]> code.delx.au - gnu-emacs/blob - src/regex.c
(init_baud_rate) [USE_GETOBAUD]: Use getobaud.
[gnu-emacs] / src / regex.c
1 /* Extended regular expression matching and search library,
2 version 0.12.
3 (Implements POSIX draft P10003.2/D11.2, except for
4 internationalization features.)
5
6 Copyright (C) 1993, 1994 Free Software Foundation, Inc.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 /* AIX requires this to be the first thing in the file. */
23 #if defined (_AIX) && !defined (REGEX_MALLOC)
24 #pragma alloca
25 #endif
26
27 #define _GNU_SOURCE
28
29 #ifdef HAVE_CONFIG_H
30 #if defined (emacs) || defined (CONFIG_BROKETS)
31 /* We use <config.h> instead of "config.h" so that a compilation
32 using -I. -I$srcdir will use ./config.h rather than $srcdir/config.h
33 (which it would do because it found this file in $srcdir). */
34 #include <config.h>
35 #else
36 #include "config.h"
37 #endif
38 #endif
39
40 /* We need this for `regex.h', and perhaps for the Emacs include files. */
41 #include <sys/types.h>
42
43 /* The `emacs' switch turns on certain matching commands
44 that make sense only in Emacs. */
45 #ifdef emacs
46
47 #include "lisp.h"
48 #include "buffer.h"
49 #include "syntax.h"
50
51 /* Emacs uses `NULL' as a predicate. */
52 #undef NULL
53
54 #else /* not emacs */
55
56 #ifdef STDC_HEADERS
57 #include <stdlib.h>
58 #else
59 char *malloc ();
60 char *realloc ();
61 #endif
62
63
64 /* We used to test for `BSTRING' here, but only GCC and Emacs define
65 `BSTRING', as far as I know, and neither of them use this code. */
66 #ifndef INHIBIT_STRING_HEADER
67 #if HAVE_STRING_H || STDC_HEADERS
68 #include <string.h>
69 #ifndef bcmp
70 #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
71 #endif
72 #ifndef bcopy
73 #define bcopy(s, d, n) memcpy ((d), (s), (n))
74 #endif
75 #ifndef bzero
76 #define bzero(s, n) memset ((s), 0, (n))
77 #endif
78 #else
79 #include <strings.h>
80 #endif
81 #endif
82
83 /* Define the syntax stuff for \<, \>, etc. */
84
85 /* This must be nonzero for the wordchar and notwordchar pattern
86 commands in re_match_2. */
87 #ifndef Sword
88 #define Sword 1
89 #endif
90
91 #ifdef SYNTAX_TABLE
92
93 extern char *re_syntax_table;
94
95 #else /* not SYNTAX_TABLE */
96
97 /* How many characters in the character set. */
98 #define CHAR_SET_SIZE 256
99
100 static char re_syntax_table[CHAR_SET_SIZE];
101
102 static void
103 init_syntax_once ()
104 {
105 register int c;
106 static int done = 0;
107
108 if (done)
109 return;
110
111 bzero (re_syntax_table, sizeof re_syntax_table);
112
113 for (c = 'a'; c <= 'z'; c++)
114 re_syntax_table[c] = Sword;
115
116 for (c = 'A'; c <= 'Z'; c++)
117 re_syntax_table[c] = Sword;
118
119 for (c = '0'; c <= '9'; c++)
120 re_syntax_table[c] = Sword;
121
122 re_syntax_table['_'] = Sword;
123
124 done = 1;
125 }
126
127 #endif /* not SYNTAX_TABLE */
128
129 #define SYNTAX(c) re_syntax_table[c]
130
131 #endif /* not emacs */
132 \f
133 /* Get the interface, including the syntax bits. */
134 #include "regex.h"
135
136 /* isalpha etc. are used for the character classes. */
137 #include <ctype.h>
138
139 /* Jim Meyering writes:
140
141 "... Some ctype macros are valid only for character codes that
142 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
143 using /bin/cc or gcc but without giving an ansi option). So, all
144 ctype uses should be through macros like ISPRINT... If
145 STDC_HEADERS is defined, then autoconf has verified that the ctype
146 macros don't need to be guarded with references to isascii. ...
147 Defining isascii to 1 should let any compiler worth its salt
148 eliminate the && through constant folding." */
149
150 #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
151 #define ISASCII(c) 1
152 #else
153 #define ISASCII(c) isascii(c)
154 #endif
155
156 #ifdef isblank
157 #define ISBLANK(c) (ISASCII (c) && isblank (c))
158 #else
159 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
160 #endif
161 #ifdef isgraph
162 #define ISGRAPH(c) (ISASCII (c) && isgraph (c))
163 #else
164 #define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
165 #endif
166
167 #define ISPRINT(c) (ISASCII (c) && isprint (c))
168 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
169 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
170 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
171 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
172 #define ISLOWER(c) (ISASCII (c) && islower (c))
173 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
174 #define ISSPACE(c) (ISASCII (c) && isspace (c))
175 #define ISUPPER(c) (ISASCII (c) && isupper (c))
176 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
177
178 #ifndef NULL
179 #define NULL 0
180 #endif
181
182 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
183 since ours (we hope) works properly with all combinations of
184 machines, compilers, `char' and `unsigned char' argument types.
185 (Per Bothner suggested the basic approach.) */
186 #undef SIGN_EXTEND_CHAR
187 #if __STDC__
188 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
189 #else /* not __STDC__ */
190 /* As in Harbison and Steele. */
191 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
192 #endif
193 \f
194 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
195 use `alloca' instead of `malloc'. This is because using malloc in
196 re_search* or re_match* could cause memory leaks when C-g is used in
197 Emacs; also, malloc is slower and causes storage fragmentation. On
198 the other hand, malloc is more portable, and easier to debug.
199
200 Because we sometimes use alloca, some routines have to be macros,
201 not functions -- `alloca'-allocated space disappears at the end of the
202 function it is called in. */
203
204 #ifdef REGEX_MALLOC
205
206 #define REGEX_ALLOCATE malloc
207 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
208
209 #else /* not REGEX_MALLOC */
210
211 /* Emacs already defines alloca, sometimes. */
212 #ifndef alloca
213
214 /* Make alloca work the best possible way. */
215 #ifdef __GNUC__
216 #define alloca __builtin_alloca
217 #else /* not __GNUC__ */
218 #if HAVE_ALLOCA_H
219 #include <alloca.h>
220 #else /* not __GNUC__ or HAVE_ALLOCA_H */
221 #ifndef _AIX /* Already did AIX, up at the top. */
222 char *alloca ();
223 #endif /* not _AIX */
224 #endif /* not HAVE_ALLOCA_H */
225 #endif /* not __GNUC__ */
226
227 #endif /* not alloca */
228
229 #define REGEX_ALLOCATE alloca
230
231 /* Assumes a `char *destination' variable. */
232 #define REGEX_REALLOCATE(source, osize, nsize) \
233 (destination = (char *) alloca (nsize), \
234 bcopy (source, destination, osize), \
235 destination)
236
237 #endif /* not REGEX_MALLOC */
238
239
240 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
241 `string1' or just past its end. This works if PTR is NULL, which is
242 a good thing. */
243 #define FIRST_STRING_P(ptr) \
244 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
245
246 /* (Re)Allocate N items of type T using malloc, or fail. */
247 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
248 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
249 #define RETALLOC_IF(addr, n, t) \
250 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
251 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
252
253 #define BYTEWIDTH 8 /* In bits. */
254
255 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
256
257 #undef MAX
258 #undef MIN
259 #define MAX(a, b) ((a) > (b) ? (a) : (b))
260 #define MIN(a, b) ((a) < (b) ? (a) : (b))
261
262 typedef char boolean;
263 #define false 0
264 #define true 1
265
266 static int re_match_2_internal ();
267 \f
268 /* These are the command codes that appear in compiled regular
269 expressions. Some opcodes are followed by argument bytes. A
270 command code can specify any interpretation whatsoever for its
271 arguments. Zero bytes may appear in the compiled regular expression.
272
273 The value of `exactn' is needed in search.c (search_buffer) in Emacs.
274 So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
275 `exactn' we use here must also be 1. */
276
277 typedef enum
278 {
279 no_op = 0,
280
281 /* Followed by one byte giving n, then by n literal bytes. */
282 exactn = 1,
283
284 /* Matches any (more or less) character. */
285 anychar,
286
287 /* Matches any one char belonging to specified set. First
288 following byte is number of bitmap bytes. Then come bytes
289 for a bitmap saying which chars are in. Bits in each byte
290 are ordered low-bit-first. A character is in the set if its
291 bit is 1. A character too large to have a bit in the map is
292 automatically not in the set. */
293 charset,
294
295 /* Same parameters as charset, but match any character that is
296 not one of those specified. */
297 charset_not,
298
299 /* Start remembering the text that is matched, for storing in a
300 register. Followed by one byte with the register number, in
301 the range 0 to one less than the pattern buffer's re_nsub
302 field. Then followed by one byte with the number of groups
303 inner to this one. (This last has to be part of the
304 start_memory only because we need it in the on_failure_jump
305 of re_match_2.) */
306 start_memory,
307
308 /* Stop remembering the text that is matched and store it in a
309 memory register. Followed by one byte with the register
310 number, in the range 0 to one less than `re_nsub' in the
311 pattern buffer, and one byte with the number of inner groups,
312 just like `start_memory'. (We need the number of inner
313 groups here because we don't have any easy way of finding the
314 corresponding start_memory when we're at a stop_memory.) */
315 stop_memory,
316
317 /* Match a duplicate of something remembered. Followed by one
318 byte containing the register number. */
319 duplicate,
320
321 /* Fail unless at beginning of line. */
322 begline,
323
324 /* Fail unless at end of line. */
325 endline,
326
327 /* Succeeds if at beginning of buffer (if emacs) or at beginning
328 of string to be matched (if not). */
329 begbuf,
330
331 /* Analogously, for end of buffer/string. */
332 endbuf,
333
334 /* Followed by two byte relative address to which to jump. */
335 jump,
336
337 /* Same as jump, but marks the end of an alternative. */
338 jump_past_alt,
339
340 /* Followed by two-byte relative address of place to resume at
341 in case of failure. */
342 on_failure_jump,
343
344 /* Like on_failure_jump, but pushes a placeholder instead of the
345 current string position when executed. */
346 on_failure_keep_string_jump,
347
348 /* Throw away latest failure point and then jump to following
349 two-byte relative address. */
350 pop_failure_jump,
351
352 /* Change to pop_failure_jump if know won't have to backtrack to
353 match; otherwise change to jump. This is used to jump
354 back to the beginning of a repeat. If what follows this jump
355 clearly won't match what the repeat does, such that we can be
356 sure that there is no use backtracking out of repetitions
357 already matched, then we change it to a pop_failure_jump.
358 Followed by two-byte address. */
359 maybe_pop_jump,
360
361 /* Jump to following two-byte address, and push a dummy failure
362 point. This failure point will be thrown away if an attempt
363 is made to use it for a failure. A `+' construct makes this
364 before the first repeat. Also used as an intermediary kind
365 of jump when compiling an alternative. */
366 dummy_failure_jump,
367
368 /* Push a dummy failure point and continue. Used at the end of
369 alternatives. */
370 push_dummy_failure,
371
372 /* Followed by two-byte relative address and two-byte number n.
373 After matching N times, jump to the address upon failure. */
374 succeed_n,
375
376 /* Followed by two-byte relative address, and two-byte number n.
377 Jump to the address N times, then fail. */
378 jump_n,
379
380 /* Set the following two-byte relative address to the
381 subsequent two-byte number. The address *includes* the two
382 bytes of number. */
383 set_number_at,
384
385 wordchar, /* Matches any word-constituent character. */
386 notwordchar, /* Matches any char that is not a word-constituent. */
387
388 wordbeg, /* Succeeds if at word beginning. */
389 wordend, /* Succeeds if at word end. */
390
391 wordbound, /* Succeeds if at a word boundary. */
392 notwordbound /* Succeeds if not at a word boundary. */
393
394 #ifdef emacs
395 ,before_dot, /* Succeeds if before point. */
396 at_dot, /* Succeeds if at point. */
397 after_dot, /* Succeeds if after point. */
398
399 /* Matches any character whose syntax is specified. Followed by
400 a byte which contains a syntax code, e.g., Sword. */
401 syntaxspec,
402
403 /* Matches any character whose syntax is not that specified. */
404 notsyntaxspec
405 #endif /* emacs */
406 } re_opcode_t;
407 \f
408 /* Common operations on the compiled pattern. */
409
410 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
411
412 #define STORE_NUMBER(destination, number) \
413 do { \
414 (destination)[0] = (number) & 0377; \
415 (destination)[1] = (number) >> 8; \
416 } while (0)
417
418 /* Same as STORE_NUMBER, except increment DESTINATION to
419 the byte after where the number is stored. Therefore, DESTINATION
420 must be an lvalue. */
421
422 #define STORE_NUMBER_AND_INCR(destination, number) \
423 do { \
424 STORE_NUMBER (destination, number); \
425 (destination) += 2; \
426 } while (0)
427
428 /* Put into DESTINATION a number stored in two contiguous bytes starting
429 at SOURCE. */
430
431 #define EXTRACT_NUMBER(destination, source) \
432 do { \
433 (destination) = *(source) & 0377; \
434 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
435 } while (0)
436
437 #ifdef DEBUG
438 static void
439 extract_number (dest, source)
440 int *dest;
441 unsigned char *source;
442 {
443 int temp = SIGN_EXTEND_CHAR (*(source + 1));
444 *dest = *source & 0377;
445 *dest += temp << 8;
446 }
447
448 #ifndef EXTRACT_MACROS /* To debug the macros. */
449 #undef EXTRACT_NUMBER
450 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
451 #endif /* not EXTRACT_MACROS */
452
453 #endif /* DEBUG */
454
455 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
456 SOURCE must be an lvalue. */
457
458 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
459 do { \
460 EXTRACT_NUMBER (destination, source); \
461 (source) += 2; \
462 } while (0)
463
464 #ifdef DEBUG
465 static void
466 extract_number_and_incr (destination, source)
467 int *destination;
468 unsigned char **source;
469 {
470 extract_number (destination, *source);
471 *source += 2;
472 }
473
474 #ifndef EXTRACT_MACROS
475 #undef EXTRACT_NUMBER_AND_INCR
476 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
477 extract_number_and_incr (&dest, &src)
478 #endif /* not EXTRACT_MACROS */
479
480 #endif /* DEBUG */
481 \f
482 /* If DEBUG is defined, Regex prints many voluminous messages about what
483 it is doing (if the variable `debug' is nonzero). If linked with the
484 main program in `iregex.c', you can enter patterns and strings
485 interactively. And if linked with the main program in `main.c' and
486 the other test files, you can run the already-written tests. */
487
488 #ifdef DEBUG
489
490 /* We use standard I/O for debugging. */
491 #include <stdio.h>
492
493 /* It is useful to test things that ``must'' be true when debugging. */
494 #include <assert.h>
495
496 static int debug = 0;
497
498 #define DEBUG_STATEMENT(e) e
499 #define DEBUG_PRINT1(x) if (debug) printf (x)
500 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
501 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
502 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
503 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
504 if (debug) print_partial_compiled_pattern (s, e)
505 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
506 if (debug) print_double_string (w, s1, sz1, s2, sz2)
507
508
509 extern void printchar ();
510
511 /* Print the fastmap in human-readable form. */
512
513 void
514 print_fastmap (fastmap)
515 char *fastmap;
516 {
517 unsigned was_a_range = 0;
518 unsigned i = 0;
519
520 while (i < (1 << BYTEWIDTH))
521 {
522 if (fastmap[i++])
523 {
524 was_a_range = 0;
525 printchar (i - 1);
526 while (i < (1 << BYTEWIDTH) && fastmap[i])
527 {
528 was_a_range = 1;
529 i++;
530 }
531 if (was_a_range)
532 {
533 printf ("-");
534 printchar (i - 1);
535 }
536 }
537 }
538 putchar ('\n');
539 }
540
541
542 /* Print a compiled pattern string in human-readable form, starting at
543 the START pointer into it and ending just before the pointer END. */
544
545 void
546 print_partial_compiled_pattern (start, end)
547 unsigned char *start;
548 unsigned char *end;
549 {
550 int mcnt, mcnt2;
551 unsigned char *p = start;
552 unsigned char *pend = end;
553
554 if (start == NULL)
555 {
556 printf ("(null)\n");
557 return;
558 }
559
560 /* Loop over pattern commands. */
561 while (p < pend)
562 {
563 printf ("%d:\t", p - start);
564
565 switch ((re_opcode_t) *p++)
566 {
567 case no_op:
568 printf ("/no_op");
569 break;
570
571 case exactn:
572 mcnt = *p++;
573 printf ("/exactn/%d", mcnt);
574 do
575 {
576 putchar ('/');
577 printchar (*p++);
578 }
579 while (--mcnt);
580 break;
581
582 case start_memory:
583 mcnt = *p++;
584 printf ("/start_memory/%d/%d", mcnt, *p++);
585 break;
586
587 case stop_memory:
588 mcnt = *p++;
589 printf ("/stop_memory/%d/%d", mcnt, *p++);
590 break;
591
592 case duplicate:
593 printf ("/duplicate/%d", *p++);
594 break;
595
596 case anychar:
597 printf ("/anychar");
598 break;
599
600 case charset:
601 case charset_not:
602 {
603 register int c, last = -100;
604 register int in_range = 0;
605
606 printf ("/charset [%s",
607 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
608
609 assert (p + *p < pend);
610
611 for (c = 0; c < 256; c++)
612 if (c / 8 < *p
613 && (p[1 + (c/8)] & (1 << (c % 8))))
614 {
615 /* Are we starting a range? */
616 if (last + 1 == c && ! in_range)
617 {
618 putchar ('-');
619 in_range = 1;
620 }
621 /* Have we broken a range? */
622 else if (last + 1 != c && in_range)
623 {
624 printchar (last);
625 in_range = 0;
626 }
627
628 if (! in_range)
629 printchar (c);
630
631 last = c;
632 }
633
634 if (in_range)
635 printchar (last);
636
637 putchar (']');
638
639 p += 1 + *p;
640 }
641 break;
642
643 case begline:
644 printf ("/begline");
645 break;
646
647 case endline:
648 printf ("/endline");
649 break;
650
651 case on_failure_jump:
652 extract_number_and_incr (&mcnt, &p);
653 printf ("/on_failure_jump to %d", p + mcnt - start);
654 break;
655
656 case on_failure_keep_string_jump:
657 extract_number_and_incr (&mcnt, &p);
658 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
659 break;
660
661 case dummy_failure_jump:
662 extract_number_and_incr (&mcnt, &p);
663 printf ("/dummy_failure_jump to %d", p + mcnt - start);
664 break;
665
666 case push_dummy_failure:
667 printf ("/push_dummy_failure");
668 break;
669
670 case maybe_pop_jump:
671 extract_number_and_incr (&mcnt, &p);
672 printf ("/maybe_pop_jump to %d", p + mcnt - start);
673 break;
674
675 case pop_failure_jump:
676 extract_number_and_incr (&mcnt, &p);
677 printf ("/pop_failure_jump to %d", p + mcnt - start);
678 break;
679
680 case jump_past_alt:
681 extract_number_and_incr (&mcnt, &p);
682 printf ("/jump_past_alt to %d", p + mcnt - start);
683 break;
684
685 case jump:
686 extract_number_and_incr (&mcnt, &p);
687 printf ("/jump to %d", p + mcnt - start);
688 break;
689
690 case succeed_n:
691 extract_number_and_incr (&mcnt, &p);
692 extract_number_and_incr (&mcnt2, &p);
693 printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2);
694 break;
695
696 case jump_n:
697 extract_number_and_incr (&mcnt, &p);
698 extract_number_and_incr (&mcnt2, &p);
699 printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2);
700 break;
701
702 case set_number_at:
703 extract_number_and_incr (&mcnt, &p);
704 extract_number_and_incr (&mcnt2, &p);
705 printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2);
706 break;
707
708 case wordbound:
709 printf ("/wordbound");
710 break;
711
712 case notwordbound:
713 printf ("/notwordbound");
714 break;
715
716 case wordbeg:
717 printf ("/wordbeg");
718 break;
719
720 case wordend:
721 printf ("/wordend");
722
723 #ifdef emacs
724 case before_dot:
725 printf ("/before_dot");
726 break;
727
728 case at_dot:
729 printf ("/at_dot");
730 break;
731
732 case after_dot:
733 printf ("/after_dot");
734 break;
735
736 case syntaxspec:
737 printf ("/syntaxspec");
738 mcnt = *p++;
739 printf ("/%d", mcnt);
740 break;
741
742 case notsyntaxspec:
743 printf ("/notsyntaxspec");
744 mcnt = *p++;
745 printf ("/%d", mcnt);
746 break;
747 #endif /* emacs */
748
749 case wordchar:
750 printf ("/wordchar");
751 break;
752
753 case notwordchar:
754 printf ("/notwordchar");
755 break;
756
757 case begbuf:
758 printf ("/begbuf");
759 break;
760
761 case endbuf:
762 printf ("/endbuf");
763 break;
764
765 default:
766 printf ("?%d", *(p-1));
767 }
768
769 putchar ('\n');
770 }
771
772 printf ("%d:\tend of pattern.\n", p - start);
773 }
774
775
776 void
777 print_compiled_pattern (bufp)
778 struct re_pattern_buffer *bufp;
779 {
780 unsigned char *buffer = bufp->buffer;
781
782 print_partial_compiled_pattern (buffer, buffer + bufp->used);
783 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
784
785 if (bufp->fastmap_accurate && bufp->fastmap)
786 {
787 printf ("fastmap: ");
788 print_fastmap (bufp->fastmap);
789 }
790
791 printf ("re_nsub: %d\t", bufp->re_nsub);
792 printf ("regs_alloc: %d\t", bufp->regs_allocated);
793 printf ("can_be_null: %d\t", bufp->can_be_null);
794 printf ("newline_anchor: %d\n", bufp->newline_anchor);
795 printf ("no_sub: %d\t", bufp->no_sub);
796 printf ("not_bol: %d\t", bufp->not_bol);
797 printf ("not_eol: %d\t", bufp->not_eol);
798 printf ("syntax: %d\n", bufp->syntax);
799 /* Perhaps we should print the translate table? */
800 }
801
802
803 void
804 print_double_string (where, string1, size1, string2, size2)
805 const char *where;
806 const char *string1;
807 const char *string2;
808 int size1;
809 int size2;
810 {
811 unsigned this_char;
812
813 if (where == NULL)
814 printf ("(null)");
815 else
816 {
817 if (FIRST_STRING_P (where))
818 {
819 for (this_char = where - string1; this_char < size1; this_char++)
820 printchar (string1[this_char]);
821
822 where = string2;
823 }
824
825 for (this_char = where - string2; this_char < size2; this_char++)
826 printchar (string2[this_char]);
827 }
828 }
829
830 #else /* not DEBUG */
831
832 #undef assert
833 #define assert(e)
834
835 #define DEBUG_STATEMENT(e)
836 #define DEBUG_PRINT1(x)
837 #define DEBUG_PRINT2(x1, x2)
838 #define DEBUG_PRINT3(x1, x2, x3)
839 #define DEBUG_PRINT4(x1, x2, x3, x4)
840 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
841 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
842
843 #endif /* not DEBUG */
844 \f
845 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
846 also be assigned to arbitrarily: each pattern buffer stores its own
847 syntax, so it can be changed between regex compilations. */
848 reg_syntax_t re_syntax_options = RE_SYNTAX_EMACS;
849
850
851 /* Specify the precise syntax of regexps for compilation. This provides
852 for compatibility for various utilities which historically have
853 different, incompatible syntaxes.
