]> code.delx.au - gnu-emacs/blob - src/intervals.c
(MINI_WINDOW_P): Use NILP.
[gnu-emacs] / src / intervals.c
1 /* Code for doing intervals.
2 Copyright (C) 1993, 1994, 1995, 1997, 1998 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* NOTES:
23
24 Have to ensure that we can't put symbol nil on a plist, or some
25 functions may work incorrectly.
26
27 An idea: Have the owner of the tree keep count of splits and/or
28 insertion lengths (in intervals), and balance after every N.
29
30 Need to call *_left_hook when buffer is killed.
31
32 Scan for zero-length, or 0-length to see notes about handling
33 zero length interval-markers.
34
35 There are comments around about freeing intervals. It might be
36 faster to explicitly free them (put them on the free list) than
37 to GC them.
38
39 */
40
41
42 #include <config.h>
43 #include "lisp.h"
44 #include "intervals.h"
45 #include "buffer.h"
46 #include "puresize.h"
47 #include "keyboard.h"
48
49 /* Test for membership, allowing for t (actually any non-cons) to mean the
50 universal set. */
51
52 #define TMEM(sym, set) (CONSP (set) ? ! NILP (Fmemq (sym, set)) : ! NILP (set))
53
54 #define min(x, y) ((x) < (y) ? (x) : (y))
55
56 Lisp_Object merge_properties_sticky ();
57 static INTERVAL reproduce_tree P_ ((INTERVAL, INTERVAL));
58 static INTERVAL reproduce_tree_obj P_ ((INTERVAL, Lisp_Object));
59 \f
60 /* Utility functions for intervals. */
61
62
63 /* Create the root interval of some object, a buffer or string. */
64
65 INTERVAL
66 create_root_interval (parent)
67 Lisp_Object parent;
68 {
69 INTERVAL new;
70
71 CHECK_IMPURE (parent);
72
73 new = make_interval ();
74
75 if (BUFFERP (parent))
76 {
77 new->total_length = (BUF_Z (XBUFFER (parent))
78 - BUF_BEG (XBUFFER (parent)));
79 BUF_INTERVALS (XBUFFER (parent)) = new;
80 new->position = 1;
81 }
82 else if (STRINGP (parent))
83 {
84 new->total_length = XSTRING (parent)->size;
85 XSTRING (parent)->intervals = new;
86 new->position = 0;
87 }
88
89 SET_INTERVAL_OBJECT (new, parent);
90
91 return new;
92 }
93
94 /* Make the interval TARGET have exactly the properties of SOURCE */
95
96 void
97 copy_properties (source, target)
98 register INTERVAL source, target;
99 {
100 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
101 return;
102
103 COPY_INTERVAL_CACHE (source, target);
104 target->plist = Fcopy_sequence (source->plist);
105 }
106
107 /* Merge the properties of interval SOURCE into the properties
108 of interval TARGET. That is to say, each property in SOURCE
109 is added to TARGET if TARGET has no such property as yet. */
110
111 static void
112 merge_properties (source, target)
113 register INTERVAL source, target;
114 {
115 register Lisp_Object o, sym, val;
116
117 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
118 return;
119
120 MERGE_INTERVAL_CACHE (source, target);
121
122 o = source->plist;
123 while (! EQ (o, Qnil))
124 {
125 sym = Fcar (o);
126 val = Fmemq (sym, target->plist);
127
128 if (NILP (val))
129 {
130 o = Fcdr (o);
131 val = Fcar (o);
132 target->plist = Fcons (sym, Fcons (val, target->plist));
133 o = Fcdr (o);
134 }
135 else
136 o = Fcdr (Fcdr (o));
137 }
138 }
139
140 /* Return 1 if the two intervals have the same properties,
141 0 otherwise. */
142
143 int
144 intervals_equal (i0, i1)
145 INTERVAL i0, i1;
146 {
147 register Lisp_Object i0_cdr, i0_sym, i1_val;
148 register int i1_len;
149
150 if (DEFAULT_INTERVAL_P (i0) && DEFAULT_INTERVAL_P (i1))
151 return 1;
152
153 if (DEFAULT_INTERVAL_P (i0) || DEFAULT_INTERVAL_P (i1))
154 return 0;
155
156 i1_len = XFASTINT (Flength (i1->plist));
157 if (i1_len & 0x1) /* Paranoia -- plists are always even */
158 abort ();
159 i1_len /= 2;
160 i0_cdr = i0->plist;
161 while (!NILP (i0_cdr))
162 {
163 /* Lengths of the two plists were unequal. */
164 if (i1_len == 0)
165 return 0;
166
167 i0_sym = Fcar (i0_cdr);
168 i1_val = Fmemq (i0_sym, i1->plist);
169
170 /* i0 has something i1 doesn't. */
171 if (EQ (i1_val, Qnil))
172 return 0;
173
174 /* i0 and i1 both have sym, but it has different values in each. */
175 i0_cdr = Fcdr (i0_cdr);
176 if (! EQ (Fcar (Fcdr (i1_val)), Fcar (i0_cdr)))
177 return 0;
178
179 i0_cdr = Fcdr (i0_cdr);
180 i1_len--;
181 }
182
183 /* Lengths of the two plists were unequal. */
184 if (i1_len > 0)
185 return 0;
186
187 return 1;
188 }
189 \f
190
191 /* Traverse an interval tree TREE, performing FUNCTION on each node.
192 Pass FUNCTION two args: an interval, and ARG. */
193
194 void
195 traverse_intervals (tree, position, depth, function, arg)
196 INTERVAL tree;
197 int position, depth;
198 void (* function) P_ ((INTERVAL, Lisp_Object));
199 Lisp_Object arg;
200 {
201 if (NULL_INTERVAL_P (tree))
202 return;
203
204 traverse_intervals (tree->left, position, depth + 1, function, arg);
205 position += LEFT_TOTAL_LENGTH (tree);
206 tree->position = position;
207 (*function) (tree, arg);
208 position += LENGTH (tree);
209 traverse_intervals (tree->right, position, depth + 1, function, arg);
210 }
211 \f
212 #if 0
213
214 static int icount;
215 static int idepth;
216 static int zero_length;
217
218 /* These functions are temporary, for debugging purposes only. */
219
220 INTERVAL search_interval, found_interval;
221
222 void
223 check_for_interval (i)
224 register INTERVAL i;
225 {
226 if (i == search_interval)
227 {
228 found_interval = i;
229 icount++;
230 }
231 }
232
233 INTERVAL
234 search_for_interval (i, tree)
235 register INTERVAL i, tree;
236 {
237 icount = 0;
238 search_interval = i;
239 found_interval = NULL_INTERVAL;
240 traverse_intervals (tree, 1, 0, &check_for_interval, Qnil);
241 return found_interval;
242 }
243
244 static void
245 inc_interval_count (i)
246 INTERVAL i;
247 {
248 icount++;
249 if (LENGTH (i) == 0)
250 zero_length++;
251 if (depth > idepth)
252 idepth = depth;
253 }
254
255 int
256 count_intervals (i)
257 register INTERVAL i;
258 {
259 icount = 0;
260 idepth = 0;
261 zero_length = 0;
262 traverse_intervals (i, 1, 0, &inc_interval_count, Qnil);
263
264 return icount;
265 }
266
267 static INTERVAL
268 root_interval (interval)
269 INTERVAL interval;
270 {
271 register INTERVAL i = interval;
272
273 while (! ROOT_INTERVAL_P (i))
274 i = INTERVAL_PARENT (i);
275
276 return i;
277 }
278 #endif
279 \f
280 /* Assuming that a left child exists, perform the following operation:
281
282 A B
283 / \ / \
284 B => A
285 / \ / \
286 c c
287 */
288
289 static INTERVAL
290 rotate_right (interval)
291 INTERVAL interval;
292 {
293 INTERVAL i;
294 INTERVAL B = interval->left;
295 int old_total = interval->total_length;
296
297 /* Deal with any Parent of A; make it point to B. */
298 if (! ROOT_INTERVAL_P (interval))
299 {
300 if (AM_LEFT_CHILD (interval))
301 INTERVAL_PARENT (interval)->left = B;
302 else
303 INTERVAL_PARENT (interval)->right = B;
304 }
305 COPY_INTERVAL_PARENT (B, interval);
306
307 /* Make B the parent of A */
308 i = B->right;
309 B->right = interval;
310 SET_INTERVAL_PARENT (interval, B);
311
312 /* Make A point to c */
313 interval->left = i;
314 if (! NULL_INTERVAL_P (i))
315 SET_INTERVAL_PARENT (i, interval);
316
317 /* A's total length is decreased by the length of B and its left child. */
318 interval->total_length -= B->total_length - LEFT_TOTAL_LENGTH (interval);
319
320 /* B must have the same total length of A. */
321 B->total_length = old_total;
322
323 return B;
324 }
325
326 /* Assuming that a right child exists, perform the following operation:
327
328 A B
329 / \ / \
330 B => A
331 / \ / \
332 c c
333 */
334
335 static INTERVAL
336 rotate_left (interval)
337 INTERVAL interval;
338 {
339 INTERVAL i;
340 INTERVAL B = interval->right;
341 int old_total = interval->total_length;
342
343 /* Deal with any parent of A; make it point to B. */
344 if (! ROOT_INTERVAL_P (interval))
345 {
346 if (AM_LEFT_CHILD (interval))
347 INTERVAL_PARENT (interval)->left = B;
348 else
349 INTERVAL_PARENT (interval)->right = B;
350 }
351 COPY_INTERVAL_PARENT (B, interval);
352
353 /* Make B the parent of A */
354 i = B->left;
355 B->left = interval;
356 SET_INTERVAL_PARENT (interval, B);
357
358 /* Make A point to c */
359 interval->right = i;
360 if (! NULL_INTERVAL_P (i))
361 SET_INTERVAL_PARENT (i, interval);
362
363 /* A's total length is decreased by the length of B and its right child. */
364 interval->total_length -= B->total_length - RIGHT_TOTAL_LENGTH (interval);
365
366 /* B must have the same total length of A. */
367 B->total_length = old_total;
368
369 return B;
370 }
371 \f
372 /* Balance an interval tree with the assumption that the subtrees
373 themselves are already balanced. */
374
375 static INTERVAL
376 balance_an_interval (i)
377 INTERVAL i;
378 {
379 register int old_diff, new_diff;
380
381 while (1)
382 {
383 old_diff = LEFT_TOTAL_LENGTH (i) - RIGHT_TOTAL_LENGTH (i);
384 if (old_diff > 0)
385 {
386 new_diff = i->total_length - i->left->total_length
387 + RIGHT_TOTAL_LENGTH (i->left) - LEFT_TOTAL_LENGTH (i->left);
