
1643 (cons inverse (cdr lap1)) lap2)
1644 (setq lap (delq lap0 lap))
1645 (setcar lap1 inverse)
1646 (setq keep-going t)))
1647 ;;
1648 ;; const goto-if-* --> whatever
1649 ;;
1650 ((and (eq 'byte-constant (car lap0))
1651 (memq (car lap1) byte-conditional-ops))
1652 (cond ((if (or (eq (car lap1) 'byte-goto-if-nil)
1653 (eq (car lap1) 'byte-goto-if-nil-else-pop))
1654 (car (cdr lap0))
1655 (not (car (cdr lap0))))
1656 (byte-compile-log-lap " %s %s\t-->\t<deleted>"
1657 lap0 lap1)
1658 (setq rest (cdr rest)
1659 lap (delq lap0 (delq lap1 lap))))
1660 (t
1661 (if (memq (car lap1) byte-goto-always-pop-ops)
1662 (progn
1663 (byte-compile-log-lap " %s %s\t-->\t%s"
1664 lap0 lap1 (cons 'byte-goto (cdr lap1)))
1665 (setq lap (delq lap0 lap)))
1666 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
1667 (cons 'byte-goto (cdr lap1))))
1668 (setcar lap1 'byte-goto)))
1669 (setq keep-going t))
1670 ;;
1671 ;; varref-X varref-X --> varref-X dup
1672 ;; varref-X [dup ...] varref-X --> varref-X [dup ...] dup
1673 ;; We don't optimize the const-X variations on this here,
1674 ;; because that would inhibit some goto optimizations; we
1675 ;; optimize the const-X case after all other optimizations.
1676 ;;
1677 ((and (eq 'byte-varref (car lap0))
1678 (progn
1679 (setq tmp (cdr rest))
1680 (while (eq (car (car tmp)) 'byte-dup)
1681 (setq tmp (cdr tmp)))
1682 t)
1683 (eq (cdr lap0) (cdr (car tmp)))
1684 (eq 'byte-varref (car (car tmp))))
1685 (if (memq byte-optimize-log '(t byte))
1686 (let ((str ""))
1687 (setq tmp2 (cdr rest))
1688 (while (not (eq tmp tmp2))
1689 (setq tmp2 (cdr tmp2)
1690 str (concat str " dup")))
1691 (byte-compile-log-lap " %s%s %s\t-->\t%s%s dup"
1692 lap0 str lap0 lap0 str)))
1693 (setq keep-going t)
1694 (setcar (car tmp) 'byte-dup)
1695 (setcdr (car tmp) 0)
1696 (setq rest tmp))
1697 ;;
1698 ;; TAG1: TAG2: --> TAG1: <deleted>
1699 ;; (and other references to TAG2 are replaced with TAG1)
1700 ;;
1701 ((and (eq (car lap0) 'TAG)
1702 (eq (car lap1) 'TAG))
1703 (and (memq byte-optimize-log '(t byte))
1704 (byte-compile-log " adjacent tags %d and %d merged"
1705 (nth 1 lap1) (nth 1 lap0)))
1706 (setq tmp3 lap)
1707 (while (setq tmp2 (rassq lap0 tmp3))
1708 (setcdr tmp2 lap1)
1709 (setq tmp3 (cdr (memq tmp2 tmp3))))
1710 (setq lap (delq lap0 lap)
1711 keep-going t))
1712 ;;
1713 ;; unused-TAG: --> <deleted>
1714 ;;
1715 ((and (eq 'TAG (car lap0))
1716 (not (rassq lap0 lap)))
1717 (and (memq byte-optimize-log '(t byte))
1718 (byte-compile-log " unused tag %d removed" (nth 1 lap0)))
1719 (setq lap (delq lap0 lap)
1720 keep-going t))
1721 ;;
1722 ;; goto ... --> goto <delete until TAG or end>
1723 ;; return ... --> return <delete until TAG or end>
1724 ;;
1725 ((and (memq (car lap0) '(byte-goto byte-return))
1726 (not (memq (car lap1) '(TAG nil))))
1727 (setq tmp rest)
1728 (let ((i 0)
1729 (opt-p (memq byte-optimize-log '(t lap)))
1730 str deleted)
1731 (while (and (setq tmp (cdr tmp))
1732 (not (eq 'TAG (car (car tmp)))))
1733 (if opt-p (setq deleted (cons (car tmp) deleted)
