]> code.delx.au - gnu-emacs/blob - src/keymap.c
(Qouter_window_id): New variable.
[gnu-emacs] / src / keymap.c
1 /* Manipulation of keymaps
2 Copyright (C) 1985, 86,87,88,93,94,95,98 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 #include <config.h>
23 #include <stdio.h>
24 #ifdef STDC_HEADERS
25 #include <stdlib.h>
26 #endif
27 #undef NULL
28 #include "lisp.h"
29 #include "commands.h"
30 #include "buffer.h"
31 #include "charset.h"
32 #include "keyboard.h"
33 #include "termhooks.h"
34 #include "blockinput.h"
35 #include "puresize.h"
36
37 #define min(a, b) ((a) < (b) ? (a) : (b))
38
39 /* The number of elements in keymap vectors. */
40 #define DENSE_TABLE_SIZE (0200)
41
42 /* Actually allocate storage for these variables */
43
44 Lisp_Object current_global_map; /* Current global keymap */
45
46 Lisp_Object global_map; /* default global key bindings */
47
48 Lisp_Object meta_map; /* The keymap used for globally bound
49 ESC-prefixed default commands */
50
51 Lisp_Object control_x_map; /* The keymap used for globally bound
52 C-x-prefixed default commands */
53
54 /* was MinibufLocalMap */
55 Lisp_Object Vminibuffer_local_map;
56 /* The keymap used by the minibuf for local
57 bindings when spaces are allowed in the
58 minibuf */
59
60 /* was MinibufLocalNSMap */
61 Lisp_Object Vminibuffer_local_ns_map;
62 /* The keymap used by the minibuf for local
63 bindings when spaces are not encouraged
64 in the minibuf */
65
66 /* keymap used for minibuffers when doing completion */
67 /* was MinibufLocalCompletionMap */
68 Lisp_Object Vminibuffer_local_completion_map;
69
70 /* keymap used for minibuffers when doing completion and require a match */
71 /* was MinibufLocalMustMatchMap */
72 Lisp_Object Vminibuffer_local_must_match_map;
73
74 /* Alist of minor mode variables and keymaps. */
75 Lisp_Object Vminor_mode_map_alist;
76
77 /* Alist of major-mode-specific overrides for
78 minor mode variables and keymaps. */
79 Lisp_Object Vminor_mode_overriding_map_alist;
80
81 /* Keymap mapping ASCII function key sequences onto their preferred forms.
82 Initialized by the terminal-specific lisp files. See DEFVAR for more
83 documentation. */
84 Lisp_Object Vfunction_key_map;
85
86 /* Keymap mapping ASCII function key sequences onto their preferred forms. */
87 Lisp_Object Vkey_translation_map;
88
89 /* A list of all commands given new bindings since a certain time
90 when nil was stored here.
91 This is used to speed up recomputation of menu key equivalents
92 when Emacs starts up. t means don't record anything here. */
93 Lisp_Object Vdefine_key_rebound_commands;
94
95 Lisp_Object Qkeymapp, Qkeymap, Qnon_ascii, Qmenu_item;
96
97 /* A char with the CHAR_META bit set in a vector or the 0200 bit set
98 in a string key sequence is equivalent to prefixing with this
99 character. */
100 extern Lisp_Object meta_prefix_char;
101
102 extern Lisp_Object Voverriding_local_map;
103
104 static Lisp_Object define_as_prefix ();
105 static Lisp_Object describe_buffer_bindings ();
106 static void describe_command (), describe_translation ();
107 static void describe_map ();
108 \f
109 /* Keymap object support - constructors and predicates. */
110
111 DEFUN ("make-keymap", Fmake_keymap, Smake_keymap, 0, 1, 0,
112 "Construct and return a new keymap, of the form (keymap CHARTABLE . ALIST).\n\
113 CHARTABLE is a char-table that holds the bindings for the ASCII\n\
114 characters. ALIST is an assoc-list which holds bindings for function keys,\n\
115 mouse events, and any other things that appear in the input stream.\n\
116 All entries in it are initially nil, meaning \"command undefined\".\n\n\
117 The optional arg STRING supplies a menu name for the keymap\n\
118 in case you use it as a menu with `x-popup-menu'.")
119 (string)
120 Lisp_Object string;
121 {
122 Lisp_Object tail;
123 if (!NILP (string))
124 tail = Fcons (string, Qnil);
125 else
126 tail = Qnil;
127 return Fcons (Qkeymap,
128 Fcons (Fmake_char_table (Qkeymap, Qnil), tail));
129 }
130
131 DEFUN ("make-sparse-keymap", Fmake_sparse_keymap, Smake_sparse_keymap, 0, 1, 0,
132 "Construct and return a new sparse-keymap list.\n\
133 Its car is `keymap' and its cdr is an alist of (CHAR . DEFINITION),\n\
134 which binds the character CHAR to DEFINITION, or (SYMBOL . DEFINITION),\n\
135 which binds the function key or mouse event SYMBOL to DEFINITION.\n\
136 Initially the alist is nil.\n\n\
137 The optional arg STRING supplies a menu name for the keymap\n\
138 in case you use it as a menu with `x-popup-menu'.")
139 (string)
140 Lisp_Object string;
141 {
142 if (!NILP (string))
143 return Fcons (Qkeymap, Fcons (string, Qnil));
144 return Fcons (Qkeymap, Qnil);
145 }
146
147 /* This function is used for installing the standard key bindings
148 at initialization time.
149
150 For example:
151
152 initial_define_key (control_x_map, Ctl('X'), "exchange-point-and-mark"); */
153
154 void
155 initial_define_key (keymap, key, defname)
156 Lisp_Object keymap;
157 int key;
158 char *defname;
159 {
160 store_in_keymap (keymap, make_number (key), intern (defname));
161 }
162
163 void
164 initial_define_lispy_key (keymap, keyname, defname)
165 Lisp_Object keymap;
166 char *keyname;
167 char *defname;
168 {
169 store_in_keymap (keymap, intern (keyname), intern (defname));
170 }
171
172 /* Define character fromchar in map frommap as an alias for character
173 tochar in map tomap. Subsequent redefinitions of the latter WILL
174 affect the former. */
175
176 #if 0
177 void
178 synkey (frommap, fromchar, tomap, tochar)
179 struct Lisp_Vector *frommap, *tomap;
180 int fromchar, tochar;
181 {
182 Lisp_Object v, c;
183 XSETVECTOR (v, tomap);
184 XSETFASTINT (c, tochar);
185 frommap->contents[fromchar] = Fcons (v, c);
186 }
187 #endif /* 0 */
188
189 DEFUN ("keymapp", Fkeymapp, Skeymapp, 1, 1, 0,
190 "Return t if OBJECT is a keymap.\n\
191 \n\
192 A keymap is a list (keymap . ALIST),\n\
193 or a symbol whose function definition is itself a keymap.\n\
194 ALIST elements look like (CHAR . DEFN) or (SYMBOL . DEFN);\n\
195 a vector of densely packed bindings for small character codes\n\
196 is also allowed as an element.")
197 (object)
198 Lisp_Object object;
199 {
200 return (NILP (get_keymap_1 (object, 0, 0)) ? Qnil : Qt);
201 }
202
203 /* Check that OBJECT is a keymap (after dereferencing through any
204 symbols). If it is, return it.
205
206 If AUTOLOAD is non-zero and OBJECT is a symbol whose function value
207 is an autoload form, do the autoload and try again.
208 If AUTOLOAD is nonzero, callers must assume GC is possible.
209
210 ERROR controls how we respond if OBJECT isn't a keymap.
211 If ERROR is non-zero, signal an error; otherwise, just return Qnil.
212
213 Note that most of the time, we don't want to pursue autoloads.
214 Functions like Faccessible_keymaps which scan entire keymap trees
215 shouldn't load every autoloaded keymap. I'm not sure about this,
216 but it seems to me that only read_key_sequence, Flookup_key, and
217 Fdefine_key should cause keymaps to be autoloaded. */
218
219 Lisp_Object
220 get_keymap_1 (object, error, autoload)
221 Lisp_Object object;
222 int error, autoload;
223 {
224 Lisp_Object tem;
225
226 autoload_retry:
227 tem = indirect_function (object);
228 if (CONSP (tem) && EQ (XCONS (tem)->car, Qkeymap))
229 return tem;
230
231 /* Should we do an autoload? Autoload forms for keymaps have
232 Qkeymap as their fifth element. */
233 if (autoload
234 && SYMBOLP (object)
235 && CONSP (tem)
236 && EQ (XCONS (tem)->car, Qautoload))
237 {
238 Lisp_Object tail;
239
240 tail = Fnth (make_number (4), tem);
241 if (EQ (tail, Qkeymap))
242 {
243 struct gcpro gcpro1, gcpro2;
244
245 GCPRO2 (tem, object);
246 do_autoload (tem, object);
247 UNGCPRO;
248
249 goto autoload_retry;
250 }
251 }
252
253 if (error)
254 wrong_type_argument (Qkeymapp, object);
255 else
256 return Qnil;
257 }
258
259
260 /* Follow any symbol chaining, and return the keymap denoted by OBJECT.
261 If OBJECT doesn't denote a keymap at all, signal an error. */
262 Lisp_Object
263 get_keymap (object)
264 Lisp_Object object;
265 {
266 return get_keymap_1 (object, 1, 0);
267 }
268 \f
269 /* Return the parent map of the keymap MAP, or nil if it has none.
270 We assume that MAP is a valid keymap. */
271
272 DEFUN ("keymap-parent", Fkeymap_parent, Skeymap_parent, 1, 1, 0,
273 "Return the parent keymap of KEYMAP.")
274 (keymap)
275 Lisp_Object keymap;
276 {
277 Lisp_Object list;
278
279 keymap = get_keymap_1 (keymap, 1, 1);
280
281 /* Skip past the initial element `keymap'. */
282 list = XCONS (keymap)->cdr;
283 for (; CONSP (list); list = XCONS (list)->cdr)
284 {
285 /* See if there is another `keymap'. */
286 if (EQ (Qkeymap, XCONS (list)->car))
287 return list;
288 }
289
290 return Qnil;
291 }
292
293 /* Set the parent keymap of MAP to PARENT. */
294
295 DEFUN ("set-keymap-parent", Fset_keymap_parent, Sset_keymap_parent, 2, 2, 0,
296 "Modify KEYMAP to set its parent map to PARENT.\n\
297 PARENT should be nil or another keymap.")
298 (keymap, parent)
299 Lisp_Object keymap, parent;
300 {
301 Lisp_Object list, prev;
302 int i;
303
304 keymap = get_keymap_1 (keymap, 1, 1);
305 if (!NILP (parent))
306 parent = get_keymap_1 (parent, 1, 1);
307
308 /* Skip past the initial element `keymap'. */
309 prev = keymap;
310 while (1)
311 {
312 list = XCONS (prev)->cdr;
313 /* If there is a parent keymap here, replace it.
314 If we came to the end, add the parent in PREV. */
315 if (! CONSP (list) || EQ (Qkeymap, XCONS (list)->car))
316 {
317 /* If we already have the right parent, return now
318 so that we avoid the loops below. */
319 if (EQ (XCONS (prev)->cdr, parent))
320 return parent;
321
322 XCONS (prev)->cdr = parent;
323 break;
324 }
325 prev = list;
326 }
327
328 /* Scan through for submaps, and set their parents too. */
329
330 for (list = XCONS (keymap)->cdr; CONSP (list); list = XCONS (list)->cdr)
331 {
332 /* Stop the scan when we come to the parent. */
333 if (EQ (XCONS (list)->car, Qkeymap))
334 break;
335
336 /* If this element holds a prefix map, deal with it. */
337 if (CONSP (XCONS (list)->car)
338 && CONSP (XCONS (XCONS (list)->car)->cdr))
339 fix_submap_inheritance (keymap, XCONS (XCONS (list)->car)->car,
340 XCONS (XCONS (list)->car)->cdr);
341
342 if (VECTORP (XCONS (list)->car))
343 for (i = 0; i < XVECTOR (XCONS (list)->car)->size; i++)
344 if (CONSP (XVECTOR (XCONS (list)->car)->contents[i]))
345 fix_submap_inheritance (keymap, make_number (i),
346 XVECTOR (XCONS (list)->car)->contents[i]);
347
348 if (CHAR_TABLE_P (XCONS (list)->car))
349 {
350 Lisp_Object indices[3];
351
352 map_char_table (fix_submap_inheritance, Qnil, XCONS (list)->car,
353 keymap, 0, indices);
354 }
355 }
356
357 return parent;
358 }
359
360 /* EVENT is defined in MAP as a prefix, and SUBMAP is its definition.
361 if EVENT is also a prefix in MAP's parent,
362 make sure that SUBMAP inherits that definition as its own parent. */
363
364 void
365 fix_submap_inheritance (map, event, submap)
366 Lisp_Object map, event, submap;
367 {
368 Lisp_Object map_parent, parent_entry;
369
370 /* SUBMAP is a cons that we found as a key binding.
371 Discard the other things found in a menu key binding. */
372
373 if (CONSP (submap))
374 {
375 /* May be an old format menu item */
376 if (STRINGP (XCONS (submap)->car))
377 {
378 submap = XCONS (submap)->cdr;
379 /* Also remove a menu help string, if any,
380 following the menu item name. */
381 if (CONSP (submap) && STRINGP (XCONS (submap)->car))
382 submap = XCONS (submap)->cdr;
383 /* Also remove the sublist that caches key equivalences, if any. */
384 if (CONSP (submap)
385 && CONSP (XCONS (submap)->car))
386 {
387 Lisp_Object carcar;
388 carcar = XCONS (XCONS (submap)->car)->car;
389 if (NILP (carcar) || VECTORP (carcar))
390 submap = XCONS (submap)->cdr;
391 }
392 }
393
394 /* Or a new format menu item */
395 else if (EQ (XCONS (submap)->car, Qmenu_item)
396 && CONSP (XCONS (submap)->cdr))
397 {
398 submap = XCONS (XCONS (submap)->cdr)->cdr;
399 if (CONSP (submap))
400 submap = XCONS (submap)->car;
401 }
402 }
403
404 /* If it isn't a keymap now, there's no work to do. */
405 if (! CONSP (submap)
406 || ! EQ (XCONS (submap)->car, Qkeymap))
407 return;
408
409 map_parent = Fkeymap_parent (map);
410 if (! NILP (map_parent))
411 parent_entry = access_keymap (map_parent, event, 0, 0);
412 else
413 parent_entry = Qnil;
414
415 /* If MAP's parent has something other than a keymap,
416 our own submap shadows it completely, so use nil as SUBMAP's parent. */
417 if (! (CONSP (parent_entry) && EQ (XCONS (parent_entry)->car, Qkeymap)))
418 parent_entry = Qnil;
419
420 if (! EQ (parent_entry, submap))
421 Fset_keymap_parent (submap, parent_entry);
422 }
423 \f
424 /* Look up IDX in MAP. IDX may be any sort of event.
425 Note that this does only one level of lookup; IDX must be a single
426 event, not a sequence.
