]> code.delx.au - gnu-emacs/blob - src/lisp.h
Improve module interface when WIDE_EMACS_INT
[gnu-emacs] / src / lisp.h
1 /* Fundamental definitions for GNU Emacs Lisp interpreter. -*- coding: utf-8 -*-
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2015 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #ifndef EMACS_LISP_H
22 #define EMACS_LISP_H
23
24 #include <setjmp.h>
25 #include <stdalign.h>
26 #include <stdarg.h>
27 #include <stddef.h>
28 #include <float.h>
29 #include <inttypes.h>
30 #include <limits.h>
31
32 #include <intprops.h>
33 #include <verify.h>
34
35 INLINE_HEADER_BEGIN
36
37 /* Define a TYPE constant ID as an externally visible name. Use like this:
38
39 DEFINE_GDB_SYMBOL_BEGIN (TYPE, ID)
40 # define ID (some integer preprocessor expression of type TYPE)
41 DEFINE_GDB_SYMBOL_END (ID)
42
43 This hack is for the benefit of compilers that do not make macro
44 definitions or enums visible to the debugger. It's used for symbols
45 that .gdbinit needs. */
46
47 #define DECLARE_GDB_SYM(type, id) type const id EXTERNALLY_VISIBLE
48 #ifdef MAIN_PROGRAM
49 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) DECLARE_GDB_SYM (type, id)
50 # define DEFINE_GDB_SYMBOL_END(id) = id;
51 #else
52 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) extern DECLARE_GDB_SYM (type, id)
53 # define DEFINE_GDB_SYMBOL_END(val) ;
54 #endif
55
56 /* The ubiquitous max and min macros. */
57 #undef min
58 #undef max
59 #define max(a, b) ((a) > (b) ? (a) : (b))
60 #define min(a, b) ((a) < (b) ? (a) : (b))
61
62 /* Number of elements in an array. */
63 #define ARRAYELTS(arr) (sizeof (arr) / sizeof (arr)[0])
64
65 /* Number of bits in a Lisp_Object tag. */
66 DEFINE_GDB_SYMBOL_BEGIN (int, GCTYPEBITS)
67 #define GCTYPEBITS 3
68 DEFINE_GDB_SYMBOL_END (GCTYPEBITS)
69
70 /* The number of bits needed in an EMACS_INT over and above the number
71 of bits in a pointer. This is 0 on systems where:
72 1. We can specify multiple-of-8 alignment on static variables.
73 2. We know malloc returns a multiple of 8. */
74 #if (defined alignas \
75 && (defined GNU_MALLOC || defined DOUG_LEA_MALLOC || defined __GLIBC__ \
76 || defined DARWIN_OS || defined __sun || defined __MINGW32__ \
77 || defined CYGWIN))
78 # define NONPOINTER_BITS 0
79 #else
80 # define NONPOINTER_BITS GCTYPEBITS
81 #endif
82
83 /* EMACS_INT - signed integer wide enough to hold an Emacs value
84 EMACS_INT_MAX - maximum value of EMACS_INT; can be used in #if
85 pI - printf length modifier for EMACS_INT
86 EMACS_UINT - unsigned variant of EMACS_INT */
87 #ifndef EMACS_INT_MAX
88 # if INTPTR_MAX <= 0
89 # error "INTPTR_MAX misconfigured"
90 # elif INTPTR_MAX <= INT_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
91 typedef int EMACS_INT;
92 typedef unsigned int EMACS_UINT;
93 # define EMACS_INT_MAX INT_MAX
94 # define pI ""
95 # elif INTPTR_MAX <= LONG_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
96 typedef long int EMACS_INT;
97 typedef unsigned long EMACS_UINT;
98 # define EMACS_INT_MAX LONG_MAX
99 # define pI "l"
100 /* Check versus LLONG_MAX, not LLONG_MAX >> NONPOINTER_BITS.
101 In theory this is not safe, but in practice it seems to be OK. */
102 # elif INTPTR_MAX <= LLONG_MAX
103 typedef long long int EMACS_INT;
104 typedef unsigned long long int EMACS_UINT;
105 # define EMACS_INT_MAX LLONG_MAX
106 # define pI "ll"
107 # else
108 # error "INTPTR_MAX too large"
109 # endif
110 #endif
111
112 /* Number of bits to put in each character in the internal representation
113 of bool vectors. This should not vary across implementations. */
114 enum { BOOL_VECTOR_BITS_PER_CHAR =
115 #define BOOL_VECTOR_BITS_PER_CHAR 8
116 BOOL_VECTOR_BITS_PER_CHAR
117 };
118
119 /* An unsigned integer type representing a fixed-length bit sequence,
120 suitable for bool vector words, GC mark bits, etc. Normally it is size_t
121 for speed, but it is unsigned char on weird platforms. */
122 #if BOOL_VECTOR_BITS_PER_CHAR == CHAR_BIT
123 typedef size_t bits_word;
124 # define BITS_WORD_MAX SIZE_MAX
125 enum { BITS_PER_BITS_WORD = CHAR_BIT * sizeof (bits_word) };
126 #else
127 typedef unsigned char bits_word;
128 # define BITS_WORD_MAX ((1u << BOOL_VECTOR_BITS_PER_CHAR) - 1)
129 enum { BITS_PER_BITS_WORD = BOOL_VECTOR_BITS_PER_CHAR };
130 #endif
131 verify (BITS_WORD_MAX >> (BITS_PER_BITS_WORD - 1) == 1);
132
133 /* Number of bits in some machine integer types. */
134 enum
135 {
136 BITS_PER_CHAR = CHAR_BIT,
137 BITS_PER_SHORT = CHAR_BIT * sizeof (short),
138 BITS_PER_LONG = CHAR_BIT * sizeof (long int),
139 BITS_PER_EMACS_INT = CHAR_BIT * sizeof (EMACS_INT)
140 };
141
142 /* printmax_t and uprintmax_t are types for printing large integers.
143 These are the widest integers that are supported for printing.
144 pMd etc. are conversions for printing them.
145 On C99 hosts, there's no problem, as even the widest integers work.
146 Fall back on EMACS_INT on pre-C99 hosts. */
147 #ifdef PRIdMAX
148 typedef intmax_t printmax_t;
149 typedef uintmax_t uprintmax_t;
150 # define pMd PRIdMAX
151 # define pMu PRIuMAX
152 #else
153 typedef EMACS_INT printmax_t;
154 typedef EMACS_UINT uprintmax_t;
155 # define pMd pI"d"
156 # define pMu pI"u"
157 #endif
158
159 /* Use pD to format ptrdiff_t values, which suffice for indexes into
160 buffers and strings. Emacs never allocates objects larger than
161 PTRDIFF_MAX bytes, as they cause problems with pointer subtraction.
162 In C99, pD can always be "t"; configure it here for the sake of
163 pre-C99 libraries such as glibc 2.0 and Solaris 8. */
164 #if PTRDIFF_MAX == INT_MAX
165 # define pD ""
166 #elif PTRDIFF_MAX == LONG_MAX
167 # define pD "l"
168 #elif PTRDIFF_MAX == LLONG_MAX
169 # define pD "ll"
170 #else
171 # define pD "t"
172 #endif
173
174 /* Extra internal type checking? */
175
176 /* Define Emacs versions of <assert.h>'s 'assert (COND)' and <verify.h>'s
177 'assume (COND)'. COND should be free of side effects, as it may or
178 may not be evaluated.
179
180 'eassert (COND)' checks COND at runtime if ENABLE_CHECKING is
181 defined and suppress_checking is false, and does nothing otherwise.
182 Emacs dies if COND is checked and is false. The suppress_checking
183 variable is initialized to 0 in alloc.c. Set it to 1 using a
184 debugger to temporarily disable aborting on detected internal
185 inconsistencies or error conditions.
186
187 In some cases, a good compiler may be able to optimize away the
188 eassert macro even if ENABLE_CHECKING is true, e.g., if XSTRING (x)
189 uses eassert to test STRINGP (x), but a particular use of XSTRING
190 is invoked only after testing that STRINGP (x) is true, making the
191 test redundant.
192
193 eassume is like eassert except that it also causes the compiler to
194 assume that COND is true afterwards, regardless of whether runtime
195 checking is enabled. This can improve performance in some cases,
196 though it can degrade performance in others. It's often suboptimal
197 for COND to call external functions or access volatile storage. */
198
199 #ifndef ENABLE_CHECKING
200 # define eassert(cond) ((void) (false && (cond))) /* Check COND compiles. */
201 # define eassume(cond) assume (cond)
202 #else /* ENABLE_CHECKING */
203
204 extern _Noreturn void die (const char *, const char *, int);
205
206 extern bool suppress_checking EXTERNALLY_VISIBLE;
207
208 # define eassert(cond) \
209 (suppress_checking || (cond) \
210 ? (void) 0 \
211 : die (# cond, __FILE__, __LINE__))
212 # define eassume(cond) \
213 (suppress_checking \
214 ? assume (cond) \
215 : (cond) \
216 ? (void) 0 \
217 : die (# cond, __FILE__, __LINE__))
218 #endif /* ENABLE_CHECKING */
219
220 \f
221 /* Use the configure flag --enable-check-lisp-object-type to make
222 Lisp_Object use a struct type instead of the default int. The flag
223 causes CHECK_LISP_OBJECT_TYPE to be defined. */
224
225 /***** Select the tagging scheme. *****/
226 /* The following option controls the tagging scheme:
227 - USE_LSB_TAG means that we can assume the least 3 bits of pointers are
228 always 0, and we can thus use them to hold tag bits, without
229 restricting our addressing space.
230
231 If ! USE_LSB_TAG, then use the top 3 bits for tagging, thus
232 restricting our possible address range.
233
234 USE_LSB_TAG not only requires the least 3 bits of pointers returned by
235 malloc to be 0 but also needs to be able to impose a mult-of-8 alignment
236 on the few static Lisp_Objects used: lispsym, all the defsubr, and
237 the two special buffers buffer_defaults and buffer_local_symbols. */
238
239 enum Lisp_Bits
240 {
241 /* 2**GCTYPEBITS. This must be a macro that expands to a literal
242 integer constant, for MSVC. */
243 #define GCALIGNMENT 8
244
245 /* Number of bits in a Lisp_Object value, not counting the tag. */
246 VALBITS = BITS_PER_EMACS_INT - GCTYPEBITS,
247
248 /* Number of bits in a Lisp fixnum tag. */
249 INTTYPEBITS = GCTYPEBITS - 1,
250
251 /* Number of bits in a Lisp fixnum value, not counting the tag. */
252 FIXNUM_BITS = VALBITS + 1
253 };
254
255 #if GCALIGNMENT != 1 << GCTYPEBITS
256 # error "GCALIGNMENT and GCTYPEBITS are inconsistent"
257 #endif
258
259 /* The maximum value that can be stored in a EMACS_INT, assuming all
260 bits other than the type bits contribute to a nonnegative signed value.
261 This can be used in #if, e.g., '#if USE_LSB_TAG' below expands to an
262 expression involving VAL_MAX. */
263 #define VAL_MAX (EMACS_INT_MAX >> (GCTYPEBITS - 1))
264
265 /* Whether the least-significant bits of an EMACS_INT contain the tag.
266 On hosts where pointers-as-ints do not exceed VAL_MAX / 2, USE_LSB_TAG is:
267 a. unnecessary, because the top bits of an EMACS_INT are unused, and
268 b. slower, because it typically requires extra masking.
269 So, USE_LSB_TAG is true only on hosts where it might be useful. */
270 DEFINE_GDB_SYMBOL_BEGIN (bool, USE_LSB_TAG)
271 #define USE_LSB_TAG (VAL_MAX / 2 < INTPTR_MAX)
272 DEFINE_GDB_SYMBOL_END (USE_LSB_TAG)
273
274 #if !USE_LSB_TAG && !defined WIDE_EMACS_INT
275 # error "USE_LSB_TAG not supported on this platform; please report this." \
276 "Try 'configure --with-wide-int' to work around the problem."
277 error !;
278 #endif
279
280 #ifndef alignas
281 # error "alignas not defined"
282 #endif
283
284 #ifdef HAVE_STRUCT_ATTRIBUTE_ALIGNED
285 # define GCALIGNED __attribute__ ((aligned (GCALIGNMENT)))
286 #else
287 # define GCALIGNED /* empty */
288 #endif
289
290 /* Some operations are so commonly executed that they are implemented
291 as macros, not functions, because otherwise runtime performance would
292 suffer too much when compiling with GCC without optimization.
293 There's no need to inline everything, just the operations that
294 would otherwise cause a serious performance problem.
295
296 For each such operation OP, define a macro lisp_h_OP that contains
297 the operation's implementation. That way, OP can be implemented
298 via a macro definition like this:
299
300 #define OP(x) lisp_h_OP (x)
301
302 and/or via a function definition like this:
303
304 Lisp_Object (OP) (Lisp_Object x) { return lisp_h_OP (x); }
305
306 without worrying about the implementations diverging, since
307 lisp_h_OP defines the actual implementation. The lisp_h_OP macros
308 are intended to be private to this include file, and should not be
309 used elsewhere.
310
311 FIXME: Remove the lisp_h_OP macros, and define just the inline OP
312 functions, once most developers have access to GCC 4.8 or later and
313 can use "gcc -Og" to debug. Maybe in the year 2016. See
314 Bug#11935.
315
316 Commentary for these macros can be found near their corresponding
317 functions, below. */
318
319 #if CHECK_LISP_OBJECT_TYPE
320 # define lisp_h_XLI(o) ((o).i)
321 # define lisp_h_XIL(i) ((Lisp_Object) { i })
322 #else
323 # define lisp_h_XLI(o) (o)
324 # define lisp_h_XIL(i) (i)
325 #endif
326 #define lisp_h_CHECK_LIST_CONS(x, y) CHECK_TYPE (CONSP (x), Qlistp, y)
327 #define lisp_h_CHECK_NUMBER(x) CHECK_TYPE (INTEGERP (x), Qintegerp, x)
328 #define lisp_h_CHECK_SYMBOL(x) CHECK_TYPE (SYMBOLP (x), Qsymbolp, x)
329 #define lisp_h_CHECK_TYPE(ok, predicate, x) \
330 ((ok) ? (void) 0 : (void) wrong_type_argument (predicate, x))
331 #define lisp_h_CONSP(x) (XTYPE (x) == Lisp_Cons)
332 #define lisp_h_EQ(x, y) (XLI (x) == XLI (y))
333 #define lisp_h_FLOATP(x) (XTYPE (x) == Lisp_Float)
334 #define lisp_h_INTEGERP(x) ((XTYPE (x) & (Lisp_Int0 | ~Lisp_Int1)) == Lisp_Int0)
335 #define lisp_h_MARKERP(x) (MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Marker)
336 #define lisp_h_MISCP(x) (XTYPE (x) == Lisp_Misc)
337 #define lisp_h_NILP(x) EQ (x, Qnil)
338 #define lisp_h_SET_SYMBOL_VAL(sym, v) \
339 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value = (v))
340 #define lisp_h_SYMBOL_CONSTANT_P(sym) (XSYMBOL (sym)->constant)
341 #define lisp_h_SYMBOL_VAL(sym) \
342 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value)
343 #define lisp_h_SYMBOLP(x) (XTYPE (x) == Lisp_Symbol)
344 #define lisp_h_VECTORLIKEP(x) (XTYPE (x) == Lisp_Vectorlike)
345 #define lisp_h_XCAR(c) XCONS (c)->car
346 #define lisp_h_XCDR(c) XCONS (c)->u.cdr
347 #define lisp_h_XCONS(a) \
348 (eassert (CONSP (a)), (struct Lisp_Cons *) XUNTAG (a, Lisp_Cons))
349 #define lisp_h_XHASH(a) XUINT (a)
350 #ifndef GC_CHECK_CONS_LIST
351 # define lisp_h_check_cons_list() ((void) 0)
352 #endif
353 #if USE_LSB_TAG
354 # define lisp_h_make_number(n) \
355 XIL ((EMACS_INT) (((EMACS_UINT) (n) << INTTYPEBITS) + Lisp_Int0))
356 # define lisp_h_XFASTINT(a) XINT (a)
357 # define lisp_h_XINT(a) (XLI (a) >> INTTYPEBITS)
358 # define lisp_h_XSYMBOL(a) \
359 (eassert (SYMBOLP (a)), \
360 (struct Lisp_Symbol *) ((intptr_t) XLI (a) - Lisp_Symbol \
361 + (char *) lispsym))
362 # define lisp_h_XTYPE(a) ((enum Lisp_Type) (XLI (a) & ~VALMASK))
363 # define lisp_h_XUNTAG(a, type) ((void *) (intptr_t) (XLI (a) - (type)))
364 #endif
365
366 /* When compiling via gcc -O0, define the key operations as macros, as
367 Emacs is too slow otherwise. To disable this optimization, compile
368 with -DINLINING=false. */
369 #if (defined __NO_INLINE__ \
370 && ! defined __OPTIMIZE__ && ! defined __OPTIMIZE_SIZE__ \
371 && ! (defined INLINING && ! INLINING))
372 # define XLI(o) lisp_h_XLI (o)
373 # define XIL(i) lisp_h_XIL (i)
374 # define CHECK_LIST_CONS(x, y) lisp_h_CHECK_LIST_CONS (x, y)
375 # define CHECK_NUMBER(x) lisp_h_CHECK_NUMBER (x)
376 # define CHECK_SYMBOL(x) lisp_h_CHECK_SYMBOL (x)
377 # define CHECK_TYPE(ok, predicate, x) lisp_h_CHECK_TYPE (ok, predicate, x)
378 # define CONSP(x) lisp_h_CONSP (x)
379 # define EQ(x, y) lisp_h_EQ (x, y)
380 # define FLOATP(x) lisp_h_FLOATP (x)
381 # define INTEGERP(x) lisp_h_INTEGERP (x)
382 # define MARKERP(x) lisp_h_MARKERP (x)
383 # define MISCP(x) lisp_h_MISCP (x)
384 # define NILP(x) lisp_h_NILP (x)
385 # define SET_SYMBOL_VAL(sym, v) lisp_h_SET_SYMBOL_VAL (sym, v)
386 # define SYMBOL_CONSTANT_P(sym) lisp_h_SYMBOL_CONSTANT_P (sym)
387 # define SYMBOL_VAL(sym) lisp_h_SYMBOL_VAL (sym)
388 # define SYMBOLP(x) lisp_h_SYMBOLP (x)
389 # define VECTORLIKEP(x) lisp_h_VECTORLIKEP (x)
390 # define XCAR(c) lisp_h_XCAR (c)
391 # define XCDR(c) lisp_h_XCDR (c)
392 # define XCONS(a) lisp_h_XCONS (a)
393 # define XHASH(a) lisp_h_XHASH (a)
394 # ifndef GC_CHECK_CONS_LIST
395 # define check_cons_list() lisp_h_check_cons_list ()
396 # endif
397 # if USE_LSB_TAG
398 # define make_number(n) lisp_h_make_number (n)
399 # define XFASTINT(a) lisp_h_XFASTINT (a)
400 # define XINT(a) lisp_h_XINT (a)
401 # define XSYMBOL(a) lisp_h_XSYMBOL (a)
402 # define XTYPE(a) lisp_h_XTYPE (a)
403 # define XUNTAG(a, type) lisp_h_XUNTAG (a, type)
404 # endif
405 #endif
406
407
408 /* Define the fundamental Lisp data structures. */
409
410 /* This is the set of Lisp data types. If you want to define a new
411 data type, read the comments after Lisp_Fwd_Type definition
412 below. */
413
414 /* Lisp integers use 2 tags, to give them one extra bit, thus
415 extending their range from, e.g., -2^28..2^28-1 to -2^29..2^29-1. */
416 #define INTMASK (EMACS_INT_MAX >> (INTTYPEBITS - 1))
417 #define case_Lisp_Int case Lisp_Int0: case Lisp_Int1
418
419 /* Idea stolen from GDB. Pedantic GCC complains about enum bitfields,
420 MSVC doesn't support them, and xlc and Oracle Studio c99 complain
421 vociferously about them. */
422 #if (defined __STRICT_ANSI__ || defined _MSC_VER || defined __IBMC__ \
423 || (defined __SUNPRO_C && __STDC__))
424 #define ENUM_BF(TYPE) unsigned int
425 #else
426 #define ENUM_BF(TYPE) enum TYPE
427 #endif
428
429
430 enum Lisp_Type
431 {
432 /* Symbol. XSYMBOL (object) points to a struct Lisp_Symbol. */
433 Lisp_Symbol = 0,
434
435 /* Miscellaneous. XMISC (object) points to a union Lisp_Misc,
436 whose first member indicates the subtype. */
437 Lisp_Misc = 1,
438
439 /* Integer. XINT (obj) is the integer value. */
440 Lisp_Int0 = 2,
441 Lisp_Int1 = USE_LSB_TAG ? 6 : 3,
442
443 /* String. XSTRING (object) points to a struct Lisp_String.
444 The length of the string, and its contents, are stored therein. */
445 Lisp_String = 4,
446
447 /* Vector of Lisp objects, or something resembling it.
448 XVECTOR (object) points to a struct Lisp_Vector, which contains
449 the size and contents. The size field also contains the type
450 information, if it's not a real vector object. */
451 Lisp_Vectorlike = 5,
452
453 /* Cons. XCONS (object) points to a struct Lisp_Cons. */
454 Lisp_Cons = USE_LSB_TAG ? 3 : 6,
455
456 Lisp_Float = 7
457 };
458
459 /* This is the set of data types that share a common structure.
460 The first member of the structure is a type code from this set.
461 The enum values are arbitrary, but we'll use large numbers to make it
462 more likely that we'll spot the error if a random word in memory is
463 mistakenly interpreted as a Lisp_Misc. */
464 enum Lisp_Misc_Type
465 {
466 Lisp_Misc_Free = 0x5eab,
467 Lisp_Misc_Marker,
468 Lisp_Misc_Overlay,
469 Lisp_Misc_Save_Value,
470 Lisp_Misc_Finalizer,
471 #ifdef HAVE_MODULES
472 Lisp_Misc_User_Ptr,
473 #endif
474 /* Currently floats are not a misc type,
475 but let's define this in case we want to change that. */
476 Lisp_Misc_Float,
477 /* This is not a type code. It is for range checking. */
478 Lisp_Misc_Limit
479 };
480
481 /* These are the types of forwarding objects used in the value slot
482 of symbols for special built-in variables whose value is stored in
483 C variables. */
484 enum Lisp_Fwd_Type
485 {
486 Lisp_Fwd_Int, /* Fwd to a C `int' variable. */
487 Lisp_Fwd_Bool, /* Fwd to a C boolean var. */
488 Lisp_Fwd_Obj, /* Fwd to a C Lisp_Object variable. */
489 Lisp_Fwd_Buffer_Obj, /* Fwd to a Lisp_Object field of buffers. */
490 Lisp_Fwd_Kboard_Obj /* Fwd to a Lisp_Object field of kboards. */
491 };
492
493 /* If you want to define a new Lisp data type, here are some
494 instructions. See the thread at
495 http://lists.gnu.org/archive/html/emacs-devel/2012-10/msg00561.html
496 for more info.
497
498 First, there are already a couple of Lisp types that can be used if
499 your new type does not need to be exposed to Lisp programs nor
500 displayed to users. These are Lisp_Save_Value, a Lisp_Misc
501 subtype; and PVEC_OTHER, a kind of vectorlike object. The former
502 is suitable for temporarily stashing away pointers and integers in
503 a Lisp object. The latter is useful for vector-like Lisp objects
504 that need to be used as part of other objects, but which are never
505 shown to users or Lisp code (search for PVEC_OTHER in xterm.c for
506 an example).
507
508 These two types don't look pretty when printed, so they are
509 unsuitable for Lisp objects that can be exposed to users.
510
511 To define a new data type, add one more Lisp_Misc subtype or one
512 more pseudovector subtype. Pseudovectors are more suitable for
513 objects with several slots that need to support fast random access,
514 while Lisp_Misc types are for everything else. A pseudovector object
515 provides one or more slots for Lisp objects, followed by struct
516 members that are accessible only from C. A Lisp_Misc object is a
517 wrapper for a C struct that can contain anything you like.
518
519 Explicit freeing is discouraged for Lisp objects in general. But if
520 you really need to exploit this, use Lisp_Misc (check free_misc in
521 alloc.c to see why). There is no way to free a vectorlike object.
522
523 To add a new pseudovector type, extend the pvec_type enumeration;
524 to add a new Lisp_Misc, extend the Lisp_Misc_Type enumeration.
525
526 For a Lisp_Misc, you will also need to add your entry to union
527 Lisp_Misc (but make sure the first word has the same structure as
528 the others, starting with a 16-bit member of the Lisp_Misc_Type
529 enumeration and a 1-bit GC markbit) and make sure the overall size
530 of the union is not increased by your addition.
