]> code.delx.au - gnu-emacs/blob - src/lisp.h
Do not set `url-gateway-method' in `url-https'. (Bug#16543)
[gnu-emacs] / src / lisp.h
1 /* Fundamental definitions for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2014 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #ifndef EMACS_LISP_H
22 #define EMACS_LISP_H
23
24 #include <setjmp.h>
25 #include <stdalign.h>
26 #include <stdarg.h>
27 #include <stddef.h>
28 #include <float.h>
29 #include <inttypes.h>
30 #include <limits.h>
31
32 #include <intprops.h>
33 #include <verify.h>
34
35 INLINE_HEADER_BEGIN
36
37 /* Define a TYPE constant ID as an externally visible name. Use like this:
38
39 DEFINE_GDB_SYMBOL_BEGIN (TYPE, ID)
40 # define ID (some integer preprocessor expression of type TYPE)
41 DEFINE_GDB_SYMBOL_END (ID)
42
43 This hack is for the benefit of compilers that do not make macro
44 definitions or enums visible to the debugger. It's used for symbols
45 that .gdbinit needs. */
46
47 #ifdef MAIN_PROGRAM
48 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) type const id EXTERNALLY_VISIBLE
49 # define DEFINE_GDB_SYMBOL_END(id) = id;
50 #else
51 # define DEFINE_GDB_SYMBOL_BEGIN(type, id)
52 # define DEFINE_GDB_SYMBOL_END(val)
53 #endif
54
55 /* The ubiquitous max and min macros. */
56 #undef min
57 #undef max
58 #define max(a, b) ((a) > (b) ? (a) : (b))
59 #define min(a, b) ((a) < (b) ? (a) : (b))
60
61 /* Number of elements in an array. */
62 #define ARRAYELTS(arr) (sizeof (arr) / sizeof (arr)[0])
63
64 /* Number of bits in a Lisp_Object tag. */
65 DEFINE_GDB_SYMBOL_BEGIN (int, GCTYPEBITS)
66 #define GCTYPEBITS 3
67 DEFINE_GDB_SYMBOL_END (GCTYPEBITS)
68
69 /* The number of bits needed in an EMACS_INT over and above the number
70 of bits in a pointer. This is 0 on systems where:
71 1. We can specify multiple-of-8 alignment on static variables.
72 2. We know malloc returns a multiple of 8. */
73 #if (defined alignas \
74 && (defined GNU_MALLOC || defined DOUG_LEA_MALLOC || defined __GLIBC__ \
75 || defined DARWIN_OS || defined __sun || defined __MINGW32__ \
76 || defined CYGWIN))
77 # define NONPOINTER_BITS 0
78 #else
79 # define NONPOINTER_BITS GCTYPEBITS
80 #endif
81
82 /* EMACS_INT - signed integer wide enough to hold an Emacs value
83 EMACS_INT_MAX - maximum value of EMACS_INT; can be used in #if
84 pI - printf length modifier for EMACS_INT
85 EMACS_UINT - unsigned variant of EMACS_INT */
86 #ifndef EMACS_INT_MAX
87 # if INTPTR_MAX <= 0
88 # error "INTPTR_MAX misconfigured"
89 # elif INTPTR_MAX <= INT_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
90 typedef int EMACS_INT;
91 typedef unsigned int EMACS_UINT;
92 # define EMACS_INT_MAX INT_MAX
93 # define pI ""
94 # elif INTPTR_MAX <= LONG_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
95 typedef long int EMACS_INT;
96 typedef unsigned long EMACS_UINT;
97 # define EMACS_INT_MAX LONG_MAX
98 # define pI "l"
99 /* Check versus LLONG_MAX, not LLONG_MAX >> NONPOINTER_BITS.
100 In theory this is not safe, but in practice it seems to be OK. */
101 # elif INTPTR_MAX <= LLONG_MAX
102 typedef long long int EMACS_INT;
103 typedef unsigned long long int EMACS_UINT;
104 # define EMACS_INT_MAX LLONG_MAX
105 # define pI "ll"
106 # else
107 # error "INTPTR_MAX too large"
108 # endif
109 #endif
110
111 /* Number of bits to put in each character in the internal representation
112 of bool vectors. This should not vary across implementations. */
113 enum { BOOL_VECTOR_BITS_PER_CHAR =
114 #define BOOL_VECTOR_BITS_PER_CHAR 8
115 BOOL_VECTOR_BITS_PER_CHAR
116 };
117
118 /* An unsigned integer type representing a fixed-length bit sequence,
119 suitable for bool vector words, GC mark bits, etc. Normally it is size_t
120 for speed, but it is unsigned char on weird platforms. */
121 #if BOOL_VECTOR_BITS_PER_CHAR == CHAR_BIT
122 typedef size_t bits_word;
123 # define BITS_WORD_MAX SIZE_MAX
124 enum { BITS_PER_BITS_WORD = CHAR_BIT * sizeof (bits_word) };
125 #else
126 typedef unsigned char bits_word;
127 # define BITS_WORD_MAX ((1u << BOOL_VECTOR_BITS_PER_CHAR) - 1)
128 enum { BITS_PER_BITS_WORD = BOOL_VECTOR_BITS_PER_CHAR };
129 #endif
130 verify (BITS_WORD_MAX >> (BITS_PER_BITS_WORD - 1) == 1);
131
132 /* Number of bits in some machine integer types. */
133 enum
134 {
135 BITS_PER_CHAR = CHAR_BIT,
136 BITS_PER_SHORT = CHAR_BIT * sizeof (short),
137 BITS_PER_LONG = CHAR_BIT * sizeof (long int),
138 BITS_PER_EMACS_INT = CHAR_BIT * sizeof (EMACS_INT)
139 };
140
141 /* printmax_t and uprintmax_t are types for printing large integers.
142 These are the widest integers that are supported for printing.
143 pMd etc. are conversions for printing them.
144 On C99 hosts, there's no problem, as even the widest integers work.
145 Fall back on EMACS_INT on pre-C99 hosts. */
146 #ifdef PRIdMAX
147 typedef intmax_t printmax_t;
148 typedef uintmax_t uprintmax_t;
149 # define pMd PRIdMAX
150 # define pMu PRIuMAX
151 #else
152 typedef EMACS_INT printmax_t;
153 typedef EMACS_UINT uprintmax_t;
154 # define pMd pI"d"
155 # define pMu pI"u"
156 #endif
157
158 /* Use pD to format ptrdiff_t values, which suffice for indexes into
159 buffers and strings. Emacs never allocates objects larger than
160 PTRDIFF_MAX bytes, as they cause problems with pointer subtraction.
161 In C99, pD can always be "t"; configure it here for the sake of
162 pre-C99 libraries such as glibc 2.0 and Solaris 8. */
163 #if PTRDIFF_MAX == INT_MAX
164 # define pD ""
165 #elif PTRDIFF_MAX == LONG_MAX
166 # define pD "l"
167 #elif PTRDIFF_MAX == LLONG_MAX
168 # define pD "ll"
169 #else
170 # define pD "t"
171 #endif
172
173 /* Extra internal type checking? */
174
175 /* Define Emacs versions of <assert.h>'s 'assert (COND)' and <verify.h>'s
176 'assume (COND)'. COND should be free of side effects, as it may or
177 may not be evaluated.
178
179 'eassert (COND)' checks COND at runtime if ENABLE_CHECKING is
180 defined and suppress_checking is false, and does nothing otherwise.
181 Emacs dies if COND is checked and is false. The suppress_checking
182 variable is initialized to 0 in alloc.c. Set it to 1 using a
183 debugger to temporarily disable aborting on detected internal
184 inconsistencies or error conditions.
185
186 In some cases, a good compiler may be able to optimize away the
187 eassert macro even if ENABLE_CHECKING is true, e.g., if XSTRING (x)
188 uses eassert to test STRINGP (x), but a particular use of XSTRING
189 is invoked only after testing that STRINGP (x) is true, making the
190 test redundant.
191
192 eassume is like eassert except that it also causes the compiler to
193 assume that COND is true afterwards, regardless of whether runtime
194 checking is enabled. This can improve performance in some cases,
195 though it can degrade performance in others. It's often suboptimal
196 for COND to call external functions or access volatile storage. */
197
198 #ifndef ENABLE_CHECKING
199 # define eassert(cond) ((void) (false && (cond))) /* Check COND compiles. */
200 # define eassume(cond) assume (cond)
201 #else /* ENABLE_CHECKING */
202
203 extern _Noreturn void die (const char *, const char *, int);
204
205 extern bool suppress_checking EXTERNALLY_VISIBLE;
206
207 # define eassert(cond) \
208 (suppress_checking || (cond) \
209 ? (void) 0 \
210 : die (# cond, __FILE__, __LINE__))
211 # define eassume(cond) \
212 (suppress_checking \
213 ? assume (cond) \
214 : (cond) \
215 ? (void) 0 \
216 : die (# cond, __FILE__, __LINE__))
217 #endif /* ENABLE_CHECKING */
218
219 \f
220 /* Use the configure flag --enable-check-lisp-object-type to make
221 Lisp_Object use a struct type instead of the default int. The flag
222 causes CHECK_LISP_OBJECT_TYPE to be defined. */
223
224 /***** Select the tagging scheme. *****/
225 /* The following option controls the tagging scheme:
226 - USE_LSB_TAG means that we can assume the least 3 bits of pointers are
227 always 0, and we can thus use them to hold tag bits, without
228 restricting our addressing space.
229
230 If ! USE_LSB_TAG, then use the top 3 bits for tagging, thus
231 restricting our possible address range.
232
233 USE_LSB_TAG not only requires the least 3 bits of pointers returned by
234 malloc to be 0 but also needs to be able to impose a mult-of-8 alignment
235 on the few static Lisp_Objects used: all the defsubr as well
236 as the two special buffers buffer_defaults and buffer_local_symbols. */
237
238 enum Lisp_Bits
239 {
240 /* 2**GCTYPEBITS. This must be a macro that expands to a literal
241 integer constant, for MSVC. */
242 #define GCALIGNMENT 8
243
244 /* Number of bits in a Lisp_Object value, not counting the tag. */
245 VALBITS = BITS_PER_EMACS_INT - GCTYPEBITS,
246
247 /* Number of bits in a Lisp fixnum tag. */
248 INTTYPEBITS = GCTYPEBITS - 1,
249
250 /* Number of bits in a Lisp fixnum value, not counting the tag. */
251 FIXNUM_BITS = VALBITS + 1
252 };
253
254 #if GCALIGNMENT != 1 << GCTYPEBITS
255 # error "GCALIGNMENT and GCTYPEBITS are inconsistent"
256 #endif
257
258 /* The maximum value that can be stored in a EMACS_INT, assuming all
259 bits other than the type bits contribute to a nonnegative signed value.
260 This can be used in #if, e.g., '#if VAL_MAX < UINTPTR_MAX' below. */
261 #define VAL_MAX (EMACS_INT_MAX >> (GCTYPEBITS - 1))
262
263 /* Whether the least-significant bits of an EMACS_INT contain the tag.
264 On hosts where pointers-as-ints do not exceed VAL_MAX, USE_LSB_TAG is:
265 a. unnecessary, because the top bits of an EMACS_INT are unused, and
266 b. slower, because it typically requires extra masking.
267 So, USE_LSB_TAG is true only on hosts where it might be useful. */
268 DEFINE_GDB_SYMBOL_BEGIN (bool, USE_LSB_TAG)
269 #define USE_LSB_TAG (EMACS_INT_MAX >> GCTYPEBITS < INTPTR_MAX)
270 DEFINE_GDB_SYMBOL_END (USE_LSB_TAG)
271
272 #if !USE_LSB_TAG && !defined WIDE_EMACS_INT
273 # error "USE_LSB_TAG not supported on this platform; please report this." \
274 "Try 'configure --with-wide-int' to work around the problem."
275 error !;
276 #endif
277
278 #ifndef alignas
279 # define alignas(alignment) /* empty */
280 # if USE_LSB_TAG
281 # error "USE_LSB_TAG requires alignas"
282 # endif
283 #endif
284
285 /* This should work with GCC. Clang has known problems; see
286 http://lists.gnu.org/archive/html/emacs-devel/2014-09/msg00506.html. */
287 #ifndef USE_STACK_LISP_OBJECTS
288 # if defined __GNUC__ && !defined __clang__
289 /* 32-bit MinGW builds need at least GCC 4.2 to support this. */
290 # if defined __MINGW32__ && !defined _W64 \
291 && __GNUC__ + (__GNUC_MINOR__ > 1) < 5
292 # define USE_STACK_LISP_OBJECTS false
293 # else /* !(__MINGW32__ && __GNUC__ < 4.2) */
294 # define USE_STACK_LISP_OBJECTS true
295 # endif
296 # else
297 # define USE_STACK_LISP_OBJECTS false
298 # endif
299 #endif
300
301 #if defined HAVE_STRUCT_ATTRIBUTE_ALIGNED && USE_STACK_LISP_OBJECTS
302 # define GCALIGNED __attribute__ ((aligned (GCALIGNMENT)))
303 #else
304 # define GCALIGNED /* empty */
305 #endif
306
307 /* Some operations are so commonly executed that they are implemented
308 as macros, not functions, because otherwise runtime performance would
309 suffer too much when compiling with GCC without optimization.
310 There's no need to inline everything, just the operations that
311 would otherwise cause a serious performance problem.
312
313 For each such operation OP, define a macro lisp_h_OP that contains
314 the operation's implementation. That way, OP can be implemented
315 via a macro definition like this:
316
317 #define OP(x) lisp_h_OP (x)
318
319 and/or via a function definition like this:
320
321 LISP_MACRO_DEFUN (OP, Lisp_Object, (Lisp_Object x), (x))
322
323 which macro-expands to this:
324
325 Lisp_Object (OP) (Lisp_Object x) { return lisp_h_OP (x); }
326
327 without worrying about the implementations diverging, since
328 lisp_h_OP defines the actual implementation. The lisp_h_OP macros
329 are intended to be private to this include file, and should not be
330 used elsewhere.
331
332 FIXME: Remove the lisp_h_OP macros, and define just the inline OP
333 functions, once most developers have access to GCC 4.8 or later and
334 can use "gcc -Og" to debug. Maybe in the year 2016. See
335 Bug#11935.
336
337 Commentary for these macros can be found near their corresponding
338 functions, below. */
339
340 #if CHECK_LISP_OBJECT_TYPE
341 # define lisp_h_XLI(o) ((o).i)
342 # define lisp_h_XIL(i) ((Lisp_Object) { i })
343 #else
344 # define lisp_h_XLI(o) (o)
345 # define lisp_h_XIL(i) (i)
346 #endif
347 #define lisp_h_CHECK_LIST_CONS(x, y) CHECK_TYPE (CONSP (x), Qlistp, y)
348 #define lisp_h_CHECK_NUMBER(x) CHECK_TYPE (INTEGERP (x), Qintegerp, x)
349 #define lisp_h_CHECK_SYMBOL(x) CHECK_TYPE (SYMBOLP (x), Qsymbolp, x)
350 #define lisp_h_CHECK_TYPE(ok, predicate, x) \
351 ((ok) ? (void) 0 : (void) wrong_type_argument (predicate, x))
352 #define lisp_h_CONSP(x) (XTYPE (x) == Lisp_Cons)
353 #define lisp_h_EQ(x, y) (XLI (x) == XLI (y))
354 #define lisp_h_FLOATP(x) (XTYPE (x) == Lisp_Float)
355 #define lisp_h_INTEGERP(x) ((XTYPE (x) & ~Lisp_Int1) == 0)
356 #define lisp_h_MARKERP(x) (MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Marker)
357 #define lisp_h_MISCP(x) (XTYPE (x) == Lisp_Misc)
358 #define lisp_h_NILP(x) EQ (x, Qnil)
359 #define lisp_h_SET_SYMBOL_VAL(sym, v) \
360 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value = (v))
361 #define lisp_h_SYMBOL_CONSTANT_P(sym) (XSYMBOL (sym)->constant)
362 #define lisp_h_SYMBOL_VAL(sym) \
363 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value)
364 #define lisp_h_SYMBOLP(x) (XTYPE (x) == Lisp_Symbol)
365 #define lisp_h_VECTORLIKEP(x) (XTYPE (x) == Lisp_Vectorlike)
366 #define lisp_h_XCAR(c) XCONS (c)->car
367 #define lisp_h_XCDR(c) XCONS (c)->u.cdr
368 #define lisp_h_XCONS(a) \
369 (eassert (CONSP (a)), (struct Lisp_Cons *) XUNTAG (a, Lisp_Cons))
370 #define lisp_h_XHASH(a) XUINT (a)
371 #define lisp_h_XPNTR(a) ((void *) (intptr_t) (XLI (a) & VALMASK))
372 #define lisp_h_XSYMBOL(a) \
373 (eassert (SYMBOLP (a)), (struct Lisp_Symbol *) XUNTAG (a, Lisp_Symbol))
374 #ifndef GC_CHECK_CONS_LIST
375 # define lisp_h_check_cons_list() ((void) 0)
376 #endif
377 #if USE_LSB_TAG
378 # define lisp_h_make_number(n) \
379 XIL ((EMACS_INT) ((EMACS_UINT) (n) << INTTYPEBITS))
380 # define lisp_h_XFASTINT(a) XINT (a)
381 # define lisp_h_XINT(a) (XLI (a) >> INTTYPEBITS)
382 # define lisp_h_XTYPE(a) ((enum Lisp_Type) (XLI (a) & ~VALMASK))
383 # define lisp_h_XUNTAG(a, type) ((void *) (XLI (a) - (type)))
384 #endif
385
386 /* When compiling via gcc -O0, define the key operations as macros, as
387 Emacs is too slow otherwise. To disable this optimization, compile
388 with -DINLINING=false. */
389 #if (defined __NO_INLINE__ \
390 && ! defined __OPTIMIZE__ && ! defined __OPTIMIZE_SIZE__ \
391 && ! (defined INLINING && ! INLINING))
392 # define XLI(o) lisp_h_XLI (o)
393 # define XIL(i) lisp_h_XIL (i)
394 # define CHECK_LIST_CONS(x, y) lisp_h_CHECK_LIST_CONS (x, y)
395 # define CHECK_NUMBER(x) lisp_h_CHECK_NUMBER (x)
396 # define CHECK_SYMBOL(x) lisp_h_CHECK_SYMBOL (x)
397 # define CHECK_TYPE(ok, predicate, x) lisp_h_CHECK_TYPE (ok, predicate, x)
398 # define CONSP(x) lisp_h_CONSP (x)
399 # define EQ(x, y) lisp_h_EQ (x, y)
400 # define FLOATP(x) lisp_h_FLOATP (x)
401 # define INTEGERP(x) lisp_h_INTEGERP (x)
402 # define MARKERP(x) lisp_h_MARKERP (x)
403 # define MISCP(x) lisp_h_MISCP (x)
404 # define NILP(x) lisp_h_NILP (x)
405 # define SET_SYMBOL_VAL(sym, v) lisp_h_SET_SYMBOL_VAL (sym, v)
406 # define SYMBOL_CONSTANT_P(sym) lisp_h_SYMBOL_CONSTANT_P (sym)
407 # define SYMBOL_VAL(sym) lisp_h_SYMBOL_VAL (sym)
408 # define SYMBOLP(x) lisp_h_SYMBOLP (x)
409 # define VECTORLIKEP(x) lisp_h_VECTORLIKEP (x)
410 # define XCAR(c) lisp_h_XCAR (c)
411 # define XCDR(c) lisp_h_XCDR (c)
412 # define XCONS(a) lisp_h_XCONS (a)
413 # define XHASH(a) lisp_h_XHASH (a)
414 # define XPNTR(a) lisp_h_XPNTR (a)
415 # define XSYMBOL(a) lisp_h_XSYMBOL (a)
416 # ifndef GC_CHECK_CONS_LIST
417 # define check_cons_list() lisp_h_check_cons_list ()
418 # endif
419 # if USE_LSB_TAG
420 # define make_number(n) lisp_h_make_number (n)
421 # define XFASTINT(a) lisp_h_XFASTINT (a)
422 # define XINT(a) lisp_h_XINT (a)
423 # define XTYPE(a) lisp_h_XTYPE (a)
424 # define XUNTAG(a, type) lisp_h_XUNTAG (a, type)
425 # endif
426 #endif
427
428 /* Define NAME as a lisp.h inline function that returns TYPE and has
429 arguments declared as ARGDECLS and passed as ARGS. ARGDECLS and
430 ARGS should be parenthesized. Implement the function by calling
431 lisp_h_NAME ARGS. */
432 #define LISP_MACRO_DEFUN(name, type, argdecls, args) \
433 INLINE type (name) argdecls { return lisp_h_##name args; }
434
435 /* like LISP_MACRO_DEFUN, except NAME returns void. */
436 #define LISP_MACRO_DEFUN_VOID(name, argdecls, args) \
437 INLINE void (name) argdecls { lisp_h_##name args; }
438
439
440 /* Define the fundamental Lisp data structures. */
441
442 /* This is the set of Lisp data types. If you want to define a new
443 data type, read the comments after Lisp_Fwd_Type definition
444 below. */
445
446 /* Lisp integers use 2 tags, to give them one extra bit, thus
447 extending their range from, e.g., -2^28..2^28-1 to -2^29..2^29-1. */
448 #define INTMASK (EMACS_INT_MAX >> (INTTYPEBITS - 1))
449 #define case_Lisp_Int case Lisp_Int0: case Lisp_Int1
450
451 /* Idea stolen from GDB. Pedantic GCC complains about enum bitfields,
452 MSVC doesn't support them, and xlc and Oracle Studio c99 complain
453 vociferously about them. */
454 #if (defined __STRICT_ANSI__ || defined _MSC_VER || defined __IBMC__ \
455 || (defined __SUNPRO_C && __STDC__))
456 #define ENUM_BF(TYPE) unsigned int
457 #else
458 #define ENUM_BF(TYPE) enum TYPE
459 #endif
460
461
462 enum Lisp_Type
463 {
464 /* Integer. XINT (obj) is the integer value. */
465 Lisp_Int0 = 0,
466 Lisp_Int1 = USE_LSB_TAG ? 1 << INTTYPEBITS : 1,
467
468 /* Symbol. XSYMBOL (object) points to a struct Lisp_Symbol. */
469 Lisp_Symbol = 2,
470
471 /* Miscellaneous. XMISC (object) points to a union Lisp_Misc,
472 whose first member indicates the subtype. */
473 Lisp_Misc = 3,
474
475 /* String. XSTRING (object) points to a struct Lisp_String.
476 The length of the string, and its contents, are stored therein. */
477 Lisp_String = USE_LSB_TAG ? 1 : 1 << INTTYPEBITS,
478
479 /* Vector of Lisp objects, or something resembling it.
480 XVECTOR (object) points to a struct Lisp_Vector, which contains
481 the size and contents. The size field also contains the type
482 information, if it's not a real vector object. */
483 Lisp_Vectorlike = 5,
484
485 /* Cons. XCONS (object) points to a struct Lisp_Cons. */
486 Lisp_Cons = 6,
487
488 Lisp_Float = 7
489 };
490
491 /* This is the set of data types that share a common structure.
492 The first member of the structure is a type code from this set.
493 The enum values are arbitrary, but we'll use large numbers to make it
494 more likely that we'll spot the error if a random word in memory is
495 mistakenly interpreted as a Lisp_Misc. */
496 enum Lisp_Misc_Type
497 {
498 Lisp_Misc_Free = 0x5eab,
499 Lisp_Misc_Marker,
500 Lisp_Misc_Overlay,
501 Lisp_Misc_Save_Value,
502 /* Currently floats are not a misc type,
503 but let's define this in case we want to change that. */
504 Lisp_Misc_Float,
505 /* This is not a type code. It is for range checking. */
506 Lisp_Misc_Limit
507 };
508
509 /* These are the types of forwarding objects used in the value slot
510 of symbols for special built-in variables whose value is stored in
511 C variables. */
512 enum Lisp_Fwd_Type
513 {
514 Lisp_Fwd_Int, /* Fwd to a C `int' variable. */
515 Lisp_Fwd_Bool, /* Fwd to a C boolean var. */
516 Lisp_Fwd_Obj, /* Fwd to a C Lisp_Object variable. */
517 Lisp_Fwd_Buffer_Obj, /* Fwd to a Lisp_Object field of buffers. */
518 Lisp_Fwd_Kboard_Obj /* Fwd to a Lisp_Object field of kboards. */
519 };
520
521 /* If you want to define a new Lisp data type, here are some
522 instructions. See the thread at
523 http://lists.gnu.org/archive/html/emacs-devel/2012-10/msg00561.html
524 for more info.
525
526 First, there are already a couple of Lisp types that can be used if
527 your new type does not need to be exposed to Lisp programs nor
528 displayed to users. These are Lisp_Save_Value, a Lisp_Misc
529 subtype; and PVEC_OTHER, a kind of vectorlike object. The former
530 is suitable for temporarily stashing away pointers and integers in
531 a Lisp object. The latter is useful for vector-like Lisp objects
532 that need to be used as part of other objects, but which are never
533 shown to users or Lisp code (search for PVEC_OTHER in xterm.c for
534 an example).
535
536 These two types don't look pretty when printed, so they are
537 unsuitable for Lisp objects that can be exposed to users.
538
539 To define a new data type, add one more Lisp_Misc subtype or one
540 more pseudovector subtype. Pseudovectors are more suitable for
541 objects with several slots that need to support fast random access,
542 while Lisp_Misc types are for everything else. A pseudovector object
543 provides one or more slots for Lisp objects, followed by struct
544 members that are accessible only from C. A Lisp_Misc object is a
545 wrapper for a C struct that can contain anything you like.