388 if (abs (new_diff) >= old_diff)
389 break;
390 i = rotate_right (i);
391 balance_an_interval (i->right);
392 }
393 else if (old_diff < 0)
394 {
395 new_diff = i->total_length - i->right->total_length
396 + LEFT_TOTAL_LENGTH (i->right) - RIGHT_TOTAL_LENGTH (i->right);
397 if (abs (new_diff) >= -old_diff)
398 break;
399 i = rotate_left (i);
400 balance_an_interval (i->left);
401 }
402 else
403 break;
404 }
405 return i;
406 }
407
408 /* Balance INTERVAL, potentially stuffing it back into its parent
409 Lisp Object. */
410
411 static INLINE INTERVAL
412 balance_possible_root_interval (interval)
413 register INTERVAL interval;
414 {
415 Lisp_Object parent;
416 int have_parent = 0;
417
418 if (!INTERVAL_HAS_OBJECT (interval) && !INTERVAL_HAS_PARENT (interval))
419 return interval;
420
421 if (INTERVAL_HAS_OBJECT (interval))
422 {
423 have_parent = 1;
424 GET_INTERVAL_OBJECT (parent, interval);
425 }
426 interval = balance_an_interval (interval);
427
428 if (have_parent)
429 {
430 if (BUFFERP (parent))
431 BUF_INTERVALS (XBUFFER (parent)) = interval;
432 else if (STRINGP (parent))
433 XSTRING (parent)->intervals = interval;
434 }
435
436 return interval;
437 }
438
439 /* Balance the interval tree TREE. Balancing is by weight
440 (the amount of text). */
441
442 static INTERVAL
443 balance_intervals_internal (tree)
444 register INTERVAL tree;
445 {
446 /* Balance within each side. */
447 if (tree->left)
448 balance_intervals_internal (tree->left);
449 if (tree->right)
450 balance_intervals_internal (tree->right);
451 return balance_an_interval (tree);
452 }
453
454 /* Advertised interface to balance intervals. */
455
456 INTERVAL
457 balance_intervals (tree)
458 INTERVAL tree;
459 {
460 if (tree == NULL_INTERVAL)
461 return NULL_INTERVAL;
462
463 return balance_intervals_internal (tree);
464 }
465 \f
466 /* Split INTERVAL into two pieces, starting the second piece at
467 character position OFFSET (counting from 0), relative to INTERVAL.
468 INTERVAL becomes the left-hand piece, and the right-hand piece
469 (second, lexicographically) is returned.
470
471 The size and position fields of the two intervals are set based upon
472 those of the original interval. The property list of the new interval
473 is reset, thus it is up to the caller to do the right thing with the
474 result.
475
476 Note that this does not change the position of INTERVAL; if it is a root,
477 it is still a root after this operation. */
478
479 INTERVAL
480 split_interval_right (interval, offset)
481 INTERVAL interval;
482 int offset;
483 {
484 INTERVAL new = make_interval ();
485 int position = interval->position;
486 int new_length = LENGTH (interval) - offset;
487
488 new->position = position + offset;
489 SET_INTERVAL_PARENT (new, interval);
490
491 if (NULL_RIGHT_CHILD (interval))
492 {
493 interval->right = new;
494 new->total_length = new_length;
495 }
496 else
497 {
498 /* Insert the new node between INTERVAL and its right child. */
499 new->right = interval->right;
500 SET_INTERVAL_PARENT (interval->right, new);
501 interval->right = new;
502 new->total_length = new_length + new->right->total_length;
503 balance_an_interval (new);
504 }
505
506 balance_possible_root_interval (interval);
507
508 return new;
509 }
510
511 /* Split INTERVAL into two pieces, starting the second piece at
512 character position OFFSET (counting from 0), relative to INTERVAL.
513 INTERVAL becomes the right-hand piece, and the left-hand piece
514 (first, lexicographically) is returned.
515
516 The size and position fields of the two intervals are set based upon
517 those of the original interval. The property list of the new interval
518 is reset, thus it is up to the caller to do the right thing with the
519 result.
520
521 Note that this does not change the position of INTERVAL; if it is a root,
522 it is still a root after this operation. */
523
524 INTERVAL
525 split_interval_left (interval, offset)
526 INTERVAL interval;
527 int offset;
528 {
529 INTERVAL new = make_interval ();
530 int new_length = offset;
531
532 new->position = interval->position;
533 interval->position = interval->position + offset;
534 SET_INTERVAL_PARENT (new, interval);
535
536 if (NULL_LEFT_CHILD (interval))
537 {
538 interval->left = new;
539 new->total_length = new_length;
540 }
541 else
542 {
543 /* Insert the new node between INTERVAL and its left child. */
544 new->left = interval->left;
545 SET_INTERVAL_PARENT (new->left, new);
546 interval->left = new;
547 new->total_length = new_length + new->left->total_length;
548 balance_an_interval (new);
549 }
550
551 balance_possible_root_interval (interval);
552
553 return new;
554 }
555 \f
556 /* Return the proper position for the first character
557 described by the interval tree SOURCE.
558 This is 1 if the parent is a buffer,
559 0 if the parent is a string or if there is no parent.
560
561 Don't use this function on an interval which is the child
562 of another interval! */
563
564 int
565 interval_start_pos (source)
566 INTERVAL source;
567 {
568 Lisp_Object parent;
569
570 if (NULL_INTERVAL_P (source))
571 return 0;
572
573 if (! INTERVAL_HAS_OBJECT (source))
574 return 0;
575 GET_INTERVAL_OBJECT (parent, source);
576 if (BUFFERP (parent))
577 return BUF_BEG (XBUFFER (parent));
578 return 0;
579 }
580
581 /* Find the interval containing text position POSITION in the text
582 represented by the interval tree TREE. POSITION is a buffer
583 position (starting from 1) or a string index (starting from 0).
584 If POSITION is at the end of the buffer or string,
585 return the interval containing the last character.
586
587 The `position' field, which is a cache of an interval's position,
588 is updated in the interval found. Other functions (e.g., next_interval)
589 will update this cache based on the result of find_interval. */
590
591 INTERVAL
592 find_interval (tree, position)
593 register INTERVAL tree;
594 register int position;
595 {
596 /* The distance from the left edge of the subtree at TREE
597 to POSITION. */
598 register int relative_position;
599
600 if (NULL_INTERVAL_P (tree))
601 return NULL_INTERVAL;
602
603 relative_position = position;
604 if (INTERVAL_HAS_OBJECT (tree))
605 {
606 Lisp_Object parent;
607 GET_INTERVAL_OBJECT (parent, tree);
608 if (BUFFERP (parent))
609 relative_position -= BUF_BEG (XBUFFER (parent));
610 }
611
612 if (relative_position > TOTAL_LENGTH (tree))
613 abort (); /* Paranoia */
614
615 if (!handling_signal)
616 tree = balance_possible_root_interval (tree);
617
618 while (1)
619 {
620 if (relative_position < LEFT_TOTAL_LENGTH (tree))
621 {
622 tree = tree->left;
623 }
624 else if (! NULL_RIGHT_CHILD (tree)
625 && relative_position >= (TOTAL_LENGTH (tree)
626 - RIGHT_TOTAL_LENGTH (tree)))
627 {
628 relative_position -= (TOTAL_LENGTH (tree)
629 - RIGHT_TOTAL_LENGTH (tree));
630 tree = tree->right;
631 }
632 else
633 {
634 tree->position
635 = (position - relative_position /* the left edge of *tree */
636 + LEFT_TOTAL_LENGTH (tree)); /* the left edge of this interval */
637
638 return tree;
639 }
640 }
641 }
642 \f
643 /* Find the succeeding interval (lexicographically) to INTERVAL.
644 Sets the `position' field based on that of INTERVAL (see
645 find_interval). */
646
647 INTERVAL
648 next_interval (interval)
649 register INTERVAL interval;
650 {
651 register INTERVAL i = interval;
652 register int next_position;
653
654 if (NULL_INTERVAL_P (i))
655 return NULL_INTERVAL;
656 next_position = interval->position + LENGTH (interval);
657
658 if (! NULL_RIGHT_CHILD (i))
659 {
660 i = i->right;
661 while (! NULL_LEFT_CHILD (i))
662 i = i->left;
663
664 i->position = next_position;
665 return i;
666 }
667
668 while (! NULL_PARENT (i))
669 {
670 if (AM_LEFT_CHILD (i))
671 {
672 i = INTERVAL_PARENT (i);
673 i->position = next_position;
674 return i;
675 }
676
677 i = INTERVAL_PARENT (i);
678 }
679
680 return NULL_INTERVAL;
681 }
682
683 /* Find the preceding interval (lexicographically) to INTERVAL.
684 Sets the `position' field based on that of INTERVAL (see
685 find_interval). */
686
687 INTERVAL
688 previous_interval (interval)
689 register INTERVAL interval;
690 {
691 register INTERVAL i;
692
693 if (NULL_INTERVAL_P (interval))
694 return NULL_INTERVAL;
695
696 if (! NULL_LEFT_CHILD (interval))
697 {
698 i = interval->left;
699 while (! NULL_RIGHT_CHILD (i))
700 i = i->right;
701
702 i->position = interval->position - LENGTH (i);
703 return i;
704 }
705
706 i = interval;
707 while (! NULL_PARENT (i))
708 {
709 if (AM_RIGHT_CHILD (i))
710 {
711 i = INTERVAL_PARENT (i);
712
713 i->position = interval->position - LENGTH (i);
714 return i;
715 }
716 i = INTERVAL_PARENT (i);
717 }
718
719 return NULL_INTERVAL;
720 }
721
722 /* Find the interval containing POS given some non-NULL INTERVAL
723 in the same tree. Note that we need to update interval->position
724 if we go down the tree.