531
532 For a new pseudovector, it's highly desirable to limit the size
533 of your data type by VBLOCK_BYTES_MAX bytes (defined in alloc.c).
534 Otherwise you will need to change sweep_vectors (also in alloc.c).
535
536 Then you will need to add switch branches in print.c (in
537 print_object, to print your object, and possibly also in
538 print_preprocess) and to alloc.c, to mark your object (in
539 mark_object) and to free it (in gc_sweep). The latter is also the
540 right place to call any code specific to your data type that needs
541 to run when the object is recycled -- e.g., free any additional
542 resources allocated for it that are not Lisp objects. You can even
543 make a pointer to the function that frees the resources a slot in
544 your object -- this way, the same object could be used to represent
545 several disparate C structures. */
546
547 #ifdef CHECK_LISP_OBJECT_TYPE
548
549 typedef struct { EMACS_INT i; } Lisp_Object;
550
551 #define LISP_INITIALLY(i) {i}
552
553 #undef CHECK_LISP_OBJECT_TYPE
554 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = true };
555 #else /* CHECK_LISP_OBJECT_TYPE */
556
557 /* If a struct type is not wanted, define Lisp_Object as just a number. */
558
559 typedef EMACS_INT Lisp_Object;
560 #define LISP_INITIALLY(i) (i)
561 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = false };
562 #endif /* CHECK_LISP_OBJECT_TYPE */
563
564 #define LISP_INITIALLY_ZERO LISP_INITIALLY (0)
565 \f
566 /* Forward declarations. */
567
568 /* Defined in this file. */
569 union Lisp_Fwd;
570 INLINE bool BOOL_VECTOR_P (Lisp_Object);
571 INLINE bool BUFFER_OBJFWDP (union Lisp_Fwd *);
572 INLINE bool BUFFERP (Lisp_Object);
573 INLINE bool CHAR_TABLE_P (Lisp_Object);
574 INLINE Lisp_Object CHAR_TABLE_REF_ASCII (Lisp_Object, ptrdiff_t);
575 INLINE bool (CONSP) (Lisp_Object);
576 INLINE bool (FLOATP) (Lisp_Object);
577 INLINE bool functionp (Lisp_Object);
578 INLINE bool (INTEGERP) (Lisp_Object);
579 INLINE bool (MARKERP) (Lisp_Object);
580 INLINE bool (MISCP) (Lisp_Object);
581 INLINE bool (NILP) (Lisp_Object);
582 INLINE bool OVERLAYP (Lisp_Object);
583 INLINE bool PROCESSP (Lisp_Object);
584 INLINE bool PSEUDOVECTORP (Lisp_Object, int);
585 INLINE bool SAVE_VALUEP (Lisp_Object);
586 INLINE bool FINALIZERP (Lisp_Object);
587
588 #ifdef HAVE_MODULES
589 INLINE bool USER_PTRP (Lisp_Object);
590 INLINE struct Lisp_User_Ptr *(XUSER_PTR) (Lisp_Object);
591 #endif
592
593 INLINE void set_sub_char_table_contents (Lisp_Object, ptrdiff_t,
594 Lisp_Object);
595 INLINE bool STRINGP (Lisp_Object);
596 INLINE bool SUB_CHAR_TABLE_P (Lisp_Object);
597 INLINE bool SUBRP (Lisp_Object);
598 INLINE bool (SYMBOLP) (Lisp_Object);
599 INLINE bool (VECTORLIKEP) (Lisp_Object);
600 INLINE bool WINDOWP (Lisp_Object);
601 INLINE bool TERMINALP (Lisp_Object);
602 INLINE struct Lisp_Save_Value *XSAVE_VALUE (Lisp_Object);
603 INLINE struct Lisp_Finalizer *XFINALIZER (Lisp_Object);
604 INLINE struct Lisp_Symbol *(XSYMBOL) (Lisp_Object);
605 INLINE void *(XUNTAG) (Lisp_Object, int);
606
607 /* Defined in chartab.c. */
608 extern Lisp_Object char_table_ref (Lisp_Object, int);
609 extern void char_table_set (Lisp_Object, int, Lisp_Object);
610
611 /* Defined in data.c. */
612 extern _Noreturn Lisp_Object wrong_type_argument (Lisp_Object, Lisp_Object);
613 extern _Noreturn void wrong_choice (Lisp_Object, Lisp_Object);
614
615 /* Defined in emacs.c. */
616 extern bool might_dump;
617 /* True means Emacs has already been initialized.
618 Used during startup to detect startup of dumped Emacs. */
619 extern bool initialized;
620
621 /* Defined in floatfns.c. */
622 extern double extract_float (Lisp_Object);
623
624 \f
625 /* Interned state of a symbol. */
626
627 enum symbol_interned
628 {
629 SYMBOL_UNINTERNED = 0,
630 SYMBOL_INTERNED = 1,
631 SYMBOL_INTERNED_IN_INITIAL_OBARRAY = 2
632 };
633
634 enum symbol_redirect
635 {
636 SYMBOL_PLAINVAL = 4,
637 SYMBOL_VARALIAS = 1,
638 SYMBOL_LOCALIZED = 2,
639 SYMBOL_FORWARDED = 3
640 };
641
642 struct Lisp_Symbol
643 {
644 bool_bf gcmarkbit : 1;
645
646 /* Indicates where the value can be found:
647 0 : it's a plain var, the value is in the `value' field.
648 1 : it's a varalias, the value is really in the `alias' symbol.
649 2 : it's a localized var, the value is in the `blv' object.
650 3 : it's a forwarding variable, the value is in `forward'. */
651 ENUM_BF (symbol_redirect) redirect : 3;
652
653 /* Non-zero means symbol is constant, i.e. changing its value
654 should signal an error. If the value is 3, then the var
655 can be changed, but only by `defconst'. */
656 unsigned constant : 2;
657
658 /* Interned state of the symbol. This is an enumerator from
659 enum symbol_interned. */
660 unsigned interned : 2;
661
662 /* True means that this variable has been explicitly declared
663 special (with `defvar' etc), and shouldn't be lexically bound. */
664 bool_bf declared_special : 1;
665
666 /* True if pointed to from purespace and hence can't be GC'd. */
667 bool_bf pinned : 1;
668
669 /* The symbol's name, as a Lisp string. */
670 Lisp_Object name;
671
672 /* Value of the symbol or Qunbound if unbound. Which alternative of the
673 union is used depends on the `redirect' field above. */
674 union {
675 Lisp_Object value;
676 struct Lisp_Symbol *alias;
677 struct Lisp_Buffer_Local_Value *blv;
678 union Lisp_Fwd *fwd;
679 } val;
680
681 /* Function value of the symbol or Qnil if not fboundp. */
682 Lisp_Object function;
683
684 /* The symbol's property list. */
685 Lisp_Object plist;
686
687 /* Next symbol in obarray bucket, if the symbol is interned. */
688 struct Lisp_Symbol *next;
689 };
690
691 /* Declare a Lisp-callable function. The MAXARGS parameter has the same
692 meaning as in the DEFUN macro, and is used to construct a prototype. */
693 /* We can use the same trick as in the DEFUN macro to generate the
694 appropriate prototype. */
695 #define EXFUN(fnname, maxargs) \
696 extern Lisp_Object fnname DEFUN_ARGS_ ## maxargs
697
698 /* Note that the weird token-substitution semantics of ANSI C makes
699 this work for MANY and UNEVALLED. */
700 #define DEFUN_ARGS_MANY (ptrdiff_t, Lisp_Object *)
701 #define DEFUN_ARGS_UNEVALLED (Lisp_Object)
702 #define DEFUN_ARGS_0 (void)
703 #define DEFUN_ARGS_1 (Lisp_Object)
704 #define DEFUN_ARGS_2 (Lisp_Object, Lisp_Object)
705 #define DEFUN_ARGS_3 (Lisp_Object, Lisp_Object, Lisp_Object)
706 #define DEFUN_ARGS_4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
707 #define DEFUN_ARGS_5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
708 Lisp_Object)
709 #define DEFUN_ARGS_6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
710 Lisp_Object, Lisp_Object)
711 #define DEFUN_ARGS_7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
712 Lisp_Object, Lisp_Object, Lisp_Object)
713 #define DEFUN_ARGS_8 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
714 Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
715
716 /* Yield a signed integer that contains TAG along with PTR.
717
718 Sign-extend pointers when USE_LSB_TAG (this simplifies emacs-module.c),
719 and zero-extend otherwise (that’s a bit faster here).
720 Sign extension matters only when EMACS_INT is wider than a pointer. */
721 #define TAG_PTR(tag, ptr) \
722 (USE_LSB_TAG \
723 ? (intptr_t) (ptr) + (tag) \
724 : (EMACS_INT) (((EMACS_UINT) (tag) << VALBITS) + (uintptr_t) (ptr)))
725
726 /* Yield an integer that contains a symbol tag along with OFFSET.
727 OFFSET should be the offset in bytes from 'lispsym' to the symbol. */
728 #define TAG_SYMOFFSET(offset) TAG_PTR (Lisp_Symbol, offset)
729
730 /* XLI_BUILTIN_LISPSYM (iQwhatever) is equivalent to
731 XLI (builtin_lisp_symbol (Qwhatever)),
732 except the former expands to an integer constant expression. */
733 #define XLI_BUILTIN_LISPSYM(iname) TAG_SYMOFFSET ((iname) * sizeof *lispsym)
734
735 /* Declare extern constants for Lisp symbols. These can be helpful
736 when using a debugger like GDB, on older platforms where the debug
737 format does not represent C macros. */
738 #define DEFINE_LISP_SYMBOL(name) \
739 DEFINE_GDB_SYMBOL_BEGIN (Lisp_Object, name) \
740 DEFINE_GDB_SYMBOL_END (LISP_INITIALLY (XLI_BUILTIN_LISPSYM (i##name)))
741
742 /* By default, define macros for Qt, etc., as this leads to a bit
743 better performance in the core Emacs interpreter. A plugin can
744 define DEFINE_NON_NIL_Q_SYMBOL_MACROS to be false, to be portable to
745 other Emacs instances that assign different values to Qt, etc. */
746 #ifndef DEFINE_NON_NIL_Q_SYMBOL_MACROS
747 # define DEFINE_NON_NIL_Q_SYMBOL_MACROS true
748 #endif
749
750 #include "globals.h"
751
752 /* Convert a Lisp_Object to the corresponding EMACS_INT and vice versa.
753 At the machine level, these operations are no-ops. */
754
755 INLINE EMACS_INT
756 (XLI) (Lisp_Object o)
757 {
758 return lisp_h_XLI (o);
759 }
760
761 INLINE Lisp_Object
762 (XIL) (EMACS_INT i)
763 {
764 return lisp_h_XIL (i);
765 }
766
767 /* In the size word of a vector, this bit means the vector has been marked. */
768
769 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, ARRAY_MARK_FLAG)
770 # define ARRAY_MARK_FLAG PTRDIFF_MIN
771 DEFINE_GDB_SYMBOL_END (ARRAY_MARK_FLAG)
772
773 /* In the size word of a struct Lisp_Vector, this bit means it's really
774 some other vector-like object. */
775 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, PSEUDOVECTOR_FLAG)
776 # define PSEUDOVECTOR_FLAG (PTRDIFF_MAX - PTRDIFF_MAX / 2)
777 DEFINE_GDB_SYMBOL_END (PSEUDOVECTOR_FLAG)
778
779 /* In a pseudovector, the size field actually contains a word with one
780 PSEUDOVECTOR_FLAG bit set, and one of the following values extracted
781 with PVEC_TYPE_MASK to indicate the actual type. */
782 enum pvec_type
783 {
784 PVEC_NORMAL_VECTOR,
785 PVEC_FREE,
786 PVEC_PROCESS,
787 PVEC_FRAME,
788 PVEC_WINDOW,
789 PVEC_BOOL_VECTOR,
790 PVEC_BUFFER,
791 PVEC_HASH_TABLE,
792 PVEC_TERMINAL,
793 PVEC_WINDOW_CONFIGURATION,
794 PVEC_SUBR,
795 PVEC_OTHER,
796 /* These should be last, check internal_equal to see why. */
797 PVEC_COMPILED,
798 PVEC_CHAR_TABLE,
799 PVEC_SUB_CHAR_TABLE,
800 PVEC_FONT /* Should be last because it's used for range checking. */
801 };
802
803 enum More_Lisp_Bits
804 {
805 /* For convenience, we also store the number of elements in these bits.
806 Note that this size is not necessarily the memory-footprint size, but
807 only the number of Lisp_Object fields (that need to be traced by GC).
808 The distinction is used, e.g., by Lisp_Process, which places extra
809 non-Lisp_Object fields at the end of the structure. */
810 PSEUDOVECTOR_SIZE_BITS = 12,
811 PSEUDOVECTOR_SIZE_MASK = (1 << PSEUDOVECTOR_SIZE_BITS) - 1,
812
813 /* To calculate the memory footprint of the pseudovector, it's useful
814 to store the size of non-Lisp area in word_size units here. */
815 PSEUDOVECTOR_REST_BITS = 12,
816 PSEUDOVECTOR_REST_MASK = (((1 << PSEUDOVECTOR_REST_BITS) - 1)
817 << PSEUDOVECTOR_SIZE_BITS),
818
819 /* Used to extract pseudovector subtype information. */
820 PSEUDOVECTOR_AREA_BITS = PSEUDOVECTOR_SIZE_BITS + PSEUDOVECTOR_REST_BITS,
821 PVEC_TYPE_MASK = 0x3f << PSEUDOVECTOR_AREA_BITS
822 };
823 \f
824 /* These functions extract various sorts of values from a Lisp_Object.
825 For example, if tem is a Lisp_Object whose type is Lisp_Cons,
826 XCONS (tem) is the struct Lisp_Cons * pointing to the memory for
827 that cons. */
828
829 /* Mask for the value (as opposed to the type bits) of a Lisp object. */
830 DEFINE_GDB_SYMBOL_BEGIN (EMACS_INT, VALMASK)
831 # define VALMASK (USE_LSB_TAG ? - (1 << GCTYPEBITS) : VAL_MAX)
832 DEFINE_GDB_SYMBOL_END (VALMASK)
833
834 /* Largest and smallest representable fixnum values. These are the C
835 values. They are macros for use in static initializers. */
836 #define MOST_POSITIVE_FIXNUM (EMACS_INT_MAX >> INTTYPEBITS)
837 #define MOST_NEGATIVE_FIXNUM (-1 - MOST_POSITIVE_FIXNUM)
838
839 #if USE_LSB_TAG
840
841 INLINE Lisp_Object
842 (make_number) (EMACS_INT n)
843 {
844 return lisp_h_make_number (n);
845 }
846
847 INLINE EMACS_INT
848 (XINT) (Lisp_Object a)
849 {
850 return lisp_h_XINT (a);
851 }
852
853 INLINE EMACS_INT
854 (XFASTINT) (Lisp_Object a)
855 {
856 EMACS_INT n = lisp_h_XFASTINT (a);
857 eassume (0 <= n);
858 return n;
859 }
860
861 INLINE struct Lisp_Symbol *
862 (XSYMBOL) (Lisp_Object a)
863 {
864 return lisp_h_XSYMBOL (a);
865 }
866
867 INLINE enum Lisp_Type
868 (XTYPE) (Lisp_Object a)
869 {
870 return lisp_h_XTYPE (a);
871 }
872
873 INLINE void *
874 (XUNTAG) (Lisp_Object a, int type)
875 {
876 return lisp_h_XUNTAG (a, type);
877 }
878
879 #else /* ! USE_LSB_TAG */
880
881 /* Although compiled only if ! USE_LSB_TAG, the following functions
882 also work when USE_LSB_TAG; this is to aid future maintenance when
883 the lisp_h_* macros are eventually removed. */
884
885 /* Make a Lisp integer representing the value of the low order
886 bits of N. */
887 INLINE Lisp_Object
888 make_number (EMACS_INT n)
889 {
890 EMACS_INT int0 = Lisp_Int0;
891 if (USE_LSB_TAG)
892 {
893 EMACS_UINT u = n;
894 n = u << INTTYPEBITS;
895 n += int0;
896 }
897 else
898 {
899 n &= INTMASK;
900 n += (int0 << VALBITS);
901 }
902 return XIL (n);
903 }
904
905 /* Extract A's value as a signed integer. */
906 INLINE EMACS_INT
907 XINT (Lisp_Object a)
908 {
909 EMACS_INT i = XLI (a);
910 if (! USE_LSB_TAG)
911 {
912 EMACS_UINT u = i;
913 i = u << INTTYPEBITS;
914 }
915 return i >> INTTYPEBITS;
916 }
917
918 /* Like XINT (A), but may be faster. A must be nonnegative.
919 If ! USE_LSB_TAG, this takes advantage of the fact that Lisp
920 integers have zero-bits in their tags. */
921 INLINE EMACS_INT
922 XFASTINT (Lisp_Object a)
923 {
924 EMACS_INT int0 = Lisp_Int0;
925 EMACS_INT n = USE_LSB_TAG ? XINT (a) : XLI (a) - (int0 << VALBITS);
926 eassume (0 <= n);
927 return n;
928 }
929
930 /* Extract A's type. */
931 INLINE enum Lisp_Type
932 XTYPE (Lisp_Object a)
933 {
934 EMACS_UINT i = XLI (a);
935 return USE_LSB_TAG ? i & ~VALMASK : i >> VALBITS;
936 }
937
938 /* Extract A's value as a symbol. */
939 INLINE struct Lisp_Symbol *
940 XSYMBOL (Lisp_Object a)
941 {
942 eassert (SYMBOLP (a));
943 intptr_t i = (intptr_t) XUNTAG (a, Lisp_Symbol);
944 eassert (0 <= i);
945 void *p = (char *) lispsym + i;
946 return p;
947 }
948
949 /* Extract A's pointer value, assuming A's type is TYPE. */
950 INLINE void *
951 XUNTAG (Lisp_Object a, int type)
952 {
953 intptr_t i = USE_LSB_TAG ? XLI (a) - type : XLI (a) & VALMASK;
954 return (void *) i;
955 }
956
957 #endif /* ! USE_LSB_TAG */
958
959 /* Extract A's value as an unsigned integer. */
960 INLINE EMACS_UINT
961 XUINT (Lisp_Object a)
962 {
963 EMACS_UINT i = XLI (a);
964 return USE_LSB_TAG ? i >> INTTYPEBITS : i & INTMASK;
965 }
966
967 /* Return A's (Lisp-integer sized) hash. Happens to be like XUINT
968 right now, but XUINT should only be applied to objects we know are
969 integers. */
970
971 INLINE EMACS_INT
972 (XHASH) (Lisp_Object a)
973 {
974 return lisp_h_XHASH (a);
975 }
976
977 /* Like make_number (N), but may be faster. N must be in nonnegative range. */
978 INLINE Lisp_Object
979 make_natnum (EMACS_INT n)
980 {
981 eassert (0 <= n && n <= MOST_POSITIVE_FIXNUM);
982 EMACS_INT int0 = Lisp_Int0;
983 return USE_LSB_TAG ? make_number (n) : XIL (n + (int0 << VALBITS));
984 }
985
986 /* Return true if X and Y are the same object. */
987
988 INLINE bool
989 (EQ) (Lisp_Object x, Lisp_Object y)
990 {
991 return lisp_h_EQ (x, y);
992 }
993
994 /* Value is true if I doesn't fit into a Lisp fixnum. It is
995 written this way so that it also works if I is of unsigned
996 type or if I is a NaN. */
997
998 #define FIXNUM_OVERFLOW_P(i) \
999 (! ((0 <= (i) || MOST_NEGATIVE_FIXNUM <= (i)) && (i) <= MOST_POSITIVE_FIXNUM))
1000
1001 INLINE ptrdiff_t
1002 clip_to_bounds (ptrdiff_t lower, EMACS_INT num, ptrdiff_t upper)
1003 {
1004 return num < lower ? lower : num <= upper ? num : upper;
1005 }
1006 \f
1007
1008 /* Extract a value or address from a Lisp_Object. */
1009
1010 INLINE struct Lisp_Cons *
1011 (XCONS) (Lisp_Object a)
1012 {
1013 return lisp_h_XCONS (a);
1014 }
1015
1016 INLINE struct Lisp_Vector *
1017 XVECTOR (Lisp_Object a)
1018 {
1019 eassert (VECTORLIKEP (a));
1020 return XUNTAG (a, Lisp_Vectorlike);
1021 }
1022
1023 INLINE struct Lisp_String *
1024 XSTRING (Lisp_Object a)
1025 {
1026 eassert (STRINGP (a));
1027 return XUNTAG (a, Lisp_String);
1028 }
1029
1030 /* The index of the C-defined Lisp symbol SYM.