546
547 Explicit freeing is discouraged for Lisp objects in general. But if
548 you really need to exploit this, use Lisp_Misc (check free_misc in
549 alloc.c to see why). There is no way to free a vectorlike object.
550
551 To add a new pseudovector type, extend the pvec_type enumeration;
552 to add a new Lisp_Misc, extend the Lisp_Misc_Type enumeration.
553
554 For a Lisp_Misc, you will also need to add your entry to union
555 Lisp_Misc (but make sure the first word has the same structure as
556 the others, starting with a 16-bit member of the Lisp_Misc_Type
557 enumeration and a 1-bit GC markbit) and make sure the overall size
558 of the union is not increased by your addition.
559
560 For a new pseudovector, it's highly desirable to limit the size
561 of your data type by VBLOCK_BYTES_MAX bytes (defined in alloc.c).
562 Otherwise you will need to change sweep_vectors (also in alloc.c).
563
564 Then you will need to add switch branches in print.c (in
565 print_object, to print your object, and possibly also in
566 print_preprocess) and to alloc.c, to mark your object (in
567 mark_object) and to free it (in gc_sweep). The latter is also the
568 right place to call any code specific to your data type that needs
569 to run when the object is recycled -- e.g., free any additional
570 resources allocated for it that are not Lisp objects. You can even
571 make a pointer to the function that frees the resources a slot in
572 your object -- this way, the same object could be used to represent
573 several disparate C structures. */
574
575 #ifdef CHECK_LISP_OBJECT_TYPE
576
577 typedef struct { EMACS_INT i; } Lisp_Object;
578
579 #define LISP_INITIALLY_ZERO {0}
580
581 #undef CHECK_LISP_OBJECT_TYPE
582 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = true };
583 #else /* CHECK_LISP_OBJECT_TYPE */
584
585 /* If a struct type is not wanted, define Lisp_Object as just a number. */
586
587 typedef EMACS_INT Lisp_Object;
588 #define LISP_INITIALLY_ZERO 0
589 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = false };
590 #endif /* CHECK_LISP_OBJECT_TYPE */
591
592 /* Convert a Lisp_Object to the corresponding EMACS_INT and vice versa.
593 At the machine level, these operations are no-ops. */
594 LISP_MACRO_DEFUN (XLI, EMACS_INT, (Lisp_Object o), (o))
595 LISP_MACRO_DEFUN (XIL, Lisp_Object, (EMACS_INT i), (i))
596
597 /* In the size word of a vector, this bit means the vector has been marked. */
598
599 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, ARRAY_MARK_FLAG)
600 # define ARRAY_MARK_FLAG PTRDIFF_MIN
601 DEFINE_GDB_SYMBOL_END (ARRAY_MARK_FLAG)
602
603 /* In the size word of a struct Lisp_Vector, this bit means it's really
604 some other vector-like object. */
605 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, PSEUDOVECTOR_FLAG)
606 # define PSEUDOVECTOR_FLAG (PTRDIFF_MAX - PTRDIFF_MAX / 2)
607 DEFINE_GDB_SYMBOL_END (PSEUDOVECTOR_FLAG)
608
609 /* In a pseudovector, the size field actually contains a word with one
610 PSEUDOVECTOR_FLAG bit set, and one of the following values extracted
611 with PVEC_TYPE_MASK to indicate the actual type. */
612 enum pvec_type
613 {
614 PVEC_NORMAL_VECTOR,
615 PVEC_FREE,
616 PVEC_PROCESS,
617 PVEC_FRAME,
618 PVEC_WINDOW,
619 PVEC_BOOL_VECTOR,
620 PVEC_BUFFER,
621 PVEC_HASH_TABLE,
622 PVEC_TERMINAL,
623 PVEC_WINDOW_CONFIGURATION,
624 PVEC_SUBR,
625 PVEC_OTHER,
626 /* These should be last, check internal_equal to see why. */
627 PVEC_COMPILED,
628 PVEC_CHAR_TABLE,
629 PVEC_SUB_CHAR_TABLE,
630 PVEC_FONT /* Should be last because it's used for range checking. */
631 };
632
633 enum More_Lisp_Bits
634 {
635 /* For convenience, we also store the number of elements in these bits.
636 Note that this size is not necessarily the memory-footprint size, but
637 only the number of Lisp_Object fields (that need to be traced by GC).
638 The distinction is used, e.g., by Lisp_Process, which places extra
639 non-Lisp_Object fields at the end of the structure. */
640 PSEUDOVECTOR_SIZE_BITS = 12,
641 PSEUDOVECTOR_SIZE_MASK = (1 << PSEUDOVECTOR_SIZE_BITS) - 1,
642
643 /* To calculate the memory footprint of the pseudovector, it's useful
644 to store the size of non-Lisp area in word_size units here. */
645 PSEUDOVECTOR_REST_BITS = 12,
646 PSEUDOVECTOR_REST_MASK = (((1 << PSEUDOVECTOR_REST_BITS) - 1)
647 << PSEUDOVECTOR_SIZE_BITS),
648
649 /* Used to extract pseudovector subtype information. */
650 PSEUDOVECTOR_AREA_BITS = PSEUDOVECTOR_SIZE_BITS + PSEUDOVECTOR_REST_BITS,
651 PVEC_TYPE_MASK = 0x3f << PSEUDOVECTOR_AREA_BITS
652 };
653 \f
654 /* These functions extract various sorts of values from a Lisp_Object.
655 For example, if tem is a Lisp_Object whose type is Lisp_Cons,
656 XCONS (tem) is the struct Lisp_Cons * pointing to the memory for
657 that cons. */
658
659 /* Mask for the value (as opposed to the type bits) of a Lisp object. */
660 DEFINE_GDB_SYMBOL_BEGIN (EMACS_INT, VALMASK)
661 # define VALMASK (USE_LSB_TAG ? - (1 << GCTYPEBITS) : VAL_MAX)
662 DEFINE_GDB_SYMBOL_END (VALMASK)
663
664 /* Largest and smallest representable fixnum values. These are the C
665 values. They are macros for use in static initializers. */
666 #define MOST_POSITIVE_FIXNUM (EMACS_INT_MAX >> INTTYPEBITS)
667 #define MOST_NEGATIVE_FIXNUM (-1 - MOST_POSITIVE_FIXNUM)
668
669 /* Extract the pointer hidden within A. */
670 LISP_MACRO_DEFUN (XPNTR, void *, (Lisp_Object a), (a))
671
672 #if USE_LSB_TAG
673
674 LISP_MACRO_DEFUN (make_number, Lisp_Object, (EMACS_INT n), (n))
675 LISP_MACRO_DEFUN (XINT, EMACS_INT, (Lisp_Object a), (a))
676 LISP_MACRO_DEFUN (XFASTINT, EMACS_INT, (Lisp_Object a), (a))
677 LISP_MACRO_DEFUN (XTYPE, enum Lisp_Type, (Lisp_Object a), (a))
678 LISP_MACRO_DEFUN (XUNTAG, void *, (Lisp_Object a, int type), (a, type))
679
680 #else /* ! USE_LSB_TAG */
681
682 /* Although compiled only if ! USE_LSB_TAG, the following functions
683 also work when USE_LSB_TAG; this is to aid future maintenance when
684 the lisp_h_* macros are eventually removed. */
685
686 /* Make a Lisp integer representing the value of the low order
687 bits of N. */
688 INLINE Lisp_Object
689 make_number (EMACS_INT n)
690 {
691 if (USE_LSB_TAG)
692 {
693 EMACS_UINT u = n;
694 n = u << INTTYPEBITS;
695 }
696 else
697 n &= INTMASK;
698 return XIL (n);
699 }
700
701 /* Extract A's value as a signed integer. */
702 INLINE EMACS_INT
703 XINT (Lisp_Object a)
704 {
705 EMACS_INT i = XLI (a);
706 if (! USE_LSB_TAG)
707 {
708 EMACS_UINT u = i;
709 i = u << INTTYPEBITS;
710 }
711 return i >> INTTYPEBITS;
712 }
713
714 /* Like XINT (A), but may be faster. A must be nonnegative.
715 If ! USE_LSB_TAG, this takes advantage of the fact that Lisp
716 integers have zero-bits in their tags. */
717 INLINE EMACS_INT
718 XFASTINT (Lisp_Object a)
719 {
720 EMACS_INT n = USE_LSB_TAG ? XINT (a) : XLI (a);
721 eassert (0 <= n);
722 return n;
723 }
724
725 /* Extract A's type. */
726 INLINE enum Lisp_Type
727 XTYPE (Lisp_Object a)
728 {
729 EMACS_UINT i = XLI (a);
730 return USE_LSB_TAG ? i & ~VALMASK : i >> VALBITS;
731 }
732
733 /* Extract A's pointer value, assuming A's type is TYPE. */
734 INLINE void *
735 XUNTAG (Lisp_Object a, int type)
736 {
737 if (USE_LSB_TAG)
738 {
739 intptr_t i = XLI (a) - type;
740 return (void *) i;
741 }
742 return XPNTR (a);
743 }
744
745 #endif /* ! USE_LSB_TAG */
746
747 /* Extract A's value as an unsigned integer. */
748 INLINE EMACS_UINT
749 XUINT (Lisp_Object a)
750 {
751 EMACS_UINT i = XLI (a);
752 return USE_LSB_TAG ? i >> INTTYPEBITS : i & INTMASK;
753 }
754
755 /* Return A's (Lisp-integer sized) hash. Happens to be like XUINT
756 right now, but XUINT should only be applied to objects we know are
757 integers. */
758 LISP_MACRO_DEFUN (XHASH, EMACS_INT, (Lisp_Object a), (a))
759
760 /* Like make_number (N), but may be faster. N must be in nonnegative range. */
761 INLINE Lisp_Object
762 make_natnum (EMACS_INT n)
763 {
764 eassert (0 <= n && n <= MOST_POSITIVE_FIXNUM);
765 return USE_LSB_TAG ? make_number (n) : XIL (n);
766 }
767
768 /* Return true if X and Y are the same object. */
769 LISP_MACRO_DEFUN (EQ, bool, (Lisp_Object x, Lisp_Object y), (x, y))
770
771 /* Value is true if I doesn't fit into a Lisp fixnum. It is
772 written this way so that it also works if I is of unsigned
773 type or if I is a NaN. */
774
775 #define FIXNUM_OVERFLOW_P(i) \
776 (! ((0 <= (i) || MOST_NEGATIVE_FIXNUM <= (i)) && (i) <= MOST_POSITIVE_FIXNUM))
777
778 INLINE ptrdiff_t
779 clip_to_bounds (ptrdiff_t lower, EMACS_INT num, ptrdiff_t upper)
780 {
781 return num < lower ? lower : num <= upper ? num : upper;
782 }
783 \f
784 /* Forward declarations. */
785
786 /* Defined in this file. */
787 union Lisp_Fwd;
788 INLINE bool BOOL_VECTOR_P (Lisp_Object);
789 INLINE bool BUFFER_OBJFWDP (union Lisp_Fwd *);
790 INLINE bool BUFFERP (Lisp_Object);
791 INLINE bool CHAR_TABLE_P (Lisp_Object);
792 INLINE Lisp_Object CHAR_TABLE_REF_ASCII (Lisp_Object, ptrdiff_t);
793 INLINE bool (CONSP) (Lisp_Object);
794 INLINE bool (FLOATP) (Lisp_Object);
795 INLINE bool functionp (Lisp_Object);
796 INLINE bool (INTEGERP) (Lisp_Object);
797 INLINE bool (MARKERP) (Lisp_Object);
798 INLINE bool (MISCP) (Lisp_Object);
799 INLINE bool (NILP) (Lisp_Object);
800 INLINE bool OVERLAYP (Lisp_Object);
801 INLINE bool PROCESSP (Lisp_Object);
802 INLINE bool PSEUDOVECTORP (Lisp_Object, int);
803 INLINE bool SAVE_VALUEP (Lisp_Object);
804 INLINE void set_sub_char_table_contents (Lisp_Object, ptrdiff_t,
805 Lisp_Object);
806 INLINE bool STRINGP (Lisp_Object);
807 INLINE bool SUB_CHAR_TABLE_P (Lisp_Object);
808 INLINE bool SUBRP (Lisp_Object);
809 INLINE bool (SYMBOLP) (Lisp_Object);
810 INLINE bool (VECTORLIKEP) (Lisp_Object);
811 INLINE bool WINDOWP (Lisp_Object);
812 INLINE struct Lisp_Save_Value *XSAVE_VALUE (Lisp_Object);
813
814 /* Defined in chartab.c. */
815 extern Lisp_Object char_table_ref (Lisp_Object, int);
816 extern void char_table_set (Lisp_Object, int, Lisp_Object);
817
818 /* Defined in data.c. */
819 extern Lisp_Object Qarrayp, Qbufferp, Qbuffer_or_string_p, Qchar_table_p;
820 extern Lisp_Object Qconsp, Qfloatp, Qintegerp, Qlambda, Qlistp, Qmarkerp, Qnil;
821 extern Lisp_Object Qnumberp, Qstringp, Qsymbolp, Qt, Qvectorp;
822 extern Lisp_Object Qbool_vector_p;
823 extern Lisp_Object Qvector_or_char_table_p, Qwholenump;
824 extern Lisp_Object Qwindow;
825 extern _Noreturn Lisp_Object wrong_type_argument (Lisp_Object, Lisp_Object);
826 extern _Noreturn void wrong_choice (Lisp_Object, Lisp_Object);
827
828 /* Defined in emacs.c. */
829 extern bool might_dump;
830 /* True means Emacs has already been initialized.
831 Used during startup to detect startup of dumped Emacs. */
832 extern bool initialized;
833
834 /* Defined in eval.c. */
835 extern Lisp_Object Qautoload;
836
837 /* Defined in floatfns.c. */
838 extern double extract_float (Lisp_Object);
839
840 /* Defined in process.c. */
841 extern Lisp_Object Qprocessp;
842
843 /* Defined in window.c. */
844 extern Lisp_Object Qwindowp;
845
846 /* Defined in xdisp.c. */
847 extern Lisp_Object Qimage;
848 \f
849
850 /* Extract a value or address from a Lisp_Object. */
851
852 LISP_MACRO_DEFUN (XCONS, struct Lisp_Cons *, (Lisp_Object a), (a))
853
854 INLINE struct Lisp_Vector *
855 XVECTOR (Lisp_Object a)
856 {
857 eassert (VECTORLIKEP (a));
858 return XUNTAG (a, Lisp_Vectorlike);
859 }
860
861 INLINE struct Lisp_String *
862 XSTRING (Lisp_Object a)
863 {
864 eassert (STRINGP (a));
865 return XUNTAG (a, Lisp_String);
866 }
867
868 LISP_MACRO_DEFUN (XSYMBOL, struct Lisp_Symbol *, (Lisp_Object a), (a))
869
870 INLINE struct Lisp_Float *
871 XFLOAT (Lisp_Object a)
872 {
873 eassert (FLOATP (a));
874 return XUNTAG (a, Lisp_Float);
875 }
876
877 /* Pseudovector types. */
878
879 INLINE struct Lisp_Process *
880 XPROCESS (Lisp_Object a)
881 {
882 eassert (PROCESSP (a));
883 return XUNTAG (a, Lisp_Vectorlike);
884 }
885
886 INLINE struct window *
887 XWINDOW (Lisp_Object a)
888 {
889 eassert (WINDOWP (a));
890 return XUNTAG (a, Lisp_Vectorlike);
891 }
892
893 INLINE struct terminal *
894 XTERMINAL (Lisp_Object a)
895 {
896 return XUNTAG (a, Lisp_Vectorlike);
897 }
898
899 INLINE struct Lisp_Subr *
900 XSUBR (Lisp_Object a)
901 {
902 eassert (SUBRP (a));
903 return XUNTAG (a, Lisp_Vectorlike);
904 }
905
906 INLINE struct buffer *
907 XBUFFER (Lisp_Object a)
908 {
909 eassert (BUFFERP (a));
910 return XUNTAG (a, Lisp_Vectorlike);
911 }
912
913 INLINE struct Lisp_Char_Table *
914 XCHAR_TABLE (Lisp_Object a)
915 {
916 eassert (CHAR_TABLE_P (a));
917 return XUNTAG (a, Lisp_Vectorlike);
918 }
919
920 INLINE struct Lisp_Sub_Char_Table *
921 XSUB_CHAR_TABLE (Lisp_Object a)
922 {
923 eassert (SUB_CHAR_TABLE_P (a));
924 return XUNTAG (a, Lisp_Vectorlike);
925 }
926
927 INLINE struct Lisp_Bool_Vector *
928 XBOOL_VECTOR (Lisp_Object a)
929 {
930 eassert (BOOL_VECTOR_P (a));
931 return XUNTAG (a, Lisp_Vectorlike);
932 }
933
934 /* Construct a Lisp_Object from a value or address. */
935
936 INLINE Lisp_Object
937 make_lisp_ptr (void *ptr, enum Lisp_Type type)
938 {
939 EMACS_UINT utype = type;
940 EMACS_UINT typebits = USE_LSB_TAG ? type : utype << VALBITS;
941 Lisp_Object a = XIL (typebits | (uintptr_t) ptr);
942 eassert (XTYPE (a) == type && XUNTAG (a, type) == ptr);
943 return a;
944 }
945
946 INLINE Lisp_Object
947 make_lisp_proc (struct Lisp_Process *p)
948 {
949 return make_lisp_ptr (p, Lisp_Vectorlike);
950 }
951
952 #define XSETINT(a, b) ((a) = make_number (b))
953 #define XSETFASTINT(a, b) ((a) = make_natnum (b))
954 #define XSETCONS(a, b) ((a) = make_lisp_ptr (b, Lisp_Cons))
955 #define XSETVECTOR(a, b) ((a) = make_lisp_ptr (b, Lisp_Vectorlike))
956 #define XSETSTRING(a, b) ((a) = make_lisp_ptr (b, Lisp_String))
957 #define XSETSYMBOL(a, b) ((a) = make_lisp_ptr (b, Lisp_Symbol))
958 #define XSETFLOAT(a, b) ((a) = make_lisp_ptr (b, Lisp_Float))
959 #define XSETMISC(a, b) ((a) = make_lisp_ptr (b, Lisp_Misc))
960
961 /* Pseudovector types. */
962
963 #define XSETPVECTYPE(v, code) \
964 ((v)->header.size |= PSEUDOVECTOR_FLAG | ((code) << PSEUDOVECTOR_AREA_BITS))
965 #define XSETPVECTYPESIZE(v, code, lispsize, restsize) \
966 ((v)->header.size = (PSEUDOVECTOR_FLAG \
967 | ((code) << PSEUDOVECTOR_AREA_BITS) \
968 | ((restsize) << PSEUDOVECTOR_SIZE_BITS) \
969 | (lispsize)))
970
971 /* The cast to struct vectorlike_header * avoids aliasing issues. */
972 #define XSETPSEUDOVECTOR(a, b, code) \
973 XSETTYPED_PSEUDOVECTOR (a, b, \
974 (((struct vectorlike_header *) \
975 XUNTAG (a, Lisp_Vectorlike)) \
976 ->size), \
977 code)
978 #define XSETTYPED_PSEUDOVECTOR(a, b, size, code) \
979 (XSETVECTOR (a, b), \
980 eassert ((size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK)) \
981 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS))))
982
983 #define XSETWINDOW_CONFIGURATION(a, b) \
984 (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW_CONFIGURATION))
985 #define XSETPROCESS(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_PROCESS))
986 #define XSETWINDOW(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW))
987 #define XSETTERMINAL(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_TERMINAL))
988 #define XSETSUBR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUBR))
989 #define XSETCOMPILED(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_COMPILED))
990 #define XSETBUFFER(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BUFFER))
991 #define XSETCHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_CHAR_TABLE))
992 #define XSETBOOL_VECTOR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BOOL_VECTOR))
993 #define XSETSUB_CHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUB_CHAR_TABLE))
994
995 /* Type checking. */
996
997 LISP_MACRO_DEFUN_VOID (CHECK_TYPE,
998 (int ok, Lisp_Object predicate, Lisp_Object x),
999 (ok, predicate, x))
1000
1001 /* Deprecated and will be removed soon. */
1002
1003 #define INTERNAL_FIELD(field) field ## _
1004
1005 /* See the macros in intervals.h. */
1006
1007 typedef struct interval *INTERVAL;
1008
1009 struct GCALIGNED Lisp_Cons
1010 {
1011 /* Car of this cons cell. */
1012 Lisp_Object car;
1013
1014 union
1015 {
1016 /* Cdr of this cons cell. */
1017 Lisp_Object cdr;
1018
1019 /* Used to chain conses on a free list. */
1020 struct Lisp_Cons *chain;
1021 } u;
1022 };
1023
1024 /* Take the car or cdr of something known to be a cons cell. */
1025 /* The _addr functions shouldn't be used outside of the minimal set
1026 of code that has to know what a cons cell looks like. Other code not
1027 part of the basic lisp implementation should assume that the car and cdr
1028 fields are not accessible. (What if we want to switch to
1029 a copying collector someday? Cached cons cell field addresses may be
1030 invalidated at arbitrary points.) */
1031 INLINE Lisp_Object *
1032 xcar_addr (Lisp_Object c)
1033 {
1034 return &XCONS (c)->car;
1035 }
1036 INLINE Lisp_Object *
1037 xcdr_addr (Lisp_Object c)
1038 {
1039 return &XCONS (c)->u.cdr;
1040 }
1041
1042 /* Use these from normal code. */
1043 LISP_MACRO_DEFUN (XCAR, Lisp_Object, (Lisp_Object c), (c))
1044 LISP_MACRO_DEFUN (XCDR, Lisp_Object, (Lisp_Object c), (c))
1045
1046 /* Use these to set the fields of a cons cell.
1047
1048 Note that both arguments may refer to the same object, so 'n'
1049 should not be read after 'c' is first modified. */
1050 INLINE void
1051 XSETCAR (Lisp_Object c, Lisp_Object n)
1052 {
1053 *xcar_addr (c) = n;
1054 }
1055 INLINE void
1056 XSETCDR (Lisp_Object c, Lisp_Object n)
1057 {
1058 *xcdr_addr (c) = n;
1059 }
1060
1061 /* Take the car or cdr of something whose type is not known. */
1062 INLINE Lisp_Object
1063 CAR (Lisp_Object c)
1064 {
1065 return (CONSP (c) ? XCAR (c)
1066 : NILP (c) ? Qnil
1067 : wrong_type_argument (Qlistp, c));
1068 }
1069 INLINE Lisp_Object
1070 CDR (Lisp_Object c)
1071 {
1072 return (CONSP (c) ? XCDR (c)
1073 : NILP (c) ? Qnil
1074 : wrong_type_argument (Qlistp, c));
1075 }
1076
1077 /* Take the car or cdr of something whose type is not known. */
1078 INLINE Lisp_Object
1079 CAR_SAFE (Lisp_Object c)
1080 {
1081 return CONSP (c) ? XCAR (c) : Qnil;
1082 }
1083 INLINE Lisp_Object
1084 CDR_SAFE (Lisp_Object c)
1085 {
1086 return CONSP (c) ? XCDR (c) : Qnil;
1087 }
1088
1089 /* In a string or vector, the sign bit of the `size' is the gc mark bit. */
1090
1091 struct Lisp_String
1092 {
1093 ptrdiff_t size;
1094 ptrdiff_t size_byte;
1095 INTERVAL intervals; /* Text properties in this string. */
1096 unsigned char *data;
1097 };
1098
1099 /* True if STR is a multibyte string. */
1100 INLINE bool
1101 STRING_MULTIBYTE (Lisp_Object str)
1102 {
1103 return 0 <= XSTRING (str)->size_byte;
1104 }
1105
1106 /* An upper bound on the number of bytes in a Lisp string, not
1107 counting the terminating null. This a tight enough bound to
1108 prevent integer overflow errors that would otherwise occur during
1109 string size calculations. A string cannot contain more bytes than
1110 a fixnum can represent, nor can it be so long that C pointer
1111 arithmetic stops working on the string plus its terminating null.
1112 Although the actual size limit (see STRING_BYTES_MAX in alloc.c)
1113 may be a bit smaller than STRING_BYTES_BOUND, calculating it here
1114 would expose alloc.c internal details that we'd rather keep
1115 private.