427
428 If T_OK is non-zero, bindings for Qt are treated as default
429 bindings; any key left unmentioned by other tables and bindings is
430 given the binding of Qt.
431
432 If T_OK is zero, bindings for Qt are not treated specially.
433
434 If NOINHERIT, don't accept a subkeymap found in an inherited keymap. */
435
436 Lisp_Object
437 access_keymap (map, idx, t_ok, noinherit)
438 Lisp_Object map;
439 Lisp_Object idx;
440 int t_ok;
441 int noinherit;
442 {
443 int noprefix = 0;
444 Lisp_Object val;
445
446 /* If idx is a list (some sort of mouse click, perhaps?),
447 the index we want to use is the car of the list, which
448 ought to be a symbol. */
449 idx = EVENT_HEAD (idx);
450
451 /* If idx is a symbol, it might have modifiers, which need to
452 be put in the canonical order. */
453 if (SYMBOLP (idx))
454 idx = reorder_modifiers (idx);
455 else if (INTEGERP (idx))
456 /* Clobber the high bits that can be present on a machine
457 with more than 24 bits of integer. */
458 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
459
460 {
461 Lisp_Object tail;
462 Lisp_Object t_binding;
463
464 t_binding = Qnil;
465 for (tail = map; CONSP (tail); tail = XCONS (tail)->cdr)
466 {
467 Lisp_Object binding;
468
469 binding = XCONS (tail)->car;
470 if (SYMBOLP (binding))
471 {
472 /* If NOINHERIT, stop finding prefix definitions
473 after we pass a second occurrence of the `keymap' symbol. */
474 if (noinherit && EQ (binding, Qkeymap) && ! EQ (tail, map))
475 noprefix = 1;
476 }
477 else if (CONSP (binding))
478 {
479 if (EQ (XCONS (binding)->car, idx))
480 {
481 val = XCONS (binding)->cdr;
482 if (noprefix && CONSP (val) && EQ (XCONS (val)->car, Qkeymap))
483 return Qnil;
484 if (CONSP (val))
485 fix_submap_inheritance (map, idx, val);
486 return val;
487 }
488 if (t_ok && EQ (XCONS (binding)->car, Qt))
489 t_binding = XCONS (binding)->cdr;
490 }
491 else if (VECTORP (binding))
492 {
493 if (NATNUMP (idx) && XFASTINT (idx) < XVECTOR (binding)->size)
494 {
495 val = XVECTOR (binding)->contents[XFASTINT (idx)];
496 if (noprefix && CONSP (val) && EQ (XCONS (val)->car, Qkeymap))
497 return Qnil;
498 if (CONSP (val))
499 fix_submap_inheritance (map, idx, val);
500 return val;
501 }
502 }
503 else if (CHAR_TABLE_P (binding))
504 {
505 /* Character codes with modifiers
506 are not included in a char-table.
507 All character codes without modifiers are included. */
508 if (NATNUMP (idx)
509 && ! (XFASTINT (idx)
510 & (CHAR_ALT | CHAR_SUPER | CHAR_HYPER
511 | CHAR_SHIFT | CHAR_CTL | CHAR_META)))
512 {
513 val = Faref (binding, idx);
514 if (noprefix && CONSP (val) && EQ (XCONS (val)->car, Qkeymap))
515 return Qnil;
516 if (CONSP (val))
517 fix_submap_inheritance (map, idx, val);
518 return val;
519 }
520 }
521
522 QUIT;
523 }
524
525 return t_binding;
526 }
527 }
528
529 /* Given OBJECT which was found in a slot in a keymap,
530 trace indirect definitions to get the actual definition of that slot.
531 An indirect definition is a list of the form
532 (KEYMAP . INDEX), where KEYMAP is a keymap or a symbol defined as one
533 and INDEX is the object to look up in KEYMAP to yield the definition.
534
535 Also if OBJECT has a menu string as the first element,
536 remove that. Also remove a menu help string as second element.
537
538 If AUTOLOAD is nonzero, load autoloadable keymaps
539 that are referred to with indirection. */
540
541 Lisp_Object
542 get_keyelt (object, autoload)
543 register Lisp_Object object;
544 int autoload;
545 {
546 while (1)
547 {
548 register Lisp_Object map, tem;
549
550 /* If the contents are (KEYMAP . ELEMENT), go indirect. */
551 map = get_keymap_1 (Fcar_safe (object), 0, autoload);
552 tem = Fkeymapp (map);
553 if (!NILP (tem))
554 {
555 Lisp_Object key;
556 key = Fcdr (object);
557 if (INTEGERP (key) && (XINT (key) & meta_modifier))
558 {
559 object = access_keymap (map, meta_prefix_char, 0, 0);
560 map = get_keymap_1 (object, 0, autoload);
561 object = access_keymap (map,
562 make_number (XINT (key) & ~meta_modifier),
563 0, 0);
564 }
565 else
566 object = access_keymap (map, key, 0, 0);
567 }
568
569 else if (!(CONSP (object)))
570 /* This is really the value. */
571 return object;
572
573 /* If the keymap contents looks like (STRING . DEFN),
574 use DEFN.
575 Keymap alist elements like (CHAR MENUSTRING . DEFN)
576 will be used by HierarKey menus. */
577 else if (STRINGP (XCONS (object)->car))
578 {
579 object = XCONS (object)->cdr;
580 /* Also remove a menu help string, if any,
581 following the menu item name. */
582 if (CONSP (object) && STRINGP (XCONS (object)->car))
583 object = XCONS (object)->cdr;
584 /* Also remove the sublist that caches key equivalences, if any. */
585 if (CONSP (object)
586 && CONSP (XCONS (object)->car))
587 {
588 Lisp_Object carcar;
589 carcar = XCONS (XCONS (object)->car)->car;
590 if (NILP (carcar) || VECTORP (carcar))
591 object = XCONS (object)->cdr;
592 }
593 }
594
595 /* If the keymap contents looks like (menu-item name . DEFN)
596 or (menu-item name DEFN ...) then use DEFN.
597 This is a new format menu item.
598 */
599 else if (EQ (XCONS (object)->car, Qmenu_item)
600 && CONSP (XCONS (object)->cdr))
601 {
602 object = XCONS (XCONS (object)->cdr)->cdr;
603 if (CONSP (object))
604 object = XCONS (object)->car;
605 }
606
607 else
608 /* Anything else is really the value. */
609 return object;
610 }
611 }
612
613 Lisp_Object
614 store_in_keymap (keymap, idx, def)
615 Lisp_Object keymap;
616 register Lisp_Object idx;
617 register Lisp_Object def;
618 {
619 /* If we are preparing to dump, and DEF is a menu element
620 with a menu item indicator, copy it to ensure it is not pure. */
621 if (CONSP (def) && PURE_P (def)
622 && (EQ (XCONS (def)->car, Qmenu_item) || STRINGP (XCONS (def)->car)))
623 def = Fcons (XCONS (def)->car, XCONS (def)->cdr);
624
625 if (!CONSP (keymap) || ! EQ (XCONS (keymap)->car, Qkeymap))
626 error ("attempt to define a key in a non-keymap");
627
628 /* If idx is a list (some sort of mouse click, perhaps?),
629 the index we want to use is the car of the list, which
630 ought to be a symbol. */
631 idx = EVENT_HEAD (idx);
632
633 /* If idx is a symbol, it might have modifiers, which need to
634 be put in the canonical order. */
635 if (SYMBOLP (idx))
636 idx = reorder_modifiers (idx);
637 else if (INTEGERP (idx))
638 /* Clobber the high bits that can be present on a machine
639 with more than 24 bits of integer. */
640 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
641
642 /* Scan the keymap for a binding of idx. */
643 {
644 Lisp_Object tail;
645
646 /* The cons after which we should insert new bindings. If the
647 keymap has a table element, we record its position here, so new
648 bindings will go after it; this way, the table will stay
649 towards the front of the alist and character lookups in dense
650 keymaps will remain fast. Otherwise, this just points at the
651 front of the keymap. */
652 Lisp_Object insertion_point;
653
654 insertion_point = keymap;
655 for (tail = XCONS (keymap)->cdr; CONSP (tail); tail = XCONS (tail)->cdr)
656 {
657 Lisp_Object elt;
658
659 elt = XCONS (tail)->car;
660 if (VECTORP (elt))
661 {
662 if (NATNUMP (idx) && XFASTINT (idx) < XVECTOR (elt)->size)
663 {
664 XVECTOR (elt)->contents[XFASTINT (idx)] = def;
665 return def;
666 }
667 insertion_point = tail;
668 }
669 else if (CHAR_TABLE_P (elt))
670 {
671 /* Character codes with modifiers
672 are not included in a char-table.
673 All character codes without modifiers are included. */
674 if (NATNUMP (idx)
675 && ! (XFASTINT (idx)
676 & (CHAR_ALT | CHAR_SUPER | CHAR_HYPER
677 | CHAR_SHIFT | CHAR_CTL | CHAR_META)))
678 {
679 Faset (elt, idx, def);
680 return def;
681 }
682 insertion_point = tail;
683 }
684 else if (CONSP (elt))
685 {
686 if (EQ (idx, XCONS (elt)->car))
687 {
688 XCONS (elt)->cdr = def;
689 return def;
690 }
691 }
692 else if (SYMBOLP (elt))
693 {
694 /* If we find a 'keymap' symbol in the spine of KEYMAP,
695 then we must have found the start of a second keymap
696 being used as the tail of KEYMAP, and a binding for IDX
697 should be inserted before it. */
698 if (EQ (elt, Qkeymap))
699 goto keymap_end;
700 }
701
702 QUIT;
703 }
704
705 keymap_end:
706 /* We have scanned the entire keymap, and not found a binding for
707 IDX. Let's add one. */
708 XCONS (insertion_point)->cdr
709 = Fcons (Fcons (idx, def), XCONS (insertion_point)->cdr);
710 }
711
712 return def;
713 }
714
715 void
716 copy_keymap_1 (chartable, idx, elt)
717 Lisp_Object chartable, idx, elt;
718 {
719 if (!SYMBOLP (elt) && ! NILP (Fkeymapp (elt)))
720 Faset (chartable, idx, Fcopy_keymap (elt));
721 }
722
723 DEFUN ("copy-keymap", Fcopy_keymap, Scopy_keymap, 1, 1, 0,
724 "Return a copy of the keymap KEYMAP.\n\
725 The copy starts out with the same definitions of KEYMAP,\n\
726 but changing either the copy or KEYMAP does not affect the other.\n\
727 Any key definitions that are subkeymaps are recursively copied.\n\
728 However, a key definition which is a symbol whose definition is a keymap\n\
729 is not copied.")
730 (keymap)
731 Lisp_Object keymap;
732 {
733 register Lisp_Object copy, tail;
734
735 copy = Fcopy_alist (get_keymap (keymap));
736
737 for (tail = copy; CONSP (tail); tail = XCONS (tail)->cdr)
738 {
739 Lisp_Object elt;
740
741 elt = XCONS (tail)->car;
742 if (CHAR_TABLE_P (elt))
743 {
744 Lisp_Object indices[3];
745
746 elt = Fcopy_sequence (elt);
747 XCONS (tail)->car = elt;
748
749 map_char_table (copy_keymap_1, Qnil, elt, elt, 0, indices);
750 }
751 else if (VECTORP (elt))
752 {
753 int i;
754
755 elt = Fcopy_sequence (elt);
756 XCONS (tail)->car = elt;
757
758 for (i = 0; i < XVECTOR (elt)->size; i++)
759 if (!SYMBOLP (XVECTOR (elt)->contents[i])
760 && ! NILP (Fkeymapp (XVECTOR (elt)->contents[i])))
761 XVECTOR (elt)->contents[i]
762 = Fcopy_keymap (XVECTOR (elt)->contents[i]);
763 }
764 else if (CONSP (elt) && CONSP (XCONS (elt)->cdr))
765 {
766 Lisp_Object tem;
767 tem = XCONS (elt)->cdr;
768
769 /* Is this a new format menu item. */
770 if (EQ (XCONS (tem)->car,Qmenu_item))
771 {
772 /* Copy cell with menu-item marker. */
773 XCONS (elt)->cdr
774 = Fcons (XCONS (tem)->car, XCONS (tem)->cdr);
775 elt = XCONS (elt)->cdr;
776 tem = XCONS (elt)->cdr;
777 if (CONSP (tem))
778 {
779 /* Copy cell with menu-item name. */
780 XCONS (elt)->cdr
781 = Fcons (XCONS (tem)->car, XCONS (tem)->cdr);
782 elt = XCONS (elt)->cdr;
783 tem = XCONS (elt)->cdr;
784 };
785 if (CONSP (tem))
786 {
787 /* Copy cell with binding and if the binding is a keymap,
788 copy that. */
789 XCONS (elt)->cdr
790 = Fcons (XCONS (tem)->car, XCONS (tem)->cdr);
791 elt = XCONS (elt)->cdr;
792 tem = XCONS (elt)->car;
793 if (!(SYMBOLP (tem) || NILP (Fkeymapp (tem))))
794 XCONS (elt)->car = Fcopy_keymap (tem);
795 tem = XCONS (elt)->cdr;
796 if (CONSP (tem) && CONSP (XCONS (tem)->car))
797 /* Delete cache for key equivalences. */
798 XCONS (elt)->cdr = XCONS (tem)->cdr;
799 }
800 }
801 else
802 {
803 /* It may be an old fomat menu item.
804 Skip the optional menu string.
805 */
806 if (STRINGP (XCONS (tem)->car))
807 {
808 /* Copy the cell, since copy-alist didn't go this deep. */
809 XCONS (elt)->cdr
810 = Fcons (XCONS (tem)->car, XCONS (tem)->cdr);
811 elt = XCONS (elt)->cdr;
812 tem = XCONS (elt)->cdr;
813 /* Also skip the optional menu help string. */
814 if (CONSP (tem) && STRINGP (XCONS (tem)->car))
815 {
816 XCONS (elt)->cdr
817 = Fcons (XCONS (tem)->car, XCONS (tem)->cdr);
818 elt = XCONS (elt)->cdr;
819 tem = XCONS (elt)->cdr;
820 }
821 /* There may also be a list that caches key equivalences.