1031 This can be used in a static initializer. */
1032 #define SYMBOL_INDEX(sym) i##sym
1033
1034 INLINE struct Lisp_Float *
1035 XFLOAT (Lisp_Object a)
1036 {
1037 eassert (FLOATP (a));
1038 return XUNTAG (a, Lisp_Float);
1039 }
1040
1041 /* Pseudovector types. */
1042
1043 INLINE struct Lisp_Process *
1044 XPROCESS (Lisp_Object a)
1045 {
1046 eassert (PROCESSP (a));
1047 return XUNTAG (a, Lisp_Vectorlike);
1048 }
1049
1050 INLINE struct window *
1051 XWINDOW (Lisp_Object a)
1052 {
1053 eassert (WINDOWP (a));
1054 return XUNTAG (a, Lisp_Vectorlike);
1055 }
1056
1057 INLINE struct terminal *
1058 XTERMINAL (Lisp_Object a)
1059 {
1060 eassert (TERMINALP (a));
1061 return XUNTAG (a, Lisp_Vectorlike);
1062 }
1063
1064 INLINE struct Lisp_Subr *
1065 XSUBR (Lisp_Object a)
1066 {
1067 eassert (SUBRP (a));
1068 return XUNTAG (a, Lisp_Vectorlike);
1069 }
1070
1071 INLINE struct buffer *
1072 XBUFFER (Lisp_Object a)
1073 {
1074 eassert (BUFFERP (a));
1075 return XUNTAG (a, Lisp_Vectorlike);
1076 }
1077
1078 INLINE struct Lisp_Char_Table *
1079 XCHAR_TABLE (Lisp_Object a)
1080 {
1081 eassert (CHAR_TABLE_P (a));
1082 return XUNTAG (a, Lisp_Vectorlike);
1083 }
1084
1085 INLINE struct Lisp_Sub_Char_Table *
1086 XSUB_CHAR_TABLE (Lisp_Object a)
1087 {
1088 eassert (SUB_CHAR_TABLE_P (a));
1089 return XUNTAG (a, Lisp_Vectorlike);
1090 }
1091
1092 INLINE struct Lisp_Bool_Vector *
1093 XBOOL_VECTOR (Lisp_Object a)
1094 {
1095 eassert (BOOL_VECTOR_P (a));
1096 return XUNTAG (a, Lisp_Vectorlike);
1097 }
1098
1099 /* Construct a Lisp_Object from a value or address. */
1100
1101 INLINE Lisp_Object
1102 make_lisp_ptr (void *ptr, enum Lisp_Type type)
1103 {
1104 Lisp_Object a = XIL (TAG_PTR (type, ptr));
1105 eassert (XTYPE (a) == type && XUNTAG (a, type) == ptr);
1106 return a;
1107 }
1108
1109 INLINE Lisp_Object
1110 make_lisp_symbol (struct Lisp_Symbol *sym)
1111 {
1112 Lisp_Object a = XIL (TAG_SYMOFFSET ((char *) sym - (char *) lispsym));
1113 eassert (XSYMBOL (a) == sym);
1114 return a;
1115 }
1116
1117 INLINE Lisp_Object
1118 builtin_lisp_symbol (int index)
1119 {
1120 return make_lisp_symbol (lispsym + index);
1121 }
1122
1123 #define XSETINT(a, b) ((a) = make_number (b))
1124 #define XSETFASTINT(a, b) ((a) = make_natnum (b))
1125 #define XSETCONS(a, b) ((a) = make_lisp_ptr (b, Lisp_Cons))
1126 #define XSETVECTOR(a, b) ((a) = make_lisp_ptr (b, Lisp_Vectorlike))
1127 #define XSETSTRING(a, b) ((a) = make_lisp_ptr (b, Lisp_String))
1128 #define XSETSYMBOL(a, b) ((a) = make_lisp_symbol (b))
1129 #define XSETFLOAT(a, b) ((a) = make_lisp_ptr (b, Lisp_Float))
1130 #define XSETMISC(a, b) ((a) = make_lisp_ptr (b, Lisp_Misc))
1131
1132 /* Pseudovector types. */
1133
1134 #define XSETPVECTYPE(v, code) \
1135 ((v)->header.size |= PSEUDOVECTOR_FLAG | ((code) << PSEUDOVECTOR_AREA_BITS))
1136 #define XSETPVECTYPESIZE(v, code, lispsize, restsize) \
1137 ((v)->header.size = (PSEUDOVECTOR_FLAG \
1138 | ((code) << PSEUDOVECTOR_AREA_BITS) \
1139 | ((restsize) << PSEUDOVECTOR_SIZE_BITS) \
1140 | (lispsize)))
1141
1142 /* The cast to struct vectorlike_header * avoids aliasing issues. */
1143 #define XSETPSEUDOVECTOR(a, b, code) \
1144 XSETTYPED_PSEUDOVECTOR (a, b, \
1145 (((struct vectorlike_header *) \
1146 XUNTAG (a, Lisp_Vectorlike)) \
1147 ->size), \
1148 code)
1149 #define XSETTYPED_PSEUDOVECTOR(a, b, size, code) \
1150 (XSETVECTOR (a, b), \
1151 eassert ((size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK)) \
1152 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS))))
1153
1154 #define XSETWINDOW_CONFIGURATION(a, b) \
1155 (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW_CONFIGURATION))
1156 #define XSETPROCESS(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_PROCESS))
1157 #define XSETWINDOW(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW))
1158 #define XSETTERMINAL(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_TERMINAL))
1159 #define XSETSUBR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUBR))
1160 #define XSETCOMPILED(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_COMPILED))
1161 #define XSETBUFFER(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BUFFER))
1162 #define XSETCHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_CHAR_TABLE))
1163 #define XSETBOOL_VECTOR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BOOL_VECTOR))
1164 #define XSETSUB_CHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUB_CHAR_TABLE))
1165
1166 /* Efficiently convert a pointer to a Lisp object and back. The
1167 pointer is represented as a Lisp integer, so the garbage collector
1168 does not know about it. The pointer should not have both Lisp_Int1
1169 bits set, which makes this conversion inherently unportable. */
1170
1171 INLINE void *
1172 XINTPTR (Lisp_Object a)
1173 {
1174 return XUNTAG (a, Lisp_Int0);
1175 }
1176
1177 INLINE Lisp_Object
1178 make_pointer_integer (void *p)
1179 {
1180 Lisp_Object a = XIL (TAG_PTR (Lisp_Int0, p));
1181 eassert (INTEGERP (a) && XINTPTR (a) == p);
1182 return a;
1183 }
1184
1185 /* Type checking. */
1186
1187 INLINE void
1188 (CHECK_TYPE) (int ok, Lisp_Object predicate, Lisp_Object x)
1189 {
1190 lisp_h_CHECK_TYPE (ok, predicate, x);
1191 }
1192
1193 /* See the macros in intervals.h. */
1194
1195 typedef struct interval *INTERVAL;
1196
1197 struct GCALIGNED Lisp_Cons
1198 {
1199 /* Car of this cons cell. */
1200 Lisp_Object car;
1201
1202 union
1203 {
1204 /* Cdr of this cons cell. */
1205 Lisp_Object cdr;
1206
1207 /* Used to chain conses on a free list. */
1208 struct Lisp_Cons *chain;
1209 } u;
1210 };
1211
1212 /* Take the car or cdr of something known to be a cons cell. */
1213 /* The _addr functions shouldn't be used outside of the minimal set
1214 of code that has to know what a cons cell looks like. Other code not
1215 part of the basic lisp implementation should assume that the car and cdr
1216 fields are not accessible. (What if we want to switch to
1217 a copying collector someday? Cached cons cell field addresses may be
1218 invalidated at arbitrary points.) */
1219 INLINE Lisp_Object *
1220 xcar_addr (Lisp_Object c)
1221 {
1222 return &XCONS (c)->car;
1223 }
1224 INLINE Lisp_Object *
1225 xcdr_addr (Lisp_Object c)
1226 {
1227 return &XCONS (c)->u.cdr;
1228 }
1229
1230 /* Use these from normal code. */
1231
1232 INLINE Lisp_Object
1233 (XCAR) (Lisp_Object c)
1234 {
1235 return lisp_h_XCAR (c);
1236 }
1237
1238 INLINE Lisp_Object
1239 (XCDR) (Lisp_Object c)
1240 {
1241 return lisp_h_XCDR (c);
1242 }
1243
1244 /* Use these to set the fields of a cons cell.
1245
1246 Note that both arguments may refer to the same object, so 'n'
1247 should not be read after 'c' is first modified. */
1248 INLINE void
1249 XSETCAR (Lisp_Object c, Lisp_Object n)
1250 {
1251 *xcar_addr (c) = n;
1252 }
1253 INLINE void
1254 XSETCDR (Lisp_Object c, Lisp_Object n)
1255 {
1256 *xcdr_addr (c) = n;
1257 }
1258
1259 /* Take the car or cdr of something whose type is not known. */
1260 INLINE Lisp_Object
1261 CAR (Lisp_Object c)
1262 {
1263 return (CONSP (c) ? XCAR (c)
1264 : NILP (c) ? Qnil
1265 : wrong_type_argument (Qlistp, c));
1266 }
1267 INLINE Lisp_Object
1268 CDR (Lisp_Object c)
1269 {
1270 return (CONSP (c) ? XCDR (c)
1271 : NILP (c) ? Qnil
1272 : wrong_type_argument (Qlistp, c));
1273 }
1274
1275 /* Take the car or cdr of something whose type is not known. */
1276 INLINE Lisp_Object
1277 CAR_SAFE (Lisp_Object c)
1278 {
1279 return CONSP (c) ? XCAR (c) : Qnil;
1280 }
1281 INLINE Lisp_Object
1282 CDR_SAFE (Lisp_Object c)
1283 {
1284 return CONSP (c) ? XCDR (c) : Qnil;
1285 }
1286
1287 /* In a string or vector, the sign bit of the `size' is the gc mark bit. */
1288
1289 struct GCALIGNED Lisp_String
1290 {
1291 ptrdiff_t size;
1292 ptrdiff_t size_byte;
1293 INTERVAL intervals; /* Text properties in this string. */
1294 unsigned char *data;
1295 };
1296
1297 /* True if STR is a multibyte string. */
1298 INLINE bool
1299 STRING_MULTIBYTE (Lisp_Object str)
1300 {
1301 return 0 <= XSTRING (str)->size_byte;
1302 }
1303
1304 /* An upper bound on the number of bytes in a Lisp string, not
1305 counting the terminating null. This a tight enough bound to
1306 prevent integer overflow errors that would otherwise occur during
1307 string size calculations. A string cannot contain more bytes than
1308 a fixnum can represent, nor can it be so long that C pointer
1309 arithmetic stops working on the string plus its terminating null.
1310 Although the actual size limit (see STRING_BYTES_MAX in alloc.c)
1311 may be a bit smaller than STRING_BYTES_BOUND, calculating it here
1312 would expose alloc.c internal details that we'd rather keep
1313 private.
1314
1315 This is a macro for use in static initializers. The cast to
1316 ptrdiff_t ensures that the macro is signed. */
1317 #define STRING_BYTES_BOUND \
1318 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, min (SIZE_MAX, PTRDIFF_MAX) - 1))
1319
1320 /* Mark STR as a unibyte string. */
1321 #define STRING_SET_UNIBYTE(STR) \
1322 do { \
1323 if (EQ (STR, empty_multibyte_string)) \
1324 (STR) = empty_unibyte_string; \
1325 else \
1326 XSTRING (STR)->size_byte = -1; \
1327 } while (false)
1328
1329 /* Mark STR as a multibyte string. Assure that STR contains only
1330 ASCII characters in advance. */
1331 #define STRING_SET_MULTIBYTE(STR) \
1332 do { \
1333 if (EQ (STR, empty_unibyte_string)) \
1334 (STR) = empty_multibyte_string; \
1335 else \
1336 XSTRING (STR)->size_byte = XSTRING (STR)->size; \
1337 } while (false)
1338
1339 /* Convenience functions for dealing with Lisp strings. */
1340
1341 INLINE unsigned char *
1342 SDATA (Lisp_Object string)
1343 {
1344 return XSTRING (string)->data;
1345 }
1346 INLINE char *
1347 SSDATA (Lisp_Object string)
1348 {
1349 /* Avoid "differ in sign" warnings. */
1350 return (char *) SDATA (string);
1351 }
1352 INLINE unsigned char
1353 SREF (Lisp_Object string, ptrdiff_t index)
1354 {
1355 return SDATA (string)[index];
1356 }
1357 INLINE void
1358 SSET (Lisp_Object string, ptrdiff_t index, unsigned char new)
1359 {
1360 SDATA (string)[index] = new;
1361 }
1362 INLINE ptrdiff_t
1363 SCHARS (Lisp_Object string)
1364 {
1365 return XSTRING (string)->size;
1366 }
1367
1368 #ifdef GC_CHECK_STRING_BYTES
1369 extern ptrdiff_t string_bytes (struct Lisp_String *);
1370 #endif
1371 INLINE ptrdiff_t
1372 STRING_BYTES (struct Lisp_String *s)
1373 {
1374 #ifdef GC_CHECK_STRING_BYTES
1375 return string_bytes (s);
1376 #else
1377 return s->size_byte < 0 ? s->size : s->size_byte;
1378 #endif
1379 }
1380
1381 INLINE ptrdiff_t
1382 SBYTES (Lisp_Object string)
1383 {
1384 return STRING_BYTES (XSTRING (string));
1385 }
1386 INLINE void
1387 STRING_SET_CHARS (Lisp_Object string, ptrdiff_t newsize)
1388 {
1389 XSTRING (string)->size = newsize;
1390 }
1391
1392 /* Header of vector-like objects. This documents the layout constraints on
1393 vectors and pseudovectors (objects of PVEC_xxx subtype). It also prevents
1394 compilers from being fooled by Emacs's type punning: XSETPSEUDOVECTOR
1395 and PSEUDOVECTORP cast their pointers to struct vectorlike_header *,
1396 because when two such pointers potentially alias, a compiler won't
1397 incorrectly reorder loads and stores to their size fields. See
1398 Bug#8546. */
1399 struct vectorlike_header
1400 {
1401 /* The only field contains various pieces of information:
1402 - The MSB (ARRAY_MARK_FLAG) holds the gcmarkbit.
1403 - The next bit (PSEUDOVECTOR_FLAG) indicates whether this is a plain
1404 vector (0) or a pseudovector (1).
1405 - If PSEUDOVECTOR_FLAG is 0, the rest holds the size (number
1406 of slots) of the vector.
1407 - If PSEUDOVECTOR_FLAG is 1, the rest is subdivided into three fields:
1408 - a) pseudovector subtype held in PVEC_TYPE_MASK field;
1409 - b) number of Lisp_Objects slots at the beginning of the object
1410 held in PSEUDOVECTOR_SIZE_MASK field. These objects are always
1411 traced by the GC;
1412 - c) size of the rest fields held in PSEUDOVECTOR_REST_MASK and
1413 measured in word_size units. Rest fields may also include
1414 Lisp_Objects, but these objects usually needs some special treatment
1415 during GC.
1416 There are some exceptions. For PVEC_FREE, b) is always zero. For
1417 PVEC_BOOL_VECTOR and PVEC_SUBR, both b) and c) are always zero.
1418 Current layout limits the pseudovectors to 63 PVEC_xxx subtypes,
1419 4095 Lisp_Objects in GC-ed area and 4095 word-sized other slots. */
1420 ptrdiff_t size;
1421 };
1422
1423 /* A regular vector is just a header plus an array of Lisp_Objects. */
1424
1425 struct Lisp_Vector
1426 {
1427 struct vectorlike_header header;
1428 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1429 };
1430
1431 /* C11 prohibits alignof (struct Lisp_Vector), so compute it manually. */
1432 enum
1433 {
1434 ALIGNOF_STRUCT_LISP_VECTOR
1435 = alignof (union { struct vectorlike_header a; Lisp_Object b; })
1436 };
1437
1438 /* A boolvector is a kind of vectorlike, with contents like a string. */
1439
1440 struct Lisp_Bool_Vector
1441 {
1442 /* HEADER.SIZE is the vector's size field. It doesn't have the real size,
1443 just the subtype information. */
1444 struct vectorlike_header header;
1445 /* This is the size in bits. */
1446 EMACS_INT size;
1447 /* The actual bits, packed into bytes.
1448 Zeros fill out the last word if needed.
1449 The bits are in little-endian order in the bytes, and
1450 the bytes are in little-endian order in the words. */
1451 bits_word data[FLEXIBLE_ARRAY_MEMBER];
1452 };
1453
1454 INLINE EMACS_INT
1455 bool_vector_size (Lisp_Object a)
1456 {
1457 EMACS_INT size = XBOOL_VECTOR (a)->size;
1458 eassume (0 <= size);
1459 return size;
1460 }
1461
1462 INLINE bits_word *
1463 bool_vector_data (Lisp_Object a)
1464 {
1465 return XBOOL_VECTOR (a)->data;
1466 }
1467
1468 INLINE unsigned char *
1469 bool_vector_uchar_data (Lisp_Object a)
1470 {
1471 return (unsigned char *) bool_vector_data (a);
1472 }
1473
1474 /* The number of data words and bytes in a bool vector with SIZE bits. */
1475
1476 INLINE EMACS_INT
1477 bool_vector_words (EMACS_INT size)
1478 {
1479 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1480 return (size + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
1481 }
1482
1483 INLINE EMACS_INT
1484 bool_vector_bytes (EMACS_INT size)
1485 {
1486 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1487 return (size + BOOL_VECTOR_BITS_PER_CHAR - 1) / BOOL_VECTOR_BITS_PER_CHAR;
1488 }
1489
1490 /* True if A's Ith bit is set. */
1491
1492 INLINE bool
1493 bool_vector_bitref (Lisp_Object a, EMACS_INT i)
1494 {
1495 eassume (0 <= i && i < bool_vector_size (a));
1496 return !! (bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR]
1497 & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR)));
1498 }
1499
1500 INLINE Lisp_Object
1501 bool_vector_ref (Lisp_Object a, EMACS_INT i)
1502 {
1503 return bool_vector_bitref (a, i) ? Qt : Qnil;
1504 }
1505
1506 /* Set A's Ith bit to B. */
1507
1508 INLINE void
1509 bool_vector_set (Lisp_Object a, EMACS_INT i, bool b)
1510 {
1511 unsigned char *addr;
1512
1513 eassume (0 <= i && i < bool_vector_size (a));
1514 addr = &bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR];
1515
1516 if (b)
1517 *addr |= 1 << (i % BOOL_VECTOR_BITS_PER_CHAR);
1518 else
1519 *addr &= ~ (1 << (i % BOOL_VECTOR_BITS_PER_CHAR));
1520 }
1521
1522 /* Some handy constants for calculating sizes
1523 and offsets, mostly of vectorlike objects. */
1524
1525 enum
1526 {
1527 header_size = offsetof (struct Lisp_Vector, contents),
1528 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
1529 word_size = sizeof (Lisp_Object)
1530 };
1531
1532 /* Conveniences for dealing with Lisp arrays. */
1533
1534 INLINE Lisp_Object
1535 AREF (Lisp_Object array, ptrdiff_t idx)
1536 {
1537 return XVECTOR (array)->contents[idx];
1538 }
1539
1540 INLINE Lisp_Object *
1541 aref_addr (Lisp_Object array, ptrdiff_t idx)
1542 {
1543 return & XVECTOR (array)->contents[idx];
1544 }
1545
1546 INLINE ptrdiff_t
1547 ASIZE (Lisp_Object array)
1548 {
1549 ptrdiff_t size = XVECTOR (array)->header.size;
1550 eassume (0 <= size);
1551 return size;
1552 }
1553
1554 INLINE ptrdiff_t
1555 gc_asize (Lisp_Object array)
1556 {
1557 /* Like ASIZE, but also can be used in the garbage collector. */
1558 return XVECTOR (array)->header.size & ~ARRAY_MARK_FLAG;
1559 }
1560
1561 INLINE void
1562 ASET (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1563 {
1564 eassert (0 <= idx && idx < ASIZE (array));
1565 XVECTOR (array)->contents[idx] = val;
1566 }
1567
1568 INLINE void
1569 gc_aset (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1570 {
1571 /* Like ASET, but also can be used in the garbage collector:
1572 sweep_weak_table calls set_hash_key etc. while the table is marked. */
1573 eassert (0 <= idx && idx < gc_asize (array));
1574 XVECTOR (array)->contents[idx] = val;
1575 }
1576
1577 /* True, since Qnil's representation is zero. Every place in the code
1578 that assumes Qnil is zero should verify (NIL_IS_ZERO), to make it easy
1579 to find such assumptions later if we change Qnil to be nonzero. */
1580 enum { NIL_IS_ZERO = XLI_BUILTIN_LISPSYM (iQnil) == 0 };
1581
1582 /* Clear the object addressed by P, with size NBYTES, so that all its
1583 bytes are zero and all its Lisp values are nil. */
1584 INLINE void
1585 memclear (void *p, ptrdiff_t nbytes)
1586 {
1587 eassert (0 <= nbytes);
1588 verify (NIL_IS_ZERO);
1589 /* Since Qnil is zero, memset suffices. */
1590 memset (p, 0, nbytes);
1591 }
1592
1593 /* If a struct is made to look like a vector, this macro returns the length
1594 of the shortest vector that would hold that struct. */
1595
1596 #define VECSIZE(type) \
1597 ((sizeof (type) - header_size + word_size - 1) / word_size)
1598
1599 /* Like VECSIZE, but used when the pseudo-vector has non-Lisp_Object fields
1600 at the end and we need to compute the number of Lisp_Object fields (the
1601 ones that the GC needs to trace). */
1602
1603 #define PSEUDOVECSIZE(type, nonlispfield) \
1604 ((offsetof (type, nonlispfield) - header_size) / word_size)
1605
1606 /* Compute A OP B, using the unsigned comparison operator OP. A and B
1607 should be integer expressions. This is not the same as
1608 mathematical comparison; for example, UNSIGNED_CMP (0, <, -1)
1609 returns true. For efficiency, prefer plain unsigned comparison if A
1610 and B's sizes both fit (after integer promotion). */
1611 #define UNSIGNED_CMP(a, op, b) \
1612 (max (sizeof ((a) + 0), sizeof ((b) + 0)) <= sizeof (unsigned) \
1613 ? ((a) + (unsigned) 0) op ((b) + (unsigned) 0) \
1614 : ((a) + (uintmax_t) 0) op ((b) + (uintmax_t) 0))
1615
1616 /* True iff C is an ASCII character. */
1617 #define ASCII_CHAR_P(c) UNSIGNED_CMP (c, <, 0x80)
1618
1619 /* A char-table is a kind of vectorlike, with contents are like a
1620 vector but with a few other slots. For some purposes, it makes
1621 sense to handle a char-table with type struct Lisp_Vector. An
1622 element of a char table can be any Lisp objects, but if it is a sub
1623 char-table, we treat it a table that contains information of a
1624 specific range of characters. A sub char-table is like a vector but
1625 with two integer fields between the header and Lisp data, which means
1626 that it has to be marked with some precautions (see mark_char_table
1627 in alloc.c). A sub char-table appears only in an element of a char-table,
1628 and there's no way to access it directly from Emacs Lisp program. */
1629
1630 enum CHARTAB_SIZE_BITS
1631 {
1632 CHARTAB_SIZE_BITS_0 = 6,
1633 CHARTAB_SIZE_BITS_1 = 4,
1634 CHARTAB_SIZE_BITS_2 = 5,
1635 CHARTAB_SIZE_BITS_3 = 7
1636 };
1637
1638 extern const int chartab_size[4];
1639
1640 struct Lisp_Char_Table
1641 {
1642 /* HEADER.SIZE is the vector's size field, which also holds the
1643 pseudovector type information. It holds the size, too.
1644 The size counts the defalt, parent, purpose, ascii,
1645 contents, and extras slots. */
1646 struct vectorlike_header header;
1647
1648 /* This holds a default value,
1649 which is used whenever the value for a specific character is nil. */
1650 Lisp_Object defalt;
1651
1652 /* This points to another char table, which we inherit from when the
1653 value for a specific character is nil. The `defalt' slot takes
1654 precedence over this. */
1655 Lisp_Object parent;
1656
1657 /* This is a symbol which says what kind of use this char-table is
1658 meant for. */
1659 Lisp_Object purpose;
1660
1661 /* The bottom sub char-table for characters of the range 0..127. It
1662 is nil if none of ASCII character has a specific value. */
1663 Lisp_Object ascii;
1664
1665 Lisp_Object contents[(1 << CHARTAB_SIZE_BITS_0)];
1666
1667 /* These hold additional data. It is a vector. */
1668 Lisp_Object extras[FLEXIBLE_ARRAY_MEMBER];
1669 };
1670
1671 struct Lisp_Sub_Char_Table
1672 {
1673 /* HEADER.SIZE is the vector's size field, which also holds the
1674 pseudovector type information. It holds the size, too. */
1675 struct vectorlike_header header;
1676
1677 /* Depth of this sub char-table. It should be 1, 2, or 3. A sub
1678 char-table of depth 1 contains 16 elements, and each element
1679 covers 4096 (128*32) characters. A sub char-table of depth 2
1680 contains 32 elements, and each element covers 128 characters. A
1681 sub char-table of depth 3 contains 128 elements, and each element
1682 is for one character. */
1683 int depth;
1684
1685 /* Minimum character covered by the sub char-table. */
1686 int min_char;
1687
1688 /* Use set_sub_char_table_contents to set this. */
1689 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1690 };
1691
1692 INLINE Lisp_Object
1693 CHAR_TABLE_REF_ASCII (Lisp_Object ct, ptrdiff_t idx)
1694 {
1695 struct Lisp_Char_Table *tbl = NULL;
1696 Lisp_Object val;
1697 do
1698 {
1699 tbl = tbl ? XCHAR_TABLE (tbl->parent) : XCHAR_TABLE (ct);
1700 val = (! SUB_CHAR_TABLE_P (tbl->ascii) ? tbl->ascii
1701 : XSUB_CHAR_TABLE (tbl->ascii)->contents[idx]);
1702 if (NILP (val))
1703 val = tbl->defalt;
1704 }
1705 while (NILP (val) && ! NILP (tbl->parent));
1706
1707 return val;
1708 }
1709
1710 /* Almost equivalent to Faref (CT, IDX) with optimization for ASCII
1711 characters. Do not check validity of CT. */
1712 INLINE Lisp_Object
1713 CHAR_TABLE_REF (Lisp_Object ct, int idx)
1714 {
1715 return (ASCII_CHAR_P (idx)
1716 ? CHAR_TABLE_REF_ASCII (ct, idx)
1717 : char_table_ref (ct, idx));
1718 }
1719
1720 /* Equivalent to Faset (CT, IDX, VAL) with optimization for ASCII and
1721 8-bit European characters. Do not check validity of CT. */
1722 INLINE void
1723 CHAR_TABLE_SET (Lisp_Object ct, int idx, Lisp_Object val)
1724 {
1725 if (ASCII_CHAR_P (idx) && SUB_CHAR_TABLE_P (XCHAR_TABLE (ct)->ascii))
1726 set_sub_char_table_contents (XCHAR_TABLE (ct)->ascii, idx, val);
1727 else
1728 char_table_set (ct, idx, val);
1729 }
1730
1731 /* This structure describes a built-in function.