725 To speed up the process, we assume that the ->position of
726 I and all its parents is already uptodate. */
727 INTERVAL
728 update_interval (i, pos)
729 register INTERVAL i;
730 int pos;
731 {
732 if (NULL_INTERVAL_P (i))
733 return NULL_INTERVAL;
734
735 while (1)
736 {
737 if (pos < i->position)
738 {
739 /* Move left. */
740 if (pos >= i->position - TOTAL_LENGTH (i->left))
741 {
742 i->left->position = i->position - TOTAL_LENGTH (i->left)
743 + LEFT_TOTAL_LENGTH (i->left);
744 i = i->left; /* Move to the left child */
745 }
746 else if (NULL_PARENT (i))
747 error ("Point before start of properties");
748 else
749 i = INTERVAL_PARENT (i);
750 continue;
751 }
752 else if (pos >= INTERVAL_LAST_POS (i))
753 {
754 /* Move right. */
755 if (pos < INTERVAL_LAST_POS (i) + TOTAL_LENGTH (i->right))
756 {
757 i->right->position = INTERVAL_LAST_POS (i) +
758 LEFT_TOTAL_LENGTH (i->right);
759 i = i->right; /* Move to the right child */
760 }
761 else if (NULL_PARENT (i))
762 error ("Point after end of properties");
763 else
764 i = INTERVAL_PARENT (i);
765 continue;
766 }
767 else
768 return i;
769 }
770 }
771
772 \f
773 #if 0
774 /* Traverse a path down the interval tree TREE to the interval
775 containing POSITION, adjusting all nodes on the path for
776 an addition of LENGTH characters. Insertion between two intervals
777 (i.e., point == i->position, where i is second interval) means
778 text goes into second interval.
779
780 Modifications are needed to handle the hungry bits -- after simply
781 finding the interval at position (don't add length going down),
782 if it's the beginning of the interval, get the previous interval
783 and check the hungry bits of both. Then add the length going back up
784 to the root. */
785
786 static INTERVAL
787 adjust_intervals_for_insertion (tree, position, length)
788 INTERVAL tree;
789 int position, length;
790 {
791 register int relative_position;
792 register INTERVAL this;
793
794 if (TOTAL_LENGTH (tree) == 0) /* Paranoia */
795 abort ();
796
797 /* If inserting at point-max of a buffer, that position
798 will be out of range */
799 if (position > TOTAL_LENGTH (tree))
800 position = TOTAL_LENGTH (tree);
801 relative_position = position;
802 this = tree;
803
804 while (1)
805 {
806 if (relative_position <= LEFT_TOTAL_LENGTH (this))
807 {
808 this->total_length += length;
809 this = this->left;
810 }
811 else if (relative_position > (TOTAL_LENGTH (this)
812 - RIGHT_TOTAL_LENGTH (this)))
813 {
814 relative_position -= (TOTAL_LENGTH (this)
815 - RIGHT_TOTAL_LENGTH (this));
816 this->total_length += length;
817 this = this->right;
818 }
819 else
820 {
821 /* If we are to use zero-length intervals as buffer pointers,
822 then this code will have to change. */
823 this->total_length += length;
824 this->position = LEFT_TOTAL_LENGTH (this)
825 + position - relative_position + 1;
826 return tree;
827 }
828 }
829 }
830 #endif
831
832 /* Effect an adjustment corresponding to the addition of LENGTH characters
833 of text. Do this by finding the interval containing POSITION in the
834 interval tree TREE, and then adjusting all of its ancestors by adding
835 LENGTH to them.
836
837 If POSITION is the first character of an interval, meaning that point
838 is actually between the two intervals, make the new text belong to
839 the interval which is "sticky".
840
841 If both intervals are "sticky", then make them belong to the left-most
842 interval. Another possibility would be to create a new interval for
843 this text, and make it have the merged properties of both ends. */
844
845 static INTERVAL
846 adjust_intervals_for_insertion (tree, position, length)
847 INTERVAL tree;
848 int position, length;
849 {
850 register INTERVAL i;
851 register INTERVAL temp;
852 int eobp = 0;
853 Lisp_Object parent;
854 int offset;
855
856 if (TOTAL_LENGTH (tree) == 0) /* Paranoia */
857 abort ();
858
859 GET_INTERVAL_OBJECT (parent, tree);
860 offset = (BUFFERP (parent) ? BUF_BEG (XBUFFER (parent)) : 0);
861
862 /* If inserting at point-max of a buffer, that position will be out
863 of range. Remember that buffer positions are 1-based. */
864 if (position >= TOTAL_LENGTH (tree) + offset)
865 {
866 position = TOTAL_LENGTH (tree) + offset;
867 eobp = 1;
868 }
869
870 i = find_interval (tree, position);
871
872 /* If in middle of an interval which is not sticky either way,
873 we must not just give its properties to the insertion.
874 So split this interval at the insertion point.
875
876 Originally, the if condition here was this:
877 (! (position == i->position || eobp)
878 && END_NONSTICKY_P (i)
879 && FRONT_NONSTICKY_P (i))
880 But, these macros are now unreliable because of introduction of
881 Vtext_property_default_nonsticky. So, we always check properties
882 one by one if POSITION is in middle of an interval. */
883 if (! (position == i->position || eobp))
884 {
885 Lisp_Object tail;
886 Lisp_Object front, rear;
887
888 tail = i->plist;
889
890 /* Properties font-sticky and rear-nonsticky override
891 Vtext_property_default_nonsticky. So, if they are t, we can
892 skip one by one checking of properties. */
893 rear = textget (i->plist, Qrear_nonsticky);
894 if (! CONSP (rear) && ! NILP (rear))
895 {
896 /* All properties are nonsticky. We split the interval. */
897 goto check_done;
898 }
899 front = textget (i->plist, Qfront_sticky);
900 if (! CONSP (front) && ! NILP (front))
901 {
902 /* All properties are sticky. We don't split the interval. */
903 tail = Qnil;
904 goto check_done;
905 }
906
907 /* Does any actual property pose an actual problem? We break
908 the loop if we find a nonsticky property. */
909 for (; CONSP (tail); tail = Fcdr (XCDR (tail)))
910 {
911 Lisp_Object prop, tmp;
912 prop = XCAR (tail);
913
914 /* Is this particular property front-sticky? */
915 if (CONSP (front) && ! NILP (Fmemq (prop, front)))
916 continue;
917
918 /* Is this particular property rear-nonsticky? */
919 if (CONSP (rear) && ! NILP (Fmemq (prop, rear)))
920 break;
921
922 /* Is this particular property recorded as sticky or
923 nonsticky in Vtext_property_default_nonsticky? */
924 tmp = Fassq (prop, Vtext_property_default_nonsticky);
925 if (CONSP (tmp))
926 {
927 if (NILP (tmp))
928 continue;
929 break;
930 }
931
932 /* By default, a text property is rear-sticky, thus we
933 continue the loop. */
934 }
935
936 check_done:
937 /* If any property is a real problem, split the interval. */
938 if (! NILP (tail))
939 {
940 temp = split_interval_right (i, position - i->position);
941 copy_properties (i, temp);
942 i = temp;
943 }
944 }
945
946 /* If we are positioned between intervals, check the stickiness of
947 both of them. We have to do this too, if we are at BEG or Z. */
948 if (position == i->position || eobp)
949 {
950 register INTERVAL prev;
951
952 if (position == BEG)
953 prev = 0;
954 else if (eobp)
955 {
956 prev = i;
957 i = 0;
958 }
959 else
960 prev = previous_interval (i);
961
962 /* Even if we are positioned between intervals, we default
963 to the left one if it exists. We extend it now and split
964 off a part later, if stickiness demands it. */
965 for (temp = prev ? prev : i; temp; temp = INTERVAL_PARENT_OR_NULL (temp))
966 {
967 temp->total_length += length;
968 temp = balance_possible_root_interval (temp);
969 }
970
971 /* If at least one interval has sticky properties,
972 we check the stickiness property by property.
973
974 Originally, the if condition here was this:
975 (END_NONSTICKY_P (prev) || FRONT_STICKY_P (i))
976 But, these macros are now unreliable because of introduction
977 of Vtext_property_default_nonsticky. So, we always have to
978 check stickiness of properties one by one. If cache of
979 stickiness is implemented in the future, we may be able to
980 use those macros again. */
981 if (1)
982 {
983 Lisp_Object pleft, pright;
984 struct interval newi;
985
986 pleft = NULL_INTERVAL_P (prev) ? Qnil : prev->plist;
987 pright = NULL_INTERVAL_P (i) ? Qnil : i->plist;
988 newi.plist = merge_properties_sticky (pleft, pright);
989
990 if (! prev) /* i.e. position == BEG */
991 {
992 if (! intervals_equal (i, &newi))
993 {
994 i = split_interval_left (i, length);
995 i->plist = newi.plist;
996 }
997 }
998 else if (! intervals_equal (prev, &newi))
999 {
1000 prev = split_interval_right (prev,
1001 position - prev->position);
1002 prev->plist = newi.plist;
1003 if (! NULL_INTERVAL_P (i)
1004 && intervals_equal (prev, i))
1005 merge_interval_right (prev);
1006 }
1007
1008 /* We will need to update the cache here later. */
1009 }
1010 else if (! prev && ! NILP (i->plist))
1011 {
1012 /* Just split off a new interval at the left.