822 Just delete it for the new keymap. */
823 if (CONSP (tem)
824 && CONSP (XCONS (tem)->car)
825 && (NILP (XCONS (XCONS (tem)->car)->car)
826 || VECTORP (XCONS (XCONS (tem)->car)->car)))
827 XCONS (elt)->cdr = XCONS (tem)->cdr;
828 }
829 if (CONSP (elt)
830 && ! SYMBOLP (XCONS (elt)->cdr)
831 && ! NILP (Fkeymapp (XCONS (elt)->cdr)))
832 XCONS (elt)->cdr = Fcopy_keymap (XCONS (elt)->cdr);
833 }
834
835 }
836 }
837
838 return copy;
839 }
840 \f
841 /* Simple Keymap mutators and accessors. */
842
843 /* GC is possible in this function if it autoloads a keymap. */
844
845 DEFUN ("define-key", Fdefine_key, Sdefine_key, 3, 3, 0,
846 "Args KEYMAP, KEY, DEF. Define key sequence KEY, in KEYMAP, as DEF.\n\
847 KEYMAP is a keymap. KEY is a string or a vector of symbols and characters\n\
848 meaning a sequence of keystrokes and events.\n\
849 Non-ASCII characters with codes above 127 (such as ISO Latin-1)\n\
850 can be included if you use a vector.\n\
851 DEF is anything that can be a key's definition:\n\
852 nil (means key is undefined in this keymap),\n\
853 a command (a Lisp function suitable for interactive calling)\n\
854 a string (treated as a keyboard macro),\n\
855 a keymap (to define a prefix key),\n\
856 a symbol. When the key is looked up, the symbol will stand for its\n\
857 function definition, which should at that time be one of the above,\n\
858 or another symbol whose function definition is used, etc.\n\
859 a cons (STRING . DEFN), meaning that DEFN is the definition\n\
860 (DEFN should be a valid definition in its own right),\n\
861 or a cons (KEYMAP . CHAR), meaning use definition of CHAR in map KEYMAP.\n\
862 \n\
863 If KEYMAP is a sparse keymap, the pair binding KEY to DEF is added at\n\
864 the front of KEYMAP.")
865 (keymap, key, def)
866 Lisp_Object keymap;
867 Lisp_Object key;
868 Lisp_Object def;
869 {
870 register int idx;
871 register Lisp_Object c;
872 register Lisp_Object tem;
873 register Lisp_Object cmd;
874 int metized = 0;
875 int meta_bit;
876 int length;
877 struct gcpro gcpro1, gcpro2, gcpro3;
878
879 keymap = get_keymap_1 (keymap, 1, 1);
880
881 if (!VECTORP (key) && !STRINGP (key))
882 key = wrong_type_argument (Qarrayp, key);
883
884 length = XFASTINT (Flength (key));
885 if (length == 0)
886 return Qnil;
887
888 if (SYMBOLP (def) && !EQ (Vdefine_key_rebound_commands, Qt))
889 Vdefine_key_rebound_commands = Fcons (def, Vdefine_key_rebound_commands);
890
891 GCPRO3 (keymap, key, def);
892
893 if (VECTORP (key))
894 meta_bit = meta_modifier;
895 else
896 meta_bit = 0x80;
897
898 idx = 0;
899 while (1)
900 {
901 c = Faref (key, make_number (idx));
902
903 if (CONSP (c) && lucid_event_type_list_p (c))
904 c = Fevent_convert_list (c);
905
906 if (INTEGERP (c)
907 && (XINT (c) & meta_bit)
908 && !metized)
909 {
910 c = meta_prefix_char;
911 metized = 1;
912 }
913 else
914 {
915 if (INTEGERP (c))
916 XSETINT (c, XINT (c) & ~meta_bit);
917
918 metized = 0;
919 idx++;
920 }
921
922 if (! INTEGERP (c) && ! SYMBOLP (c) && ! CONSP (c))
923 error ("Key sequence contains invalid events");
924
925 if (idx == length)
926 RETURN_UNGCPRO (store_in_keymap (keymap, c, def));
927
928 cmd = get_keyelt (access_keymap (keymap, c, 0, 1), 1);
929
930 /* If this key is undefined, make it a prefix. */
931 if (NILP (cmd))
932 cmd = define_as_prefix (keymap, c);
933
934 keymap = get_keymap_1 (cmd, 0, 1);
935 if (NILP (keymap))
936 /* We must use Fkey_description rather than just passing key to
937 error; key might be a vector, not a string. */
938 error ("Key sequence %s uses invalid prefix characters",
939 XSTRING (Fkey_description (key))->data);
940 }
941 }
942
943 /* Value is number if KEY is too long; NIL if valid but has no definition. */
944 /* GC is possible in this function if it autoloads a keymap. */
945
946 DEFUN ("lookup-key", Flookup_key, Slookup_key, 2, 3, 0,
947 "In keymap KEYMAP, look up key sequence KEY. Return the definition.\n\
948 nil means undefined. See doc of `define-key' for kinds of definitions.\n\
949 \n\
950 A number as value means KEY is \"too long\";\n\
951 that is, characters or symbols in it except for the last one\n\
952 fail to be a valid sequence of prefix characters in KEYMAP.\n\
953 The number is how many characters at the front of KEY\n\
954 it takes to reach a non-prefix command.\n\
955 \n\
956 Normally, `lookup-key' ignores bindings for t, which act as default\n\
957 bindings, used when nothing else in the keymap applies; this makes it\n\
958 usable as a general function for probing keymaps. However, if the\n\
959 third optional argument ACCEPT-DEFAULT is non-nil, `lookup-key' will\n\
960 recognize the default bindings, just as `read-key-sequence' does.")
961 (keymap, key, accept_default)
962 register Lisp_Object keymap;
963 Lisp_Object key;
964 Lisp_Object accept_default;
965 {
966 register int idx;
967 register Lisp_Object tem;
968 register Lisp_Object cmd;
969 register Lisp_Object c;
970 int metized = 0;
971 int length;
972 int t_ok = ! NILP (accept_default);
973 int meta_bit;
974 struct gcpro gcpro1;
975
976 keymap = get_keymap_1 (keymap, 1, 1);
977
978 if (!VECTORP (key) && !STRINGP (key))
979 key = wrong_type_argument (Qarrayp, key);
980
981 length = XFASTINT (Flength (key));
982 if (length == 0)
983 return keymap;
984
985 if (VECTORP (key))
986 meta_bit = meta_modifier;
987 else
988 meta_bit = 0x80;
989
990 GCPRO1 (key);
991
992 idx = 0;
993 while (1)
994 {
995 c = Faref (key, make_number (idx));
996
997 if (CONSP (c) && lucid_event_type_list_p (c))
998 c = Fevent_convert_list (c);
999
1000 if (INTEGERP (c)
1001 && (XINT (c) & meta_bit)
1002 && !metized)
1003 {
1004 c = meta_prefix_char;
1005 metized = 1;
1006 }
1007 else
1008 {
1009 if (INTEGERP (c))
1010 XSETINT (c, XINT (c) & ~meta_bit);
1011
1012 metized = 0;
1013 idx++;
1014 }
1015
1016 cmd = get_keyelt (access_keymap (keymap, c, t_ok, 0), 1);
1017 if (idx == length)
1018 RETURN_UNGCPRO (cmd);
1019
1020 keymap = get_keymap_1 (cmd, 0, 1);
1021 if (NILP (keymap))
1022 RETURN_UNGCPRO (make_number (idx));
1023
1024 QUIT;
1025 }
1026 }
1027
1028 /* Make KEYMAP define event C as a keymap (i.e., as a prefix).
1029 Assume that currently it does not define C at all.
1030 Return the keymap. */
1031
1032 static Lisp_Object
1033 define_as_prefix (keymap, c)
1034 Lisp_Object keymap, c;
1035 {
1036 Lisp_Object inherit, cmd;
1037
1038 cmd = Fmake_sparse_keymap (Qnil);
1039 /* If this key is defined as a prefix in an inherited keymap,
1040 make it a prefix in this map, and make its definition
1041 inherit the other prefix definition. */
1042 inherit = access_keymap (keymap, c, 0, 0);
1043 #if 0
1044 /* This code is needed to do the right thing in the following case:
1045 keymap A inherits from B,
1046 you define KEY as a prefix in A,
1047 then later you define KEY as a prefix in B.
1048 We want the old prefix definition in A to inherit from that in B.
1049 It is hard to do that retroactively, so this code
1050 creates the prefix in B right away.
1051
1052 But it turns out that this code causes problems immediately
1053 when the prefix in A is defined: it causes B to define KEY
1054 as a prefix with no subcommands.
1055
1056 So I took out this code. */
1057 if (NILP (inherit))
1058 {
1059 /* If there's an inherited keymap
1060 and it doesn't define this key,
1061 make it define this key. */
1062 Lisp_Object tail;
1063
1064 for (tail = Fcdr (keymap); CONSP (tail); tail = XCONS (tail)->cdr)
1065 if (EQ (XCONS (tail)->car, Qkeymap))
1066 break;
1067
1068 if (!NILP (tail))
1069 inherit = define_as_prefix (tail, c);
1070 }
1071 #endif
1072
1073 cmd = nconc2 (cmd, inherit);
1074 store_in_keymap (keymap, c, cmd);
1075
1076 return cmd;
1077 }
1078
1079 /* Append a key to the end of a key sequence. We always make a vector. */
1080
1081 Lisp_Object
1082 append_key (key_sequence, key)
1083 Lisp_Object key_sequence, key;
1084 {
1085 Lisp_Object args[2];
1086
1087 args[0] = key_sequence;
1088
1089 args[1] = Fcons (key, Qnil);
1090 return Fvconcat (2, args);
1091 }
1092
1093 \f
1094 /* Global, local, and minor mode keymap stuff. */
1095
1096 /* We can't put these variables inside current_minor_maps, since under
1097 some systems, static gets macro-defined to be the empty string.
1098 Ickypoo. */
1099 static Lisp_Object *cmm_modes, *cmm_maps;
1100 static int cmm_size;
1101
1102 /* Error handler used in current_minor_maps. */
1103 static Lisp_Object
1104 current_minor_maps_error ()
1105 {
1106 return Qnil;
1107 }
1108
1109 /* Store a pointer to an array of the keymaps of the currently active
1110 minor modes in *buf, and return the number of maps it contains.
1111
1112 This function always returns a pointer to the same buffer, and may
1113 free or reallocate it, so if you want to keep it for a long time or
1114 hand it out to lisp code, copy it. This procedure will be called
1115 for every key sequence read, so the nice lispy approach (return a
1116 new assoclist, list, what have you) for each invocation would
1117 result in a lot of consing over time.
1118
1119 If we used xrealloc/xmalloc and ran out of memory, they would throw
1120 back to the command loop, which would try to read a key sequence,
1121 which would call this function again, resulting in an infinite
1122 loop. Instead, we'll use realloc/malloc and silently truncate the
1123 list, let the key sequence be read, and hope some other piece of
1124 code signals the error. */
1125 int
1126 current_minor_maps (modeptr, mapptr)
1127 Lisp_Object **modeptr, **mapptr;
1128 {
1129 int i = 0;
1130 int list_number = 0;
1131 Lisp_Object alist, assoc, var, val;
1132 Lisp_Object lists[2];
1133
1134 lists[0] = Vminor_mode_overriding_map_alist;
1135 lists[1] = Vminor_mode_map_alist;
1136
1137 for (list_number = 0; list_number < 2; list_number++)
1138 for (alist = lists[list_number];
1139 CONSP (alist);
1140 alist = XCONS (alist)->cdr)
1141 if ((assoc = XCONS (alist)->car, CONSP (assoc))
1142 && (var = XCONS (assoc)->car, SYMBOLP (var))
1143 && (val = find_symbol_value (var), ! EQ (val, Qunbound))
1144 && ! NILP (val))
1145 {
1146 Lisp_Object temp;
1147
1148 /* If a variable has an entry in Vminor_mode_overriding_map_alist,
1149 and also an entry in Vminor_mode_map_alist,
1150 ignore the latter. */
1151 if (list_number == 1)
1152 {
1153 val = assq_no_quit (var, lists[0]);
1154 if (!NILP (val))
1155 break;
1156 }
1157
1158 if (i >= cmm_size)
1159 {
1160 Lisp_Object *newmodes, *newmaps;
1161
1162 if (cmm_maps)
1163 {
1164 BLOCK_INPUT;
1165 cmm_size *= 2;
1166 newmodes
1167 = (Lisp_Object *) realloc (cmm_modes,
1168 cmm_size * sizeof (Lisp_Object));
1169 newmaps
1170 = (Lisp_Object *) realloc (cmm_maps,
1171 cmm_size * sizeof (Lisp_Object));
1172 UNBLOCK_INPUT;
1173 }
1174 else
1175 {
1176 BLOCK_INPUT;
1177 cmm_size = 30;
1178 newmodes
1179 = (Lisp_Object *) malloc (cmm_size * sizeof (Lisp_Object));
1180 newmaps
1181 = (Lisp_Object *) malloc (cmm_size * sizeof (Lisp_Object));
1182 UNBLOCK_INPUT;
1183 }
1184
1185 if (newmaps && newmodes)
1186 {
1187 cmm_modes = newmodes;
1188 cmm_maps = newmaps;
1189 }
1190 else
1191 break;
1192 }
1193
1194 /* Get the keymap definition--or nil if it is not defined. */
1195 temp = internal_condition_case_1 (Findirect_function,
1196 XCONS (assoc)->cdr,
1197 Qerror, current_minor_maps_error);
1198 if (!NILP (temp))
1199 {
1200 cmm_modes[i] = var;
1201 cmm_maps [i] = temp;
1202 i++;
1203 }
1204 }
1205
1206 if (modeptr) *modeptr = cmm_modes;
1207 if (mapptr) *mapptr = cmm_maps;
1208 return i;
1209 }
1210
1211 /* GC is possible in this function if it autoloads a keymap. */
1212
1213 DEFUN ("key-binding", Fkey_binding, Skey_binding, 1, 2, 0,
1214 "Return the binding for command KEY in current keymaps.\n\
1215 KEY is a string or vector, a sequence of keystrokes.\n\
1216 The binding is probably a symbol with a function definition.\n\
1217 \n\
1218 Normally, `key-binding' ignores bindings for t, which act as default\n\
1219 bindings, used when nothing else in the keymap applies; this makes it\n\
1220 usable as a general function for probing keymaps. However, if the\n\
1221 optional second argument ACCEPT-DEFAULT is non-nil, `key-binding' does\n\
1222 recognize the default bindings, just as `read-key-sequence' does.")
1223 (key, accept_default)
1224 Lisp_Object key, accept_default;
1225 {
1226 Lisp_Object *maps, value;
1227 int nmaps, i;
1228 struct gcpro gcpro1;
1229
1230 GCPRO1 (key);
1231
1232 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1233 {
1234 value = Flookup_key (current_kboard->Voverriding_terminal_local_map,
1235 key, accept_default);
1236 if (! NILP (value) && !INTEGERP (value))
1237 RETURN_UNGCPRO (value);
1238 }
1239 else if (!NILP (Voverriding_local_map))
1240 {
1241 value = Flookup_key (Voverriding_local_map, key, accept_default);
1242 if (! NILP (value) && !INTEGERP (value))
1243 RETURN_UNGCPRO (value);
1244 }
1245 else
1246 {
1247 Lisp_Object local;
1248
1249 nmaps = current_minor_maps (0, &maps);
1250 /* Note that all these maps are GCPRO'd
1251 in the places where we found them. */
1252
1253 for (i = 0; i < nmaps; i++)
1254 if (! NILP (maps[i]))
1255 {
1256 value = Flookup_key (maps[i], key, accept_default);
1257 if (! NILP (value) && !INTEGERP (value))
1258 RETURN_UNGCPRO (value);
1259 }
1260
1261 local = get_local_map (PT, current_buffer);
1262
1263 if (! NILP (local))
1264 {
1265 value = Flookup_key (local, key, accept_default);
1266 if (! NILP (value) && !INTEGERP (value))
1267 RETURN_UNGCPRO (value);
1268 }
1269 }
1270
1271 value = Flookup_key (current_global_map, key, accept_default);
1272 UNGCPRO;
1273 if (! NILP (value) && !INTEGERP (value))
1274 return value;
1275
1276 return Qnil;
1277 }
1278
1279 /* GC is possible in this function if it autoloads a keymap. */
1280
1281 DEFUN ("local-key-binding", Flocal_key_binding, Slocal_key_binding, 1, 2, 0,
1282 "Return the binding for command KEYS in current local keymap only.\n\
1283 KEYS is a string, a sequence of keystrokes.\n\
1284 The binding is probably a symbol with a function definition.\n\
1285 \n\
1286 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
1287 bindings; see the description of `lookup-key' for more details about this.")