1734 str (concat str " %s")
1735 i (1+ i))))
1736 (if opt-p
1737 (let ((tagstr
1738 (if (eq 'TAG (car (car tmp)))
1739 (format "%d:" (car (cdr (car tmp))))
1740 (or (car tmp) ""))))
1741 (if (< i 6)
1742 (apply 'byte-compile-log-lap-1
1743 (concat " %s" str
1744 " %s\t-->\t%s <deleted> %s")
1745 lap0
1746 (nconc (nreverse deleted)
1747 (list tagstr lap0 tagstr)))
1748 (byte-compile-log-lap
1749 " %s <%d unreachable op%s> %s\t-->\t%s <deleted> %s"
1750 lap0 i (if (= i 1) "" "s")
1751 tagstr lap0 tagstr))))
1752 (rplacd rest tmp))
1753 (setq keep-going t))
1754 ;;
1755 ;; <safe-op> unbind --> unbind <safe-op>
1756 ;; (this may enable other optimizations.)
1757 ;;
1758 ((and (eq 'byte-unbind (car lap1))
1759 (memq (car lap0) byte-after-unbind-ops))
1760 (byte-compile-log-lap " %s %s\t-->\t%s %s" lap0 lap1 lap1 lap0)
1761 (setcar rest lap1)
1762 (setcar (cdr rest) lap0)
1763 (setq keep-going t))
1764 ;;
1765 ;; varbind-X unbind-N --> discard unbind-(N-1)
1766 ;; save-excursion unbind-N --> unbind-(N-1)
1767 ;; save-restriction unbind-N --> unbind-(N-1)
1768 ;;
1769 ((and (eq 'byte-unbind (car lap1))
1770 (memq (car lap0) '(byte-varbind byte-save-excursion
1771 byte-save-restriction))
1772 (< 0 (cdr lap1)))
1773 (if (zerop (setcdr lap1 (1- (cdr lap1))))
1774 (delq lap1 rest))
1775 (if (eq (car lap0) 'byte-varbind)
1776 (setcar rest (cons 'byte-discard 0))
1777 (setq lap (delq lap0 lap)))
1778 (byte-compile-log-lap " %s %s\t-->\t%s %s"
1779 lap0 (cons (car lap1) (1+ (cdr lap1)))
1780 (if (eq (car lap0) 'byte-varbind)
1781 (car rest)
1782 (car (cdr rest)))
1783 (if (and (/= 0 (cdr lap1))
1784 (eq (car lap0) 'byte-varbind))
1785 (car (cdr rest))
1786 ""))
1787 (setq keep-going t))
1788 ;;
1789 ;; goto*-X ... X: goto-Y --> goto*-Y
1790 ;; goto-X ... X: return --> return
1791 ;;
1792 ((and (memq (car lap0) byte-goto-ops)
1793 (memq (car (setq tmp (nth 1 (memq (cdr lap0) lap))))
1794 '(byte-goto byte-return)))
1795 (cond ((and (not (eq tmp lap0))
1796 (or (eq (car lap0) 'byte-goto)
1797 (eq (car tmp) 'byte-goto)))
1798 (byte-compile-log-lap " %s [%s]\t-->\t%s"
1799 (car lap0) tmp tmp)
1800 (if (eq (car tmp) 'byte-return)
1801 (setcar lap0 'byte-return))
1802 (setcdr lap0 (cdr tmp))
1803 (setq keep-going t))))
1804 ;;
1805 ;; goto-*-else-pop X ... X: goto-if-* --> whatever
1806 ;; goto-*-else-pop X ... X: discard --> whatever
1807 ;;
1808 ((and (memq (car lap0) '(byte-goto-if-nil-else-pop
1809 byte-goto-if-not-nil-else-pop))
1810 (memq (car (car (setq tmp (cdr (memq (cdr lap0) lap)))))
1811 (eval-when-compile
1812 (cons 'byte-discard byte-conditional-ops)))
1813 (not (eq lap0 (car tmp))))
1814 (setq tmp2 (car tmp))
1815 (setq tmp3 (assq (car lap0) '((byte-goto-if-nil-else-pop
1816 byte-goto-if-nil)
1817 (byte-goto-if-not-nil-else-pop
1818 byte-goto-if-not-nil))))
1819 (if (memq (car tmp2) tmp3)
1820 (progn (setcar lap0 (car tmp2))
1821 (setcdr lap0 (cdr tmp2))
1822 (byte-compile-log-lap " %s-else-pop [%s]\t-->\t%s"
1823 (car lap0) tmp2 lap0))
1824 ;; Get rid of the -else-pop's and jump one step further.