1013 Since I wasn't front-sticky, the empty plist is ok. */
1014 i = split_interval_left (i, length);
1015 }
1016 }
1017
1018 /* Otherwise just extend the interval. */
1019 else
1020 {
1021 for (temp = i; temp; temp = INTERVAL_PARENT_OR_NULL (temp))
1022 {
1023 temp->total_length += length;
1024 temp = balance_possible_root_interval (temp);
1025 }
1026 }
1027
1028 return tree;
1029 }
1030
1031 /* Any property might be front-sticky on the left, rear-sticky on the left,
1032 front-sticky on the right, or rear-sticky on the right; the 16 combinations
1033 can be arranged in a matrix with rows denoting the left conditions and
1034 columns denoting the right conditions:
1035 _ __ _
1036 _ FR FR FR FR
1037 FR__ 0 1 2 3
1038 _FR 4 5 6 7
1039 FR 8 9 A B
1040 FR C D E F
1041
1042 left-props = '(front-sticky (p8 p9 pa pb pc pd pe pf)
1043 rear-nonsticky (p4 p5 p6 p7 p8 p9 pa pb)
1044 p0 L p1 L p2 L p3 L p4 L p5 L p6 L p7 L
1045 p8 L p9 L pa L pb L pc L pd L pe L pf L)
1046 right-props = '(front-sticky (p2 p3 p6 p7 pa pb pe pf)
1047 rear-nonsticky (p1 p2 p5 p6 p9 pa pd pe)
1048 p0 R p1 R p2 R p3 R p4 R p5 R p6 R p7 R
1049 p8 R p9 R pa R pb R pc R pd R pe R pf R)
1050
1051 We inherit from whoever has a sticky side facing us. If both sides
1052 do (cases 2, 3, E, and F), then we inherit from whichever side has a
1053 non-nil value for the current property. If both sides do, then we take
1054 from the left.
1055
1056 When we inherit a property, we get its stickiness as well as its value.
1057 So, when we merge the above two lists, we expect to get this:
1058
1059 result = '(front-sticky (p6 p7 pa pb pc pd pe pf)
1060 rear-nonsticky (p6 pa)
1061 p0 L p1 L p2 L p3 L p6 R p7 R
1062 pa R pb R pc L pd L pe L pf L)
1063
1064 The optimizable special cases are:
1065 left rear-nonsticky = nil, right front-sticky = nil (inherit left)
1066 left rear-nonsticky = t, right front-sticky = t (inherit right)
1067 left rear-nonsticky = t, right front-sticky = nil (inherit none)
1068 */
1069
1070 Lisp_Object
1071 merge_properties_sticky (pleft, pright)
1072 Lisp_Object pleft, pright;
1073 {
1074 register Lisp_Object props, front, rear;
1075 Lisp_Object lfront, lrear, rfront, rrear;
1076 register Lisp_Object tail1, tail2, sym, lval, rval, cat;
1077 int use_left, use_right;
1078 int lpresent;
1079
1080 props = Qnil;
1081 front = Qnil;
1082 rear = Qnil;
1083 lfront = textget (pleft, Qfront_sticky);
1084 lrear = textget (pleft, Qrear_nonsticky);
1085 rfront = textget (pright, Qfront_sticky);
1086 rrear = textget (pright, Qrear_nonsticky);
1087
1088 /* Go through each element of PRIGHT. */
1089 for (tail1 = pright; CONSP (tail1); tail1 = Fcdr (Fcdr (tail1)))
1090 {
1091 Lisp_Object tmp;
1092
1093 sym = Fcar (tail1);
1094
1095 /* Sticky properties get special treatment. */
1096 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
1097 continue;
1098
1099 rval = Fcar (Fcdr (tail1));
1100 for (tail2 = pleft; CONSP (tail2); tail2 = Fcdr (Fcdr (tail2)))
1101 if (EQ (sym, Fcar (tail2)))
1102 break;
1103
1104 /* Indicate whether the property is explicitly defined on the left.
1105 (We know it is defined explicitly on the right
1106 because otherwise we don't get here.) */
1107 lpresent = ! NILP (tail2);
1108 lval = (NILP (tail2) ? Qnil : Fcar (Fcdr (tail2)));
1109
1110 /* Even if lrear or rfront say nothing about the stickiness of
1111 SYM, Vtext_property_default_nonsticky may give default
1112 stickiness to SYM. */
1113 tmp = Fassq (sym, Vtext_property_default_nonsticky);
1114 use_left = (lpresent
1115 && ! (TMEM (sym, lrear)
1116 || CONSP (tmp) && ! NILP (XCDR (tmp))));
1117 use_right = (TMEM (sym, rfront)
1118 || (CONSP (tmp) && NILP (XCDR (tmp))));
1119 if (use_left && use_right)
1120 {
1121 if (NILP (lval))
1122 use_left = 0;
1123 else if (NILP (rval))
1124 use_right = 0;
1125 }
1126 if (use_left)
1127 {
1128 /* We build props as (value sym ...) rather than (sym value ...)
1129 because we plan to nreverse it when we're done. */
1130 props = Fcons (lval, Fcons (sym, props));
1131 if (TMEM (sym, lfront))
1132 front = Fcons (sym, front);
1133 if (TMEM (sym, lrear))
1134 rear = Fcons (sym, rear);
1135 }
1136 else if (use_right)
1137 {
1138 props = Fcons (rval, Fcons (sym, props));
1139 if (TMEM (sym, rfront))
1140 front = Fcons (sym, front);
1141 if (TMEM (sym, rrear))
1142 rear = Fcons (sym, rear);
1143 }
1144 }
1145
1146 /* Now go through each element of PLEFT. */
1147 for (tail2 = pleft; CONSP (tail2); tail2 = Fcdr (Fcdr (tail2)))
1148 {
1149 Lisp_Object tmp;
1150
1151 sym = Fcar (tail2);
1152
1153 /* Sticky properties get special treatment. */
1154 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
1155 continue;
1156
1157 /* If sym is in PRIGHT, we've already considered it. */
1158 for (tail1 = pright; CONSP (tail1); tail1 = Fcdr (Fcdr (tail1)))
1159 if (EQ (sym, Fcar (tail1)))
1160 break;
1161 if (! NILP (tail1))
1162 continue;
1163
1164 lval = Fcar (Fcdr (tail2));
1165
1166 /* Even if lrear or rfront say nothing about the stickiness of
1167 SYM, Vtext_property_default_nonsticky may give default
1168 stickiness to SYM. */
1169 tmp = Fassq (sym, Vtext_property_default_nonsticky);
1170
1171 /* Since rval is known to be nil in this loop, the test simplifies. */
1172 if (! (TMEM (sym, lrear) || (CONSP (tmp) && ! NILP (XCDR (tmp)))))
1173 {
1174 props = Fcons (lval, Fcons (sym, props));
1175 if (TMEM (sym, lfront))
1176 front = Fcons (sym, front);
1177 }
1178 else if (TMEM (sym, rfront) || (CONSP (tmp) && NILP (XCDR (tmp))))
1179 {
1180 /* The value is nil, but we still inherit the stickiness
1181 from the right. */
1182 front = Fcons (sym, front);
1183 if (TMEM (sym, rrear))
1184 rear = Fcons (sym, rear);
1185 }
1186 }
1187 props = Fnreverse (props);
1188 if (! NILP (rear))
1189 props = Fcons (Qrear_nonsticky, Fcons (Fnreverse (rear), props));
1190
1191 cat = textget (props, Qcategory);
1192 if (! NILP (front)
1193 &&
1194 /* If we have inherited a front-stick category property that is t,
1195 we don't need to set up a detailed one. */
1196 ! (! NILP (cat) && SYMBOLP (cat)
1197 && EQ (Fget (cat, Qfront_sticky), Qt)))
1198 props = Fcons (Qfront_sticky, Fcons (Fnreverse (front), props));
1199 return props;
1200 }
1201
1202 \f
1203 /* Delete an node I from its interval tree by merging its subtrees
1204 into one subtree which is then returned. Caller is responsible for
1205 storing the resulting subtree into its parent. */
1206
1207 static INTERVAL
1208 delete_node (i)
1209 register INTERVAL i;
1210 {
1211 register INTERVAL migrate, this;
1212 register int migrate_amt;
1213
1214 if (NULL_INTERVAL_P (i->left))
1215 return i->right;
1216 if (NULL_INTERVAL_P (i->right))
1217 return i->left;
1218
1219 migrate = i->left;
1220 migrate_amt = i->left->total_length;
1221 this = i->right;
1222 this->total_length += migrate_amt;
1223 while (! NULL_INTERVAL_P (this->left))
1224 {
1225 this = this->left;
1226 this->total_length += migrate_amt;
1227 }
1228 this->left = migrate;
1229 SET_INTERVAL_PARENT (migrate, this);
1230
1231 return i->right;
1232 }
1233
1234 /* Delete interval I from its tree by calling `delete_node'
1235 and properly connecting the resultant subtree.
1236
1237 I is presumed to be empty; that is, no adjustments are made
1238 for the length of I. */
1239
1240 void
1241 delete_interval (i)
1242 register INTERVAL i;
1243 {
1244 register INTERVAL parent;
1245 int amt = LENGTH (i);
1246
1247 if (amt > 0) /* Only used on zero-length intervals now. */
1248 abort ();
1249
1250 if (ROOT_INTERVAL_P (i))
1251 {
1252 Lisp_Object owner;
1253 GET_INTERVAL_OBJECT (owner, i);
1254 parent = delete_node (i);
1255 if (! NULL_INTERVAL_P (parent))
1256 SET_INTERVAL_OBJECT (parent, owner);
1257
1258 if (BUFFERP (owner))
1259 BUF_INTERVALS (XBUFFER (owner)) = parent;
1260 else if (STRINGP (owner))
1261 XSTRING (owner)->intervals = parent;
1262 else
1263 abort ();
1264
1265 return;
1266 }
1267
1268 parent = INTERVAL_PARENT (i);
1269 if (AM_LEFT_CHILD (i))
1270 {
1271 parent->left = delete_node (i);
1272 if (! NULL_INTERVAL_P (parent->left))
1273 SET_INTERVAL_PARENT (parent->left, parent);
1274 }
1275 else
1276 {
1277 parent->right = delete_node (i);
1278 if (! NULL_INTERVAL_P (parent->right))
1279 SET_INTERVAL_PARENT (parent->right, parent);
1280 }
1281 }
1282 \f
1283 /* Find the interval in TREE corresponding to the relative position
1284 FROM and delete as much as possible of AMOUNT from that interval.
1285 Return the amount actually deleted, and if the interval was
1286 zeroed-out, delete that interval node from the tree.