1288 (keys, accept_default)
1289 Lisp_Object keys, accept_default;
1290 {
1291 register Lisp_Object map;
1292 map = current_buffer->keymap;
1293 if (NILP (map))
1294 return Qnil;
1295 return Flookup_key (map, keys, accept_default);
1296 }
1297
1298 /* GC is possible in this function if it autoloads a keymap. */
1299
1300 DEFUN ("global-key-binding", Fglobal_key_binding, Sglobal_key_binding, 1, 2, 0,
1301 "Return the binding for command KEYS in current global keymap only.\n\
1302 KEYS is a string, a sequence of keystrokes.\n\
1303 The binding is probably a symbol with a function definition.\n\
1304 This function's return values are the same as those of lookup-key\n\
1305 \(which see).\n\
1306 \n\
1307 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
1308 bindings; see the description of `lookup-key' for more details about this.")
1309 (keys, accept_default)
1310 Lisp_Object keys, accept_default;
1311 {
1312 return Flookup_key (current_global_map, keys, accept_default);
1313 }
1314
1315 /* GC is possible in this function if it autoloads a keymap. */
1316
1317 DEFUN ("minor-mode-key-binding", Fminor_mode_key_binding, Sminor_mode_key_binding, 1, 2, 0,
1318 "Find the visible minor mode bindings of KEY.\n\
1319 Return an alist of pairs (MODENAME . BINDING), where MODENAME is the\n\
1320 the symbol which names the minor mode binding KEY, and BINDING is\n\
1321 KEY's definition in that mode. In particular, if KEY has no\n\
1322 minor-mode bindings, return nil. If the first binding is a\n\
1323 non-prefix, all subsequent bindings will be omitted, since they would\n\
1324 be ignored. Similarly, the list doesn't include non-prefix bindings\n\
1325 that come after prefix bindings.\n\
1326 \n\
1327 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
1328 bindings; see the description of `lookup-key' for more details about this.")
1329 (key, accept_default)
1330 Lisp_Object key, accept_default;
1331 {
1332 Lisp_Object *modes, *maps;
1333 int nmaps;
1334 Lisp_Object binding;
1335 int i, j;
1336 struct gcpro gcpro1, gcpro2;
1337
1338 nmaps = current_minor_maps (&modes, &maps);
1339 /* Note that all these maps are GCPRO'd
1340 in the places where we found them. */
1341
1342 binding = Qnil;
1343 GCPRO2 (key, binding);
1344
1345 for (i = j = 0; i < nmaps; i++)
1346 if (! NILP (maps[i])
1347 && ! NILP (binding = Flookup_key (maps[i], key, accept_default))
1348 && !INTEGERP (binding))
1349 {
1350 if (! NILP (get_keymap (binding)))
1351 maps[j++] = Fcons (modes[i], binding);
1352 else if (j == 0)
1353 RETURN_UNGCPRO (Fcons (Fcons (modes[i], binding), Qnil));
1354 }
1355
1356 UNGCPRO;
1357 return Flist (j, maps);
1358 }
1359
1360 DEFUN ("define-prefix-command", Fdefine_prefix_command, Sdefine_prefix_command, 1, 2, 0,
1361 "Define COMMAND as a prefix command. COMMAND should be a symbol.\n\
1362 A new sparse keymap is stored as COMMAND's function definition and its value.\n\
1363 If a second optional argument MAPVAR is given, the map is stored as\n\
1364 its value instead of as COMMAND's value; but COMMAND is still defined\n\
1365 as a function.")
1366 (command, mapvar)
1367 Lisp_Object command, mapvar;
1368 {
1369 Lisp_Object map;
1370 map = Fmake_sparse_keymap (Qnil);
1371 Ffset (command, map);
1372 if (!NILP (mapvar))
1373 Fset (mapvar, map);
1374 else
1375 Fset (command, map);
1376 return command;
1377 }
1378
1379 DEFUN ("use-global-map", Fuse_global_map, Suse_global_map, 1, 1, 0,
1380 "Select KEYMAP as the global keymap.")
1381 (keymap)
1382 Lisp_Object keymap;
1383 {
1384 keymap = get_keymap (keymap);
1385 current_global_map = keymap;
1386
1387 return Qnil;
1388 }
1389
1390 DEFUN ("use-local-map", Fuse_local_map, Suse_local_map, 1, 1, 0,
1391 "Select KEYMAP as the local keymap.\n\
1392 If KEYMAP is nil, that means no local keymap.")
1393 (keymap)
1394 Lisp_Object keymap;
1395 {
1396 if (!NILP (keymap))
1397 keymap = get_keymap (keymap);
1398
1399 current_buffer->keymap = keymap;
1400
1401 return Qnil;
1402 }
1403
1404 DEFUN ("current-local-map", Fcurrent_local_map, Scurrent_local_map, 0, 0, 0,
1405 "Return current buffer's local keymap, or nil if it has none.")
1406 ()
1407 {
1408 return current_buffer->keymap;
1409 }
1410
1411 DEFUN ("current-global-map", Fcurrent_global_map, Scurrent_global_map, 0, 0, 0,
1412 "Return the current global keymap.")
1413 ()
1414 {
1415 return current_global_map;
1416 }
1417
1418 DEFUN ("current-minor-mode-maps", Fcurrent_minor_mode_maps, Scurrent_minor_mode_maps, 0, 0, 0,
1419 "Return a list of keymaps for the minor modes of the current buffer.")
1420 ()
1421 {
1422 Lisp_Object *maps;
1423 int nmaps = current_minor_maps (0, &maps);
1424
1425 return Flist (nmaps, maps);
1426 }
1427 \f
1428 /* Help functions for describing and documenting keymaps. */
1429
1430 static void accessible_keymaps_char_table ();
1431
1432 /* This function cannot GC. */
1433
1434 DEFUN ("accessible-keymaps", Faccessible_keymaps, Saccessible_keymaps,
1435 1, 2, 0,
1436 "Find all keymaps accessible via prefix characters from KEYMAP.\n\
1437 Returns a list of elements of the form (KEYS . MAP), where the sequence\n\
1438 KEYS starting from KEYMAP gets you to MAP. These elements are ordered\n\
1439 so that the KEYS increase in length. The first element is ([] . KEYMAP).\n\
1440 An optional argument PREFIX, if non-nil, should be a key sequence;\n\
1441 then the value includes only maps for prefixes that start with PREFIX.")
1442 (keymap, prefix)
1443 Lisp_Object keymap, prefix;
1444 {
1445 Lisp_Object maps, good_maps, tail;
1446 int prefixlen = 0;
1447
1448 /* no need for gcpro because we don't autoload any keymaps. */
1449
1450 if (!NILP (prefix))
1451 prefixlen = XINT (Flength (prefix));
1452
1453 if (!NILP (prefix))
1454 {
1455 /* If a prefix was specified, start with the keymap (if any) for
1456 that prefix, so we don't waste time considering other prefixes. */
1457 Lisp_Object tem;
1458 tem = Flookup_key (keymap, prefix, Qt);
1459 /* Flookup_key may give us nil, or a number,
1460 if the prefix is not defined in this particular map.
1461 It might even give us a list that isn't a keymap. */
1462 tem = get_keymap_1 (tem, 0, 0);
1463 if (!NILP (tem))
1464 {
1465 /* Convert PREFIX to a vector now, so that later on
1466 we don't have to deal with the possibility of a string. */
1467 if (STRINGP (prefix))
1468 {
1469 int i, i_byte, c;
1470 Lisp_Object copy;
1471
1472 copy = Fmake_vector (make_number (XSTRING (prefix)->size), Qnil);
1473 for (i = 0, i_byte; i < XSTRING (prefix)->size;)
1474 {
1475 int i_before = i;
1476 if (STRING_MULTIBYTE (prefix))
1477 FETCH_STRING_CHAR_ADVANCE (c, prefix, i, i_byte);
1478 else
1479 c = XSTRING (prefix)->data[i++];
1480 if (c & 0200)
1481 c ^= 0200 | meta_modifier;
1482 XVECTOR (copy)->contents[i_before] = make_number (c);
1483 }
1484 prefix = copy;
1485 }
1486 maps = Fcons (Fcons (prefix, tem), Qnil);
1487 }
1488 else
1489 return Qnil;
1490 }
1491 else
1492 maps = Fcons (Fcons (Fmake_vector (make_number (0), Qnil),
1493 get_keymap (keymap)),
1494 Qnil);
1495
1496 /* For each map in the list maps,
1497 look at any other maps it points to,
1498 and stick them at the end if they are not already in the list.
1499
1500 This is a breadth-first traversal, where tail is the queue of
1501 nodes, and maps accumulates a list of all nodes visited. */
1502
1503 for (tail = maps; CONSP (tail); tail = XCONS (tail)->cdr)
1504 {
1505 register Lisp_Object thisseq, thismap;
1506 Lisp_Object last;
1507 /* Does the current sequence end in the meta-prefix-char? */
1508 int is_metized;
1509
1510 thisseq = Fcar (Fcar (tail));
1511 thismap = Fcdr (Fcar (tail));
1512 last = make_number (XINT (Flength (thisseq)) - 1);
1513 is_metized = (XINT (last) >= 0
1514 /* Don't metize the last char of PREFIX. */
1515 && XINT (last) >= prefixlen
1516 && EQ (Faref (thisseq, last), meta_prefix_char));
1517
1518 for (; CONSP (thismap); thismap = XCONS (thismap)->cdr)
1519 {
1520 Lisp_Object elt;
1521
1522 elt = XCONS (thismap)->car;
1523
1524 QUIT;
1525
1526 if (CHAR_TABLE_P (elt))
1527 {
1528 Lisp_Object indices[3];
1529
1530 map_char_table (accessible_keymaps_char_table, Qnil,
1531 elt, Fcons (maps, Fcons (tail, thisseq)),
1532 0, indices);
1533 }
1534 else if (VECTORP (elt))
1535 {
1536 register int i;
1537
1538 /* Vector keymap. Scan all the elements. */
1539 for (i = 0; i < XVECTOR (elt)->size; i++)
1540 {
1541 register Lisp_Object tem;
1542 register Lisp_Object cmd;
1543
1544 cmd = get_keyelt (XVECTOR (elt)->contents[i], 0);
1545 if (NILP (cmd)) continue;
1546 tem = Fkeymapp (cmd);
1547 if (!NILP (tem))
1548 {
1549 cmd = get_keymap (cmd);
1550 /* Ignore keymaps that are already added to maps. */
1551 tem = Frassq (cmd, maps);
1552 if (NILP (tem))
1553 {
1554 /* If the last key in thisseq is meta-prefix-char,
1555 turn it into a meta-ized keystroke. We know
1556 that the event we're about to append is an
1557 ascii keystroke since we're processing a
1558 keymap table. */
1559 if (is_metized)
1560 {
1561 int meta_bit = meta_modifier;
1562 tem = Fcopy_sequence (thisseq);
1563
1564 Faset (tem, last, make_number (i | meta_bit));
1565
1566 /* This new sequence is the same length as
1567 thisseq, so stick it in the list right
1568 after this one. */
1569 XCONS (tail)->cdr
1570 = Fcons (Fcons (tem, cmd), XCONS (tail)->cdr);
1571 }
1572 else
1573 {
1574 tem = append_key (thisseq, make_number (i));
1575 nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
1576 }
1577 }
1578 }
1579 }
1580 }
1581 else if (CONSP (elt))
1582 {
1583 register Lisp_Object cmd, tem, filter;
1584
1585 cmd = get_keyelt (XCONS (elt)->cdr, 0);
1586 /* Ignore definitions that aren't keymaps themselves. */
1587 tem = Fkeymapp (cmd);
1588 if (!NILP (tem))
1589 {
1590 /* Ignore keymaps that have been seen already. */
1591 cmd = get_keymap (cmd);
1592 tem = Frassq (cmd, maps);
1593 if (NILP (tem))
1594 {
1595 /* Let elt be the event defined by this map entry. */
1596 elt = XCONS (elt)->car;
1597
1598 /* If the last key in thisseq is meta-prefix-char, and
1599 this entry is a binding for an ascii keystroke,
1600 turn it into a meta-ized keystroke. */
1601 if (is_metized && INTEGERP (elt))
1602 {
1603 Lisp_Object element;
1604
1605 element = thisseq;
1606 tem = Fvconcat (1, &element);
1607 XSETFASTINT (XVECTOR (tem)->contents[XINT (last)],
1608 XINT (elt) | meta_modifier);
1609
1610 /* This new sequence is the same length as
1611 thisseq, so stick it in the list right
1612 after this one. */
1613 XCONS (tail)->cdr
1614 = Fcons (Fcons (tem, cmd), XCONS (tail)->cdr);
1615 }
1616 else
1617 nconc2 (tail,
1618 Fcons (Fcons (append_key (thisseq, elt), cmd),
1619 Qnil));
1620 }
1621 }
1622 }
1623 }
1624 }
1625
1626 if (NILP (prefix))
1627 return maps;
1628
1629 /* Now find just the maps whose access prefixes start with PREFIX. */
1630
1631 good_maps = Qnil;
1632 for (; CONSP (maps); maps = XCONS (maps)->cdr)
1633 {
1634 Lisp_Object elt, thisseq;
1635 elt = XCONS (maps)->car;
1636 thisseq = XCONS (elt)->car;
1637 /* The access prefix must be at least as long as PREFIX,
1638 and the first elements must match those of PREFIX. */
1639 if (XINT (Flength (thisseq)) >= prefixlen)
1640 {
1641 int i;
1642 for (i = 0; i < prefixlen; i++)
1643 {
1644 Lisp_Object i1;
1645 XSETFASTINT (i1, i);
1646 if (!EQ (Faref (thisseq, i1), Faref (prefix, i1)))
1647 break;
1648 }
1649 if (i == prefixlen)
1650 good_maps = Fcons (elt, good_maps);
1651 }
1652 }
1653
1654 return Fnreverse (good_maps);
1655 }
1656
1657 static void
1658 accessible_keymaps_char_table (args, index, cmd)
1659 Lisp_Object args, index, cmd;
1660 {
1661 Lisp_Object tem;
1662 Lisp_Object maps, tail, thisseq;
1663
1664 if (NILP (cmd))
1665 return;
1666
1667 maps = XCONS (args)->car;
1668 tail = XCONS (XCONS (args)->cdr)->car;
1669 thisseq = XCONS (XCONS (args)->cdr)->cdr;
1670
1671 tem = Fkeymapp (cmd);
1672 if (!NILP (tem))
1673 {
1674 cmd = get_keymap (cmd);
1675 /* Ignore keymaps that are already added to maps. */
1676 tem = Frassq (cmd, maps);
1677 if (NILP (tem))
1678 {
1679 tem = append_key (thisseq, index);
1680 nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
1681 }
1682 }
1683 }
1684 \f
1685 Lisp_Object Qsingle_key_description, Qkey_description;
1686
1687 /* This function cannot GC. */
1688
1689 DEFUN ("key-description", Fkey_description, Skey_description, 1, 1, 0,
1690 "Return a pretty description of key-sequence KEYS.\n\
1691 Control characters turn into \"C-foo\" sequences, meta into \"M-foo\"\n\
1692 spaces are put between sequence elements, etc.")