1825 (or (eq 'TAG (car (nth 1 tmp)))
1826 (setcdr tmp (cons (byte-compile-make-tag)
1827 (cdr tmp))))
1828 (byte-compile-log-lap " %s [%s]\t-->\t%s <skip>"
1829 (car lap0) tmp2 (nth 1 tmp3))
1830 (setcar lap0 (nth 1 tmp3))
1831 (setcdr lap0 (nth 1 tmp)))
1832 (setq keep-going t))
1833 ;;
1834 ;; const goto-X ... X: goto-if-* --> whatever
1835 ;; const goto-X ... X: discard --> whatever
1836 ;;
1837 ((and (eq (car lap0) 'byte-constant)
1838 (eq (car lap1) 'byte-goto)
1839 (memq (car (car (setq tmp (cdr (memq (cdr lap1) lap)))))
1840 (eval-when-compile
1841 (cons 'byte-discard byte-conditional-ops)))
1842 (not (eq lap1 (car tmp))))
1843 (setq tmp2 (car tmp))
1844 (cond ((memq (car tmp2)
1845 (if (null (car (cdr lap0)))
1846 '(byte-goto-if-nil byte-goto-if-nil-else-pop)
1847 '(byte-goto-if-not-nil
1848 byte-goto-if-not-nil-else-pop)))
1849 (byte-compile-log-lap " %s goto [%s]\t-->\t%s %s"
1850 lap0 tmp2 lap0 tmp2)
1851 (setcar lap1 (car tmp2))
1852 (setcdr lap1 (cdr tmp2))
1853 ;; Let next step fix the (const,goto-if*) sequence.
1854 (setq rest (cons nil rest)))
1855 (t
1856 ;; Jump one step further
1857 (byte-compile-log-lap
1858 " %s goto [%s]\t-->\t<deleted> goto <skip>"
1859 lap0 tmp2)
1860 (or (eq 'TAG (car (nth 1 tmp)))
1861 (setcdr tmp (cons (byte-compile-make-tag)
1862 (cdr tmp))))
1863 (setcdr lap1 (car (cdr tmp)))
1864 (setq lap (delq lap0 lap))))
1865 (setq keep-going t))
1866 ;;
1867 ;; X: varref-Y ... varset-Y goto-X -->
1868 ;; X: varref-Y Z: ... dup varset-Y goto-Z
1869 ;; (varset-X goto-BACK, BACK: varref-X --> copy the varref down.)
1870 ;; (This is so usual for while loops that it is worth handling).
