]> code.delx.au - gnu-emacs/blob - src/regex.c
Merge from emacs-24; up to 2014-06-27T16:27:08Z!rgm@gnu.org
[gnu-emacs] / src / regex.c
1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
3 internationalization features.)
4
5 Copyright (C) 1993-2014 Free Software Foundation, Inc.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* TODO:
21 - structure the opcode space into opcode+flag.
22 - merge with glibc's regex.[ch].
23 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
24 need to modify the compiled regexp so that re_match can be reentrant.
25 - get rid of on_failure_jump_smart by doing the optimization in re_comp
26 rather than at run-time, so that re_match can be reentrant.
27 */
28
29 /* AIX requires this to be the first thing in the file. */
30 #if defined _AIX && !defined REGEX_MALLOC
31 #pragma alloca
32 #endif
33
34 /* Ignore some GCC warnings for now. This section should go away
35 once the Emacs and Gnulib regex code is merged. */
36 #if 4 < __GNUC__ + (5 <= __GNUC_MINOR__) || defined __clang__
37 # pragma GCC diagnostic ignored "-Wstrict-overflow"
38 # ifndef emacs
39 # pragma GCC diagnostic ignored "-Wunused-function"
40 # pragma GCC diagnostic ignored "-Wunused-macros"
41 # pragma GCC diagnostic ignored "-Wunused-result"
42 # pragma GCC diagnostic ignored "-Wunused-variable"
43 # endif
44 #endif
45
46 #if 4 < __GNUC__ + (6 <= __GNUC_MINOR__) && ! defined __clang__
47 # pragma GCC diagnostic ignored "-Wunused-but-set-variable"
48 #endif
49
50 #include <config.h>
51
52 #include <stddef.h>
53
54 #ifdef emacs
55 /* We need this for `regex.h', and perhaps for the Emacs include files. */
56 # include <sys/types.h>
57 #endif
58
59 /* Whether to use ISO C Amendment 1 wide char functions.
60 Those should not be used for Emacs since it uses its own. */
61 #if defined _LIBC
62 #define WIDE_CHAR_SUPPORT 1
63 #else
64 #define WIDE_CHAR_SUPPORT \
65 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
66 #endif
67
68 /* For platform which support the ISO C amendment 1 functionality we
69 support user defined character classes. */
70 #if WIDE_CHAR_SUPPORT
71 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
72 # include <wchar.h>
73 # include <wctype.h>
74 #endif
75
76 #ifdef _LIBC
77 /* We have to keep the namespace clean. */
78 # define regfree(preg) __regfree (preg)
79 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
80 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
81 # define regerror(err_code, preg, errbuf, errbuf_size) \
82 __regerror (err_code, preg, errbuf, errbuf_size)
83 # define re_set_registers(bu, re, nu, st, en) \
84 __re_set_registers (bu, re, nu, st, en)
85 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
86 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
87 # define re_match(bufp, string, size, pos, regs) \
88 __re_match (bufp, string, size, pos, regs)
89 # define re_search(bufp, string, size, startpos, range, regs) \
90 __re_search (bufp, string, size, startpos, range, regs)
91 # define re_compile_pattern(pattern, length, bufp) \
92 __re_compile_pattern (pattern, length, bufp)
93 # define re_set_syntax(syntax) __re_set_syntax (syntax)
94 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
95 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
96 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
97
98 /* Make sure we call libc's function even if the user overrides them. */
99 # define btowc __btowc
100 # define iswctype __iswctype
101 # define wctype __wctype
102
103 # define WEAK_ALIAS(a,b) weak_alias (a, b)
104
105 /* We are also using some library internals. */
106 # include <locale/localeinfo.h>
107 # include <locale/elem-hash.h>
108 # include <langinfo.h>
109 #else
110 # define WEAK_ALIAS(a,b)
111 #endif
112
113 /* This is for other GNU distributions with internationalized messages. */
114 #if HAVE_LIBINTL_H || defined _LIBC
115 # include <libintl.h>
116 #else
117 # define gettext(msgid) (msgid)
118 #endif
119
120 #ifndef gettext_noop
121 /* This define is so xgettext can find the internationalizable
122 strings. */
123 # define gettext_noop(String) String
124 #endif
125
126 /* The `emacs' switch turns on certain matching commands
127 that make sense only in Emacs. */
128 #ifdef emacs
129
130 # include "lisp.h"
131 # include "character.h"
132 # include "buffer.h"
133
134 # include "syntax.h"