1693 (keys)
1694 Lisp_Object keys;
1695 {
1696 int len;
1697 int i, i_byte;
1698 Lisp_Object sep;
1699 Lisp_Object *args;
1700
1701 if (STRINGP (keys))
1702 {
1703 Lisp_Object vector;
1704 vector = Fmake_vector (Flength (keys), Qnil);
1705 for (i = 0; i < XSTRING (keys)->size; )
1706 {
1707 int c;
1708 int i_before = i;
1709
1710 if (STRING_MULTIBYTE (keys))
1711 FETCH_STRING_CHAR_ADVANCE (c, keys, i, i_byte);
1712 else
1713 c = XSTRING (keys)->data[i++];
1714
1715 if (c & 0x80)
1716 XSETFASTINT (XVECTOR (vector)->contents[i_before],
1717 meta_modifier | (c & ~0x80));
1718 else
1719 XSETFASTINT (XVECTOR (vector)->contents[i_before], c);
1720 }
1721 keys = vector;
1722 }
1723 else if (!VECTORP (keys))
1724 keys = wrong_type_argument (Qarrayp, keys);
1725
1726 /* In effect, this computes
1727 (mapconcat 'single-key-description keys " ")
1728 but we shouldn't use mapconcat because it can do GC. */
1729
1730 len = XVECTOR (keys)->size;
1731 sep = build_string (" ");
1732 /* This has one extra element at the end that we don't pass to Fconcat. */
1733 args = (Lisp_Object *) alloca (len * 2 * sizeof (Lisp_Object));
1734
1735 for (i = 0; i < len; i++)
1736 {
1737 args[i * 2] = Fsingle_key_description (XVECTOR (keys)->contents[i]);
1738 args[i * 2 + 1] = sep;
1739 }
1740
1741 return Fconcat (len * 2 - 1, args);
1742 }
1743
1744 char *
1745 push_key_description (c, p)
1746 register unsigned int c;
1747 register char *p;
1748 {
1749 /* Clear all the meaningless bits above the meta bit. */
1750 c &= meta_modifier | ~ - meta_modifier;
1751
1752 if (c & alt_modifier)
1753 {
1754 *p++ = 'A';
1755 *p++ = '-';
1756 c -= alt_modifier;
1757 }
1758 if (c & ctrl_modifier)
1759 {
1760 *p++ = 'C';
1761 *p++ = '-';
1762 c -= ctrl_modifier;
1763 }
1764 if (c & hyper_modifier)
1765 {
1766 *p++ = 'H';
1767 *p++ = '-';
1768 c -= hyper_modifier;
1769 }
1770 if (c & meta_modifier)
1771 {
1772 *p++ = 'M';
1773 *p++ = '-';
1774 c -= meta_modifier;
1775 }
1776 if (c & shift_modifier)
1777 {
1778 *p++ = 'S';
1779 *p++ = '-';
1780 c -= shift_modifier;
1781 }
1782 if (c & super_modifier)
1783 {
1784 *p++ = 's';
1785 *p++ = '-';
1786 c -= super_modifier;
1787 }
1788 if (c < 040)
1789 {
1790 if (c == 033)
1791 {
1792 *p++ = 'E';
1793 *p++ = 'S';
1794 *p++ = 'C';
1795 }
1796 else if (c == '\t')
1797 {
1798 *p++ = 'T';
1799 *p++ = 'A';
1800 *p++ = 'B';
1801 }
1802 else if (c == Ctl ('M'))
1803 {
1804 *p++ = 'R';
1805 *p++ = 'E';
1806 *p++ = 'T';
1807 }
1808 else
1809 {
1810 *p++ = 'C';
1811 *p++ = '-';
1812 if (c > 0 && c <= Ctl ('Z'))
1813 *p++ = c + 0140;
1814 else
1815 *p++ = c + 0100;
1816 }
1817 }
1818 else if (c == 0177)
1819 {
1820 *p++ = 'D';
1821 *p++ = 'E';
1822 *p++ = 'L';
1823 }
1824 else if (c == ' ')
1825 {
1826 *p++ = 'S';
1827 *p++ = 'P';
1828 *p++ = 'C';
1829 }
1830 else if (c < 128)
1831 *p++ = c;
1832 else if (c < 512)
1833 {
1834 *p++ = '\\';
1835 *p++ = (7 & (c >> 6)) + '0';
1836 *p++ = (7 & (c >> 3)) + '0';
1837 *p++ = (7 & (c >> 0)) + '0';
1838 }
1839 else
1840 {
1841 unsigned char work[4], *str;
1842 int i = CHAR_STRING (c, work, str);
1843 bcopy (str, p, i);
1844 p += i;
1845 }
1846
1847 return p;
1848 }
1849
1850 /* This function cannot GC. */
1851
1852 DEFUN ("single-key-description", Fsingle_key_description, Ssingle_key_description, 1, 1, 0,
1853 "Return a pretty description of command character KEY.\n\
1854 Control characters turn into C-whatever, etc.")
1855 (key)
1856 Lisp_Object key;
1857 {
1858 key = EVENT_HEAD (key);
1859
1860 if (INTEGERP (key)) /* Normal character */
1861 {
1862 unsigned int charset, c1, c2;
1863 int without_bits = XINT (key) & ~((-1) << CHARACTERBITS);
1864
1865 if (SINGLE_BYTE_CHAR_P (without_bits))
1866 charset = 0;
1867 else
1868 SPLIT_NON_ASCII_CHAR (without_bits, charset, c1, c2);
1869
1870 if (charset
1871 && ((c1 >= 0 && c1 < 32)
1872 || (c2 >= 0 && c2 < 32)))
1873 {
1874 /* Handle a generic character. */
1875 Lisp_Object name;
1876 name = CHARSET_TABLE_INFO (charset, CHARSET_LONG_NAME_IDX);
1877 CHECK_STRING (name, 0);
1878 return concat2 (build_string ("Character set "), name);
1879 }
1880 else
1881 {
1882 char tem[20];
1883
1884 *push_key_description (XUINT (key), tem) = 0;
1885 return build_string (tem);
1886 }
1887 }
1888 else if (SYMBOLP (key)) /* Function key or event-symbol */
1889 return Fsymbol_name (key);
1890 else if (STRINGP (key)) /* Buffer names in the menubar. */
1891 return Fcopy_sequence (key);
1892 else
1893 error ("KEY must be an integer, cons, symbol, or string");
1894 }
1895
1896 char *
1897 push_text_char_description (c, p)
1898 register unsigned int c;
1899 register char *p;
1900 {
1901 if (c >= 0200)
1902 {
1903 *p++ = 'M';
1904 *p++ = '-';
1905 c -= 0200;
1906 }
1907 if (c < 040)
1908 {
1909 *p++ = '^';
1910 *p++ = c + 64; /* 'A' - 1 */
1911 }
1912 else if (c == 0177)
1913 {
1914 *p++ = '^';
1915 *p++ = '?';
1916 }
1917 else
1918 *p++ = c;
1919 return p;
1920 }
1921
1922 /* This function cannot GC. */
1923
1924 DEFUN ("text-char-description", Ftext_char_description, Stext_char_description, 1, 1, 0,
1925 "Return a pretty description of file-character CHARACTER.\n\
1926 Control characters turn into \"^char\", etc.")
1927 (character)
1928 Lisp_Object character;
1929 {
1930 char tem[6];
1931
1932 CHECK_NUMBER (character, 0);
1933
1934 if (!SINGLE_BYTE_CHAR_P (XFASTINT (character)))
1935 {
1936 unsigned char *str;
1937 int len = non_ascii_char_to_string (XFASTINT (character), tem, &str);
1938
1939 return make_multibyte_string (str, 1, len);
1940 }
1941
1942 *push_text_char_description (XINT (character) & 0377, tem) = 0;
1943
1944 return build_string (tem);
1945 }
1946
1947 /* Return non-zero if SEQ contains only ASCII characters, perhaps with
1948 a meta bit. */
1949 static int
1950 ascii_sequence_p (seq)
1951 Lisp_Object seq;
1952 {
1953 int i;
1954 int len = XINT (Flength (seq));
1955
1956 for (i = 0; i < len; i++)
1957 {
1958 Lisp_Object ii, elt;
1959
1960 XSETFASTINT (ii, i);
1961 elt = Faref (seq, ii);
1962
1963 if (!INTEGERP (elt)
1964 || (XUINT (elt) & ~CHAR_META) >= 0x80)
1965 return 0;
1966 }
1967
1968 return 1;
1969 }
1970
1971 \f
1972 /* where-is - finding a command in a set of keymaps. */
1973
1974 static Lisp_Object where_is_internal_1 ();
1975 static void where_is_internal_2 ();
1976
1977 /* This function can GC if Flookup_key autoloads any keymaps. */
1978
1979 DEFUN ("where-is-internal", Fwhere_is_internal, Swhere_is_internal, 1, 4, 0,
1980 "Return list of keys that invoke DEFINITION.\n\
1981 If KEYMAP is non-nil, search only KEYMAP and the global keymap.\n\
1982 If KEYMAP is nil, search all the currently active keymaps.\n\
1983 \n\
1984 If optional 3rd arg FIRSTONLY is non-nil, return the first key sequence found,\n\
1985 rather than a list of all possible key sequences.\n\
1986 If FIRSTONLY is the symbol `non-ascii', return the first binding found,\n\
1987 no matter what it is.\n\
1988 If FIRSTONLY has another non-nil value, prefer sequences of ASCII characters,\n\
1989 and entirely reject menu bindings.\n\
1990 \n\
1991 If optional 4th arg NOINDIRECT is non-nil, don't follow indirections\n\
1992 to other keymaps or slots. This makes it possible to search for an\n\
1993 indirect definition itself.")
1994 (definition, keymap, firstonly, noindirect)
1995 Lisp_Object definition, keymap;
1996 Lisp_Object firstonly, noindirect;
1997 {
1998 Lisp_Object maps;
1999 Lisp_Object found, sequences;
2000 Lisp_Object keymap1;
2001 int keymap_specified = !NILP (keymap);
2002 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
2003 /* 1 means ignore all menu bindings entirely. */
2004 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2005
2006 /* Find keymaps accessible from `keymap' or the current
2007 context. But don't muck with the value of `keymap',
2008 because `where_is_internal_1' uses it to check for
2009 shadowed bindings. */
2010 keymap1 = keymap;
2011 if (! keymap_specified)
2012 {
2013 #ifdef USE_TEXT_PROPERTIES
2014 keymap1 = get_local_map (PT, current_buffer);
2015 #else
2016 keymap1 = current_buffer->keymap;
2017 #endif
2018 }
2019
2020 if (!NILP (keymap1))
2021 maps = nconc2 (Faccessible_keymaps (get_keymap (keymap1), Qnil),
2022 Faccessible_keymaps (get_keymap (current_global_map),
2023 Qnil));
2024 else
2025 maps = Faccessible_keymaps (get_keymap (current_global_map), Qnil);
2026
2027 /* Put the minor mode keymaps on the front. */
2028 if (! keymap_specified)
2029 {
2030 Lisp_Object minors;
2031 minors = Fnreverse (Fcurrent_minor_mode_maps ());
2032 while (!NILP (minors))
2033 {
2034 maps = nconc2 (Faccessible_keymaps (get_keymap (XCONS (minors)->car),
2035 Qnil),
2036 maps);
2037 minors = XCONS (minors)->cdr;
2038 }
2039 }
2040
2041 GCPRO5 (definition, keymap, maps, found, sequences);
2042 found = Qnil;
2043 sequences = Qnil;
2044
2045 for (; !NILP (maps); maps = Fcdr (maps))
2046 {
2047 /* Key sequence to reach map, and the map that it reaches */
2048 register Lisp_Object this, map;
2049
2050 /* In order to fold [META-PREFIX-CHAR CHAR] sequences into
2051 [M-CHAR] sequences, check if last character of the sequence
2052 is the meta-prefix char. */
2053 Lisp_Object last;
2054 int last_is_meta;
2055
2056 this = Fcar (Fcar (maps));
2057 map = Fcdr (Fcar (maps));
2058 last = make_number (XINT (Flength (this)) - 1);
2059 last_is_meta = (XINT (last) >= 0
2060 && EQ (Faref (this, last), meta_prefix_char));
2061
2062 QUIT;
2063
2064 while (CONSP (map))
2065 {
2066 /* Because the code we want to run on each binding is rather
2067 large, we don't want to have two separate loop bodies for
2068 sparse keymap bindings and tables; we want to iterate one
2069 loop body over both keymap and vector bindings.