854
855 The argument SYNTAX is a bit mask comprised of the various bits
856 defined in regex.h. We return the old syntax. */
857
858 reg_syntax_t
859 re_set_syntax (syntax)
860 reg_syntax_t syntax;
861 {
862 reg_syntax_t ret = re_syntax_options;
863
864 re_syntax_options = syntax;
865 return ret;
866 }
867 \f
868 /* This table gives an error message for each of the error codes listed
869 in regex.h. Obviously the order here has to be same as there. */
870
871 static const char *re_error_msg[] =
872 { NULL, /* REG_NOERROR */
873 "No match", /* REG_NOMATCH */
874 "Invalid regular expression", /* REG_BADPAT */
875 "Invalid collation character", /* REG_ECOLLATE */
876 "Invalid character class name", /* REG_ECTYPE */
877 "Trailing backslash", /* REG_EESCAPE */
878 "Invalid back reference", /* REG_ESUBREG */
879 "Unmatched [ or [^", /* REG_EBRACK */
880 "Unmatched ( or \\(", /* REG_EPAREN */
881 "Unmatched \\{", /* REG_EBRACE */
882 "Invalid content of \\{\\}", /* REG_BADBR */
883 "Invalid range end", /* REG_ERANGE */
884 "Memory exhausted", /* REG_ESPACE */
885 "Invalid preceding regular expression", /* REG_BADRPT */
886 "Premature end of regular expression", /* REG_EEND */
887 "Regular expression too big", /* REG_ESIZE */
888 "Unmatched ) or \\)", /* REG_ERPAREN */
889 };
890 \f
891 /* Avoiding alloca during matching, to placate r_alloc. */
892
893 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
894 searching and matching functions should not call alloca. On some
895 systems, alloca is implemented in terms of malloc, and if we're
896 using the relocating allocator routines, then malloc could cause a
897 relocation, which might (if the strings being searched are in the
898 ralloc heap) shift the data out from underneath the regexp
899 routines.
900
901 Here's another reason to avoid allocation: Emacs
902 processes input from X in a signal handler; processing X input may
903 call malloc; if input arrives while a matching routine is calling
904 malloc, then we're scrod. But Emacs can't just block input while
905 calling matching routines; then we don't notice interrupts when
906 they come in. So, Emacs blocks input around all regexp calls
907 except the matching calls, which it leaves unprotected, in the
908 faith that they will not malloc. */
909
910 /* Normally, this is fine. */
911 #define MATCH_MAY_ALLOCATE
912
913 /* The match routines may not allocate if (1) they would do it with malloc
914 and (2) it's not safe for htem to use malloc. */
915 #if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && (defined (emacs) || defined (REL_ALLOC))
916 #undef MATCH_MAY_ALLOCATE
917 #endif
918
919 \f
920 /* Failure stack declarations and macros; both re_compile_fastmap and
921 re_match_2 use a failure stack. These have to be macros because of
922 REGEX_ALLOCATE. */
923
924
925 /* Number of failure points for which to initially allocate space
926 when matching. If this number is exceeded, we allocate more
927 space, so it is not a hard limit. */
928 #ifndef INIT_FAILURE_ALLOC
929 #define INIT_FAILURE_ALLOC 5
930 #endif
931
932 /* Roughly the maximum number of failure points on the stack. Would be
933 exactly that if always used MAX_FAILURE_SPACE each time we failed.
934 This is a variable only so users of regex can assign to it; we never
935 change it ourselves. */
936 int re_max_failures = 2000;
937
938 typedef unsigned char *fail_stack_elt_t;
939
940 typedef struct
941 {
942 fail_stack_elt_t *stack;
943 unsigned size;
944 unsigned avail; /* Offset of next open position. */
945 } fail_stack_type;
946
947 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
948 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
949 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
950 #define FAIL_STACK_TOP() (fail_stack.stack[fail_stack.avail])
951
952
953 /* Initialize `fail_stack'. Do `return -2' if the alloc fails. */
954
955 #ifdef MATCH_MAY_ALLOCATE
956 #define INIT_FAIL_STACK() \
957 do { \
958 fail_stack.stack = (fail_stack_elt_t *) \
959 REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
960 \
961 if (fail_stack.stack == NULL) \
962 return -2; \
963 \
964 fail_stack.size = INIT_FAILURE_ALLOC; \
965 fail_stack.avail = 0; \
966 } while (0)
967 #else
968 #define INIT_FAIL_STACK() \
969 do { \
970 fail_stack.avail = 0; \
971 } while (0)
972 #endif
973
974
975 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
976
977 Return 1 if succeeds, and 0 if either ran out of memory
978 allocating space for it or it was already too large.
979
980 REGEX_REALLOCATE requires `destination' be declared. */
981
982 #define DOUBLE_FAIL_STACK(fail_stack) \
983 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
984 ? 0 \
985 : ((fail_stack).stack = (fail_stack_elt_t *) \
986 REGEX_REALLOCATE ((fail_stack).stack, \
987 (fail_stack).size * sizeof (fail_stack_elt_t), \
988 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
989 \
990 (fail_stack).stack == NULL \
991 ? 0 \
992 : ((fail_stack).size <<= 1, \
993 1)))
994
995
996 /* Push PATTERN_OP on FAIL_STACK.
997
998 Return 1 if was able to do so and 0 if ran out of memory allocating
999 space to do so. */
1000 #define PUSH_PATTERN_OP(pattern_op, fail_stack) \
1001 ((FAIL_STACK_FULL () \
1002 && !DOUBLE_FAIL_STACK (fail_stack)) \
1003 ? 0 \
1004 : ((fail_stack).stack[(fail_stack).avail++] = pattern_op, \
1005 1))
1006
1007 /* This pushes an item onto the failure stack. Must be a four-byte
1008 value. Assumes the variable `fail_stack'. Probably should only
1009 be called from within `PUSH_FAILURE_POINT'. */
1010 #define PUSH_FAILURE_ITEM(item) \
1011 fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item
1012
1013 /* The complement operation. Assumes `fail_stack' is nonempty. */
1014 #define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail]
1015
1016 /* Used to omit pushing failure point id's when we're not debugging. */
1017 #ifdef DEBUG
1018 #define DEBUG_PUSH PUSH_FAILURE_ITEM
1019 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM ()
1020 #else
1021 #define DEBUG_PUSH(item)
1022 #define DEBUG_POP(item_addr)
1023 #endif
1024
1025
1026 /* Push the information about the state we will need
1027 if we ever fail back to it.
1028
1029 Requires variables fail_stack, regstart, regend, reg_info, and
1030 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
1031 declared.
1032
1033 Does `return FAILURE_CODE' if runs out of memory. */
1034
1035 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1036 do { \
1037 char *destination; \
1038 /* Must be int, so when we don't save any registers, the arithmetic \
1039 of 0 + -1 isn't done as unsigned. */ \
1040 int this_reg; \
1041 \
1042 DEBUG_STATEMENT (failure_id++); \
1043 DEBUG_STATEMENT (nfailure_points_pushed++); \
1044 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1045 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1046 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1047 \
1048 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
1049 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1050 \
1051 /* Ensure we have enough space allocated for what we will push. */ \
1052 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1053 { \
1054 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1055 return failure_code; \
1056 \
1057 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1058 (fail_stack).size); \
1059 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1060 } \
1061 \
1062 /* Push the info, starting with the registers. */ \
1063 DEBUG_PRINT1 ("\n"); \
1064 \
1065 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1066 this_reg++) \
1067 { \
1068 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
1069 DEBUG_STATEMENT (num_regs_pushed++); \
1070 \
1071 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1072 PUSH_FAILURE_ITEM (regstart[this_reg]); \
1073 \
1074 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1075 PUSH_FAILURE_ITEM (regend[this_reg]); \
1076 \
1077 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
1078 DEBUG_PRINT2 (" match_null=%d", \
1079 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1080 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1081 DEBUG_PRINT2 (" matched_something=%d", \
1082 MATCHED_SOMETHING (reg_info[this_reg])); \
1083 DEBUG_PRINT2 (" ever_matched=%d", \
1084 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1085 DEBUG_PRINT1 ("\n"); \
1086 PUSH_FAILURE_ITEM (reg_info[this_reg].word); \
1087 } \
1088 \
1089 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
1090 PUSH_FAILURE_ITEM (lowest_active_reg); \
1091 \
1092 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
1093 PUSH_FAILURE_ITEM (highest_active_reg); \
1094 \
1095 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
1096 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1097 PUSH_FAILURE_ITEM (pattern_place); \
1098 \
1099 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
1100 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1101 size2); \
1102 DEBUG_PRINT1 ("'\n"); \
1103 PUSH_FAILURE_ITEM (string_place); \
1104 \
1105 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1106 DEBUG_PUSH (failure_id); \
1107 } while (0)
1108
1109 /* This is the number of items that are pushed and popped on the stack
1110 for each register. */
1111 #define NUM_REG_ITEMS 3
1112
1113 /* Individual items aside from the registers. */
1114 #ifdef DEBUG
1115 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1116 #else
1117 #define NUM_NONREG_ITEMS 4
1118 #endif
1119
1120 /* We push at most this many items on the stack. */
1121 #define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1122
1123 /* We actually push this many items. */
1124 #define NUM_FAILURE_ITEMS \
1125 ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
1126 + NUM_NONREG_ITEMS)
1127
1128 /* How many items can still be added to the stack without overflowing it. */
1129 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1130
1131
1132 /* Pops what PUSH_FAIL_STACK pushes.
1133
1134 We restore into the parameters, all of which should be lvalues:
1135 STR -- the saved data position.
1136 PAT -- the saved pattern position.
1137 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1138 REGSTART, REGEND -- arrays of string positions.
1139 REG_INFO -- array of information about each subexpression.
1140
1141 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1142 `pend', `string1', `size1', `string2', and `size2'. */
1143
1144 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1145 { \
1146 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
1147 int this_reg; \
1148 const unsigned char *string_temp; \
1149 \
1150 assert (!FAIL_STACK_EMPTY ()); \
1151 \
1152 /* Remove failure points and point to how many regs pushed. */ \
1153 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1154 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1155 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1156 \
1157 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1158 \
1159 DEBUG_POP (&failure_id); \
1160 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1161 \
1162 /* If the saved string location is NULL, it came from an \
1163 on_failure_keep_string_jump opcode, and we want to throw away the \
1164 saved NULL, thus retaining our current position in the string. */ \
1165 string_temp = POP_FAILURE_ITEM (); \
1166 if (string_temp != NULL) \
1167 str = (const char *) string_temp; \
1168 \
1169 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
1170 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1171 DEBUG_PRINT1 ("'\n"); \
1172 \
1173 pat = (unsigned char *) POP_FAILURE_ITEM (); \
1174 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
1175 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1176 \
1177 /* Restore register info. */ \
1178 high_reg = (unsigned) POP_FAILURE_ITEM (); \
1179 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
1180 \
1181 low_reg = (unsigned) POP_FAILURE_ITEM (); \
1182 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
1183 \
1184 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1185 { \
1186 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
1187 \
1188 reg_info[this_reg].word = POP_FAILURE_ITEM (); \
1189 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
1190 \
1191 regend[this_reg] = (const char *) POP_FAILURE_ITEM (); \
1192 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1193 \
1194 regstart[this_reg] = (const char *) POP_FAILURE_ITEM (); \
1195 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1196 } \
1197 \
1198 DEBUG_STATEMENT (nfailure_points_popped++); \
1199 } /* POP_FAILURE_POINT */
1200
1201
1202 \f
1203 /* Structure for per-register (a.k.a. per-group) information.
1204 This must not be longer than one word, because we push this value
1205 onto the failure stack. Other register information, such as the
1206 starting and ending positions (which are addresses), and the list of
1207 inner groups (which is a bits list) are maintained in separate
1208 variables.
1209
1210 We are making a (strictly speaking) nonportable assumption here: that
1211 the compiler will pack our bit fields into something that fits into
1212 the type of `word', i.e., is something that fits into one item on the
1213 failure stack. */
1214 typedef union
1215 {
1216 fail_stack_elt_t word;
1217 struct
1218 {
1219 /* This field is one if this group can match the empty string,
1220 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1221 #define MATCH_NULL_UNSET_VALUE 3
1222 unsigned match_null_string_p : 2;
1223 unsigned is_active : 1;
1224 unsigned matched_something : 1;
1225 unsigned ever_matched_something : 1;
1226 } bits;
1227 } register_info_type;
1228
1229 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1230 #define IS_ACTIVE(R) ((R).bits.is_active)
1231 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1232 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1233
1234
1235 /* Call this when have matched a real character; it sets `matched' flags
1236 for the subexpressions which we are currently inside. Also records
1237 that those subexprs have matched. */
1238 #define SET_REGS_MATCHED() \
1239 do \
1240 { \
1241 unsigned r; \
1242 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1243 { \
1244 MATCHED_SOMETHING (reg_info[r]) \
1245 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1246 = 1; \
1247 } \
1248 } \
1249 while (0)
1250
1251
1252 /* Registers are set to a sentinel when they haven't yet matched. */
1253 #define REG_UNSET_VALUE ((char *) -1)
1254 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1255
1256
1257 \f
1258 /* How do we implement a missing MATCH_MAY_ALLOCATE?