1732 It is generated by the DEFUN macro only.
1733 defsubr makes it into a Lisp object. */
1734
1735 struct Lisp_Subr
1736 {
1737 struct vectorlike_header header;
1738 union {
1739 Lisp_Object (*a0) (void);
1740 Lisp_Object (*a1) (Lisp_Object);
1741 Lisp_Object (*a2) (Lisp_Object, Lisp_Object);
1742 Lisp_Object (*a3) (Lisp_Object, Lisp_Object, Lisp_Object);
1743 Lisp_Object (*a4) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1744 Lisp_Object (*a5) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1745 Lisp_Object (*a6) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1746 Lisp_Object (*a7) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1747 Lisp_Object (*a8) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1748 Lisp_Object (*aUNEVALLED) (Lisp_Object args);
1749 Lisp_Object (*aMANY) (ptrdiff_t, Lisp_Object *);
1750 } function;
1751 short min_args, max_args;
1752 const char *symbol_name;
1753 const char *intspec;
1754 const char *doc;
1755 };
1756
1757 enum char_table_specials
1758 {
1759 /* This is the number of slots that every char table must have. This
1760 counts the ordinary slots and the top, defalt, parent, and purpose
1761 slots. */
1762 CHAR_TABLE_STANDARD_SLOTS = PSEUDOVECSIZE (struct Lisp_Char_Table, extras),
1763
1764 /* This is an index of first Lisp_Object field in Lisp_Sub_Char_Table
1765 when the latter is treated as an ordinary Lisp_Vector. */
1766 SUB_CHAR_TABLE_OFFSET = PSEUDOVECSIZE (struct Lisp_Sub_Char_Table, contents)
1767 };
1768
1769 /* Return the number of "extra" slots in the char table CT. */
1770
1771 INLINE int
1772 CHAR_TABLE_EXTRA_SLOTS (struct Lisp_Char_Table *ct)
1773 {
1774 return ((ct->header.size & PSEUDOVECTOR_SIZE_MASK)
1775 - CHAR_TABLE_STANDARD_SLOTS);
1776 }
1777
1778 /* Make sure that sub char-table contents slot is where we think it is. */
1779 verify (offsetof (struct Lisp_Sub_Char_Table, contents)
1780 == offsetof (struct Lisp_Vector, contents[SUB_CHAR_TABLE_OFFSET]));
1781
1782 /***********************************************************************
1783 Symbols
1784 ***********************************************************************/
1785
1786 /* Value is name of symbol. */
1787
1788 INLINE Lisp_Object
1789 (SYMBOL_VAL) (struct Lisp_Symbol *sym)
1790 {
1791 return lisp_h_SYMBOL_VAL (sym);
1792 }
1793
1794 INLINE struct Lisp_Symbol *
1795 SYMBOL_ALIAS (struct Lisp_Symbol *sym)
1796 {
1797 eassert (sym->redirect == SYMBOL_VARALIAS);
1798 return sym->val.alias;
1799 }
1800 INLINE struct Lisp_Buffer_Local_Value *
1801 SYMBOL_BLV (struct Lisp_Symbol *sym)
1802 {
1803 eassert (sym->redirect == SYMBOL_LOCALIZED);
1804 return sym->val.blv;
1805 }
1806 INLINE union Lisp_Fwd *
1807 SYMBOL_FWD (struct Lisp_Symbol *sym)
1808 {
1809 eassert (sym->redirect == SYMBOL_FORWARDED);
1810 return sym->val.fwd;
1811 }
1812
1813 INLINE void
1814 (SET_SYMBOL_VAL) (struct Lisp_Symbol *sym, Lisp_Object v)
1815 {
1816 lisp_h_SET_SYMBOL_VAL (sym, v);
1817 }
1818
1819 INLINE void
1820 SET_SYMBOL_ALIAS (struct Lisp_Symbol *sym, struct Lisp_Symbol *v)
1821 {
1822 eassert (sym->redirect == SYMBOL_VARALIAS);
1823 sym->val.alias = v;
1824 }
1825 INLINE void
1826 SET_SYMBOL_BLV (struct Lisp_Symbol *sym, struct Lisp_Buffer_Local_Value *v)
1827 {
1828 eassert (sym->redirect == SYMBOL_LOCALIZED);
1829 sym->val.blv = v;
1830 }
1831 INLINE void
1832 SET_SYMBOL_FWD (struct Lisp_Symbol *sym, union Lisp_Fwd *v)
1833 {
1834 eassert (sym->redirect == SYMBOL_FORWARDED);
1835 sym->val.fwd = v;
1836 }
1837
1838 INLINE Lisp_Object
1839 SYMBOL_NAME (Lisp_Object sym)
1840 {
1841 return XSYMBOL (sym)->name;
1842 }
1843
1844 /* Value is true if SYM is an interned symbol. */
1845
1846 INLINE bool
1847 SYMBOL_INTERNED_P (Lisp_Object sym)
1848 {
1849 return XSYMBOL (sym)->interned != SYMBOL_UNINTERNED;
1850 }
1851
1852 /* Value is true if SYM is interned in initial_obarray. */
1853
1854 INLINE bool
1855 SYMBOL_INTERNED_IN_INITIAL_OBARRAY_P (Lisp_Object sym)
1856 {
1857 return XSYMBOL (sym)->interned == SYMBOL_INTERNED_IN_INITIAL_OBARRAY;
1858 }
1859
1860 /* Value is non-zero if symbol is considered a constant, i.e. its
1861 value cannot be changed (there is an exception for keyword symbols,
1862 whose value can be set to the keyword symbol itself). */
1863
1864 INLINE int
1865 (SYMBOL_CONSTANT_P) (Lisp_Object sym)
1866 {
1867 return lisp_h_SYMBOL_CONSTANT_P (sym);
1868 }
1869
1870 /* Placeholder for make-docfile to process. The actual symbol
1871 definition is done by lread.c's defsym. */
1872 #define DEFSYM(sym, name) /* empty */
1873
1874 \f
1875 /***********************************************************************
1876 Hash Tables
1877 ***********************************************************************/
1878
1879 /* The structure of a Lisp hash table. */
1880
1881 struct hash_table_test
1882 {
1883 /* Name of the function used to compare keys. */
1884 Lisp_Object name;
1885
1886 /* User-supplied hash function, or nil. */
1887 Lisp_Object user_hash_function;
1888
1889 /* User-supplied key comparison function, or nil. */
1890 Lisp_Object user_cmp_function;
1891
1892 /* C function to compare two keys. */
1893 bool (*cmpfn) (struct hash_table_test *t, Lisp_Object, Lisp_Object);
1894
1895 /* C function to compute hash code. */
1896 EMACS_UINT (*hashfn) (struct hash_table_test *t, Lisp_Object);
1897 };
1898
1899 struct Lisp_Hash_Table
1900 {
1901 /* This is for Lisp; the hash table code does not refer to it. */
1902 struct vectorlike_header header;
1903
1904 /* Nil if table is non-weak. Otherwise a symbol describing the
1905 weakness of the table. */
1906 Lisp_Object weak;
1907
1908 /* When the table is resized, and this is an integer, compute the
1909 new size by adding this to the old size. If a float, compute the
1910 new size by multiplying the old size with this factor. */
1911 Lisp_Object rehash_size;
1912
1913 /* Resize hash table when number of entries/ table size is >= this
1914 ratio, a float. */
1915 Lisp_Object rehash_threshold;
1916
1917 /* Vector of hash codes. If hash[I] is nil, this means that the
1918 I-th entry is unused. */
1919 Lisp_Object hash;
1920
1921 /* Vector used to chain entries. If entry I is free, next[I] is the
1922 entry number of the next free item. If entry I is non-free,
1923 next[I] is the index of the next entry in the collision chain. */
1924 Lisp_Object next;
1925
1926 /* Index of first free entry in free list. */
1927 Lisp_Object next_free;
1928
1929 /* Bucket vector. A non-nil entry is the index of the first item in
1930 a collision chain. This vector's size can be larger than the
1931 hash table size to reduce collisions. */
1932 Lisp_Object index;
1933
1934 /* Only the fields above are traced normally by the GC. The ones below
1935 `count' are special and are either ignored by the GC or traced in
1936 a special way (e.g. because of weakness). */
1937
1938 /* Number of key/value entries in the table. */
1939 ptrdiff_t count;
1940
1941 /* Vector of keys and values. The key of item I is found at index
1942 2 * I, the value is found at index 2 * I + 1.
1943 This is gc_marked specially if the table is weak. */
1944 Lisp_Object key_and_value;
1945
1946 /* The comparison and hash functions. */
1947 struct hash_table_test test;
1948
1949 /* Next weak hash table if this is a weak hash table. The head
1950 of the list is in weak_hash_tables. */
1951 struct Lisp_Hash_Table *next_weak;
1952 };
1953
1954
1955 INLINE bool
1956 HASH_TABLE_P (Lisp_Object a)
1957 {
1958 return PSEUDOVECTORP (a, PVEC_HASH_TABLE);
1959 }
1960
1961 INLINE struct Lisp_Hash_Table *
1962 XHASH_TABLE (Lisp_Object a)
1963 {
1964 eassert (HASH_TABLE_P (a));
1965 return XUNTAG (a, Lisp_Vectorlike);
1966 }
1967
1968 #define XSET_HASH_TABLE(VAR, PTR) \
1969 (XSETPSEUDOVECTOR (VAR, PTR, PVEC_HASH_TABLE))
1970
1971 /* Value is the key part of entry IDX in hash table H. */
1972 INLINE Lisp_Object
1973 HASH_KEY (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1974 {
1975 return AREF (h->key_and_value, 2 * idx);
1976 }
1977
1978 /* Value is the value part of entry IDX in hash table H. */
1979 INLINE Lisp_Object
1980 HASH_VALUE (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1981 {
1982 return AREF (h->key_and_value, 2 * idx + 1);
1983 }
1984
1985 /* Value is the index of the next entry following the one at IDX
1986 in hash table H. */
1987 INLINE Lisp_Object
1988 HASH_NEXT (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1989 {
1990 return AREF (h->next, idx);
1991 }
1992
1993 /* Value is the hash code computed for entry IDX in hash table H. */
1994 INLINE Lisp_Object
1995 HASH_HASH (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1996 {
1997 return AREF (h->hash, idx);
1998 }
1999
2000 /* Value is the index of the element in hash table H that is the
2001 start of the collision list at index IDX in the index vector of H. */
2002 INLINE Lisp_Object
2003 HASH_INDEX (struct Lisp_Hash_Table *h, ptrdiff_t idx)
2004 {
2005 return AREF (h->index, idx);
2006 }
2007
2008 /* Value is the size of hash table H. */
2009 INLINE ptrdiff_t
2010 HASH_TABLE_SIZE (struct Lisp_Hash_Table *h)
2011 {
2012 return ASIZE (h->next);
2013 }
2014
2015 /* Default size for hash tables if not specified. */
2016
2017 enum DEFAULT_HASH_SIZE { DEFAULT_HASH_SIZE = 65 };
2018
2019 /* Default threshold specifying when to resize a hash table. The
2020 value gives the ratio of current entries in the hash table and the
2021 size of the hash table. */
2022
2023 static double const DEFAULT_REHASH_THRESHOLD = 0.8;
2024
2025 /* Default factor by which to increase the size of a hash table. */
2026
2027 static double const DEFAULT_REHASH_SIZE = 1.5;
2028
2029 /* Combine two integers X and Y for hashing. The result might not fit
2030 into a Lisp integer. */
2031
2032 INLINE EMACS_UINT
2033 sxhash_combine (EMACS_UINT x, EMACS_UINT y)
2034 {
2035 return (x << 4) + (x >> (BITS_PER_EMACS_INT - 4)) + y;
2036 }
2037
2038 /* Hash X, returning a value that fits into a fixnum. */
2039
2040 INLINE EMACS_UINT
2041 SXHASH_REDUCE (EMACS_UINT x)
2042 {
2043 return (x ^ x >> (BITS_PER_EMACS_INT - FIXNUM_BITS)) & INTMASK;
2044 }
2045
2046 /* These structures are used for various misc types. */
2047
2048 struct Lisp_Misc_Any /* Supertype of all Misc types. */
2049 {
2050 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_??? */
2051 bool_bf gcmarkbit : 1;
2052 unsigned spacer : 15;
2053 };
2054
2055 struct Lisp_Marker
2056 {
2057 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Marker */
2058 bool_bf gcmarkbit : 1;
2059 unsigned spacer : 13;
2060 /* This flag is temporarily used in the functions
2061 decode/encode_coding_object to record that the marker position
2062 must be adjusted after the conversion. */
2063 bool_bf need_adjustment : 1;
2064 /* True means normal insertion at the marker's position
2065 leaves the marker after the inserted text. */
2066 bool_bf insertion_type : 1;
2067 /* This is the buffer that the marker points into, or 0 if it points nowhere.
2068 Note: a chain of markers can contain markers pointing into different
2069 buffers (the chain is per buffer_text rather than per buffer, so it's
2070 shared between indirect buffers). */
2071 /* This is used for (other than NULL-checking):
2072 - Fmarker_buffer
2073 - Fset_marker: check eq(oldbuf, newbuf) to avoid unchain+rechain.
2074 - unchain_marker: to find the list from which to unchain.
2075 - Fkill_buffer: to only unchain the markers of current indirect buffer.
2076 */
2077 struct buffer *buffer;
2078
2079 /* The remaining fields are meaningless in a marker that
2080 does not point anywhere. */
2081
2082 /* For markers that point somewhere,
2083 this is used to chain of all the markers in a given buffer. */
2084 /* We could remove it and use an array in buffer_text instead.
2085 That would also allow to preserve it ordered. */
2086 struct Lisp_Marker *next;
2087 /* This is the char position where the marker points. */
2088 ptrdiff_t charpos;
2089 /* This is the byte position.
2090 It's mostly used as a charpos<->bytepos cache (i.e. it's not directly
2091 used to implement the functionality of markers, but rather to (ab)use
2092 markers as a cache for char<->byte mappings). */
2093 ptrdiff_t bytepos;
2094 };
2095
2096 /* START and END are markers in the overlay's buffer, and
2097 PLIST is the overlay's property list. */
2098 struct Lisp_Overlay
2099 /* An overlay's real data content is:
2100 - plist
2101 - buffer (really there are two buffer pointers, one per marker,
2102 and both points to the same buffer)
2103 - insertion type of both ends (per-marker fields)
2104 - start & start byte (of start marker)
2105 - end & end byte (of end marker)
2106 - next (singly linked list of overlays)
2107 - next fields of start and end markers (singly linked list of markers).
2108 I.e. 9words plus 2 bits, 3words of which are for external linked lists.
2109 */
2110 {
2111 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Overlay */
2112 bool_bf gcmarkbit : 1;
2113 unsigned spacer : 15;
2114 struct Lisp_Overlay *next;
2115 Lisp_Object start;
2116 Lisp_Object end;
2117 Lisp_Object plist;
2118 };
2119
2120 /* Types of data which may be saved in a Lisp_Save_Value. */
2121
2122 enum
2123 {
2124 SAVE_UNUSED,
2125 SAVE_INTEGER,
2126 SAVE_FUNCPOINTER,
2127 SAVE_POINTER,
2128 SAVE_OBJECT
2129 };
2130
2131 /* Number of bits needed to store one of the above values. */
2132 enum { SAVE_SLOT_BITS = 3 };
2133
2134 /* Number of slots in a save value where save_type is nonzero. */
2135 enum { SAVE_VALUE_SLOTS = 4 };
2136
2137 /* Bit-width and values for struct Lisp_Save_Value's save_type member. */
2138
2139 enum { SAVE_TYPE_BITS = SAVE_VALUE_SLOTS * SAVE_SLOT_BITS + 1 };
2140
2141 enum Lisp_Save_Type
2142 {
2143 SAVE_TYPE_INT_INT = SAVE_INTEGER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2144 SAVE_TYPE_INT_INT_INT
2145 = (SAVE_INTEGER + (SAVE_TYPE_INT_INT << SAVE_SLOT_BITS)),
2146 SAVE_TYPE_OBJ_OBJ = SAVE_OBJECT + (SAVE_OBJECT << SAVE_SLOT_BITS),
2147 SAVE_TYPE_OBJ_OBJ_OBJ = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ << SAVE_SLOT_BITS),
2148 SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
2149 = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ_OBJ << SAVE_SLOT_BITS),
2150 SAVE_TYPE_PTR_INT = SAVE_POINTER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2151 SAVE_TYPE_PTR_OBJ = SAVE_POINTER + (SAVE_OBJECT << SAVE_SLOT_BITS),
2152 SAVE_TYPE_PTR_PTR = SAVE_POINTER + (SAVE_POINTER << SAVE_SLOT_BITS),
2153 SAVE_TYPE_FUNCPTR_PTR_OBJ
2154 = SAVE_FUNCPOINTER + (SAVE_TYPE_PTR_OBJ << SAVE_SLOT_BITS),
2155
2156 /* This has an extra bit indicating it's raw memory. */
2157 SAVE_TYPE_MEMORY = SAVE_TYPE_PTR_INT + (1 << (SAVE_TYPE_BITS - 1))
2158 };
2159
2160 /* Special object used to hold a different values for later use.
2161
2162 This is mostly used to package C integers and pointers to call
2163 record_unwind_protect when two or more values need to be saved.
2164 For example:
2165
2166 ...
2167 struct my_data *md = get_my_data ();
2168 ptrdiff_t mi = get_my_integer ();
2169 record_unwind_protect (my_unwind, make_save_ptr_int (md, mi));
2170 ...
2171
2172 Lisp_Object my_unwind (Lisp_Object arg)
2173 {
2174 struct my_data *md = XSAVE_POINTER (arg, 0);
2175 ptrdiff_t mi = XSAVE_INTEGER (arg, 1);
2176 ...
2177 }
2178
2179 If ENABLE_CHECKING is in effect, XSAVE_xxx macros do type checking of the
2180 saved objects and raise eassert if type of the saved object doesn't match
2181 the type which is extracted. In the example above, XSAVE_INTEGER (arg, 2)
2182 and XSAVE_OBJECT (arg, 0) are wrong because nothing was saved in slot 2 and
2183 slot 0 is a pointer. */
2184
2185 typedef void (*voidfuncptr) (void);
2186
2187 struct Lisp_Save_Value
2188 {
2189 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Save_Value */
2190 bool_bf gcmarkbit : 1;
2191 unsigned spacer : 32 - (16 + 1 + SAVE_TYPE_BITS);
2192
2193 /* V->data may hold up to SAVE_VALUE_SLOTS entries. The type of
2194 V's data entries are determined by V->save_type. E.g., if
2195 V->save_type == SAVE_TYPE_PTR_OBJ, V->data[0] is a pointer,
2196 V->data[1] is an integer, and V's other data entries are unused.
2197
2198 If V->save_type == SAVE_TYPE_MEMORY, V->data[0].pointer is the address of
2199 a memory area containing V->data[1].integer potential Lisp_Objects. */
2200 ENUM_BF (Lisp_Save_Type) save_type : SAVE_TYPE_BITS;
2201 union {
2202 void *pointer;
2203 voidfuncptr funcpointer;
2204 ptrdiff_t integer;
2205 Lisp_Object object;
2206 } data[SAVE_VALUE_SLOTS];
2207 };
2208
2209 /* Return the type of V's Nth saved value. */
2210 INLINE int
2211 save_type (struct Lisp_Save_Value *v, int n)
2212 {
2213 eassert (0 <= n && n < SAVE_VALUE_SLOTS);
2214 return (v->save_type >> (SAVE_SLOT_BITS * n) & ((1 << SAVE_SLOT_BITS) - 1));
2215 }
2216
2217 /* Get and set the Nth saved pointer. */
2218
2219 INLINE void *
2220 XSAVE_POINTER (Lisp_Object obj, int n)
2221 {
2222 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2223 return XSAVE_VALUE (obj)->data[n].pointer;
2224 }
2225 INLINE void
2226 set_save_pointer (Lisp_Object obj, int n, void *val)
2227 {
2228 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2229 XSAVE_VALUE (obj)->data[n].pointer = val;
2230 }
2231 INLINE voidfuncptr
2232 XSAVE_FUNCPOINTER (Lisp_Object obj, int n)
2233 {
2234 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_FUNCPOINTER);
2235 return XSAVE_VALUE (obj)->data[n].funcpointer;
2236 }
2237
2238 /* Likewise for the saved integer. */
2239
2240 INLINE ptrdiff_t
2241 XSAVE_INTEGER (Lisp_Object obj, int n)
2242 {
2243 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2244 return XSAVE_VALUE (obj)->data[n].integer;
2245 }
2246 INLINE void
2247 set_save_integer (Lisp_Object obj, int n, ptrdiff_t val)
2248 {
2249 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2250 XSAVE_VALUE (obj)->data[n].integer = val;
2251 }
2252
2253 /* Extract Nth saved object. */
2254
2255 INLINE Lisp_Object
2256 XSAVE_OBJECT (Lisp_Object obj, int n)
2257 {
2258 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_OBJECT);
2259 return XSAVE_VALUE (obj)->data[n].object;
2260 }
2261
2262 #ifdef HAVE_MODULES
2263 struct Lisp_User_Ptr
2264 {
2265 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_User_Ptr */
2266 bool_bf gcmarkbit : 1;
2267 unsigned spacer : 15;
2268
2269 void (*finalizer) (void *);
2270 void *p;
2271 };
2272 #endif
2273
2274 /* A finalizer sentinel. */
2275 struct Lisp_Finalizer
2276 {
2277 struct Lisp_Misc_Any base;
2278
2279 /* Circular list of all active weak references. */
2280 struct Lisp_Finalizer *prev;
2281 struct Lisp_Finalizer *next;
2282
2283 /* Call FUNCTION when the finalizer becomes unreachable, even if
2284 FUNCTION contains a reference to the finalizer; i.e., call
2285 FUNCTION when it is reachable _only_ through finalizers. */
2286 Lisp_Object function;
2287 };
2288
2289 /* A miscellaneous object, when it's on the free list. */
2290 struct Lisp_Free
2291 {
2292 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Free */
2293 bool_bf gcmarkbit : 1;
2294 unsigned spacer : 15;
2295 union Lisp_Misc *chain;
2296 };
2297
2298 /* To get the type field of a union Lisp_Misc, use XMISCTYPE.
2299 It uses one of these struct subtypes to get the type field. */
2300
2301 union Lisp_Misc
2302 {
2303 struct Lisp_Misc_Any u_any; /* Supertype of all Misc types. */
2304 struct Lisp_Free u_free;
2305 struct Lisp_Marker u_marker;
2306 struct Lisp_Overlay u_overlay;
2307 struct Lisp_Save_Value u_save_value;
2308 struct Lisp_Finalizer u_finalizer;
2309 #ifdef HAVE_MODULES
2310 struct Lisp_User_Ptr u_user_ptr;
2311 #endif
2312 };
2313
2314 INLINE union Lisp_Misc *
2315 XMISC (Lisp_Object a)
2316 {
2317 return XUNTAG (a, Lisp_Misc);
2318 }
2319
2320 INLINE struct Lisp_Misc_Any *
2321 XMISCANY (Lisp_Object a)
2322 {
2323 eassert (MISCP (a));
2324 return & XMISC (a)->u_any;
2325 }
2326
2327 INLINE enum Lisp_Misc_Type
2328 XMISCTYPE (Lisp_Object a)
2329 {
2330 return XMISCANY (a)->type;
2331 }
2332
2333 INLINE struct Lisp_Marker *
2334 XMARKER (Lisp_Object a)
2335 {
2336 eassert (MARKERP (a));
2337 return & XMISC (a)->u_marker;
2338 }
2339
2340 INLINE struct Lisp_Overlay *
2341 XOVERLAY (Lisp_Object a)
2342 {
2343 eassert (OVERLAYP (a));
2344 return & XMISC (a)->u_overlay;
2345 }
2346
2347 INLINE struct Lisp_Save_Value *
2348 XSAVE_VALUE (Lisp_Object a)
2349 {
2350 eassert (SAVE_VALUEP (a));
2351 return & XMISC (a)->u_save_value;
2352 }
2353
2354 INLINE struct Lisp_Finalizer *
2355 XFINALIZER (Lisp_Object a)
2356 {
2357 eassert (FINALIZERP (a));
2358 return & XMISC (a)->u_finalizer;
2359 }
2360
2361 #ifdef HAVE_MODULES
2362 INLINE struct Lisp_User_Ptr *
2363 XUSER_PTR (Lisp_Object a)
2364 {
2365 eassert (USER_PTRP (a));
2366 return & XMISC (a)->u_user_ptr;
2367 }
2368 #endif
2369
2370 \f
2371 /* Forwarding pointer to an int variable.
2372 This is allowed only in the value cell of a symbol,
2373 and it means that the symbol's value really lives in the
2374 specified int variable. */
2375 struct Lisp_Intfwd
2376 {
2377 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Int */
2378 EMACS_INT *intvar;
2379 };
2380
2381 /* Boolean forwarding pointer to an int variable.
2382 This is like Lisp_Intfwd except that the ostensible
2383 "value" of the symbol is t if the bool variable is true,
2384 nil if it is false. */
2385 struct Lisp_Boolfwd
2386 {
2387 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Bool */
2388 bool *boolvar;
2389 };
2390
2391 /* Forwarding pointer to a Lisp_Object variable.
2392 This is allowed only in the value cell of a symbol,
2393 and it means that the symbol's value really lives in the
2394 specified variable. */
2395 struct Lisp_Objfwd
2396 {
2397 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Obj */
2398 Lisp_Object *objvar;
2399 };
2400
2401 /* Like Lisp_Objfwd except that value lives in a slot in the
2402 current buffer. Value is byte index of slot within buffer. */
2403 struct Lisp_Buffer_Objfwd
2404 {
2405 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Buffer_Obj */
2406 int offset;
2407 /* One of Qnil, Qintegerp, Qsymbolp, Qstringp, Qfloatp or Qnumberp. */
2408 Lisp_Object predicate;
2409 };
2410
2411 /* struct Lisp_Buffer_Local_Value is used in a symbol value cell when
2412 the symbol has buffer-local or frame-local bindings. (Exception:
2413 some buffer-local variables are built-in, with their values stored
2414 in the buffer structure itself. They are handled differently,
2415 using struct Lisp_Buffer_Objfwd.)