135 # include "category.h"
136
137 /* Make syntax table lookup grant data in gl_state. */
138 # define SYNTAX(c) syntax_property (c, 1)
139
140 # ifdef malloc
141 # undef malloc
142 # endif
143 # define malloc xmalloc
144 # ifdef realloc
145 # undef realloc
146 # endif
147 # define realloc xrealloc
148 # ifdef free
149 # undef free
150 # endif
151 # define free xfree
152
153 /* Converts the pointer to the char to BEG-based offset from the start. */
154 # define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
155 # define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
156
157 # define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
158 # define RE_TARGET_MULTIBYTE_P(bufp) ((bufp)->target_multibyte)
159 # define RE_STRING_CHAR(p, multibyte) \
160 (multibyte ? (STRING_CHAR (p)) : (*(p)))
161 # define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) \
162 (multibyte ? (STRING_CHAR_AND_LENGTH (p, len)) : ((len) = 1, *(p)))
163
164 # define RE_CHAR_TO_MULTIBYTE(c) UNIBYTE_TO_CHAR (c)
165
166 # define RE_CHAR_TO_UNIBYTE(c) CHAR_TO_BYTE_SAFE (c)
167
168 /* Set C a (possibly converted to multibyte) character before P. P
169 points into a string which is the virtual concatenation of STR1
170 (which ends at END1) or STR2 (which ends at END2). */
171 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
172 do { \
173 if (target_multibyte) \
174 { \
175 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
176 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
177 while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp)); \
178 c = STRING_CHAR (dtemp); \
179 } \
180 else \
181 { \
182 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
183 (c) = RE_CHAR_TO_MULTIBYTE (c); \
184 } \
185 } while (0)
186
187 /* Set C a (possibly converted to multibyte) character at P, and set
188 LEN to the byte length of that character. */
189 # define GET_CHAR_AFTER(c, p, len) \
190 do { \
191 if (target_multibyte) \
192 (c) = STRING_CHAR_AND_LENGTH (p, len); \
193 else \
194 { \
195 (c) = *p; \
196 len = 1; \
197 (c) = RE_CHAR_TO_MULTIBYTE (c); \
198 } \
199 } while (0)
200
201 #else /* not emacs */
202
203 /* If we are not linking with Emacs proper,
204 we can't use the relocating allocator
205 even if config.h says that we can. */
206 # undef REL_ALLOC
207
208 # include <unistd.h>
209
210 /* When used in Emacs's lib-src, we need xmalloc and xrealloc. */
211
212 static void *
213 xmalloc (size_t size)
214 {
215 void *val = malloc (size);
216 if (!val && size)
217 {
218 write (2, "virtual memory exhausted\n", 25);
219 exit (1);
220 }
221 return val;
222 }
223
224 static void *
225 xrealloc (void *block, size_t size)
226 {
227 void *val;
228 /* We must call malloc explicitly when BLOCK is 0, since some
229 reallocs don't do this. */
230 if (! block)
231 val = malloc (size);
232 else
233 val = realloc (block, size);
234 if (!val && size)
235 {
236 write (2, "virtual memory exhausted\n", 25);
237 exit (1);
238 }
239 return val;
240 }
241
242 # ifdef malloc
243 # undef malloc
244 # endif
245 # define malloc xmalloc
246 # ifdef realloc
247 # undef realloc
248 # endif
249 # define realloc xrealloc
250
251 # include <stdbool.h>
252 # include <string.h>
253
254 /* Define the syntax stuff for \<, \>, etc. */
255
256 /* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
257 enum syntaxcode { Swhitespace = 0, Sword = 1, Ssymbol = 2 };
258
259 /* Dummy macros for non-Emacs environments. */
260 # define MAX_MULTIBYTE_LENGTH 1
261 # define RE_MULTIBYTE_P(x) 0
262 # define RE_TARGET_MULTIBYTE_P(x) 0
263 # define WORD_BOUNDARY_P(c1, c2) (0)
264 # define BYTES_BY_CHAR_HEAD(p) (1)
265 # define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
266 # define STRING_CHAR(p) (*(p))
267 # define RE_STRING_CHAR(p, multibyte) STRING_CHAR (p)
268 # define CHAR_STRING(c, s) (*(s) = (c), 1)
269 # define STRING_CHAR_AND_LENGTH(p, actual_len) ((actual_len) = 1, *(p))
270 # define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) STRING_CHAR_AND_LENGTH (p, len)
271 # define RE_CHAR_TO_MULTIBYTE(c) (c)
272 # define RE_CHAR_TO_UNIBYTE(c) (c)
273 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
274 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
275 # define GET_CHAR_AFTER(c, p, len) \
276 (c = *p, len = 1)
277 # define CHAR_BYTE8_P(c) (0)
278 # define CHAR_LEADING_CODE(c) (c)
279
280 #endif /* not emacs */