1259 We make the fail stack a global thing, and then grow it to
1260 re_max_failures when we compile. */
1261 #ifndef MATCH_MAY_ALLOCATE
1262 static fail_stack_type fail_stack;
1263
1264 static const char ** regstart, ** regend;
1265 static const char ** old_regstart, ** old_regend;
1266 static const char **best_regstart, **best_regend;
1267 static register_info_type *reg_info;
1268 static const char **reg_dummy;
1269 static register_info_type *reg_info_dummy;
1270 #endif
1271
1272 \f
1273 /* Subroutine declarations and macros for regex_compile. */
1274
1275 static void store_op1 (), store_op2 ();
1276 static void insert_op1 (), insert_op2 ();
1277 static boolean at_begline_loc_p (), at_endline_loc_p ();
1278 static boolean group_in_compile_stack ();
1279 static reg_errcode_t compile_range ();
1280
1281 /* Fetch the next character in the uncompiled pattern---translating it
1282 if necessary. Also cast from a signed character in the constant
1283 string passed to us by the user to an unsigned char that we can use
1284 as an array index (in, e.g., `translate'). */
1285 #define PATFETCH(c) \
1286 do {if (p == pend) return REG_EEND; \
1287 c = (unsigned char) *p++; \
1288 if (translate) c = translate[c]; \
1289 } while (0)
1290
1291 /* Fetch the next character in the uncompiled pattern, with no
1292 translation. */
1293 #define PATFETCH_RAW(c) \
1294 do {if (p == pend) return REG_EEND; \
1295 c = (unsigned char) *p++; \
1296 } while (0)
1297
1298 /* Go backwards one character in the pattern. */
1299 #define PATUNFETCH p--
1300
1301
1302 /* If `translate' is non-null, return translate[D], else just D. We
1303 cast the subscript to translate because some data is declared as
1304 `char *', to avoid warnings when a string constant is passed. But
1305 when we use a character as a subscript we must make it unsigned. */
1306 #define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
1307
1308
1309 /* Macros for outputting the compiled pattern into `buffer'. */
1310
1311 /* If the buffer isn't allocated when it comes in, use this. */
1312 #define INIT_BUF_SIZE 32
1313
1314 /* Make sure we have at least N more bytes of space in buffer. */
1315 #define GET_BUFFER_SPACE(n) \
1316 while (b - bufp->buffer + (n) > bufp->allocated) \
1317 EXTEND_BUFFER ()
1318
1319 /* Make sure we have one more byte of buffer space and then add C to it. */
1320 #define BUF_PUSH(c) \
1321 do { \
1322 GET_BUFFER_SPACE (1); \
1323 *b++ = (unsigned char) (c); \
1324 } while (0)
1325
1326
1327 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1328 #define BUF_PUSH_2(c1, c2) \
1329 do { \
1330 GET_BUFFER_SPACE (2); \
1331 *b++ = (unsigned char) (c1); \
1332 *b++ = (unsigned char) (c2); \
1333 } while (0)
1334
1335
1336 /* As with BUF_PUSH_2, except for three bytes. */
1337 #define BUF_PUSH_3(c1, c2, c3) \
1338 do { \
1339 GET_BUFFER_SPACE (3); \
1340 *b++ = (unsigned char) (c1); \
1341 *b++ = (unsigned char) (c2); \
1342 *b++ = (unsigned char) (c3); \
1343 } while (0)
1344
1345
1346 /* Store a jump with opcode OP at LOC to location TO. We store a
1347 relative address offset by the three bytes the jump itself occupies. */
1348 #define STORE_JUMP(op, loc, to) \
1349 store_op1 (op, loc, (to) - (loc) - 3)
1350
1351 /* Likewise, for a two-argument jump. */
1352 #define STORE_JUMP2(op, loc, to, arg) \
1353 store_op2 (op, loc, (to) - (loc) - 3, arg)
1354
1355 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1356 #define INSERT_JUMP(op, loc, to) \
1357 insert_op1 (op, loc, (to) - (loc) - 3, b)
1358
1359 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1360 #define INSERT_JUMP2(op, loc, to, arg) \
1361 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1362
1363
1364 /* This is not an arbitrary limit: the arguments which represent offsets
1365 into the pattern are two bytes long. So if 2^16 bytes turns out to
1366 be too small, many things would have to change. */
1367 #define MAX_BUF_SIZE (1L << 16)
1368
1369
1370 /* Extend the buffer by twice its current size via realloc and
1371 reset the pointers that pointed into the old block to point to the
1372 correct places in the new one. If extending the buffer results in it
1373 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1374 #define EXTEND_BUFFER() \
1375 do { \
1376 unsigned char *old_buffer = bufp->buffer; \
1377 if (bufp->allocated == MAX_BUF_SIZE) \
1378 return REG_ESIZE; \
1379 bufp->allocated <<= 1; \
1380 if (bufp->allocated > MAX_BUF_SIZE) \
1381 bufp->allocated = MAX_BUF_SIZE; \
1382 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1383 if (bufp->buffer == NULL) \
1384 return REG_ESPACE; \
1385 /* If the buffer moved, move all the pointers into it. */ \
1386 if (old_buffer != bufp->buffer) \
1387 { \
1388 b = (b - old_buffer) + bufp->buffer; \
1389 begalt = (begalt - old_buffer) + bufp->buffer; \
1390 if (fixup_alt_jump) \
1391 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1392 if (laststart) \
1393 laststart = (laststart - old_buffer) + bufp->buffer; \
1394 if (pending_exact) \
1395 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1396 } \
1397 } while (0)
1398
1399
1400 /* Since we have one byte reserved for the register number argument to
1401 {start,stop}_memory, the maximum number of groups we can report
1402 things about is what fits in that byte. */
1403 #define MAX_REGNUM 255
1404
1405 /* But patterns can have more than `MAX_REGNUM' registers. We just
1406 ignore the excess. */
1407 typedef unsigned regnum_t;
1408
1409
1410 /* Macros for the compile stack. */
1411
1412 /* Since offsets can go either forwards or backwards, this type needs to
1413 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1414 typedef int pattern_offset_t;
1415
1416 typedef struct
1417 {
1418 pattern_offset_t begalt_offset;
1419 pattern_offset_t fixup_alt_jump;
1420 pattern_offset_t inner_group_offset;
1421 pattern_offset_t laststart_offset;
1422 regnum_t regnum;
1423 } compile_stack_elt_t;
1424
1425
1426 typedef struct
1427 {
1428 compile_stack_elt_t *stack;
1429 unsigned size;
1430 unsigned avail; /* Offset of next open position. */
1431 } compile_stack_type;
1432
1433
1434 #define INIT_COMPILE_STACK_SIZE 32
1435
1436 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1437 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1438
1439 /* The next available element. */
1440 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1441
1442
1443 /* Set the bit for character C in a list. */
1444 #define SET_LIST_BIT(c) \
1445 (b[((unsigned char) (c)) / BYTEWIDTH] \
1446 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1447
1448
1449 /* Get the next unsigned number in the uncompiled pattern. */
1450 #define GET_UNSIGNED_NUMBER(num) \
1451 { if (p != pend) \
1452 { \
1453 PATFETCH (c); \
1454 while (ISDIGIT (c)) \
1455 { \
1456 if (num < 0) \
1457 num = 0; \
1458 num = num * 10 + c - '0'; \
1459 if (p == pend) \
1460 break; \
1461 PATFETCH (c); \
1462 } \
1463 } \
1464 }
1465
1466 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1467
1468 #define IS_CHAR_CLASS(string) \
1469 (STREQ (string, "alpha") || STREQ (string, "upper") \
1470 || STREQ (string, "lower") || STREQ (string, "digit") \
1471 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1472 || STREQ (string, "space") || STREQ (string, "print") \
1473 || STREQ (string, "punct") || STREQ (string, "graph") \
1474 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1475 \f
1476 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1477 Returns one of error codes defined in `regex.h', or zero for success.
1478
1479 Assumes the `allocated' (and perhaps `buffer') and `translate'
1480 fields are set in BUFP on entry.
1481
1482 If it succeeds, results are put in BUFP (if it returns an error, the
1483 contents of BUFP are undefined):
1484 `buffer' is the compiled pattern;
1485 `syntax' is set to SYNTAX;
1486 `used' is set to the length of the compiled pattern;
1487 `fastmap_accurate' is zero;
1488 `re_nsub' is the number of subexpressions in PATTERN;
1489 `not_bol' and `not_eol' are zero;
1490
1491 The `fastmap' and `newline_anchor' fields are neither
1492 examined nor set. */
1493
1494 /* Return, freeing storage we allocated. */
1495 #define FREE_STACK_RETURN(value) \
1496 return (free (compile_stack.stack), value)
1497
1498 static reg_errcode_t
1499 regex_compile (pattern, size, syntax, bufp)
1500 const char *pattern;
1501 int size;
1502 reg_syntax_t syntax;
1503 struct re_pattern_buffer *bufp;
1504 {
1505 /* We fetch characters from PATTERN here. Even though PATTERN is
1506 `char *' (i.e., signed), we declare these variables as unsigned, so
1507 they can be reliably used as array indices. */
1508 register unsigned char c, c1;
1509
1510 /* A random temporary spot in PATTERN. */
1511 const char *p1;
1512
1513 /* Points to the end of the buffer, where we should append. */
1514 register unsigned char *b;
1515
1516 /* Keeps track of unclosed groups. */
1517 compile_stack_type compile_stack;
1518
1519 /* Points to the current (ending) position in the pattern. */
1520 const char *p = pattern;
1521 const char *pend = pattern + size;
1522
1523 /* How to translate the characters in the pattern. */
1524 char *translate = bufp->translate;
1525
1526 /* Address of the count-byte of the most recently inserted `exactn'
1527 command. This makes it possible to tell if a new exact-match
1528 character can be added to that command or if the character requires
1529 a new `exactn' command. */
1530 unsigned char *pending_exact = 0;
1531
1532 /* Address of start of the most recently finished expression.
1533 This tells, e.g., postfix * where to find the start of its
1534 operand. Reset at the beginning of groups and alternatives. */
1535 unsigned char *laststart = 0;
1536
1537 /* Address of beginning of regexp, or inside of last group. */
1538 unsigned char *begalt;
1539
1540 /* Place in the uncompiled pattern (i.e., the {) to
1541 which to go back if the interval is invalid. */
1542 const char *beg_interval;
1543
1544 /* Address of the place where a forward jump should go to the end of
1545 the containing expression. Each alternative of an `or' -- except the
1546 last -- ends with a forward jump of this sort. */
1547 unsigned char *fixup_alt_jump = 0;
1548
1549 /* Counts open-groups as they are encountered. Remembered for the
1550 matching close-group on the compile stack, so the same register
1551 number is put in the stop_memory as the start_memory. */
1552 regnum_t regnum = 0;
1553
1554 #ifdef DEBUG
1555 DEBUG_PRINT1 ("\nCompiling pattern: ");
1556 if (debug)
1557 {
1558 unsigned debug_count;
1559
1560 for (debug_count = 0; debug_count < size; debug_count++)
1561 printchar (pattern[debug_count]);
1562 putchar ('\n');
1563 }
1564 #endif /* DEBUG */
1565
1566 /* Initialize the compile stack. */
1567 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1568 if (compile_stack.stack == NULL)
1569 return REG_ESPACE;
1570
1571 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1572 compile_stack.avail = 0;
1573
1574 /* Initialize the pattern buffer. */
1575 bufp->syntax = syntax;
1576 bufp->fastmap_accurate = 0;
1577 bufp->not_bol = bufp->not_eol = 0;
1578
1579 /* Set `used' to zero, so that if we return an error, the pattern
1580 printer (for debugging) will think there's no pattern. We reset it
1581 at the end. */
1582 bufp->used = 0;
1583
1584 /* Always count groups, whether or not bufp->no_sub is set. */
1585 bufp->re_nsub = 0;
1586
1587 #if !defined (emacs) && !defined (SYNTAX_TABLE)
1588 /* Initialize the syntax table. */
1589 init_syntax_once ();
1590 #endif
1591
1592 if (bufp->allocated == 0)
1593 {
1594 if (bufp->buffer)
1595 { /* If zero allocated, but buffer is non-null, try to realloc
1596 enough space. This loses if buffer's address is bogus, but
1597 that is the user's responsibility. */
1598 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1599 }
1600 else
1601 { /* Caller did not allocate a buffer. Do it for them. */
1602 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1603 }
1604 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1605
1606 bufp->allocated = INIT_BUF_SIZE;
1607 }
1608
1609 begalt = b = bufp->buffer;
1610
1611 /* Loop through the uncompiled pattern until we're at the end. */
1612 while (p != pend)
1613 {
1614 PATFETCH (c);
1615
1616 switch (c)
1617 {
1618 case '^':
1619 {
1620 if ( /* If at start of pattern, it's an operator. */
1621 p == pattern + 1
1622 /* If context independent, it's an operator. */
1623 || syntax & RE_CONTEXT_INDEP_ANCHORS
1624 /* Otherwise, depends on what's come before. */
1625 || at_begline_loc_p (pattern, p, syntax))
1626 BUF_PUSH (begline);
1627 else
1628 goto normal_char;
1629 }
1630 break;
1631
1632
1633 case '$':
1634 {
1635 if ( /* If at end of pattern, it's an operator. */
1636 p == pend
1637 /* If context independent, it's an operator. */
1638 || syntax & RE_CONTEXT_INDEP_ANCHORS
1639 /* Otherwise, depends on what's next. */
1640 || at_endline_loc_p (p, pend, syntax))
1641 BUF_PUSH (endline);
1642 else
1643 goto normal_char;
1644 }
1645 break;
1646
1647
1648 case '+':
1649 case '?':
1650 if ((syntax & RE_BK_PLUS_QM)
1651 || (syntax & RE_LIMITED_OPS))
1652 goto normal_char;
1653 handle_plus:
1654 case '*':
1655 /* If there is no previous pattern... */
1656 if (!laststart)
1657 {
1658 if (syntax & RE_CONTEXT_INVALID_OPS)
1659 FREE_STACK_RETURN (REG_BADRPT);
1660 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1661 goto normal_char;
1662 }
1663
1664 {
1665 /* Are we optimizing this jump? */
1666 boolean keep_string_p = false;
1667
1668 /* 1 means zero (many) matches is allowed. */
1669 char zero_times_ok = 0, many_times_ok = 0;
1670
1671 /* If there is a sequence of repetition chars, collapse it
1672 down to just one (the right one). We can't combine
1673 interval operators with these because of, e.g., `a{2}*',
1674 which should only match an even number of `a's. */
1675
1676 for (;;)
1677 {
1678 zero_times_ok |= c != '+';
1679 many_times_ok |= c != '?';
1680
1681 if (p == pend)
1682 break;
1683
1684 PATFETCH (c);
1685
1686 if (c == '*'
1687 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1688 ;
1689
1690 else if (syntax & RE_BK_PLUS_QM && c == '\\')
1691 {
1692 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
1693
1694 PATFETCH (c1);
1695 if (!(c1 == '+' || c1 == '?'))
1696 {
1697 PATUNFETCH;
1698 PATUNFETCH;
1699 break;
1700 }
1701
1702 c = c1;
1703 }
1704 else
1705 {
1706 PATUNFETCH;
1707 break;
1708 }
1709
1710 /* If we get here, we found another repeat character. */
1711 }
1712
1713 /* Star, etc. applied to an empty pattern is equivalent
1714 to an empty pattern. */
1715 if (!laststart)
1716 break;
1717
1718 /* Now we know whether or not zero matches is allowed
1719 and also whether or not two or more matches is allowed. */
1720 if (many_times_ok)
1721 { /* More than one repetition is allowed, so put in at the
1722 end a backward relative jump from `b' to before the next
1723 jump we're going to put in below (which jumps from
1724 laststart to after this jump).
1725
1726 But if we are at the `*' in the exact sequence `.*\n',
1727 insert an unconditional jump backwards to the .,
1728 instead of the beginning of the loop. This way we only
1729 push a failure point once, instead of every time
1730 through the loop. */
1731 assert (p - 1 > pattern);
1732
1733 /* Allocate the space for the jump. */
1734 GET_BUFFER_SPACE (3);
1735
1736 /* We know we are not at the first character of the pattern,
1737 because laststart was nonzero. And we've already
1738 incremented `p', by the way, to be the character after
1739 the `*'. Do we have to do something analogous here
1740 for null bytes, because of RE_DOT_NOT_NULL? */
1741 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
1742 && zero_times_ok
1743 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
1744 && !(syntax & RE_DOT_NEWLINE))
1745 { /* We have .*\n. */
1746 STORE_JUMP (jump, b, laststart);
1747 keep_string_p = true;
1748 }
1749 else
1750 /* Anything else. */
1751 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
1752
1753 /* We've added more stuff to the buffer. */
1754 b += 3;
1755 }
1756
1757 /* On failure, jump from laststart to b + 3, which will be the
1758 end of the buffer after this jump is inserted. */
1759 GET_BUFFER_SPACE (3);
1760 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
1761 : on_failure_jump,
1762 laststart, b + 3);
1763 pending_exact = 0;
1764 b += 3;
1765
1766 if (!zero_times_ok)
1767 {
1768 /* At least one repetition is required, so insert a
1769 `dummy_failure_jump' before the initial
1770 `on_failure_jump' instruction of the loop. This
1771 effects a skip over that instruction the first time
1772 we hit that loop. */
1773 GET_BUFFER_SPACE (3);
1774 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
1775 b += 3;
1776 }
1777 }
1778 break;
1779
1780
1781 case '.':
1782 laststart = b;
1783 BUF_PUSH (anychar);
1784 break;
1785
1786
1787 case '[':
1788 {
1789 boolean had_char_class = false;
1790
1791 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
1792
1793 /* Ensure that we have enough space to push a charset: the
1794 opcode, the length count, and the bitset; 34 bytes in all. */
1795 GET_BUFFER_SPACE (34);
1796
1797 laststart = b;
1798
1799 /* We test `*p == '^' twice, instead of using an if
1800 statement, so we only need one BUF_PUSH. */
1801 BUF_PUSH (*p == '^' ? charset_not : charset);
1802 if (*p == '^')
1803 p++;
1804
1805 /* Remember the first position in the bracket expression. */
1806 p1 = p;
1807
1808 /* Push the number of bytes in the bitmap. */
1809 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
1810
1811 /* Clear the whole map. */
1812 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
1813
1814 /* charset_not matches newline according to a syntax bit. */
1815 if ((re_opcode_t) b[-2] == charset_not
1816 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
1817 SET_LIST_BIT ('\n');
1818
1819 /* Read in characters and ranges, setting map bits. */
1820 for (;;)
1821 {
1822 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
1823
1824 PATFETCH (c);
1825
1826 /* \ might escape characters inside [...] and [^...]. */
1827 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
1828 {
1829 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
1830
1831 PATFETCH (c1);
1832 SET_LIST_BIT (c1);
1833 continue;
1834 }
1835
1836 /* Could be the end of the bracket expression. If it's
1837 not (i.e., when the bracket expression is `[]' so
1838 far), the ']' character bit gets set way below. */
1839 if (c == ']' && p != p1 + 1)
1840 break;
1841
1842 /* Look ahead to see if it's a range when the last thing
1843 was a character class. */
1844 if (had_char_class && c == '-' && *p != ']')
1845 FREE_STACK_RETURN (REG_ERANGE);
1846
1847 /* Look ahead to see if it's a range when the last thing
1848 was a character: if this is a hyphen not at the
1849 beginning or the end of a list, then it's the range
1850 operator. */
1851 if (c == '-'
1852 && !(p - 2 >= pattern && p[-2] == '[')
1853 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
1854 && *p != ']')
1855 {
1856 reg_errcode_t ret
1857 = compile_range (&p, pend, translate, syntax, b);
1858 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
1859 }
1860
1861 else if (p[0] == '-' && p[1] != ']')
1862 { /* This handles ranges made up of characters only. */
1863 reg_errcode_t ret;
1864
1865 /* Move past the `-'. */
1866 PATFETCH (c1);
1867
1868 ret = compile_range (&p, pend, translate, syntax, b);
1869 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
1870 }
1871
1872 /* See if we're at the beginning of a possible character
1873 class. */
1874
1875 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
1876 { /* Leave room for the null. */
1877 char str[CHAR_CLASS_MAX_LENGTH + 1];
1878
1879 PATFETCH (c);
1880 c1 = 0;
1881
1882 /* If pattern is `[[:'. */
1883 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
1884
1885 for (;;)
1886 {
1887 PATFETCH (c);
1888 if (c == ':' || c == ']' || p == pend
1889 || c1 == CHAR_CLASS_MAX_LENGTH)
1890 break;
1891 str[c1++] = c;
1892 }
1893 str[c1] = '\0';
1894
1895 /* If isn't a word bracketed by `[:' and:`]':
1896 undo the ending character, the letters, and leave
1897 the leading `:' and `[' (but set bits for them). */
1898 if (c == ':' && *p == ']')
1899 {
1900 int ch;
1901 boolean is_alnum = STREQ (str, "alnum");
1902 boolean is_alpha = STREQ (str, "alpha");
1903 boolean is_blank = STREQ (str, "blank");
1904 boolean is_cntrl = STREQ (str, "cntrl");
1905 boolean is_digit = STREQ (str, "digit");
1906 boolean is_graph = STREQ (str, "graph");
1907 boolean is_lower = STREQ (str, "lower");
1908 boolean is_print = STREQ (str, "print");
1909 boolean is_punct = STREQ (str, "punct");
1910 boolean is_space = STREQ (str, "space");
1911 boolean is_upper = STREQ (str, "upper");
1912 boolean is_xdigit = STREQ (str, "xdigit");
1913
1914 if (!IS_CHAR_CLASS (str))
1915 FREE_STACK_RETURN (REG_ECTYPE);
1916
1917 /* Throw away the ] at the end of the character
1918 class. */
1919 PATFETCH (c);
1920