2070
2071 For this reason, if Fcar (map) is a vector, we don't
2072 advance map to the next element until i indicates that we
2073 have finished off the vector. */
2074 Lisp_Object elt, key, binding;
2075 elt = XCONS (map)->car;
2076 map = XCONS (map)->cdr;
2077
2078 sequences = Qnil;
2079
2080 QUIT;
2081
2082 /* Set key and binding to the current key and binding, and
2083 advance map and i to the next binding. */
2084 if (VECTORP (elt))
2085 {
2086 Lisp_Object sequence;
2087 int i;
2088 /* In a vector, look at each element. */
2089 for (i = 0; i < XVECTOR (elt)->size; i++)
2090 {
2091 binding = XVECTOR (elt)->contents[i];
2092 XSETFASTINT (key, i);
2093 sequence = where_is_internal_1 (binding, key, definition,
2094 noindirect, keymap, this,
2095 last, nomenus, last_is_meta);
2096 if (!NILP (sequence))
2097 sequences = Fcons (sequence, sequences);
2098 }
2099 }
2100 else if (CHAR_TABLE_P (elt))
2101 {
2102 Lisp_Object indices[3];
2103 Lisp_Object args;
2104
2105 args = Fcons (Fcons (Fcons (definition, noindirect),
2106 Fcons (keymap, Qnil)),
2107 Fcons (Fcons (this, last),
2108 Fcons (make_number (nomenus),
2109 make_number (last_is_meta))));
2110
2111 map_char_table (where_is_internal_2, Qnil, elt, args,
2112 0, indices);
2113 sequences = XCONS (XCONS (XCONS (args)->car)->cdr)->cdr;
2114 }
2115 else if (CONSP (elt))
2116 {
2117 Lisp_Object sequence;
2118
2119 key = XCONS (elt)->car;
2120 binding = XCONS (elt)->cdr;
2121
2122 sequence = where_is_internal_1 (binding, key, definition,
2123 noindirect, keymap, this,
2124 last, nomenus, last_is_meta);
2125 if (!NILP (sequence))
2126 sequences = Fcons (sequence, sequences);
2127 }
2128
2129
2130 for (; ! NILP (sequences); sequences = XCONS (sequences)->cdr)
2131 {
2132 Lisp_Object sequence;
2133
2134 sequence = XCONS (sequences)->car;
2135
2136 /* It is a true unshadowed match. Record it, unless it's already
2137 been seen (as could happen when inheriting keymaps). */
2138 if (NILP (Fmember (sequence, found)))
2139 found = Fcons (sequence, found);
2140
2141 /* If firstonly is Qnon_ascii, then we can return the first
2142 binding we find. If firstonly is not Qnon_ascii but not
2143 nil, then we should return the first ascii-only binding
2144 we find. */
2145 if (EQ (firstonly, Qnon_ascii))
2146 RETURN_UNGCPRO (sequence);
2147 else if (! NILP (firstonly) && ascii_sequence_p (sequence))
2148 RETURN_UNGCPRO (sequence);
2149 }
2150 }
2151 }
2152
2153 UNGCPRO;
2154
2155 found = Fnreverse (found);
2156
2157 /* firstonly may have been t, but we may have gone all the way through
2158 the keymaps without finding an all-ASCII key sequence. So just
2159 return the best we could find. */
2160 if (! NILP (firstonly))
2161 return Fcar (found);
2162
2163 return found;
2164 }
2165
2166 /* This is the function that Fwhere_is_internal calls using map_char_table.
2167 ARGS has the form
2168 (((DEFINITION . NOINDIRECT) . (KEYMAP . RESULT))
2169 .
2170 ((THIS . LAST) . (NOMENUS . LAST_IS_META)))
2171 Since map_char_table doesn't really use the return value from this function,
2172 we the result append to RESULT, the slot in ARGS. */
2173
2174 static void
2175 where_is_internal_2 (args, key, binding)
2176 Lisp_Object args, key, binding;
2177 {
2178 Lisp_Object definition, noindirect, keymap, this, last;
2179 Lisp_Object result, sequence;
2180 int nomenus, last_is_meta;
2181
2182 result = XCONS (XCONS (XCONS (args)->car)->cdr)->cdr;
2183 definition = XCONS (XCONS (XCONS (args)->car)->car)->car;
2184 noindirect = XCONS (XCONS (XCONS (args)->car)->car)->cdr;
2185 keymap = XCONS (XCONS (XCONS (args)->car)->cdr)->car;
2186 this = XCONS (XCONS (XCONS (args)->cdr)->car)->car;
2187 last = XCONS (XCONS (XCONS (args)->cdr)->car)->cdr;
2188 nomenus = XFASTINT (XCONS (XCONS (XCONS (args)->cdr)->cdr)->car);
2189 last_is_meta = XFASTINT (XCONS (XCONS (XCONS (args)->cdr)->cdr)->cdr);
2190
2191 sequence = where_is_internal_1 (binding, key, definition, noindirect, keymap,
2192 this, last, nomenus, last_is_meta);
2193
2194 if (!NILP (sequence))
2195 XCONS (XCONS (XCONS (args)->car)->cdr)->cdr
2196 = Fcons (sequence, result);
2197 }
2198
2199 static Lisp_Object
2200 where_is_internal_1 (binding, key, definition, noindirect, keymap, this, last,
2201 nomenus, last_is_meta)
2202 Lisp_Object binding, key, definition, noindirect, keymap, this, last;
2203 int nomenus, last_is_meta;
2204 {
2205 Lisp_Object sequence;
2206 int keymap_specified = !NILP (keymap);
2207
2208 /* Search through indirections unless that's not wanted. */
2209 if (NILP (noindirect))
2210 {
2211 if (nomenus)
2212 {
2213 while (1)
2214 {
2215 Lisp_Object map, tem;
2216 /* If the contents are (KEYMAP . ELEMENT), go indirect. */
2217 map = get_keymap_1 (Fcar_safe (definition), 0, 0);
2218 tem = Fkeymapp (map);
2219 if (!NILP (tem))
2220 definition = access_keymap (map, Fcdr (definition), 0, 0);
2221 else
2222 break;
2223 }
2224 /* If the contents are (menu-item ...) or (STRING ...), reject. */
2225 if (CONSP (definition)
2226 && (EQ (XCONS (definition)->car,Qmenu_item)
2227 || STRINGP (XCONS (definition)->car)))
2228 return Qnil;
2229 }
2230 else
2231 binding = get_keyelt (binding, 0);
2232 }
2233
2234 /* End this iteration if this element does not match
2235 the target. */
2236
2237 if (CONSP (definition))
2238 {
2239 Lisp_Object tem;
2240 tem = Fequal (binding, definition);
2241 if (NILP (tem))
2242 return Qnil;
2243 }
2244 else
2245 if (!EQ (binding, definition))
2246 return Qnil;
2247
2248 /* We have found a match.
2249 Construct the key sequence where we found it. */
2250 if (INTEGERP (key) && last_is_meta)
2251 {
2252 sequence = Fcopy_sequence (this);
2253 Faset (sequence, last, make_number (XINT (key) | meta_modifier));
2254 }
2255 else
2256 sequence = append_key (this, key);
2257
2258 /* Verify that this key binding is not shadowed by another
2259 binding for the same key, before we say it exists.
2260
2261 Mechanism: look for local definition of this key and if
2262 it is defined and does not match what we found then
2263 ignore this key.
2264
2265 Either nil or number as value from Flookup_key
2266 means undefined. */
2267 if (keymap_specified)
2268 {
2269 binding = Flookup_key (keymap, sequence, Qnil);
2270 if (!NILP (binding) && !INTEGERP (binding))
2271 {
2272 if (CONSP (definition))
2273 {
2274 Lisp_Object tem;
2275 tem = Fequal (binding, definition);
2276 if (NILP (tem))
2277 return Qnil;
2278 }
2279 else
2280 if (!EQ (binding, definition))
2281 return Qnil;
2282 }
2283 }
2284 else
2285 {
2286 binding = Fkey_binding (sequence, Qnil);
2287 if (!EQ (binding, definition))
2288 return Qnil;
2289 }
2290
2291 return sequence;
2292 }
2293 \f
2294 /* describe-bindings - summarizing all the bindings in a set of keymaps. */
2295
2296 DEFUN ("describe-bindings-internal", Fdescribe_bindings_internal, Sdescribe_bindings_internal, 0, 2, "",
2297 "Show a list of all defined keys, and their definitions.\n\
2298 We put that list in a buffer, and display the buffer.\n\
2299 \n\
2300 The optional argument MENUS, if non-nil, says to mention menu bindings.\n\
2301 \(Ordinarily these are omitted from the output.)\n\
2302 The optional argument PREFIX, if non-nil, should be a key sequence;\n\
2303 then we display only bindings that start with that prefix.")
2304 (menus, prefix)
2305 Lisp_Object menus, prefix;
2306 {
2307 register Lisp_Object thisbuf;
2308 XSETBUFFER (thisbuf, current_buffer);
2309 internal_with_output_to_temp_buffer ("*Help*",
2310 describe_buffer_bindings,
2311 list3 (thisbuf, prefix, menus));
2312 return Qnil;
2313 }
2314
2315 /* ARG is (BUFFER PREFIX MENU-FLAG). */
2316
2317 static Lisp_Object
2318 describe_buffer_bindings (arg)
2319 Lisp_Object arg;
2320 {
2321 Lisp_Object descbuf, prefix, shadow;
2322 int nomenu;
2323 register Lisp_Object start1;
2324 struct gcpro gcpro1;
2325
2326 char *alternate_heading
2327 = "\
2328 Keyboard translations:\n\n\
2329 You type Translation\n\
2330 -------- -----------\n";
2331
2332 descbuf = XCONS (arg)->car;
2333 arg = XCONS (arg)->cdr;
2334 prefix = XCONS (arg)->car;
2335 arg = XCONS (arg)->cdr;
2336 nomenu = NILP (XCONS (arg)->car);
2337
2338 shadow = Qnil;
2339 GCPRO1 (shadow);
2340
2341 Fset_buffer (Vstandard_output);
2342
2343 /* Report on alternates for keys. */
2344 if (STRINGP (Vkeyboard_translate_table) && !NILP (prefix))
2345 {
2346 int c;
2347 unsigned char *translate = XSTRING (Vkeyboard_translate_table)->data;
2348 int translate_len = XSTRING (Vkeyboard_translate_table)->size;
2349
2350 for (c = 0; c < translate_len; c++)
2351 if (translate[c] != c)
2352 {
2353 char buf[20];
2354 char *bufend;
2355
2356 if (alternate_heading)
2357 {
2358 insert_string (alternate_heading);
2359 alternate_heading = 0;
2360 }
2361
2362 bufend = push_key_description (translate[c], buf);
2363 insert (buf, bufend - buf);
2364 Findent_to (make_number (16), make_number (1));
2365 bufend = push_key_description (c, buf);
2366 insert (buf, bufend - buf);
2367
2368 insert ("\n", 1);
2369 }
2370
2371 insert ("\n", 1);
2372 }
2373
2374 if (!NILP (Vkey_translation_map))
2375 describe_map_tree (Vkey_translation_map, 0, Qnil, prefix,
2376 "Key translations", nomenu, 1, 0);
2377
2378 {
2379 int i, nmaps;
2380 Lisp_Object *modes, *maps;
2381
2382 /* Temporarily switch to descbuf, so that we can get that buffer's
2383 minor modes correctly. */
2384 Fset_buffer (descbuf);
2385
2386 if (!NILP (current_kboard->Voverriding_terminal_local_map)
2387 || !NILP (Voverriding_local_map))
2388 nmaps = 0;
2389 else
2390 nmaps = current_minor_maps (&modes, &maps);
2391 Fset_buffer (Vstandard_output);
2392
2393 /* Print the minor mode maps. */
2394 for (i = 0; i < nmaps; i++)
2395 {
2396 /* The title for a minor mode keymap
2397 is constructed at run time.
2398 We let describe_map_tree do the actual insertion
2399 because it takes care of other features when doing so. */
2400 char *title, *p;
2401
2402 if (!SYMBOLP (modes[i]))
2403 abort();
2404
2405 p = title = (char *) alloca (40 + XSYMBOL (modes[i])->name->size);
2406 *p++ = '`';
2407 bcopy (XSYMBOL (modes[i])->name->data, p,
2408 XSYMBOL (modes[i])->name->size);
2409 p += XSYMBOL (modes[i])->name->size;
2410 *p++ = '\'';
2411 bcopy (" Minor Mode Bindings", p, sizeof (" Minor Mode Bindings") - 1);
2412 p += sizeof (" Minor Mode Bindings") - 1;
2413 *p = 0;
2414
2415 describe_map_tree (maps[i], 1, shadow, prefix, title, nomenu, 0, 0);
2416 shadow = Fcons (maps[i], shadow);
2417 }
2418 }
2419
2420 /* Print the (major mode) local map. */
2421 if (!NILP (current_kboard->Voverriding_terminal_local_map))
2422 start1 = current_kboard->Voverriding_terminal_local_map;
2423 else if (!NILP (Voverriding_local_map))
2424 start1 = Voverriding_local_map;
2425 else
2426 start1 = XBUFFER (descbuf)->keymap;
2427
2428 if (!NILP (start1))
2429 {
2430 describe_map_tree (start1, 1, shadow, prefix,
2431 "Major Mode Bindings", nomenu, 0, 0);
2432 shadow = Fcons (start1, shadow);
2433 }
2434
2435 describe_map_tree (current_global_map, 1, shadow, prefix,
2436 "Global Bindings", nomenu, 0, 1);
2437
2438 /* Print the function-key-map translations under this prefix. */
2439 if (!NILP (Vfunction_key_map))
2440 describe_map_tree (Vfunction_key_map, 0, Qnil, prefix,
2441 "Function key map translations", nomenu, 1, 0);
2442
2443 call0 (intern ("help-mode"));
2444 Fset_buffer (descbuf);
2445 UNGCPRO;
2446 return Qnil;
2447 }
2448
2449 /* Insert a description of the key bindings in STARTMAP,
2450 followed by those of all maps reachable through STARTMAP.
2451 If PARTIAL is nonzero, omit certain "uninteresting" commands
2452 (such as `undefined').
2453 If SHADOW is non-nil, it is a list of maps;
2454 don't mention keys which would be shadowed by any of them.
2455 PREFIX, if non-nil, says mention only keys that start with PREFIX.
2456 TITLE, if not 0, is a string to insert at the beginning.
2457 TITLE should not end with a colon or a newline; we supply that.
2458 If NOMENU is not 0, then omit menu-bar commands.
2459
2460 If TRANSL is nonzero, the definitions are actually key translations
2461 so print strings and vectors differently.