281
282 #ifndef RE_TRANSLATE
283 # define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
284 # define RE_TRANSLATE_P(TBL) (TBL)
285 #endif
286 \f
287 /* Get the interface, including the syntax bits. */
288 #include "regex.h"
289
290 /* isalpha etc. are used for the character classes. */
291 #include <ctype.h>
292
293 #ifdef emacs
294
295 /* 1 if C is an ASCII character. */
296 # define IS_REAL_ASCII(c) ((c) < 0200)
297
298 /* 1 if C is a unibyte character. */
299 # define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
300
301 /* The Emacs definitions should not be directly affected by locales. */
302
303 /* In Emacs, these are only used for single-byte characters. */
304 # define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
305 # define ISCNTRL(c) ((c) < ' ')
306 # define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
307 || ((c) >= 'a' && (c) <= 'f') \
308 || ((c) >= 'A' && (c) <= 'F'))
309
310 /* This is only used for single-byte characters. */
311 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
312
313 /* The rest must handle multibyte characters. */
314
315 # define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
316 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
317 : 1)
318
319 # define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
320 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
321 : 1)
322
323 # define ISALNUM(c) (IS_REAL_ASCII (c) \
324 ? (((c) >= 'a' && (c) <= 'z') \
325 || ((c) >= 'A' && (c) <= 'Z') \
326 || ((c) >= '0' && (c) <= '9')) \
327 : SYNTAX (c) == Sword)
328
329 # define ISALPHA(c) (IS_REAL_ASCII (c) \
330 ? (((c) >= 'a' && (c) <= 'z') \
331 || ((c) >= 'A' && (c) <= 'Z')) \
332 : SYNTAX (c) == Sword)
333
334 # define ISLOWER(c) lowercasep (c)
335
336 # define ISPUNCT(c) (IS_REAL_ASCII (c) \
337 ? ((c) > ' ' && (c) < 0177 \
338 && !(((c) >= 'a' && (c) <= 'z') \
339 || ((c) >= 'A' && (c) <= 'Z') \
340 || ((c) >= '0' && (c) <= '9'))) \
341 : SYNTAX (c) != Sword)
342
343 # define ISSPACE(c) (SYNTAX (c) == Swhitespace)
344
345 # define ISUPPER(c) uppercasep (c)
346
347 # define ISWORD(c) (SYNTAX (c) == Sword)
348
349 #else /* not emacs */
350
351 /* 1 if C is an ASCII character. */
352 # define IS_REAL_ASCII(c) ((c) < 0200)
353
354 /* This distinction is not meaningful, except in Emacs. */
355 # define ISUNIBYTE(c) 1
356
357 # ifdef isblank
358 # define ISBLANK(c) isblank (c)
359 # else
360 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
361 # endif
362 # ifdef isgraph
363 # define ISGRAPH(c) isgraph (c)
364 # else
365 # define ISGRAPH(c) (isprint (c) && !isspace (c))
366 # endif
367
368 /* Solaris defines ISPRINT so we must undefine it first. */
369 # undef ISPRINT
370 # define ISPRINT(c) isprint (c)
371 # define ISDIGIT(c) isdigit (c)
372 # define ISALNUM(c) isalnum (c)
373 # define ISALPHA(c) isalpha (c)
374 # define ISCNTRL(c) iscntrl (c)
375 # define ISLOWER(c) islower (c)
376 # define ISPUNCT(c) ispunct (c)
377 # define ISSPACE(c) isspace (c)
378 # define ISUPPER(c) isupper (c)
379 # define ISXDIGIT(c) isxdigit (c)
380
381 # define ISWORD(c) ISALPHA (c)
382
383 # ifdef _tolower
384 # define TOLOWER(c) _tolower (c)
385 # else
386 # define TOLOWER(c) tolower (c)
387 # endif
388
389 /* How many characters in the character set. */
390 # define CHAR_SET_SIZE 256
391
392 # ifdef SYNTAX_TABLE
393
394 extern char *re_syntax_table;
395
396 # else /* not SYNTAX_TABLE */
397
398 static char re_syntax_table[CHAR_SET_SIZE];
399
400 static void
401 init_syntax_once (void)
402 {
403 register int c;
404 static int done = 0;
405
406 if (done)
407 return;
408
409 memset (re_syntax_table, 0, sizeof re_syntax_table);
410
411 for (c = 0; c < CHAR_SET_SIZE; ++c)
412 if (ISALNUM (c))
413 re_syntax_table[c] = Sword;
414
415 re_syntax_table['_'] = Ssymbol;
416
417 done = 1;
418 }
419
420 # endif /* not SYNTAX_TABLE */
421
422 # define SYNTAX(c) re_syntax_table[(c)]
423
424 #endif /* not emacs */
425 \f
426 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
427 \f
428 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
429 use `alloca' instead of `malloc'. This is because using malloc in
430 re_search* or re_match* could cause memory leaks when C-g is used in
431 Emacs; also, malloc is slower and causes storage fragmentation. On
432 the other hand, malloc is more portable, and easier to debug.