1921 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
1922
1923 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
1924 {
1925 /* This was split into 3 if's to
1926 avoid an arbitrary limit in some compiler. */
1927 if ( (is_alnum && ISALNUM (ch))
1928 || (is_alpha && ISALPHA (ch))
1929 || (is_blank && ISBLANK (ch))
1930 || (is_cntrl && ISCNTRL (ch)))
1931 SET_LIST_BIT (ch);
1932 if ( (is_digit && ISDIGIT (ch))
1933 || (is_graph && ISGRAPH (ch))
1934 || (is_lower && ISLOWER (ch))
1935 || (is_print && ISPRINT (ch)))
1936 SET_LIST_BIT (ch);
1937 if ( (is_punct && ISPUNCT (ch))
1938 || (is_space && ISSPACE (ch))
1939 || (is_upper && ISUPPER (ch))
1940 || (is_xdigit && ISXDIGIT (ch)))
1941 SET_LIST_BIT (ch);
1942 }
1943 had_char_class = true;
1944 }
1945 else
1946 {
1947 c1++;
1948 while (c1--)
1949 PATUNFETCH;
1950 SET_LIST_BIT ('[');
1951 SET_LIST_BIT (':');
1952 had_char_class = false;
1953 }
1954 }
1955 else
1956 {
1957 had_char_class = false;
1958 SET_LIST_BIT (c);
1959 }
1960 }
1961
1962 /* Discard any (non)matching list bytes that are all 0 at the
1963 end of the map. Decrease the map-length byte too. */
1964 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
1965 b[-1]--;
1966 b += b[-1];
1967 }
1968 break;
1969
1970
1971 case '(':
1972 if (syntax & RE_NO_BK_PARENS)
1973 goto handle_open;
1974 else
1975 goto normal_char;
1976
1977
1978 case ')':
1979 if (syntax & RE_NO_BK_PARENS)
1980 goto handle_close;
1981 else
1982 goto normal_char;
1983
1984
1985 case '\n':
1986 if (syntax & RE_NEWLINE_ALT)
1987 goto handle_alt;
1988 else
1989 goto normal_char;
1990
1991
1992 case '|':
1993 if (syntax & RE_NO_BK_VBAR)
1994 goto handle_alt;
1995 else
1996 goto normal_char;
1997
1998
1999 case '{':
2000 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2001 goto handle_interval;
2002 else
2003 goto normal_char;
2004
2005
2006 case '\\':
2007 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2008
2009 /* Do not translate the character after the \, so that we can
2010 distinguish, e.g., \B from \b, even if we normally would
2011 translate, e.g., B to b. */
2012 PATFETCH_RAW (c);
2013
2014 switch (c)
2015 {
2016 case '(':
2017 if (syntax & RE_NO_BK_PARENS)
2018 goto normal_backslash;
2019
2020 handle_open:
2021 bufp->re_nsub++;
2022 regnum++;
2023
2024 if (COMPILE_STACK_FULL)
2025 {
2026 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2027 compile_stack_elt_t);
2028 if (compile_stack.stack == NULL) return REG_ESPACE;
2029
2030 compile_stack.size <<= 1;
2031 }
2032
2033 /* These are the values to restore when we hit end of this
2034 group. They are all relative offsets, so that if the
2035 whole pattern moves because of realloc, they will still
2036 be valid. */
2037 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2038 COMPILE_STACK_TOP.fixup_alt_jump
2039 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2040 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2041 COMPILE_STACK_TOP.regnum = regnum;
2042
2043 /* We will eventually replace the 0 with the number of
2044 groups inner to this one. But do not push a
2045 start_memory for groups beyond the last one we can
2046 represent in the compiled pattern. */
2047 if (regnum <= MAX_REGNUM)
2048 {
2049 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2050 BUF_PUSH_3 (start_memory, regnum, 0);
2051 }
2052
2053 compile_stack.avail++;
2054
2055 fixup_alt_jump = 0;
2056 laststart = 0;
2057 begalt = b;
2058 /* If we've reached MAX_REGNUM groups, then this open
2059 won't actually generate any code, so we'll have to
2060 clear pending_exact explicitly. */
2061 pending_exact = 0;
2062 break;
2063
2064
2065 case ')':
2066 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2067
2068 if (COMPILE_STACK_EMPTY)
2069 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2070 goto normal_backslash;
2071 else
2072 FREE_STACK_RETURN (REG_ERPAREN);
2073
2074 handle_close:
2075 if (fixup_alt_jump)
2076 { /* Push a dummy failure point at the end of the
2077 alternative for a possible future
2078 `pop_failure_jump' to pop. See comments at
2079 `push_dummy_failure' in `re_match_2'. */
2080 BUF_PUSH (push_dummy_failure);
2081
2082 /* We allocated space for this jump when we assigned
2083 to `fixup_alt_jump', in the `handle_alt' case below. */
2084 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2085 }
2086
2087 /* See similar code for backslashed left paren above. */
2088 if (COMPILE_STACK_EMPTY)
2089 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2090 goto normal_char;
2091 else
2092 FREE_STACK_RETURN (REG_ERPAREN);
2093
2094 /* Since we just checked for an empty stack above, this
2095 ``can't happen''. */
2096 assert (compile_stack.avail != 0);
2097 {
2098 /* We don't just want to restore into `regnum', because
2099 later groups should continue to be numbered higher,
2100 as in `(ab)c(de)' -- the second group is #2. */
2101 regnum_t this_group_regnum;
2102
2103 compile_stack.avail--;
2104 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2105 fixup_alt_jump
2106 = COMPILE_STACK_TOP.fixup_alt_jump
2107 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2108 : 0;
2109 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2110 this_group_regnum = COMPILE_STACK_TOP.regnum;
2111 /* If we've reached MAX_REGNUM groups, then this open
2112 won't actually generate any code, so we'll have to
2113 clear pending_exact explicitly. */
2114 pending_exact = 0;
2115
2116 /* We're at the end of the group, so now we know how many
2117 groups were inside this one. */
2118 if (this_group_regnum <= MAX_REGNUM)
2119 {
2120 unsigned char *inner_group_loc
2121 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2122
2123 *inner_group_loc = regnum - this_group_regnum;
2124 BUF_PUSH_3 (stop_memory, this_group_regnum,
2125 regnum - this_group_regnum);
2126 }
2127 }
2128 break;
2129
2130
2131 case '|': /* `\|'. */
2132 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2133 goto normal_backslash;
2134 handle_alt:
2135 if (syntax & RE_LIMITED_OPS)
2136 goto normal_char;
2137
2138 /* Insert before the previous alternative a jump which
2139 jumps to this alternative if the former fails. */
2140 GET_BUFFER_SPACE (3);
2141 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2142 pending_exact = 0;
2143 b += 3;
2144
2145 /* The alternative before this one has a jump after it
2146 which gets executed if it gets matched. Adjust that
2147 jump so it will jump to this alternative's analogous
2148 jump (put in below, which in turn will jump to the next
2149 (if any) alternative's such jump, etc.). The last such
2150 jump jumps to the correct final destination. A picture:
2151 _____ _____
2152 | | | |
2153 | v | v
2154 a | b | c
2155
2156 If we are at `b', then fixup_alt_jump right now points to a
2157 three-byte space after `a'. We'll put in the jump, set
2158 fixup_alt_jump to right after `b', and leave behind three
2159 bytes which we'll fill in when we get to after `c'. */
2160
2161 if (fixup_alt_jump)
2162 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2163
2164 /* Mark and leave space for a jump after this alternative,
2165 to be filled in later either by next alternative or
2166 when know we're at the end of a series of alternatives. */
2167 fixup_alt_jump = b;
2168 GET_BUFFER_SPACE (3);
2169 b += 3;
2170
2171 laststart = 0;
2172 begalt = b;
2173 break;
2174
2175
2176 case '{':
2177 /* If \{ is a literal. */
2178 if (!(syntax & RE_INTERVALS)
2179 /* If we're at `\{' and it's not the open-interval
2180 operator. */
2181 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2182 || (p - 2 == pattern && p == pend))
2183 goto normal_backslash;
2184
2185 handle_interval:
2186 {
2187 /* If got here, then the syntax allows intervals. */
2188
2189 /* At least (most) this many matches must be made. */
2190 int lower_bound = -1, upper_bound = -1;
2191
2192 beg_interval = p - 1;
2193
2194 if (p == pend)
2195 {
2196 if (syntax & RE_NO_BK_BRACES)
2197 goto unfetch_interval;
2198 else
2199 FREE_STACK_RETURN (REG_EBRACE);
2200 }
2201
2202 GET_UNSIGNED_NUMBER (lower_bound);
2203
2204 if (c == ',')
2205 {
2206 GET_UNSIGNED_NUMBER (upper_bound);
2207 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2208 }
2209 else
2210 /* Interval such as `{1}' => match exactly once. */
2211 upper_bound = lower_bound;
2212
2213 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2214 || lower_bound > upper_bound)
2215 {
2216 if (syntax & RE_NO_BK_BRACES)
2217 goto unfetch_interval;
2218 else
2219 FREE_STACK_RETURN (REG_BADBR);
2220 }
2221
2222 if (!(syntax & RE_NO_BK_BRACES))
2223 {
2224 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2225
2226 PATFETCH (c);
2227 }
2228
2229 if (c != '}')
2230 {
2231 if (syntax & RE_NO_BK_BRACES)
2232 goto unfetch_interval;
2233 else
2234 FREE_STACK_RETURN (REG_BADBR);
2235 }
2236
2237 /* We just parsed a valid interval. */
2238
2239 /* If it's invalid to have no preceding re. */
2240 if (!laststart)
2241 {
2242 if (syntax & RE_CONTEXT_INVALID_OPS)
2243 FREE_STACK_RETURN (REG_BADRPT);
2244 else if (syntax & RE_CONTEXT_INDEP_OPS)
2245 laststart = b;
2246 else
2247 goto unfetch_interval;
2248 }
2249
2250 /* If the upper bound is zero, don't want to succeed at
2251 all; jump from `laststart' to `b + 3', which will be
2252 the end of the buffer after we insert the jump. */
2253 if (upper_bound == 0)
2254 {
2255 GET_BUFFER_SPACE (3);
2256 INSERT_JUMP (jump, laststart, b + 3);
2257 b += 3;
2258 }
2259
2260 /* Otherwise, we have a nontrivial interval. When
2261 we're all done, the pattern will look like:
2262 set_number_at <jump count> <upper bound>
2263 set_number_at <succeed_n count> <lower bound>
2264 succeed_n <after jump addr> <succeed_n count>
2265 <body of loop>
2266 jump_n <succeed_n addr> <jump count>
2267 (The upper bound and `jump_n' are omitted if
2268 `upper_bound' is 1, though.) */
2269 else
2270 { /* If the upper bound is > 1, we need to insert
2271 more at the end of the loop. */
2272 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2273
2274 GET_BUFFER_SPACE (nbytes);
2275
2276 /* Initialize lower bound of the `succeed_n', even
2277 though it will be set during matching by its
2278 attendant `set_number_at' (inserted next),
2279 because `re_compile_fastmap' needs to know.
2280 Jump to the `jump_n' we might insert below. */
2281 INSERT_JUMP2 (succeed_n, laststart,
2282 b + 5 + (upper_bound > 1) * 5,
2283 lower_bound);
2284 b += 5;
2285
2286 /* Code to initialize the lower bound. Insert
2287 before the `succeed_n'. The `5' is the last two
2288 bytes of this `set_number_at', plus 3 bytes of
2289 the following `succeed_n'. */
2290 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2291 b += 5;
2292
2293 if (upper_bound > 1)
2294 { /* More than one repetition is allowed, so
2295 append a backward jump to the `succeed_n'
2296 that starts this interval.
2297
2298 When we've reached this during matching,
2299 we'll have matched the interval once, so
2300 jump back only `upper_bound - 1' times. */
2301 STORE_JUMP2 (jump_n, b, laststart + 5,
2302 upper_bound - 1);
2303 b += 5;
2304
2305 /* The location we want to set is the second
2306 parameter of the `jump_n'; that is `b-2' as
2307 an absolute address. `laststart' will be
2308 the `set_number_at' we're about to insert;
2309 `laststart+3' the number to set, the source
2310 for the relative address. But we are
2311 inserting into the middle of the pattern --
2312 so everything is getting moved up by 5.
2313 Conclusion: (b - 2) - (laststart + 3) + 5,
2314 i.e., b - laststart.
2315
2316 We insert this at the beginning of the loop
2317 so that if we fail during matching, we'll
2318 reinitialize the bounds. */
2319 insert_op2 (set_number_at, laststart, b - laststart,
2320 upper_bound - 1, b);
2321 b += 5;
2322 }
2323 }
2324 pending_exact = 0;
2325 beg_interval = NULL;
2326 }
2327 break;
2328
2329 unfetch_interval:
2330 /* If an invalid interval, match the characters as literals. */
2331 assert (beg_interval);
2332 p = beg_interval;
2333 beg_interval = NULL;
2334
2335 /* normal_char and normal_backslash need `c'. */
2336 PATFETCH (c);
2337
2338 if (!(syntax & RE_NO_BK_BRACES))
2339 {
2340 if (p > pattern && p[-1] == '\\')
2341 goto normal_backslash;
2342 }
2343 goto normal_char;
2344
2345 #ifdef emacs
2346 /* There is no way to specify the before_dot and after_dot
2347 operators. rms says this is ok. --karl */
2348 case '=':
2349 BUF_PUSH (at_dot);
2350 break;
2351
2352 case 's':
2353 laststart = b;
2354 PATFETCH (c);
2355 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2356 break;
2357
2358 case 'S':
2359 laststart = b;
2360 PATFETCH (c);
2361 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2362 break;
2363 #endif /* emacs */
2364
2365
2366 case 'w':
2367 laststart = b;
2368 BUF_PUSH (wordchar);
2369 break;
2370
2371
2372 case 'W':
2373 laststart = b;
2374 BUF_PUSH (notwordchar);
2375 break;
2376
2377
2378 case '<':
2379 BUF_PUSH (wordbeg);
2380 break;
2381
2382 case '>':
2383 BUF_PUSH (wordend);
2384 break;
2385
2386 case 'b':
2387 BUF_PUSH (wordbound);
2388 break;
2389
2390 case 'B':
2391 BUF_PUSH (notwordbound);
2392 break;
2393
2394 case '`':
2395 BUF_PUSH (begbuf);
2396 break;
2397
2398 case '\'':
2399 BUF_PUSH (endbuf);
2400 break;
2401
2402 case '1': case '2': case '3': case '4': case '5':
2403 case '6': case '7': case '8': case '9':
2404 if (syntax & RE_NO_BK_REFS)
2405 goto normal_char;
2406
2407 c1 = c - '0';
2408
2409 if (c1 > regnum)
2410 FREE_STACK_RETURN (REG_ESUBREG);
2411
2412 /* Can't back reference to a subexpression if inside of it. */
2413 if (group_in_compile_stack (compile_stack, c1))
2414 goto normal_char;
2415
2416 laststart = b;
2417 BUF_PUSH_2 (duplicate, c1);
2418 break;
2419
2420
2421 case '+':
2422 case '?':
2423 if (syntax & RE_BK_PLUS_QM)
2424 goto handle_plus;
2425 else
2426 goto normal_backslash;
2427
2428 default:
2429 normal_backslash:
2430 /* You might think it would be useful for \ to mean
2431 not to translate; but if we don't translate it
2432 it will never match anything. */
2433 c = TRANSLATE (c);
2434 goto normal_char;
2435 }
2436 break;
2437
2438
2439 default:
2440 /* Expects the character in `c'. */
2441 normal_char:
2442 /* If no exactn currently being built. */
2443 if (!pending_exact
2444
2445 /* If last exactn not at current position. */
2446 || pending_exact + *pending_exact + 1 != b
2447
2448 /* We have only one byte following the exactn for the count. */
2449 || *pending_exact == (1 << BYTEWIDTH) - 1
2450
2451 /* If followed by a repetition operator. */
2452 || *p == '*' || *p == '^'
2453 || ((syntax & RE_BK_PLUS_QM)
2454 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2455 : (*p == '+' || *p == '?'))
2456 || ((syntax & RE_INTERVALS)
2457 && ((syntax & RE_NO_BK_BRACES)
2458 ? *p == '{'
2459 : (p[0] == '\\' && p[1] == '{'))))
2460 {
2461 /* Start building a new exactn. */
2462
2463 laststart = b;
2464
2465 BUF_PUSH_2 (exactn, 0);
2466 pending_exact = b - 1;
2467 }
2468
2469 BUF_PUSH (c);
2470 (*pending_exact)++;
2471 break;
2472 } /* switch (c) */
2473 } /* while p != pend */
2474
2475
2476 /* Through the pattern now. */
2477
2478 if (fixup_alt_jump)
2479 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2480
2481 if (!COMPILE_STACK_EMPTY)
2482 FREE_STACK_RETURN (REG_EPAREN);
2483
2484 free (compile_stack.stack);
2485
2486 /* We have succeeded; set the length of the buffer. */
2487 bufp->used = b - bufp->buffer;
2488
2489 #ifdef DEBUG
2490 if (debug)
2491 {
2492 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2493 print_compiled_pattern (bufp);
2494 }
2495 #endif /* DEBUG */
2496
2497 #ifndef MATCH_MAY_ALLOCATE
2498 /* Initialize the failure stack to the largest possible stack. This
2499 isn't necessary unless we're trying to avoid calling alloca in
2500 the search and match routines. */
2501 {
2502 int num_regs = bufp->re_nsub + 1;
2503
2504 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2505 is strictly greater than re_max_failures, the largest possible stack
2506 is 2 * re_max_failures failure points. */
2507 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2508 {
2509 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2510
2511 #ifdef emacs
2512 if (! fail_stack.stack)
2513 fail_stack.stack
2514 = (fail_stack_elt_t *) xmalloc (fail_stack.size
2515 * sizeof (fail_stack_elt_t));
2516 else
2517 fail_stack.stack
2518 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2519 (fail_stack.size
2520 * sizeof (fail_stack_elt_t)));
2521 #else /* not emacs */
2522 if (! fail_stack.stack)
2523 fail_stack.stack
2524 = (fail_stack_elt_t *) malloc (fail_stack.size
2525 * sizeof (fail_stack_elt_t));
2526 else
2527 fail_stack.stack
2528 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2529 (fail_stack.size
2530 * sizeof (fail_stack_elt_t)));
2531 #endif /* not emacs */
2532 }
2533
2534 /* Initialize some other variables the matcher uses. */
2535 RETALLOC_IF (regstart, num_regs, const char *);
2536 RETALLOC_IF (regend, num_regs, const char *);
2537 RETALLOC_IF (old_regstart, num_regs, const char *);
2538 RETALLOC_IF (old_regend, num_regs, const char *);
2539 RETALLOC_IF (best_regstart, num_regs, const char *);
2540 RETALLOC_IF (best_regend, num_regs, const char *);
2541 RETALLOC_IF (reg_info, num_regs, register_info_type);
2542 RETALLOC_IF (reg_dummy, num_regs, const char *);
2543 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
2544 }
2545 #endif
2546
2547 return REG_NOERROR;
2548 } /* regex_compile */
2549 \f
2550 /* Subroutines for `regex_compile'. */
2551
2552 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2553
2554 static void
2555 store_op1 (op, loc, arg)
2556 re_opcode_t op;
2557 unsigned char *loc;
2558 int arg;
2559 {
2560 *loc = (unsigned char) op;
2561 STORE_NUMBER (loc + 1, arg);
2562 }
2563
2564
2565 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2566
2567 static void
2568 store_op2 (op, loc, arg1, arg2)
2569 re_opcode_t op;
2570 unsigned char *loc;
2571 int arg1, arg2;
2572 {
2573 *loc = (unsigned char) op;
2574 STORE_NUMBER (loc + 1, arg1);
2575 STORE_NUMBER (loc + 3, arg2);
2576 }
2577
2578
2579 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2580 for OP followed by two-byte integer parameter ARG. */
2581
2582 static void
2583 insert_op1 (op, loc, arg, end)
2584 re_opcode_t op;
2585 unsigned char *loc;
2586 int arg;
2587 unsigned char *end;
2588 {
2589 register unsigned char *pfrom = end;
2590 register unsigned char *pto = end + 3;
2591
2592 while (pfrom != loc)
2593 *--pto = *--pfrom;
2594
2595 store_op1 (op, loc, arg);
2596 }
2597
2598
2599 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2600
2601 static void
2602 insert_op2 (op, loc, arg1, arg2, end)
2603 re_opcode_t op;
2604 unsigned char *loc;
2605 int arg1, arg2;
2606 unsigned char *end;
2607 {
2608 register unsigned char *pfrom = end;
2609 register unsigned char *pto = end + 5;
2610
2611 while (pfrom != loc)
2612 *--pto = *--pfrom;
2613
2614 store_op2 (op, loc, arg1, arg2);
2615 }
2616
2617
2618 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2619 after an alternative or a begin-subexpression. We assume there is at
2620 least one character before the ^. */
2621
2622 static boolean
2623 at_begline_loc_p (pattern, p, syntax)
2624 const char *pattern, *p;
2625 reg_syntax_t syntax;
2626 {
2627 const char *prev = p - 2;
2628 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2629
2630 return
2631 /* After a subexpression? */
2632 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2633 /* After an alternative? */
2634 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2635 }
2636
2637
2638 /* The dual of at_begline_loc_p. This one is for $. We assume there is
2639 at least one character after the $, i.e., `P < PEND'. */
2640
2641 static boolean
2642 at_endline_loc_p (p, pend, syntax)
2643 const char *p, *pend;
2644 int syntax;
2645 {
2646 const char *next = p;
2647 boolean next_backslash = *next == '\\';
2648 const char *next_next = p + 1 < pend ? p + 1 : NULL;
2649
2650 return
2651 /* Before a subexpression? */
2652 (syntax & RE_NO_BK_PARENS ? *next == ')'
2653 : next_backslash && next_next && *next_next == ')')
2654 /* Before an alternative? */
2655 || (syntax & RE_NO_BK_VBAR ? *next == '|'
2656 : next_backslash && next_next && *next_next == '|');
2657 }
2658
2659
2660 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2661 false if it's not. */
2662
2663 static boolean
2664 group_in_compile_stack (compile_stack, regnum)
2665 compile_stack_type compile_stack;
2666 regnum_t regnum;
2667 {
2668 int this_element;
2669
2670 for (this_element = compile_stack.avail - 1;
2671 this_element >= 0;
2672 this_element--)
2673 if (compile_stack.stack[this_element].regnum == regnum)
2674 return true;
2675
2676 return false;
2677 }
2678
2679
2680 /* Read the ending character of a range (in a bracket expression) from the
2681 uncompiled pattern *P_PTR (which ends at PEND). We assume the
2682 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
2683 Then we set the translation of all bits between the starting and
2684 ending characters (inclusive) in the compiled pattern B.