1116
1117 This is a macro for use in static initializers. The cast to
1118 ptrdiff_t ensures that the macro is signed. */
1119 #define STRING_BYTES_BOUND \
1120 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, min (SIZE_MAX, PTRDIFF_MAX) - 1))
1121
1122 /* Mark STR as a unibyte string. */
1123 #define STRING_SET_UNIBYTE(STR) \
1124 do { \
1125 if (EQ (STR, empty_multibyte_string)) \
1126 (STR) = empty_unibyte_string; \
1127 else \
1128 XSTRING (STR)->size_byte = -1; \
1129 } while (false)
1130
1131 /* Mark STR as a multibyte string. Assure that STR contains only
1132 ASCII characters in advance. */
1133 #define STRING_SET_MULTIBYTE(STR) \
1134 do { \
1135 if (EQ (STR, empty_unibyte_string)) \
1136 (STR) = empty_multibyte_string; \
1137 else \
1138 XSTRING (STR)->size_byte = XSTRING (STR)->size; \
1139 } while (false)
1140
1141 /* Convenience functions for dealing with Lisp strings. */
1142
1143 INLINE unsigned char *
1144 SDATA (Lisp_Object string)
1145 {
1146 return XSTRING (string)->data;
1147 }
1148 INLINE char *
1149 SSDATA (Lisp_Object string)
1150 {
1151 /* Avoid "differ in sign" warnings. */
1152 return (char *) SDATA (string);
1153 }
1154 INLINE unsigned char
1155 SREF (Lisp_Object string, ptrdiff_t index)
1156 {
1157 return SDATA (string)[index];
1158 }
1159 INLINE void
1160 SSET (Lisp_Object string, ptrdiff_t index, unsigned char new)
1161 {
1162 SDATA (string)[index] = new;
1163 }
1164 INLINE ptrdiff_t
1165 SCHARS (Lisp_Object string)
1166 {
1167 return XSTRING (string)->size;
1168 }
1169
1170 #ifdef GC_CHECK_STRING_BYTES
1171 extern ptrdiff_t string_bytes (struct Lisp_String *);
1172 #endif
1173 INLINE ptrdiff_t
1174 STRING_BYTES (struct Lisp_String *s)
1175 {
1176 #ifdef GC_CHECK_STRING_BYTES
1177 return string_bytes (s);
1178 #else
1179 return s->size_byte < 0 ? s->size : s->size_byte;
1180 #endif
1181 }
1182
1183 INLINE ptrdiff_t
1184 SBYTES (Lisp_Object string)
1185 {
1186 return STRING_BYTES (XSTRING (string));
1187 }
1188 INLINE void
1189 STRING_SET_CHARS (Lisp_Object string, ptrdiff_t newsize)
1190 {
1191 XSTRING (string)->size = newsize;
1192 }
1193
1194 /* Header of vector-like objects. This documents the layout constraints on
1195 vectors and pseudovectors (objects of PVEC_xxx subtype). It also prevents
1196 compilers from being fooled by Emacs's type punning: XSETPSEUDOVECTOR
1197 and PSEUDOVECTORP cast their pointers to struct vectorlike_header *,
1198 because when two such pointers potentially alias, a compiler won't
1199 incorrectly reorder loads and stores to their size fields. See
1200 Bug#8546. */
1201 struct vectorlike_header
1202 {
1203 /* The only field contains various pieces of information:
1204 - The MSB (ARRAY_MARK_FLAG) holds the gcmarkbit.
1205 - The next bit (PSEUDOVECTOR_FLAG) indicates whether this is a plain
1206 vector (0) or a pseudovector (1).
1207 - If PSEUDOVECTOR_FLAG is 0, the rest holds the size (number
1208 of slots) of the vector.
1209 - If PSEUDOVECTOR_FLAG is 1, the rest is subdivided into three fields:
1210 - a) pseudovector subtype held in PVEC_TYPE_MASK field;
1211 - b) number of Lisp_Objects slots at the beginning of the object
1212 held in PSEUDOVECTOR_SIZE_MASK field. These objects are always
1213 traced by the GC;
1214 - c) size of the rest fields held in PSEUDOVECTOR_REST_MASK and
1215 measured in word_size units. Rest fields may also include
1216 Lisp_Objects, but these objects usually needs some special treatment
1217 during GC.
1218 There are some exceptions. For PVEC_FREE, b) is always zero. For
1219 PVEC_BOOL_VECTOR and PVEC_SUBR, both b) and c) are always zero.
1220 Current layout limits the pseudovectors to 63 PVEC_xxx subtypes,
1221 4095 Lisp_Objects in GC-ed area and 4095 word-sized other slots. */
1222 ptrdiff_t size;
1223 };
1224
1225 /* A regular vector is just a header plus an array of Lisp_Objects. */
1226
1227 struct Lisp_Vector
1228 {
1229 struct vectorlike_header header;
1230 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1231 };
1232
1233 /* C11 prohibits alignof (struct Lisp_Vector), so compute it manually. */
1234 enum
1235 {
1236 ALIGNOF_STRUCT_LISP_VECTOR
1237 = alignof (union { struct vectorlike_header a; Lisp_Object b; })
1238 };
1239
1240 /* A boolvector is a kind of vectorlike, with contents like a string. */
1241
1242 struct Lisp_Bool_Vector
1243 {
1244 /* HEADER.SIZE is the vector's size field. It doesn't have the real size,
1245 just the subtype information. */
1246 struct vectorlike_header header;
1247 /* This is the size in bits. */
1248 EMACS_INT size;
1249 /* The actual bits, packed into bytes.
1250 Zeros fill out the last word if needed.
1251 The bits are in little-endian order in the bytes, and
1252 the bytes are in little-endian order in the words. */
1253 bits_word data[FLEXIBLE_ARRAY_MEMBER];
1254 };
1255
1256 INLINE EMACS_INT
1257 bool_vector_size (Lisp_Object a)
1258 {
1259 EMACS_INT size = XBOOL_VECTOR (a)->size;
1260 eassume (0 <= size);
1261 return size;
1262 }
1263
1264 INLINE bits_word *
1265 bool_vector_data (Lisp_Object a)
1266 {
1267 return XBOOL_VECTOR (a)->data;
1268 }
1269
1270 INLINE unsigned char *
1271 bool_vector_uchar_data (Lisp_Object a)
1272 {
1273 return (unsigned char *) bool_vector_data (a);
1274 }
1275
1276 /* The number of data words and bytes in a bool vector with SIZE bits. */
1277
1278 INLINE EMACS_INT
1279 bool_vector_words (EMACS_INT size)
1280 {
1281 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1282 return (size + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
1283 }
1284
1285 INLINE EMACS_INT
1286 bool_vector_bytes (EMACS_INT size)
1287 {
1288 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1289 return (size + BOOL_VECTOR_BITS_PER_CHAR - 1) / BOOL_VECTOR_BITS_PER_CHAR;
1290 }
1291
1292 /* True if A's Ith bit is set. */
1293
1294 INLINE bool
1295 bool_vector_bitref (Lisp_Object a, EMACS_INT i)
1296 {
1297 eassume (0 <= i && i < bool_vector_size (a));
1298 return !! (bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR]
1299 & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR)));
1300 }
1301
1302 INLINE Lisp_Object
1303 bool_vector_ref (Lisp_Object a, EMACS_INT i)
1304 {
1305 return bool_vector_bitref (a, i) ? Qt : Qnil;
1306 }
1307
1308 /* Set A's Ith bit to B. */
1309
1310 INLINE void
1311 bool_vector_set (Lisp_Object a, EMACS_INT i, bool b)
1312 {
1313 unsigned char *addr;
1314
1315 eassume (0 <= i && i < bool_vector_size (a));
1316 addr = &bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR];
1317
1318 if (b)
1319 *addr |= 1 << (i % BOOL_VECTOR_BITS_PER_CHAR);
1320 else
1321 *addr &= ~ (1 << (i % BOOL_VECTOR_BITS_PER_CHAR));
1322 }
1323
1324 /* Some handy constants for calculating sizes
1325 and offsets, mostly of vectorlike objects. */
1326
1327 enum
1328 {
1329 header_size = offsetof (struct Lisp_Vector, contents),
1330 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
1331 word_size = sizeof (Lisp_Object)
1332 };
1333
1334 /* Conveniences for dealing with Lisp arrays. */
1335
1336 INLINE Lisp_Object
1337 AREF (Lisp_Object array, ptrdiff_t idx)
1338 {
1339 return XVECTOR (array)->contents[idx];
1340 }
1341
1342 INLINE Lisp_Object *
1343 aref_addr (Lisp_Object array, ptrdiff_t idx)
1344 {
1345 return & XVECTOR (array)->contents[idx];
1346 }
1347
1348 INLINE ptrdiff_t
1349 ASIZE (Lisp_Object array)
1350 {
1351 return XVECTOR (array)->header.size;
1352 }
1353
1354 INLINE void
1355 ASET (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1356 {
1357 eassert (0 <= idx && idx < ASIZE (array));
1358 XVECTOR (array)->contents[idx] = val;
1359 }
1360
1361 INLINE void
1362 gc_aset (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1363 {
1364 /* Like ASET, but also can be used in the garbage collector:
1365 sweep_weak_table calls set_hash_key etc. while the table is marked. */
1366 eassert (0 <= idx && idx < (ASIZE (array) & ~ARRAY_MARK_FLAG));
1367 XVECTOR (array)->contents[idx] = val;
1368 }
1369
1370 /* If a struct is made to look like a vector, this macro returns the length
1371 of the shortest vector that would hold that struct. */
1372
1373 #define VECSIZE(type) \
1374 ((sizeof (type) - header_size + word_size - 1) / word_size)
1375
1376 /* Like VECSIZE, but used when the pseudo-vector has non-Lisp_Object fields
1377 at the end and we need to compute the number of Lisp_Object fields (the
1378 ones that the GC needs to trace). */
1379
1380 #define PSEUDOVECSIZE(type, nonlispfield) \
1381 ((offsetof (type, nonlispfield) - header_size) / word_size)
1382
1383 /* Compute A OP B, using the unsigned comparison operator OP. A and B
1384 should be integer expressions. This is not the same as
1385 mathematical comparison; for example, UNSIGNED_CMP (0, <, -1)
1386 returns true. For efficiency, prefer plain unsigned comparison if A
1387 and B's sizes both fit (after integer promotion). */
1388 #define UNSIGNED_CMP(a, op, b) \
1389 (max (sizeof ((a) + 0), sizeof ((b) + 0)) <= sizeof (unsigned) \
1390 ? ((a) + (unsigned) 0) op ((b) + (unsigned) 0) \
1391 : ((a) + (uintmax_t) 0) op ((b) + (uintmax_t) 0))
1392
1393 /* True iff C is an ASCII character. */
1394 #define ASCII_CHAR_P(c) UNSIGNED_CMP (c, <, 0x80)
1395
1396 /* A char-table is a kind of vectorlike, with contents are like a
1397 vector but with a few other slots. For some purposes, it makes
1398 sense to handle a char-table with type struct Lisp_Vector. An
1399 element of a char table can be any Lisp objects, but if it is a sub
1400 char-table, we treat it a table that contains information of a
1401 specific range of characters. A sub char-table is like a vector but
1402 with two integer fields between the header and Lisp data, which means
1403 that it has to be marked with some precautions (see mark_char_table
1404 in alloc.c). A sub char-table appears only in an element of a char-table,
1405 and there's no way to access it directly from Emacs Lisp program. */
1406
1407 enum CHARTAB_SIZE_BITS
1408 {
1409 CHARTAB_SIZE_BITS_0 = 6,
1410 CHARTAB_SIZE_BITS_1 = 4,
1411 CHARTAB_SIZE_BITS_2 = 5,
1412 CHARTAB_SIZE_BITS_3 = 7
1413 };
1414
1415 extern const int chartab_size[4];
1416
1417 struct Lisp_Char_Table
1418 {
1419 /* HEADER.SIZE is the vector's size field, which also holds the
1420 pseudovector type information. It holds the size, too.
1421 The size counts the defalt, parent, purpose, ascii,
1422 contents, and extras slots. */
1423 struct vectorlike_header header;
1424
1425 /* This holds a default value,
1426 which is used whenever the value for a specific character is nil. */
1427 Lisp_Object defalt;
1428
1429 /* This points to another char table, which we inherit from when the
1430 value for a specific character is nil. The `defalt' slot takes
1431 precedence over this. */
1432 Lisp_Object parent;
1433
1434 /* This is a symbol which says what kind of use this char-table is
1435 meant for. */
1436 Lisp_Object purpose;
1437
1438 /* The bottom sub char-table for characters of the range 0..127. It
1439 is nil if none of ASCII character has a specific value. */
1440 Lisp_Object ascii;
1441
1442 Lisp_Object contents[(1 << CHARTAB_SIZE_BITS_0)];
1443
1444 /* These hold additional data. It is a vector. */
1445 Lisp_Object extras[FLEXIBLE_ARRAY_MEMBER];
1446 };
1447
1448 struct Lisp_Sub_Char_Table
1449 {
1450 /* HEADER.SIZE is the vector's size field, which also holds the
1451 pseudovector type information. It holds the size, too. */
1452 struct vectorlike_header header;
1453
1454 /* Depth of this sub char-table. It should be 1, 2, or 3. A sub
1455 char-table of depth 1 contains 16 elements, and each element
1456 covers 4096 (128*32) characters. A sub char-table of depth 2
1457 contains 32 elements, and each element covers 128 characters. A
1458 sub char-table of depth 3 contains 128 elements, and each element
1459 is for one character. */
1460 int depth;
1461
1462 /* Minimum character covered by the sub char-table. */
1463 int min_char;
1464
1465 /* Use set_sub_char_table_contents to set this. */
1466 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1467 };
1468
1469 INLINE Lisp_Object
1470 CHAR_TABLE_REF_ASCII (Lisp_Object ct, ptrdiff_t idx)
1471 {
1472 struct Lisp_Char_Table *tbl = NULL;
1473 Lisp_Object val;
1474 do
1475 {
1476 tbl = tbl ? XCHAR_TABLE (tbl->parent) : XCHAR_TABLE (ct);
1477 val = (! SUB_CHAR_TABLE_P (tbl->ascii) ? tbl->ascii
1478 : XSUB_CHAR_TABLE (tbl->ascii)->contents[idx]);
1479 if (NILP (val))
1480 val = tbl->defalt;
1481 }
1482 while (NILP (val) && ! NILP (tbl->parent));
1483
1484 return val;
1485 }
1486
1487 /* Almost equivalent to Faref (CT, IDX) with optimization for ASCII
1488 characters. Do not check validity of CT. */
1489 INLINE Lisp_Object
1490 CHAR_TABLE_REF (Lisp_Object ct, int idx)
1491 {
1492 return (ASCII_CHAR_P (idx)
1493 ? CHAR_TABLE_REF_ASCII (ct, idx)
1494 : char_table_ref (ct, idx));
1495 }
1496
1497 /* Equivalent to Faset (CT, IDX, VAL) with optimization for ASCII and
1498 8-bit European characters. Do not check validity of CT. */
1499 INLINE void
1500 CHAR_TABLE_SET (Lisp_Object ct, int idx, Lisp_Object val)
1501 {
1502 if (ASCII_CHAR_P (idx) && SUB_CHAR_TABLE_P (XCHAR_TABLE (ct)->ascii))
1503 set_sub_char_table_contents (XCHAR_TABLE (ct)->ascii, idx, val);
1504 else
1505 char_table_set (ct, idx, val);
1506 }
1507
1508 /* This structure describes a built-in function.
1509 It is generated by the DEFUN macro only.
1510 defsubr makes it into a Lisp object. */
1511
1512 struct Lisp_Subr
1513 {
1514 struct vectorlike_header header;
1515 union {
1516 Lisp_Object (*a0) (void);
1517 Lisp_Object (*a1) (Lisp_Object);
1518 Lisp_Object (*a2) (Lisp_Object, Lisp_Object);
1519 Lisp_Object (*a3) (Lisp_Object, Lisp_Object, Lisp_Object);
1520 Lisp_Object (*a4) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1521 Lisp_Object (*a5) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1522 Lisp_Object (*a6) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1523 Lisp_Object (*a7) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1524 Lisp_Object (*a8) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1525 Lisp_Object (*aUNEVALLED) (Lisp_Object args);
1526 Lisp_Object (*aMANY) (ptrdiff_t, Lisp_Object *);
1527 } function;
1528 short min_args, max_args;
1529 const char *symbol_name;
1530 const char *intspec;
1531 const char *doc;
1532 };
1533
1534 enum char_table_specials
1535 {
1536 /* This is the number of slots that every char table must have. This
1537 counts the ordinary slots and the top, defalt, parent, and purpose
1538 slots. */
1539 CHAR_TABLE_STANDARD_SLOTS = PSEUDOVECSIZE (struct Lisp_Char_Table, extras),
1540
1541 /* This is an index of first Lisp_Object field in Lisp_Sub_Char_Table
1542 when the latter is treated as an ordinary Lisp_Vector. */
1543 SUB_CHAR_TABLE_OFFSET = PSEUDOVECSIZE (struct Lisp_Sub_Char_Table, contents)
1544 };
1545
1546 /* Return the number of "extra" slots in the char table CT. */
1547
1548 INLINE int
1549 CHAR_TABLE_EXTRA_SLOTS (struct Lisp_Char_Table *ct)
1550 {
1551 return ((ct->header.size & PSEUDOVECTOR_SIZE_MASK)
1552 - CHAR_TABLE_STANDARD_SLOTS);
1553 }
1554
1555 /* Make sure that sub char-table contents slot
1556 is aligned on a multiple of Lisp_Objects. */
1557 verify ((offsetof (struct Lisp_Sub_Char_Table, contents)
1558 - offsetof (struct Lisp_Sub_Char_Table, depth)) % word_size == 0);
1559
1560 /***********************************************************************
1561 Symbols
1562 ***********************************************************************/
1563
1564 /* Interned state of a symbol. */
1565
1566 enum symbol_interned
1567 {
1568 SYMBOL_UNINTERNED = 0,
1569 SYMBOL_INTERNED = 1,
1570 SYMBOL_INTERNED_IN_INITIAL_OBARRAY = 2
1571 };
1572
1573 enum symbol_redirect
1574 {
1575 SYMBOL_PLAINVAL = 4,
1576 SYMBOL_VARALIAS = 1,
1577 SYMBOL_LOCALIZED = 2,
1578 SYMBOL_FORWARDED = 3
1579 };
1580
1581 struct Lisp_Symbol
1582 {
1583 bool_bf gcmarkbit : 1;
1584
1585 /* Indicates where the value can be found:
1586 0 : it's a plain var, the value is in the `value' field.
1587 1 : it's a varalias, the value is really in the `alias' symbol.
1588 2 : it's a localized var, the value is in the `blv' object.
1589 3 : it's a forwarding variable, the value is in `forward'. */
1590 ENUM_BF (symbol_redirect) redirect : 3;
1591
1592 /* Non-zero means symbol is constant, i.e. changing its value
1593 should signal an error. If the value is 3, then the var
1594 can be changed, but only by `defconst'. */
1595 unsigned constant : 2;
1596
1597 /* Interned state of the symbol. This is an enumerator from
1598 enum symbol_interned. */
1599 unsigned interned : 2;
1600
1601 /* True means that this variable has been explicitly declared
1602 special (with `defvar' etc), and shouldn't be lexically bound. */
1603 bool_bf declared_special : 1;
1604
1605 /* True if pointed to from purespace and hence can't be GC'd. */
1606 bool_bf pinned : 1;
1607
1608 /* The symbol's name, as a Lisp string. */
1609 Lisp_Object name;
1610
1611 /* Value of the symbol or Qunbound if unbound. Which alternative of the
1612 union is used depends on the `redirect' field above. */
1613 union {
1614 Lisp_Object value;
1615 struct Lisp_Symbol *alias;
1616 struct Lisp_Buffer_Local_Value *blv;
1617 union Lisp_Fwd *fwd;
1618 } val;
1619
1620 /* Function value of the symbol or Qnil if not fboundp. */
1621 Lisp_Object function;
1622
1623 /* The symbol's property list. */
1624 Lisp_Object plist;
1625
1626 /* Next symbol in obarray bucket, if the symbol is interned. */
1627 struct Lisp_Symbol *next;
1628 };
1629
1630 /* Value is name of symbol. */
1631
1632 LISP_MACRO_DEFUN (SYMBOL_VAL, Lisp_Object, (struct Lisp_Symbol *sym), (sym))
1633
1634 INLINE struct Lisp_Symbol *
1635 SYMBOL_ALIAS (struct Lisp_Symbol *sym)
1636 {
1637 eassert (sym->redirect == SYMBOL_VARALIAS);
1638 return sym->val.alias;
1639 }
1640 INLINE struct Lisp_Buffer_Local_Value *
1641 SYMBOL_BLV (struct Lisp_Symbol *sym)
1642 {
1643 eassert (sym->redirect == SYMBOL_LOCALIZED);
1644 return sym->val.blv;
1645 }
1646 INLINE union Lisp_Fwd *
1647 SYMBOL_FWD (struct Lisp_Symbol *sym)
1648 {
1649 eassert (sym->redirect == SYMBOL_FORWARDED);
1650 return sym->val.fwd;
1651 }
1652
1653 LISP_MACRO_DEFUN_VOID (SET_SYMBOL_VAL,
1654 (struct Lisp_Symbol *sym, Lisp_Object v), (sym, v))
1655
1656 INLINE void
1657 SET_SYMBOL_ALIAS (struct Lisp_Symbol *sym, struct Lisp_Symbol *v)
1658 {
1659 eassert (sym->redirect == SYMBOL_VARALIAS);
1660 sym->val.alias = v;
1661 }
1662 INLINE void
1663 SET_SYMBOL_BLV (struct Lisp_Symbol *sym, struct Lisp_Buffer_Local_Value *v)
1664 {
1665 eassert (sym->redirect == SYMBOL_LOCALIZED);
1666 sym->val.blv = v;
1667 }
1668 INLINE void
1669 SET_SYMBOL_FWD (struct Lisp_Symbol *sym, union Lisp_Fwd *v)
1670 {
1671 eassert (sym->redirect == SYMBOL_FORWARDED);
1672 sym->val.fwd = v;
1673 }
1674
1675 INLINE Lisp_Object
1676 SYMBOL_NAME (Lisp_Object sym)
1677 {
1678 return XSYMBOL (sym)->name;
1679 }
1680
1681 /* Value is true if SYM is an interned symbol. */
1682
1683 INLINE bool
1684 SYMBOL_INTERNED_P (Lisp_Object sym)
1685 {
1686 return XSYMBOL (sym)->interned != SYMBOL_UNINTERNED;
1687 }
1688
1689 /* Value is true if SYM is interned in initial_obarray. */
1690
1691 INLINE bool
1692 SYMBOL_INTERNED_IN_INITIAL_OBARRAY_P (Lisp_Object sym)
1693 {
1694 return XSYMBOL (sym)->interned == SYMBOL_INTERNED_IN_INITIAL_OBARRAY;
1695 }
1696
1697 /* Value is non-zero if symbol is considered a constant, i.e. its
1698 value cannot be changed (there is an exception for keyword symbols,
1699 whose value can be set to the keyword symbol itself). */
1700
1701 LISP_MACRO_DEFUN (SYMBOL_CONSTANT_P, int, (Lisp_Object sym), (sym))
1702
1703 #define DEFSYM(sym, name) \
1704 do { (sym) = intern_c_string ((name)); staticpro (&(sym)); } while (false)
1705
1706 \f
1707 /***********************************************************************
1708 Hash Tables
1709 ***********************************************************************/
1710
1711 /* The structure of a Lisp hash table. */
1712
1713 struct hash_table_test
1714 {
1715 /* Name of the function used to compare keys. */
1716 Lisp_Object name;
1717
1718 /* User-supplied hash function, or nil. */
1719 Lisp_Object user_hash_function;
1720
1721 /* User-supplied key comparison function, or nil. */
1722 Lisp_Object user_cmp_function;
1723
1724 /* C function to compare two keys. */
1725 bool (*cmpfn) (struct hash_table_test *t, Lisp_Object, Lisp_Object);
1726
1727 /* C function to compute hash code. */
1728 EMACS_UINT (*hashfn) (struct hash_table_test *t, Lisp_Object);
1729 };
1730
1731 struct Lisp_Hash_Table
1732 {
1733 /* This is for Lisp; the hash table code does not refer to it. */
1734 struct vectorlike_header header;
1735
1736 /* Nil if table is non-weak. Otherwise a symbol describing the
1737 weakness of the table. */
1738 Lisp_Object weak;
1739
1740 /* When the table is resized, and this is an integer, compute the
1741 new size by adding this to the old size. If a float, compute the
1742 new size by multiplying the old size with this factor. */
1743 Lisp_Object rehash_size;
1744
1745 /* Resize hash table when number of entries/ table size is >= this
1746 ratio, a float. */
1747 Lisp_Object rehash_threshold;
1748
1749 /* Vector of hash codes. If hash[I] is nil, this means that the
1750 I-th entry is unused. */
1751 Lisp_Object hash;
1752
1753 /* Vector used to chain entries. If entry I is free, next[I] is the
1754 entry number of the next free item. If entry I is non-free,
1755 next[I] is the index of the next entry in the collision chain. */
1756 Lisp_Object next;
1757
1758 /* Index of first free entry in free list. */
1759 Lisp_Object next_free;
1760
1761 /* Bucket vector. A non-nil entry is the index of the first item in
1762 a collision chain. This vector's size can be larger than the
1763 hash table size to reduce collisions. */
1764 Lisp_Object index;
1765
1766 /* Only the fields above are traced normally by the GC. The ones below
1767 `count' are special and are either ignored by the GC or traced in
1768 a special way (e.g. because of weakness). */
1769
1770 /* Number of key/value entries in the table. */
1771 ptrdiff_t count;
1772
1773 /* Vector of keys and values. The key of item I is found at index
1774 2 * I, the value is found at index 2 * I + 1.