2416
2417 The `realvalue' slot holds the variable's current value, or a
2418 forwarding pointer to where that value is kept. This value is the
2419 one that corresponds to the loaded binding. To read or set the
2420 variable, you must first make sure the right binding is loaded;
2421 then you can access the value in (or through) `realvalue'.
2422
2423 `buffer' and `frame' are the buffer and frame for which the loaded
2424 binding was found. If those have changed, to make sure the right
2425 binding is loaded it is necessary to find which binding goes with
2426 the current buffer and selected frame, then load it. To load it,
2427 first unload the previous binding, then copy the value of the new
2428 binding into `realvalue' (or through it). Also update
2429 LOADED-BINDING to point to the newly loaded binding.
2430
2431 `local_if_set' indicates that merely setting the variable creates a
2432 local binding for the current buffer. Otherwise the latter, setting
2433 the variable does not do that; only make-local-variable does that. */
2434
2435 struct Lisp_Buffer_Local_Value
2436 {
2437 /* True means that merely setting the variable creates a local
2438 binding for the current buffer. */
2439 bool_bf local_if_set : 1;
2440 /* True means this variable can have frame-local bindings, otherwise, it is
2441 can have buffer-local bindings. The two cannot be combined. */
2442 bool_bf frame_local : 1;
2443 /* True means that the binding now loaded was found.
2444 Presumably equivalent to (defcell!=valcell). */
2445 bool_bf found : 1;
2446 /* If non-NULL, a forwarding to the C var where it should also be set. */
2447 union Lisp_Fwd *fwd; /* Should never be (Buffer|Kboard)_Objfwd. */
2448 /* The buffer or frame for which the loaded binding was found. */
2449 Lisp_Object where;
2450 /* A cons cell that holds the default value. It has the form
2451 (SYMBOL . DEFAULT-VALUE). */
2452 Lisp_Object defcell;
2453 /* The cons cell from `where's parameter alist.
2454 It always has the form (SYMBOL . VALUE)
2455 Note that if `forward' is non-nil, VALUE may be out of date.
2456 Also if the currently loaded binding is the default binding, then
2457 this is `eq'ual to defcell. */
2458 Lisp_Object valcell;
2459 };
2460
2461 /* Like Lisp_Objfwd except that value lives in a slot in the
2462 current kboard. */
2463 struct Lisp_Kboard_Objfwd
2464 {
2465 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Kboard_Obj */
2466 int offset;
2467 };
2468
2469 union Lisp_Fwd
2470 {
2471 struct Lisp_Intfwd u_intfwd;
2472 struct Lisp_Boolfwd u_boolfwd;
2473 struct Lisp_Objfwd u_objfwd;
2474 struct Lisp_Buffer_Objfwd u_buffer_objfwd;
2475 struct Lisp_Kboard_Objfwd u_kboard_objfwd;
2476 };
2477
2478 INLINE enum Lisp_Fwd_Type
2479 XFWDTYPE (union Lisp_Fwd *a)
2480 {
2481 return a->u_intfwd.type;
2482 }
2483
2484 INLINE struct Lisp_Buffer_Objfwd *
2485 XBUFFER_OBJFWD (union Lisp_Fwd *a)
2486 {
2487 eassert (BUFFER_OBJFWDP (a));
2488 return &a->u_buffer_objfwd;
2489 }
2490 \f
2491 /* Lisp floating point type. */
2492 struct Lisp_Float
2493 {
2494 union
2495 {
2496 double data;
2497 struct Lisp_Float *chain;
2498 } u;
2499 };
2500
2501 INLINE double
2502 XFLOAT_DATA (Lisp_Object f)
2503 {
2504 return XFLOAT (f)->u.data;
2505 }
2506
2507 /* Most hosts nowadays use IEEE floating point, so they use IEC 60559
2508 representations, have infinities and NaNs, and do not trap on
2509 exceptions. Define IEEE_FLOATING_POINT if this host is one of the
2510 typical ones. The C11 macro __STDC_IEC_559__ is close to what is
2511 wanted here, but is not quite right because Emacs does not require
2512 all the features of C11 Annex F (and does not require C11 at all,
2513 for that matter). */
2514 enum
2515 {
2516 IEEE_FLOATING_POINT
2517 = (FLT_RADIX == 2 && FLT_MANT_DIG == 24
2518 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
2519 };
2520
2521 /* A character, declared with the following typedef, is a member
2522 of some character set associated with the current buffer. */
2523 #ifndef _UCHAR_T /* Protect against something in ctab.h on AIX. */
2524 #define _UCHAR_T
2525 typedef unsigned char UCHAR;
2526 #endif
2527
2528 /* Meanings of slots in a Lisp_Compiled: */
2529
2530 enum Lisp_Compiled
2531 {
2532 COMPILED_ARGLIST = 0,
2533 COMPILED_BYTECODE = 1,
2534 COMPILED_CONSTANTS = 2,
2535 COMPILED_STACK_DEPTH = 3,
2536 COMPILED_DOC_STRING = 4,
2537 COMPILED_INTERACTIVE = 5
2538 };
2539
2540 /* Flag bits in a character. These also get used in termhooks.h.
2541 Richard Stallman <rms@gnu.ai.mit.edu> thinks that MULE
2542 (MUlti-Lingual Emacs) might need 22 bits for the character value
2543 itself, so we probably shouldn't use any bits lower than 0x0400000. */
2544 enum char_bits
2545 {
2546 CHAR_ALT = 0x0400000,
2547 CHAR_SUPER = 0x0800000,
2548 CHAR_HYPER = 0x1000000,
2549 CHAR_SHIFT = 0x2000000,
2550 CHAR_CTL = 0x4000000,
2551 CHAR_META = 0x8000000,
2552
2553 CHAR_MODIFIER_MASK =
2554 CHAR_ALT | CHAR_SUPER | CHAR_HYPER | CHAR_SHIFT | CHAR_CTL | CHAR_META,
2555
2556 /* Actually, the current Emacs uses 22 bits for the character value
2557 itself. */
2558 CHARACTERBITS = 22
2559 };
2560 \f
2561 /* Data type checking. */
2562
2563 INLINE bool
2564 (NILP) (Lisp_Object x)
2565 {
2566 return lisp_h_NILP (x);
2567 }
2568
2569 INLINE bool
2570 NUMBERP (Lisp_Object x)
2571 {
2572 return INTEGERP (x) || FLOATP (x);
2573 }
2574 INLINE bool
2575 NATNUMP (Lisp_Object x)
2576 {
2577 return INTEGERP (x) && 0 <= XINT (x);
2578 }
2579
2580 INLINE bool
2581 RANGED_INTEGERP (intmax_t lo, Lisp_Object x, intmax_t hi)
2582 {
2583 return INTEGERP (x) && lo <= XINT (x) && XINT (x) <= hi;
2584 }
2585
2586 #define TYPE_RANGED_INTEGERP(type, x) \
2587 (INTEGERP (x) \
2588 && (TYPE_SIGNED (type) ? TYPE_MINIMUM (type) <= XINT (x) : 0 <= XINT (x)) \
2589 && XINT (x) <= TYPE_MAXIMUM (type))
2590
2591 INLINE bool
2592 (CONSP) (Lisp_Object x)
2593 {
2594 return lisp_h_CONSP (x);
2595 }
2596 INLINE bool
2597 (FLOATP) (Lisp_Object x)
2598 {
2599 return lisp_h_FLOATP (x);
2600 }
2601 INLINE bool
2602 (MISCP) (Lisp_Object x)
2603 {
2604 return lisp_h_MISCP (x);
2605 }
2606 INLINE bool
2607 (SYMBOLP) (Lisp_Object x)
2608 {
2609 return lisp_h_SYMBOLP (x);
2610 }
2611 INLINE bool
2612 (INTEGERP) (Lisp_Object x)
2613 {
2614 return lisp_h_INTEGERP (x);
2615 }
2616 INLINE bool
2617 (VECTORLIKEP) (Lisp_Object x)
2618 {
2619 return lisp_h_VECTORLIKEP (x);
2620 }
2621 INLINE bool
2622 (MARKERP) (Lisp_Object x)
2623 {
2624 return lisp_h_MARKERP (x);
2625 }
2626
2627 INLINE bool
2628 STRINGP (Lisp_Object x)
2629 {
2630 return XTYPE (x) == Lisp_String;
2631 }
2632 INLINE bool
2633 VECTORP (Lisp_Object x)
2634 {
2635 return VECTORLIKEP (x) && ! (ASIZE (x) & PSEUDOVECTOR_FLAG);
2636 }
2637 INLINE bool
2638 OVERLAYP (Lisp_Object x)
2639 {
2640 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Overlay;
2641 }
2642 INLINE bool
2643 SAVE_VALUEP (Lisp_Object x)
2644 {
2645 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Save_Value;
2646 }
2647
2648 INLINE bool
2649 FINALIZERP (Lisp_Object x)
2650 {
2651 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Finalizer;
2652 }
2653
2654 #ifdef HAVE_MODULES
2655 INLINE bool
2656 USER_PTRP (Lisp_Object x)
2657 {
2658 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_User_Ptr;
2659 }
2660 #endif
2661
2662 INLINE bool
2663 AUTOLOADP (Lisp_Object x)
2664 {
2665 return CONSP (x) && EQ (Qautoload, XCAR (x));
2666 }
2667
2668 INLINE bool
2669 BUFFER_OBJFWDP (union Lisp_Fwd *a)
2670 {
2671 return XFWDTYPE (a) == Lisp_Fwd_Buffer_Obj;
2672 }
2673
2674 INLINE bool
2675 PSEUDOVECTOR_TYPEP (struct vectorlike_header *a, int code)
2676 {
2677 return ((a->size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK))
2678 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS)));
2679 }
2680
2681 /* True if A is a pseudovector whose code is CODE. */
2682 INLINE bool
2683 PSEUDOVECTORP (Lisp_Object a, int code)
2684 {
2685 if (! VECTORLIKEP (a))
2686 return false;
2687 else
2688 {
2689 /* Converting to struct vectorlike_header * avoids aliasing issues. */
2690 struct vectorlike_header *h = XUNTAG (a, Lisp_Vectorlike);
2691 return PSEUDOVECTOR_TYPEP (h, code);
2692 }
2693 }
2694
2695
2696 /* Test for specific pseudovector types. */
2697
2698 INLINE bool
2699 WINDOW_CONFIGURATIONP (Lisp_Object a)
2700 {
2701 return PSEUDOVECTORP (a, PVEC_WINDOW_CONFIGURATION);
2702 }
2703
2704 INLINE bool
2705 PROCESSP (Lisp_Object a)
2706 {
2707 return PSEUDOVECTORP (a, PVEC_PROCESS);
2708 }
2709
2710 INLINE bool
2711 WINDOWP (Lisp_Object a)
2712 {
2713 return PSEUDOVECTORP (a, PVEC_WINDOW);
2714 }
2715
2716 INLINE bool
2717 TERMINALP (Lisp_Object a)
2718 {
2719 return PSEUDOVECTORP (a, PVEC_TERMINAL);
2720 }
2721
2722 INLINE bool
2723 SUBRP (Lisp_Object a)
2724 {
2725 return PSEUDOVECTORP (a, PVEC_SUBR);
2726 }
2727
2728 INLINE bool
2729 COMPILEDP (Lisp_Object a)
2730 {
2731 return PSEUDOVECTORP (a, PVEC_COMPILED);
2732 }
2733
2734 INLINE bool
2735 BUFFERP (Lisp_Object a)
2736 {
2737 return PSEUDOVECTORP (a, PVEC_BUFFER);
2738 }
2739
2740 INLINE bool
2741 CHAR_TABLE_P (Lisp_Object a)
2742 {
2743 return PSEUDOVECTORP (a, PVEC_CHAR_TABLE);
2744 }
2745
2746 INLINE bool
2747 SUB_CHAR_TABLE_P (Lisp_Object a)
2748 {
2749 return PSEUDOVECTORP (a, PVEC_SUB_CHAR_TABLE);
2750 }
2751
2752 INLINE bool
2753 BOOL_VECTOR_P (Lisp_Object a)
2754 {
2755 return PSEUDOVECTORP (a, PVEC_BOOL_VECTOR);
2756 }
2757
2758 INLINE bool
2759 FRAMEP (Lisp_Object a)
2760 {
2761 return PSEUDOVECTORP (a, PVEC_FRAME);
2762 }
2763
2764 /* Test for image (image . spec) */
2765 INLINE bool
2766 IMAGEP (Lisp_Object x)
2767 {
2768 return CONSP (x) && EQ (XCAR (x), Qimage);
2769 }
2770
2771 /* Array types. */
2772 INLINE bool
2773 ARRAYP (Lisp_Object x)
2774 {
2775 return VECTORP (x) || STRINGP (x) || CHAR_TABLE_P (x) || BOOL_VECTOR_P (x);
2776 }
2777 \f
2778 INLINE void
2779 CHECK_LIST (Lisp_Object x)
2780 {
2781 CHECK_TYPE (CONSP (x) || NILP (x), Qlistp, x);
2782 }
2783
2784 INLINE void
2785 (CHECK_LIST_CONS) (Lisp_Object x, Lisp_Object y)
2786 {
2787 lisp_h_CHECK_LIST_CONS (x, y);
2788 }
2789
2790 INLINE void
2791 (CHECK_SYMBOL) (Lisp_Object x)
2792 {
2793 lisp_h_CHECK_SYMBOL (x);
2794 }
2795
2796 INLINE void
2797 (CHECK_NUMBER) (Lisp_Object x)
2798 {
2799 lisp_h_CHECK_NUMBER (x);
2800 }
2801
2802 INLINE void
2803 CHECK_STRING (Lisp_Object x)
2804 {
2805 CHECK_TYPE (STRINGP (x), Qstringp, x);
2806 }
2807 INLINE void
2808 CHECK_STRING_CAR (Lisp_Object x)
2809 {
2810 CHECK_TYPE (STRINGP (XCAR (x)), Qstringp, XCAR (x));
2811 }
2812 INLINE void
2813 CHECK_CONS (Lisp_Object x)
2814 {
2815 CHECK_TYPE (CONSP (x), Qconsp, x);
2816 }
2817 INLINE void
2818 CHECK_VECTOR (Lisp_Object x)
2819 {
2820 CHECK_TYPE (VECTORP (x), Qvectorp, x);
2821 }
2822 INLINE void
2823 CHECK_BOOL_VECTOR (Lisp_Object x)
2824 {
2825 CHECK_TYPE (BOOL_VECTOR_P (x), Qbool_vector_p, x);
2826 }
2827 /* This is a bit special because we always need size afterwards. */
2828 INLINE ptrdiff_t
2829 CHECK_VECTOR_OR_STRING (Lisp_Object x)
2830 {
2831 if (VECTORP (x))
2832 return ASIZE (x);
2833 if (STRINGP (x))
2834 return SCHARS (x);
2835 wrong_type_argument (Qarrayp, x);
2836 }
2837 INLINE void
2838 CHECK_ARRAY (Lisp_Object x, Lisp_Object predicate)
2839 {
2840 CHECK_TYPE (ARRAYP (x), predicate, x);
2841 }
2842 INLINE void
2843 CHECK_BUFFER (Lisp_Object x)
2844 {
2845 CHECK_TYPE (BUFFERP (x), Qbufferp, x);
2846 }
2847 INLINE void
2848 CHECK_WINDOW (Lisp_Object x)
2849 {
2850 CHECK_TYPE (WINDOWP (x), Qwindowp, x);
2851 }
2852 #ifdef subprocesses
2853 INLINE void
2854 CHECK_PROCESS (Lisp_Object x)
2855 {
2856 CHECK_TYPE (PROCESSP (x), Qprocessp, x);
2857 }
2858 #endif
2859 INLINE void
2860 CHECK_NATNUM (Lisp_Object x)
2861 {
2862 CHECK_TYPE (NATNUMP (x), Qwholenump, x);
2863 }
2864
2865 #define CHECK_RANGED_INTEGER(x, lo, hi) \
2866 do { \
2867 CHECK_NUMBER (x); \
2868 if (! ((lo) <= XINT (x) && XINT (x) <= (hi))) \
2869 args_out_of_range_3 \
2870 (x, \
2871 make_number ((lo) < 0 && (lo) < MOST_NEGATIVE_FIXNUM \
2872 ? MOST_NEGATIVE_FIXNUM \
2873 : (lo)), \
2874 make_number (min (hi, MOST_POSITIVE_FIXNUM))); \
2875 } while (false)
2876 #define CHECK_TYPE_RANGED_INTEGER(type, x) \
2877 do { \
2878 if (TYPE_SIGNED (type)) \
2879 CHECK_RANGED_INTEGER (x, TYPE_MINIMUM (type), TYPE_MAXIMUM (type)); \
2880 else \
2881 CHECK_RANGED_INTEGER (x, 0, TYPE_MAXIMUM (type)); \
2882 } while (false)
2883
2884 #define CHECK_NUMBER_COERCE_MARKER(x) \
2885 do { \
2886 if (MARKERP ((x))) \
2887 XSETFASTINT (x, marker_position (x)); \
2888 else \
2889 CHECK_TYPE (INTEGERP (x), Qinteger_or_marker_p, x); \
2890 } while (false)
2891
2892 INLINE double
2893 XFLOATINT (Lisp_Object n)
2894 {
2895 return extract_float (n);
2896 }
2897
2898 INLINE void
2899 CHECK_NUMBER_OR_FLOAT (Lisp_Object x)
2900 {
2901 CHECK_TYPE (NUMBERP (x), Qnumberp, x);
2902 }
2903
2904 #define CHECK_NUMBER_OR_FLOAT_COERCE_MARKER(x) \
2905 do { \
2906 if (MARKERP (x)) \
2907 XSETFASTINT (x, marker_position (x)); \
2908 else \
2909 CHECK_TYPE (NUMBERP (x), Qnumber_or_marker_p, x); \
2910 } while (false)
2911
2912 /* Since we can't assign directly to the CAR or CDR fields of a cons
2913 cell, use these when checking that those fields contain numbers. */
2914 INLINE void
2915 CHECK_NUMBER_CAR (Lisp_Object x)
2916 {
2917 Lisp_Object tmp = XCAR (x);
2918 CHECK_NUMBER (tmp);
2919 XSETCAR (x, tmp);
2920 }
2921
2922 INLINE void
2923 CHECK_NUMBER_CDR (Lisp_Object x)
2924 {
2925 Lisp_Object tmp = XCDR (x);
2926 CHECK_NUMBER (tmp);
2927 XSETCDR (x, tmp);
2928 }
2929 \f
2930 /* Define a built-in function for calling from Lisp.
2931 `lname' should be the name to give the function in Lisp,
2932 as a null-terminated C string.
2933 `fnname' should be the name of the function in C.
2934 By convention, it starts with F.
2935 `sname' should be the name for the C constant structure
2936 that records information on this function for internal use.
2937 By convention, it should be the same as `fnname' but with S instead of F.
2938 It's too bad that C macros can't compute this from `fnname'.
2939 `minargs' should be a number, the minimum number of arguments allowed.
2940 `maxargs' should be a number, the maximum number of arguments allowed,
2941 or else MANY or UNEVALLED.
2942 MANY means pass a vector of evaluated arguments,
2943 in the form of an integer number-of-arguments
2944 followed by the address of a vector of Lisp_Objects
2945 which contains the argument values.
2946 UNEVALLED means pass the list of unevaluated arguments
2947 `intspec' says how interactive arguments are to be fetched.
2948 If the string starts with a `(', `intspec' is evaluated and the resulting
2949 list is the list of arguments.
2950 If it's a string that doesn't start with `(', the value should follow
2951 the one of the doc string for `interactive'.
2952 A null string means call interactively with no arguments.
2953 `doc' is documentation for the user. */
2954
2955 /* This version of DEFUN declares a function prototype with the right
2956 arguments, so we can catch errors with maxargs at compile-time. */
2957 #ifdef _MSC_VER
2958 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2959 Lisp_Object fnname DEFUN_ARGS_ ## maxargs ; \
2960 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2961 { { (PVEC_SUBR << PSEUDOVECTOR_AREA_BITS) \
2962 | (sizeof (struct Lisp_Subr) / sizeof (EMACS_INT)) }, \
2963 { (Lisp_Object (__cdecl *)(void))fnname }, \
2964 minargs, maxargs, lname, intspec, 0}; \
2965 Lisp_Object fnname
2966 #else /* not _MSC_VER */
2967 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2968 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2969 { { PVEC_SUBR << PSEUDOVECTOR_AREA_BITS }, \
2970 { .a ## maxargs = fnname }, \
2971 minargs, maxargs, lname, intspec, 0}; \
2972 Lisp_Object fnname
2973 #endif
2974
2975 /* True if OBJ is a Lisp function. */
2976 INLINE bool
2977 FUNCTIONP (Lisp_Object obj)
2978 {
2979 return functionp (obj);
2980 }
2981
2982 /* defsubr (Sname);
2983 is how we define the symbol for function `name' at start-up time. */
2984 extern void defsubr (struct Lisp_Subr *);
2985
2986 enum maxargs
2987 {
2988 MANY = -2,
2989 UNEVALLED = -1
2990 };
2991
2992 /* Call a function F that accepts many args, passing it ARRAY's elements. */
2993 #define CALLMANY(f, array) (f) (ARRAYELTS (array), array)
2994
2995 /* Call a function F that accepts many args, passing it the remaining args,
2996 E.g., 'return CALLN (Fformat, fmt, text);' is less error-prone than
2997 '{ Lisp_Object a[2]; a[0] = fmt; a[1] = text; return Fformat (2, a); }'.
2998 CALLN is overkill for simple usages like 'Finsert (1, &text);'. */
2999 #define CALLN(f, ...) CALLMANY (f, ((Lisp_Object []) {__VA_ARGS__}))
3000
3001 extern void defvar_lisp (struct Lisp_Objfwd *, const char *, Lisp_Object *);
3002 extern void defvar_lisp_nopro (struct Lisp_Objfwd *, const char *, Lisp_Object *);
3003 extern void defvar_bool (struct Lisp_Boolfwd *, const char *, bool *);
3004 extern void defvar_int (struct Lisp_Intfwd *, const char *, EMACS_INT *);
3005 extern void defvar_kboard (struct Lisp_Kboard_Objfwd *, const char *, int);
3006
3007 /* Macros we use to define forwarded Lisp variables.
3008 These are used in the syms_of_FILENAME functions.
3009
3010 An ordinary (not in buffer_defaults, per-buffer, or per-keyboard)
3011 lisp variable is actually a field in `struct emacs_globals'. The
3012 field's name begins with "f_", which is a convention enforced by
3013 these macros. Each such global has a corresponding #define in
3014 globals.h; the plain name should be used in the code.
3015
3016 E.g., the global "cons_cells_consed" is declared as "int
3017 f_cons_cells_consed" in globals.h, but there is a define:
3018
3019 #define cons_cells_consed globals.f_cons_cells_consed
3020
3021 All C code uses the `cons_cells_consed' name. This is all done
3022 this way to support indirection for multi-threaded Emacs. */
3023
3024 #define DEFVAR_LISP(lname, vname, doc) \
3025 do { \
3026 static struct Lisp_Objfwd o_fwd; \
3027 defvar_lisp (&o_fwd, lname, &globals.f_ ## vname); \
3028 } while (false)
3029 #define DEFVAR_LISP_NOPRO(lname, vname, doc) \
3030 do { \
3031 static struct Lisp_Objfwd o_fwd; \
3032 defvar_lisp_nopro (&o_fwd, lname, &globals.f_ ## vname); \
3033 } while (false)
3034 #define DEFVAR_BOOL(lname, vname, doc) \
3035 do { \
3036 static struct Lisp_Boolfwd b_fwd; \
3037 defvar_bool (&b_fwd, lname, &globals.f_ ## vname); \
3038 } while (false)
3039 #define DEFVAR_INT(lname, vname, doc) \
3040 do { \
3041 static struct Lisp_Intfwd i_fwd; \
3042 defvar_int (&i_fwd, lname, &globals.f_ ## vname); \
3043 } while (false)
3044
3045 #define DEFVAR_BUFFER_DEFAULTS(lname, vname, doc) \
3046 do { \
3047 static struct Lisp_Objfwd o_fwd; \
3048 defvar_lisp_nopro (&o_fwd, lname, &BVAR (&buffer_defaults, vname)); \
3049 } while (false)
3050
3051 #define DEFVAR_KBOARD(lname, vname, doc) \
3052 do { \
3053 static struct Lisp_Kboard_Objfwd ko_fwd; \
3054 defvar_kboard (&ko_fwd, lname, offsetof (KBOARD, vname ## _)); \
3055 } while (false)
3056 \f
3057 /* Save and restore the instruction and environment pointers,
3058 without affecting the signal mask. */
3059
3060 #ifdef HAVE__SETJMP
3061 typedef jmp_buf sys_jmp_buf;
3062 # define sys_setjmp(j) _setjmp (j)
3063 # define sys_longjmp(j, v) _longjmp (j, v)
3064 #elif defined HAVE_SIGSETJMP
3065 typedef sigjmp_buf sys_jmp_buf;
3066 # define sys_setjmp(j) sigsetjmp (j, 0)
3067 # define sys_longjmp(j, v) siglongjmp (j, v)
3068 #else
3069 /* A platform that uses neither _longjmp nor siglongjmp; assume
3070 longjmp does not affect the sigmask. */
3071 typedef jmp_buf sys_jmp_buf;
3072 # define sys_setjmp(j) setjmp (j)
3073 # define sys_longjmp(j, v) longjmp (j, v)
3074 #endif
3075
3076 \f
3077 /* Elisp uses several stacks:
3078 - the C stack.