2685
2686 Return an error code.
2687
2688 We use these short variable names so we can use the same macros as
2689 `regex_compile' itself. */
2690
2691 static reg_errcode_t
2692 compile_range (p_ptr, pend, translate, syntax, b)
2693 const char **p_ptr, *pend;
2694 char *translate;
2695 reg_syntax_t syntax;
2696 unsigned char *b;
2697 {
2698 unsigned this_char;
2699
2700 const char *p = *p_ptr;
2701 int range_start, range_end;
2702
2703 if (p == pend)
2704 return REG_ERANGE;
2705
2706 /* Even though the pattern is a signed `char *', we need to fetch
2707 with unsigned char *'s; if the high bit of the pattern character
2708 is set, the range endpoints will be negative if we fetch using a
2709 signed char *.
2710
2711 We also want to fetch the endpoints without translating them; the
2712 appropriate translation is done in the bit-setting loop below. */
2713 range_start = ((unsigned const char *) p)[-2];
2714 range_end = ((unsigned const char *) p)[0];
2715
2716 /* Have to increment the pointer into the pattern string, so the
2717 caller isn't still at the ending character. */
2718 (*p_ptr)++;
2719
2720 /* If the start is after the end, the range is empty. */
2721 if (range_start > range_end)
2722 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
2723
2724 /* Here we see why `this_char' has to be larger than an `unsigned
2725 char' -- the range is inclusive, so if `range_end' == 0xff
2726 (assuming 8-bit characters), we would otherwise go into an infinite
2727 loop, since all characters <= 0xff. */
2728 for (this_char = range_start; this_char <= range_end; this_char++)
2729 {
2730 SET_LIST_BIT (TRANSLATE (this_char));
2731 }
2732
2733 return REG_NOERROR;
2734 }
2735 \f
2736 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2737 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
2738 characters can start a string that matches the pattern. This fastmap
2739 is used by re_search to skip quickly over impossible starting points.
2740
2741 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2742 area as BUFP->fastmap.
2743
2744 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2745 the pattern buffer.
2746
2747 Returns 0 if we succeed, -2 if an internal error. */
2748
2749 int
2750 re_compile_fastmap (bufp)
2751 struct re_pattern_buffer *bufp;
2752 {
2753 int j, k;
2754 #ifdef MATCH_MAY_ALLOCATE
2755 fail_stack_type fail_stack;
2756 #endif
2757 #ifndef REGEX_MALLOC
2758 char *destination;
2759 #endif
2760 /* We don't push any register information onto the failure stack. */
2761 unsigned num_regs = 0;
2762
2763 register char *fastmap = bufp->fastmap;
2764 unsigned char *pattern = bufp->buffer;
2765 unsigned long size = bufp->used;
2766 unsigned char *p = pattern;
2767 register unsigned char *pend = pattern + size;
2768
2769 /* Assume that each path through the pattern can be null until
2770 proven otherwise. We set this false at the bottom of switch
2771 statement, to which we get only if a particular path doesn't
2772 match the empty string. */
2773 boolean path_can_be_null = true;
2774
2775 /* We aren't doing a `succeed_n' to begin with. */
2776 boolean succeed_n_p = false;
2777
2778 assert (fastmap != NULL && p != NULL);
2779
2780 INIT_FAIL_STACK ();
2781 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
2782 bufp->fastmap_accurate = 1; /* It will be when we're done. */
2783 bufp->can_be_null = 0;
2784
2785 while (p != pend || !FAIL_STACK_EMPTY ())
2786 {
2787 if (p == pend)
2788 {
2789 bufp->can_be_null |= path_can_be_null;
2790
2791 /* Reset for next path. */
2792 path_can_be_null = true;
2793
2794 p = fail_stack.stack[--fail_stack.avail];
2795 }
2796
2797 /* We should never be about to go beyond the end of the pattern. */
2798 assert (p < pend);
2799
2800 #ifdef SWITCH_ENUM_BUG
2801 switch ((int) ((re_opcode_t) *p++))
2802 #else
2803 switch ((re_opcode_t) *p++)
2804 #endif
2805 {
2806
2807 /* I guess the idea here is to simply not bother with a fastmap
2808 if a backreference is used, since it's too hard to figure out
2809 the fastmap for the corresponding group. Setting
2810 `can_be_null' stops `re_search_2' from using the fastmap, so
2811 that is all we do. */
2812 case duplicate:
2813 bufp->can_be_null = 1;
2814 return 0;
2815
2816
2817 /* Following are the cases which match a character. These end
2818 with `break'. */
2819
2820 case exactn:
2821 fastmap[p[1]] = 1;
2822 break;
2823
2824
2825 case charset:
2826 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2827 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
2828 fastmap[j] = 1;
2829 break;
2830
2831
2832 case charset_not:
2833 /* Chars beyond end of map must be allowed. */
2834 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
2835 fastmap[j] = 1;
2836
2837 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2838 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
2839 fastmap[j] = 1;
2840 break;
2841
2842
2843 case wordchar:
2844 for (j = 0; j < (1 << BYTEWIDTH); j++)
2845 if (SYNTAX (j) == Sword)
2846 fastmap[j] = 1;
2847 break;
2848
2849
2850 case notwordchar:
2851 for (j = 0; j < (1 << BYTEWIDTH); j++)
2852 if (SYNTAX (j) != Sword)
2853 fastmap[j] = 1;
2854 break;
2855
2856
2857 case anychar:
2858 {
2859 int fastmap_newline = fastmap['\n'];
2860
2861 /* `.' matches anything ... */
2862 for (j = 0; j < (1 << BYTEWIDTH); j++)
2863 fastmap[j] = 1;
2864
2865 /* ... except perhaps newline. */
2866 if (!(bufp->syntax & RE_DOT_NEWLINE))
2867 fastmap['\n'] = fastmap_newline;
2868
2869 /* Return if we have already set `can_be_null'; if we have,
2870 then the fastmap is irrelevant. Something's wrong here. */
2871 else if (bufp->can_be_null)
2872 return 0;
2873
2874 /* Otherwise, have to check alternative paths. */
2875 break;
2876 }
2877
2878 #ifdef emacs
2879 case syntaxspec:
2880 k = *p++;
2881 for (j = 0; j < (1 << BYTEWIDTH); j++)
2882 if (SYNTAX (j) == (enum syntaxcode) k)
2883 fastmap[j] = 1;
2884 break;
2885
2886
2887 case notsyntaxspec:
2888 k = *p++;
2889 for (j = 0; j < (1 << BYTEWIDTH); j++)
2890 if (SYNTAX (j) != (enum syntaxcode) k)
2891 fastmap[j] = 1;
2892 break;
2893
2894
2895 /* All cases after this match the empty string. These end with
2896 `continue'. */
2897
2898
2899 case before_dot:
2900 case at_dot:
2901 case after_dot:
2902 continue;
2903 #endif /* not emacs */
2904
2905
2906 case no_op:
2907 case begline:
2908 case endline:
2909 case begbuf:
2910 case endbuf:
2911 case wordbound:
2912 case notwordbound:
2913 case wordbeg:
2914 case wordend:
2915 case push_dummy_failure:
2916 continue;
2917
2918
2919 case jump_n:
2920 case pop_failure_jump:
2921 case maybe_pop_jump:
2922 case jump:
2923 case jump_past_alt:
2924 case dummy_failure_jump:
2925 EXTRACT_NUMBER_AND_INCR (j, p);
2926 p += j;
2927 if (j > 0)
2928 continue;
2929
2930 /* Jump backward implies we just went through the body of a
2931 loop and matched nothing. Opcode jumped to should be
2932 `on_failure_jump' or `succeed_n'. Just treat it like an
2933 ordinary jump. For a * loop, it has pushed its failure
2934 point already; if so, discard that as redundant. */
2935 if ((re_opcode_t) *p != on_failure_jump
2936 && (re_opcode_t) *p != succeed_n)
2937 continue;
2938
2939 p++;
2940 EXTRACT_NUMBER_AND_INCR (j, p);
2941 p += j;
2942
2943 /* If what's on the stack is where we are now, pop it. */
2944 if (!FAIL_STACK_EMPTY ()
2945 && fail_stack.stack[fail_stack.avail - 1] == p)
2946 fail_stack.avail--;
2947
2948 continue;
2949
2950
2951 case on_failure_jump:
2952 case on_failure_keep_string_jump:
2953 handle_on_failure_jump:
2954 EXTRACT_NUMBER_AND_INCR (j, p);
2955
2956 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
2957 end of the pattern. We don't want to push such a point,
2958 since when we restore it above, entering the switch will
2959 increment `p' past the end of the pattern. We don't need
2960 to push such a point since we obviously won't find any more
2961 fastmap entries beyond `pend'. Such a pattern can match
2962 the null string, though. */
2963 if (p + j < pend)
2964 {
2965 if (!PUSH_PATTERN_OP (p + j, fail_stack))
2966 return -2;
2967 }
2968 else
2969 bufp->can_be_null = 1;
2970
2971 if (succeed_n_p)
2972 {
2973 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
2974 succeed_n_p = false;
2975 }
2976
2977 continue;
2978
2979
2980 case succeed_n:
2981 /* Get to the number of times to succeed. */
2982 p += 2;
2983
2984 /* Increment p past the n for when k != 0. */
2985 EXTRACT_NUMBER_AND_INCR (k, p);
2986 if (k == 0)
2987 {
2988 p -= 4;
2989 succeed_n_p = true; /* Spaghetti code alert. */
2990 goto handle_on_failure_jump;
2991 }
2992 continue;
2993
2994
2995 case set_number_at:
2996 p += 4;
2997 continue;
2998
2999
3000 case start_memory:
3001 case stop_memory:
3002 p += 2;
3003 continue;
3004
3005
3006 default:
3007 abort (); /* We have listed all the cases. */
3008 } /* switch *p++ */
3009
3010 /* Getting here means we have found the possible starting
3011 characters for one path of the pattern -- and that the empty
3012 string does not match. We need not follow this path further.
3013 Instead, look at the next alternative (remembered on the
3014 stack), or quit if no more. The test at the top of the loop
3015 does these things. */
3016 path_can_be_null = false;
3017 p = pend;
3018 } /* while p */
3019
3020 /* Set `can_be_null' for the last path (also the first path, if the
3021 pattern is empty). */
3022 bufp->can_be_null |= path_can_be_null;
3023 return 0;
3024 } /* re_compile_fastmap */
3025 \f
3026 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3027 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3028 this memory for recording register information. STARTS and ENDS
3029 must be allocated using the malloc library routine, and must each
3030 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3031
3032 If NUM_REGS == 0, then subsequent matches should allocate their own
3033 register data.
3034
3035 Unless this function is called, the first search or match using
3036 PATTERN_BUFFER will allocate its own register data, without
3037 freeing the old data. */
3038
3039 void
3040 re_set_registers (bufp, regs, num_regs, starts, ends)
3041 struct re_pattern_buffer *bufp;
3042 struct re_registers *regs;
3043 unsigned num_regs;
3044 regoff_t *starts, *ends;
3045 {
3046 if (num_regs)
3047 {
3048 bufp->regs_allocated = REGS_REALLOCATE;
3049 regs->num_regs = num_regs;
3050 regs->start = starts;
3051 regs->end = ends;
3052 }
3053 else
3054 {
3055 bufp->regs_allocated = REGS_UNALLOCATED;
3056 regs->num_regs = 0;
3057 regs->start = regs->end = (regoff_t *) 0;
3058 }
3059 }
3060 \f
3061 /* Searching routines. */
3062
3063 /* Like re_search_2, below, but only one string is specified, and
3064 doesn't let you say where to stop matching. */
3065
3066 int
3067 re_search (bufp, string, size, startpos, range, regs)
3068 struct re_pattern_buffer *bufp;
3069 const char *string;
3070 int size, startpos, range;
3071 struct re_registers *regs;
3072 {
3073 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3074 regs, size);
3075 }
3076
3077
3078 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3079 virtual concatenation of STRING1 and STRING2, starting first at index
3080 STARTPOS, then at STARTPOS + 1, and so on.
3081
3082 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3083
3084 RANGE is how far to scan while trying to match. RANGE = 0 means try
3085 only at STARTPOS; in general, the last start tried is STARTPOS +
3086 RANGE.
3087
3088 In REGS, return the indices of the virtual concatenation of STRING1
3089 and STRING2 that matched the entire BUFP->buffer and its contained
3090 subexpressions.
3091
3092 Do not consider matching one past the index STOP in the virtual
3093 concatenation of STRING1 and STRING2.
3094
3095 We return either the position in the strings at which the match was
3096 found, -1 if no match, or -2 if error (such as failure
3097 stack overflow). */
3098
3099 int
3100 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3101 struct re_pattern_buffer *bufp;
3102 const char *string1, *string2;
3103 int size1, size2;
3104 int startpos;
3105 int range;
3106 struct re_registers *regs;
3107 int stop;
3108 {
3109 int val;
3110 register char *fastmap = bufp->fastmap;
3111 register char *translate = bufp->translate;
3112 int total_size = size1 + size2;
3113 int endpos = startpos + range;
3114
3115 /* Check for out-of-range STARTPOS. */
3116 if (startpos < 0 || startpos > total_size)
3117 return -1;
3118
3119 /* Fix up RANGE if it might eventually take us outside
3120 the virtual concatenation of STRING1 and STRING2. */
3121 if (endpos < -1)
3122 range = -1 - startpos;
3123 else if (endpos > total_size)
3124 range = total_size - startpos;
3125
3126 /* If the search isn't to be a backwards one, don't waste time in a
3127 search for a pattern that must be anchored. */
3128 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3129 {
3130 if (startpos > 0)
3131 return -1;
3132 else
3133 range = 1;
3134 }
3135
3136 /* Update the fastmap now if not correct already. */
3137 if (fastmap && !bufp->fastmap_accurate)
3138 if (re_compile_fastmap (bufp) == -2)
3139 return -2;
3140
3141 /* Loop through the string, looking for a place to start matching. */
3142 for (;;)
3143 {
3144 /* If a fastmap is supplied, skip quickly over characters that
3145 cannot be the start of a match. If the pattern can match the
3146 null string, however, we don't need to skip characters; we want
3147 the first null string. */
3148 if (fastmap && startpos < total_size && !bufp->can_be_null)
3149 {
3150 if (range > 0) /* Searching forwards. */
3151 {
3152 register const char *d;
3153 register int lim = 0;
3154 int irange = range;
3155
3156 if (startpos < size1 && startpos + range >= size1)
3157 lim = range - (size1 - startpos);
3158
3159 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
3160
3161 /* Written out as an if-else to avoid testing `translate'
3162 inside the loop. */
3163 if (translate)
3164 while (range > lim
3165 && !fastmap[(unsigned char)
3166 translate[(unsigned char) *d++]])
3167 range--;
3168 else
3169 while (range > lim && !fastmap[(unsigned char) *d++])
3170 range--;
3171
3172 startpos += irange - range;
3173 }
3174 else /* Searching backwards. */
3175 {
3176 register char c = (size1 == 0 || startpos >= size1
3177 ? string2[startpos - size1]
3178 : string1[startpos]);
3179
3180 if (!fastmap[(unsigned char) TRANSLATE (c)])
3181 goto advance;
3182 }
3183 }
3184
3185 /* If can't match the null string, and that's all we have left, fail. */
3186 if (range >= 0 && startpos == total_size && fastmap
3187 && !bufp->can_be_null)
3188 return -1;
3189
3190 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3191 startpos, regs, stop);
3192 #ifndef REGEX_MALLOC
3193 #ifdef C_ALLOCA
3194 alloca (0);
3195 #endif
3196 #endif
3197
3198 if (val >= 0)
3199 return startpos;
3200
3201 if (val == -2)
3202 return -2;
3203
3204 advance:
3205 if (!range)
3206 break;
3207 else if (range > 0)
3208 {
3209 range--;
3210 startpos++;
3211 }
3212 else
3213 {
3214 range++;
3215 startpos--;
3216 }
3217 }
3218 return -1;
3219 } /* re_search_2 */
3220 \f
3221 /* Declarations and macros for re_match_2. */
3222
3223 static int bcmp_translate ();
3224 static boolean alt_match_null_string_p (),
3225 common_op_match_null_string_p (),
3226 group_match_null_string_p ();
3227
3228 /* This converts PTR, a pointer into one of the search strings `string1'
3229 and `string2' into an offset from the beginning of that string. */
3230 #define POINTER_TO_OFFSET(ptr) \
3231 (FIRST_STRING_P (ptr) \
3232 ? ((regoff_t) ((ptr) - string1)) \
3233 : ((regoff_t) ((ptr) - string2 + size1)))
3234
3235 /* Macros for dealing with the split strings in re_match_2. */
3236
3237 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3238
3239 /* Call before fetching a character with *d. This switches over to
3240 string2 if necessary. */
3241 #define PREFETCH() \
3242 while (d == dend) \
3243 { \
3244 /* End of string2 => fail. */ \
3245 if (dend == end_match_2) \
3246 goto fail; \
3247 /* End of string1 => advance to string2. */ \
3248 d = string2; \
3249 dend = end_match_2; \
3250 }
3251
3252
3253 /* Test if at very beginning or at very end of the virtual concatenation
3254 of `string1' and `string2'. If only one string, it's `string2'. */
3255 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3256 #define AT_STRINGS_END(d) ((d) == end2)
3257
3258
3259 /* Test if D points to a character which is word-constituent. We have
3260 two special cases to check for: if past the end of string1, look at
3261 the first character in string2; and if before the beginning of
3262 string2, look at the last character in string1. */
3263 #define WORDCHAR_P(d) \
3264 (SYNTAX ((d) == end1 ? *string2 \
3265 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3266 == Sword)
3267
3268 /* Test if the character before D and the one at D differ with respect
3269 to being word-constituent. */
3270 #define AT_WORD_BOUNDARY(d) \
3271 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3272 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3273
3274
3275 /* Free everything we malloc. */
3276 #ifdef MATCH_MAY_ALLOCATE
3277 #ifdef REGEX_MALLOC
3278 #define FREE_VAR(var) if (var) free (var); var = NULL
3279 #define FREE_VARIABLES() \
3280 do { \
3281 FREE_VAR (fail_stack.stack); \
3282 FREE_VAR (regstart); \
3283 FREE_VAR (regend); \
3284 FREE_VAR (old_regstart); \
3285 FREE_VAR (old_regend); \
3286 FREE_VAR (best_regstart); \
3287 FREE_VAR (best_regend); \
3288 FREE_VAR (reg_info); \
3289 FREE_VAR (reg_dummy); \
3290 FREE_VAR (reg_info_dummy); \
3291 } while (0)
3292 #else /* not REGEX_MALLOC */
3293 /* This used to do alloca (0), but now we do that in the caller. */
3294 #define FREE_VARIABLES() /* Nothing */
3295 #endif /* not REGEX_MALLOC */
3296 #else
3297 #define FREE_VARIABLES() /* Do nothing! */
3298 #endif /* not MATCH_MAY_ALLOCATE */
3299
3300 /* These values must meet several constraints. They must not be valid
3301 register values; since we have a limit of 255 registers (because
3302 we use only one byte in the pattern for the register number), we can
3303 use numbers larger than 255. They must differ by 1, because of
3304 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3305 be larger than the value for the highest register, so we do not try
3306 to actually save any registers when none are active. */
3307 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3308 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3309 \f
3310 /* Matching routines. */
3311
3312 #ifndef emacs /* Emacs never uses this. */
3313 /* re_match is like re_match_2 except it takes only a single string. */
3314
3315 int
3316 re_match (bufp, string, size, pos, regs)
3317 struct re_pattern_buffer *bufp;
3318 const char *string;
3319 int size, pos;
3320 struct re_registers *regs;
3321 {
3322 int result = re_match_2_internal (bufp, NULL, 0, string, size,
3323 pos, regs, size);
3324 alloca (0);
3325 return result;
3326 }
3327 #endif /* not emacs */
3328
3329
3330 /* re_match_2 matches the compiled pattern in BUFP against the
3331 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3332 and SIZE2, respectively). We start matching at POS, and stop
3333 matching at STOP.