1775 This is gc_marked specially if the table is weak. */
1776 Lisp_Object key_and_value;
1777
1778 /* The comparison and hash functions. */
1779 struct hash_table_test test;
1780
1781 /* Next weak hash table if this is a weak hash table. The head
1782 of the list is in weak_hash_tables. */
1783 struct Lisp_Hash_Table *next_weak;
1784 };
1785
1786
1787 INLINE struct Lisp_Hash_Table *
1788 XHASH_TABLE (Lisp_Object a)
1789 {
1790 return XUNTAG (a, Lisp_Vectorlike);
1791 }
1792
1793 #define XSET_HASH_TABLE(VAR, PTR) \
1794 (XSETPSEUDOVECTOR (VAR, PTR, PVEC_HASH_TABLE))
1795
1796 INLINE bool
1797 HASH_TABLE_P (Lisp_Object a)
1798 {
1799 return PSEUDOVECTORP (a, PVEC_HASH_TABLE);
1800 }
1801
1802 /* Value is the key part of entry IDX in hash table H. */
1803 INLINE Lisp_Object
1804 HASH_KEY (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1805 {
1806 return AREF (h->key_and_value, 2 * idx);
1807 }
1808
1809 /* Value is the value part of entry IDX in hash table H. */
1810 INLINE Lisp_Object
1811 HASH_VALUE (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1812 {
1813 return AREF (h->key_and_value, 2 * idx + 1);
1814 }
1815
1816 /* Value is the index of the next entry following the one at IDX
1817 in hash table H. */
1818 INLINE Lisp_Object
1819 HASH_NEXT (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1820 {
1821 return AREF (h->next, idx);
1822 }
1823
1824 /* Value is the hash code computed for entry IDX in hash table H. */
1825 INLINE Lisp_Object
1826 HASH_HASH (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1827 {
1828 return AREF (h->hash, idx);
1829 }
1830
1831 /* Value is the index of the element in hash table H that is the
1832 start of the collision list at index IDX in the index vector of H. */
1833 INLINE Lisp_Object
1834 HASH_INDEX (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1835 {
1836 return AREF (h->index, idx);
1837 }
1838
1839 /* Value is the size of hash table H. */
1840 INLINE ptrdiff_t
1841 HASH_TABLE_SIZE (struct Lisp_Hash_Table *h)
1842 {
1843 return ASIZE (h->next);
1844 }
1845
1846 /* Default size for hash tables if not specified. */
1847
1848 enum DEFAULT_HASH_SIZE { DEFAULT_HASH_SIZE = 65 };
1849
1850 /* Default threshold specifying when to resize a hash table. The
1851 value gives the ratio of current entries in the hash table and the
1852 size of the hash table. */
1853
1854 static double const DEFAULT_REHASH_THRESHOLD = 0.8;
1855
1856 /* Default factor by which to increase the size of a hash table. */
1857
1858 static double const DEFAULT_REHASH_SIZE = 1.5;
1859
1860 /* Combine two integers X and Y for hashing. The result might not fit
1861 into a Lisp integer. */
1862
1863 INLINE EMACS_UINT
1864 sxhash_combine (EMACS_UINT x, EMACS_UINT y)
1865 {
1866 return (x << 4) + (x >> (BITS_PER_EMACS_INT - 4)) + y;
1867 }
1868
1869 /* Hash X, returning a value that fits into a fixnum. */
1870
1871 INLINE EMACS_UINT
1872 SXHASH_REDUCE (EMACS_UINT x)
1873 {
1874 return (x ^ x >> (BITS_PER_EMACS_INT - FIXNUM_BITS)) & INTMASK;
1875 }
1876
1877 /* These structures are used for various misc types. */
1878
1879 struct Lisp_Misc_Any /* Supertype of all Misc types. */
1880 {
1881 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_??? */
1882 bool_bf gcmarkbit : 1;
1883 unsigned spacer : 15;
1884 };
1885
1886 struct Lisp_Marker
1887 {
1888 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Marker */
1889 bool_bf gcmarkbit : 1;
1890 unsigned spacer : 13;
1891 /* This flag is temporarily used in the functions
1892 decode/encode_coding_object to record that the marker position
1893 must be adjusted after the conversion. */
1894 bool_bf need_adjustment : 1;
1895 /* True means normal insertion at the marker's position
1896 leaves the marker after the inserted text. */
1897 bool_bf insertion_type : 1;
1898 /* This is the buffer that the marker points into, or 0 if it points nowhere.
1899 Note: a chain of markers can contain markers pointing into different
1900 buffers (the chain is per buffer_text rather than per buffer, so it's
1901 shared between indirect buffers). */
1902 /* This is used for (other than NULL-checking):
1903 - Fmarker_buffer
1904 - Fset_marker: check eq(oldbuf, newbuf) to avoid unchain+rechain.
1905 - unchain_marker: to find the list from which to unchain.
1906 - Fkill_buffer: to only unchain the markers of current indirect buffer.
1907 */
1908 struct buffer *buffer;
1909
1910 /* The remaining fields are meaningless in a marker that
1911 does not point anywhere. */
1912
1913 /* For markers that point somewhere,
1914 this is used to chain of all the markers in a given buffer. */
1915 /* We could remove it and use an array in buffer_text instead.
1916 That would also allow to preserve it ordered. */
1917 struct Lisp_Marker *next;
1918 /* This is the char position where the marker points. */
1919 ptrdiff_t charpos;
1920 /* This is the byte position.
1921 It's mostly used as a charpos<->bytepos cache (i.e. it's not directly
1922 used to implement the functionality of markers, but rather to (ab)use
1923 markers as a cache for char<->byte mappings). */
1924 ptrdiff_t bytepos;
1925 };
1926
1927 /* START and END are markers in the overlay's buffer, and
1928 PLIST is the overlay's property list. */
1929 struct Lisp_Overlay
1930 /* An overlay's real data content is:
1931 - plist
1932 - buffer (really there are two buffer pointers, one per marker,
1933 and both points to the same buffer)
1934 - insertion type of both ends (per-marker fields)
1935 - start & start byte (of start marker)
1936 - end & end byte (of end marker)
1937 - next (singly linked list of overlays)
1938 - next fields of start and end markers (singly linked list of markers).
1939 I.e. 9words plus 2 bits, 3words of which are for external linked lists.
1940 */
1941 {
1942 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Overlay */
1943 bool_bf gcmarkbit : 1;
1944 unsigned spacer : 15;
1945 struct Lisp_Overlay *next;
1946 Lisp_Object start;
1947 Lisp_Object end;
1948 Lisp_Object plist;
1949 };
1950
1951 /* Types of data which may be saved in a Lisp_Save_Value. */
1952
1953 enum
1954 {
1955 SAVE_UNUSED,
1956 SAVE_INTEGER,
1957 SAVE_FUNCPOINTER,
1958 SAVE_POINTER,
1959 SAVE_OBJECT
1960 };
1961
1962 /* Number of bits needed to store one of the above values. */
1963 enum { SAVE_SLOT_BITS = 3 };
1964
1965 /* Number of slots in a save value where save_type is nonzero. */
1966 enum { SAVE_VALUE_SLOTS = 4 };
1967
1968 /* Bit-width and values for struct Lisp_Save_Value's save_type member. */
1969
1970 enum { SAVE_TYPE_BITS = SAVE_VALUE_SLOTS * SAVE_SLOT_BITS + 1 };
1971
1972 enum Lisp_Save_Type
1973 {
1974 SAVE_TYPE_INT_INT = SAVE_INTEGER + (SAVE_INTEGER << SAVE_SLOT_BITS),
1975 SAVE_TYPE_INT_INT_INT
1976 = (SAVE_INTEGER + (SAVE_TYPE_INT_INT << SAVE_SLOT_BITS)),
1977 SAVE_TYPE_OBJ_OBJ = SAVE_OBJECT + (SAVE_OBJECT << SAVE_SLOT_BITS),
1978 SAVE_TYPE_OBJ_OBJ_OBJ = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ << SAVE_SLOT_BITS),
1979 SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
1980 = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ_OBJ << SAVE_SLOT_BITS),
1981 SAVE_TYPE_PTR_INT = SAVE_POINTER + (SAVE_INTEGER << SAVE_SLOT_BITS),
1982 SAVE_TYPE_PTR_OBJ = SAVE_POINTER + (SAVE_OBJECT << SAVE_SLOT_BITS),
1983 SAVE_TYPE_PTR_PTR = SAVE_POINTER + (SAVE_POINTER << SAVE_SLOT_BITS),
1984 SAVE_TYPE_FUNCPTR_PTR_OBJ
1985 = SAVE_FUNCPOINTER + (SAVE_TYPE_PTR_OBJ << SAVE_SLOT_BITS),
1986
1987 /* This has an extra bit indicating it's raw memory. */
1988 SAVE_TYPE_MEMORY = SAVE_TYPE_PTR_INT + (1 << (SAVE_TYPE_BITS - 1))
1989 };
1990
1991 /* Special object used to hold a different values for later use.
1992
1993 This is mostly used to package C integers and pointers to call
1994 record_unwind_protect when two or more values need to be saved.
1995 For example:
1996
1997 ...
1998 struct my_data *md = get_my_data ();
1999 ptrdiff_t mi = get_my_integer ();
2000 record_unwind_protect (my_unwind, make_save_ptr_int (md, mi));
2001 ...
2002
2003 Lisp_Object my_unwind (Lisp_Object arg)
2004 {
2005 struct my_data *md = XSAVE_POINTER (arg, 0);
2006 ptrdiff_t mi = XSAVE_INTEGER (arg, 1);
2007 ...
2008 }
2009
2010 If ENABLE_CHECKING is in effect, XSAVE_xxx macros do type checking of the
2011 saved objects and raise eassert if type of the saved object doesn't match
2012 the type which is extracted. In the example above, XSAVE_INTEGER (arg, 2)
2013 and XSAVE_OBJECT (arg, 0) are wrong because nothing was saved in slot 2 and
2014 slot 0 is a pointer. */
2015
2016 typedef void (*voidfuncptr) (void);
2017
2018 struct Lisp_Save_Value
2019 {
2020 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Save_Value */
2021 bool_bf gcmarkbit : 1;
2022 unsigned spacer : 32 - (16 + 1 + SAVE_TYPE_BITS);
2023
2024 /* V->data may hold up to SAVE_VALUE_SLOTS entries. The type of
2025 V's data entries are determined by V->save_type. E.g., if
2026 V->save_type == SAVE_TYPE_PTR_OBJ, V->data[0] is a pointer,
2027 V->data[1] is an integer, and V's other data entries are unused.
2028
2029 If V->save_type == SAVE_TYPE_MEMORY, V->data[0].pointer is the address of
2030 a memory area containing V->data[1].integer potential Lisp_Objects. */
2031 ENUM_BF (Lisp_Save_Type) save_type : SAVE_TYPE_BITS;
2032 union {
2033 void *pointer;
2034 voidfuncptr funcpointer;
2035 ptrdiff_t integer;
2036 Lisp_Object object;
2037 } data[SAVE_VALUE_SLOTS];
2038 };
2039
2040 /* Return the type of V's Nth saved value. */
2041 INLINE int
2042 save_type (struct Lisp_Save_Value *v, int n)
2043 {
2044 eassert (0 <= n && n < SAVE_VALUE_SLOTS);
2045 return (v->save_type >> (SAVE_SLOT_BITS * n) & ((1 << SAVE_SLOT_BITS) - 1));
2046 }
2047
2048 /* Get and set the Nth saved pointer. */
2049
2050 INLINE void *
2051 XSAVE_POINTER (Lisp_Object obj, int n)
2052 {
2053 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2054 return XSAVE_VALUE (obj)->data[n].pointer;
2055 }
2056 INLINE void
2057 set_save_pointer (Lisp_Object obj, int n, void *val)
2058 {
2059 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2060 XSAVE_VALUE (obj)->data[n].pointer = val;
2061 }
2062 INLINE voidfuncptr
2063 XSAVE_FUNCPOINTER (Lisp_Object obj, int n)
2064 {
2065 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_FUNCPOINTER);
2066 return XSAVE_VALUE (obj)->data[n].funcpointer;
2067 }
2068
2069 /* Likewise for the saved integer. */
2070
2071 INLINE ptrdiff_t
2072 XSAVE_INTEGER (Lisp_Object obj, int n)
2073 {
2074 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2075 return XSAVE_VALUE (obj)->data[n].integer;
2076 }
2077 INLINE void
2078 set_save_integer (Lisp_Object obj, int n, ptrdiff_t val)
2079 {
2080 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2081 XSAVE_VALUE (obj)->data[n].integer = val;
2082 }
2083
2084 /* Extract Nth saved object. */
2085
2086 INLINE Lisp_Object
2087 XSAVE_OBJECT (Lisp_Object obj, int n)
2088 {
2089 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_OBJECT);
2090 return XSAVE_VALUE (obj)->data[n].object;
2091 }
2092
2093 /* A miscellaneous object, when it's on the free list. */
2094 struct Lisp_Free
2095 {
2096 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Free */
2097 bool_bf gcmarkbit : 1;
2098 unsigned spacer : 15;
2099 union Lisp_Misc *chain;
2100 };
2101
2102 /* To get the type field of a union Lisp_Misc, use XMISCTYPE.
2103 It uses one of these struct subtypes to get the type field. */
2104
2105 union Lisp_Misc
2106 {
2107 struct Lisp_Misc_Any u_any; /* Supertype of all Misc types. */
2108 struct Lisp_Free u_free;
2109 struct Lisp_Marker u_marker;
2110 struct Lisp_Overlay u_overlay;
2111 struct Lisp_Save_Value u_save_value;
2112 };
2113
2114 INLINE union Lisp_Misc *
2115 XMISC (Lisp_Object a)
2116 {
2117 return XUNTAG (a, Lisp_Misc);
2118 }
2119
2120 INLINE struct Lisp_Misc_Any *
2121 XMISCANY (Lisp_Object a)
2122 {
2123 eassert (MISCP (a));
2124 return & XMISC (a)->u_any;
2125 }
2126
2127 INLINE enum Lisp_Misc_Type
2128 XMISCTYPE (Lisp_Object a)
2129 {
2130 return XMISCANY (a)->type;
2131 }
2132
2133 INLINE struct Lisp_Marker *
2134 XMARKER (Lisp_Object a)
2135 {
2136 eassert (MARKERP (a));
2137 return & XMISC (a)->u_marker;
2138 }
2139
2140 INLINE struct Lisp_Overlay *
2141 XOVERLAY (Lisp_Object a)
2142 {
2143 eassert (OVERLAYP (a));
2144 return & XMISC (a)->u_overlay;
2145 }
2146
2147 INLINE struct Lisp_Save_Value *
2148 XSAVE_VALUE (Lisp_Object a)
2149 {
2150 eassert (SAVE_VALUEP (a));
2151 return & XMISC (a)->u_save_value;
2152 }
2153 \f
2154 /* Forwarding pointer to an int variable.
2155 This is allowed only in the value cell of a symbol,
2156 and it means that the symbol's value really lives in the
2157 specified int variable. */
2158 struct Lisp_Intfwd
2159 {
2160 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Int */
2161 EMACS_INT *intvar;
2162 };
2163
2164 /* Boolean forwarding pointer to an int variable.
2165 This is like Lisp_Intfwd except that the ostensible
2166 "value" of the symbol is t if the bool variable is true,
2167 nil if it is false. */
2168 struct Lisp_Boolfwd
2169 {
2170 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Bool */
2171 bool *boolvar;
2172 };
2173
2174 /* Forwarding pointer to a Lisp_Object variable.
2175 This is allowed only in the value cell of a symbol,
2176 and it means that the symbol's value really lives in the
2177 specified variable. */
2178 struct Lisp_Objfwd
2179 {
2180 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Obj */
2181 Lisp_Object *objvar;
2182 };
2183
2184 /* Like Lisp_Objfwd except that value lives in a slot in the
2185 current buffer. Value is byte index of slot within buffer. */
2186 struct Lisp_Buffer_Objfwd
2187 {
2188 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Buffer_Obj */
2189 int offset;
2190 /* One of Qnil, Qintegerp, Qsymbolp, Qstringp, Qfloatp or Qnumberp. */
2191 Lisp_Object predicate;
2192 };
2193
2194 /* struct Lisp_Buffer_Local_Value is used in a symbol value cell when
2195 the symbol has buffer-local or frame-local bindings. (Exception:
2196 some buffer-local variables are built-in, with their values stored
2197 in the buffer structure itself. They are handled differently,
2198 using struct Lisp_Buffer_Objfwd.)
2199
2200 The `realvalue' slot holds the variable's current value, or a
2201 forwarding pointer to where that value is kept. This value is the
2202 one that corresponds to the loaded binding. To read or set the
2203 variable, you must first make sure the right binding is loaded;
2204 then you can access the value in (or through) `realvalue'.
2205
2206 `buffer' and `frame' are the buffer and frame for which the loaded
2207 binding was found. If those have changed, to make sure the right
2208 binding is loaded it is necessary to find which binding goes with
2209 the current buffer and selected frame, then load it. To load it,
2210 first unload the previous binding, then copy the value of the new
2211 binding into `realvalue' (or through it). Also update
2212 LOADED-BINDING to point to the newly loaded binding.
2213
2214 `local_if_set' indicates that merely setting the variable creates a
2215 local binding for the current buffer. Otherwise the latter, setting
2216 the variable does not do that; only make-local-variable does that. */
2217
2218 struct Lisp_Buffer_Local_Value
2219 {
2220 /* True means that merely setting the variable creates a local
2221 binding for the current buffer. */
2222 bool_bf local_if_set : 1;
2223 /* True means this variable can have frame-local bindings, otherwise, it is
2224 can have buffer-local bindings. The two cannot be combined. */
2225 bool_bf frame_local : 1;
2226 /* True means that the binding now loaded was found.
2227 Presumably equivalent to (defcell!=valcell). */
2228 bool_bf found : 1;
2229 /* If non-NULL, a forwarding to the C var where it should also be set. */
2230 union Lisp_Fwd *fwd; /* Should never be (Buffer|Kboard)_Objfwd. */
2231 /* The buffer or frame for which the loaded binding was found. */
2232 Lisp_Object where;
2233 /* A cons cell that holds the default value. It has the form
2234 (SYMBOL . DEFAULT-VALUE). */
2235 Lisp_Object defcell;
2236 /* The cons cell from `where's parameter alist.
2237 It always has the form (SYMBOL . VALUE)
2238 Note that if `forward' is non-nil, VALUE may be out of date.
2239 Also if the currently loaded binding is the default binding, then
2240 this is `eq'ual to defcell. */
2241 Lisp_Object valcell;
2242 };
2243
2244 /* Like Lisp_Objfwd except that value lives in a slot in the
2245 current kboard. */
2246 struct Lisp_Kboard_Objfwd
2247 {
2248 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Kboard_Obj */
2249 int offset;
2250 };
2251
2252 union Lisp_Fwd
2253 {
2254 struct Lisp_Intfwd u_intfwd;
2255 struct Lisp_Boolfwd u_boolfwd;
2256 struct Lisp_Objfwd u_objfwd;
2257 struct Lisp_Buffer_Objfwd u_buffer_objfwd;
2258 struct Lisp_Kboard_Objfwd u_kboard_objfwd;
2259 };
2260
2261 INLINE enum Lisp_Fwd_Type
2262 XFWDTYPE (union Lisp_Fwd *a)
2263 {
2264 return a->u_intfwd.type;
2265 }
2266
2267 INLINE struct Lisp_Buffer_Objfwd *
2268 XBUFFER_OBJFWD (union Lisp_Fwd *a)
2269 {
2270 eassert (BUFFER_OBJFWDP (a));
2271 return &a->u_buffer_objfwd;
2272 }
2273 \f
2274 /* Lisp floating point type. */
2275 struct Lisp_Float
2276 {
2277 union
2278 {
2279 double data;
2280 struct Lisp_Float *chain;
2281 } u;
2282 };
2283
2284 INLINE double
2285 XFLOAT_DATA (Lisp_Object f)
2286 {
2287 return XFLOAT (f)->u.data;
2288 }
2289
2290 /* Most hosts nowadays use IEEE floating point, so they use IEC 60559
2291 representations, have infinities and NaNs, and do not trap on
2292 exceptions. Define IEEE_FLOATING_POINT if this host is one of the
2293 typical ones. The C11 macro __STDC_IEC_559__ is close to what is
2294 wanted here, but is not quite right because Emacs does not require
2295 all the features of C11 Annex F (and does not require C11 at all,
2296 for that matter). */
2297 enum
2298 {
2299 IEEE_FLOATING_POINT
2300 = (FLT_RADIX == 2 && FLT_MANT_DIG == 24
2301 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
2302 };
2303
2304 /* A character, declared with the following typedef, is a member
2305 of some character set associated with the current buffer. */
2306 #ifndef _UCHAR_T /* Protect against something in ctab.h on AIX. */
2307 #define _UCHAR_T
2308 typedef unsigned char UCHAR;
2309 #endif
2310
2311 /* Meanings of slots in a Lisp_Compiled: */
2312
2313 enum Lisp_Compiled
2314 {
2315 COMPILED_ARGLIST = 0,
2316 COMPILED_BYTECODE = 1,
2317 COMPILED_CONSTANTS = 2,
2318 COMPILED_STACK_DEPTH = 3,
2319 COMPILED_DOC_STRING = 4,
2320 COMPILED_INTERACTIVE = 5
2321 };
2322
2323 /* Flag bits in a character. These also get used in termhooks.h.