2462
2463 If ALWAYS_TITLE is nonzero, print the title even if there are no maps
2464 to look through. */
2465
2466 void
2467 describe_map_tree (startmap, partial, shadow, prefix, title, nomenu, transl,
2468 always_title)
2469 Lisp_Object startmap, shadow, prefix;
2470 int partial;
2471 char *title;
2472 int nomenu;
2473 int transl;
2474 int always_title;
2475 {
2476 Lisp_Object maps, orig_maps, seen, sub_shadows;
2477 struct gcpro gcpro1, gcpro2, gcpro3;
2478 int something = 0;
2479 char *key_heading
2480 = "\
2481 key binding\n\
2482 --- -------\n";
2483
2484 orig_maps = maps = Faccessible_keymaps (startmap, prefix);
2485 seen = Qnil;
2486 sub_shadows = Qnil;
2487 GCPRO3 (maps, seen, sub_shadows);
2488
2489 if (nomenu)
2490 {
2491 Lisp_Object list;
2492
2493 /* Delete from MAPS each element that is for the menu bar. */
2494 for (list = maps; !NILP (list); list = XCONS (list)->cdr)
2495 {
2496 Lisp_Object elt, prefix, tem;
2497
2498 elt = Fcar (list);
2499 prefix = Fcar (elt);
2500 if (XVECTOR (prefix)->size >= 1)
2501 {
2502 tem = Faref (prefix, make_number (0));
2503 if (EQ (tem, Qmenu_bar))
2504 maps = Fdelq (elt, maps);
2505 }
2506 }
2507 }
2508
2509 if (!NILP (maps) || always_title)
2510 {
2511 if (title)
2512 {
2513 insert_string (title);
2514 if (!NILP (prefix))
2515 {
2516 insert_string (" Starting With ");
2517 insert1 (Fkey_description (prefix));
2518 }
2519 insert_string (":\n");
2520 }
2521 insert_string (key_heading);
2522 something = 1;
2523 }
2524
2525 for (; !NILP (maps); maps = Fcdr (maps))
2526 {
2527 register Lisp_Object elt, prefix, tail;
2528
2529 elt = Fcar (maps);
2530 prefix = Fcar (elt);
2531
2532 sub_shadows = Qnil;
2533
2534 for (tail = shadow; CONSP (tail); tail = XCONS (tail)->cdr)
2535 {
2536 Lisp_Object shmap;
2537
2538 shmap = XCONS (tail)->car;
2539
2540 /* If the sequence by which we reach this keymap is zero-length,
2541 then the shadow map for this keymap is just SHADOW. */
2542 if ((STRINGP (prefix) && XSTRING (prefix)->size == 0)
2543 || (VECTORP (prefix) && XVECTOR (prefix)->size == 0))
2544 ;
2545 /* If the sequence by which we reach this keymap actually has
2546 some elements, then the sequence's definition in SHADOW is
2547 what we should use. */
2548 else
2549 {
2550 shmap = Flookup_key (shmap, Fcar (elt), Qt);
2551 if (INTEGERP (shmap))
2552 shmap = Qnil;
2553 }
2554
2555 /* If shmap is not nil and not a keymap,
2556 it completely shadows this map, so don't
2557 describe this map at all. */
2558 if (!NILP (shmap) && NILP (Fkeymapp (shmap)))
2559 goto skip;
2560
2561 if (!NILP (shmap))
2562 sub_shadows = Fcons (shmap, sub_shadows);
2563 }
2564
2565 /* Maps we have already listed in this loop shadow this map. */
2566 for (tail = orig_maps; ! EQ (tail, maps); tail = XCDR (tail))
2567 {
2568 Lisp_Object tem;
2569 tem = Fequal (Fcar (XCAR (tail)), prefix);
2570 if (! NILP (tem))
2571 sub_shadows = Fcons (XCDR (XCAR (tail)), sub_shadows);
2572 }
2573
2574 describe_map (Fcdr (elt), prefix,
2575 transl ? describe_translation : describe_command,
2576 partial, sub_shadows, &seen, nomenu);
2577
2578 skip: ;
2579 }
2580
2581 if (something)
2582 insert_string ("\n");
2583
2584 UNGCPRO;
2585 }
2586
2587 static int previous_description_column;
2588
2589 static void
2590 describe_command (definition)
2591 Lisp_Object definition;
2592 {
2593 register Lisp_Object tem1;
2594 int column = current_column ();
2595 int description_column;
2596
2597 /* If column 16 is no good, go to col 32;
2598 but don't push beyond that--go to next line instead. */
2599 if (column > 30)
2600 {
2601 insert_char ('\n');
2602 description_column = 32;
2603 }
2604 else if (column > 14 || (column > 10 && previous_description_column == 32))
2605 description_column = 32;
2606 else
2607 description_column = 16;
2608
2609 Findent_to (make_number (description_column), make_number (1));
2610 previous_description_column = description_column;
2611
2612 if (SYMBOLP (definition))
2613 {
2614 XSETSTRING (tem1, XSYMBOL (definition)->name);
2615 insert1 (tem1);
2616 insert_string ("\n");
2617 }
2618 else if (STRINGP (definition) || VECTORP (definition))
2619 insert_string ("Keyboard Macro\n");
2620 else
2621 {
2622 tem1 = Fkeymapp (definition);
2623 if (!NILP (tem1))
2624 insert_string ("Prefix Command\n");
2625 else
2626 insert_string ("??\n");
2627 }
2628 }
2629
2630 static void
2631 describe_translation (definition)
2632 Lisp_Object definition;
2633 {
2634 register Lisp_Object tem1;
2635
2636 Findent_to (make_number (16), make_number (1));
2637
2638 if (SYMBOLP (definition))
2639 {
2640 XSETSTRING (tem1, XSYMBOL (definition)->name);
2641 insert1 (tem1);
2642 insert_string ("\n");
2643 }
2644 else if (STRINGP (definition) || VECTORP (definition))
2645 {
2646 insert1 (Fkey_description (definition));
2647 insert_string ("\n");
2648 }
2649 else
2650 {
2651 tem1 = Fkeymapp (definition);
2652 if (!NILP (tem1))
2653 insert_string ("Prefix Command\n");
2654 else
2655 insert_string ("??\n");
2656 }
2657 }
2658
2659 /* Like Flookup_key, but uses a list of keymaps SHADOW instead of a single map.
2660 Returns the first non-nil binding found in any of those maps. */
2661
2662 static Lisp_Object
2663 shadow_lookup (shadow, key, flag)
2664 Lisp_Object shadow, key, flag;
2665 {
2666 Lisp_Object tail, value;
2667
2668 for (tail = shadow; CONSP (tail); tail = XCONS (tail)->cdr)
2669 {
2670 value = Flookup_key (XCONS (tail)->car, key, flag);
2671 if (!NILP (value))
2672 return value;
2673 }
2674 return Qnil;
2675 }
2676
2677 /* Describe the contents of map MAP, assuming that this map itself is
2678 reached by the sequence of prefix keys KEYS (a string or vector).
2679 PARTIAL, SHADOW, NOMENU are as in `describe_map_tree' above. */
2680
2681 static void
2682 describe_map (map, keys, elt_describer, partial, shadow, seen, nomenu)
2683 register Lisp_Object map;
2684 Lisp_Object keys;
2685 void (*elt_describer) P_ ((Lisp_Object));
2686 int partial;
2687 Lisp_Object shadow;
2688 Lisp_Object *seen;
2689 int nomenu;
2690 {
2691 Lisp_Object elt_prefix;
2692 Lisp_Object tail, definition, event;
2693 Lisp_Object tem;
2694 Lisp_Object suppress;
2695 Lisp_Object kludge;
2696 int first = 1;
2697 struct gcpro gcpro1, gcpro2, gcpro3;
2698
2699 if (!NILP (keys) && XFASTINT (Flength (keys)) > 0)
2700 {
2701 /* Call Fkey_description first, to avoid GC bug for the other string. */
2702 tem = Fkey_description (keys);
2703 elt_prefix = concat2 (tem, build_string (" "));
2704 }
2705 else
2706 elt_prefix = Qnil;
2707
2708 if (partial)
2709 suppress = intern ("suppress-keymap");
2710
2711 /* This vector gets used to present single keys to Flookup_key. Since
2712 that is done once per keymap element, we don't want to cons up a
2713 fresh vector every time. */
2714 kludge = Fmake_vector (make_number (1), Qnil);
2715 definition = Qnil;
2716
2717 GCPRO3 (elt_prefix, definition, kludge);
2718
2719 for (tail = map; CONSP (tail); tail = XCONS (tail)->cdr)
2720 {
2721 QUIT;
2722
2723 if (VECTORP (XCONS (tail)->car)
2724 || CHAR_TABLE_P (XCONS (tail)->car))
2725 describe_vector (XCONS (tail)->car,
2726 elt_prefix, elt_describer, partial, shadow, map,
2727 (int *)0, 0);
2728 else if (CONSP (XCONS (tail)->car))
2729 {
2730 event = XCONS (XCONS (tail)->car)->car;
2731
2732 /* Ignore bindings whose "keys" are not really valid events.
2733 (We get these in the frames and buffers menu.) */
2734 if (! (SYMBOLP (event) || INTEGERP (event)))
2735 continue;
2736
2737 if (nomenu && EQ (event, Qmenu_bar))
2738 continue;
2739
2740 definition = get_keyelt (XCONS (XCONS (tail)->car)->cdr, 0);
2741
2742 /* Don't show undefined commands or suppressed commands. */
2743 if (NILP (definition)) continue;
2744 if (SYMBOLP (definition) && partial)
2745 {
2746 tem = Fget (definition, suppress);
2747 if (!NILP (tem))
2748 continue;
2749 }
2750
2751 /* Don't show a command that isn't really visible
2752 because a local definition of the same key shadows it. */
2753
2754 XVECTOR (kludge)->contents[0] = event;
2755 if (!NILP (shadow))
2756 {
2757 tem = shadow_lookup (shadow, kludge, Qt);
2758 if (!NILP (tem)) continue;
2759 }
2760
2761 tem = Flookup_key (map, kludge, Qt);
2762 if (! EQ (tem, definition)) continue;
2763
2764 if (first)
2765 {
2766 previous_description_column = 0;
2767 insert ("\n", 1);
2768 first = 0;
2769 }
2770
2771 if (!NILP (elt_prefix))
2772 insert1 (elt_prefix);
2773
2774 /* THIS gets the string to describe the character EVENT. */
2775 insert1 (Fsingle_key_description (event));
2776
2777 /* Print a description of the definition of this character.
2778 elt_describer will take care of spacing out far enough
2779 for alignment purposes. */
2780 (*elt_describer) (definition);
2781 }
2782 else if (EQ (XCONS (tail)->car, Qkeymap))
2783 {
2784 /* The same keymap might be in the structure twice, if we're
2785 using an inherited keymap. So skip anything we've already
2786 encountered. */
2787 tem = Fassq (tail, *seen);
2788 if (CONSP (tem) && !NILP (Fequal (XCONS (tem)->car, keys)))
2789 break;
2790 *seen = Fcons (Fcons (tail, keys), *seen);
2791 }
2792 }
2793
2794 UNGCPRO;
2795 }
2796
2797 static void
2798 describe_vector_princ (elt)
2799 Lisp_Object elt;
2800 {
2801 Findent_to (make_number (16), make_number (1));
2802 Fprinc (elt, Qnil);
2803 Fterpri (Qnil);
2804 }
2805
2806 DEFUN ("describe-vector", Fdescribe_vector, Sdescribe_vector, 1, 1, 0,
2807 "Insert a description of contents of VECTOR.\n\
2808 This is text showing the elements of vector matched against indices.")
2809 (vector)
2810 Lisp_Object vector;
2811 {
2812 int count = specpdl_ptr - specpdl;
2813
2814 specbind (Qstandard_output, Fcurrent_buffer ());
2815 CHECK_VECTOR_OR_CHAR_TABLE (vector, 0);
2816 describe_vector (vector, Qnil, describe_vector_princ, 0,
2817 Qnil, Qnil, (int *)0, 0);
2818
2819 return unbind_to (count, Qnil);
2820 }
2821
2822 /* Insert in the current buffer a description of the contents of VECTOR.
2823 We call ELT_DESCRIBER to insert the description of one value found
2824 in VECTOR.
2825
2826 ELT_PREFIX describes what "comes before" the keys or indices defined
2827 by this vector. This is a human-readable string whose size
2828 is not necessarily related to the situation.
2829
2830 If the vector is in a keymap, ELT_PREFIX is a prefix key which
2831 leads to this keymap.
2832
2833 If the vector is a chartable, ELT_PREFIX is the vector
2834 of bytes that lead to the character set or portion of a character
2835 set described by this chartable.
2836
2837 If PARTIAL is nonzero, it means do not mention suppressed commands
2838 (that assumes the vector is in a keymap).
2839
2840 SHADOW is a list of keymaps that shadow this map.
2841 If it is non-nil, then we look up the key in those maps
2842 and we don't mention it now if it is defined by any of them.
2843
2844 ENTIRE_MAP is the keymap in which this vector appears.
2845 If the definition in effect in the whole map does not match
2846 the one in this vector, we ignore this one.
2847
2848 When describing a sub-char-table, INDICES is a list of
2849 indices at higher levels in this char-table,
2850 and CHAR_TABLE_DEPTH says how many levels down we have gone. */
2851
2852 void
2853 describe_vector (vector, elt_prefix, elt_describer,
2854 partial, shadow, entire_map,
2855 indices, char_table_depth)
2856 register Lisp_Object vector;
2857 Lisp_Object elt_prefix;
2858 void (*elt_describer) P_ ((Lisp_Object));
2859 int partial;
2860 Lisp_Object shadow;
2861 Lisp_Object entire_map;
2862 int *indices;
2863 int char_table_depth;
2864 {
2865 Lisp_Object definition;
2866 Lisp_Object tem2;
2867 register int i;
2868 Lisp_Object suppress;
2869 Lisp_Object kludge;
2870 int first = 1;
2871 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
2872 /* Range of elements to be handled. */
2873 int from, to;
2874 /* A flag to tell if a leaf in this level of char-table is not a
2875 generic character (i.e. a complete multibyte character). */
2876 int complete_char;
2877 int character;
2878 int starting_i;
2879
2880 if (indices == 0)
2881 indices = (int *) alloca (3 * sizeof (int));
2882
2883 definition = Qnil;
2884
2885 /* This vector gets used to present single keys to Flookup_key. Since
2886 that is done once per vector element, we don't want to cons up a
2887 fresh vector every time. */
2888 kludge = Fmake_vector (make_number (1), Qnil);
2889 GCPRO3 (elt_prefix, definition, kludge);
2890
2891 if (partial)
2892 suppress = intern ("suppress-keymap");
2893
2894 if (CHAR_TABLE_P (vector))
2895 {
2896 if (char_table_depth == 0)
2897 {
2898 /* VECTOR is a top level char-table. */
2899 complete_char = 1;
2900 from = 0;
2901 to = CHAR_TABLE_ORDINARY_SLOTS;
2902 }
2903 else
2904 {
2905 /* VECTOR is a sub char-table. */
2906 if (char_table_depth >= 3)
2907 /* A char-table is never that deep. */
2908 error ("Too deep char table");
2909
2910 complete_char
2911 = (CHARSET_VALID_P (indices[0])
2912 && ((CHARSET_DIMENSION (indices[0]) == 1
2913 && char_table_depth == 1)
2914 || char_table_depth == 2));
2915
2916 /* Meaningful elements are from 32th to 127th. */
2917 from = 32;
2918 to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
2919 }
2920 }
2921 else
2922 {
2923 /* This does the right thing for ordinary vectors. */
2924
2925 complete_char = 1;
2926 from = 0;
2927 to = XVECTOR (vector)->size;
2928 }
2929
2930 for (i = from; i < to; i++)
2931 {
2932 QUIT;
2933
2934 if (CHAR_TABLE_P (vector))
2935 {
2936 if (char_table_depth == 0 && i >= CHAR_TABLE_SINGLE_BYTE_SLOTS)
2937 complete_char = 0;
2938
2939 if (i >= CHAR_TABLE_SINGLE_BYTE_SLOTS
2940 && !CHARSET_DEFINED_P (i - 128))
2941 continue;
2942
2943 definition
2944 = get_keyelt (XCHAR_TABLE (vector)->contents[i], 0);
2945 }
2946 else
2947 definition = get_keyelt (XVECTOR (vector)->contents[i], 0);
2948
2949 if (NILP (definition)) continue;
2950
2951 /* Don't mention suppressed commands. */
2952 if (SYMBOLP (definition) && partial)
2953 {
2954 Lisp_Object tem;
2955
2956 tem = Fget (definition, suppress);
2957
2958 if (!NILP (tem)) continue;
2959 }
2960
2961 /* Set CHARACTER to the character this entry describes, if any.