3334
3335 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3336 store offsets for the substring each group matched in REGS. See the
3337 documentation for exactly how many groups we fill.
3338
3339 We return -1 if no match, -2 if an internal error (such as the
3340 failure stack overflowing). Otherwise, we return the length of the
3341 matched substring. */
3342
3343 int
3344 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3345 struct re_pattern_buffer *bufp;
3346 const char *string1, *string2;
3347 int size1, size2;
3348 int pos;
3349 struct re_registers *regs;
3350 int stop;
3351 {
3352 int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3353 pos, regs, stop);
3354 alloca (0);
3355 return result;
3356 }
3357
3358 /* This is a separate function so that we can force an alloca cleanup
3359 afterwards. */
3360 static int
3361 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3362 struct re_pattern_buffer *bufp;
3363 const char *string1, *string2;
3364 int size1, size2;
3365 int pos;
3366 struct re_registers *regs;
3367 int stop;
3368 {
3369 /* General temporaries. */
3370 int mcnt;
3371 unsigned char *p1;
3372
3373 /* Just past the end of the corresponding string. */
3374 const char *end1, *end2;
3375
3376 /* Pointers into string1 and string2, just past the last characters in
3377 each to consider matching. */
3378 const char *end_match_1, *end_match_2;
3379
3380 /* Where we are in the data, and the end of the current string. */
3381 const char *d, *dend;
3382
3383 /* Where we are in the pattern, and the end of the pattern. */
3384 unsigned char *p = bufp->buffer;
3385 register unsigned char *pend = p + bufp->used;
3386
3387 /* Mark the opcode just after a start_memory, so we can test for an
3388 empty subpattern when we get to the stop_memory. */
3389 unsigned char *just_past_start_mem = 0;
3390
3391 /* We use this to map every character in the string. */
3392 char *translate = bufp->translate;
3393
3394 /* Failure point stack. Each place that can handle a failure further
3395 down the line pushes a failure point on this stack. It consists of
3396 restart, regend, and reg_info for all registers corresponding to
3397 the subexpressions we're currently inside, plus the number of such
3398 registers, and, finally, two char *'s. The first char * is where
3399 to resume scanning the pattern; the second one is where to resume
3400 scanning the strings. If the latter is zero, the failure point is
3401 a ``dummy''; if a failure happens and the failure point is a dummy,
3402 it gets discarded and the next next one is tried. */
3403 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3404 fail_stack_type fail_stack;
3405 #endif
3406 #ifdef DEBUG
3407 static unsigned failure_id = 0;
3408 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3409 #endif
3410
3411 /* We fill all the registers internally, independent of what we
3412 return, for use in backreferences. The number here includes
3413 an element for register zero. */
3414 unsigned num_regs = bufp->re_nsub + 1;
3415
3416 /* The currently active registers. */
3417 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3418 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3419
3420 /* Information on the contents of registers. These are pointers into
3421 the input strings; they record just what was matched (on this
3422 attempt) by a subexpression part of the pattern, that is, the
3423 regnum-th regstart pointer points to where in the pattern we began
3424 matching and the regnum-th regend points to right after where we
3425 stopped matching the regnum-th subexpression. (The zeroth register
3426 keeps track of what the whole pattern matches.) */
3427 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3428 const char **regstart, **regend;
3429 #endif
3430
3431 /* If a group that's operated upon by a repetition operator fails to
3432 match anything, then the register for its start will need to be
3433 restored because it will have been set to wherever in the string we
3434 are when we last see its open-group operator. Similarly for a
3435 register's end. */
3436 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3437 const char **old_regstart, **old_regend;
3438 #endif
3439
3440 /* The is_active field of reg_info helps us keep track of which (possibly
3441 nested) subexpressions we are currently in. The matched_something
3442 field of reg_info[reg_num] helps us tell whether or not we have
3443 matched any of the pattern so far this time through the reg_num-th
3444 subexpression. These two fields get reset each time through any
3445 loop their register is in. */
3446 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3447 register_info_type *reg_info;
3448 #endif
3449
3450 /* The following record the register info as found in the above
3451 variables when we find a match better than any we've seen before.
3452 This happens as we backtrack through the failure points, which in
3453 turn happens only if we have not yet matched the entire string. */
3454 unsigned best_regs_set = false;
3455 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3456 const char **best_regstart, **best_regend;
3457 #endif
3458
3459 /* Logically, this is `best_regend[0]'. But we don't want to have to
3460 allocate space for that if we're not allocating space for anything
3461 else (see below). Also, we never need info about register 0 for
3462 any of the other register vectors, and it seems rather a kludge to
3463 treat `best_regend' differently than the rest. So we keep track of
3464 the end of the best match so far in a separate variable. We
3465 initialize this to NULL so that when we backtrack the first time
3466 and need to test it, it's not garbage. */
3467 const char *match_end = NULL;
3468
3469 /* Used when we pop values we don't care about. */
3470 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3471 const char **reg_dummy;
3472 register_info_type *reg_info_dummy;
3473 #endif
3474
3475 #ifdef DEBUG
3476 /* Counts the total number of registers pushed. */
3477 unsigned num_regs_pushed = 0;
3478 #endif
3479
3480 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3481
3482 INIT_FAIL_STACK ();
3483
3484 #ifdef MATCH_MAY_ALLOCATE
3485 /* Do not bother to initialize all the register variables if there are
3486 no groups in the pattern, as it takes a fair amount of time. If
3487 there are groups, we include space for register 0 (the whole
3488 pattern), even though we never use it, since it simplifies the
3489 array indexing. We should fix this. */
3490 if (bufp->re_nsub)
3491 {
3492 regstart = REGEX_TALLOC (num_regs, const char *);
3493 regend = REGEX_TALLOC (num_regs, const char *);
3494 old_regstart = REGEX_TALLOC (num_regs, const char *);
3495 old_regend = REGEX_TALLOC (num_regs, const char *);
3496 best_regstart = REGEX_TALLOC (num_regs, const char *);
3497 best_regend = REGEX_TALLOC (num_regs, const char *);
3498 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3499 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3500 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3501
3502 if (!(regstart && regend && old_regstart && old_regend && reg_info
3503 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3504 {
3505 FREE_VARIABLES ();
3506 return -2;
3507 }
3508 }
3509 #if defined (REGEX_MALLOC)
3510 else
3511 {
3512 /* We must initialize all our variables to NULL, so that
3513 `FREE_VARIABLES' doesn't try to free them. */
3514 regstart = regend = old_regstart = old_regend = best_regstart
3515 = best_regend = reg_dummy = NULL;
3516 reg_info = reg_info_dummy = (register_info_type *) NULL;
3517 }
3518 #endif /* REGEX_MALLOC */
3519 #endif /* MATCH_MAY_ALLOCATE */
3520
3521 /* The starting position is bogus. */
3522 if (pos < 0 || pos > size1 + size2)
3523 {
3524 FREE_VARIABLES ();
3525 return -1;
3526 }
3527
3528 /* Initialize subexpression text positions to -1 to mark ones that no
3529 start_memory/stop_memory has been seen for. Also initialize the
3530 register information struct. */
3531 for (mcnt = 1; mcnt < num_regs; mcnt++)
3532 {
3533 regstart[mcnt] = regend[mcnt]
3534 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3535
3536 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3537 IS_ACTIVE (reg_info[mcnt]) = 0;
3538 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3539 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3540 }
3541
3542 /* We move `string1' into `string2' if the latter's empty -- but not if
3543 `string1' is null. */
3544 if (size2 == 0 && string1 != NULL)
3545 {
3546 string2 = string1;
3547 size2 = size1;
3548 string1 = 0;
3549 size1 = 0;
3550 }
3551 end1 = string1 + size1;
3552 end2 = string2 + size2;
3553
3554 /* Compute where to stop matching, within the two strings. */
3555 if (stop <= size1)
3556 {
3557 end_match_1 = string1 + stop;
3558 end_match_2 = string2;
3559 }
3560 else
3561 {
3562 end_match_1 = end1;
3563 end_match_2 = string2 + stop - size1;
3564 }
3565
3566 /* `p' scans through the pattern as `d' scans through the data.
3567 `dend' is the end of the input string that `d' points within. `d'
3568 is advanced into the following input string whenever necessary, but
3569 this happens before fetching; therefore, at the beginning of the
3570 loop, `d' can be pointing at the end of a string, but it cannot
3571 equal `string2'. */
3572 if (size1 > 0 && pos <= size1)
3573 {
3574 d = string1 + pos;
3575 dend = end_match_1;
3576 }
3577 else
3578 {
3579 d = string2 + pos - size1;
3580 dend = end_match_2;
3581 }
3582
3583 DEBUG_PRINT1 ("The compiled pattern is: ");
3584 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
3585 DEBUG_PRINT1 ("The string to match is: `");
3586 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
3587 DEBUG_PRINT1 ("'\n");
3588
3589 /* This loops over pattern commands. It exits by returning from the
3590 function if the match is complete, or it drops through if the match
3591 fails at this starting point in the input data. */
3592 for (;;)
3593 {
3594 DEBUG_PRINT2 ("\n0x%x: ", p);
3595
3596 if (p == pend)
3597 { /* End of pattern means we might have succeeded. */
3598 DEBUG_PRINT1 ("end of pattern ... ");
3599
3600 /* If we haven't matched the entire string, and we want the
3601 longest match, try backtracking. */
3602 if (d != end_match_2)
3603 {
3604 /* 1 if this match ends in the same string (string1 or string2)
3605 as the best previous match. */
3606 boolean same_str_p = (FIRST_STRING_P (match_end)
3607 == MATCHING_IN_FIRST_STRING);
3608 /* 1 if this match is the best seen so far. */
3609 boolean best_match_p;
3610
3611 /* AIX compiler got confused when this was combined
3612 with the previous declaration. */
3613 if (same_str_p)
3614 best_match_p = d > match_end;
3615 else
3616 best_match_p = !MATCHING_IN_FIRST_STRING;
3617
3618 DEBUG_PRINT1 ("backtracking.\n");
3619
3620 if (!FAIL_STACK_EMPTY ())
3621 { /* More failure points to try. */
3622
3623 /* If exceeds best match so far, save it. */
3624 if (!best_regs_set || best_match_p)
3625 {
3626 best_regs_set = true;
3627 match_end = d;
3628
3629 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
3630
3631 for (mcnt = 1; mcnt < num_regs; mcnt++)
3632 {
3633 best_regstart[mcnt] = regstart[mcnt];
3634 best_regend[mcnt] = regend[mcnt];
3635 }
3636 }
3637 goto fail;
3638 }
3639
3640 /* If no failure points, don't restore garbage. And if
3641 last match is real best match, don't restore second
3642 best one. */
3643 else if (best_regs_set && !best_match_p)
3644 {
3645 restore_best_regs:
3646 /* Restore best match. It may happen that `dend ==
3647 end_match_1' while the restored d is in string2.
3648 For example, the pattern `x.*y.*z' against the
3649 strings `x-' and `y-z-', if the two strings are
3650 not consecutive in memory. */
3651 DEBUG_PRINT1 ("Restoring best registers.\n");
3652
3653 d = match_end;
3654 dend = ((d >= string1 && d <= end1)
3655 ? end_match_1 : end_match_2);
3656
3657 for (mcnt = 1; mcnt < num_regs; mcnt++)
3658 {
3659 regstart[mcnt] = best_regstart[mcnt];
3660 regend[mcnt] = best_regend[mcnt];
3661 }
3662 }
3663 } /* d != end_match_2 */
3664
3665 DEBUG_PRINT1 ("Accepting match.\n");
3666
3667 /* If caller wants register contents data back, do it. */
3668 if (regs && !bufp->no_sub)
3669 {
3670 /* Have the register data arrays been allocated? */
3671 if (bufp->regs_allocated == REGS_UNALLOCATED)
3672 { /* No. So allocate them with malloc. We need one
3673 extra element beyond `num_regs' for the `-1' marker
3674 GNU code uses. */
3675 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
3676 regs->start = TALLOC (regs->num_regs, regoff_t);
3677 regs->end = TALLOC (regs->num_regs, regoff_t);
3678 if (regs->start == NULL || regs->end == NULL)
3679 return -2;
3680 bufp->regs_allocated = REGS_REALLOCATE;
3681 }
3682 else if (bufp->regs_allocated == REGS_REALLOCATE)
3683 { /* Yes. If we need more elements than were already
3684 allocated, reallocate them. If we need fewer, just
3685 leave it alone. */
3686 if (regs->num_regs < num_regs + 1)
3687 {
3688 regs->num_regs = num_regs + 1;
3689 RETALLOC (regs->start, regs->num_regs, regoff_t);
3690 RETALLOC (regs->end, regs->num_regs, regoff_t);
3691 if (regs->start == NULL || regs->end == NULL)
3692 return -2;
3693 }
3694 }
3695 else
3696 {
3697 /* These braces fend off a "empty body in an else-statement"
3698 warning under GCC when assert expands to nothing. */
3699 assert (bufp->regs_allocated == REGS_FIXED);
3700 }
3701
3702 /* Convert the pointer data in `regstart' and `regend' to
3703 indices. Register zero has to be set differently,
3704 since we haven't kept track of any info for it. */
3705 if (regs->num_regs > 0)
3706 {
3707 regs->start[0] = pos;
3708 regs->end[0] = (MATCHING_IN_FIRST_STRING
3709 ? ((regoff_t) (d - string1))
3710 : ((regoff_t) (d - string2 + size1)));
3711 }
3712
3713 /* Go through the first `min (num_regs, regs->num_regs)'
3714 registers, since that is all we initialized. */
3715 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
3716 {
3717 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
3718 regs->start[mcnt] = regs->end[mcnt] = -1;
3719 else
3720 {
3721 regs->start[mcnt]
3722 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
3723 regs->end[mcnt]
3724 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
3725 }
3726 }
3727
3728 /* If the regs structure we return has more elements than
3729 were in the pattern, set the extra elements to -1. If
3730 we (re)allocated the registers, this is the case,
3731 because we always allocate enough to have at least one
3732 -1 at the end. */
3733 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
3734 regs->start[mcnt] = regs->end[mcnt] = -1;
3735 } /* regs && !bufp->no_sub */
3736
3737 FREE_VARIABLES ();
3738 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
3739 nfailure_points_pushed, nfailure_points_popped,
3740 nfailure_points_pushed - nfailure_points_popped);
3741 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
3742
3743 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
3744 ? string1
3745 : string2 - size1);
3746
3747 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
3748
3749 return mcnt;
3750 }
3751
3752 /* Otherwise match next pattern command. */
3753 #ifdef SWITCH_ENUM_BUG
3754 switch ((int) ((re_opcode_t) *p++))
3755 #else
3756 switch ((re_opcode_t) *p++)
3757 #endif
3758 {
3759 /* Ignore these. Used to ignore the n of succeed_n's which
3760 currently have n == 0. */
3761 case no_op:
3762 DEBUG_PRINT1 ("EXECUTING no_op.\n");
3763 break;
3764
3765
3766 /* Match the next n pattern characters exactly. The following
3767 byte in the pattern defines n, and the n bytes after that
3768 are the characters to match. */
3769 case exactn:
3770 mcnt = *p++;
3771 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
3772
3773 /* This is written out as an if-else so we don't waste time
3774 testing `translate' inside the loop. */
3775 if (translate)
3776 {
3777 do
3778 {
3779 PREFETCH ();
3780 if (translate[(unsigned char) *d++] != (char) *p++)
3781 goto fail;
3782 }
3783 while (--mcnt);
3784 }
3785 else
3786 {
3787 do
3788 {
3789 PREFETCH ();
3790 if (*d++ != (char) *p++) goto fail;
3791 }
3792 while (--mcnt);
3793 }
3794 SET_REGS_MATCHED ();
3795 break;
3796
3797
3798 /* Match any character except possibly a newline or a null. */
3799 case anychar:
3800 DEBUG_PRINT1 ("EXECUTING anychar.\n");
3801
3802 PREFETCH ();
3803
3804 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
3805 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
3806 goto fail;
3807
3808 SET_REGS_MATCHED ();
3809 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
3810 d++;
3811 break;
3812
3813
3814 case charset:
3815 case charset_not:
3816 {
3817 register unsigned char c;
3818 boolean not = (re_opcode_t) *(p - 1) == charset_not;
3819
3820 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
3821
3822 PREFETCH ();
3823 c = TRANSLATE (*d); /* The character to match. */
3824
3825 /* Cast to `unsigned' instead of `unsigned char' in case the
3826 bit list is a full 32 bytes long. */
3827 if (c < (unsigned) (*p * BYTEWIDTH)
3828 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
3829 not = !not;
3830
3831 p += 1 + *p;
3832
3833 if (!not) goto fail;
3834
3835 SET_REGS_MATCHED ();
3836 d++;
3837 break;
3838 }
3839
3840
3841 /* The beginning of a group is represented by start_memory.