2324 Richard Stallman <rms@gnu.ai.mit.edu> thinks that MULE
2325 (MUlti-Lingual Emacs) might need 22 bits for the character value
2326 itself, so we probably shouldn't use any bits lower than 0x0400000. */
2327 enum char_bits
2328 {
2329 CHAR_ALT = 0x0400000,
2330 CHAR_SUPER = 0x0800000,
2331 CHAR_HYPER = 0x1000000,
2332 CHAR_SHIFT = 0x2000000,
2333 CHAR_CTL = 0x4000000,
2334 CHAR_META = 0x8000000,
2335
2336 CHAR_MODIFIER_MASK =
2337 CHAR_ALT | CHAR_SUPER | CHAR_HYPER | CHAR_SHIFT | CHAR_CTL | CHAR_META,
2338
2339 /* Actually, the current Emacs uses 22 bits for the character value
2340 itself. */
2341 CHARACTERBITS = 22
2342 };
2343 \f
2344 /* Data type checking. */
2345
2346 LISP_MACRO_DEFUN (NILP, bool, (Lisp_Object x), (x))
2347
2348 INLINE bool
2349 NUMBERP (Lisp_Object x)
2350 {
2351 return INTEGERP (x) || FLOATP (x);
2352 }
2353 INLINE bool
2354 NATNUMP (Lisp_Object x)
2355 {
2356 return INTEGERP (x) && 0 <= XINT (x);
2357 }
2358
2359 INLINE bool
2360 RANGED_INTEGERP (intmax_t lo, Lisp_Object x, intmax_t hi)
2361 {
2362 return INTEGERP (x) && lo <= XINT (x) && XINT (x) <= hi;
2363 }
2364
2365 #define TYPE_RANGED_INTEGERP(type, x) \
2366 (INTEGERP (x) \
2367 && (TYPE_SIGNED (type) ? TYPE_MINIMUM (type) <= XINT (x) : 0 <= XINT (x)) \
2368 && XINT (x) <= TYPE_MAXIMUM (type))
2369
2370 LISP_MACRO_DEFUN (CONSP, bool, (Lisp_Object x), (x))
2371 LISP_MACRO_DEFUN (FLOATP, bool, (Lisp_Object x), (x))
2372 LISP_MACRO_DEFUN (MISCP, bool, (Lisp_Object x), (x))
2373 LISP_MACRO_DEFUN (SYMBOLP, bool, (Lisp_Object x), (x))
2374 LISP_MACRO_DEFUN (INTEGERP, bool, (Lisp_Object x), (x))
2375 LISP_MACRO_DEFUN (VECTORLIKEP, bool, (Lisp_Object x), (x))
2376 LISP_MACRO_DEFUN (MARKERP, bool, (Lisp_Object x), (x))
2377
2378 INLINE bool
2379 STRINGP (Lisp_Object x)
2380 {
2381 return XTYPE (x) == Lisp_String;
2382 }
2383 INLINE bool
2384 VECTORP (Lisp_Object x)
2385 {
2386 return VECTORLIKEP (x) && ! (ASIZE (x) & PSEUDOVECTOR_FLAG);
2387 }
2388 INLINE bool
2389 OVERLAYP (Lisp_Object x)
2390 {
2391 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Overlay;
2392 }
2393 INLINE bool
2394 SAVE_VALUEP (Lisp_Object x)
2395 {
2396 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Save_Value;
2397 }
2398
2399 INLINE bool
2400 AUTOLOADP (Lisp_Object x)
2401 {
2402 return CONSP (x) && EQ (Qautoload, XCAR (x));
2403 }
2404
2405 INLINE bool
2406 BUFFER_OBJFWDP (union Lisp_Fwd *a)
2407 {
2408 return XFWDTYPE (a) == Lisp_Fwd_Buffer_Obj;
2409 }
2410
2411 INLINE bool
2412 PSEUDOVECTOR_TYPEP (struct vectorlike_header *a, int code)
2413 {
2414 return ((a->size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK))
2415 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS)));
2416 }
2417
2418 /* True if A is a pseudovector whose code is CODE. */
2419 INLINE bool
2420 PSEUDOVECTORP (Lisp_Object a, int code)
2421 {
2422 if (! VECTORLIKEP (a))
2423 return false;
2424 else
2425 {
2426 /* Converting to struct vectorlike_header * avoids aliasing issues. */
2427 struct vectorlike_header *h = XUNTAG (a, Lisp_Vectorlike);
2428 return PSEUDOVECTOR_TYPEP (h, code);
2429 }
2430 }
2431
2432
2433 /* Test for specific pseudovector types. */
2434
2435 INLINE bool
2436 WINDOW_CONFIGURATIONP (Lisp_Object a)
2437 {
2438 return PSEUDOVECTORP (a, PVEC_WINDOW_CONFIGURATION);
2439 }
2440
2441 INLINE bool
2442 PROCESSP (Lisp_Object a)
2443 {
2444 return PSEUDOVECTORP (a, PVEC_PROCESS);
2445 }
2446
2447 INLINE bool
2448 WINDOWP (Lisp_Object a)
2449 {
2450 return PSEUDOVECTORP (a, PVEC_WINDOW);
2451 }
2452
2453 INLINE bool
2454 TERMINALP (Lisp_Object a)
2455 {
2456 return PSEUDOVECTORP (a, PVEC_TERMINAL);
2457 }
2458
2459 INLINE bool
2460 SUBRP (Lisp_Object a)
2461 {
2462 return PSEUDOVECTORP (a, PVEC_SUBR);
2463 }
2464
2465 INLINE bool
2466 COMPILEDP (Lisp_Object a)
2467 {
2468 return PSEUDOVECTORP (a, PVEC_COMPILED);
2469 }
2470
2471 INLINE bool
2472 BUFFERP (Lisp_Object a)
2473 {
2474 return PSEUDOVECTORP (a, PVEC_BUFFER);
2475 }
2476
2477 INLINE bool
2478 CHAR_TABLE_P (Lisp_Object a)
2479 {
2480 return PSEUDOVECTORP (a, PVEC_CHAR_TABLE);
2481 }
2482
2483 INLINE bool
2484 SUB_CHAR_TABLE_P (Lisp_Object a)
2485 {
2486 return PSEUDOVECTORP (a, PVEC_SUB_CHAR_TABLE);
2487 }
2488
2489 INLINE bool
2490 BOOL_VECTOR_P (Lisp_Object a)
2491 {
2492 return PSEUDOVECTORP (a, PVEC_BOOL_VECTOR);
2493 }
2494
2495 INLINE bool
2496 FRAMEP (Lisp_Object a)
2497 {
2498 return PSEUDOVECTORP (a, PVEC_FRAME);
2499 }
2500
2501 /* Test for image (image . spec) */
2502 INLINE bool
2503 IMAGEP (Lisp_Object x)
2504 {
2505 return CONSP (x) && EQ (XCAR (x), Qimage);
2506 }
2507
2508 /* Array types. */
2509 INLINE bool
2510 ARRAYP (Lisp_Object x)
2511 {
2512 return VECTORP (x) || STRINGP (x) || CHAR_TABLE_P (x) || BOOL_VECTOR_P (x);
2513 }
2514 \f
2515 INLINE void
2516 CHECK_LIST (Lisp_Object x)
2517 {
2518 CHECK_TYPE (CONSP (x) || NILP (x), Qlistp, x);
2519 }
2520
2521 LISP_MACRO_DEFUN_VOID (CHECK_LIST_CONS, (Lisp_Object x, Lisp_Object y), (x, y))
2522 LISP_MACRO_DEFUN_VOID (CHECK_SYMBOL, (Lisp_Object x), (x))
2523 LISP_MACRO_DEFUN_VOID (CHECK_NUMBER, (Lisp_Object x), (x))
2524
2525 INLINE void
2526 CHECK_STRING (Lisp_Object x)
2527 {
2528 CHECK_TYPE (STRINGP (x), Qstringp, x);
2529 }
2530 INLINE void
2531 CHECK_STRING_CAR (Lisp_Object x)
2532 {
2533 CHECK_TYPE (STRINGP (XCAR (x)), Qstringp, XCAR (x));
2534 }
2535 INLINE void
2536 CHECK_CONS (Lisp_Object x)
2537 {
2538 CHECK_TYPE (CONSP (x), Qconsp, x);
2539 }
2540 INLINE void
2541 CHECK_VECTOR (Lisp_Object x)
2542 {
2543 CHECK_TYPE (VECTORP (x), Qvectorp, x);
2544 }
2545 INLINE void
2546 CHECK_BOOL_VECTOR (Lisp_Object x)
2547 {
2548 CHECK_TYPE (BOOL_VECTOR_P (x), Qbool_vector_p, x);
2549 }
2550 /* This is a bit special because we always need size afterwards. */
2551 INLINE ptrdiff_t
2552 CHECK_VECTOR_OR_STRING (Lisp_Object x)
2553 {
2554 if (VECTORP (x))
2555 return ASIZE (x);
2556 if (STRINGP (x))
2557 return SCHARS (x);
2558 wrong_type_argument (Qarrayp, x);
2559 }
2560 INLINE void
2561 CHECK_ARRAY (Lisp_Object x, Lisp_Object predicate)
2562 {
2563 CHECK_TYPE (ARRAYP (x), predicate, x);
2564 }
2565 INLINE void
2566 CHECK_BUFFER (Lisp_Object x)
2567 {
2568 CHECK_TYPE (BUFFERP (x), Qbufferp, x);
2569 }
2570 INLINE void
2571 CHECK_WINDOW (Lisp_Object x)
2572 {
2573 CHECK_TYPE (WINDOWP (x), Qwindowp, x);
2574 }
2575 #ifdef subprocesses
2576 INLINE void
2577 CHECK_PROCESS (Lisp_Object x)
2578 {
2579 CHECK_TYPE (PROCESSP (x), Qprocessp, x);
2580 }
2581 #endif
2582 INLINE void
2583 CHECK_NATNUM (Lisp_Object x)
2584 {
2585 CHECK_TYPE (NATNUMP (x), Qwholenump, x);
2586 }
2587
2588 #define CHECK_RANGED_INTEGER(x, lo, hi) \
2589 do { \
2590 CHECK_NUMBER (x); \
2591 if (! ((lo) <= XINT (x) && XINT (x) <= (hi))) \
2592 args_out_of_range_3 \
2593 (x, \
2594 make_number ((lo) < 0 && (lo) < MOST_NEGATIVE_FIXNUM \
2595 ? MOST_NEGATIVE_FIXNUM \
2596 : (lo)), \
2597 make_number (min (hi, MOST_POSITIVE_FIXNUM))); \
2598 } while (false)
2599 #define CHECK_TYPE_RANGED_INTEGER(type, x) \
2600 do { \
2601 if (TYPE_SIGNED (type)) \
2602 CHECK_RANGED_INTEGER (x, TYPE_MINIMUM (type), TYPE_MAXIMUM (type)); \
2603 else \
2604 CHECK_RANGED_INTEGER (x, 0, TYPE_MAXIMUM (type)); \
2605 } while (false)
2606
2607 #define CHECK_NUMBER_COERCE_MARKER(x) \
2608 do { \
2609 if (MARKERP ((x))) \
2610 XSETFASTINT (x, marker_position (x)); \
2611 else \
2612 CHECK_TYPE (INTEGERP (x), Qinteger_or_marker_p, x); \
2613 } while (false)
2614
2615 INLINE double
2616 XFLOATINT (Lisp_Object n)
2617 {
2618 return extract_float (n);
2619 }
2620
2621 INLINE void
2622 CHECK_NUMBER_OR_FLOAT (Lisp_Object x)
2623 {
2624 CHECK_TYPE (FLOATP (x) || INTEGERP (x), Qnumberp, x);
2625 }
2626
2627 #define CHECK_NUMBER_OR_FLOAT_COERCE_MARKER(x) \
2628 do { \
2629 if (MARKERP (x)) \
2630 XSETFASTINT (x, marker_position (x)); \
2631 else \
2632 CHECK_TYPE (INTEGERP (x) || FLOATP (x), Qnumber_or_marker_p, x); \
2633 } while (false)
2634
2635 /* Since we can't assign directly to the CAR or CDR fields of a cons
2636 cell, use these when checking that those fields contain numbers. */
2637 INLINE void
2638 CHECK_NUMBER_CAR (Lisp_Object x)
2639 {
2640 Lisp_Object tmp = XCAR (x);
2641 CHECK_NUMBER (tmp);
2642 XSETCAR (x, tmp);
2643 }
2644
2645 INLINE void
2646 CHECK_NUMBER_CDR (Lisp_Object x)
2647 {
2648 Lisp_Object tmp = XCDR (x);
2649 CHECK_NUMBER (tmp);
2650 XSETCDR (x, tmp);
2651 }
2652 \f
2653 /* Define a built-in function for calling from Lisp.
2654 `lname' should be the name to give the function in Lisp,
2655 as a null-terminated C string.
2656 `fnname' should be the name of the function in C.
2657 By convention, it starts with F.
2658 `sname' should be the name for the C constant structure
2659 that records information on this function for internal use.
2660 By convention, it should be the same as `fnname' but with S instead of F.
2661 It's too bad that C macros can't compute this from `fnname'.
2662 `minargs' should be a number, the minimum number of arguments allowed.
2663 `maxargs' should be a number, the maximum number of arguments allowed,
2664 or else MANY or UNEVALLED.
2665 MANY means pass a vector of evaluated arguments,
2666 in the form of an integer number-of-arguments
2667 followed by the address of a vector of Lisp_Objects
2668 which contains the argument values.
2669 UNEVALLED means pass the list of unevaluated arguments
2670 `intspec' says how interactive arguments are to be fetched.
2671 If the string starts with a `(', `intspec' is evaluated and the resulting
2672 list is the list of arguments.
2673 If it's a string that doesn't start with `(', the value should follow
2674 the one of the doc string for `interactive'.
2675 A null string means call interactively with no arguments.
2676 `doc' is documentation for the user. */
2677
2678 /* This version of DEFUN declares a function prototype with the right
2679 arguments, so we can catch errors with maxargs at compile-time. */
2680 #ifdef _MSC_VER
2681 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2682 Lisp_Object fnname DEFUN_ARGS_ ## maxargs ; \
2683 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2684 { { (PVEC_SUBR << PSEUDOVECTOR_AREA_BITS) \
2685 | (sizeof (struct Lisp_Subr) / sizeof (EMACS_INT)) }, \
2686 { (Lisp_Object (__cdecl *)(void))fnname }, \
2687 minargs, maxargs, lname, intspec, 0}; \
2688 Lisp_Object fnname
2689 #else /* not _MSC_VER */
2690 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2691 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2692 { { PVEC_SUBR << PSEUDOVECTOR_AREA_BITS }, \
2693 { .a ## maxargs = fnname }, \
2694 minargs, maxargs, lname, intspec, 0}; \
2695 Lisp_Object fnname
2696 #endif
2697
2698 /* Note that the weird token-substitution semantics of ANSI C makes
2699 this work for MANY and UNEVALLED. */
2700 #define DEFUN_ARGS_MANY (ptrdiff_t, Lisp_Object *)
2701 #define DEFUN_ARGS_UNEVALLED (Lisp_Object)
2702 #define DEFUN_ARGS_0 (void)
2703 #define DEFUN_ARGS_1 (Lisp_Object)
2704 #define DEFUN_ARGS_2 (Lisp_Object, Lisp_Object)
2705 #define DEFUN_ARGS_3 (Lisp_Object, Lisp_Object, Lisp_Object)
2706 #define DEFUN_ARGS_4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
2707 #define DEFUN_ARGS_5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
2708 Lisp_Object)
2709 #define DEFUN_ARGS_6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
2710 Lisp_Object, Lisp_Object)
2711 #define DEFUN_ARGS_7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
2712 Lisp_Object, Lisp_Object, Lisp_Object)
2713 #define DEFUN_ARGS_8 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
2714 Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
2715
2716 /* True if OBJ is a Lisp function. */
2717 INLINE bool
2718 FUNCTIONP (Lisp_Object obj)
2719 {
2720 return functionp (obj);
2721 }
2722
2723 /* defsubr (Sname);
2724 is how we define the symbol for function `name' at start-up time. */
2725 extern void defsubr (struct Lisp_Subr *);
2726
2727 enum maxargs
2728 {
2729 MANY = -2,
2730 UNEVALLED = -1
2731 };
2732
2733 extern void defvar_lisp (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2734 extern void defvar_lisp_nopro (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2735 extern void defvar_bool (struct Lisp_Boolfwd *, const char *, bool *);
2736 extern void defvar_int (struct Lisp_Intfwd *, const char *, EMACS_INT *);
2737 extern void defvar_kboard (struct Lisp_Kboard_Objfwd *, const char *, int);
2738
2739 /* Macros we use to define forwarded Lisp variables.
2740 These are used in the syms_of_FILENAME functions.
2741
2742 An ordinary (not in buffer_defaults, per-buffer, or per-keyboard)
2743 lisp variable is actually a field in `struct emacs_globals'. The
2744 field's name begins with "f_", which is a convention enforced by
2745 these macros. Each such global has a corresponding #define in
2746 globals.h; the plain name should be used in the code.
2747
2748 E.g., the global "cons_cells_consed" is declared as "int
2749 f_cons_cells_consed" in globals.h, but there is a define:
2750
2751 #define cons_cells_consed globals.f_cons_cells_consed
2752
2753 All C code uses the `cons_cells_consed' name. This is all done
2754 this way to support indirection for multi-threaded Emacs. */
2755
2756 #define DEFVAR_LISP(lname, vname, doc) \
2757 do { \
2758 static struct Lisp_Objfwd o_fwd; \
2759 defvar_lisp (&o_fwd, lname, &globals.f_ ## vname); \
2760 } while (false)
2761 #define DEFVAR_LISP_NOPRO(lname, vname, doc) \
2762 do { \
2763 static struct Lisp_Objfwd o_fwd; \
2764 defvar_lisp_nopro (&o_fwd, lname, &globals.f_ ## vname); \
2765 } while (false)
2766 #define DEFVAR_BOOL(lname, vname, doc) \
2767 do { \
2768 static struct Lisp_Boolfwd b_fwd; \
2769 defvar_bool (&b_fwd, lname, &globals.f_ ## vname); \
2770 } while (false)
2771 #define DEFVAR_INT(lname, vname, doc) \
2772 do { \
2773 static struct Lisp_Intfwd i_fwd; \
2774 defvar_int (&i_fwd, lname, &globals.f_ ## vname); \
2775 } while (false)
2776
2777 #define DEFVAR_BUFFER_DEFAULTS(lname, vname, doc) \
2778 do { \
2779 static struct Lisp_Objfwd o_fwd; \
2780 defvar_lisp_nopro (&o_fwd, lname, &BVAR (&buffer_defaults, vname)); \
2781 } while (false)
2782
2783 #define DEFVAR_KBOARD(lname, vname, doc) \
2784 do { \
2785 static struct Lisp_Kboard_Objfwd ko_fwd; \
2786 defvar_kboard (&ko_fwd, lname, offsetof (KBOARD, vname ## _)); \
2787 } while (false)
2788 \f
2789 /* Save and restore the instruction and environment pointers,
2790 without affecting the signal mask. */
2791
2792 #ifdef HAVE__SETJMP
2793 typedef jmp_buf sys_jmp_buf;
2794 # define sys_setjmp(j) _setjmp (j)
2795 # define sys_longjmp(j, v) _longjmp (j, v)
2796 #elif defined HAVE_SIGSETJMP
2797 typedef sigjmp_buf sys_jmp_buf;
2798 # define sys_setjmp(j) sigsetjmp (j, 0)
2799 # define sys_longjmp(j, v) siglongjmp (j, v)
2800 #else
2801 /* A platform that uses neither _longjmp nor siglongjmp; assume
2802 longjmp does not affect the sigmask. */
2803 typedef jmp_buf sys_jmp_buf;
2804 # define sys_setjmp(j) setjmp (j)
2805 # define sys_longjmp(j, v) longjmp (j, v)
2806 #endif
2807
2808 \f
2809 /* Elisp uses several stacks:
2810 - the C stack.
2811 - the bytecode stack: used internally by the bytecode interpreter.
2812 Allocated from the C stack.
2813 - The specpdl stack: keeps track of active unwind-protect and
2814 dynamic-let-bindings. Allocated from the `specpdl' array, a manually
2815 managed stack.
2816 - The handler stack: keeps track of active catch tags and condition-case
2817 handlers. Allocated in a manually managed stack implemented by a
2818 doubly-linked list allocated via xmalloc and never freed. */
2819
2820 /* Structure for recording Lisp call stack for backtrace purposes. */
2821
2822 /* The special binding stack holds the outer values of variables while
2823 they are bound by a function application or a let form, stores the
2824 code to be executed for unwind-protect forms.
2825
2826 NOTE: The specbinding union is defined here, because SPECPDL_INDEX is
2827 used all over the place, needs to be fast, and needs to know the size of
2828 union specbinding. But only eval.c should access it. */
2829
2830 enum specbind_tag {
2831 SPECPDL_UNWIND, /* An unwind_protect function on Lisp_Object. */
2832 SPECPDL_UNWIND_PTR, /* Likewise, on void *. */
2833 SPECPDL_UNWIND_INT, /* Likewise, on int. */
2834 SPECPDL_UNWIND_VOID, /* Likewise, with no arg. */
2835 SPECPDL_BACKTRACE, /* An element of the backtrace. */
2836 SPECPDL_LET, /* A plain and simple dynamic let-binding. */
2837 /* Tags greater than SPECPDL_LET must be "subkinds" of LET. */
2838 SPECPDL_LET_LOCAL, /* A buffer-local let-binding. */
2839 SPECPDL_LET_DEFAULT /* A global binding for a localized var. */
2840 };
2841
2842 union specbinding
2843 {
2844 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2845 struct {
2846 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2847 void (*func) (Lisp_Object);
2848 Lisp_Object arg;
2849 } unwind;
2850 struct {
2851 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2852 void (*func) (void *);
2853 void *arg;
2854 } unwind_ptr;
2855 struct {
2856 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2857 void (*func) (int);
2858 int arg;
2859 } unwind_int;
2860 struct {
2861 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2862 void (*func) (void);
2863 } unwind_void;
2864 struct {
2865 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2866 /* `where' is not used in the case of SPECPDL_LET. */
2867 Lisp_Object symbol, old_value, where;
2868 } let;
2869 struct {
2870 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2871 bool_bf debug_on_exit : 1;
2872 Lisp_Object function;
2873 Lisp_Object *args;
2874 ptrdiff_t nargs;
2875 } bt;
2876 };
2877
2878 extern union specbinding *specpdl;
2879 extern union specbinding *specpdl_ptr;
2880 extern ptrdiff_t specpdl_size;
2881
2882 INLINE ptrdiff_t
2883 SPECPDL_INDEX (void)
2884 {
2885 return specpdl_ptr - specpdl;
2886 }
2887
2888 /* This structure helps implement the `catch/throw' and `condition-case/signal'
2889 control structures. A struct handler contains all the information needed to
2890 restore the state of the interpreter after a non-local jump.
2891
2892 handler structures are chained together in a doubly linked list; the `next'
2893 member points to the next outer catchtag and the `nextfree' member points in
2894 the other direction to the next inner element (which is typically the next
2895 free element since we mostly use it on the deepest handler).
2896
2897 A call like (throw TAG VAL) searches for a catchtag whose `tag_or_ch'
2898 member is TAG, and then unbinds to it. The `val' member is used to
2899 hold VAL while the stack is unwound; `val' is returned as the value
2900 of the catch form.
2901
2902 All the other members are concerned with restoring the interpreter
2903 state.
2904
2905 Members are volatile if their values need to survive _longjmp when
2906 a 'struct handler' is a local variable. */
2907
2908 enum handlertype { CATCHER, CONDITION_CASE };
2909
2910 struct handler
2911 {
2912 enum handlertype type;
2913 Lisp_Object tag_or_ch;
2914 Lisp_Object val;
2915 struct handler *next;
2916 struct handler *nextfree;
2917
2918 /* The bytecode interpreter can have several handlers active at the same
2919 time, so when we longjmp to one of them, it needs to know which handler
2920 this was and what was the corresponding internal state. This is stored
2921 here, and when we longjmp we make sure that handlerlist points to the
2922 proper handler. */
2923 Lisp_Object *bytecode_top;
2924 int bytecode_dest;
2925
2926 /* Most global vars are reset to their value via the specpdl mechanism,
2927 but a few others are handled by storing their value here. */
2928 #if true /* GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS, but defined later. */
2929 struct gcpro *gcpro;
2930 #endif
2931 sys_jmp_buf jmp;
2932 EMACS_INT lisp_eval_depth;
2933 ptrdiff_t pdlcount;
2934 int poll_suppress_count;
2935 int interrupt_input_blocked;
2936 struct byte_stack *byte_stack;
2937 };
2938
2939 /* Fill in the components of c, and put it on the list. */
2940 #define PUSH_HANDLER(c, tag_ch_val, handlertype) \
2941 if (handlerlist->nextfree) \
2942 (c) = handlerlist->nextfree; \
2943 else \
2944 { \
2945 (c) = xmalloc (sizeof (struct handler)); \
2946 (c)->nextfree = NULL; \
2947 handlerlist->nextfree = (c); \
2948 } \
2949 (c)->type = (handlertype); \
2950 (c)->tag_or_ch = (tag_ch_val); \
2951 (c)->val = Qnil; \
2952 (c)->next = handlerlist; \
2953 (c)->lisp_eval_depth = lisp_eval_depth; \
2954 (c)->pdlcount = SPECPDL_INDEX (); \
2955 (c)->poll_suppress_count = poll_suppress_count; \
2956 (c)->interrupt_input_blocked = interrupt_input_blocked;\
2957 (c)->gcpro = gcprolist; \
2958 (c)->byte_stack = byte_stack_list; \
2959 handlerlist = (c);
2960
2961
2962 extern Lisp_Object memory_signal_data;
2963
2964 /* An address near the bottom of the stack.
2965 Tells GC how to save a copy of the stack. */
2966 extern char *stack_bottom;
2967
2968 /* Check quit-flag and quit if it is non-nil.
2969 Typing C-g does not directly cause a quit; it only sets Vquit_flag.
2970 So the program needs to do QUIT at times when it is safe to quit.
2971 Every loop that might run for a long time or might not exit
2972 ought to do QUIT at least once, at a safe place.
2973 Unless that is impossible, of course.
2974 But it is very desirable to avoid creating loops where QUIT is impossible.
2975
2976 Exception: if you set immediate_quit to true,
2977 then the handler that responds to the C-g does the quit itself.
2978 This is a good thing to do around a loop that has no side effects
2979 and (in particular) cannot call arbitrary Lisp code.
2980
2981 If quit-flag is set to `kill-emacs' the SIGINT handler has received
2982 a request to exit Emacs when it is safe to do. */
2983
2984 extern void process_pending_signals (void);
2985 extern bool volatile pending_signals;
2986
2987 extern void process_quit_flag (void);
2988 #define QUIT \
2989 do { \
2990 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
2991 process_quit_flag (); \
2992 else if (pending_signals) \
2993 process_pending_signals (); \
2994 } while (false)
2995
2996
2997 /* True if ought to quit now. */
2998
2999 #define QUITP (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
3000 \f
3001 extern Lisp_Object Vascii_downcase_table;
3002 extern Lisp_Object Vascii_canon_table;
3003 \f
3004 /* Structure for recording stack slots that need marking. */
3005
3006 /* This is a chain of structures, each of which points at a Lisp_Object
3007 variable whose value should be marked in garbage collection.
3008 Normally every link of the chain is an automatic variable of a function,
3009 and its `val' points to some argument or local variable of the function.
3010 On exit to the function, the chain is set back to the value it had on entry.
3011 This way, no link remains in the chain when the stack frame containing the
3012 link disappears.
3013
3014 Every function that can call Feval must protect in this fashion all
3015 Lisp_Object variables whose contents will be used again. */
3016
3017 extern struct gcpro *gcprolist;
3018
3019 struct gcpro
3020 {
3021 struct gcpro *next;
3022
3023 /* Address of first protected variable. */
3024 volatile Lisp_Object *var;
3025
3026 /* Number of consecutive protected variables. */
3027 ptrdiff_t nvars;
3028
3029 #ifdef DEBUG_GCPRO
3030 /* File name where this record is used. */
3031 const char *name;
3032
3033 /* Line number in this file. */
3034 int lineno;
3035
3036 /* Index in the local chain of records. */
3037 int idx;
3038
3039 /* Nesting level. */
3040 int level;
3041 #endif
3042 };
3043
3044 /* Values of GC_MARK_STACK during compilation:
3045
3046 0 Use GCPRO as before
3047 1 Do the real thing, make GCPROs and UNGCPRO no-ops.
3048 2 Mark the stack, and check that everything GCPRO'd is
3049 marked.
3050 3 Mark using GCPRO's, mark stack last, and count how many
3051 dead objects are kept alive.
3052
3053 Formerly, method 0 was used. Currently, method 1 is used unless
3054 otherwise specified by hand when building, e.g.,
3055 "make CPPFLAGS='-DGC_MARK_STACK=GC_USE_GCPROS_AS_BEFORE'".