1871 ;;
1872 ((and (eq (car lap1) 'byte-varset)
1873 (eq (car lap2) 'byte-goto)
1874 (not (memq (cdr lap2) rest)) ;Backwards jump
1875 (eq (car (car (setq tmp (cdr (memq (cdr lap2) lap)))))
1876 'byte-varref)
1877 (eq (cdr (car tmp)) (cdr lap1))
1878 (not (memq (car (cdr lap1)) byte-boolean-vars)))
1879 ;;(byte-compile-log-lap " Pulled %s to end of loop" (car tmp))
1880 (let ((newtag (byte-compile-make-tag)))
1881 (byte-compile-log-lap
1882 " %s: %s ... %s %s\t-->\t%s: %s %s: ... %s %s %s"
1883 (nth 1 (cdr lap2)) (car tmp)
1884 lap1 lap2
1885 (nth 1 (cdr lap2)) (car tmp)
1886 (nth 1 newtag) 'byte-dup lap1
1887 (cons 'byte-goto newtag)
1888 )
1889 (setcdr rest (cons (cons 'byte-dup 0) (cdr rest)))
1890 (setcdr tmp (cons (setcdr lap2 newtag) (cdr tmp))))
1891 (setq add-depth 1)
1892 (setq keep-going t))
1893 ;;
1894 ;; goto-X Y: ... X: goto-if*-Y --> goto-if-not-*-X+1 Y:
1895 ;; (This can pull the loop test to the end of the loop)
1896 ;;
1897 ((and (eq (car lap0) 'byte-goto)
1898 (eq (car lap1) 'TAG)
1899 (eq lap1
1900 (cdr (car (setq tmp (cdr (memq (cdr lap0) lap))))))
1901 (memq (car (car tmp))
1902 '(byte-goto byte-goto-if-nil byte-goto-if-not-nil
1903 byte-goto-if-nil-else-pop)))
1904 ;; (byte-compile-log-lap " %s %s, %s %s --> moved conditional"
1905 ;; lap0 lap1 (cdr lap0) (car tmp))
1906 (let ((newtag (byte-compile-make-tag)))
1907 (byte-compile-log-lap
1908 "%s %s: ... %s: %s\t-->\t%s ... %s:"
1909 lap0 (nth 1 lap1) (nth 1 (cdr lap0)) (car tmp)
1910 (cons (cdr (assq (car (car tmp))
1911 '((byte-goto-if-nil . byte-goto-if-not-nil)
1912 (byte-goto-if-not-nil . byte-goto-if-nil)
1913 (byte-goto-if-nil-else-pop .
1914 byte-goto-if-not-nil-else-pop)
1915 (byte-goto-if-not-nil-else-pop .
1916 byte-goto-if-nil-else-pop))))
1917 newtag)
1918
1919 (nth 1 newtag)
1920 )
1921 (setcdr tmp (cons (setcdr lap0 newtag) (cdr tmp)))
1922 (if (eq (car (car tmp)) 'byte-goto-if-nil-else-pop)
1923 ;; We can handle this case but not the -if-not-nil case,
1924 ;; because we won't know which non-nil constant to push.
1925 (setcdr rest (cons (cons 'byte-constant
1926 (byte-compile-get-constant nil))
1927 (cdr rest))))
1928 (setcar lap0 (nth 1 (memq (car (car tmp))
1929 '(byte-goto-if-nil-else-pop
1930 byte-goto-if-not-nil
1931 byte-goto-if-nil
1932 byte-goto-if-not-nil
1933 byte-goto byte-goto))))
1934 )
1935 (setq keep-going t))
1936 )
1937 (setq rest (cdr rest)))
1938 )
1939 ;; Cleanup stage:
1940 ;; Rebuild byte-compile-constants / byte-compile-variables.
1941 ;; Simple optimizations that would inhibit other optimizations if they
1942 ;; were done in the optimizing loop, and optimizations which there is no
1943 ;; need to do more than once.