3842 The arguments are the register number in the next byte, and the
3843 number of groups inner to this one in the next. The text
3844 matched within the group is recorded (in the internal
3845 registers data structure) under the register number. */
3846 case start_memory:
3847 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
3848
3849 /* Find out if this group can match the empty string. */
3850 p1 = p; /* To send to group_match_null_string_p. */
3851
3852 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
3853 REG_MATCH_NULL_STRING_P (reg_info[*p])
3854 = group_match_null_string_p (&p1, pend, reg_info);
3855
3856 /* Save the position in the string where we were the last time
3857 we were at this open-group operator in case the group is
3858 operated upon by a repetition operator, e.g., with `(a*)*b'
3859 against `ab'; then we want to ignore where we are now in
3860 the string in case this attempt to match fails. */
3861 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3862 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
3863 : regstart[*p];
3864 DEBUG_PRINT2 (" old_regstart: %d\n",
3865 POINTER_TO_OFFSET (old_regstart[*p]));
3866
3867 regstart[*p] = d;
3868 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
3869
3870 IS_ACTIVE (reg_info[*p]) = 1;
3871 MATCHED_SOMETHING (reg_info[*p]) = 0;
3872
3873 /* This is the new highest active register. */
3874 highest_active_reg = *p;
3875
3876 /* If nothing was active before, this is the new lowest active
3877 register. */
3878 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
3879 lowest_active_reg = *p;
3880
3881 /* Move past the register number and inner group count. */
3882 p += 2;
3883 just_past_start_mem = p;
3884 break;
3885
3886
3887 /* The stop_memory opcode represents the end of a group. Its
3888 arguments are the same as start_memory's: the register
3889 number, and the number of inner groups. */
3890 case stop_memory:
3891 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
3892
3893 /* We need to save the string position the last time we were at
3894 this close-group operator in case the group is operated
3895 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
3896 against `aba'; then we want to ignore where we are now in
3897 the string in case this attempt to match fails. */
3898 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3899 ? REG_UNSET (regend[*p]) ? d : regend[*p]
3900 : regend[*p];
3901 DEBUG_PRINT2 (" old_regend: %d\n",
3902 POINTER_TO_OFFSET (old_regend[*p]));
3903
3904 regend[*p] = d;
3905 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
3906
3907 /* This register isn't active anymore. */
3908 IS_ACTIVE (reg_info[*p]) = 0;
3909
3910 /* If this was the only register active, nothing is active
3911 anymore. */
3912 if (lowest_active_reg == highest_active_reg)
3913 {
3914 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3915 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3916 }
3917 else
3918 { /* We must scan for the new highest active register, since
3919 it isn't necessarily one less than now: consider
3920 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
3921 new highest active register is 1. */
3922 unsigned char r = *p - 1;
3923 while (r > 0 && !IS_ACTIVE (reg_info[r]))
3924 r--;
3925
3926 /* If we end up at register zero, that means that we saved
3927 the registers as the result of an `on_failure_jump', not
3928 a `start_memory', and we jumped to past the innermost
3929 `stop_memory'. For example, in ((.)*) we save
3930 registers 1 and 2 as a result of the *, but when we pop
3931 back to the second ), we are at the stop_memory 1.
3932 Thus, nothing is active. */
3933 if (r == 0)
3934 {
3935 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3936 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3937 }
3938 else
3939 highest_active_reg = r;
3940 }
3941
3942 /* If just failed to match something this time around with a
3943 group that's operated on by a repetition operator, try to
3944 force exit from the ``loop'', and restore the register
3945 information for this group that we had before trying this
3946 last match. */
3947 if ((!MATCHED_SOMETHING (reg_info[*p])
3948 || just_past_start_mem == p - 1)
3949 && (p + 2) < pend)
3950 {
3951 boolean is_a_jump_n = false;
3952
3953 p1 = p + 2;
3954 mcnt = 0;
3955 switch ((re_opcode_t) *p1++)
3956 {
3957 case jump_n:
3958 is_a_jump_n = true;
3959 case pop_failure_jump:
3960 case maybe_pop_jump:
3961 case jump:
3962 case dummy_failure_jump:
3963 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3964 if (is_a_jump_n)
3965 p1 += 2;
3966 break;
3967
3968 default:
3969 /* do nothing */ ;
3970 }
3971 p1 += mcnt;
3972
3973 /* If the next operation is a jump backwards in the pattern
3974 to an on_failure_jump right before the start_memory
3975 corresponding to this stop_memory, exit from the loop
3976 by forcing a failure after pushing on the stack the
3977 on_failure_jump's jump in the pattern, and d. */
3978 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
3979 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
3980 {
3981 /* If this group ever matched anything, then restore
3982 what its registers were before trying this last
3983 failed match, e.g., with `(a*)*b' against `ab' for
3984 regstart[1], and, e.g., with `((a*)*(b*)*)*'
3985 against `aba' for regend[3].
3986
3987 Also restore the registers for inner groups for,
3988 e.g., `((a*)(b*))*' against `aba' (register 3 would
3989 otherwise get trashed). */
3990
3991 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
3992 {
3993 unsigned r;
3994
3995 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
3996
3997 /* Restore this and inner groups' (if any) registers. */
3998 for (r = *p; r < *p + *(p + 1); r++)
3999 {
4000 regstart[r] = old_regstart[r];
4001
4002 /* xx why this test? */
4003 if ((int) old_regend[r] >= (int) regstart[r])
4004 regend[r] = old_regend[r];
4005 }
4006 }
4007 p1++;
4008 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4009 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4010
4011 goto fail;
4012 }
4013 }
4014
4015 /* Move past the register number and the inner group count. */
4016 p += 2;
4017 break;
4018
4019
4020 /* \<digit> has been turned into a `duplicate' command which is
4021 followed by the numeric value of <digit> as the register number. */
4022 case duplicate:
4023 {
4024 register const char *d2, *dend2;
4025 int regno = *p++; /* Get which register to match against. */
4026 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4027
4028 /* Can't back reference a group which we've never matched. */
4029 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4030 goto fail;
4031
4032 /* Where in input to try to start matching. */
4033 d2 = regstart[regno];
4034
4035 /* Where to stop matching; if both the place to start and
4036 the place to stop matching are in the same string, then
4037 set to the place to stop, otherwise, for now have to use
4038 the end of the first string. */
4039
4040 dend2 = ((FIRST_STRING_P (regstart[regno])
4041 == FIRST_STRING_P (regend[regno]))
4042 ? regend[regno] : end_match_1);
4043 for (;;)
4044 {
4045 /* If necessary, advance to next segment in register
4046 contents. */
4047 while (d2 == dend2)
4048 {
4049 if (dend2 == end_match_2) break;
4050 if (dend2 == regend[regno]) break;
4051
4052 /* End of string1 => advance to string2. */
4053 d2 = string2;
4054 dend2 = regend[regno];
4055 }
4056 /* At end of register contents => success */
4057 if (d2 == dend2) break;
4058
4059 /* If necessary, advance to next segment in data. */
4060 PREFETCH ();
4061
4062 /* How many characters left in this segment to match. */
4063 mcnt = dend - d;
4064
4065 /* Want how many consecutive characters we can match in
4066 one shot, so, if necessary, adjust the count. */
4067 if (mcnt > dend2 - d2)
4068 mcnt = dend2 - d2;
4069
4070 /* Compare that many; failure if mismatch, else move
4071 past them. */
4072 if (translate
4073 ? bcmp_translate (d, d2, mcnt, translate)
4074 : bcmp (d, d2, mcnt))
4075 goto fail;
4076 d += mcnt, d2 += mcnt;
4077 }
4078 }
4079 break;
4080
4081
4082 /* begline matches the empty string at the beginning of the string
4083 (unless `not_bol' is set in `bufp'), and, if
4084 `newline_anchor' is set, after newlines. */
4085 case begline:
4086 DEBUG_PRINT1 ("EXECUTING begline.\n");
4087
4088 if (AT_STRINGS_BEG (d))
4089 {
4090 if (!bufp->not_bol) break;
4091 }
4092 else if (d[-1] == '\n' && bufp->newline_anchor)
4093 {
4094 break;
4095 }
4096 /* In all other cases, we fail. */
4097 goto fail;
4098
4099
4100 /* endline is the dual of begline. */
4101 case endline:
4102 DEBUG_PRINT1 ("EXECUTING endline.\n");
4103
4104 if (AT_STRINGS_END (d))
4105 {
4106 if (!bufp->not_eol) break;
4107 }
4108
4109 /* We have to ``prefetch'' the next character. */
4110 else if ((d == end1 ? *string2 : *d) == '\n'
4111 && bufp->newline_anchor)
4112 {
4113 break;
4114 }
4115 goto fail;
4116
4117
4118 /* Match at the very beginning of the data. */
4119 case begbuf:
4120 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4121 if (AT_STRINGS_BEG (d))
4122 break;
4123 goto fail;
4124
4125
4126 /* Match at the very end of the data. */
4127 case endbuf:
4128 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4129 if (AT_STRINGS_END (d))
4130 break;
4131 goto fail;
4132
4133
4134 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4135 pushes NULL as the value for the string on the stack. Then
4136 `pop_failure_point' will keep the current value for the
4137 string, instead of restoring it. To see why, consider
4138 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4139 then the . fails against the \n. But the next thing we want
4140 to do is match the \n against the \n; if we restored the
4141 string value, we would be back at the foo.
4142
4143 Because this is used only in specific cases, we don't need to
4144 check all the things that `on_failure_jump' does, to make
4145 sure the right things get saved on the stack. Hence we don't
4146 share its code. The only reason to push anything on the
4147 stack at all is that otherwise we would have to change
4148 `anychar's code to do something besides goto fail in this
4149 case; that seems worse than this. */
4150 case on_failure_keep_string_jump:
4151 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4152
4153 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4154 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4155
4156 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4157 break;
4158
4159
4160 /* Uses of on_failure_jump:
4161
4162 Each alternative starts with an on_failure_jump that points
4163 to the beginning of the next alternative. Each alternative
4164 except the last ends with a jump that in effect jumps past
4165 the rest of the alternatives. (They really jump to the
4166 ending jump of the following alternative, because tensioning
4167 these jumps is a hassle.)
4168
4169 Repeats start with an on_failure_jump that points past both
4170 the repetition text and either the following jump or
4171 pop_failure_jump back to this on_failure_jump. */
4172 case on_failure_jump:
4173 on_failure:
4174 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4175
4176 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4177 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4178
4179 /* If this on_failure_jump comes right before a group (i.e.,
4180 the original * applied to a group), save the information
4181 for that group and all inner ones, so that if we fail back
4182 to this point, the group's information will be correct.
4183 For example, in \(a*\)*\1, we need the preceding group,
4184 and in \(\(a*\)b*\)\2, we need the inner group. */
4185
4186 /* We can't use `p' to check ahead because we push
4187 a failure point to `p + mcnt' after we do this. */
4188 p1 = p;
4189
4190 /* We need to skip no_op's before we look for the
4191 start_memory in case this on_failure_jump is happening as
4192 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4193 against aba. */
4194 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4195 p1++;
4196
4197 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4198 {
4199 /* We have a new highest active register now. This will
4200 get reset at the start_memory we are about to get to,
4201 but we will have saved all the registers relevant to
4202 this repetition op, as described above. */
4203 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4204 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4205 lowest_active_reg = *(p1 + 1);
4206 }
4207
4208 DEBUG_PRINT1 (":\n");
4209 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4210 break;
4211
4212
4213 /* A smart repeat ends with `maybe_pop_jump'.
4214 We change it to either `pop_failure_jump' or `jump'. */
4215 case maybe_pop_jump:
4216 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4217 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4218 {
4219 register unsigned char *p2 = p;
4220
4221 /* Compare the beginning of the repeat with what in the
4222 pattern follows its end. If we can establish that there
4223 is nothing that they would both match, i.e., that we
4224 would have to backtrack because of (as in, e.g., `a*a')
4225 then we can change to pop_failure_jump, because we'll
4226 never have to backtrack.
4227
4228 This is not true in the case of alternatives: in
4229 `(a|ab)*' we do need to backtrack to the `ab' alternative
4230 (e.g., if the string was `ab'). But instead of trying to
4231 detect that here, the alternative has put on a dummy
4232 failure point which is what we will end up popping. */
4233
4234 /* Skip over open/close-group commands.
4235 If what follows this loop is a ...+ construct,
4236 look at what begins its body, since we will have to
4237 match at least one of that. */
4238 while (1)
4239 {
4240 if (p2 + 2 < pend
4241 && ((re_opcode_t) *p2 == stop_memory
4242 || (re_opcode_t) *p2 == start_memory))
4243 p2 += 3;
4244 else if (p2 + 6 < pend
4245 && (re_opcode_t) *p2 == dummy_failure_jump)
4246 p2 += 6;
4247 else
4248 break;
4249 }
4250
4251 p1 = p + mcnt;
4252 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4253 to the `maybe_finalize_jump' of this case. Examine what
4254 follows. */
4255
4256 /* If we're at the end of the pattern, we can change. */
4257 if (p2 == pend)
4258 {
4259 /* Consider what happens when matching ":\(.*\)"
4260 against ":/". I don't really understand this code
4261 yet. */
4262 p[-3] = (unsigned char) pop_failure_jump;
4263 DEBUG_PRINT1
4264 (" End of pattern: change to `pop_failure_jump'.\n");
4265 }
4266
4267 else if ((re_opcode_t) *p2 == exactn
4268 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4269 {
4270 register unsigned char c
4271 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4272
4273 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4274 {
4275 p[-3] = (unsigned char) pop_failure_jump;
4276 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4277 c, p1[5]);
4278 }
4279
4280 else if ((re_opcode_t) p1[3] == charset
4281 || (re_opcode_t) p1[3] == charset_not)
4282 {
4283 int not = (re_opcode_t) p1[3] == charset_not;
4284
4285 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4286 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4287 not = !not;
4288
4289 /* `not' is equal to 1 if c would match, which means
4290 that we can't change to pop_failure_jump. */
4291 if (!not)
4292 {
4293 p[-3] = (unsigned char) pop_failure_jump;
4294 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4295 }
4296 }
4297 }
4298 else if ((re_opcode_t) *p2 == charset)
4299 {
4300 #ifdef DEBUG
4301 register unsigned char c
4302 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4303 #endif
4304
4305 if ((re_opcode_t) p1[3] == exactn
4306 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[4]
4307 && (p2[1 + p1[4] / BYTEWIDTH]
4308 & (1 << (p1[4] % BYTEWIDTH)))))
4309 {
4310 p[-3] = (unsigned char) pop_failure_jump;
4311 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4312 c, p1[5]);
4313 }
4314
4315 else if ((re_opcode_t) p1[3] == charset_not)
4316 {
4317 int idx;
4318 /* We win if the charset_not inside the loop
4319 lists every character listed in the charset after. */
4320 for (idx = 0; idx < (int) p2[1]; idx++)
4321 if (! (p2[2 + idx] == 0
4322 || (idx < (int) p1[4]
4323 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4324 break;
4325
4326 if (idx == p2[1])
4327 {
4328 p[-3] = (unsigned char) pop_failure_jump;
4329 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4330 }
4331 }
4332 else if ((re_opcode_t) p1[3] == charset)
4333 {
4334 int idx;
4335 /* We win if the charset inside the loop
4336 has no overlap with the one after the loop. */
4337 for (idx = 0;
4338 idx < (int) p2[1] && idx < (int) p1[4];
4339 idx++)
4340 if ((p2[2 + idx] & p1[5 + idx]) != 0)
4341 break;
4342
4343 if (idx == p2[1] || idx == p1[4])
4344 {
4345 p[-3] = (unsigned char) pop_failure_jump;
4346 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4347 }
4348 }
4349 }
4350 }
4351 p -= 2; /* Point at relative address again. */
4352 if ((re_opcode_t) p[-1] != pop_failure_jump)
4353 {
4354 p[-1] = (unsigned char) jump;
4355 DEBUG_PRINT1 (" Match => jump.\n");
4356 goto unconditional_jump;
4357 }
4358 /* Note fall through. */
4359
4360
4361 /* The end of a simple repeat has a pop_failure_jump back to
4362 its matching on_failure_jump, where the latter will push a
4363 failure point. The pop_failure_jump takes off failure
4364 points put on by this pop_failure_jump's matching
4365 on_failure_jump; we got through the pattern to here from the
4366 matching on_failure_jump, so didn't fail. */
4367 case pop_failure_jump:
4368 {
4369 /* We need to pass separate storage for the lowest and
4370 highest registers, even though we don't care about the
4371 actual values. Otherwise, we will restore only one
4372 register from the stack, since lowest will == highest in
4373 `pop_failure_point'. */
4374 unsigned dummy_low_reg, dummy_high_reg;
4375 unsigned char *pdummy;
4376 const char *sdummy;
4377
4378 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4379 POP_FAILURE_POINT (sdummy, pdummy,
4380 dummy_low_reg, dummy_high_reg,
4381 reg_dummy, reg_dummy, reg_info_dummy);
4382 }
4383 /* Note fall through. */
4384
4385
4386 /* Unconditionally jump (without popping any failure points). */
4387 case jump:
4388 unconditional_jump:
4389 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4390 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4391 p += mcnt; /* Do the jump. */
4392 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4393 break;
4394
4395
4396 /* We need this opcode so we can detect where alternatives end
4397 in `group_match_null_string_p' et al. */
4398 case jump_past_alt:
4399 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4400 goto unconditional_jump;
4401
4402
4403 /* Normally, the on_failure_jump pushes a failure point, which
4404 then gets popped at pop_failure_jump. We will end up at
4405 pop_failure_jump, also, and with a pattern of, say, `a+', we
4406 are skipping over the on_failure_jump, so we have to push
4407 something meaningless for pop_failure_jump to pop. */
4408 case dummy_failure_jump:
4409 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4410 /* It doesn't matter what we push for the string here. What
4411 the code at `fail' tests is the value for the pattern. */
4412 PUSH_FAILURE_POINT (0, 0, -2);
4413 goto unconditional_jump;
4414
4415
4416 /* At the end of an alternative, we need to push a dummy failure
4417 point in case we are followed by a `pop_failure_jump', because
4418 we don't want the failure point for the alternative to be
4419 popped. For example, matching `(a|ab)*' against `aab'
4420 requires that we match the `ab' alternative. */
4421 case push_dummy_failure:
4422 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4423 /* See comments just above at `dummy_failure_jump' about the
4424 two zeroes. */
4425 PUSH_FAILURE_POINT (0, 0, -2);
4426 break;
4427
4428 /* Have to succeed matching what follows at least n times.
4429 After that, handle like `on_failure_jump'. */
4430 case succeed_n:
4431 EXTRACT_NUMBER (mcnt, p + 2);
4432 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4433
4434 assert (mcnt >= 0);
4435 /* Originally, this is how many times we HAVE to succeed. */
4436 if (mcnt > 0)
4437 {
4438 mcnt--;
4439 p += 2;
4440 STORE_NUMBER_AND_INCR (p, mcnt);
4441 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
4442 }
4443 else if (mcnt == 0)
4444 {
4445 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4446 p[2] = (unsigned char) no_op;
4447 p[3] = (unsigned char) no_op;
4448 goto on_failure;
4449 }
4450 break;
4451
4452 case jump_n:
4453 EXTRACT_NUMBER (mcnt, p + 2);
4454 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4455
4456 /* Originally, this is how many times we CAN jump. */
4457 if (mcnt)
4458 {
4459 mcnt--;
4460 STORE_NUMBER (p + 2, mcnt);
4461 goto unconditional_jump;
4462 }
4463 /* If don't have to jump any more, skip over the rest of command. */
4464 else
4465 p += 4;
4466 break;
4467
4468 case set_number_at:
4469 {
4470 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4471
4472 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4473 p1 = p + mcnt;
4474 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4475 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4476 STORE_NUMBER (p1, mcnt);
4477 break;
4478 }
4479
4480 case wordbound:
4481 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4482 if (AT_WORD_BOUNDARY (d))
4483 break;
4484 goto fail;
4485
4486 case notwordbound:
4487 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4488 if (AT_WORD_BOUNDARY (d))
4489 goto fail;
4490 break;
4491
4492 case wordbeg:
4493 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4494 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
4495 break;
4496 goto fail;
4497
4498 case wordend:
4499 DEBUG_PRINT1 ("EXECUTING wordend.\n");
4500 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
4501 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
4502 break;
4503 goto fail;
4504
4505 #ifdef emacs
4506 case before_dot:
4507 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4508 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
4509 goto fail;
4510 break;
4511
4512 case at_dot:
4513 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4514 if (PTR_CHAR_POS ((unsigned char *) d) != point)
4515 goto fail;
4516 break;
4517
4518 case after_dot:
4519 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4520 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
4521 goto fail;
4522 break;
4523 #if 0 /* not emacs19 */
4524 case at_dot:
4525 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4526 if (PTR_CHAR_POS ((unsigned char *) d) + 1 != point)
4527 goto fail;
4528 break;
4529 #endif /* not emacs19 */
4530
4531 case syntaxspec:
4532 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
4533 mcnt = *p++;
4534 goto matchsyntax;
4535
4536 case wordchar:
4537 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
4538 mcnt = (int) Sword;
4539 matchsyntax:
4540 PREFETCH ();
4541 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4542 d++;
4543 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
4544 goto fail;
4545 SET_REGS_MATCHED ();
4546 break;
4547
4548 case notsyntaxspec:
4549 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
4550 mcnt = *p++;
4551 goto matchnotsyntax;
4552
4553 case notwordchar:
4554 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
4555 mcnt = (int) Sword;
4556 matchnotsyntax:
4557 PREFETCH ();
4558 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4559 d++;
4560 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
4561 goto fail;
4562 SET_REGS_MATCHED ();
4563 break;
4564
4565 #else /* not emacs */
4566 case wordchar:
4567 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4568 PREFETCH ();
4569 if (!WORDCHAR_P (d))
4570 goto fail;
4571 SET_REGS_MATCHED ();
4572 d++;
4573 break;
4574
4575 case notwordchar:
4576 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4577 PREFETCH ();
4578 if (WORDCHAR_P (d))
4579 goto fail;
4580 SET_REGS_MATCHED ();
4581 d++;
4582 break;
4583 #endif /* not emacs */
4584
4585 default:
4586 abort ();
4587 }
4588 continue; /* Successfully executed one pattern command; keep going. */
4589
4590
4591 /* We goto here if a matching operation fails. */
4592 fail:
4593 if (!FAIL_STACK_EMPTY ())
4594 { /* A restart point is known. Restore to that state. */
4595 DEBUG_PRINT1 ("\nFAIL:\n");
4596 POP_FAILURE_POINT (d, p,
4597 lowest_active_reg, highest_active_reg,
4598 regstart, regend, reg_info);
4599
4600 /* If this failure point is a dummy, try the next one. */
4601 if (!p)
4602 goto fail;
4603
4604 /* If we failed to the end of the pattern, don't examine *p. */
4605 assert (p <= pend);
4606 if (p < pend)
4607 {
4608 boolean is_a_jump_n = false;
4609
4610 /* If failed to a backwards jump that's part of a repetition
4611 loop, need to pop this failure point and use the next one. */
4612 switch ((re_opcode_t) *p)
4613 {
4614 case jump_n:
4615 is_a_jump_n = true;
4616 case maybe_pop_jump:
4617 case pop_failure_jump:
4618 case jump:
4619 p1 = p + 1;
4620 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4621 p1 += mcnt;
4622
4623 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
4624 || (!is_a_jump_n
4625 && (re_opcode_t) *p1 == on_failure_jump))
4626 goto fail;
4627 break;
4628 default:
4629 /* do nothing */ ;
4630 }
4631 }
4632
4633 if (d >= string1 && d <= end1)
4634 dend = end_match_1;
4635 }
4636 else
4637 break; /* Matching at this starting point really fails. */
4638 } /* for (;;) */
4639
4640 if (best_regs_set)
4641 goto restore_best_regs;
4642
4643 FREE_VARIABLES ();
4644
4645 return -1; /* Failure to match. */
4646 } /* re_match_2 */
4647 \f
4648 /* Subroutine definitions for re_match_2. */
4649
4650
4651 /* We are passed P pointing to a register number after a start_memory.