3056 Methods 2 and 3 are present mainly to debug the transition from 0 to 1. */
3057
3058 #define GC_USE_GCPROS_AS_BEFORE 0
3059 #define GC_MAKE_GCPROS_NOOPS 1
3060 #define GC_MARK_STACK_CHECK_GCPROS 2
3061 #define GC_USE_GCPROS_CHECK_ZOMBIES 3
3062
3063 #ifndef GC_MARK_STACK
3064 #define GC_MARK_STACK GC_MAKE_GCPROS_NOOPS
3065 #endif
3066
3067 /* Whether we do the stack marking manually. */
3068 #define BYTE_MARK_STACK !(GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
3069 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
3070
3071
3072 #if GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS
3073
3074 /* Do something silly with gcproN vars just so gcc shuts up. */
3075 /* You get warnings from MIPSPro... */
3076
3077 #define GCPRO1(varname) ((void) gcpro1)
3078 #define GCPRO2(varname1, varname2) ((void) gcpro2, (void) gcpro1)
3079 #define GCPRO3(varname1, varname2, varname3) \
3080 ((void) gcpro3, (void) gcpro2, (void) gcpro1)
3081 #define GCPRO4(varname1, varname2, varname3, varname4) \
3082 ((void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3083 #define GCPRO5(varname1, varname2, varname3, varname4, varname5) \
3084 ((void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3085 #define GCPRO6(varname1, varname2, varname3, varname4, varname5, varname6) \
3086 ((void) gcpro6, (void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, \
3087 (void) gcpro1)
3088 #define GCPRO7(a, b, c, d, e, f, g) (GCPRO6 (a, b, c, d, e, f), (void) gcpro7)
3089 #define UNGCPRO ((void) 0)
3090
3091 #else /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3092
3093 #ifndef DEBUG_GCPRO
3094
3095 #define GCPRO1(a) \
3096 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3097 gcprolist = &gcpro1; }
3098
3099 #define GCPRO2(a, b) \
3100 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3101 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3102 gcprolist = &gcpro2; }
3103
3104 #define GCPRO3(a, b, c) \
3105 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3106 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3107 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3108 gcprolist = &gcpro3; }
3109
3110 #define GCPRO4(a, b, c, d) \
3111 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3112 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3113 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3114 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3115 gcprolist = &gcpro4; }
3116
3117 #define GCPRO5(a, b, c, d, e) \
3118 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3119 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3120 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3121 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3122 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3123 gcprolist = &gcpro5; }
3124
3125 #define GCPRO6(a, b, c, d, e, f) \
3126 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3127 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3128 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3129 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3130 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3131 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3132 gcprolist = &gcpro6; }
3133
3134 #define GCPRO7(a, b, c, d, e, f, g) \
3135 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3136 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3137 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3138 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3139 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3140 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3141 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3142 gcprolist = &gcpro7; }
3143
3144 #define UNGCPRO (gcprolist = gcpro1.next)
3145
3146 #else /* !DEBUG_GCPRO */
3147
3148 extern int gcpro_level;
3149
3150 #define GCPRO1(a) \
3151 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3152 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3153 gcpro1.level = gcpro_level++; \
3154 gcprolist = &gcpro1; }
3155
3156 #define GCPRO2(a, b) \
3157 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3158 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3159 gcpro1.level = gcpro_level; \
3160 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3161 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3162 gcpro2.level = gcpro_level++; \
3163 gcprolist = &gcpro2; }
3164
3165 #define GCPRO3(a, b, c) \
3166 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3167 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3168 gcpro1.level = gcpro_level; \
3169 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3170 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3171 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3172 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3173 gcpro3.level = gcpro_level++; \
3174 gcprolist = &gcpro3; }
3175
3176 #define GCPRO4(a, b, c, d) \
3177 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3178 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3179 gcpro1.level = gcpro_level; \
3180 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3181 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3182 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3183 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3184 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3185 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3186 gcpro4.level = gcpro_level++; \
3187 gcprolist = &gcpro4; }
3188
3189 #define GCPRO5(a, b, c, d, e) \
3190 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3191 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3192 gcpro1.level = gcpro_level; \
3193 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3194 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3195 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3196 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3197 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3198 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3199 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3200 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3201 gcpro5.level = gcpro_level++; \
3202 gcprolist = &gcpro5; }
3203
3204 #define GCPRO6(a, b, c, d, e, f) \
3205 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3206 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3207 gcpro1.level = gcpro_level; \
3208 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3209 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3210 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3211 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3212 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3213 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3214 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3215 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3216 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3217 gcpro6.name = __FILE__; gcpro6.lineno = __LINE__; gcpro6.idx = 6; \
3218 gcpro6.level = gcpro_level++; \
3219 gcprolist = &gcpro6; }
3220
3221 #define GCPRO7(a, b, c, d, e, f, g) \
3222 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3223 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3224 gcpro1.level = gcpro_level; \
3225 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3226 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3227 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3228 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3229 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3230 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3231 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3232 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3233 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3234 gcpro6.name = __FILE__; gcpro6.lineno = __LINE__; gcpro6.idx = 6; \
3235 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3236 gcpro7.name = __FILE__; gcpro7.lineno = __LINE__; gcpro7.idx = 7; \
3237 gcpro7.level = gcpro_level++; \
3238 gcprolist = &gcpro7; }
3239
3240 #define UNGCPRO \
3241 (--gcpro_level != gcpro1.level \
3242 ? emacs_abort () \
3243 : (void) (gcprolist = gcpro1.next))
3244
3245 #endif /* DEBUG_GCPRO */
3246 #endif /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3247
3248
3249 /* Evaluate expr, UNGCPRO, and then return the value of expr. */
3250 #define RETURN_UNGCPRO(expr) \
3251 do \
3252 { \
3253 Lisp_Object ret_ungc_val; \
3254 ret_ungc_val = (expr); \
3255 UNGCPRO; \
3256 return ret_ungc_val; \
3257 } \
3258 while (false)
3259
3260 /* Call staticpro (&var) to protect static variable `var'. */
3261
3262 void staticpro (Lisp_Object *);
3263 \f
3264 /* Declare a Lisp-callable function. The MAXARGS parameter has the same
3265 meaning as in the DEFUN macro, and is used to construct a prototype. */
3266 /* We can use the same trick as in the DEFUN macro to generate the
3267 appropriate prototype. */
3268 #define EXFUN(fnname, maxargs) \
3269 extern Lisp_Object fnname DEFUN_ARGS_ ## maxargs
3270
3271 #include "globals.h"
3272
3273 /* Forward declarations for prototypes. */
3274 struct window;
3275 struct frame;
3276
3277 /* Copy COUNT Lisp_Objects from ARGS to contents of V starting from OFFSET. */
3278
3279 INLINE void
3280 vcopy (Lisp_Object v, ptrdiff_t offset, Lisp_Object *args, ptrdiff_t count)
3281 {
3282 eassert (0 <= offset && 0 <= count && offset + count <= ASIZE (v));
3283 memcpy (XVECTOR (v)->contents + offset, args, count * sizeof *args);
3284 }
3285
3286 /* Functions to modify hash tables. */
3287
3288 INLINE void
3289 set_hash_key_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3290 {
3291 gc_aset (h->key_and_value, 2 * idx, val);
3292 }
3293
3294 INLINE void
3295 set_hash_value_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3296 {
3297 gc_aset (h->key_and_value, 2 * idx + 1, val);
3298 }
3299
3300 /* Use these functions to set Lisp_Object
3301 or pointer slots of struct Lisp_Symbol. */
3302
3303 INLINE void
3304 set_symbol_function (Lisp_Object sym, Lisp_Object function)
3305 {
3306 XSYMBOL (sym)->function = function;
3307 }
3308
3309 INLINE void
3310 set_symbol_plist (Lisp_Object sym, Lisp_Object plist)
3311 {
3312 XSYMBOL (sym)->plist = plist;
3313 }
3314
3315 INLINE void
3316 set_symbol_next (Lisp_Object sym, struct Lisp_Symbol *next)
3317 {
3318 XSYMBOL (sym)->next = next;
3319 }
3320
3321 /* Buffer-local (also frame-local) variable access functions. */
3322
3323 INLINE int
3324 blv_found (struct Lisp_Buffer_Local_Value *blv)
3325 {
3326 eassert (blv->found == !EQ (blv->defcell, blv->valcell));
3327 return blv->found;
3328 }
3329
3330 /* Set overlay's property list. */
3331
3332 INLINE void
3333 set_overlay_plist (Lisp_Object overlay, Lisp_Object plist)
3334 {
3335 XOVERLAY (overlay)->plist = plist;
3336 }
3337
3338 /* Get text properties of S. */
3339
3340 INLINE INTERVAL
3341 string_intervals (Lisp_Object s)
3342 {
3343 return XSTRING (s)->intervals;
3344 }
3345
3346 /* Set text properties of S to I. */
3347
3348 INLINE void
3349 set_string_intervals (Lisp_Object s, INTERVAL i)
3350 {
3351 XSTRING (s)->intervals = i;
3352 }
3353
3354 /* Set a Lisp slot in TABLE to VAL. Most code should use this instead
3355 of setting slots directly. */
3356
3357 INLINE void
3358 set_char_table_defalt (Lisp_Object table, Lisp_Object val)
3359 {
3360 XCHAR_TABLE (table)->defalt = val;
3361 }
3362 INLINE void
3363 set_char_table_purpose (Lisp_Object table, Lisp_Object val)
3364 {
3365 XCHAR_TABLE (table)->purpose = val;
3366 }
3367
3368 /* Set different slots in (sub)character tables. */
3369
3370 INLINE void
3371 set_char_table_extras (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3372 {
3373 eassert (0 <= idx && idx < CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (table)));
3374 XCHAR_TABLE (table)->extras[idx] = val;
3375 }
3376
3377 INLINE void
3378 set_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3379 {
3380 eassert (0 <= idx && idx < (1 << CHARTAB_SIZE_BITS_0));
3381 XCHAR_TABLE (table)->contents[idx] = val;
3382 }
3383
3384 INLINE void
3385 set_sub_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3386 {
3387 XSUB_CHAR_TABLE (table)->contents[idx] = val;
3388 }
3389
3390 /* Defined in data.c. */
3391 extern Lisp_Object Qquote, Qunbound;
3392 extern Lisp_Object Qerror_conditions, Qerror_message, Qtop_level;
3393 extern Lisp_Object Qerror, Qquit, Qargs_out_of_range;
3394 extern Lisp_Object Qvoid_variable, Qvoid_function;
3395 extern Lisp_Object Qinvalid_read_syntax;
3396 extern Lisp_Object Qinvalid_function, Qwrong_number_of_arguments, Qno_catch;
3397 extern Lisp_Object Quser_error, Qend_of_file, Qarith_error, Qmark_inactive;
3398 extern Lisp_Object Qbeginning_of_buffer, Qend_of_buffer, Qbuffer_read_only;
3399 extern Lisp_Object Qtext_read_only;
3400 extern Lisp_Object Qinteractive_form;
3401 extern Lisp_Object Qcircular_list;
3402 extern Lisp_Object Qsequencep;
3403 extern Lisp_Object Qchar_or_string_p, Qinteger_or_marker_p;
3404 extern Lisp_Object Qfboundp;
3405
3406 extern Lisp_Object Qcdr;
3407
3408 extern Lisp_Object Qrange_error, Qoverflow_error;
3409
3410 extern Lisp_Object Qnumber_or_marker_p;
3411
3412 extern Lisp_Object Qbuffer, Qinteger, Qsymbol;
3413
3414 /* Defined in data.c. */
3415 extern Lisp_Object indirect_function (Lisp_Object);
3416 extern Lisp_Object find_symbol_value (Lisp_Object);
3417 enum Arith_Comparison {
3418 ARITH_EQUAL,
3419 ARITH_NOTEQUAL,
3420 ARITH_LESS,
3421 ARITH_GRTR,
3422 ARITH_LESS_OR_EQUAL,
3423 ARITH_GRTR_OR_EQUAL
3424 };
3425 extern Lisp_Object arithcompare (Lisp_Object num1, Lisp_Object num2,
3426 enum Arith_Comparison comparison);
3427
3428 /* Convert the integer I to an Emacs representation, either the integer
3429 itself, or a cons of two or three integers, or if all else fails a float.
3430 I should not have side effects. */
3431 #define INTEGER_TO_CONS(i) \
3432 (! FIXNUM_OVERFLOW_P (i) \
3433 ? make_number (i) \
3434 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16) \
3435 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16)) \
3436 && FIXNUM_OVERFLOW_P ((i) >> 16)) \
3437 ? Fcons (make_number ((i) >> 16), make_number ((i) & 0xffff)) \
3438 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16 >> 24) \
3439 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16 >> 24)) \
3440 && FIXNUM_OVERFLOW_P ((i) >> 16 >> 24)) \
3441 ? Fcons (make_number ((i) >> 16 >> 24), \
3442 Fcons (make_number ((i) >> 16 & 0xffffff), \
3443 make_number ((i) & 0xffff))) \
3444 : make_float (i))
3445
3446 /* Convert the Emacs representation CONS back to an integer of type
3447 TYPE, storing the result the variable VAR. Signal an error if CONS
3448 is not a valid representation or is out of range for TYPE. */
3449 #define CONS_TO_INTEGER(cons, type, var) \
3450 (TYPE_SIGNED (type) \
3451 ? ((var) = cons_to_signed (cons, TYPE_MINIMUM (type), TYPE_MAXIMUM (type))) \
3452 : ((var) = cons_to_unsigned (cons, TYPE_MAXIMUM (type))))
3453 extern intmax_t cons_to_signed (Lisp_Object, intmax_t, intmax_t);
3454 extern uintmax_t cons_to_unsigned (Lisp_Object, uintmax_t);
3455
3456 extern struct Lisp_Symbol *indirect_variable (struct Lisp_Symbol *);
3457 extern _Noreturn void args_out_of_range (Lisp_Object, Lisp_Object);
3458 extern _Noreturn void args_out_of_range_3 (Lisp_Object, Lisp_Object,
3459 Lisp_Object);
3460 extern Lisp_Object do_symval_forwarding (union Lisp_Fwd *);
3461 extern void set_internal (Lisp_Object, Lisp_Object, Lisp_Object, bool);
3462 extern void syms_of_data (void);
3463 extern void swap_in_global_binding (struct Lisp_Symbol *);
3464
3465 /* Defined in cmds.c */
3466 extern void syms_of_cmds (void);
3467 extern void keys_of_cmds (void);
3468
3469 /* Defined in coding.c. */
3470 extern Lisp_Object Qcharset;
3471 extern Lisp_Object detect_coding_system (const unsigned char *, ptrdiff_t,
3472 ptrdiff_t, bool, bool, Lisp_Object);
3473 extern void init_coding (void);
3474 extern void init_coding_once (void);
3475 extern void syms_of_coding (void);
3476
3477 /* Defined in character.c. */
3478 extern ptrdiff_t chars_in_text (const unsigned char *, ptrdiff_t);
3479 extern ptrdiff_t multibyte_chars_in_text (const unsigned char *, ptrdiff_t);
3480 extern void syms_of_character (void);
3481
3482 /* Defined in charset.c. */
3483 extern void init_charset (void);
3484 extern void init_charset_once (void);
3485 extern void syms_of_charset (void);
3486 /* Structure forward declarations. */
3487 struct charset;
3488
3489 /* Defined in syntax.c. */
3490 extern void init_syntax_once (void);
3491 extern void syms_of_syntax (void);
3492
3493 /* Defined in fns.c. */
3494 extern Lisp_Object QCrehash_size, QCrehash_threshold;
3495 enum { NEXT_ALMOST_PRIME_LIMIT = 11 };
3496 extern EMACS_INT next_almost_prime (EMACS_INT) ATTRIBUTE_CONST;
3497 extern Lisp_Object larger_vector (Lisp_Object, ptrdiff_t, ptrdiff_t);
3498 extern void sweep_weak_hash_tables (void);
3499 extern Lisp_Object Qcursor_in_echo_area;
3500 extern Lisp_Object Qstring_lessp;
3501 extern Lisp_Object QCsize, QCtest, QCweakness, Qequal, Qeq;
3502 EMACS_UINT hash_string (char const *, ptrdiff_t);
3503 EMACS_UINT sxhash (Lisp_Object, int);
3504 Lisp_Object make_hash_table (struct hash_table_test, Lisp_Object, Lisp_Object,
3505 Lisp_Object, Lisp_Object);
3506 ptrdiff_t hash_lookup (struct Lisp_Hash_Table *, Lisp_Object, EMACS_UINT *);
3507 ptrdiff_t hash_put (struct Lisp_Hash_Table *, Lisp_Object, Lisp_Object,
3508 EMACS_UINT);
3509 extern struct hash_table_test hashtest_eql, hashtest_equal;
3510 extern void validate_subarray (Lisp_Object, Lisp_Object, Lisp_Object,
3511 ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
3512 extern Lisp_Object substring_both (Lisp_Object, ptrdiff_t, ptrdiff_t,
3513 ptrdiff_t, ptrdiff_t);
3514 extern Lisp_Object merge (Lisp_Object, Lisp_Object, Lisp_Object);
3515 extern Lisp_Object do_yes_or_no_p (Lisp_Object);
3516 extern Lisp_Object concat2 (Lisp_Object, Lisp_Object);
3517 extern Lisp_Object concat3 (Lisp_Object, Lisp_Object, Lisp_Object);
3518 extern Lisp_Object nconc2 (Lisp_Object, Lisp_Object);
3519 extern Lisp_Object assq_no_quit (Lisp_Object, Lisp_Object);
3520 extern Lisp_Object assoc_no_quit (Lisp_Object, Lisp_Object);
3521 extern void clear_string_char_byte_cache (void);
3522 extern ptrdiff_t string_char_to_byte (Lisp_Object, ptrdiff_t);
3523 extern ptrdiff_t string_byte_to_char (Lisp_Object, ptrdiff_t);
3524 extern Lisp_Object string_to_multibyte (Lisp_Object);
3525 extern Lisp_Object string_make_unibyte (Lisp_Object);
3526 extern void syms_of_fns (void);
3527
3528 /* Defined in floatfns.c. */
3529 extern void syms_of_floatfns (void);
3530 extern Lisp_Object fmod_float (Lisp_Object x, Lisp_Object y);
3531
3532 /* Defined in fringe.c. */
3533 extern void syms_of_fringe (void);
3534 extern void init_fringe (void);
3535 #ifdef HAVE_WINDOW_SYSTEM
3536 extern void mark_fringe_data (void);
3537 extern void init_fringe_once (void);
3538 #endif /* HAVE_WINDOW_SYSTEM */
3539
3540 /* Defined in image.c. */
3541 extern Lisp_Object QCascent, QCmargin, QCrelief;
3542 extern Lisp_Object QCconversion;
3543 extern int x_bitmap_mask (struct frame *, ptrdiff_t);
3544 extern void reset_image_types (void);
3545 extern void syms_of_image (void);
3546
3547 /* Defined in insdel.c. */
3548 extern Lisp_Object Qinhibit_modification_hooks;
3549 extern Lisp_Object Qregion_extract_function;
3550 extern void move_gap_both (ptrdiff_t, ptrdiff_t);
3551 extern _Noreturn void buffer_overflow (void);
3552 extern void make_gap (ptrdiff_t);
3553 extern void make_gap_1 (struct buffer *, ptrdiff_t);
3554 extern ptrdiff_t copy_text (const unsigned char *, unsigned char *,
3555 ptrdiff_t, bool, bool);
3556 extern int count_combining_before (const unsigned char *,
3557 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3558 extern int count_combining_after (const unsigned char *,
3559 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3560 extern void insert (const char *, ptrdiff_t);
3561 extern void insert_and_inherit (const char *, ptrdiff_t);
3562 extern void insert_1_both (const char *, ptrdiff_t, ptrdiff_t,
3563 bool, bool, bool);
3564 extern void insert_from_gap (ptrdiff_t, ptrdiff_t, bool text_at_gap_tail);
3565 extern void insert_from_string (Lisp_Object, ptrdiff_t, ptrdiff_t,
3566 ptrdiff_t, ptrdiff_t, bool);
3567 extern void insert_from_buffer (struct buffer *, ptrdiff_t, ptrdiff_t, bool);
3568 extern void insert_char (int);
3569 extern void insert_string (const char *);
3570 extern void insert_before_markers (const char *, ptrdiff_t);
3571 extern void insert_before_markers_and_inherit (const char *, ptrdiff_t);
3572 extern void insert_from_string_before_markers (Lisp_Object, ptrdiff_t,
3573 ptrdiff_t, ptrdiff_t,
3574 ptrdiff_t, bool);
3575 extern void del_range (ptrdiff_t, ptrdiff_t);
3576 extern Lisp_Object del_range_1 (ptrdiff_t, ptrdiff_t, bool, bool);
3577 extern void del_range_byte (ptrdiff_t, ptrdiff_t, bool);
3578 extern void del_range_both (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t, bool);
3579 extern Lisp_Object del_range_2 (ptrdiff_t, ptrdiff_t,
3580 ptrdiff_t, ptrdiff_t, bool);
3581 extern void modify_text (ptrdiff_t, ptrdiff_t);
3582 extern void prepare_to_modify_buffer (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3583 extern void prepare_to_modify_buffer_1 (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3584 extern void invalidate_buffer_caches (struct buffer *, ptrdiff_t, ptrdiff_t);
3585 extern void signal_after_change (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3586 extern void adjust_after_insert (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3587 ptrdiff_t, ptrdiff_t);
3588 extern void adjust_markers_for_delete (ptrdiff_t, ptrdiff_t,
3589 ptrdiff_t, ptrdiff_t);
3590 extern void replace_range (ptrdiff_t, ptrdiff_t, Lisp_Object, bool, bool, bool);
3591 extern void replace_range_2 (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3592 const char *, ptrdiff_t, ptrdiff_t, bool);
3593 extern void syms_of_insdel (void);
3594
3595 /* Defined in dispnew.c. */
3596 #if (defined PROFILING \
3597 && (defined __FreeBSD__ || defined GNU_LINUX || defined __MINGW32__))
3598 _Noreturn void __executable_start (void);
3599 #endif
3600 extern Lisp_Object Vwindow_system;
3601 extern Lisp_Object sit_for (Lisp_Object, bool, int);
3602
3603 /* Defined in xdisp.c. */
3604 extern Lisp_Object Qinhibit_point_motion_hooks;
3605 extern Lisp_Object Qinhibit_redisplay;
3606 extern Lisp_Object Qmenu_bar_update_hook;
3607 extern Lisp_Object Qwindow_scroll_functions;
3608 extern Lisp_Object Qoverriding_local_map, Qoverriding_terminal_local_map;
3609 extern Lisp_Object Qtext, Qboth, Qboth_horiz, Qtext_image_horiz;
3610 extern Lisp_Object Qspace, Qcenter, QCalign_to;
3611 extern Lisp_Object Qbar, Qhbar, Qhollow;
3612 extern Lisp_Object Qleft_margin, Qright_margin;
3613 extern Lisp_Object QCdata, QCfile;
3614 extern Lisp_Object QCmap;
3615 extern Lisp_Object Qrisky_local_variable;
3616 extern bool noninteractive_need_newline;
3617 extern Lisp_Object echo_area_buffer[2];
3618 extern void add_to_log (const char *, Lisp_Object, Lisp_Object);
3619 extern void check_message_stack (void);
3620 extern void setup_echo_area_for_printing (int);
3621 extern bool push_message (void);
3622 extern void pop_message_unwind (void);
3623 extern Lisp_Object restore_message_unwind (Lisp_Object);
3624 extern void restore_message (void);
3625 extern Lisp_Object current_message (void);
3626 extern void clear_message (bool, bool);
3627 extern void message (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3628 extern void message1 (const char *);
3629 extern void message1_nolog (const char *);
3630 extern void message3 (Lisp_Object);
3631 extern void message3_nolog (Lisp_Object);
3632 extern void message_dolog (const char *, ptrdiff_t, bool, bool);
3633 extern void message_with_string (const char *, Lisp_Object, int);
3634 extern void message_log_maybe_newline (void);
3635 extern void update_echo_area (void);
3636 extern void truncate_echo_area (ptrdiff_t);
3637 extern void redisplay (void);
3638
3639 void set_frame_cursor_types (struct frame *, Lisp_Object);
3640 extern void syms_of_xdisp (void);
3641 extern void init_xdisp (void);
3642 extern Lisp_Object safe_eval (Lisp_Object);
3643 extern int pos_visible_p (struct window *, ptrdiff_t, int *,
3644 int *, int *, int *, int *, int *);
3645
3646 /* Defined in xsettings.c. */
3647 extern void syms_of_xsettings (void);
3648
3649 /* Defined in vm-limit.c. */
3650 extern void memory_warnings (void *, void (*warnfun) (const char *));
3651
3652 /* Defined in character.c. */
3653 extern void parse_str_as_multibyte (const unsigned char *, ptrdiff_t,
3654 ptrdiff_t *, ptrdiff_t *);
3655
3656 /* Defined in alloc.c. */
3657 extern void check_pure_size (void);
3658 extern void free_misc (Lisp_Object);
3659 extern void allocate_string_data (struct Lisp_String *, EMACS_INT, EMACS_INT);
3660 extern void malloc_warning (const char *);
3661 extern _Noreturn void memory_full (size_t);
3662 extern _Noreturn void buffer_memory_full (ptrdiff_t);
3663 extern bool survives_gc_p (Lisp_Object);
3664 extern void mark_object (Lisp_Object);
3665 #if defined REL_ALLOC && !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3666 extern void refill_memory_reserve (void);
3667 #endif
3668 extern const char *pending_malloc_warning;
3669 extern Lisp_Object zero_vector;
3670 extern Lisp_Object *stack_base;
3671 extern EMACS_INT consing_since_gc;
3672 extern EMACS_INT gc_relative_threshold;
3673 extern EMACS_INT memory_full_cons_threshold;
3674 extern Lisp_Object list1 (Lisp_Object);
3675 extern Lisp_Object list2 (Lisp_Object, Lisp_Object);
3676 extern Lisp_Object list3 (Lisp_Object, Lisp_Object, Lisp_Object);
3677 extern Lisp_Object list4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3678 extern Lisp_Object list5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object,
3679 Lisp_Object);
3680 enum constype {CONSTYPE_HEAP, CONSTYPE_PURE};
3681 extern Lisp_Object listn (enum constype, ptrdiff_t, Lisp_Object, ...);
3682
3683 /* Build a frequently used 2/3/4-integer lists. */
3684
3685 INLINE Lisp_Object
3686 list2i (EMACS_INT x, EMACS_INT y)
3687 {
3688 return list2 (make_number (x), make_number (y));
3689 }
3690
3691 INLINE Lisp_Object
3692 list3i (EMACS_INT x, EMACS_INT y, EMACS_INT w)
3693 {
3694 return list3 (make_number (x), make_number (y), make_number (w));
3695 }
3696
3697 INLINE Lisp_Object
3698 list4i (EMACS_INT x, EMACS_INT y, EMACS_INT w, EMACS_INT h)
3699 {
3700 return list4 (make_number (x), make_number (y),
3701 make_number (w), make_number (h));
3702 }
3703
3704 extern Lisp_Object make_uninit_bool_vector (EMACS_INT);
3705 extern Lisp_Object bool_vector_fill (Lisp_Object, Lisp_Object);
3706 extern _Noreturn void string_overflow (void);
3707 extern Lisp_Object make_string (const char *, ptrdiff_t);
3708 extern Lisp_Object make_formatted_string (char *, const char *, ...)