1287
1288 Note that FROM is actually origin zero, aka relative to the
1289 leftmost edge of tree. This is appropriate since we call ourselves
1290 recursively on subtrees.
1291
1292 Do this by recursing down TREE to the interval in question, and
1293 deleting the appropriate amount of text. */
1294
1295 static int
1296 interval_deletion_adjustment (tree, from, amount)
1297 register INTERVAL tree;
1298 register int from, amount;
1299 {
1300 register int relative_position = from;
1301
1302 if (NULL_INTERVAL_P (tree))
1303 return 0;
1304
1305 /* Left branch */
1306 if (relative_position < LEFT_TOTAL_LENGTH (tree))
1307 {
1308 int subtract = interval_deletion_adjustment (tree->left,
1309 relative_position,
1310 amount);
1311 tree->total_length -= subtract;
1312 return subtract;
1313 }
1314 /* Right branch */
1315 else if (relative_position >= (TOTAL_LENGTH (tree)
1316 - RIGHT_TOTAL_LENGTH (tree)))
1317 {
1318 int subtract;
1319
1320 relative_position -= (tree->total_length
1321 - RIGHT_TOTAL_LENGTH (tree));
1322 subtract = interval_deletion_adjustment (tree->right,
1323 relative_position,
1324 amount);
1325 tree->total_length -= subtract;
1326 return subtract;
1327 }
1328 /* Here -- this node. */
1329 else
1330 {
1331 /* How much can we delete from this interval? */
1332 int my_amount = ((tree->total_length
1333 - RIGHT_TOTAL_LENGTH (tree))
1334 - relative_position);
1335
1336 if (amount > my_amount)
1337 amount = my_amount;
1338
1339 tree->total_length -= amount;
1340 if (LENGTH (tree) == 0)
1341 delete_interval (tree);
1342
1343 return amount;
1344 }
1345
1346 /* Never reach here. */
1347 }
1348
1349 /* Effect the adjustments necessary to the interval tree of BUFFER to
1350 correspond to the deletion of LENGTH characters from that buffer
1351 text. The deletion is effected at position START (which is a
1352 buffer position, i.e. origin 1). */
1353
1354 static void
1355 adjust_intervals_for_deletion (buffer, start, length)
1356 struct buffer *buffer;
1357 int start, length;
1358 {
1359 register int left_to_delete = length;
1360 register INTERVAL tree = BUF_INTERVALS (buffer);
1361 Lisp_Object parent;
1362 int offset;
1363
1364 GET_INTERVAL_OBJECT (parent, tree);
1365 offset = (BUFFERP (parent) ? BUF_BEG (XBUFFER (parent)) : 0);
1366
1367 if (NULL_INTERVAL_P (tree))
1368 return;
1369
1370 if (start > offset + TOTAL_LENGTH (tree)
1371 || start + length > offset + TOTAL_LENGTH (tree))
1372 abort ();
1373
1374 if (length == TOTAL_LENGTH (tree))
1375 {
1376 BUF_INTERVALS (buffer) = NULL_INTERVAL;
1377 return;
1378 }
1379
1380 if (ONLY_INTERVAL_P (tree))
1381 {
1382 tree->total_length -= length;
1383 return;
1384 }
1385
1386 if (start > offset + TOTAL_LENGTH (tree))
1387 start = offset + TOTAL_LENGTH (tree);
1388 while (left_to_delete > 0)
1389 {
1390 left_to_delete -= interval_deletion_adjustment (tree, start - offset,
1391 left_to_delete);
1392 tree = BUF_INTERVALS (buffer);
1393 if (left_to_delete == tree->total_length)
1394 {
1395 BUF_INTERVALS (buffer) = NULL_INTERVAL;
1396 return;
1397 }
1398 }
1399 }
1400 \f
1401 /* Make the adjustments necessary to the interval tree of BUFFER to
1402 represent an addition or deletion of LENGTH characters starting
1403 at position START. Addition or deletion is indicated by the sign
1404 of LENGTH. */
1405
1406 INLINE void
1407 offset_intervals (buffer, start, length)
1408 struct buffer *buffer;
1409 int start, length;
1410 {
1411 if (NULL_INTERVAL_P (BUF_INTERVALS (buffer)) || length == 0)
1412 return;
1413
1414 if (length > 0)
1415 adjust_intervals_for_insertion (BUF_INTERVALS (buffer), start, length);
1416 else
1417 adjust_intervals_for_deletion (buffer, start, -length);
1418 }
1419 \f
1420 /* Merge interval I with its lexicographic successor. The resulting
1421 interval is returned, and has the properties of the original
1422 successor. The properties of I are lost. I is removed from the
1423 interval tree.
1424
1425 IMPORTANT:
1426 The caller must verify that this is not the last (rightmost)
1427 interval. */
1428
1429 INTERVAL
1430 merge_interval_right (i)
1431 register INTERVAL i;
1432 {
1433 register int absorb = LENGTH (i);
1434 register INTERVAL successor;
1435
1436 /* Zero out this interval. */
1437 i->total_length -= absorb;
1438
1439 /* Find the succeeding interval. */
1440 if (! NULL_RIGHT_CHILD (i)) /* It's below us. Add absorb
1441 as we descend. */
1442 {
1443 successor = i->right;
1444 while (! NULL_LEFT_CHILD (successor))
1445 {
1446 successor->total_length += absorb;
1447 successor = successor->left;
1448 }
1449
1450 successor->total_length += absorb;
1451 delete_interval (i);
1452 return successor;
1453 }
1454
1455 successor = i;
1456 while (! NULL_PARENT (successor)) /* It's above us. Subtract as
1457 we ascend. */
1458 {
1459 if (AM_LEFT_CHILD (successor))
1460 {
1461 successor = INTERVAL_PARENT (successor);
1462 delete_interval (i);
1463 return successor;
1464 }
1465
1466 successor = INTERVAL_PARENT (successor);
1467 successor->total_length -= absorb;
1468 }
1469
1470 /* This must be the rightmost or last interval and cannot
1471 be merged right. The caller should have known. */
1472 abort ();
1473 }
1474 \f
1475 /* Merge interval I with its lexicographic predecessor. The resulting
1476 interval is returned, and has the properties of the original predecessor.
1477 The properties of I are lost. Interval node I is removed from the tree.
1478
1479 IMPORTANT:
1480 The caller must verify that this is not the first (leftmost) interval. */
1481
1482 INTERVAL
1483 merge_interval_left (i)
1484 register INTERVAL i;
1485 {
1486 register int absorb = LENGTH (i);
1487 register INTERVAL predecessor;
1488
1489 /* Zero out this interval. */
1490 i->total_length -= absorb;
1491
1492 /* Find the preceding interval. */
1493 if (! NULL_LEFT_CHILD (i)) /* It's below us. Go down,
1494 adding ABSORB as we go. */
1495 {
1496 predecessor = i->left;
1497 while (! NULL_RIGHT_CHILD (predecessor))
1498 {
1499 predecessor->total_length += absorb;
1500 predecessor = predecessor->right;
1501 }
1502
1503 predecessor->total_length += absorb;
1504 delete_interval (i);
1505 return predecessor;
1506 }
1507
1508 predecessor = i;
1509 while (! NULL_PARENT (predecessor)) /* It's above us. Go up,
1510 subtracting ABSORB. */
1511 {
1512 if (AM_RIGHT_CHILD (predecessor))
1513 {
1514 predecessor = INTERVAL_PARENT (predecessor);
1515 delete_interval (i);
1516 return predecessor;
1517 }
1518
1519 predecessor = INTERVAL_PARENT (predecessor);
1520 predecessor->total_length -= absorb;
1521 }
1522
1523 /* This must be the leftmost or first interval and cannot
1524 be merged left. The caller should have known. */
1525 abort ();
1526 }
1527 \f
1528 /* Make an exact copy of interval tree SOURCE which descends from
1529 PARENT. This is done by recursing through SOURCE, copying
1530 the current interval and its properties, and then adjusting
1531 the pointers of the copy. */
1532
1533 static INTERVAL
1534 reproduce_tree (source, parent)
1535 INTERVAL source, parent;
1536 {
1537 register INTERVAL t = make_interval ();
1538
1539 bcopy (source, t, INTERVAL_SIZE);
1540 copy_properties (source, t);
1541 SET_INTERVAL_PARENT (t, parent);
1542 if (! NULL_LEFT_CHILD (source))
1543 t->left = reproduce_tree (source->left, t);
1544 if (! NULL_RIGHT_CHILD (source))
1545 t->right = reproduce_tree (source->right, t);
1546
1547 return t;
1548 }
1549
1550 static INTERVAL
1551 reproduce_tree_obj (source, parent)
1552 INTERVAL source;
1553 Lisp_Object parent;
1554 {
1555 register INTERVAL t = make_interval ();
1556
1557 bcopy (source, t, INTERVAL_SIZE);
1558 copy_properties (source, t);
1559 SET_INTERVAL_OBJECT (t, parent);
1560 if (! NULL_LEFT_CHILD (source))
1561 t->left = reproduce_tree (source->left, t);
1562 if (! NULL_RIGHT_CHILD (source))
1563 t->right = reproduce_tree (source->right, t);
1564
1565 return t;
1566 }
1567
1568 #if 0
1569 /* Nobody calls this. Perhaps it's a vestige of an earlier design. */
1570
1571 /* Make a new interval of length LENGTH starting at START in the
1572 group of intervals INTERVALS, which is actually an interval tree.