3079 - the bytecode stack: used internally by the bytecode interpreter.
3080 Allocated from the C stack.
3081 - The specpdl stack: keeps track of active unwind-protect and
3082 dynamic-let-bindings. Allocated from the `specpdl' array, a manually
3083 managed stack.
3084 - The handler stack: keeps track of active catch tags and condition-case
3085 handlers. Allocated in a manually managed stack implemented by a
3086 doubly-linked list allocated via xmalloc and never freed. */
3087
3088 /* Structure for recording Lisp call stack for backtrace purposes. */
3089
3090 /* The special binding stack holds the outer values of variables while
3091 they are bound by a function application or a let form, stores the
3092 code to be executed for unwind-protect forms.
3093
3094 NOTE: The specbinding union is defined here, because SPECPDL_INDEX is
3095 used all over the place, needs to be fast, and needs to know the size of
3096 union specbinding. But only eval.c should access it. */
3097
3098 enum specbind_tag {
3099 SPECPDL_UNWIND, /* An unwind_protect function on Lisp_Object. */
3100 SPECPDL_UNWIND_PTR, /* Likewise, on void *. */
3101 SPECPDL_UNWIND_INT, /* Likewise, on int. */
3102 SPECPDL_UNWIND_VOID, /* Likewise, with no arg. */
3103 SPECPDL_BACKTRACE, /* An element of the backtrace. */
3104 SPECPDL_LET, /* A plain and simple dynamic let-binding. */
3105 /* Tags greater than SPECPDL_LET must be "subkinds" of LET. */
3106 SPECPDL_LET_LOCAL, /* A buffer-local let-binding. */
3107 SPECPDL_LET_DEFAULT /* A global binding for a localized var. */
3108 };
3109
3110 union specbinding
3111 {
3112 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3113 struct {
3114 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3115 void (*func) (Lisp_Object);
3116 Lisp_Object arg;
3117 } unwind;
3118 struct {
3119 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3120 void (*func) (void *);
3121 void *arg;
3122 } unwind_ptr;
3123 struct {
3124 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3125 void (*func) (int);
3126 int arg;
3127 } unwind_int;
3128 struct {
3129 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3130 void (*func) (void);
3131 } unwind_void;
3132 struct {
3133 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3134 /* `where' is not used in the case of SPECPDL_LET. */
3135 Lisp_Object symbol, old_value, where;
3136 } let;
3137 struct {
3138 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3139 bool_bf debug_on_exit : 1;
3140 Lisp_Object function;
3141 Lisp_Object *args;
3142 ptrdiff_t nargs;
3143 } bt;
3144 };
3145
3146 extern union specbinding *specpdl;
3147 extern union specbinding *specpdl_ptr;
3148 extern ptrdiff_t specpdl_size;
3149
3150 INLINE ptrdiff_t
3151 SPECPDL_INDEX (void)
3152 {
3153 return specpdl_ptr - specpdl;
3154 }
3155
3156 /* This structure helps implement the `catch/throw' and `condition-case/signal'
3157 control structures. A struct handler contains all the information needed to
3158 restore the state of the interpreter after a non-local jump.
3159
3160 handler structures are chained together in a doubly linked list; the `next'
3161 member points to the next outer catchtag and the `nextfree' member points in
3162 the other direction to the next inner element (which is typically the next
3163 free element since we mostly use it on the deepest handler).
3164
3165 A call like (throw TAG VAL) searches for a catchtag whose `tag_or_ch'
3166 member is TAG, and then unbinds to it. The `val' member is used to
3167 hold VAL while the stack is unwound; `val' is returned as the value
3168 of the catch form. If there is a handler of type CATCHER_ALL, it will
3169 be treated as a handler for all invocations of `throw'; in this case
3170 `val' will be set to (TAG . VAL).
3171
3172 All the other members are concerned with restoring the interpreter
3173 state.
3174
3175 Members are volatile if their values need to survive _longjmp when
3176 a 'struct handler' is a local variable. */
3177
3178 enum handlertype { CATCHER, CONDITION_CASE, CATCHER_ALL };
3179
3180 struct handler
3181 {
3182 enum handlertype type;
3183 Lisp_Object tag_or_ch;
3184 Lisp_Object val;
3185 struct handler *next;
3186 struct handler *nextfree;
3187
3188 /* The bytecode interpreter can have several handlers active at the same
3189 time, so when we longjmp to one of them, it needs to know which handler
3190 this was and what was the corresponding internal state. This is stored
3191 here, and when we longjmp we make sure that handlerlist points to the
3192 proper handler. */
3193 Lisp_Object *bytecode_top;
3194 int bytecode_dest;
3195
3196 /* Most global vars are reset to their value via the specpdl mechanism,
3197 but a few others are handled by storing their value here. */
3198 sys_jmp_buf jmp;
3199 EMACS_INT lisp_eval_depth;
3200 ptrdiff_t pdlcount;
3201 int poll_suppress_count;
3202 int interrupt_input_blocked;
3203 struct byte_stack *byte_stack;
3204 };
3205
3206 extern Lisp_Object memory_signal_data;
3207
3208 /* An address near the bottom of the stack.
3209 Tells GC how to save a copy of the stack. */
3210 extern char *stack_bottom;
3211
3212 /* Check quit-flag and quit if it is non-nil.
3213 Typing C-g does not directly cause a quit; it only sets Vquit_flag.
3214 So the program needs to do QUIT at times when it is safe to quit.
3215 Every loop that might run for a long time or might not exit
3216 ought to do QUIT at least once, at a safe place.
3217 Unless that is impossible, of course.
3218 But it is very desirable to avoid creating loops where QUIT is impossible.
3219
3220 Exception: if you set immediate_quit to true,
3221 then the handler that responds to the C-g does the quit itself.
3222 This is a good thing to do around a loop that has no side effects
3223 and (in particular) cannot call arbitrary Lisp code.
3224
3225 If quit-flag is set to `kill-emacs' the SIGINT handler has received
3226 a request to exit Emacs when it is safe to do. */
3227
3228 extern void process_pending_signals (void);
3229 extern bool volatile pending_signals;
3230
3231 extern void process_quit_flag (void);
3232 #define QUIT \
3233 do { \
3234 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
3235 process_quit_flag (); \
3236 else if (pending_signals) \
3237 process_pending_signals (); \
3238 } while (false)
3239
3240
3241 /* True if ought to quit now. */
3242
3243 #define QUITP (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
3244 \f
3245 extern Lisp_Object Vascii_downcase_table;
3246 extern Lisp_Object Vascii_canon_table;
3247 \f
3248 /* Call staticpro (&var) to protect static variable `var'. */
3249
3250 void staticpro (Lisp_Object *);
3251 \f
3252 /* Forward declarations for prototypes. */
3253 struct window;
3254 struct frame;
3255
3256 /* Copy COUNT Lisp_Objects from ARGS to contents of V starting from OFFSET. */
3257
3258 INLINE void
3259 vcopy (Lisp_Object v, ptrdiff_t offset, Lisp_Object *args, ptrdiff_t count)
3260 {
3261 eassert (0 <= offset && 0 <= count && offset + count <= ASIZE (v));
3262 memcpy (XVECTOR (v)->contents + offset, args, count * sizeof *args);
3263 }
3264
3265 /* Functions to modify hash tables. */
3266
3267 INLINE void
3268 set_hash_key_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3269 {
3270 gc_aset (h->key_and_value, 2 * idx, val);
3271 }
3272
3273 INLINE void
3274 set_hash_value_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3275 {
3276 gc_aset (h->key_and_value, 2 * idx + 1, val);
3277 }
3278
3279 /* Use these functions to set Lisp_Object
3280 or pointer slots of struct Lisp_Symbol. */
3281
3282 INLINE void
3283 set_symbol_function (Lisp_Object sym, Lisp_Object function)
3284 {
3285 XSYMBOL (sym)->function = function;
3286 }
3287
3288 INLINE void
3289 set_symbol_plist (Lisp_Object sym, Lisp_Object plist)
3290 {
3291 XSYMBOL (sym)->plist = plist;
3292 }
3293
3294 INLINE void
3295 set_symbol_next (Lisp_Object sym, struct Lisp_Symbol *next)
3296 {
3297 XSYMBOL (sym)->next = next;
3298 }
3299
3300 /* Buffer-local (also frame-local) variable access functions. */
3301
3302 INLINE int
3303 blv_found (struct Lisp_Buffer_Local_Value *blv)
3304 {
3305 eassert (blv->found == !EQ (blv->defcell, blv->valcell));
3306 return blv->found;
3307 }
3308
3309 /* Set overlay's property list. */
3310
3311 INLINE void
3312 set_overlay_plist (Lisp_Object overlay, Lisp_Object plist)
3313 {
3314 XOVERLAY (overlay)->plist = plist;
3315 }
3316
3317 /* Get text properties of S. */
3318
3319 INLINE INTERVAL
3320 string_intervals (Lisp_Object s)
3321 {
3322 return XSTRING (s)->intervals;
3323 }
3324
3325 /* Set text properties of S to I. */
3326
3327 INLINE void
3328 set_string_intervals (Lisp_Object s, INTERVAL i)
3329 {
3330 XSTRING (s)->intervals = i;
3331 }
3332
3333 /* Set a Lisp slot in TABLE to VAL. Most code should use this instead
3334 of setting slots directly. */
3335
3336 INLINE void
3337 set_char_table_defalt (Lisp_Object table, Lisp_Object val)
3338 {
3339 XCHAR_TABLE (table)->defalt = val;
3340 }
3341 INLINE void
3342 set_char_table_purpose (Lisp_Object table, Lisp_Object val)
3343 {
3344 XCHAR_TABLE (table)->purpose = val;
3345 }
3346
3347 /* Set different slots in (sub)character tables. */
3348
3349 INLINE void
3350 set_char_table_extras (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3351 {
3352 eassert (0 <= idx && idx < CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (table)));
3353 XCHAR_TABLE (table)->extras[idx] = val;
3354 }
3355
3356 INLINE void
3357 set_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3358 {
3359 eassert (0 <= idx && idx < (1 << CHARTAB_SIZE_BITS_0));
3360 XCHAR_TABLE (table)->contents[idx] = val;
3361 }
3362
3363 INLINE void
3364 set_sub_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3365 {
3366 XSUB_CHAR_TABLE (table)->contents[idx] = val;
3367 }
3368
3369 /* Defined in data.c. */
3370 extern Lisp_Object indirect_function (Lisp_Object);
3371 extern Lisp_Object find_symbol_value (Lisp_Object);
3372 enum Arith_Comparison {
3373 ARITH_EQUAL,
3374 ARITH_NOTEQUAL,
3375 ARITH_LESS,
3376 ARITH_GRTR,
3377 ARITH_LESS_OR_EQUAL,
3378 ARITH_GRTR_OR_EQUAL
3379 };
3380 extern Lisp_Object arithcompare (Lisp_Object num1, Lisp_Object num2,
3381 enum Arith_Comparison comparison);
3382
3383 /* Convert the integer I to an Emacs representation, either the integer
3384 itself, or a cons of two or three integers, or if all else fails a float.
3385 I should not have side effects. */
3386 #define INTEGER_TO_CONS(i) \
3387 (! FIXNUM_OVERFLOW_P (i) \
3388 ? make_number (i) \
3389 : EXPR_SIGNED (i) ? intbig_to_lisp (i) : uintbig_to_lisp (i))
3390 extern Lisp_Object intbig_to_lisp (intmax_t);
3391 extern Lisp_Object uintbig_to_lisp (uintmax_t);
3392
3393 /* Convert the Emacs representation CONS back to an integer of type
3394 TYPE, storing the result the variable VAR. Signal an error if CONS
3395 is not a valid representation or is out of range for TYPE. */
3396 #define CONS_TO_INTEGER(cons, type, var) \
3397 (TYPE_SIGNED (type) \
3398 ? ((var) = cons_to_signed (cons, TYPE_MINIMUM (type), TYPE_MAXIMUM (type))) \
3399 : ((var) = cons_to_unsigned (cons, TYPE_MAXIMUM (type))))
3400 extern intmax_t cons_to_signed (Lisp_Object, intmax_t, intmax_t);
3401 extern uintmax_t cons_to_unsigned (Lisp_Object, uintmax_t);
3402
3403 extern struct Lisp_Symbol *indirect_variable (struct Lisp_Symbol *);
3404 extern _Noreturn void args_out_of_range (Lisp_Object, Lisp_Object);
3405 extern _Noreturn void args_out_of_range_3 (Lisp_Object, Lisp_Object,
3406 Lisp_Object);
3407 extern Lisp_Object do_symval_forwarding (union Lisp_Fwd *);
3408 extern void set_internal (Lisp_Object, Lisp_Object, Lisp_Object, bool);
3409 extern void syms_of_data (void);
3410 extern void swap_in_global_binding (struct Lisp_Symbol *);
3411
3412 /* Defined in cmds.c */
3413 extern void syms_of_cmds (void);
3414 extern void keys_of_cmds (void);
3415
3416 /* Defined in coding.c. */
3417 extern Lisp_Object detect_coding_system (const unsigned char *, ptrdiff_t,
3418 ptrdiff_t, bool, bool, Lisp_Object);
3419 extern void init_coding (void);
3420 extern void init_coding_once (void);
3421 extern void syms_of_coding (void);
3422
3423 /* Defined in character.c. */
3424 extern ptrdiff_t chars_in_text (const unsigned char *, ptrdiff_t);
3425 extern ptrdiff_t multibyte_chars_in_text (const unsigned char *, ptrdiff_t);
3426 extern void syms_of_character (void);
3427
3428 /* Defined in charset.c. */
3429 extern void init_charset (void);
3430 extern void init_charset_once (void);
3431 extern void syms_of_charset (void);
3432 /* Structure forward declarations. */
3433 struct charset;
3434
3435 /* Defined in syntax.c. */
3436 extern void init_syntax_once (void);
3437 extern void syms_of_syntax (void);
3438
3439 /* Defined in fns.c. */
3440 enum { NEXT_ALMOST_PRIME_LIMIT = 11 };
3441 extern EMACS_INT next_almost_prime (EMACS_INT) ATTRIBUTE_CONST;
3442 extern Lisp_Object larger_vector (Lisp_Object, ptrdiff_t, ptrdiff_t);
3443 extern void sweep_weak_hash_tables (void);
3444 EMACS_UINT hash_string (char const *, ptrdiff_t);
3445 EMACS_UINT sxhash (Lisp_Object, int);
3446 Lisp_Object make_hash_table (struct hash_table_test, Lisp_Object, Lisp_Object,
3447 Lisp_Object, Lisp_Object);
3448 ptrdiff_t hash_lookup (struct Lisp_Hash_Table *, Lisp_Object, EMACS_UINT *);
3449 ptrdiff_t hash_put (struct Lisp_Hash_Table *, Lisp_Object, Lisp_Object,
3450 EMACS_UINT);
3451 void hash_remove_from_table (struct Lisp_Hash_Table *, Lisp_Object);
3452 extern struct hash_table_test hashtest_eq, hashtest_eql, hashtest_equal;
3453 extern void validate_subarray (Lisp_Object, Lisp_Object, Lisp_Object,
3454 ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
3455 extern Lisp_Object substring_both (Lisp_Object, ptrdiff_t, ptrdiff_t,
3456 ptrdiff_t, ptrdiff_t);
3457 extern Lisp_Object merge (Lisp_Object, Lisp_Object, Lisp_Object);
3458 extern Lisp_Object do_yes_or_no_p (Lisp_Object);
3459 extern Lisp_Object concat2 (Lisp_Object, Lisp_Object);
3460 extern Lisp_Object concat3 (Lisp_Object, Lisp_Object, Lisp_Object);
3461 extern Lisp_Object nconc2 (Lisp_Object, Lisp_Object);
3462 extern Lisp_Object assq_no_quit (Lisp_Object, Lisp_Object);
3463 extern Lisp_Object assoc_no_quit (Lisp_Object, Lisp_Object);
3464 extern void clear_string_char_byte_cache (void);
3465 extern ptrdiff_t string_char_to_byte (Lisp_Object, ptrdiff_t);
3466 extern ptrdiff_t string_byte_to_char (Lisp_Object, ptrdiff_t);
3467 extern Lisp_Object string_to_multibyte (Lisp_Object);
3468 extern Lisp_Object string_make_unibyte (Lisp_Object);
3469 extern void syms_of_fns (void);
3470
3471 /* Defined in floatfns.c. */
3472 extern void syms_of_floatfns (void);
3473 extern Lisp_Object fmod_float (Lisp_Object x, Lisp_Object y);
3474
3475 /* Defined in fringe.c. */
3476 extern void syms_of_fringe (void);
3477 extern void init_fringe (void);
3478 #ifdef HAVE_WINDOW_SYSTEM
3479 extern void mark_fringe_data (void);
3480 extern void init_fringe_once (void);
3481 #endif /* HAVE_WINDOW_SYSTEM */
3482
3483 /* Defined in image.c. */
3484 extern int x_bitmap_mask (struct frame *, ptrdiff_t);
3485 extern void reset_image_types (void);
3486 extern void syms_of_image (void);
3487
3488 /* Defined in insdel.c. */
3489 extern void move_gap_both (ptrdiff_t, ptrdiff_t);
3490 extern _Noreturn void buffer_overflow (void);
3491 extern void make_gap (ptrdiff_t);
3492 extern void make_gap_1 (struct buffer *, ptrdiff_t);
3493 extern ptrdiff_t copy_text (const unsigned char *, unsigned char *,
3494 ptrdiff_t, bool, bool);
3495 extern int count_combining_before (const unsigned char *,
3496 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3497 extern int count_combining_after (const unsigned char *,
3498 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3499 extern void insert (const char *, ptrdiff_t);
3500 extern void insert_and_inherit (const char *, ptrdiff_t);
3501 extern void insert_1_both (const char *, ptrdiff_t, ptrdiff_t,
3502 bool, bool, bool);
3503 extern void insert_from_gap (ptrdiff_t, ptrdiff_t, bool text_at_gap_tail);
3504 extern void insert_from_string (Lisp_Object, ptrdiff_t, ptrdiff_t,
3505 ptrdiff_t, ptrdiff_t, bool);
3506 extern void insert_from_buffer (struct buffer *, ptrdiff_t, ptrdiff_t, bool);
3507 extern void insert_char (int);
3508 extern void insert_string (const char *);
3509 extern void insert_before_markers (const char *, ptrdiff_t);
3510 extern void insert_before_markers_and_inherit (const char *, ptrdiff_t);
3511 extern void insert_from_string_before_markers (Lisp_Object, ptrdiff_t,
3512 ptrdiff_t, ptrdiff_t,
3513 ptrdiff_t, bool);
3514 extern void del_range (ptrdiff_t, ptrdiff_t);
3515 extern Lisp_Object del_range_1 (ptrdiff_t, ptrdiff_t, bool, bool);
3516 extern void del_range_byte (ptrdiff_t, ptrdiff_t, bool);
3517 extern void del_range_both (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t, bool);
3518 extern Lisp_Object del_range_2 (ptrdiff_t, ptrdiff_t,
3519 ptrdiff_t, ptrdiff_t, bool);
3520 extern void modify_text (ptrdiff_t, ptrdiff_t);
3521 extern void prepare_to_modify_buffer (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3522 extern void prepare_to_modify_buffer_1 (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3523 extern void invalidate_buffer_caches (struct buffer *, ptrdiff_t, ptrdiff_t);
3524 extern void signal_after_change (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3525 extern void adjust_after_insert (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3526 ptrdiff_t, ptrdiff_t);
3527 extern void adjust_markers_for_delete (ptrdiff_t, ptrdiff_t,
3528 ptrdiff_t, ptrdiff_t);
3529 extern void replace_range (ptrdiff_t, ptrdiff_t, Lisp_Object, bool, bool, bool);
3530 extern void replace_range_2 (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3531 const char *, ptrdiff_t, ptrdiff_t, bool);
3532 extern void syms_of_insdel (void);
3533
3534 /* Defined in dispnew.c. */
3535 #if (defined PROFILING \
3536 && (defined __FreeBSD__ || defined GNU_LINUX || defined __MINGW32__))
3537 _Noreturn void __executable_start (void);
3538 #endif
3539 extern Lisp_Object Vwindow_system;
3540 extern Lisp_Object sit_for (Lisp_Object, bool, int);
3541
3542 /* Defined in xdisp.c. */
3543 extern bool noninteractive_need_newline;
3544 extern Lisp_Object echo_area_buffer[2];
3545 extern void add_to_log (char const *, ...);
3546 extern void vadd_to_log (char const *, va_list);
3547 extern void check_message_stack (void);
3548 extern void setup_echo_area_for_printing (bool);
3549 extern bool push_message (void);
3550 extern void pop_message_unwind (void);
3551 extern Lisp_Object restore_message_unwind (Lisp_Object);
3552 extern void restore_message (void);
3553 extern Lisp_Object current_message (void);
3554 extern void clear_message (bool, bool);
3555 extern void message (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3556 extern void message1 (const char *);
3557 extern void message1_nolog (const char *);
3558 extern void message3 (Lisp_Object);
3559 extern void message3_nolog (Lisp_Object);
3560 extern void message_dolog (const char *, ptrdiff_t, bool, bool);
3561 extern void message_with_string (const char *, Lisp_Object, bool);
3562 extern void message_log_maybe_newline (void);
3563 extern void update_echo_area (void);
3564 extern void truncate_echo_area (ptrdiff_t);
3565 extern void redisplay (void);
3566
3567 void set_frame_cursor_types (struct frame *, Lisp_Object);
3568 extern void syms_of_xdisp (void);
3569 extern void init_xdisp (void);
3570 extern Lisp_Object safe_eval (Lisp_Object);
3571 extern bool pos_visible_p (struct window *, ptrdiff_t, int *,
3572 int *, int *, int *, int *, int *);
3573
3574 /* Defined in xsettings.c. */
3575 extern void syms_of_xsettings (void);
3576
3577 /* Defined in vm-limit.c. */
3578 extern void memory_warnings (void *, void (*warnfun) (const char *));
3579
3580 /* Defined in character.c. */
3581 extern void parse_str_as_multibyte (const unsigned char *, ptrdiff_t,
3582 ptrdiff_t *, ptrdiff_t *);
3583
3584 /* Defined in alloc.c. */
3585 extern void check_pure_size (void);
3586 extern void free_misc (Lisp_Object);
3587 extern void allocate_string_data (struct Lisp_String *, EMACS_INT, EMACS_INT);
3588 extern void malloc_warning (const char *);
3589 extern _Noreturn void memory_full (size_t);
3590 extern _Noreturn void buffer_memory_full (ptrdiff_t);
3591 extern bool survives_gc_p (Lisp_Object);
3592 extern void mark_object (Lisp_Object);
3593 #if defined REL_ALLOC && !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3594 extern void refill_memory_reserve (void);
3595 #endif
3596 extern const char *pending_malloc_warning;
3597 extern Lisp_Object zero_vector;
3598 extern Lisp_Object *stack_base;
3599 extern EMACS_INT consing_since_gc;
3600 extern EMACS_INT gc_relative_threshold;
3601 extern EMACS_INT memory_full_cons_threshold;
3602 extern Lisp_Object list1 (Lisp_Object);
3603 extern Lisp_Object list2 (Lisp_Object, Lisp_Object);
3604 extern Lisp_Object list3 (Lisp_Object, Lisp_Object, Lisp_Object);
3605 extern Lisp_Object list4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3606 extern Lisp_Object list5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object,
3607 Lisp_Object);
3608 enum constype {CONSTYPE_HEAP, CONSTYPE_PURE};
3609 extern Lisp_Object listn (enum constype, ptrdiff_t, Lisp_Object, ...);
3610
3611 /* Build a frequently used 2/3/4-integer lists. */
3612
3613 INLINE Lisp_Object
3614 list2i (EMACS_INT x, EMACS_INT y)
3615 {
3616 return list2 (make_number (x), make_number (y));
3617 }
3618
3619 INLINE Lisp_Object
3620 list3i (EMACS_INT x, EMACS_INT y, EMACS_INT w)
3621 {
3622 return list3 (make_number (x), make_number (y), make_number (w));
3623 }
3624
3625 INLINE Lisp_Object
3626 list4i (EMACS_INT x, EMACS_INT y, EMACS_INT w, EMACS_INT h)
3627 {
3628 return list4 (make_number (x), make_number (y),
3629 make_number (w), make_number (h));
3630 }
3631
3632 extern Lisp_Object make_uninit_bool_vector (EMACS_INT);
3633 extern Lisp_Object bool_vector_fill (Lisp_Object, Lisp_Object);
3634 extern _Noreturn void string_overflow (void);
3635 extern Lisp_Object make_string (const char *, ptrdiff_t);
3636 extern Lisp_Object make_formatted_string (char *, const char *, ...)