3709 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3710 extern Lisp_Object make_unibyte_string (const char *, ptrdiff_t);
3711
3712 /* Make unibyte string from C string when the length isn't known. */
3713
3714 INLINE Lisp_Object
3715 build_unibyte_string (const char *str)
3716 {
3717 return make_unibyte_string (str, strlen (str));
3718 }
3719
3720 extern Lisp_Object make_multibyte_string (const char *, ptrdiff_t, ptrdiff_t);
3721 extern Lisp_Object make_event_array (ptrdiff_t, Lisp_Object *);
3722 extern Lisp_Object make_uninit_string (EMACS_INT);
3723 extern Lisp_Object make_uninit_multibyte_string (EMACS_INT, EMACS_INT);
3724 extern Lisp_Object make_string_from_bytes (const char *, ptrdiff_t, ptrdiff_t);
3725 extern Lisp_Object make_specified_string (const char *,
3726 ptrdiff_t, ptrdiff_t, bool);
3727 extern Lisp_Object make_pure_string (const char *, ptrdiff_t, ptrdiff_t, bool);
3728 extern Lisp_Object make_pure_c_string (const char *, ptrdiff_t);
3729
3730 /* Make a string allocated in pure space, use STR as string data. */
3731
3732 INLINE Lisp_Object
3733 build_pure_c_string (const char *str)
3734 {
3735 return make_pure_c_string (str, strlen (str));
3736 }
3737
3738 /* Make a string from the data at STR, treating it as multibyte if the
3739 data warrants. */
3740
3741 INLINE Lisp_Object
3742 build_string (const char *str)
3743 {
3744 return make_string (str, strlen (str));
3745 }
3746
3747 extern Lisp_Object pure_cons (Lisp_Object, Lisp_Object);
3748 extern void make_byte_code (struct Lisp_Vector *);
3749 extern Lisp_Object Qautomatic_gc;
3750 extern Lisp_Object Qchar_table_extra_slots;
3751 extern struct Lisp_Vector *allocate_vector (EMACS_INT);
3752
3753 /* Make an uninitialized vector for SIZE objects. NOTE: you must
3754 be sure that GC cannot happen until the vector is completely
3755 initialized. E.g. the following code is likely to crash:
3756
3757 v = make_uninit_vector (3);
3758 ASET (v, 0, obj0);
3759 ASET (v, 1, Ffunction_can_gc ());
3760 ASET (v, 2, obj1); */
3761
3762 INLINE Lisp_Object
3763 make_uninit_vector (ptrdiff_t size)
3764 {
3765 Lisp_Object v;
3766 struct Lisp_Vector *p;
3767
3768 p = allocate_vector (size);
3769 XSETVECTOR (v, p);
3770 return v;
3771 }
3772
3773 /* Like above, but special for sub char-tables. */
3774
3775 INLINE Lisp_Object
3776 make_uninit_sub_char_table (int depth, int min_char)
3777 {
3778 int slots = SUB_CHAR_TABLE_OFFSET + chartab_size[depth];
3779 Lisp_Object v = make_uninit_vector (slots);
3780
3781 XSETPVECTYPE (XVECTOR (v), PVEC_SUB_CHAR_TABLE);
3782 XSUB_CHAR_TABLE (v)->depth = depth;
3783 XSUB_CHAR_TABLE (v)->min_char = min_char;
3784 return v;
3785 }
3786
3787 extern struct Lisp_Vector *allocate_pseudovector (int, int, enum pvec_type);
3788 #define ALLOCATE_PSEUDOVECTOR(typ,field,tag) \
3789 ((typ*) \
3790 allocate_pseudovector \
3791 (VECSIZE (typ), PSEUDOVECSIZE (typ, field), tag))
3792 extern struct Lisp_Hash_Table *allocate_hash_table (void);
3793 extern struct window *allocate_window (void);
3794 extern struct frame *allocate_frame (void);
3795 extern struct Lisp_Process *allocate_process (void);
3796 extern struct terminal *allocate_terminal (void);
3797 extern bool gc_in_progress;
3798 extern bool abort_on_gc;
3799 extern Lisp_Object make_float (double);
3800 extern void display_malloc_warning (void);
3801 extern ptrdiff_t inhibit_garbage_collection (void);
3802 extern Lisp_Object make_save_int_int_int (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3803 extern Lisp_Object make_save_obj_obj_obj_obj (Lisp_Object, Lisp_Object,
3804 Lisp_Object, Lisp_Object);
3805 extern Lisp_Object make_save_ptr (void *);
3806 extern Lisp_Object make_save_ptr_int (void *, ptrdiff_t);
3807 extern Lisp_Object make_save_ptr_ptr (void *, void *);
3808 extern Lisp_Object make_save_funcptr_ptr_obj (void (*) (void), void *,
3809 Lisp_Object);
3810 extern Lisp_Object make_save_memory (Lisp_Object *, ptrdiff_t);
3811 extern void free_save_value (Lisp_Object);
3812 extern Lisp_Object build_overlay (Lisp_Object, Lisp_Object, Lisp_Object);
3813 extern void free_marker (Lisp_Object);
3814 extern void free_cons (struct Lisp_Cons *);
3815 extern void init_alloc_once (void);
3816 extern void init_alloc (void);
3817 extern void syms_of_alloc (void);
3818 extern struct buffer * allocate_buffer (void);
3819 extern int valid_lisp_object_p (Lisp_Object);
3820 extern int relocatable_string_data_p (const char *);
3821 #ifdef GC_CHECK_CONS_LIST
3822 extern void check_cons_list (void);
3823 #else
3824 INLINE void (check_cons_list) (void) { lisp_h_check_cons_list (); }
3825 #endif
3826
3827 #ifdef REL_ALLOC
3828 /* Defined in ralloc.c. */
3829 extern void *r_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3830 extern void r_alloc_free (void **);
3831 extern void *r_re_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3832 extern void r_alloc_reset_variable (void **, void **);
3833 extern void r_alloc_inhibit_buffer_relocation (int);
3834 #endif
3835
3836 /* Defined in chartab.c. */
3837 extern Lisp_Object copy_char_table (Lisp_Object);
3838 extern Lisp_Object char_table_ref_and_range (Lisp_Object, int,
3839 int *, int *);
3840 extern void char_table_set_range (Lisp_Object, int, int, Lisp_Object);
3841 extern void map_char_table (void (*) (Lisp_Object, Lisp_Object,
3842 Lisp_Object),
3843 Lisp_Object, Lisp_Object, Lisp_Object);
3844 extern void map_char_table_for_charset (void (*c_function) (Lisp_Object, Lisp_Object),
3845 Lisp_Object, Lisp_Object,
3846 Lisp_Object, struct charset *,
3847 unsigned, unsigned);
3848 extern Lisp_Object uniprop_table (Lisp_Object);
3849 extern void syms_of_chartab (void);
3850
3851 /* Defined in print.c. */
3852 extern Lisp_Object Vprin1_to_string_buffer;
3853 extern void debug_print (Lisp_Object) EXTERNALLY_VISIBLE;
3854 extern Lisp_Object Qstandard_output;
3855 extern Lisp_Object Qexternal_debugging_output;
3856 extern void temp_output_buffer_setup (const char *);
3857 extern int print_level;
3858 extern Lisp_Object Qprint_escape_newlines;
3859 extern void write_string (const char *, int);
3860 extern void print_error_message (Lisp_Object, Lisp_Object, const char *,
3861 Lisp_Object);
3862 extern Lisp_Object internal_with_output_to_temp_buffer
3863 (const char *, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3864 #define FLOAT_TO_STRING_BUFSIZE 350
3865 extern int float_to_string (char *, double);
3866 extern void init_print_once (void);
3867 extern void syms_of_print (void);
3868
3869 /* Defined in doprnt.c. */
3870 extern ptrdiff_t doprnt (char *, ptrdiff_t, const char *, const char *,
3871 va_list);
3872 extern ptrdiff_t esprintf (char *, char const *, ...)
3873 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3874 extern ptrdiff_t exprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3875 char const *, ...)
3876 ATTRIBUTE_FORMAT_PRINTF (5, 6);
3877 extern ptrdiff_t evxprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3878 char const *, va_list)
3879 ATTRIBUTE_FORMAT_PRINTF (5, 0);
3880
3881 /* Defined in lread.c. */
3882 extern Lisp_Object Qvariable_documentation, Qstandard_input;
3883 extern Lisp_Object Qbackquote, Qcomma, Qcomma_at, Qcomma_dot, Qfunction;
3884 extern Lisp_Object Qlexical_binding;
3885 extern Lisp_Object check_obarray (Lisp_Object);
3886 extern Lisp_Object intern_1 (const char *, ptrdiff_t);
3887 extern Lisp_Object intern_c_string_1 (const char *, ptrdiff_t);
3888 extern Lisp_Object intern_driver (Lisp_Object, Lisp_Object, ptrdiff_t);
3889 extern Lisp_Object oblookup (Lisp_Object, const char *, ptrdiff_t, ptrdiff_t);
3890 INLINE void
3891 LOADHIST_ATTACH (Lisp_Object x)
3892 {
3893 if (initialized)
3894 Vcurrent_load_list = Fcons (x, Vcurrent_load_list);
3895 }
3896 extern int openp (Lisp_Object, Lisp_Object, Lisp_Object,
3897 Lisp_Object *, Lisp_Object, bool);
3898 extern Lisp_Object string_to_number (char const *, int, bool);
3899 extern void map_obarray (Lisp_Object, void (*) (Lisp_Object, Lisp_Object),
3900 Lisp_Object);
3901 extern void dir_warning (const char *, Lisp_Object);
3902 extern void init_obarray (void);
3903 extern void init_lread (void);
3904 extern void syms_of_lread (void);
3905
3906 INLINE Lisp_Object
3907 intern (const char *str)
3908 {
3909 return intern_1 (str, strlen (str));
3910 }
3911
3912 INLINE Lisp_Object
3913 intern_c_string (const char *str)
3914 {
3915 return intern_c_string_1 (str, strlen (str));
3916 }
3917
3918 /* Defined in eval.c. */
3919 extern EMACS_INT lisp_eval_depth;
3920 extern Lisp_Object Qexit, Qinteractive, Qcommandp, Qmacro;
3921 extern Lisp_Object Qinhibit_quit, Qinternal_interpreter_environment, Qclosure;
3922 extern Lisp_Object Qand_rest;
3923 extern Lisp_Object Vautoload_queue;
3924 extern Lisp_Object Vsignaling_function;
3925 extern Lisp_Object inhibit_lisp_code;
3926 extern struct handler *handlerlist;
3927
3928 /* To run a normal hook, use the appropriate function from the list below.
3929 The calling convention:
3930
3931 if (!NILP (Vrun_hooks))
3932 call1 (Vrun_hooks, Qmy_funny_hook);
3933
3934 should no longer be used. */
3935 extern Lisp_Object Vrun_hooks;
3936 extern void run_hook_with_args_2 (Lisp_Object, Lisp_Object, Lisp_Object);
3937 extern Lisp_Object run_hook_with_args (ptrdiff_t nargs, Lisp_Object *args,
3938 Lisp_Object (*funcall)
3939 (ptrdiff_t nargs, Lisp_Object *args));
3940 extern _Noreturn void xsignal (Lisp_Object, Lisp_Object);
3941 extern _Noreturn void xsignal0 (Lisp_Object);
3942 extern _Noreturn void xsignal1 (Lisp_Object, Lisp_Object);
3943 extern _Noreturn void xsignal2 (Lisp_Object, Lisp_Object, Lisp_Object);
3944 extern _Noreturn void xsignal3 (Lisp_Object, Lisp_Object, Lisp_Object,
3945 Lisp_Object);
3946 extern _Noreturn void signal_error (const char *, Lisp_Object);
3947 extern Lisp_Object eval_sub (Lisp_Object form);
3948 extern Lisp_Object apply1 (Lisp_Object, Lisp_Object);
3949 extern Lisp_Object call0 (Lisp_Object);
3950 extern Lisp_Object call1 (Lisp_Object, Lisp_Object);
3951 extern Lisp_Object call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3952 extern Lisp_Object call3 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3953 extern Lisp_Object call4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3954 extern Lisp_Object call5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3955 extern Lisp_Object call6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3956 extern Lisp_Object call7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3957 extern Lisp_Object internal_catch (Lisp_Object, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3958 extern Lisp_Object internal_lisp_condition_case (Lisp_Object, Lisp_Object, Lisp_Object);
3959 extern Lisp_Object internal_condition_case (Lisp_Object (*) (void), Lisp_Object, Lisp_Object (*) (Lisp_Object));
3960 extern Lisp_Object internal_condition_case_1 (Lisp_Object (*) (Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3961 extern Lisp_Object internal_condition_case_2 (Lisp_Object (*) (Lisp_Object, Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3962 extern Lisp_Object internal_condition_case_n
3963 (Lisp_Object (*) (ptrdiff_t, Lisp_Object *), ptrdiff_t, Lisp_Object *,
3964 Lisp_Object, Lisp_Object (*) (Lisp_Object, ptrdiff_t, Lisp_Object *));
3965 extern void specbind (Lisp_Object, Lisp_Object);
3966 extern void record_unwind_protect (void (*) (Lisp_Object), Lisp_Object);
3967 extern void record_unwind_protect_ptr (void (*) (void *), void *);
3968 extern void record_unwind_protect_int (void (*) (int), int);
3969 extern void record_unwind_protect_void (void (*) (void));
3970 extern void record_unwind_protect_nothing (void);
3971 extern void clear_unwind_protect (ptrdiff_t);
3972 extern void set_unwind_protect (ptrdiff_t, void (*) (Lisp_Object), Lisp_Object);
3973 extern void set_unwind_protect_ptr (ptrdiff_t, void (*) (void *), void *);
3974 extern Lisp_Object unbind_to (ptrdiff_t, Lisp_Object);
3975 extern _Noreturn void error (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3976 extern _Noreturn void verror (const char *, va_list)
3977 ATTRIBUTE_FORMAT_PRINTF (1, 0);
3978 extern void un_autoload (Lisp_Object);
3979 extern Lisp_Object call_debugger (Lisp_Object arg);
3980 extern void init_eval_once (void);
3981 extern Lisp_Object safe_call (ptrdiff_t, Lisp_Object, ...);
3982 extern Lisp_Object safe_call1 (Lisp_Object, Lisp_Object);
3983 extern Lisp_Object safe_call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3984 extern void init_eval (void);
3985 extern void syms_of_eval (void);
3986 extern void unwind_body (Lisp_Object);
3987 extern ptrdiff_t record_in_backtrace (Lisp_Object, Lisp_Object *, ptrdiff_t);
3988 extern void mark_specpdl (void);
3989 extern void get_backtrace (Lisp_Object array);
3990 Lisp_Object backtrace_top_function (void);
3991 extern bool let_shadows_buffer_binding_p (struct Lisp_Symbol *symbol);
3992 extern bool let_shadows_global_binding_p (Lisp_Object symbol);
3993
3994
3995 /* Defined in editfns.c. */
3996 extern Lisp_Object Qfield;
3997 extern void insert1 (Lisp_Object);
3998 extern Lisp_Object format2 (const char *, Lisp_Object, Lisp_Object);
3999 extern Lisp_Object save_excursion_save (void);
4000 extern Lisp_Object save_restriction_save (void);
4001 extern void save_excursion_restore (Lisp_Object);
4002 extern void save_restriction_restore (Lisp_Object);
4003 extern _Noreturn void time_overflow (void);
4004 extern Lisp_Object make_buffer_string (ptrdiff_t, ptrdiff_t, bool);
4005 extern Lisp_Object make_buffer_string_both (ptrdiff_t, ptrdiff_t, ptrdiff_t,
4006 ptrdiff_t, bool);
4007 extern void init_editfns (void);
4008 extern void syms_of_editfns (void);
4009 extern void set_time_zone_rule (const char *);
4010
4011 /* Defined in buffer.c. */
4012 extern bool mouse_face_overlay_overlaps (Lisp_Object);
4013 extern _Noreturn void nsberror (Lisp_Object);
4014 extern void adjust_overlays_for_insert (ptrdiff_t, ptrdiff_t);
4015 extern void adjust_overlays_for_delete (ptrdiff_t, ptrdiff_t);
4016 extern void fix_start_end_in_overlays (ptrdiff_t, ptrdiff_t);
4017 extern void report_overlay_modification (Lisp_Object, Lisp_Object, bool,
4018 Lisp_Object, Lisp_Object, Lisp_Object);
4019 extern bool overlay_touches_p (ptrdiff_t);
4020 extern Lisp_Object other_buffer_safely (Lisp_Object);
4021 extern Lisp_Object get_truename_buffer (Lisp_Object);
4022 extern void init_buffer_once (void);
4023 extern void init_buffer (int);
4024 extern void syms_of_buffer (void);
4025 extern void keys_of_buffer (void);
4026
4027 /* Defined in marker.c. */
4028
4029 extern ptrdiff_t marker_position (Lisp_Object);
4030 extern ptrdiff_t marker_byte_position (Lisp_Object);
4031 extern void clear_charpos_cache (struct buffer *);
4032 extern ptrdiff_t buf_charpos_to_bytepos (struct buffer *, ptrdiff_t);
4033 extern ptrdiff_t buf_bytepos_to_charpos (struct buffer *, ptrdiff_t);
4034 extern void unchain_marker (struct Lisp_Marker *marker);
4035 extern Lisp_Object set_marker_restricted (Lisp_Object, Lisp_Object, Lisp_Object);
4036 extern Lisp_Object set_marker_both (Lisp_Object, Lisp_Object, ptrdiff_t, ptrdiff_t);
4037 extern Lisp_Object set_marker_restricted_both (Lisp_Object, Lisp_Object,
4038 ptrdiff_t, ptrdiff_t);
4039 extern Lisp_Object build_marker (struct buffer *, ptrdiff_t, ptrdiff_t);
4040 extern void syms_of_marker (void);
4041
4042 /* Defined in fileio.c. */
4043
4044 extern Lisp_Object Qfile_error;
4045 extern Lisp_Object Qfile_notify_error;
4046 extern Lisp_Object Qfile_exists_p;
4047 extern Lisp_Object Qfile_directory_p;
4048 extern Lisp_Object Qinsert_file_contents;
4049 extern Lisp_Object Qfile_name_history;
4050 extern Lisp_Object expand_and_dir_to_file (Lisp_Object, Lisp_Object);
4051 extern Lisp_Object write_region (Lisp_Object, Lisp_Object, Lisp_Object,
4052 Lisp_Object, Lisp_Object, Lisp_Object,
4053 Lisp_Object, int);
4054 extern void close_file_unwind (int);
4055 extern void fclose_unwind (void *);
4056 extern void restore_point_unwind (Lisp_Object);
4057 extern _Noreturn void report_file_errno (const char *, Lisp_Object, int);
4058 extern _Noreturn void report_file_error (const char *, Lisp_Object);
4059 extern bool internal_delete_file (Lisp_Object);
4060 extern Lisp_Object emacs_readlinkat (int, const char *);
4061 extern bool file_directory_p (const char *);
4062 extern bool file_accessible_directory_p (Lisp_Object);
4063 extern void init_fileio (void);
4064 extern void syms_of_fileio (void);
4065 extern Lisp_Object make_temp_name (Lisp_Object, bool);
4066 extern Lisp_Object Qdelete_file;
4067
4068 /* Defined in search.c. */
4069 extern void shrink_regexp_cache (void);
4070 extern void restore_search_regs (void);
4071 extern void record_unwind_save_match_data (void);
4072 struct re_registers;
4073 extern struct re_pattern_buffer *compile_pattern (Lisp_Object,
4074 struct re_registers *,
4075 Lisp_Object, bool, bool);
4076 extern ptrdiff_t fast_string_match (Lisp_Object, Lisp_Object);
4077 extern ptrdiff_t fast_c_string_match_ignore_case (Lisp_Object, const char *,
4078 ptrdiff_t);
4079 extern ptrdiff_t fast_string_match_ignore_case (Lisp_Object, Lisp_Object);
4080 extern ptrdiff_t fast_looking_at (Lisp_Object, ptrdiff_t, ptrdiff_t,
4081 ptrdiff_t, ptrdiff_t, Lisp_Object);
4082 extern ptrdiff_t find_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4083 ptrdiff_t, ptrdiff_t *, ptrdiff_t *, bool);
4084 extern ptrdiff_t scan_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4085 ptrdiff_t, bool);
4086 extern ptrdiff_t find_newline_no_quit (ptrdiff_t, ptrdiff_t,
4087 ptrdiff_t, ptrdiff_t *);
4088 extern ptrdiff_t find_before_next_newline (ptrdiff_t, ptrdiff_t,
4089 ptrdiff_t, ptrdiff_t *);
4090 extern void syms_of_search (void);
4091 extern void clear_regexp_cache (void);
4092
4093 /* Defined in minibuf.c. */
4094
4095 extern Lisp_Object Qcompletion_ignore_case;
4096 extern Lisp_Object Vminibuffer_list;
4097 extern Lisp_Object last_minibuf_string;
4098 extern Lisp_Object get_minibuffer (EMACS_INT);
4099 extern void init_minibuf_once (void);
4100 extern void syms_of_minibuf (void);
4101
4102 /* Defined in callint.c. */
4103
4104 extern Lisp_Object Qminus, Qplus;
4105 extern Lisp_Object Qprogn;
4106 extern Lisp_Object Qwhen;
4107 extern Lisp_Object Qmouse_leave_buffer_hook;
4108 extern void syms_of_callint (void);
4109
4110 /* Defined in casefiddle.c. */
4111
4112 extern Lisp_Object Qidentity;
4113 extern void syms_of_casefiddle (void);
4114 extern void keys_of_casefiddle (void);
4115
4116 /* Defined in casetab.c. */
4117
4118 extern void init_casetab_once (void);
4119 extern void syms_of_casetab (void);
4120
4121 /* Defined in keyboard.c. */
4122
4123 extern Lisp_Object echo_message_buffer;
4124 extern struct kboard *echo_kboard;
4125 extern void cancel_echoing (void);
4126 extern Lisp_Object Qdisabled, QCfilter;
4127 extern Lisp_Object Qup, Qdown;
4128 extern Lisp_Object last_undo_boundary;
4129 extern bool input_pending;
4130 #ifdef HAVE_STACK_OVERFLOW_HANDLING
4131 extern sigjmp_buf return_to_command_loop;
4132 #endif
4133 extern Lisp_Object menu_bar_items (Lisp_Object);
4134 extern Lisp_Object tool_bar_items (Lisp_Object, int *);
4135 extern void discard_mouse_events (void);
4136 #ifdef USABLE_SIGIO
4137 void handle_input_available_signal (int);
4138 #endif
4139 extern Lisp_Object pending_funcalls;
4140 extern bool detect_input_pending (void);
4141 extern bool detect_input_pending_ignore_squeezables (void);
4142 extern bool detect_input_pending_run_timers (bool);
4143 extern void safe_run_hooks (Lisp_Object);
4144 extern void cmd_error_internal (Lisp_Object, const char *);
4145 extern Lisp_Object command_loop_1 (void);
4146 extern Lisp_Object read_menu_command (void);
4147 extern Lisp_Object recursive_edit_1 (void);
4148 extern void record_auto_save (void);
4149 extern void force_auto_save_soon (void);
4150 extern void init_keyboard (void);
4151 extern void syms_of_keyboard (void);
4152 extern void keys_of_keyboard (void);
4153
4154 /* Defined in indent.c. */
4155 extern ptrdiff_t current_column (void);
4156 extern void invalidate_current_column (void);
4157 extern bool indented_beyond_p (ptrdiff_t, ptrdiff_t, EMACS_INT);
4158 extern void syms_of_indent (void);
4159
4160 /* Defined in frame.c. */
4161 extern Lisp_Object Qonly, Qnone;
4162 extern void store_frame_param (struct frame *, Lisp_Object, Lisp_Object);
4163 extern void store_in_alist (Lisp_Object *, Lisp_Object, Lisp_Object);
4164 extern Lisp_Object do_switch_frame (Lisp_Object, int, int, Lisp_Object);
4165 extern Lisp_Object get_frame_param (struct frame *, Lisp_Object);
4166 extern void frames_discard_buffer (Lisp_Object);
4167 extern void syms_of_frame (void);
4168
4169 /* Defined in emacs.c. */
4170 extern char **initial_argv;
4171 extern int initial_argc;
4172 #if defined (HAVE_X_WINDOWS) || defined (HAVE_NS)
4173 extern bool display_arg;
4174 #endif
4175 extern Lisp_Object decode_env_path (const char *, const char *, bool);
4176 extern Lisp_Object empty_unibyte_string, empty_multibyte_string;
4177 extern Lisp_Object Qfile_name_handler_alist;
4178 extern _Noreturn void terminate_due_to_signal (int, int);
4179 extern Lisp_Object Qkill_emacs;
4180 #ifdef WINDOWSNT
4181 extern Lisp_Object Vlibrary_cache;
4182 #endif
4183 #if HAVE_SETLOCALE
4184 void fixup_locale (void);
4185 void synchronize_system_messages_locale (void);
4186 void synchronize_system_time_locale (void);
4187 #else
4188 INLINE void fixup_locale (void) {}
4189 INLINE void synchronize_system_messages_locale (void) {}
4190 INLINE void synchronize_system_time_locale (void) {}
4191 #endif
4192 extern void shut_down_emacs (int, Lisp_Object);
4193
4194 /* True means don't do interactive redisplay and don't change tty modes. */
4195 extern bool noninteractive;
4196
4197 /* True means remove site-lisp directories from load-path. */
4198 extern bool no_site_lisp;
4199
4200 /* Pipe used to send exit notification to the daemon parent at
4201 startup. */
4202 extern int daemon_pipe[2];
4203 #define IS_DAEMON (daemon_pipe[1] != 0)
4204
4205 /* True if handling a fatal error already. */
4206 extern bool fatal_error_in_progress;
4207
4208 /* True means don't do use window-system-specific display code. */
4209 extern bool inhibit_window_system;
4210 /* True means that a filter or a sentinel is running. */
4211 extern bool running_asynch_code;
4212
4213 /* Defined in process.c. */
4214 extern Lisp_Object QCtype, Qlocal;
4215 extern void kill_buffer_processes (Lisp_Object);
4216 extern int wait_reading_process_output (intmax_t, int, int, bool, Lisp_Object,
4217 struct Lisp_Process *, int);
4218 /* Max value for the first argument of wait_reading_process_output. */
4219 #if __GNUC__ == 3 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 5)
4220 /* Work around a bug in GCC 3.4.2, known to be fixed in GCC 4.6.3.