1944 (setq byte-compile-constants nil
1945 byte-compile-variables nil)
1946 (setq rest lap)
1947 (while rest
1948 (setq lap0 (car rest)
1949 lap1 (nth 1 rest))
1950 (if (memq (car lap0) byte-constref-ops)
1951 (if (or (eq (car lap0) 'byte-constant)
1952 (eq (car lap0) 'byte-constant2))
1953 (unless (memq (cdr lap0) byte-compile-constants)
1954 (setq byte-compile-constants (cons (cdr lap0)
1955 byte-compile-constants)))
1956 (unless (memq (cdr lap0) byte-compile-variables)
1957 (setq byte-compile-variables (cons (cdr lap0)
1958 byte-compile-variables)))))
1959 (cond (;;
1960 ;; const-C varset-X const-C --> const-C dup varset-X
1961 ;; const-C varbind-X const-C --> const-C dup varbind-X
1962 ;;
1963 (and (eq (car lap0) 'byte-constant)
1964 (eq (car (nth 2 rest)) 'byte-constant)
1965 (eq (cdr lap0) (cdr (nth 2 rest)))
1966 (memq (car lap1) '(byte-varbind byte-varset)))
1967 (byte-compile-log-lap " %s %s %s\t-->\t%s dup %s"
1968 lap0 lap1 lap0 lap0 lap1)
1969 (setcar (cdr (cdr rest)) (cons (car lap1) (cdr lap1)))
1970 (setcar (cdr rest) (cons 'byte-dup 0))
1971 (setq add-depth 1))
1972 ;;
1973 ;; const-X [dup/const-X ...] --> const-X [dup ...] dup
1974 ;; varref-X [dup/varref-X ...] --> varref-X [dup ...] dup
1975 ;;
1976 ((memq (car lap0) '(byte-constant byte-varref))
1977 (setq tmp rest
1978 tmp2 nil)
1979 (while (progn
1980 (while (eq 'byte-dup (car (car (setq tmp (cdr tmp))))))
1981 (and (eq (cdr lap0) (cdr (car tmp)))
1982 (eq (car lap0) (car (car tmp)))))
1983 (setcar tmp (cons 'byte-dup 0))
1984 (setq tmp2 t))
1985 (if tmp2
1986 (byte-compile-log-lap
1987 " %s [dup/%s]...\t-->\t%s dup..." lap0 lap0 lap0)))
1988 ;;
1989 ;; unbind-N unbind-M --> unbind-(N+M)
1990 ;;
1991 ((and (eq 'byte-unbind (car lap0))
1992 (eq 'byte-unbind (car lap1)))
1993 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
1994 (cons 'byte-unbind
1995 (+ (cdr lap0) (cdr lap1))))
1996 (setq keep-going t)
1997 (setq lap (delq lap0 lap))
1998 (setcdr lap1 (+ (cdr lap1) (cdr lap0))))
1999 )
2000 (setq rest (cdr rest)))
2001 (setq byte-compile-maxdepth (+ byte-compile-maxdepth add-depth)))
2002 lap)
2003
2004 (provide 'byte-opt)
2005
2006 \f
2007 ;; To avoid "lisp nesting exceeds max-lisp-eval-depth" when this file compiles
2008 ;; itself, compile some of its most used recursive functions (at load time).
2009 ;;
2010 (eval-when-compile
2011 (or (byte-code-function-p (symbol-function 'byte-optimize-form))
2012 (assq 'byte-code (symbol-function 'byte-optimize-form))
2013 (let ((byte-optimize nil)
2014 (byte-compile-warnings nil))
2015 (mapc (lambda (x)
2016 (or noninteractive (message "compiling %s..." x))
2017 (byte-compile x)
2018 (or noninteractive (message "compiling %s...done" x)))
2019 '(byte-optimize-form
2020 byte-optimize-body
2021 byte-optimize-predicate
2022 byte-optimize-binary-predicate
2023 ;; Inserted some more than necessary, to speed it up.
2024 byte-optimize-form-code-walker
2025 byte-optimize-lapcode))))
2026 nil)
2027
2028 ;; arch-tag: 0f14076b-737e-4bef-aae6-908826ec1ff1
2029 ;;; byte-opt.el ends here