3637 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3638 extern Lisp_Object make_unibyte_string (const char *, ptrdiff_t);
3639
3640 /* Make unibyte string from C string when the length isn't known. */
3641
3642 INLINE Lisp_Object
3643 build_unibyte_string (const char *str)
3644 {
3645 return make_unibyte_string (str, strlen (str));
3646 }
3647
3648 extern Lisp_Object make_multibyte_string (const char *, ptrdiff_t, ptrdiff_t);
3649 extern Lisp_Object make_event_array (ptrdiff_t, Lisp_Object *);
3650 extern Lisp_Object make_uninit_string (EMACS_INT);
3651 extern Lisp_Object make_uninit_multibyte_string (EMACS_INT, EMACS_INT);
3652 extern Lisp_Object make_string_from_bytes (const char *, ptrdiff_t, ptrdiff_t);
3653 extern Lisp_Object make_specified_string (const char *,
3654 ptrdiff_t, ptrdiff_t, bool);
3655 extern Lisp_Object make_pure_string (const char *, ptrdiff_t, ptrdiff_t, bool);
3656 extern Lisp_Object make_pure_c_string (const char *, ptrdiff_t);
3657
3658 /* Make a string allocated in pure space, use STR as string data. */
3659
3660 INLINE Lisp_Object
3661 build_pure_c_string (const char *str)
3662 {
3663 return make_pure_c_string (str, strlen (str));
3664 }
3665
3666 /* Make a string from the data at STR, treating it as multibyte if the
3667 data warrants. */
3668
3669 INLINE Lisp_Object
3670 build_string (const char *str)
3671 {
3672 return make_string (str, strlen (str));
3673 }
3674
3675 extern Lisp_Object pure_cons (Lisp_Object, Lisp_Object);
3676 extern void make_byte_code (struct Lisp_Vector *);
3677 extern struct Lisp_Vector *allocate_vector (EMACS_INT);
3678
3679 /* Make an uninitialized vector for SIZE objects. NOTE: you must
3680 be sure that GC cannot happen until the vector is completely
3681 initialized. E.g. the following code is likely to crash:
3682
3683 v = make_uninit_vector (3);
3684 ASET (v, 0, obj0);
3685 ASET (v, 1, Ffunction_can_gc ());
3686 ASET (v, 2, obj1); */
3687
3688 INLINE Lisp_Object
3689 make_uninit_vector (ptrdiff_t size)
3690 {
3691 Lisp_Object v;
3692 struct Lisp_Vector *p;
3693
3694 p = allocate_vector (size);
3695 XSETVECTOR (v, p);
3696 return v;
3697 }
3698
3699 /* Like above, but special for sub char-tables. */
3700
3701 INLINE Lisp_Object
3702 make_uninit_sub_char_table (int depth, int min_char)
3703 {
3704 int slots = SUB_CHAR_TABLE_OFFSET + chartab_size[depth];
3705 Lisp_Object v = make_uninit_vector (slots);
3706
3707 XSETPVECTYPE (XVECTOR (v), PVEC_SUB_CHAR_TABLE);
3708 XSUB_CHAR_TABLE (v)->depth = depth;
3709 XSUB_CHAR_TABLE (v)->min_char = min_char;
3710 return v;
3711 }
3712
3713 extern struct Lisp_Vector *allocate_pseudovector (int, int, int,
3714 enum pvec_type);
3715
3716 /* Allocate partially initialized pseudovector where all Lisp_Object
3717 slots are set to Qnil but the rest (if any) is left uninitialized. */
3718
3719 #define ALLOCATE_PSEUDOVECTOR(type, field, tag) \
3720 ((type *) allocate_pseudovector (VECSIZE (type), \
3721 PSEUDOVECSIZE (type, field), \
3722 PSEUDOVECSIZE (type, field), tag))
3723
3724 /* Allocate fully initialized pseudovector where all Lisp_Object
3725 slots are set to Qnil and the rest (if any) is zeroed. */
3726
3727 #define ALLOCATE_ZEROED_PSEUDOVECTOR(type, field, tag) \
3728 ((type *) allocate_pseudovector (VECSIZE (type), \
3729 PSEUDOVECSIZE (type, field), \
3730 VECSIZE (type), tag))
3731
3732 extern bool gc_in_progress;
3733 extern bool abort_on_gc;
3734 extern Lisp_Object make_float (double);
3735 extern void display_malloc_warning (void);
3736 extern ptrdiff_t inhibit_garbage_collection (void);
3737 extern Lisp_Object make_save_int_int_int (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3738 extern Lisp_Object make_save_obj_obj_obj_obj (Lisp_Object, Lisp_Object,
3739 Lisp_Object, Lisp_Object);
3740 extern Lisp_Object make_save_ptr (void *);
3741 extern Lisp_Object make_save_ptr_int (void *, ptrdiff_t);
3742 extern Lisp_Object make_save_ptr_ptr (void *, void *);
3743 extern Lisp_Object make_save_funcptr_ptr_obj (void (*) (void), void *,
3744 Lisp_Object);
3745 extern Lisp_Object make_save_memory (Lisp_Object *, ptrdiff_t);
3746 extern void free_save_value (Lisp_Object);
3747 extern Lisp_Object build_overlay (Lisp_Object, Lisp_Object, Lisp_Object);
3748 extern void free_marker (Lisp_Object);
3749 extern void free_cons (struct Lisp_Cons *);
3750 extern void init_alloc_once (void);
3751 extern void init_alloc (void);
3752 extern void syms_of_alloc (void);
3753 extern struct buffer * allocate_buffer (void);
3754 extern int valid_lisp_object_p (Lisp_Object);
3755 #ifdef GC_CHECK_CONS_LIST
3756 extern void check_cons_list (void);
3757 #else
3758 INLINE void (check_cons_list) (void) { lisp_h_check_cons_list (); }
3759 #endif
3760
3761 #ifdef REL_ALLOC
3762 /* Defined in ralloc.c. */
3763 extern void *r_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3764 extern void r_alloc_free (void **);
3765 extern void *r_re_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3766 extern void r_alloc_reset_variable (void **, void **);
3767 extern void r_alloc_inhibit_buffer_relocation (int);
3768 #endif
3769
3770 /* Defined in chartab.c. */
3771 extern Lisp_Object copy_char_table (Lisp_Object);
3772 extern Lisp_Object char_table_ref_and_range (Lisp_Object, int,
3773 int *, int *);
3774 extern void char_table_set_range (Lisp_Object, int, int, Lisp_Object);
3775 extern void map_char_table (void (*) (Lisp_Object, Lisp_Object,
3776 Lisp_Object),
3777 Lisp_Object, Lisp_Object, Lisp_Object);
3778 extern void map_char_table_for_charset (void (*c_function) (Lisp_Object, Lisp_Object),
3779 Lisp_Object, Lisp_Object,
3780 Lisp_Object, struct charset *,
3781 unsigned, unsigned);
3782 extern Lisp_Object uniprop_table (Lisp_Object);
3783 extern void syms_of_chartab (void);
3784
3785 /* Defined in print.c. */
3786 extern Lisp_Object Vprin1_to_string_buffer;
3787 extern void debug_print (Lisp_Object) EXTERNALLY_VISIBLE;
3788 extern void temp_output_buffer_setup (const char *);
3789 extern int print_level;
3790 extern void write_string (const char *);
3791 extern void print_error_message (Lisp_Object, Lisp_Object, const char *,
3792 Lisp_Object);
3793 extern Lisp_Object internal_with_output_to_temp_buffer
3794 (const char *, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3795 #define FLOAT_TO_STRING_BUFSIZE 350
3796 extern int float_to_string (char *, double);
3797 extern void init_print_once (void);
3798 extern void syms_of_print (void);
3799
3800 /* Defined in doprnt.c. */
3801 extern ptrdiff_t doprnt (char *, ptrdiff_t, const char *, const char *,
3802 va_list);
3803 extern ptrdiff_t esprintf (char *, char const *, ...)
3804 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3805 extern ptrdiff_t exprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3806 char const *, ...)
3807 ATTRIBUTE_FORMAT_PRINTF (5, 6);
3808 extern ptrdiff_t evxprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3809 char const *, va_list)
3810 ATTRIBUTE_FORMAT_PRINTF (5, 0);
3811
3812 /* Defined in lread.c. */
3813 extern Lisp_Object check_obarray (Lisp_Object);
3814 extern Lisp_Object intern_1 (const char *, ptrdiff_t);
3815 extern Lisp_Object intern_c_string_1 (const char *, ptrdiff_t);
3816 extern Lisp_Object intern_driver (Lisp_Object, Lisp_Object, Lisp_Object);
3817 extern void init_symbol (Lisp_Object, Lisp_Object);
3818 extern Lisp_Object oblookup (Lisp_Object, const char *, ptrdiff_t, ptrdiff_t);
3819 INLINE void
3820 LOADHIST_ATTACH (Lisp_Object x)
3821 {
3822 if (initialized)
3823 Vcurrent_load_list = Fcons (x, Vcurrent_load_list);
3824 }
3825 extern int openp (Lisp_Object, Lisp_Object, Lisp_Object,
3826 Lisp_Object *, Lisp_Object, bool);
3827 extern Lisp_Object string_to_number (char const *, int, bool);
3828 extern void map_obarray (Lisp_Object, void (*) (Lisp_Object, Lisp_Object),
3829 Lisp_Object);
3830 extern void dir_warning (const char *, Lisp_Object);
3831 extern void init_obarray (void);
3832 extern void init_lread (void);
3833 extern void syms_of_lread (void);
3834
3835 INLINE Lisp_Object
3836 intern (const char *str)
3837 {
3838 return intern_1 (str, strlen (str));
3839 }
3840
3841 INLINE Lisp_Object
3842 intern_c_string (const char *str)
3843 {
3844 return intern_c_string_1 (str, strlen (str));
3845 }
3846
3847 /* Defined in eval.c. */
3848 extern Lisp_Object Vautoload_queue;
3849 extern Lisp_Object Vrun_hooks;
3850 extern Lisp_Object Vsignaling_function;
3851 extern Lisp_Object inhibit_lisp_code;
3852 extern struct handler *handlerlist;
3853
3854 /* To run a normal hook, use the appropriate function from the list below.
3855 The calling convention:
3856
3857 if (!NILP (Vrun_hooks))
3858 call1 (Vrun_hooks, Qmy_funny_hook);
3859
3860 should no longer be used. */
3861 extern void run_hook (Lisp_Object);
3862 extern void run_hook_with_args_2 (Lisp_Object, Lisp_Object, Lisp_Object);
3863 extern Lisp_Object run_hook_with_args (ptrdiff_t nargs, Lisp_Object *args,
3864 Lisp_Object (*funcall)
3865 (ptrdiff_t nargs, Lisp_Object *args));
3866 extern _Noreturn void xsignal (Lisp_Object, Lisp_Object);
3867 extern _Noreturn void xsignal0 (Lisp_Object);
3868 extern _Noreturn void xsignal1 (Lisp_Object, Lisp_Object);
3869 extern _Noreturn void xsignal2 (Lisp_Object, Lisp_Object, Lisp_Object);
3870 extern _Noreturn void xsignal3 (Lisp_Object, Lisp_Object, Lisp_Object,
3871 Lisp_Object);
3872 extern _Noreturn void signal_error (const char *, Lisp_Object);
3873 extern Lisp_Object eval_sub (Lisp_Object form);
3874 extern Lisp_Object apply1 (Lisp_Object, Lisp_Object);
3875 extern Lisp_Object call0 (Lisp_Object);
3876 extern Lisp_Object call1 (Lisp_Object, Lisp_Object);
3877 extern Lisp_Object call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3878 extern Lisp_Object call3 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3879 extern Lisp_Object call4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3880 extern Lisp_Object call5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3881 extern Lisp_Object call6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3882 extern Lisp_Object call7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3883 extern Lisp_Object internal_catch (Lisp_Object, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3884 extern Lisp_Object internal_lisp_condition_case (Lisp_Object, Lisp_Object, Lisp_Object);
3885 extern Lisp_Object internal_condition_case (Lisp_Object (*) (void), Lisp_Object, Lisp_Object (*) (Lisp_Object));
3886 extern Lisp_Object internal_condition_case_1 (Lisp_Object (*) (Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3887 extern Lisp_Object internal_condition_case_2 (Lisp_Object (*) (Lisp_Object, Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3888 extern Lisp_Object internal_condition_case_n
3889 (Lisp_Object (*) (ptrdiff_t, Lisp_Object *), ptrdiff_t, Lisp_Object *,
3890 Lisp_Object, Lisp_Object (*) (Lisp_Object, ptrdiff_t, Lisp_Object *));
3891 extern struct handler *push_handler (Lisp_Object, enum handlertype);
3892 extern struct handler *push_handler_nosignal (Lisp_Object, enum handlertype);
3893 extern void specbind (Lisp_Object, Lisp_Object);
3894 extern void record_unwind_protect (void (*) (Lisp_Object), Lisp_Object);
3895 extern void record_unwind_protect_ptr (void (*) (void *), void *);
3896 extern void record_unwind_protect_int (void (*) (int), int);
3897 extern void record_unwind_protect_void (void (*) (void));
3898 extern void record_unwind_protect_nothing (void);
3899 extern void clear_unwind_protect (ptrdiff_t);
3900 extern void set_unwind_protect (ptrdiff_t, void (*) (Lisp_Object), Lisp_Object);
3901 extern void set_unwind_protect_ptr (ptrdiff_t, void (*) (void *), void *);
3902 extern Lisp_Object unbind_to (ptrdiff_t, Lisp_Object);
3903 extern _Noreturn void error (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3904 extern _Noreturn void verror (const char *, va_list)
3905 ATTRIBUTE_FORMAT_PRINTF (1, 0);
3906 extern void un_autoload (Lisp_Object);
3907 extern Lisp_Object call_debugger (Lisp_Object arg);
3908 extern void *near_C_stack_top (void);
3909 extern void init_eval_once (void);
3910 extern Lisp_Object safe_call (ptrdiff_t, Lisp_Object, ...);
3911 extern Lisp_Object safe_call1 (Lisp_Object, Lisp_Object);
3912 extern Lisp_Object safe_call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3913 extern void init_eval (void);
3914 extern void syms_of_eval (void);
3915 extern void unwind_body (Lisp_Object);
3916 extern ptrdiff_t record_in_backtrace (Lisp_Object, Lisp_Object *, ptrdiff_t);
3917 extern void mark_specpdl (void);
3918 extern void get_backtrace (Lisp_Object array);
3919 Lisp_Object backtrace_top_function (void);
3920 extern bool let_shadows_buffer_binding_p (struct Lisp_Symbol *symbol);
3921 extern bool let_shadows_global_binding_p (Lisp_Object symbol);
3922
3923 #ifdef HAVE_MODULES
3924 /* Defined in alloc.c. */
3925 extern Lisp_Object make_user_ptr (void (*finalizer) (void*), void *p);
3926
3927 /* Defined in emacs-module.c. */
3928 extern void module_init (void);
3929 extern void syms_of_module (void);
3930 #endif
3931
3932 /* Defined in editfns.c. */
3933 extern void insert1 (Lisp_Object);
3934 extern Lisp_Object save_excursion_save (void);
3935 extern Lisp_Object save_restriction_save (void);
3936 extern void save_excursion_restore (Lisp_Object);
3937 extern void save_restriction_restore (Lisp_Object);
3938 extern _Noreturn void time_overflow (void);
3939 extern Lisp_Object make_buffer_string (ptrdiff_t, ptrdiff_t, bool);
3940 extern Lisp_Object make_buffer_string_both (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3941 ptrdiff_t, bool);
3942 extern void init_editfns (bool);
3943 extern void syms_of_editfns (void);
3944
3945 /* Defined in buffer.c. */
3946 extern bool mouse_face_overlay_overlaps (Lisp_Object);
3947 extern _Noreturn void nsberror (Lisp_Object);
3948 extern void adjust_overlays_for_insert (ptrdiff_t, ptrdiff_t);
3949 extern void adjust_overlays_for_delete (ptrdiff_t, ptrdiff_t);
3950 extern void fix_start_end_in_overlays (ptrdiff_t, ptrdiff_t);
3951 extern void report_overlay_modification (Lisp_Object, Lisp_Object, bool,
3952 Lisp_Object, Lisp_Object, Lisp_Object);
3953 extern bool overlay_touches_p (ptrdiff_t);
3954 extern Lisp_Object other_buffer_safely (Lisp_Object);
3955 extern Lisp_Object get_truename_buffer (Lisp_Object);
3956 extern void init_buffer_once (void);
3957 extern void init_buffer (int);
3958 extern void syms_of_buffer (void);
3959 extern void keys_of_buffer (void);
3960
3961 /* Defined in marker.c. */
3962
3963 extern ptrdiff_t marker_position (Lisp_Object);
3964 extern ptrdiff_t marker_byte_position (Lisp_Object);
3965 extern void clear_charpos_cache (struct buffer *);
3966 extern ptrdiff_t buf_charpos_to_bytepos (struct buffer *, ptrdiff_t);
3967 extern ptrdiff_t buf_bytepos_to_charpos (struct buffer *, ptrdiff_t);
3968 extern void unchain_marker (struct Lisp_Marker *marker);
3969 extern Lisp_Object set_marker_restricted (Lisp_Object, Lisp_Object, Lisp_Object);
3970 extern Lisp_Object set_marker_both (Lisp_Object, Lisp_Object, ptrdiff_t, ptrdiff_t);
3971 extern Lisp_Object set_marker_restricted_both (Lisp_Object, Lisp_Object,
3972 ptrdiff_t, ptrdiff_t);
3973 extern Lisp_Object build_marker (struct buffer *, ptrdiff_t, ptrdiff_t);
3974 extern void syms_of_marker (void);
3975
3976 /* Defined in fileio.c. */
3977
3978 extern Lisp_Object expand_and_dir_to_file (Lisp_Object, Lisp_Object);
3979 extern Lisp_Object write_region (Lisp_Object, Lisp_Object, Lisp_Object,
3980 Lisp_Object, Lisp_Object, Lisp_Object,
3981 Lisp_Object, int);
3982 extern void close_file_unwind (int);
3983 extern void fclose_unwind (void *);
3984 extern void restore_point_unwind (Lisp_Object);
3985 extern _Noreturn void report_file_errno (const char *, Lisp_Object, int);
3986 extern _Noreturn void report_file_error (const char *, Lisp_Object);
3987 extern _Noreturn void report_file_notify_error (const char *, Lisp_Object);
3988 extern bool internal_delete_file (Lisp_Object);
3989 extern Lisp_Object emacs_readlinkat (int, const char *);
3990 extern bool file_directory_p (const char *);
3991 extern bool file_accessible_directory_p (Lisp_Object);
3992 extern void init_fileio (void);
3993 extern void syms_of_fileio (void);
3994 extern Lisp_Object make_temp_name (Lisp_Object, bool);
3995
3996 /* Defined in search.c. */
3997 extern void shrink_regexp_cache (void);
3998 extern void restore_search_regs (void);
3999 extern void record_unwind_save_match_data (void);
4000 struct re_registers;
4001 extern struct re_pattern_buffer *compile_pattern (Lisp_Object,
4002 struct re_registers *,
4003 Lisp_Object, bool, bool);
4004 extern ptrdiff_t fast_string_match_internal (Lisp_Object, Lisp_Object,
4005 Lisp_Object);
4006
4007 INLINE ptrdiff_t
4008 fast_string_match (Lisp_Object regexp, Lisp_Object string)
4009 {
4010 return fast_string_match_internal (regexp, string, Qnil);
4011 }
4012
4013 INLINE ptrdiff_t
4014 fast_string_match_ignore_case (Lisp_Object regexp, Lisp_Object string)
4015 {
4016 return fast_string_match_internal (regexp, string, Vascii_canon_table);
4017 }
4018
4019 extern ptrdiff_t fast_c_string_match_ignore_case (Lisp_Object, const char *,
4020 ptrdiff_t);
4021 extern ptrdiff_t fast_looking_at (Lisp_Object, ptrdiff_t, ptrdiff_t,
4022 ptrdiff_t, ptrdiff_t, Lisp_Object);
4023 extern ptrdiff_t find_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4024 ptrdiff_t, ptrdiff_t *, ptrdiff_t *, bool);
4025 extern ptrdiff_t scan_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4026 ptrdiff_t, bool);
4027 extern ptrdiff_t scan_newline_from_point (ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
4028 extern ptrdiff_t find_newline_no_quit (ptrdiff_t, ptrdiff_t,
4029 ptrdiff_t, ptrdiff_t *);
4030 extern ptrdiff_t find_before_next_newline (ptrdiff_t, ptrdiff_t,
4031 ptrdiff_t, ptrdiff_t *);
4032 extern void syms_of_search (void);
4033 extern void clear_regexp_cache (void);
4034
4035 /* Defined in minibuf.c. */
4036
4037 extern Lisp_Object Vminibuffer_list;
4038 extern Lisp_Object last_minibuf_string;
4039 extern Lisp_Object get_minibuffer (EMACS_INT);
4040 extern void init_minibuf_once (void);
4041 extern void syms_of_minibuf (void);
4042
4043 /* Defined in callint.c. */
4044
4045 extern void syms_of_callint (void);
4046
4047 /* Defined in casefiddle.c. */
4048
4049 extern void syms_of_casefiddle (void);
4050 extern void keys_of_casefiddle (void);
4051
4052 /* Defined in casetab.c. */
4053
4054 extern void init_casetab_once (void);
4055 extern void syms_of_casetab (void);
4056
4057 /* Defined in keyboard.c. */
4058
4059 extern Lisp_Object echo_message_buffer;
4060 extern struct kboard *echo_kboard;
4061 extern void cancel_echoing (void);
4062 extern bool input_pending;
4063 #ifdef HAVE_STACK_OVERFLOW_HANDLING
4064 extern sigjmp_buf return_to_command_loop;
4065 #endif
4066 extern Lisp_Object menu_bar_items (Lisp_Object);
4067 extern Lisp_Object tool_bar_items (Lisp_Object, int *);
4068 extern void discard_mouse_events (void);
4069 #ifdef USABLE_SIGIO
4070 void handle_input_available_signal (int);
4071 #endif
4072 extern Lisp_Object pending_funcalls;
4073 extern bool detect_input_pending (void);
4074 extern bool detect_input_pending_ignore_squeezables (void);
4075 extern bool detect_input_pending_run_timers (bool);
4076 extern void safe_run_hooks (Lisp_Object);
4077 extern void cmd_error_internal (Lisp_Object, const char *);
4078 extern Lisp_Object command_loop_1 (void);
4079 extern Lisp_Object read_menu_command (void);
4080 extern Lisp_Object recursive_edit_1 (void);
4081 extern void record_auto_save (void);
4082 extern void force_auto_save_soon (void);
4083 extern void init_keyboard (void);
4084 extern void syms_of_keyboard (void);
4085 extern void keys_of_keyboard (void);
4086
4087 /* Defined in indent.c. */
4088 extern ptrdiff_t current_column (void);
4089 extern void invalidate_current_column (void);
4090 extern bool indented_beyond_p (ptrdiff_t, ptrdiff_t, EMACS_INT);
4091 extern void syms_of_indent (void);
4092
4093 /* Defined in frame.c. */
4094 extern void store_frame_param (struct frame *, Lisp_Object, Lisp_Object);
4095 extern void store_in_alist (Lisp_Object *, Lisp_Object, Lisp_Object);
4096 extern Lisp_Object do_switch_frame (Lisp_Object, int, int, Lisp_Object);
4097 extern Lisp_Object get_frame_param (struct frame *, Lisp_Object);
4098 extern void frames_discard_buffer (Lisp_Object);
4099 extern void syms_of_frame (void);
4100
4101 /* Defined in emacs.c. */
4102 extern char **initial_argv;
4103 extern int initial_argc;
4104 #if defined (HAVE_X_WINDOWS) || defined (HAVE_NS)
4105 extern bool display_arg;
4106 #endif
4107 extern Lisp_Object decode_env_path (const char *, const char *, bool);
4108 extern Lisp_Object empty_unibyte_string, empty_multibyte_string;
4109 extern _Noreturn void terminate_due_to_signal (int, int);
4110 #ifdef WINDOWSNT
4111 extern Lisp_Object Vlibrary_cache;
4112 #endif
4113 #if HAVE_SETLOCALE
4114 void fixup_locale (void);
4115 void synchronize_system_messages_locale (void);
4116 void synchronize_system_time_locale (void);
4117 #else
4118 INLINE void fixup_locale (void) {}
4119 INLINE void synchronize_system_messages_locale (void) {}
4120 INLINE void synchronize_system_time_locale (void) {}
4121 #endif
4122 extern void shut_down_emacs (int, Lisp_Object);
4123
4124 /* True means don't do interactive redisplay and don't change tty modes. */
4125 extern bool noninteractive;
4126
4127 /* True means remove site-lisp directories from load-path. */
4128 extern bool no_site_lisp;
4129
4130 /* Pipe used to send exit notification to the daemon parent at
4131 startup. On Windows, we use a kernel event instead. */
4132 #ifndef WINDOWSNT
4133 extern int daemon_pipe[2];
4134 #define IS_DAEMON (daemon_pipe[1] != 0)
4135 #define DAEMON_RUNNING (daemon_pipe[1] >= 0)
4136 #else /* WINDOWSNT */
4137 extern void *w32_daemon_event;
4138 #define IS_DAEMON (w32_daemon_event != NULL)
4139 #define DAEMON_RUNNING (w32_daemon_event != INVALID_HANDLE_VALUE)
4140 #endif
4141
4142 /* True if handling a fatal error already. */
4143 extern bool fatal_error_in_progress;
4144
4145 /* True means don't do use window-system-specific display code. */
4146 extern bool inhibit_window_system;
4147 /* True means that a filter or a sentinel is running. */
4148 extern bool running_asynch_code;
4149
4150 /* Defined in process.c. */
4151 extern void kill_buffer_processes (Lisp_Object);
4152 extern int wait_reading_process_output (intmax_t, int, int, bool, Lisp_Object,
4153 struct Lisp_Process *, int);
4154 /* Max value for the first argument of wait_reading_process_output. */
4155 #if __GNUC__ == 3 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 5)
4156 /* Work around a bug in GCC 3.4.2, known to be fixed in GCC 4.6.3.