2962 Also update *INDICES. */
2963 if (CHAR_TABLE_P (vector))
2964 {
2965 indices[char_table_depth] = i;
2966
2967 if (char_table_depth == 0)
2968 {
2969 character = i;
2970 indices[0] = i - 128;
2971 }
2972 else if (complete_char)
2973 {
2974 character
2975 = MAKE_NON_ASCII_CHAR (indices[0], indices[1], indices[2]);
2976 }
2977 else
2978 character = 0;
2979 }
2980 else
2981 character = i;
2982
2983 /* If this binding is shadowed by some other map, ignore it. */
2984 if (!NILP (shadow) && complete_char)
2985 {
2986 Lisp_Object tem;
2987
2988 XVECTOR (kludge)->contents[0] = make_number (character);
2989 tem = shadow_lookup (shadow, kludge, Qt);
2990
2991 if (!NILP (tem)) continue;
2992 }
2993
2994 /* Ignore this definition if it is shadowed by an earlier
2995 one in the same keymap. */
2996 if (!NILP (entire_map) && complete_char)
2997 {
2998 Lisp_Object tem;
2999
3000 XVECTOR (kludge)->contents[0] = make_number (character);
3001 tem = Flookup_key (entire_map, kludge, Qt);
3002
3003 if (! EQ (tem, definition))
3004 continue;
3005 }
3006
3007 if (first)
3008 {
3009 if (char_table_depth == 0)
3010 insert ("\n", 1);
3011 first = 0;
3012 }
3013
3014 /* For a sub char-table, show the depth by indentation.
3015 CHAR_TABLE_DEPTH can be greater than 0 only for a char-table. */
3016 if (char_table_depth > 0)
3017 insert (" ", char_table_depth * 2); /* depth is 1 or 2. */
3018
3019 /* Output the prefix that applies to every entry in this map. */
3020 if (!NILP (elt_prefix))
3021 insert1 (elt_prefix);
3022
3023 /* Insert or describe the character this slot is for,
3024 or a description of what it is for. */
3025 if (SUB_CHAR_TABLE_P (vector))
3026 {
3027 if (complete_char)
3028 insert_char (character);
3029 else
3030 {
3031 /* We need an octal representation for this block of
3032 characters. */
3033 char work[16];
3034 sprintf (work, "(row %d)", i);
3035 insert (work, strlen (work));
3036 }
3037 }
3038 else if (CHAR_TABLE_P (vector))
3039 {
3040 if (complete_char)
3041 insert1 (Fsingle_key_description (make_number (character)));
3042 else
3043 {
3044 /* Print the information for this character set. */
3045 insert_string ("<");
3046 tem2 = CHARSET_TABLE_INFO (i - 128, CHARSET_SHORT_NAME_IDX);
3047 if (STRINGP (tem2))
3048 insert_from_string (tem2, 0, 0, XSTRING (tem2)->size,
3049 STRING_BYTES (XSTRING (tem2)), 0);
3050 else
3051 insert ("?", 1);
3052 insert (">", 1);
3053 }
3054 }
3055 else
3056 {
3057 insert1 (Fsingle_key_description (make_number (character)));
3058 }
3059
3060 /* If we find a sub char-table within a char-table,
3061 scan it recursively; it defines the details for
3062 a character set or a portion of a character set. */
3063 if (CHAR_TABLE_P (vector) && SUB_CHAR_TABLE_P (definition))
3064 {
3065 insert ("\n", 1);
3066 describe_vector (definition, elt_prefix, elt_describer,
3067 partial, shadow, entire_map,
3068 indices, char_table_depth + 1);
3069 continue;
3070 }
3071
3072 starting_i = i;
3073
3074 /* Find all consecutive characters or rows that have the same
3075 definition. But, for elements of a top level char table, if
3076 they are for charsets, we had better describe one by one even
3077 if they have the same definition. */
3078 if (CHAR_TABLE_P (vector))
3079 {
3080 int limit = to;
3081
3082 if (char_table_depth == 0)
3083 limit = CHAR_TABLE_SINGLE_BYTE_SLOTS;
3084
3085 while (i + 1 < limit
3086 && (tem2 = get_keyelt (XCHAR_TABLE (vector)->contents[i + 1], 0),
3087 !NILP (tem2))
3088 && !NILP (Fequal (tem2, definition)))
3089 i++;
3090 }
3091 else
3092 while (i + 1 < to
3093 && (tem2 = get_keyelt (XVECTOR (vector)->contents[i + 1], 0),
3094 !NILP (tem2))
3095 && !NILP (Fequal (tem2, definition)))
3096 i++;
3097
3098
3099 /* If we have a range of more than one character,
3100 print where the range reaches to. */
3101
3102 if (i != starting_i)
3103 {
3104 insert (" .. ", 4);
3105
3106 if (!NILP (elt_prefix))
3107 insert1 (elt_prefix);
3108
3109 if (CHAR_TABLE_P (vector))
3110 {
3111 if (char_table_depth == 0)
3112 {
3113 insert1 (Fsingle_key_description (make_number (i)));
3114 }
3115 else if (complete_char)
3116 {
3117 indices[char_table_depth] = i;
3118 character
3119 = MAKE_NON_ASCII_CHAR (indices[0], indices[1], indices[2]);
3120 insert_char (character);
3121 }
3122 else
3123 {
3124 /* We need an octal representation for this block of
3125 characters. */
3126 char work[16];
3127 sprintf (work, "(row %d)", i);
3128 insert (work, strlen (work));
3129 }
3130 }
3131 else
3132 {
3133 insert1 (Fsingle_key_description (make_number (i)));
3134 }
3135 }
3136
3137 /* Print a description of the definition of this character.
3138 elt_describer will take care of spacing out far enough
3139 for alignment purposes. */
3140 (*elt_describer) (definition);
3141 }
3142
3143 /* For (sub) char-table, print `defalt' slot at last. */
3144 if (CHAR_TABLE_P (vector) && !NILP (XCHAR_TABLE (vector)->defalt))
3145 {
3146 insert (" ", char_table_depth * 2);
3147 insert_string ("<<default>>");
3148 (*elt_describer) (XCHAR_TABLE (vector)->defalt);
3149 }
3150
3151 UNGCPRO;
3152 }
3153 \f
3154 /* Apropos - finding all symbols whose names match a regexp. */
3155 Lisp_Object apropos_predicate;
3156 Lisp_Object apropos_accumulate;
3157
3158 static void
3159 apropos_accum (symbol, string)
3160 Lisp_Object symbol, string;
3161 {
3162 register Lisp_Object tem;
3163
3164 tem = Fstring_match (string, Fsymbol_name (symbol), Qnil);
3165 if (!NILP (tem) && !NILP (apropos_predicate))
3166 tem = call1 (apropos_predicate, symbol);
3167 if (!NILP (tem))
3168 apropos_accumulate = Fcons (symbol, apropos_accumulate);
3169 }
3170
3171 DEFUN ("apropos-internal", Fapropos_internal, Sapropos_internal, 1, 2, 0,
3172 "Show all symbols whose names contain match for REGEXP.\n\
3173 If optional 2nd arg PREDICATE is non-nil, (funcall PREDICATE SYMBOL) is done\n\
3174 for each symbol and a symbol is mentioned only if that returns non-nil.\n\
3175 Return list of symbols found.")
3176 (regexp, predicate)
3177 Lisp_Object regexp, predicate;
3178 {
3179 struct gcpro gcpro1, gcpro2;
3180 CHECK_STRING (regexp, 0);
3181 apropos_predicate = predicate;
3182 GCPRO2 (apropos_predicate, apropos_accumulate);
3183 apropos_accumulate = Qnil;
3184 map_obarray (Vobarray, apropos_accum, regexp);
3185 apropos_accumulate = Fsort (apropos_accumulate, Qstring_lessp);
3186 UNGCPRO;
3187 return apropos_accumulate;
3188 }
3189 \f
3190 void
3191 syms_of_keymap ()
3192 {
3193 Lisp_Object tem;
3194
3195 Qkeymap = intern ("keymap");
3196 staticpro (&Qkeymap);
3197
3198 /* Now we are ready to set up this property, so we can
3199 create char tables. */
3200 Fput (Qkeymap, Qchar_table_extra_slots, make_number (0));
3201
3202 /* Initialize the keymaps standardly used.
3203 Each one is the value of a Lisp variable, and is also
3204 pointed to by a C variable */
3205
3206 global_map = Fmake_keymap (Qnil);
3207 Fset (intern ("global-map"), global_map);
3208
3209 current_global_map = global_map;
3210 staticpro (&global_map);
3211 staticpro (&current_global_map);
3212
3213 meta_map = Fmake_keymap (Qnil);
3214 Fset (intern ("esc-map"), meta_map);
3215 Ffset (intern ("ESC-prefix"), meta_map);
3216
3217 control_x_map = Fmake_keymap (Qnil);
3218 Fset (intern ("ctl-x-map"), control_x_map);
3219 Ffset (intern ("Control-X-prefix"), control_x_map);
3220
3221 DEFVAR_LISP ("define-key-rebound-commands", &Vdefine_key_rebound_commands,
3222 "List of commands given new key bindings recently.\n\
3223 This is used for internal purposes during Emacs startup;\n\
3224 don't alter it yourself.");
3225 Vdefine_key_rebound_commands = Qt;
3226
3227 DEFVAR_LISP ("minibuffer-local-map", &Vminibuffer_local_map,
3228 "Default keymap to use when reading from the minibuffer.");
3229 Vminibuffer_local_map = Fmake_sparse_keymap (Qnil);
3230
3231 DEFVAR_LISP ("minibuffer-local-ns-map", &Vminibuffer_local_ns_map,
3232 "Local keymap for the minibuffer when spaces are not allowed.");
3233 Vminibuffer_local_ns_map = Fmake_sparse_keymap (Qnil);
3234
3235 DEFVAR_LISP ("minibuffer-local-completion-map", &Vminibuffer_local_completion_map,
3236 "Local keymap for minibuffer input with completion.");
3237 Vminibuffer_local_completion_map = Fmake_sparse_keymap (Qnil);
3238
3239 DEFVAR_LISP ("minibuffer-local-must-match-map", &Vminibuffer_local_must_match_map,
3240 "Local keymap for minibuffer input with completion, for exact match.");
3241 Vminibuffer_local_must_match_map = Fmake_sparse_keymap (Qnil);
3242
3243 DEFVAR_LISP ("minor-mode-map-alist", &Vminor_mode_map_alist,
3244 "Alist of keymaps to use for minor modes.\n\
3245 Each element looks like (VARIABLE . KEYMAP); KEYMAP is used to read\n\
3246 key sequences and look up bindings iff VARIABLE's value is non-nil.\n\
3247 If two active keymaps bind the same key, the keymap appearing earlier\n\
3248 in the list takes precedence.");
3249 Vminor_mode_map_alist = Qnil;
3250
3251 DEFVAR_LISP ("minor-mode-overriding-map-alist", &Vminor_mode_overriding_map_alist,
3252 "Alist of keymaps to use for minor modes, in current major mode.\n\
3253 This variable is a alist just like `minor-mode-map-alist', and it is\n\
3254 used the same way (and before `minor-mode-map-alist'); however,\n\
3255 it is provided for major modes to bind locally.");
3256 Vminor_mode_overriding_map_alist = Qnil;
3257
3258 DEFVAR_LISP ("function-key-map", &Vfunction_key_map,
3259 "Keymap mapping ASCII function key sequences onto their preferred forms.\n\
3260 This allows Emacs to recognize function keys sent from ASCII\n\
3261 terminals at any point in a key sequence.\n\
3262 \n\
3263 The `read-key-sequence' function replaces any subsequence bound by\n\
3264 `function-key-map' with its binding. More precisely, when the active\n\
3265 keymaps have no binding for the current key sequence but\n\
3266 `function-key-map' binds a suffix of the sequence to a vector or string,\n\
3267 `read-key-sequence' replaces the matching suffix with its binding, and\n\
3268 continues with the new sequence.\n\
3269 \n\
3270 The events that come from bindings in `function-key-map' are not\n\
3271 themselves looked up in `function-key-map'.\n\
3272 \n\
3273 For example, suppose `function-key-map' binds `ESC O P' to [f1].\n\
3274 Typing `ESC O P' to `read-key-sequence' would return [f1]. Typing\n\
3275 `C-x ESC O P' would return [?\\C-x f1]. If [f1] were a prefix\n\
3276 key, typing `ESC O P x' would return [f1 x].");
3277 Vfunction_key_map = Fmake_sparse_keymap (Qnil);
3278
3279 DEFVAR_LISP ("key-translation-map", &Vkey_translation_map,
3280 "Keymap of key translations that can override keymaps.\n\
3281 This keymap works like `function-key-map', but comes after that,\n\
3282 and applies even for keys that have ordinary bindings.");
3283 Vkey_translation_map = Qnil;
3284
3285 Qsingle_key_description = intern ("single-key-description");
3286 staticpro (&Qsingle_key_description);
3287
3288 Qkey_description = intern ("key-description");
3289 staticpro (&Qkey_description);
3290
3291 Qkeymapp = intern ("keymapp");
3292 staticpro (&Qkeymapp);
3293
3294 Qnon_ascii = intern ("non-ascii");
3295 staticpro (&Qnon_ascii);
3296
3297 Qmenu_item = intern ("menu-item");
3298 staticpro (&Qmenu_item);
3299
3300 defsubr (&Skeymapp);
3301 defsubr (&Skeymap_parent);
3302 defsubr (&Sset_keymap_parent);
3303 defsubr (&Smake_keymap);
3304 defsubr (&Smake_sparse_keymap);
3305 defsubr (&Scopy_keymap);
3306 defsubr (&Skey_binding);
3307 defsubr (&Slocal_key_binding);
3308 defsubr (&Sglobal_key_binding);
3309 defsubr (&Sminor_mode_key_binding);
3310 defsubr (&Sdefine_key);
3311 defsubr (&Slookup_key);
3312 defsubr (&Sdefine_prefix_command);
3313 defsubr (&Suse_global_map);
3314 defsubr (&Suse_local_map);
3315 defsubr (&Scurrent_local_map);
3316 defsubr (&Scurrent_global_map);
3317 defsubr (&Scurrent_minor_mode_maps);
3318 defsubr (&Saccessible_keymaps);
3319 defsubr (&Skey_description);
3320 defsubr (&Sdescribe_vector);
3321 defsubr (&Ssingle_key_description);
3322 defsubr (&Stext_char_description);
3323 defsubr (&Swhere_is_internal);
3324 defsubr (&Sdescribe_bindings_internal);
3325 defsubr (&Sapropos_internal);
3326 }
3327
3328 void
3329 keys_of_keymap ()
3330 {
3331 Lisp_Object tem;
3332
3333 initial_define_key (global_map, 033, "ESC-prefix");
3334 initial_define_key (global_map, Ctl('X'), "Control-X-prefix");
3335 }