1573 Returns the new interval.
1574
1575 Generate an error if the new positions would overlap an existing
1576 interval. */
1577
1578 static INTERVAL
1579 make_new_interval (intervals, start, length)
1580 INTERVAL intervals;
1581 int start, length;
1582 {
1583 INTERVAL slot;
1584
1585 slot = find_interval (intervals, start);
1586 if (start + length > slot->position + LENGTH (slot))
1587 error ("Interval would overlap");
1588
1589 if (start == slot->position && length == LENGTH (slot))
1590 return slot;
1591
1592 if (slot->position == start)
1593 {
1594 /* New right node. */
1595 split_interval_right (slot, length);
1596 return slot;
1597 }
1598
1599 if (slot->position + LENGTH (slot) == start + length)
1600 {
1601 /* New left node. */
1602 split_interval_left (slot, LENGTH (slot) - length);
1603 return slot;
1604 }
1605
1606 /* Convert interval SLOT into three intervals. */
1607 split_interval_left (slot, start - slot->position);
1608 split_interval_right (slot, length);
1609 return slot;
1610 }
1611 #endif
1612 \f
1613 /* Insert the intervals of SOURCE into BUFFER at POSITION.
1614 LENGTH is the length of the text in SOURCE.
1615
1616 The `position' field of the SOURCE intervals is assumed to be
1617 consistent with its parent; therefore, SOURCE must be an
1618 interval tree made with copy_interval or must be the whole
1619 tree of a buffer or a string.
1620
1621 This is used in insdel.c when inserting Lisp_Strings into the
1622 buffer. The text corresponding to SOURCE is already in the buffer
1623 when this is called. The intervals of new tree are a copy of those
1624 belonging to the string being inserted; intervals are never
1625 shared.
1626
1627 If the inserted text had no intervals associated, and we don't
1628 want to inherit the surrounding text's properties, this function
1629 simply returns -- offset_intervals should handle placing the
1630 text in the correct interval, depending on the sticky bits.
1631
1632 If the inserted text had properties (intervals), then there are two
1633 cases -- either insertion happened in the middle of some interval,
1634 or between two intervals.
1635
1636 If the text goes into the middle of an interval, then new
1637 intervals are created in the middle with only the properties of
1638 the new text, *unless* the macro MERGE_INSERTIONS is true, in
1639 which case the new text has the union of its properties and those
1640 of the text into which it was inserted.
1641
1642 If the text goes between two intervals, then if neither interval
1643 had its appropriate sticky property set (front_sticky, rear_sticky),
1644 the new text has only its properties. If one of the sticky properties
1645 is set, then the new text "sticks" to that region and its properties
1646 depend on merging as above. If both the preceding and succeeding
1647 intervals to the new text are "sticky", then the new text retains
1648 only its properties, as if neither sticky property were set. Perhaps
1649 we should consider merging all three sets of properties onto the new
1650 text... */
1651
1652 void
1653 graft_intervals_into_buffer (source, position, length, buffer, inherit)
1654 INTERVAL source;
1655 int position, length;
1656 struct buffer *buffer;
1657 int inherit;
1658 {
1659 register INTERVAL under, over, this, prev;
1660 register INTERVAL tree;
1661 int middle;
1662
1663 tree = BUF_INTERVALS (buffer);
1664
1665 /* If the new text has no properties, it becomes part of whatever
1666 interval it was inserted into. */
1667 if (NULL_INTERVAL_P (source))
1668 {
1669 Lisp_Object buf;
1670 if (!inherit && ! NULL_INTERVAL_P (tree))
1671 {
1672 int saved_inhibit_modification_hooks = inhibit_modification_hooks;
1673 XSETBUFFER (buf, buffer);
1674 inhibit_modification_hooks = 1;
1675 Fset_text_properties (make_number (position),
1676 make_number (position + length),
1677 Qnil, buf);
1678 inhibit_modification_hooks = saved_inhibit_modification_hooks;
1679 }
1680 if (! NULL_INTERVAL_P (BUF_INTERVALS (buffer)))
1681 BUF_INTERVALS (buffer) = balance_an_interval (BUF_INTERVALS (buffer));
1682 return;
1683 }
1684
1685 if (NULL_INTERVAL_P (tree))
1686 {
1687 /* The inserted text constitutes the whole buffer, so
1688 simply copy over the interval structure. */
1689 if ((BUF_Z (buffer) - BUF_BEG (buffer)) == TOTAL_LENGTH (source))
1690 {
1691 Lisp_Object buf;
1692 XSETBUFFER (buf, buffer);
1693 BUF_INTERVALS (buffer) = reproduce_tree_obj (source, buf);
1694 BUF_INTERVALS (buffer)->position = 1;
1695
1696 /* Explicitly free the old tree here? */
1697
1698 return;
1699 }
1700
1701 /* Create an interval tree in which to place a copy
1702 of the intervals of the inserted string. */
1703 {
1704 Lisp_Object buf;
1705 XSETBUFFER (buf, buffer);
1706 tree = create_root_interval (buf);
1707 }
1708 }
1709 else if (TOTAL_LENGTH (tree) == TOTAL_LENGTH (source))
1710 /* If the buffer contains only the new string, but
1711 there was already some interval tree there, then it may be
1712 some zero length intervals. Eventually, do something clever
1713 about inserting properly. For now, just waste the old intervals. */
1714 {
1715 BUF_INTERVALS (buffer) = reproduce_tree (source, INTERVAL_PARENT (tree));
1716 BUF_INTERVALS (buffer)->position = 1;
1717 /* Explicitly free the old tree here. */
1718
1719 return;
1720 }
1721 /* Paranoia -- the text has already been added, so this buffer
1722 should be of non-zero length. */
1723 else if (TOTAL_LENGTH (tree) == 0)
1724 abort ();
1725
1726 this = under = find_interval (tree, position);
1727 if (NULL_INTERVAL_P (under)) /* Paranoia */
1728 abort ();
1729 over = find_interval (source, interval_start_pos (source));
1730
1731 /* Here for insertion in the middle of an interval.
1732 Split off an equivalent interval to the right,
1733 then don't bother with it any more. */
1734
1735 if (position > under->position)
1736 {
1737 INTERVAL end_unchanged
1738 = split_interval_left (this, position - under->position);
1739 copy_properties (under, end_unchanged);
1740 under->position = position;
1741 #if 0
1742 /* This code has no effect. */
1743 prev = 0;
1744 middle = 1;
1745 #endif /* 0 */
1746 }
1747 else
1748 {
1749 /* This call may have some effect because previous_interval may
1750 update `position' fields of intervals. Thus, don't ignore it
1751 for the moment. Someone please tell me the truth (K.Handa). */
1752 prev = previous_interval (under);
1753 #if 0
1754 /* But, this code surely has no effect. And, anyway,
1755 END_NONSTICKY_P is unreliable now. */
1756 if (prev && !END_NONSTICKY_P (prev))
1757 prev = 0;
1758 #endif /* 0 */
1759 }
1760
1761 /* Insertion is now at beginning of UNDER. */
1762
1763 /* The inserted text "sticks" to the interval `under',
1764 which means it gets those properties.
1765 The properties of under are the result of
1766 adjust_intervals_for_insertion, so stickiness has
1767 already been taken care of. */
1768
1769 while (! NULL_INTERVAL_P (over))
1770 {
1771 if (LENGTH (over) < LENGTH (under))
1772 {
1773 this = split_interval_left (under, LENGTH (over));
1774 copy_properties (under, this);
1775 }
1776 else
1777 this = under;
1778 copy_properties (over, this);
1779 if (inherit)
1780 merge_properties (over, this);
1781 else
1782 copy_properties (over, this);
1783 over = next_interval (over);
1784 }
1785
1786 if (! NULL_INTERVAL_P (BUF_INTERVALS (buffer)))
1787 BUF_INTERVALS (buffer) = balance_an_interval (BUF_INTERVALS (buffer));
1788 return;
1789 }
1790
1791 /* Get the value of property PROP from PLIST,
1792 which is the plist of an interval.
1793 We check for direct properties, for categories with property PROP,
1794 and for PROP appearing on the default-text-properties list. */
1795
1796 Lisp_Object
1797 textget (plist, prop)
1798 Lisp_Object plist;
1799 register Lisp_Object prop;
1800 {
1801 register Lisp_Object tail, fallback;
1802 fallback = Qnil;
1803
1804 for (tail = plist; !NILP (tail); tail = Fcdr (Fcdr (tail)))
1805 {
1806 register Lisp_Object tem;
1807 tem = Fcar (tail);
1808 if (EQ (prop, tem))
1809 return Fcar (Fcdr (tail));
1810 if (EQ (tem, Qcategory))
1811 {
1812 tem = Fcar (Fcdr (tail));
1813 if (SYMBOLP (tem))
1814 fallback = Fget (tem, prop);
1815 }
1816 }
1817
1818 if (! NILP (fallback))
1819 return fallback;
1820 if (CONSP (Vdefault_text_properties))
1821 return Fplist_get (Vdefault_text_properties, prop);
1822 return Qnil;
1823 }
1824
1825 \f
1826 /* Set point "temporarily", without checking any text properties. */
1827
1828 INLINE void
1829 temp_set_point (buffer, charpos)
1830 struct buffer *buffer;
1831 int charpos;
1832 {
1833 temp_set_point_both (buffer, charpos,
1834 buf_charpos_to_bytepos (buffer, charpos));
1835 }
1836
1837 /* Set point in BUFFER "temporarily" to CHARPOS, which corresponds to
1838 byte position BYTEPOS. */
1839
1840 INLINE void
1841 temp_set_point_both (buffer, charpos, bytepos)
1842 int charpos, bytepos;
1843 struct buffer *buffer;
1844 {
1845 /* In a single-byte buffer, the two positions must be equal. */
1846 if (BUF_ZV (buffer) == BUF_ZV_BYTE (buffer)
1847 && charpos != bytepos)
1848 abort ();
1849
1850 if (charpos > bytepos)
1851 abort ();
1852
1853 if (charpos > BUF_ZV (buffer) || charpos < BUF_BEGV (buffer))
1854 abort ();
1855
1856 BUF_PT_BYTE (buffer) = bytepos;
1857 BUF_PT (buffer) = charpos;
1858 }
1859
1860 /* Set point in BUFFER to CHARPOS. If the target position is
1861 before an intangible character, move to an ok place. */
1862
1863 void
1864 set_point (buffer, charpos)
1865 register struct buffer *buffer;
1866 register int charpos;
1867 {
1868 set_point_both (buffer, charpos, buf_charpos_to_bytepos (buffer, charpos));
1869 }
1870
1871 /* Set point in BUFFER to CHARPOS, which corresponds to byte
1872 position BYTEPOS. If the target position is
1873 before an intangible character, move to an ok place. */
1874
1875 void
1876 set_point_both (buffer, charpos, bytepos)
1877 register struct buffer *buffer;
1878 register int charpos, bytepos;
1879 {
1880 register INTERVAL to, from, toprev, fromprev;
1881 int buffer_point;
1882 int old_position = BUF_PT (buffer);
1883 int backwards = (charpos < old_position ? 1 : 0);
1884 int have_overlays;
1885 int original_position;
1886
1887 buffer->point_before_scroll = Qnil;
1888
1889 if (charpos == BUF_PT (buffer))
1890 return;
1891
1892 /* In a single-byte buffer, the two positions must be equal. */
1893 if (BUF_ZV (buffer) == BUF_ZV_BYTE (buffer)
1894 && charpos != bytepos)
1895 abort ();
1896
1897 /* Check this now, before checking if the buffer has any intervals.