4157 The bug merely causes a bogus warning, but the warning is annoying. */
4158 # define WAIT_READING_MAX min (TYPE_MAXIMUM (time_t), INTMAX_MAX)
4159 #else
4160 # define WAIT_READING_MAX INTMAX_MAX
4161 #endif
4162 #ifdef HAVE_TIMERFD
4163 extern void add_timer_wait_descriptor (int);
4164 #endif
4165 extern void add_keyboard_wait_descriptor (int);
4166 extern void delete_keyboard_wait_descriptor (int);
4167 #ifdef HAVE_GPM
4168 extern void add_gpm_wait_descriptor (int);
4169 extern void delete_gpm_wait_descriptor (int);
4170 #endif
4171 extern void init_process_emacs (void);
4172 extern void syms_of_process (void);
4173 extern void setup_process_coding_systems (Lisp_Object);
4174
4175 /* Defined in callproc.c. */
4176 #ifndef DOS_NT
4177 _Noreturn
4178 #endif
4179 extern int child_setup (int, int, int, char **, bool, Lisp_Object);
4180 extern void init_callproc_1 (void);
4181 extern void init_callproc (void);
4182 extern void set_initial_environment (void);
4183 extern void syms_of_callproc (void);
4184
4185 /* Defined in doc.c. */
4186 enum text_quoting_style
4187 {
4188 /* Use curved single quotes ‘like this’. */
4189 CURVE_QUOTING_STYLE,
4190
4191 /* Use grave accent and apostrophe `like this'. */
4192 GRAVE_QUOTING_STYLE,
4193
4194 /* Use apostrophes 'like this'. */
4195 STRAIGHT_QUOTING_STYLE
4196 };
4197 extern enum text_quoting_style text_quoting_style (void);
4198 extern Lisp_Object read_doc_string (Lisp_Object);
4199 extern Lisp_Object get_doc_string (Lisp_Object, bool, bool);
4200 extern void syms_of_doc (void);
4201 extern int read_bytecode_char (bool);
4202
4203 /* Defined in bytecode.c. */
4204 extern void syms_of_bytecode (void);
4205 extern struct byte_stack *byte_stack_list;
4206 extern void relocate_byte_stack (void);
4207 extern Lisp_Object exec_byte_code (Lisp_Object, Lisp_Object, Lisp_Object,
4208 Lisp_Object, ptrdiff_t, Lisp_Object *);
4209
4210 /* Defined in macros.c. */
4211 extern void init_macros (void);
4212 extern void syms_of_macros (void);
4213
4214 /* Defined in undo.c. */
4215 extern void truncate_undo_list (struct buffer *);
4216 extern void record_insert (ptrdiff_t, ptrdiff_t);
4217 extern void record_delete (ptrdiff_t, Lisp_Object, bool);
4218 extern void record_first_change (void);
4219 extern void record_change (ptrdiff_t, ptrdiff_t);
4220 extern void record_property_change (ptrdiff_t, ptrdiff_t,
4221 Lisp_Object, Lisp_Object,
4222 Lisp_Object);
4223 extern void syms_of_undo (void);
4224
4225 /* Defined in textprop.c. */
4226 extern void report_interval_modification (Lisp_Object, Lisp_Object);
4227
4228 /* Defined in menu.c. */
4229 extern void syms_of_menu (void);
4230
4231 /* Defined in xmenu.c. */
4232 extern void syms_of_xmenu (void);
4233
4234 /* Defined in termchar.h. */
4235 struct tty_display_info;
4236
4237 /* Defined in termhooks.h. */
4238 struct terminal;
4239
4240 /* Defined in sysdep.c. */
4241 #ifndef HAVE_GET_CURRENT_DIR_NAME
4242 extern char *get_current_dir_name (void);
4243 #endif
4244 extern void stuff_char (char c);
4245 extern void init_foreground_group (void);
4246 extern void sys_subshell (void);
4247 extern void sys_suspend (void);
4248 extern void discard_tty_input (void);
4249 extern void init_sys_modes (struct tty_display_info *);
4250 extern void reset_sys_modes (struct tty_display_info *);
4251 extern void init_all_sys_modes (void);
4252 extern void reset_all_sys_modes (void);
4253 extern void child_setup_tty (int);
4254 extern void setup_pty (int);
4255 extern int set_window_size (int, int, int);
4256 extern EMACS_INT get_random (void);
4257 extern void seed_random (void *, ptrdiff_t);
4258 extern void init_random (void);
4259 extern void emacs_backtrace (int);
4260 extern _Noreturn void emacs_abort (void) NO_INLINE;
4261 extern int emacs_open (const char *, int, int);
4262 extern int emacs_pipe (int[2]);
4263 extern int emacs_close (int);
4264 extern ptrdiff_t emacs_read (int, void *, ptrdiff_t);
4265 extern ptrdiff_t emacs_write (int, void const *, ptrdiff_t);
4266 extern ptrdiff_t emacs_write_sig (int, void const *, ptrdiff_t);
4267 extern void emacs_perror (char const *);
4268
4269 extern void unlock_all_files (void);
4270 extern void lock_file (Lisp_Object);
4271 extern void unlock_file (Lisp_Object);
4272 extern void unlock_buffer (struct buffer *);
4273 extern void syms_of_filelock (void);
4274 extern int str_collate (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4275
4276 /* Defined in sound.c. */
4277 extern void syms_of_sound (void);
4278
4279 /* Defined in category.c. */
4280 extern void init_category_once (void);
4281 extern Lisp_Object char_category_set (int);
4282 extern void syms_of_category (void);
4283
4284 /* Defined in ccl.c. */
4285 extern void syms_of_ccl (void);
4286
4287 /* Defined in dired.c. */
4288 extern void syms_of_dired (void);
4289 extern Lisp_Object directory_files_internal (Lisp_Object, Lisp_Object,
4290 Lisp_Object, Lisp_Object,
4291 bool, Lisp_Object);
4292
4293 /* Defined in term.c. */
4294 extern int *char_ins_del_vector;
4295 extern void syms_of_term (void);
4296 extern _Noreturn void fatal (const char *msgid, ...)
4297 ATTRIBUTE_FORMAT_PRINTF (1, 2);
4298
4299 /* Defined in terminal.c. */
4300 extern void syms_of_terminal (void);
4301
4302 /* Defined in font.c. */
4303 extern void syms_of_font (void);
4304 extern void init_font (void);
4305
4306 #ifdef HAVE_WINDOW_SYSTEM
4307 /* Defined in fontset.c. */
4308 extern void syms_of_fontset (void);
4309 #endif
4310
4311 /* Defined in gfilenotify.c */
4312 #ifdef HAVE_GFILENOTIFY
4313 extern void globals_of_gfilenotify (void);
4314 extern void syms_of_gfilenotify (void);
4315 #endif
4316
4317 /* Defined in inotify.c */
4318 #ifdef HAVE_INOTIFY
4319 extern void syms_of_inotify (void);
4320 #endif
4321
4322 #ifdef HAVE_W32NOTIFY
4323 /* Defined on w32notify.c. */
4324 extern void syms_of_w32notify (void);
4325 #endif
4326
4327 /* Defined in xfaces.c. */
4328 extern Lisp_Object Vface_alternative_font_family_alist;
4329 extern Lisp_Object Vface_alternative_font_registry_alist;
4330 extern void syms_of_xfaces (void);
4331
4332 #ifdef HAVE_X_WINDOWS
4333 /* Defined in xfns.c. */
4334 extern void syms_of_xfns (void);
4335
4336 /* Defined in xsmfns.c. */
4337 extern void syms_of_xsmfns (void);
4338
4339 /* Defined in xselect.c. */
4340 extern void syms_of_xselect (void);
4341
4342 /* Defined in xterm.c. */
4343 extern void init_xterm (void);
4344 extern void syms_of_xterm (void);
4345 #endif /* HAVE_X_WINDOWS */
4346
4347 #ifdef HAVE_WINDOW_SYSTEM
4348 /* Defined in xterm.c, nsterm.m, w32term.c. */
4349 extern char *x_get_keysym_name (int);
4350 #endif /* HAVE_WINDOW_SYSTEM */
4351
4352 #ifdef HAVE_LIBXML2
4353 /* Defined in xml.c. */
4354 extern void syms_of_xml (void);
4355 extern void xml_cleanup_parser (void);
4356 #endif
4357
4358 #ifdef HAVE_ZLIB
4359 /* Defined in decompress.c. */
4360 extern void syms_of_decompress (void);
4361 #endif
4362
4363 #ifdef HAVE_DBUS
4364 /* Defined in dbusbind.c. */
4365 void init_dbusbind (void);
4366 void syms_of_dbusbind (void);
4367 #endif
4368
4369
4370 /* Defined in profiler.c. */
4371 extern bool profiler_memory_running;
4372 extern void malloc_probe (size_t);
4373 extern void syms_of_profiler (void);
4374
4375
4376 #ifdef DOS_NT
4377 /* Defined in msdos.c, w32.c. */
4378 extern char *emacs_root_dir (void);
4379 #endif /* DOS_NT */
4380
4381 /* Defined in lastfile.c. */
4382 extern char my_edata[];
4383 extern char my_endbss[];
4384 extern char *my_endbss_static;
4385
4386 /* True means ^G can quit instantly. */
4387 extern bool immediate_quit;
4388
4389 extern void *xmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4390 extern void *xzalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4391 extern void *xrealloc (void *, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
4392 extern void xfree (void *);
4393 extern void *xnmalloc (ptrdiff_t, ptrdiff_t) ATTRIBUTE_MALLOC_SIZE ((1,2));
4394 extern void *xnrealloc (void *, ptrdiff_t, ptrdiff_t)
4395 ATTRIBUTE_ALLOC_SIZE ((2,3));
4396 extern void *xpalloc (void *, ptrdiff_t *, ptrdiff_t, ptrdiff_t, ptrdiff_t);
4397
4398 extern char *xstrdup (const char *) ATTRIBUTE_MALLOC;
4399 extern char *xlispstrdup (Lisp_Object) ATTRIBUTE_MALLOC;
4400 extern void dupstring (char **, char const *);
4401
4402 /* Make DEST a copy of STRING's data. Return a pointer to DEST's terminating
4403 null byte. This is like stpcpy, except the source is a Lisp string. */
4404
4405 INLINE char *
4406 lispstpcpy (char *dest, Lisp_Object string)
4407 {
4408 ptrdiff_t len = SBYTES (string);
4409 memcpy (dest, SDATA (string), len + 1);
4410 return dest + len;
4411 }
4412
4413 extern void xputenv (const char *);
4414
4415 extern char *egetenv_internal (const char *, ptrdiff_t);
4416
4417 INLINE char *
4418 egetenv (const char *var)
4419 {
4420 /* When VAR is a string literal, strlen can be optimized away. */
4421 return egetenv_internal (var, strlen (var));
4422 }
4423
4424 /* Set up the name of the machine we're running on. */
4425 extern void init_system_name (void);
4426
4427 /* Return the absolute value of X. X should be a signed integer
4428 expression without side effects, and X's absolute value should not
4429 exceed the maximum for its promoted type. This is called 'eabs'
4430 because 'abs' is reserved by the C standard. */
4431 #define eabs(x) ((x) < 0 ? -(x) : (x))
4432
4433 /* Return a fixnum or float, depending on whether VAL fits in a Lisp
4434 fixnum. */
4435
4436 #define make_fixnum_or_float(val) \
4437 (FIXNUM_OVERFLOW_P (val) ? make_float (val) : make_number (val))
4438
4439 /* SAFE_ALLOCA normally allocates memory on the stack, but if size is
4440 larger than MAX_ALLOCA, use xmalloc to avoid overflowing the stack. */
4441
4442 enum MAX_ALLOCA { MAX_ALLOCA = 16 * 1024 };
4443
4444 extern void *record_xmalloc (size_t) ATTRIBUTE_ALLOC_SIZE ((1));
4445
4446 #define USE_SAFE_ALLOCA \
4447 ptrdiff_t sa_avail = MAX_ALLOCA; \
4448 ptrdiff_t sa_count = SPECPDL_INDEX (); bool sa_must_free = false
4449
4450 #define AVAIL_ALLOCA(size) (sa_avail -= (size), alloca (size))
4451
4452 /* SAFE_ALLOCA allocates a simple buffer. */
4453
4454 #define SAFE_ALLOCA(size) ((size) <= sa_avail \
4455 ? AVAIL_ALLOCA (size) \
4456 : (sa_must_free = true, record_xmalloc (size)))
4457
4458 /* SAFE_NALLOCA sets BUF to a newly allocated array of MULTIPLIER *
4459 NITEMS items, each of the same type as *BUF. MULTIPLIER must
4460 positive. The code is tuned for MULTIPLIER being a constant. */
4461
4462 #define SAFE_NALLOCA(buf, multiplier, nitems) \
4463 do { \
4464 if ((nitems) <= sa_avail / sizeof *(buf) / (multiplier)) \
4465 (buf) = AVAIL_ALLOCA (sizeof *(buf) * (multiplier) * (nitems)); \
4466 else \
4467 { \
4468 (buf) = xnmalloc (nitems, sizeof *(buf) * (multiplier)); \
4469 sa_must_free = true; \
4470 record_unwind_protect_ptr (xfree, buf); \
4471 } \
4472 } while (false)
4473
4474 /* SAFE_ALLOCA_STRING allocates a C copy of a Lisp string. */
4475
4476 #define SAFE_ALLOCA_STRING(ptr, string) \
4477 do { \
4478 (ptr) = SAFE_ALLOCA (SBYTES (string) + 1); \
4479 memcpy (ptr, SDATA (string), SBYTES (string) + 1); \
4480 } while (false)
4481
4482 /* SAFE_FREE frees xmalloced memory and enables GC as needed. */
4483
4484 #define SAFE_FREE() \
4485 do { \
4486 if (sa_must_free) { \
4487 sa_must_free = false; \
4488 unbind_to (sa_count, Qnil); \
4489 } \
4490 } while (false)
4491
4492 /* SAFE_ALLOCA_LISP allocates an array of Lisp_Objects. */
4493
4494 #define SAFE_ALLOCA_LISP(buf, nelt) \
4495 do { \
4496 ptrdiff_t alloca_nbytes; \
4497 if (INT_MULTIPLY_WRAPV (nelt, word_size, &alloca_nbytes) \
4498 || SIZE_MAX < alloca_nbytes) \
4499 memory_full (SIZE_MAX); \
4500 else if (alloca_nbytes <= sa_avail) \
4501 (buf) = AVAIL_ALLOCA (alloca_nbytes); \
4502 else \
4503 { \
4504 Lisp_Object arg_; \
4505 (buf) = xmalloc (alloca_nbytes); \
4506 arg_ = make_save_memory (buf, nelt); \
4507 sa_must_free = true; \
4508 record_unwind_protect (free_save_value, arg_); \
4509 } \
4510 } while (false)
4511
4512
4513 /* If USE_STACK_LISP_OBJECTS, define macros that and functions that allocate
4514 block-scoped conses and strings. These objects are not
4515 managed by the garbage collector, so they are dangerous: passing them
4516 out of their scope (e.g., to user code) results in undefined behavior.
4517 Conversely, they have better performance because GC is not involved.
4518
4519 This feature is experimental and requires careful debugging.
4520 Build with CPPFLAGS='-DUSE_STACK_LISP_OBJECTS=0' to disable it. */
4521
4522 #ifndef USE_STACK_LISP_OBJECTS
4523 # define USE_STACK_LISP_OBJECTS true
4524 #endif
4525
4526 #ifdef GC_CHECK_STRING_BYTES
4527 enum { defined_GC_CHECK_STRING_BYTES = true };
4528 #else
4529 enum { defined_GC_CHECK_STRING_BYTES = false };
4530 #endif
4531
4532 /* Struct inside unions that are typically no larger and aligned enough. */
4533
4534 union Aligned_Cons
4535 {
4536 struct Lisp_Cons s;
4537 double d; intmax_t i; void *p;
4538 };
4539
4540 union Aligned_String
4541 {
4542 struct Lisp_String s;
4543 double d; intmax_t i; void *p;
4544 };
4545
4546 /* True for stack-based cons and string implementations, respectively.
4547 Use stack-based strings only if stack-based cons also works.
4548 Otherwise, STACK_CONS would create heap-based cons cells that
4549 could point to stack-based strings, which is a no-no. */
4550
4551 enum
4552 {
4553 USE_STACK_CONS = (USE_STACK_LISP_OBJECTS
4554 && alignof (union Aligned_Cons) % GCALIGNMENT == 0),
4555 USE_STACK_STRING = (USE_STACK_CONS
4556 && !defined_GC_CHECK_STRING_BYTES
4557 && alignof (union Aligned_String) % GCALIGNMENT == 0)
4558 };
4559
4560 /* Auxiliary macros used for auto allocation of Lisp objects. Please
4561 use these only in macros like AUTO_CONS that declare a local
4562 variable whose lifetime will be clear to the programmer. */
4563 #define STACK_CONS(a, b) \
4564 make_lisp_ptr (&(union Aligned_Cons) { { a, { b } } }.s, Lisp_Cons)
4565 #define AUTO_CONS_EXPR(a, b) \
4566 (USE_STACK_CONS ? STACK_CONS (a, b) : Fcons (a, b))
4567
4568 /* Declare NAME as an auto Lisp cons or short list if possible, a
4569 GC-based one otherwise. This is in the sense of the C keyword
4570 'auto'; i.e., the object has the lifetime of the containing block.
4571 The resulting object should not be made visible to user Lisp code. */
4572
4573 #define AUTO_CONS(name, a, b) Lisp_Object name = AUTO_CONS_EXPR (a, b)
4574 #define AUTO_LIST1(name, a) \
4575 Lisp_Object name = (USE_STACK_CONS ? STACK_CONS (a, Qnil) : list1 (a))
4576 #define AUTO_LIST2(name, a, b) \
4577 Lisp_Object name = (USE_STACK_CONS \
4578 ? STACK_CONS (a, STACK_CONS (b, Qnil)) \
4579 : list2 (a, b))
4580 #define AUTO_LIST3(name, a, b, c) \
4581 Lisp_Object name = (USE_STACK_CONS \
4582 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, Qnil))) \
4583 : list3 (a, b, c))
4584 #define AUTO_LIST4(name, a, b, c, d) \
4585 Lisp_Object name \
4586 = (USE_STACK_CONS \
4587 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, \
4588 STACK_CONS (d, Qnil)))) \
4589 : list4 (a, b, c, d))
4590
4591 /* Check whether stack-allocated strings are ASCII-only. */
4592
4593 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
4594 extern const char *verify_ascii (const char *);
4595 #else
4596 # define verify_ascii(str) (str)
4597 #endif
4598
4599 /* Declare NAME as an auto Lisp string if possible, a GC-based one if not.
4600 Take its value from STR. STR is not necessarily copied and should
4601 contain only ASCII characters. The resulting Lisp string should
4602 not be modified or made visible to user code. */
4603
4604 #define AUTO_STRING(name, str) \
4605 Lisp_Object name = \
4606 (USE_STACK_STRING \
4607 ? (make_lisp_ptr \
4608 ((&(union Aligned_String) \
4609 {{strlen (str), -1, 0, (unsigned char *) verify_ascii (str)}}.s), \
4610 Lisp_String)) \
4611 : build_string (verify_ascii (str)))
4612
4613 /* Loop over all tails of a list, checking for cycles.
4614 FIXME: Make tortoise and n internal declarations.
4615 FIXME: Unroll the loop body so we don't need `n'. */
4616 #define FOR_EACH_TAIL(hare, list, tortoise, n) \
4617 for ((tortoise) = (hare) = (list), (n) = true; \
4618 CONSP (hare); \
4619 (hare = XCDR (hare), (n) = !(n), \
4620 ((n) \
4621 ? (EQ (hare, tortoise) \
4622 ? xsignal1 (Qcircular_list, list) \
4623 : (void) 0) \
4624 /* Move tortoise before the next iteration, in case */ \
4625 /* the next iteration does an Fsetcdr. */ \
4626 : (void) ((tortoise) = XCDR (tortoise)))))
4627
4628 /* Do a `for' loop over alist values. */
4629
4630 #define FOR_EACH_ALIST_VALUE(head_var, list_var, value_var) \
4631 for ((list_var) = (head_var); \
4632 (CONSP (list_var) && ((value_var) = XCDR (XCAR (list_var)), true)); \
4633 (list_var) = XCDR (list_var))
4634
4635 /* Check whether it's time for GC, and run it if so. */
4636
4637 INLINE void
4638 maybe_gc (void)
4639 {
4640 if ((consing_since_gc > gc_cons_threshold
4641 && consing_since_gc > gc_relative_threshold)
4642 || (!NILP (Vmemory_full)
4643 && consing_since_gc > memory_full_cons_threshold))
4644 Fgarbage_collect ();
4645 }
4646
4647 INLINE bool
4648 functionp (Lisp_Object object)
4649 {
4650 if (SYMBOLP (object) && !NILP (Ffboundp (object)))
4651 {
4652 object = Findirect_function (object, Qt);
4653
4654 if (CONSP (object) && EQ (XCAR (object), Qautoload))
4655 {
4656 /* Autoloaded symbols are functions, except if they load
4657 macros or keymaps. */
4658 int i;
4659 for (i = 0; i < 4 && CONSP (object); i++)
4660 object = XCDR (object);
4661
4662 return ! (CONSP (object) && !NILP (XCAR (object)));
4663 }
4664 }
4665
4666 if (SUBRP (object))
4667 return XSUBR (object)->max_args != UNEVALLED;
4668 else if (COMPILEDP (object))
4669 return true;
4670 else if (CONSP (object))
4671 {
4672 Lisp_Object car = XCAR (object);
4673 return EQ (car, Qlambda) || EQ (car, Qclosure);
4674 }
4675 else
4676 return false;
4677 }
4678
4679 INLINE_HEADER_END
4680
4681 #endif /* EMACS_LISP_H */