4221 The bug merely causes a bogus warning, but the warning is annoying. */
4222 # define WAIT_READING_MAX min (TYPE_MAXIMUM (time_t), INTMAX_MAX)
4223 #else
4224 # define WAIT_READING_MAX INTMAX_MAX
4225 #endif
4226 #ifdef HAVE_TIMERFD
4227 extern void add_timer_wait_descriptor (int);
4228 #endif
4229 extern void add_keyboard_wait_descriptor (int);
4230 extern void delete_keyboard_wait_descriptor (int);
4231 #ifdef HAVE_GPM
4232 extern void add_gpm_wait_descriptor (int);
4233 extern void delete_gpm_wait_descriptor (int);
4234 #endif
4235 extern void init_process_emacs (void);
4236 extern void syms_of_process (void);
4237 extern void setup_process_coding_systems (Lisp_Object);
4238
4239 /* Defined in callproc.c. */
4240 #ifndef DOS_NT
4241 _Noreturn
4242 #endif
4243 extern int child_setup (int, int, int, char **, bool, Lisp_Object);
4244 extern void init_callproc_1 (void);
4245 extern void init_callproc (void);
4246 extern void set_initial_environment (void);
4247 extern void syms_of_callproc (void);
4248
4249 /* Defined in doc.c. */
4250 extern Lisp_Object Qfunction_documentation;
4251 extern Lisp_Object read_doc_string (Lisp_Object);
4252 extern Lisp_Object get_doc_string (Lisp_Object, bool, bool);
4253 extern void syms_of_doc (void);
4254 extern int read_bytecode_char (bool);
4255
4256 /* Defined in bytecode.c. */
4257 extern void syms_of_bytecode (void);
4258 extern struct byte_stack *byte_stack_list;
4259 #if BYTE_MARK_STACK
4260 extern void mark_byte_stack (void);
4261 #endif
4262 extern void unmark_byte_stack (void);
4263 extern Lisp_Object exec_byte_code (Lisp_Object, Lisp_Object, Lisp_Object,
4264 Lisp_Object, ptrdiff_t, Lisp_Object *);
4265
4266 /* Defined in macros.c. */
4267 extern void init_macros (void);
4268 extern void syms_of_macros (void);
4269
4270 /* Defined in undo.c. */
4271 extern Lisp_Object Qapply;
4272 extern Lisp_Object Qinhibit_read_only;
4273 extern void truncate_undo_list (struct buffer *);
4274 extern void record_insert (ptrdiff_t, ptrdiff_t);
4275 extern void record_delete (ptrdiff_t, Lisp_Object, bool);
4276 extern void record_first_change (void);
4277 extern void record_change (ptrdiff_t, ptrdiff_t);
4278 extern void record_property_change (ptrdiff_t, ptrdiff_t,
4279 Lisp_Object, Lisp_Object,
4280 Lisp_Object);
4281 extern void syms_of_undo (void);
4282 /* Defined in textprop.c. */
4283 extern Lisp_Object Qmouse_face;
4284 extern Lisp_Object Qinsert_in_front_hooks, Qinsert_behind_hooks;
4285 extern Lisp_Object Qminibuffer_prompt;
4286
4287 extern void report_interval_modification (Lisp_Object, Lisp_Object);
4288
4289 /* Defined in menu.c. */
4290 extern void syms_of_menu (void);
4291
4292 /* Defined in xmenu.c. */
4293 extern void syms_of_xmenu (void);
4294
4295 /* Defined in termchar.h. */
4296 struct tty_display_info;
4297
4298 /* Defined in termhooks.h. */
4299 struct terminal;
4300
4301 /* Defined in sysdep.c. */
4302 #ifndef HAVE_GET_CURRENT_DIR_NAME
4303 extern char *get_current_dir_name (void);
4304 #endif
4305 extern void stuff_char (char c);
4306 extern void init_foreground_group (void);
4307 extern void sys_subshell (void);
4308 extern void sys_suspend (void);
4309 extern void discard_tty_input (void);
4310 extern void init_sys_modes (struct tty_display_info *);
4311 extern void reset_sys_modes (struct tty_display_info *);
4312 extern void init_all_sys_modes (void);
4313 extern void reset_all_sys_modes (void);
4314 extern void child_setup_tty (int);
4315 extern void setup_pty (int);
4316 extern int set_window_size (int, int, int);
4317 extern EMACS_INT get_random (void);
4318 extern void seed_random (void *, ptrdiff_t);
4319 extern void init_random (void);
4320 extern void emacs_backtrace (int);
4321 extern _Noreturn void emacs_abort (void) NO_INLINE;
4322 extern int emacs_open (const char *, int, int);
4323 extern int emacs_pipe (int[2]);
4324 extern int emacs_close (int);
4325 extern ptrdiff_t emacs_read (int, void *, ptrdiff_t);
4326 extern ptrdiff_t emacs_write (int, void const *, ptrdiff_t);
4327 extern ptrdiff_t emacs_write_sig (int, void const *, ptrdiff_t);
4328 extern void emacs_perror (char const *);
4329
4330 extern void unlock_all_files (void);
4331 extern void lock_file (Lisp_Object);
4332 extern void unlock_file (Lisp_Object);
4333 extern void unlock_buffer (struct buffer *);
4334 extern void syms_of_filelock (void);
4335 extern int str_collate (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4336
4337 /* Defined in sound.c. */
4338 extern void syms_of_sound (void);
4339
4340 /* Defined in category.c. */
4341 extern void init_category_once (void);
4342 extern Lisp_Object char_category_set (int);
4343 extern void syms_of_category (void);
4344
4345 /* Defined in ccl.c. */
4346 extern void syms_of_ccl (void);
4347
4348 /* Defined in dired.c. */
4349 extern void syms_of_dired (void);
4350 extern Lisp_Object directory_files_internal (Lisp_Object, Lisp_Object,
4351 Lisp_Object, Lisp_Object,
4352 bool, Lisp_Object);
4353
4354 /* Defined in term.c. */
4355 extern int *char_ins_del_vector;
4356 extern void syms_of_term (void);
4357 extern _Noreturn void fatal (const char *msgid, ...)
4358 ATTRIBUTE_FORMAT_PRINTF (1, 2);
4359
4360 /* Defined in terminal.c. */
4361 extern void syms_of_terminal (void);
4362
4363 /* Defined in font.c. */
4364 extern void syms_of_font (void);
4365 extern void init_font (void);
4366
4367 #ifdef HAVE_WINDOW_SYSTEM
4368 /* Defined in fontset.c. */
4369 extern void syms_of_fontset (void);
4370
4371 /* Defined in xfns.c, w32fns.c, or macfns.c. */
4372 extern Lisp_Object Qfont_param;
4373 #endif
4374
4375 /* Defined in gfilenotify.c */
4376 #ifdef HAVE_GFILENOTIFY
4377 extern void globals_of_gfilenotify (void);
4378 extern void syms_of_gfilenotify (void);
4379 #endif
4380
4381 /* Defined in inotify.c */
4382 #ifdef HAVE_INOTIFY
4383 extern void syms_of_inotify (void);
4384 #endif
4385
4386 #ifdef HAVE_W32NOTIFY
4387 /* Defined on w32notify.c. */
4388 extern void syms_of_w32notify (void);
4389 #endif
4390
4391 /* Defined in xfaces.c. */
4392 extern Lisp_Object Qdefault, Qfringe;
4393 extern Lisp_Object Qscroll_bar, Qcursor;
4394 extern Lisp_Object Qmode_line_inactive;
4395 extern Lisp_Object Qface;
4396 extern Lisp_Object Qnormal;
4397 extern Lisp_Object QCfamily, QCweight, QCslant;
4398 extern Lisp_Object QCheight, QCname, QCwidth, QCforeground, QCbackground;
4399 extern Lisp_Object Qextra_light, Qlight, Qsemi_light, Qsemi_bold;
4400 extern Lisp_Object Qbold, Qextra_bold, Qultra_bold;
4401 extern Lisp_Object Qoblique, Qitalic;
4402 extern Lisp_Object Vface_alternative_font_family_alist;
4403 extern Lisp_Object Vface_alternative_font_registry_alist;
4404 extern void syms_of_xfaces (void);
4405
4406 #ifdef HAVE_X_WINDOWS
4407 /* Defined in xfns.c. */
4408 extern void syms_of_xfns (void);
4409
4410 /* Defined in xsmfns.c. */
4411 extern void syms_of_xsmfns (void);
4412
4413 /* Defined in xselect.c. */
4414 extern void syms_of_xselect (void);
4415
4416 /* Defined in xterm.c. */
4417 extern void syms_of_xterm (void);
4418 #endif /* HAVE_X_WINDOWS */
4419
4420 #ifdef HAVE_WINDOW_SYSTEM
4421 /* Defined in xterm.c, nsterm.m, w32term.c. */
4422 extern char *x_get_keysym_name (int);
4423 #endif /* HAVE_WINDOW_SYSTEM */
4424
4425 #ifdef HAVE_LIBXML2
4426 /* Defined in xml.c. */
4427 extern void syms_of_xml (void);
4428 extern void xml_cleanup_parser (void);
4429 #endif
4430
4431 #ifdef HAVE_ZLIB
4432 /* Defined in decompress.c. */
4433 extern void syms_of_decompress (void);
4434 #endif
4435
4436 #ifdef HAVE_DBUS
4437 /* Defined in dbusbind.c. */
4438 void syms_of_dbusbind (void);
4439 #endif
4440
4441
4442 /* Defined in profiler.c. */
4443 extern bool profiler_memory_running;
4444 extern void malloc_probe (size_t);
4445 extern void syms_of_profiler (void);
4446
4447
4448 #ifdef DOS_NT
4449 /* Defined in msdos.c, w32.c. */
4450 extern char *emacs_root_dir (void);
4451 #endif /* DOS_NT */
4452
4453 /* Defined in lastfile.c. */
4454 extern char my_edata[];
4455 extern char my_endbss[];
4456 extern char *my_endbss_static;
4457
4458 /* True means ^G can quit instantly. */
4459 extern bool immediate_quit;
4460
4461 extern void *xmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4462 extern void *xzalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4463 extern void *xrealloc (void *, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
4464 extern void xfree (void *);
4465 extern void *xnmalloc (ptrdiff_t, ptrdiff_t) ATTRIBUTE_MALLOC_SIZE ((1,2));
4466 extern void *xnrealloc (void *, ptrdiff_t, ptrdiff_t)
4467 ATTRIBUTE_ALLOC_SIZE ((2,3));
4468 extern void *xpalloc (void *, ptrdiff_t *, ptrdiff_t, ptrdiff_t, ptrdiff_t);
4469
4470 extern char *xstrdup (const char *) ATTRIBUTE_MALLOC;
4471 extern char *xlispstrdup (Lisp_Object) ATTRIBUTE_MALLOC;
4472 extern void dupstring (char **, char const *);
4473
4474 /* Make DEST a copy of STRING's data. Return a pointer to DEST's terminating
4475 null byte. This is like stpcpy, except the source is a Lisp string. */
4476
4477 INLINE char *
4478 lispstpcpy (char *dest, Lisp_Object string)
4479 {
4480 ptrdiff_t len = SBYTES (string);
4481 memcpy (dest, SDATA (string), len + 1);
4482 return dest + len;
4483 }
4484
4485 extern void xputenv (const char *);
4486
4487 extern char *egetenv_internal (const char *, ptrdiff_t);
4488
4489 INLINE char *
4490 egetenv (const char *var)
4491 {
4492 /* When VAR is a string literal, strlen can be optimized away. */
4493 return egetenv_internal (var, strlen (var));
4494 }
4495
4496 /* Set up the name of the machine we're running on. */
4497 extern void init_system_name (void);
4498
4499 /* Return the absolute value of X. X should be a signed integer
4500 expression without side effects, and X's absolute value should not
4501 exceed the maximum for its promoted type. This is called 'eabs'
4502 because 'abs' is reserved by the C standard. */
4503 #define eabs(x) ((x) < 0 ? -(x) : (x))
4504
4505 /* Return a fixnum or float, depending on whether VAL fits in a Lisp
4506 fixnum. */
4507
4508 #define make_fixnum_or_float(val) \
4509 (FIXNUM_OVERFLOW_P (val) ? make_float (val) : make_number (val))
4510
4511 /* SAFE_ALLOCA normally allocates memory on the stack, but if size is
4512 larger than MAX_ALLOCA, use xmalloc to avoid overflowing the stack. */
4513
4514 enum MAX_ALLOCA { MAX_ALLOCA = 16 * 1024 };
4515
4516 extern void *record_xmalloc (size_t) ATTRIBUTE_ALLOC_SIZE ((1));
4517
4518 #define USE_SAFE_ALLOCA \
4519 ptrdiff_t sa_avail = MAX_ALLOCA; \
4520 ptrdiff_t sa_count = SPECPDL_INDEX (); bool sa_must_free = false
4521
4522 #define AVAIL_ALLOCA(size) (sa_avail -= (size), alloca (size))
4523
4524 /* SAFE_ALLOCA allocates a simple buffer. */
4525
4526 #define SAFE_ALLOCA(size) ((size) <= sa_avail \
4527 ? AVAIL_ALLOCA (size) \
4528 : (sa_must_free = true, record_xmalloc (size)))
4529
4530 /* SAFE_NALLOCA sets BUF to a newly allocated array of MULTIPLIER *
4531 NITEMS items, each of the same type as *BUF. MULTIPLIER must
4532 positive. The code is tuned for MULTIPLIER being a constant. */
4533
4534 #define SAFE_NALLOCA(buf, multiplier, nitems) \
4535 do { \
4536 if ((nitems) <= sa_avail / sizeof *(buf) / (multiplier)) \
4537 (buf) = AVAIL_ALLOCA (sizeof *(buf) * (multiplier) * (nitems)); \
4538 else \
4539 { \
4540 (buf) = xnmalloc (nitems, sizeof *(buf) * (multiplier)); \
4541 sa_must_free = true; \
4542 record_unwind_protect_ptr (xfree, buf); \
4543 } \
4544 } while (false)
4545
4546 /* SAFE_ALLOCA_STRING allocates a C copy of a Lisp string. */
4547
4548 #define SAFE_ALLOCA_STRING(ptr, string) \
4549 do { \
4550 (ptr) = SAFE_ALLOCA (SBYTES (string) + 1); \
4551 memcpy (ptr, SDATA (string), SBYTES (string) + 1); \
4552 } while (false)
4553
4554 /* SAFE_FREE frees xmalloced memory and enables GC as needed. */
4555
4556 #define SAFE_FREE() \
4557 do { \
4558 if (sa_must_free) { \
4559 sa_must_free = false; \
4560 unbind_to (sa_count, Qnil); \
4561 } \
4562 } while (false)
4563
4564
4565 /* Return floor (NBYTES / WORD_SIZE). */
4566
4567 INLINE ptrdiff_t
4568 lisp_word_count (ptrdiff_t nbytes)
4569 {
4570 if (-1 >> 1 == -1)
4571 switch (word_size)
4572 {
4573 case 2: return nbytes >> 1;
4574 case 4: return nbytes >> 2;
4575 case 8: return nbytes >> 3;
4576 case 16: return nbytes >> 4;
4577 }
4578 return nbytes / word_size - (nbytes % word_size < 0);
4579 }
4580
4581 /* SAFE_ALLOCA_LISP allocates an array of Lisp_Objects. */
4582
4583 #define SAFE_ALLOCA_LISP(buf, nelt) \
4584 do { \
4585 if ((nelt) <= lisp_word_count (sa_avail)) \
4586 (buf) = AVAIL_ALLOCA ((nelt) * word_size); \
4587 else if ((nelt) <= min (PTRDIFF_MAX, SIZE_MAX) / word_size) \
4588 { \
4589 Lisp_Object arg_; \
4590 (buf) = xmalloc ((nelt) * word_size); \
4591 arg_ = make_save_memory (buf, nelt); \
4592 sa_must_free = true; \
4593 record_unwind_protect (free_save_value, arg_); \
4594 } \
4595 else \
4596 memory_full (SIZE_MAX); \
4597 } while (false)
4598
4599
4600 /* If USE_STACK_LISP_OBJECTS, define macros that and functions that allocate
4601 block-scoped conses and function-scoped strings. These objects are not
4602 managed by the garbage collector, so they are dangerous: passing them
4603 out of their scope (e.g., to user code) results in undefined behavior.
4604 Conversely, they have better performance because GC is not involved.
4605
4606 This feature is experimental and requires careful debugging. It's enabled
4607 by default if GCC or a compiler that mimics GCC well (like Intel C/C++) is
4608 used, except clang (see notice above). For other compilers, brave users can
4609 compile with CPPFLAGS='-DUSE_STACK_LISP_OBJECTS=1' to get into the game.
4610 Note that this feature requires GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS. */
4611
4612 #ifdef GCALIGNED
4613
4614 /* No tricks if struct Lisp_Cons is always aligned. */
4615
4616 # define SCOPED_CONS_INITIALIZER(a, b) &((struct Lisp_Cons) { a, { b } })
4617
4618 #else /* not GCALIGNED */
4619
4620 /* A struct Lisp_Cons inside a union that is no larger and may be
4621 better-aligned. */
4622
4623 union Aligned_Cons
4624 {
4625 struct Lisp_Cons s;
4626 double d; intmax_t i; void *p;
4627 };
4628
4629 verify (alignof (union Aligned_Cons) % GCALIGNMENT == 0);
4630 verify (sizeof (struct Lisp_Cons) == sizeof (union Aligned_Cons));
4631
4632 # define SCOPED_CONS_INITIALIZER(a, b) \
4633 &((union Aligned_Cons) { { a, { b } } }.s)
4634
4635 #endif /* GCALIGNED */
4636
4637 /* Basic stack-based cons allocation. */
4638
4639 #if USE_STACK_LISP_OBJECTS
4640 # define scoped_cons(a, b) \
4641 make_lisp_ptr (SCOPED_CONS_INITIALIZER (a, b), Lisp_Cons)
4642 # define scoped_list1(a) scoped_cons (a, Qnil)
4643 # define scoped_list2(a, b) scoped_cons (a, scoped_list1 (b))
4644 # define scoped_list3(a, b, c) scoped_cons (a, scoped_list2 (b, c))
4645 # define scoped_list4(a, b, c, d) scoped_cons (a, scoped_list3 (b, c, d))
4646 #else
4647 # define scoped_cons(a, b) Fcons (a, b)
4648 # define scoped_list1(a) list1 (a)
4649 # define scoped_list2(a, b) list2 (a, b)
4650 # define scoped_list3(a, b, c) list3 (a, b, c)
4651 # define scoped_list4(a, b, c, d) list4 (a, b, c, d)
4652 #endif
4653
4654 /* On-stack string allocation requires __builtin_constant_p, statement
4655 expressions and GCALIGNMENT-aligned alloca. All from the above is
4656 assumed for GCC. At least for clang < 3.6, alloca isn't properly
4657 aligned in some cases. In the absence of solid information, play
4658 it safe for other non-GCC compilers. */
4659
4660 #if USE_STACK_LISP_OBJECTS && __GNUC__ && !__clang__
4661
4662 /* Used to check whether stack-allocated strings are ASCII-only. */
4663
4664 #ifdef ENABLE_CHECKING
4665 extern const char * verify_ascii (const char *);
4666 #else
4667 #define verify_ascii(str) (str)
4668 #endif
4669
4670 /* Return number of bytes needed for Lisp string of length NBYTES. */
4671
4672 INLINE ptrdiff_t
4673 lisp_string_size (ptrdiff_t nbytes)
4674 {
4675 return sizeof (struct Lisp_String) + nbytes + 1;
4676 }
4677
4678 /* Return function-scoped unibyte Lisp string with contents STR of length
4679 NBYTES and memory footprint of MEMSIZE bytes if the latter doesn't exceed
4680 MAX_ALLOCA, abort otherwise. */
4681
4682 # define make_local_string(str, memsize, nbytes) \
4683 ((memsize < MAX_ALLOCA) \
4684 ? ({ struct Lisp_String *s_ = alloca (memsize); \
4685 s_->data = (unsigned char *) (s_ + 1); \
4686 memcpy (s_->data, verify_ascii (str), nbytes + 1); \
4687 s_->size = nbytes, s_->size_byte = -1; \
4688 s_->intervals = NULL; \
4689 make_lisp_ptr (s_, Lisp_String); }) \
4690 : (emacs_abort (), Qnil))
4691
4692 /* If STR is a compile-time string constant, build function-scoped Lisp string
4693 from it, fall back to regular Lisp string otherwise. We assume compile-time
4694 string constants never exceeds MAX_ALLOCA - sizeof (Lisp_String) - 1. */
4695
4696 # define build_local_string(str) \
4697 (__builtin_constant_p (str) \
4698 ? make_local_string \
4699 (str, lisp_string_size (strlen (str)), strlen (str)) \
4700 : build_string (str))
4701
4702 #else /* not USE_STACK_LISP_OBJECTS && __GNUC__ && !__clang__ */
4703
4704 INLINE Lisp_Object
4705 build_local_string (const char *str)
4706 {
4707 return build_string (str);
4708 }
4709
4710 #endif /* not USE_STACK_LISP_OBJECTS && __GNUC__ && !__clang__ */
4711
4712 /* Loop over all tails of a list, checking for cycles.
4713 FIXME: Make tortoise and n internal declarations.
4714 FIXME: Unroll the loop body so we don't need `n'. */
4715 #define FOR_EACH_TAIL(hare, list, tortoise, n) \
4716 for ((tortoise) = (hare) = (list), (n) = true; \
4717 CONSP (hare); \
4718 (hare = XCDR (hare), (n) = !(n), \
4719 ((n) \
4720 ? (EQ (hare, tortoise) \
4721 ? xsignal1 (Qcircular_list, list) \
4722 : (void) 0) \
4723 /* Move tortoise before the next iteration, in case */ \
4724 /* the next iteration does an Fsetcdr. */ \
4725 : (void) ((tortoise) = XCDR (tortoise)))))
4726
4727 /* Do a `for' loop over alist values. */
4728
4729 #define FOR_EACH_ALIST_VALUE(head_var, list_var, value_var) \
4730 for ((list_var) = (head_var); \
4731 (CONSP (list_var) && ((value_var) = XCDR (XCAR (list_var)), true)); \
4732 (list_var) = XCDR (list_var))
4733
4734 /* Check whether it's time for GC, and run it if so. */
4735
4736 INLINE void
4737 maybe_gc (void)
4738 {
4739 if ((consing_since_gc > gc_cons_threshold
4740 && consing_since_gc > gc_relative_threshold)
4741 || (!NILP (Vmemory_full)
4742 && consing_since_gc > memory_full_cons_threshold))
4743 Fgarbage_collect ();
4744 }
4745
4746 INLINE bool
4747 functionp (Lisp_Object object)
4748 {
4749 if (SYMBOLP (object) && !NILP (Ffboundp (object)))
4750 {
4751 object = Findirect_function (object, Qt);
4752
4753 if (CONSP (object) && EQ (XCAR (object), Qautoload))
4754 {
4755 /* Autoloaded symbols are functions, except if they load
4756 macros or keymaps. */
4757 int i;
4758 for (i = 0; i < 4 && CONSP (object); i++)
4759 object = XCDR (object);
4760
4761 return ! (CONSP (object) && !NILP (XCAR (object)));
4762 }
4763 }
4764
4765 if (SUBRP (object))
4766 return XSUBR (object)->max_args != UNEVALLED;
4767 else if (COMPILEDP (object))
4768 return true;
4769 else if (CONSP (object))
4770 {
4771 Lisp_Object car = XCAR (object);
4772 return EQ (car, Qlambda) || EQ (car, Qclosure);
4773 }
4774 else
4775 return false;
4776 }
4777
4778 INLINE_HEADER_END
4779
4780 #endif /* EMACS_LISP_H */