1898 That way, we can catch conditions which break this sanity check
1899 whether or not there are intervals in the buffer. */
1900 if (charpos > BUF_ZV (buffer) || charpos < BUF_BEGV (buffer))
1901 abort ();
1902
1903 have_overlays = (! NILP (buffer->overlays_before)
1904 || ! NILP (buffer->overlays_after));
1905
1906 /* If we have no text properties and overlays,
1907 then we can do it quickly. */
1908 if (NULL_INTERVAL_P (BUF_INTERVALS (buffer)) && ! have_overlays)
1909 {
1910 temp_set_point_both (buffer, charpos, bytepos);
1911 return;
1912 }
1913
1914 /* Set TO to the interval containing the char after CHARPOS,
1915 and TOPREV to the interval containing the char before CHARPOS.
1916 Either one may be null. They may be equal. */
1917 to = find_interval (BUF_INTERVALS (buffer), charpos);
1918 if (charpos == BUF_BEGV (buffer))
1919 toprev = 0;
1920 else if (to && to->position == charpos)
1921 toprev = previous_interval (to);
1922 else
1923 toprev = to;
1924
1925 buffer_point = (BUF_PT (buffer) == BUF_ZV (buffer)
1926 ? BUF_ZV (buffer) - 1
1927 : BUF_PT (buffer));
1928
1929 /* Set FROM to the interval containing the char after PT,
1930 and FROMPREV to the interval containing the char before PT.
1931 Either one may be null. They may be equal. */
1932 /* We could cache this and save time. */
1933 from = find_interval (BUF_INTERVALS (buffer), buffer_point);
1934 if (buffer_point == BUF_BEGV (buffer))
1935 fromprev = 0;
1936 else if (from && from->position == BUF_PT (buffer))
1937 fromprev = previous_interval (from);
1938 else if (buffer_point != BUF_PT (buffer))
1939 fromprev = from, from = 0;
1940 else
1941 fromprev = from;
1942
1943 /* Moving within an interval. */
1944 if (to == from && toprev == fromprev && INTERVAL_VISIBLE_P (to)
1945 && ! have_overlays)
1946 {
1947 temp_set_point_both (buffer, charpos, bytepos);
1948 return;
1949 }
1950
1951 original_position = charpos;
1952
1953 /* If the new position is between two intangible characters
1954 with the same intangible property value,
1955 move forward or backward until a change in that property. */
1956 if (NILP (Vinhibit_point_motion_hooks)
1957 && ((! NULL_INTERVAL_P (to) && ! NULL_INTERVAL_P (toprev))
1958 || have_overlays)
1959 /* Intangibility never stops us from positioning at the beginning
1960 or end of the buffer, so don't bother checking in that case. */
1961 && charpos != BEGV && charpos != ZV)
1962 {
1963 Lisp_Object intangible_propval;
1964 Lisp_Object pos;
1965
1966 XSETINT (pos, charpos);
1967
1968 if (backwards)
1969 {
1970 intangible_propval = Fget_char_property (make_number (charpos),
1971 Qintangible, Qnil);
1972
1973 /* If following char is intangible,
1974 skip back over all chars with matching intangible property. */
1975 if (! NILP (intangible_propval))
1976 while (XINT (pos) > BUF_BEGV (buffer)
1977 && EQ (Fget_char_property (make_number (XINT (pos) - 1),
1978 Qintangible, Qnil),
1979 intangible_propval))
1980 pos = Fprevious_char_property_change (pos, Qnil);
1981 }
1982 else
1983 {
1984 intangible_propval = Fget_char_property (make_number (charpos - 1),
1985 Qintangible, Qnil);
1986
1987 /* If following char is intangible,
1988 skip forward over all chars with matching intangible property. */
1989 if (! NILP (intangible_propval))
1990 while (XINT (pos) < BUF_ZV (buffer)
1991 && EQ (Fget_char_property (pos, Qintangible, Qnil),
1992 intangible_propval))
1993 pos = Fnext_char_property_change (pos, Qnil);
1994
1995 }
1996
1997 charpos = XINT (pos);
1998 bytepos = buf_charpos_to_bytepos (buffer, charpos);
1999 }
2000
2001 if (charpos != original_position)
2002 {
2003 /* Set TO to the interval containing the char after CHARPOS,
2004 and TOPREV to the interval containing the char before CHARPOS.
2005 Either one may be null. They may be equal. */
2006 to = find_interval (BUF_INTERVALS (buffer), charpos);
2007 if (charpos == BUF_BEGV (buffer))
2008 toprev = 0;
2009 else if (to && to->position == charpos)
2010 toprev = previous_interval (to);
2011 else
2012 toprev = to;
2013 }
2014
2015 /* Here TO is the interval after the stopping point
2016 and TOPREV is the interval before the stopping point.
2017 One or the other may be null. */
2018
2019 temp_set_point_both (buffer, charpos, bytepos);
2020
2021 /* We run point-left and point-entered hooks here, iff the
2022 two intervals are not equivalent. These hooks take
2023 (old_point, new_point) as arguments. */
2024 if (NILP (Vinhibit_point_motion_hooks)
2025 && (! intervals_equal (from, to)
2026 || ! intervals_equal (fromprev, toprev)))
2027 {
2028 Lisp_Object leave_after, leave_before, enter_after, enter_before;
2029
2030 if (fromprev)
2031 leave_after = textget (fromprev->plist, Qpoint_left);
2032 else
2033 leave_after = Qnil;
2034 if (from)
2035 leave_before = textget (from->plist, Qpoint_left);
2036 else
2037 leave_before = Qnil;
2038
2039 if (toprev)
2040 enter_after = textget (toprev->plist, Qpoint_entered);
2041 else
2042 enter_after = Qnil;
2043 if (to)
2044 enter_before = textget (to->plist, Qpoint_entered);
2045 else
2046 enter_before = Qnil;
2047
2048 if (! EQ (leave_before, enter_before) && !NILP (leave_before))
2049 call2 (leave_before, make_number (old_position),
2050 make_number (charpos));
2051 if (! EQ (leave_after, enter_after) && !NILP (leave_after))
2052 call2 (leave_after, make_number (old_position),
2053 make_number (charpos));
2054
2055 if (! EQ (enter_before, leave_before) && !NILP (enter_before))
2056 call2 (enter_before, make_number (old_position),
2057 make_number (charpos));
2058 if (! EQ (enter_after, leave_after) && !NILP (enter_after))
2059 call2 (enter_after, make_number (old_position),
2060 make_number (charpos));
2061 }
2062 }
2063 \f
2064 /* Move point to POSITION, unless POSITION is inside an intangible
2065 segment that reaches all the way to point. */
2066
2067 void
2068 move_if_not_intangible (position)
2069 int position;
2070 {
2071 Lisp_Object pos;
2072 Lisp_Object intangible_propval;
2073
2074 XSETINT (pos, position);
2075
2076 if (! NILP (Vinhibit_point_motion_hooks))
2077 /* If intangible is inhibited, always move point to POSITION. */
2078 ;
2079 else if (PT < position && XINT (pos) < ZV)
2080 {
2081 /* We want to move forward, so check the text before POSITION. */
2082
2083 intangible_propval = Fget_char_property (pos,
2084 Qintangible, Qnil);
2085
2086 /* If following char is intangible,
2087 skip back over all chars with matching intangible property. */
2088 if (! NILP (intangible_propval))
2089 while (XINT (pos) > BEGV
2090 && EQ (Fget_char_property (make_number (XINT (pos) - 1),
2091 Qintangible, Qnil),
2092 intangible_propval))
2093 pos = Fprevious_char_property_change (pos, Qnil);
2094 }
2095 else if (XINT (pos) > BEGV)
2096 {
2097 /* We want to move backward, so check the text after POSITION. */
2098
2099 intangible_propval = Fget_char_property (make_number (XINT (pos) - 1),
2100 Qintangible, Qnil);
2101
2102 /* If following char is intangible,
2103 skip forward over all chars with matching intangible property. */
2104 if (! NILP (intangible_propval))
2105 while (XINT (pos) < ZV
2106 && EQ (Fget_char_property (pos, Qintangible, Qnil),
2107 intangible_propval))
2108 pos = Fnext_char_property_change (pos, Qnil);
2109
2110 }
2111
2112 /* If the whole stretch between PT and POSITION isn't intangible,
2113 try moving to POSITION (which means we actually move farther
2114 if POSITION is inside of intangible text). */
2115
2116 if (XINT (pos) != PT)
2117 SET_PT (position);
2118 }
2119 \f
2120 /* If text at position POS has property PROP, set *VAL to the property
2121 value, *START and *END to the beginning and end of a region that
2122 has the same property, and return 1. Otherwise return 0.