4652
4653 Return true if the pattern up to the corresponding stop_memory can
4654 match the empty string, and false otherwise.
4655
4656 If we find the matching stop_memory, sets P to point to one past its number.
4657 Otherwise, sets P to an undefined byte less than or equal to END.
4658
4659 We don't handle duplicates properly (yet). */
4660
4661 static boolean
4662 group_match_null_string_p (p, end, reg_info)
4663 unsigned char **p, *end;
4664 register_info_type *reg_info;
4665 {
4666 int mcnt;
4667 /* Point to after the args to the start_memory. */
4668 unsigned char *p1 = *p + 2;
4669
4670 while (p1 < end)
4671 {
4672 /* Skip over opcodes that can match nothing, and return true or
4673 false, as appropriate, when we get to one that can't, or to the
4674 matching stop_memory. */
4675
4676 switch ((re_opcode_t) *p1)
4677 {
4678 /* Could be either a loop or a series of alternatives. */
4679 case on_failure_jump:
4680 p1++;
4681 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4682
4683 /* If the next operation is not a jump backwards in the
4684 pattern. */
4685
4686 if (mcnt >= 0)
4687 {
4688 /* Go through the on_failure_jumps of the alternatives,
4689 seeing if any of the alternatives cannot match nothing.
4690 The last alternative starts with only a jump,
4691 whereas the rest start with on_failure_jump and end
4692 with a jump, e.g., here is the pattern for `a|b|c':
4693
4694 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4695 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
4696 /exactn/1/c
4697
4698 So, we have to first go through the first (n-1)
4699 alternatives and then deal with the last one separately. */
4700
4701
4702 /* Deal with the first (n-1) alternatives, which start
4703 with an on_failure_jump (see above) that jumps to right
4704 past a jump_past_alt. */
4705
4706 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
4707 {
4708 /* `mcnt' holds how many bytes long the alternative
4709 is, including the ending `jump_past_alt' and
4710 its number. */
4711
4712 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
4713 reg_info))
4714 return false;
4715
4716 /* Move to right after this alternative, including the
4717 jump_past_alt. */
4718 p1 += mcnt;
4719
4720 /* Break if it's the beginning of an n-th alternative
4721 that doesn't begin with an on_failure_jump. */
4722 if ((re_opcode_t) *p1 != on_failure_jump)
4723 break;
4724
4725 /* Still have to check that it's not an n-th
4726 alternative that starts with an on_failure_jump. */
4727 p1++;
4728 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4729 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
4730 {
4731 /* Get to the beginning of the n-th alternative. */
4732 p1 -= 3;
4733 break;
4734 }
4735 }
4736
4737 /* Deal with the last alternative: go back and get number
4738 of the `jump_past_alt' just before it. `mcnt' contains
4739 the length of the alternative. */
4740 EXTRACT_NUMBER (mcnt, p1 - 2);
4741
4742 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
4743 return false;
4744
4745 p1 += mcnt; /* Get past the n-th alternative. */
4746 } /* if mcnt > 0 */
4747 break;
4748
4749
4750 case stop_memory:
4751 assert (p1[1] == **p);
4752 *p = p1 + 2;
4753 return true;
4754
4755
4756 default:
4757 if (!common_op_match_null_string_p (&p1, end, reg_info))
4758 return false;
4759 }
4760 } /* while p1 < end */
4761
4762 return false;
4763 } /* group_match_null_string_p */
4764
4765
4766 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
4767 It expects P to be the first byte of a single alternative and END one
4768 byte past the last. The alternative can contain groups. */
4769
4770 static boolean
4771 alt_match_null_string_p (p, end, reg_info)
4772 unsigned char *p, *end;
4773 register_info_type *reg_info;
4774 {
4775 int mcnt;
4776 unsigned char *p1 = p;
4777
4778 while (p1 < end)
4779 {
4780 /* Skip over opcodes that can match nothing, and break when we get
4781 to one that can't. */
4782
4783 switch ((re_opcode_t) *p1)
4784 {
4785 /* It's a loop. */
4786 case on_failure_jump:
4787 p1++;
4788 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4789 p1 += mcnt;
4790 break;
4791
4792 default:
4793 if (!common_op_match_null_string_p (&p1, end, reg_info))
4794 return false;
4795 }
4796 } /* while p1 < end */
4797
4798 return true;
4799 } /* alt_match_null_string_p */
4800
4801
4802 /* Deals with the ops common to group_match_null_string_p and
4803 alt_match_null_string_p.
4804
4805 Sets P to one after the op and its arguments, if any. */
4806
4807 static boolean
4808 common_op_match_null_string_p (p, end, reg_info)
4809 unsigned char **p, *end;
4810 register_info_type *reg_info;
4811 {
4812 int mcnt;
4813 boolean ret;
4814 int reg_no;
4815 unsigned char *p1 = *p;
4816
4817 switch ((re_opcode_t) *p1++)
4818 {
4819 case no_op:
4820 case begline:
4821 case endline:
4822 case begbuf:
4823 case endbuf:
4824 case wordbeg:
4825 case wordend:
4826 case wordbound:
4827 case notwordbound:
4828 #ifdef emacs
4829 case before_dot:
4830 case at_dot:
4831 case after_dot:
4832 #endif
4833 break;
4834
4835 case start_memory:
4836 reg_no = *p1;
4837 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
4838 ret = group_match_null_string_p (&p1, end, reg_info);
4839
4840 /* Have to set this here in case we're checking a group which
4841 contains a group and a back reference to it. */
4842
4843 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
4844 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
4845
4846 if (!ret)
4847 return false;
4848 break;
4849
4850 /* If this is an optimized succeed_n for zero times, make the jump. */
4851 case jump:
4852 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4853 if (mcnt >= 0)
4854 p1 += mcnt;
4855 else
4856 return false;
4857 break;
4858
4859 case succeed_n:
4860 /* Get to the number of times to succeed. */
4861 p1 += 2;
4862 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4863
4864 if (mcnt == 0)
4865 {
4866 p1 -= 4;
4867 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4868 p1 += mcnt;
4869 }
4870 else
4871 return false;
4872 break;
4873
4874 case duplicate:
4875 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
4876 return false;
4877 break;
4878
4879 case set_number_at:
4880 p1 += 4;
4881
4882 default:
4883 /* All other opcodes mean we cannot match the empty string. */
4884 return false;
4885 }
4886
4887 *p = p1;
4888 return true;
4889 } /* common_op_match_null_string_p */
4890
4891
4892 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
4893 bytes; nonzero otherwise. */
4894
4895 static int
4896 bcmp_translate (s1, s2, len, translate)
4897 unsigned char *s1, *s2;
4898 register int len;
4899 char *translate;
4900 {
4901 register unsigned char *p1 = s1, *p2 = s2;
4902 while (len)
4903 {
4904 if (translate[*p1++] != translate[*p2++]) return 1;
4905 len--;
4906 }
4907 return 0;
4908 }
4909 \f
4910 /* Entry points for GNU code. */
4911
4912 /* re_compile_pattern is the GNU regular expression compiler: it
4913 compiles PATTERN (of length SIZE) and puts the result in BUFP.
4914 Returns 0 if the pattern was valid, otherwise an error string.
4915
4916 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
4917 are set in BUFP on entry.
4918
4919 We call regex_compile to do the actual compilation. */
4920
4921 const char *
4922 re_compile_pattern (pattern, length, bufp)
4923 const char *pattern;
4924 int length;
4925 struct re_pattern_buffer *bufp;
4926 {
4927 reg_errcode_t ret;
4928
4929 /* GNU code is written to assume at least RE_NREGS registers will be set
4930 (and at least one extra will be -1). */
4931 bufp->regs_allocated = REGS_UNALLOCATED;
4932
4933 /* And GNU code determines whether or not to get register information
4934 by passing null for the REGS argument to re_match, etc., not by
4935 setting no_sub. */
4936 bufp->no_sub = 0;
4937
4938 /* Match anchors at newline. */
4939 bufp->newline_anchor = 1;
4940
4941 ret = regex_compile (pattern, length, re_syntax_options, bufp);
4942
4943 return re_error_msg[(int) ret];
4944 }
4945 \f
4946 /* Entry points compatible with 4.2 BSD regex library. We don't define
4947 them if this is an Emacs or POSIX compilation. */
4948
4949 #if !defined (emacs) && !defined (_POSIX_SOURCE)
4950
4951 /* BSD has one and only one pattern buffer. */
4952 static struct re_pattern_buffer re_comp_buf;
4953
4954 char *
4955 re_comp (s)
4956 const char *s;
4957 {
4958 reg_errcode_t ret;
4959
4960 if (!s)
4961 {
4962 if (!re_comp_buf.buffer)
4963 return "No previous regular expression";
4964 return 0;
4965 }
4966
4967 if (!re_comp_buf.buffer)
4968 {
4969 re_comp_buf.buffer = (unsigned char *) malloc (200);
4970 if (re_comp_buf.buffer == NULL)
4971 return "Memory exhausted";
4972 re_comp_buf.allocated = 200;
4973
4974 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
4975 if (re_comp_buf.fastmap == NULL)
4976 return "Memory exhausted";
4977 }
4978
4979 /* Since `re_exec' always passes NULL for the `regs' argument, we
4980 don't need to initialize the pattern buffer fields which affect it. */
4981
4982 /* Match anchors at newlines. */
4983 re_comp_buf.newline_anchor = 1;
4984
4985 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
4986
4987 /* Yes, we're discarding `const' here. */
4988 return (char *) re_error_msg[(int) ret];
4989 }
4990
4991
4992 int
4993 re_exec (s)
4994 const char *s;
4995 {
4996 const int len = strlen (s);
4997 return
4998 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
4999 }
5000 #endif /* not emacs and not _POSIX_SOURCE */
5001 \f
5002 /* POSIX.2 functions. Don't define these for Emacs. */
5003
5004 #ifndef emacs
5005
5006 /* regcomp takes a regular expression as a string and compiles it.
5007
5008 PREG is a regex_t *. We do not expect any fields to be initialized,
5009 since POSIX says we shouldn't. Thus, we set
5010
5011 `buffer' to the compiled pattern;
5012 `used' to the length of the compiled pattern;
5013 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5014 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5015 RE_SYNTAX_POSIX_BASIC;
5016 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5017 `fastmap' and `fastmap_accurate' to zero;
5018 `re_nsub' to the number of subexpressions in PATTERN.
5019
5020 PATTERN is the address of the pattern string.
5021
5022 CFLAGS is a series of bits which affect compilation.
5023
5024 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5025 use POSIX basic syntax.
5026
5027 If REG_NEWLINE is set, then . and [^...] don't match newline.
5028 Also, regexec will try a match beginning after every newline.
5029
5030 If REG_ICASE is set, then we considers upper- and lowercase
5031 versions of letters to be equivalent when matching.
5032
5033 If REG_NOSUB is set, then when PREG is passed to regexec, that
5034 routine will report only success or failure, and nothing about the
5035 registers.
5036
5037 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
5038 the return codes and their meanings.) */
5039
5040 int
5041 regcomp (preg, pattern, cflags)
5042 regex_t *preg;
5043 const char *pattern;
5044 int cflags;
5045 {
5046 reg_errcode_t ret;
5047 unsigned syntax
5048 = (cflags & REG_EXTENDED) ?
5049 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5050
5051 /* regex_compile will allocate the space for the compiled pattern. */
5052 preg->buffer = 0;
5053 preg->allocated = 0;
5054 preg->used = 0;
5055
5056 /* Don't bother to use a fastmap when searching. This simplifies the
5057 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5058 characters after newlines into the fastmap. This way, we just try
5059 every character. */
5060 preg->fastmap = 0;
5061
5062 if (cflags & REG_ICASE)
5063 {
5064 unsigned i;
5065
5066 preg->translate = (char *) malloc (CHAR_SET_SIZE);
5067 if (preg->translate == NULL)
5068 return (int) REG_ESPACE;
5069
5070 /* Map uppercase characters to corresponding lowercase ones. */
5071 for (i = 0; i < CHAR_SET_SIZE; i++)
5072 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
5073 }
5074 else
5075 preg->translate = NULL;
5076
5077 /* If REG_NEWLINE is set, newlines are treated differently. */
5078 if (cflags & REG_NEWLINE)
5079 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5080 syntax &= ~RE_DOT_NEWLINE;
5081 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5082 /* It also changes the matching behavior. */
5083 preg->newline_anchor = 1;
5084 }
5085 else
5086 preg->newline_anchor = 0;
5087
5088 preg->no_sub = !!(cflags & REG_NOSUB);
5089
5090 /* POSIX says a null character in the pattern terminates it, so we
5091 can use strlen here in compiling the pattern. */
5092 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5093
5094 /* POSIX doesn't distinguish between an unmatched open-group and an
5095 unmatched close-group: both are REG_EPAREN. */
5096 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5097
5098 return (int) ret;
5099 }
5100
5101
5102 /* regexec searches for a given pattern, specified by PREG, in the
5103 string STRING.
5104
5105 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5106 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5107 least NMATCH elements, and we set them to the offsets of the
5108 corresponding matched substrings.
5109
5110 EFLAGS specifies `execution flags' which affect matching: if
5111 REG_NOTBOL is set, then ^ does not match at the beginning of the
5112 string; if REG_NOTEOL is set, then $ does not match at the end.
5113
5114 We return 0 if we find a match and REG_NOMATCH if not. */
5115
5116 int
5117 regexec (preg, string, nmatch, pmatch, eflags)
5118 const regex_t *preg;
5119 const char *string;
5120 size_t nmatch;
5121 regmatch_t pmatch[];
5122 int eflags;
5123 {
5124 int ret;
5125 struct re_registers regs;
5126 regex_t private_preg;
5127 int len = strlen (string);
5128 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5129
5130 private_preg = *preg;
5131
5132 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5133 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5134
5135 /* The user has told us exactly how many registers to return
5136 information about, via `nmatch'. We have to pass that on to the
5137 matching routines. */
5138 private_preg.regs_allocated = REGS_FIXED;
5139
5140 if (want_reg_info)
5141 {
5142 regs.num_regs = nmatch;
5143 regs.start = TALLOC (nmatch, regoff_t);
5144 regs.end = TALLOC (nmatch, regoff_t);
5145 if (regs.start == NULL || regs.end == NULL)
5146 return (int) REG_NOMATCH;
5147 }
5148
5149 /* Perform the searching operation. */
5150 ret = re_search (&private_preg, string, len,
5151 /* start: */ 0, /* range: */ len,
5152 want_reg_info ? &regs : (struct re_registers *) 0);
5153
5154 /* Copy the register information to the POSIX structure. */
5155 if (want_reg_info)
5156 {
5157 if (ret >= 0)
5158 {
5159 unsigned r;
5160
5161 for (r = 0; r < nmatch; r++)
5162 {
5163 pmatch[r].rm_so = regs.start[r];
5164 pmatch[r].rm_eo = regs.end[r];
5165 }
5166 }
5167
5168 /* If we needed the temporary register info, free the space now. */
5169 free (regs.start);
5170 free (regs.end);
5171 }
5172
5173 /* We want zero return to mean success, unlike `re_search'. */
5174 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5175 }
5176
5177
5178 /* Returns a message corresponding to an error code, ERRCODE, returned
5179 from either regcomp or regexec. We don't use PREG here. */
5180
5181 size_t
5182 regerror (errcode, preg, errbuf, errbuf_size)
5183 int errcode;
5184 const regex_t *preg;
5185 char *errbuf;
5186 size_t errbuf_size;
5187 {
5188 const char *msg;
5189 size_t msg_size;
5190
5191 if (errcode < 0
5192 || errcode >= (sizeof (re_error_msg) / sizeof (re_error_msg[0])))
5193 /* Only error codes returned by the rest of the code should be passed
5194 to this routine. If we are given anything else, or if other regex
5195 code generates an invalid error code, then the program has a bug.
5196 Dump core so we can fix it. */
5197 abort ();
5198
5199 msg = re_error_msg[errcode];
5200
5201 /* POSIX doesn't require that we do anything in this case, but why
5202 not be nice. */
5203 if (! msg)
5204 msg = "Success";
5205
5206 msg_size = strlen (msg) + 1; /* Includes the null. */
5207
5208 if (errbuf_size != 0)
5209 {
5210 if (msg_size > errbuf_size)
5211 {
5212 strncpy (errbuf, msg, errbuf_size - 1);
5213 errbuf[errbuf_size - 1] = 0;
5214 }
5215 else
5216 strcpy (errbuf, msg);
5217 }
5218
5219 return msg_size;
5220 }
5221
5222
5223 /* Free dynamically allocated space used by PREG. */
5224
5225 void
5226 regfree (preg)
5227 regex_t *preg;
5228 {
5229 if (preg->buffer != NULL)
5230 free (preg->buffer);
5231 preg->buffer = NULL;
5232
5233 preg->allocated = 0;
5234 preg->used = 0;
5235
5236 if (preg->fastmap != NULL)
5237 free (preg->fastmap);
5238 preg->fastmap = NULL;
5239 preg->fastmap_accurate = 0;
5240
5241 if (preg->translate != NULL)
5242 free (preg->translate);
5243 preg->translate = NULL;
5244 }
5245
5246 #endif /* not emacs */
5247 \f
5248 /*
5249 Local variables:
5250 make-backup-files: t
5251 version-control: t
5252 trim-versions-without-asking: nil
5253 End:
5254 */