2123
2124 OBJECT is the string or buffer to look for the property in;
2125 nil means the current buffer. */
2126
2127 int
2128 get_property_and_range (pos, prop, val, start, end, object)
2129 int pos;
2130 Lisp_Object prop, *val;
2131 int *start, *end;
2132 Lisp_Object object;
2133 {
2134 INTERVAL i, prev, next;
2135
2136 if (NILP (object))
2137 i = find_interval (BUF_INTERVALS (current_buffer), pos);
2138 else if (BUFFERP (object))
2139 i = find_interval (BUF_INTERVALS (XBUFFER (object)), pos);
2140 else if (STRINGP (object))
2141 i = find_interval (XSTRING (object)->intervals, pos);
2142 else
2143 abort ();
2144
2145 if (NULL_INTERVAL_P (i) || (i->position + LENGTH (i) <= pos))
2146 return 0;
2147 *val = textget (i->plist, prop);
2148 if (NILP (*val))
2149 return 0;
2150
2151 next = i; /* remember it in advance */
2152 prev = previous_interval (i);
2153 while (! NULL_INTERVAL_P (prev)
2154 && EQ (*val, textget (prev->plist, prop)))
2155 i = prev, prev = previous_interval (prev);
2156 *start = i->position;
2157
2158 next = next_interval (i);
2159 while (! NULL_INTERVAL_P (next)
2160 && EQ (*val, textget (next->plist, prop)))
2161 i = next, next = next_interval (next);
2162 *end = i->position + LENGTH (i);
2163
2164 return 1;
2165 }
2166 \f
2167 /* Return the proper local keymap TYPE for position POSITION in
2168 BUFFER; TYPE should be one of `keymap' or `local-map'. Use the map
2169 specified by the PROP property, if any. Otherwise, if TYPE is
2170 `local-map' use BUFFER's local map. */
2171
2172 Lisp_Object
2173 get_local_map (position, buffer, type)
2174 register int position;
2175 register struct buffer *buffer;
2176 Lisp_Object type;
2177 {
2178 Lisp_Object prop, lispy_position, lispy_buffer;
2179 int old_begv, old_zv, old_begv_byte, old_zv_byte;
2180
2181 /* Perhaps we should just change `position' to the limit. */
2182 if (position > BUF_Z (buffer) || position < BUF_BEG (buffer))
2183 abort ();
2184
2185 /* Ignore narrowing, so that a local map continues to be valid even if
2186 the visible region contains no characters and hence no properties. */
2187 old_begv = BUF_BEGV (buffer);
2188 old_zv = BUF_ZV (buffer);
2189 old_begv_byte = BUF_BEGV_BYTE (buffer);
2190 old_zv_byte = BUF_ZV_BYTE (buffer);
2191 BUF_BEGV (buffer) = BUF_BEG (buffer);
2192 BUF_ZV (buffer) = BUF_Z (buffer);
2193 BUF_BEGV_BYTE (buffer) = BUF_BEG_BYTE (buffer);
2194 BUF_ZV_BYTE (buffer) = BUF_Z_BYTE (buffer);
2195
2196 /* There are no properties at the end of the buffer, so in that case
2197 check for a local map on the last character of the buffer instead. */
2198 if (position == BUF_Z (buffer) && BUF_Z (buffer) > BUF_BEG (buffer))
2199 --position;
2200 XSETFASTINT (lispy_position, position);
2201 XSETBUFFER (lispy_buffer, buffer);
2202 prop = Fget_char_property (lispy_position, type, lispy_buffer);
2203
2204 BUF_BEGV (buffer) = old_begv;
2205 BUF_ZV (buffer) = old_zv;
2206 BUF_BEGV_BYTE (buffer) = old_begv_byte;
2207 BUF_ZV_BYTE (buffer) = old_zv_byte;
2208
2209 /* Use the local map only if it is valid. */
2210 prop = get_keymap (prop, 0, 0);
2211 if (CONSP (prop))
2212 return prop;
2213
2214 if (EQ (type, Qkeymap))
2215 return Qnil;
2216 else
2217 return buffer->keymap;
2218 }
2219 \f
2220 /* Produce an interval tree reflecting the intervals in
2221 TREE from START to START + LENGTH.
2222 The new interval tree has no parent and has a starting-position of 0. */
2223
2224 INTERVAL
2225 copy_intervals (tree, start, length)
2226 INTERVAL tree;
2227 int start, length;
2228 {
2229 register INTERVAL i, new, t;
2230 register int got, prevlen;
2231
2232 if (NULL_INTERVAL_P (tree) || length <= 0)
2233 return NULL_INTERVAL;
2234
2235 i = find_interval (tree, start);
2236 if (NULL_INTERVAL_P (i) || LENGTH (i) == 0)
2237 abort ();
2238
2239 /* If there is only one interval and it's the default, return nil. */
2240 if ((start - i->position + 1 + length) < LENGTH (i)
2241 && DEFAULT_INTERVAL_P (i))
2242 return NULL_INTERVAL;
2243
2244 new = make_interval ();
2245 new->position = 0;
2246 got = (LENGTH (i) - (start - i->position));
2247 new->total_length = length;
2248 copy_properties (i, new);
2249
2250 t = new;
2251 prevlen = got;
2252 while (got < length)
2253 {
2254 i = next_interval (i);
2255 t = split_interval_right (t, prevlen);
2256 copy_properties (i, t);
2257 prevlen = LENGTH (i);
2258 got += prevlen;
2259 }
2260
2261 return balance_an_interval (new);
2262 }
2263
2264 /* Give STRING the properties of BUFFER from POSITION to LENGTH. */
2265
2266 INLINE void
2267 copy_intervals_to_string (string, buffer, position, length)
2268 Lisp_Object string;
2269 struct buffer *buffer;
2270 int position, length;
2271 {
2272 INTERVAL interval_copy = copy_intervals (BUF_INTERVALS (buffer),
2273 position, length);
2274 if (NULL_INTERVAL_P (interval_copy))
2275 return;
2276
2277 SET_INTERVAL_OBJECT (interval_copy, string);
2278 XSTRING (string)->intervals = interval_copy;
2279 }
2280 \f
2281 /* Return 1 if strings S1 and S2 have identical properties; 0 otherwise.
2282 Assume they have identical characters. */
2283
2284 int
2285 compare_string_intervals (s1, s2)
2286 Lisp_Object s1, s2;
2287 {
2288 INTERVAL i1, i2;
2289 int pos = 0;
2290 int end = XSTRING (s1)->size;
2291
2292 i1 = find_interval (XSTRING (s1)->intervals, 0);
2293 i2 = find_interval (XSTRING (s2)->intervals, 0);
2294
2295 while (pos < end)
2296 {
2297 /* Determine how far we can go before we reach the end of I1 or I2. */
2298 int len1 = (i1 != 0 ? INTERVAL_LAST_POS (i1) : end) - pos;
2299 int len2 = (i2 != 0 ? INTERVAL_LAST_POS (i2) : end) - pos;
2300 int distance = min (len1, len2);
2301
2302 /* If we ever find a mismatch between the strings,
2303 they differ. */
2304 if (! intervals_equal (i1, i2))
2305 return 0;
2306
2307 /* Advance POS till the end of the shorter interval,
2308 and advance one or both interval pointers for the new position. */
2309 pos += distance;
2310 if (len1 == distance)
2311 i1 = next_interval (i1);
2312 if (len2 == distance)
2313 i2 = next_interval (i2);
2314 }
2315 return 1;
2316 }
2317 \f
2318 /* Recursively adjust interval I in the current buffer
2319 for setting enable_multibyte_characters to MULTI_FLAG.
2320 The range of interval I is START ... END in characters,
2321 START_BYTE ... END_BYTE in bytes. */
2322
2323 static void
2324 set_intervals_multibyte_1 (i, multi_flag, start, start_byte, end, end_byte)
2325 INTERVAL i;
2326 int multi_flag;
2327 int start, start_byte, end, end_byte;
2328 {
2329 /* Fix the length of this interval. */
2330 if (multi_flag)
2331 i->total_length = end - start;
2332 else
2333 i->total_length = end_byte - start_byte;
2334
2335 /* Recursively fix the length of the subintervals. */
2336 if (i->left)
2337 {
2338 int left_end, left_end_byte;
2339
2340 if (multi_flag)
2341 {
2342 left_end_byte = start_byte + LEFT_TOTAL_LENGTH (i);
2343 left_end = BYTE_TO_CHAR (left_end_byte);
2344 }
2345 else
2346 {
2347 left_end = start + LEFT_TOTAL_LENGTH (i);
2348 left_end_byte = CHAR_TO_BYTE (left_end);
2349 }
2350
2351 set_intervals_multibyte_1 (i->left, multi_flag, start, start_byte,
2352 left_end, left_end_byte);
2353 }
2354 if (i->right)
2355 {
2356 int right_start_byte, right_start;
2357
2358 if (multi_flag)
2359 {
2360 right_start_byte = end_byte - RIGHT_TOTAL_LENGTH (i);
2361 right_start = BYTE_TO_CHAR (right_start_byte);
2362 }
2363 else
2364 {
2365 right_start = end - RIGHT_TOTAL_LENGTH (i);
2366 right_start_byte = CHAR_TO_BYTE (right_start);
2367 }
2368
2369 set_intervals_multibyte_1 (i->right, multi_flag,
2370 right_start, right_start_byte,
2371 end, end_byte);
2372 }
2373 }
2374
2375 /* Update the intervals of the current buffer
2376 to fit the contents as multibyte (if MULTI_FLAG is 1)
2377 or to fit them as non-multibyte (if MULTI_FLAG is 0). */
2378
2379 void
2380 set_intervals_multibyte (multi_flag)
2381 int multi_flag;
2382 {
2383 if (BUF_INTERVALS (current_buffer))
2384 set_intervals_multibyte_1 (BUF_INTERVALS (current_buffer), multi_flag,
2385 BEG, BEG_BYTE, Z, Z_BYTE);
2386 }