433
434 Because we sometimes use alloca, some routines have to be macros,
435 not functions -- `alloca'-allocated space disappears at the end of the
436 function it is called in. */
437
438 #ifdef REGEX_MALLOC
439
440 # define REGEX_ALLOCATE malloc
441 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
442 # define REGEX_FREE free
443
444 #else /* not REGEX_MALLOC */
445
446 /* Emacs already defines alloca, sometimes. */
447 # ifndef alloca
448
449 /* Make alloca work the best possible way. */
450 # ifdef __GNUC__
451 # define alloca __builtin_alloca
452 # else /* not __GNUC__ */
453 # ifdef HAVE_ALLOCA_H
454 # include <alloca.h>
455 # endif /* HAVE_ALLOCA_H */
456 # endif /* not __GNUC__ */
457
458 # endif /* not alloca */
459
460 # define REGEX_ALLOCATE alloca
461
462 /* Assumes a `char *destination' variable. */
463 # define REGEX_REALLOCATE(source, osize, nsize) \
464 (destination = alloca (nsize), \
465 memcpy (destination, source, osize))
466
467 /* No need to do anything to free, after alloca. */
468 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
469
470 #endif /* not REGEX_MALLOC */
471
472 /* Define how to allocate the failure stack. */
473
474 #if defined REL_ALLOC && defined REGEX_MALLOC
475
476 # define REGEX_ALLOCATE_STACK(size) \
477 r_alloc (&failure_stack_ptr, (size))
478 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
479 r_re_alloc (&failure_stack_ptr, (nsize))
480 # define REGEX_FREE_STACK(ptr) \
481 r_alloc_free (&failure_stack_ptr)
482
483 #else /* not using relocating allocator */
484
485 # ifdef REGEX_MALLOC
486
487 # define REGEX_ALLOCATE_STACK malloc
488 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
489 # define REGEX_FREE_STACK free
490
491 # else /* not REGEX_MALLOC */
492
493 # define REGEX_ALLOCATE_STACK alloca
494
495 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
496 REGEX_REALLOCATE (source, osize, nsize)
497 /* No need to explicitly free anything. */
498 # define REGEX_FREE_STACK(arg) ((void)0)
499
500 # endif /* not REGEX_MALLOC */
501 #endif /* not using relocating allocator */
502
503
504 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
505 `string1' or just past its end. This works if PTR is NULL, which is
506 a good thing. */
507 #define FIRST_STRING_P(ptr) \
508 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
509
510 /* (Re)Allocate N items of type T using malloc, or fail. */
511 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
512 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
513 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
514
515 #define BYTEWIDTH 8 /* In bits. */
516
517 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
518
519 #undef MAX
520 #undef MIN
521 #define MAX(a, b) ((a) > (b) ? (a) : (b))
522 #define MIN(a, b) ((a) < (b) ? (a) : (b))
523
524 /* Type of source-pattern and string chars. */
525 #ifdef _MSC_VER
526 typedef unsigned char re_char;
527 typedef const re_char const_re_char;
528 #else
529 typedef const unsigned char re_char;
530 typedef re_char const_re_char;
531 #endif
532
533 typedef char boolean;
534
535 static regoff_t re_match_2_internal (struct re_pattern_buffer *bufp,
536 re_char *string1, size_t size1,
537 re_char *string2, size_t size2,
538 ssize_t pos,
539 struct re_registers *regs,
540 ssize_t stop);
541 \f
542 /* These are the command codes that appear in compiled regular
543 expressions. Some opcodes are followed by argument bytes. A
544 command code can specify any interpretation whatsoever for its
545 arguments. Zero bytes may appear in the compiled regular expression. */
546
547 typedef enum
548 {
549 no_op = 0,
550
551 /* Succeed right away--no more backtracking. */
552 succeed,
553
554 /* Followed by one byte giving n, then by n literal bytes. */
555 exactn,
556
557 /* Matches any (more or less) character. */
558 anychar,
559
560 /* Matches any one char belonging to specified set. First
561 following byte is number of bitmap bytes. Then come bytes
562 for a bitmap saying which chars are in. Bits in each byte
563 are ordered low-bit-first. A character is in the set if its
564 bit is 1. A character too large to have a bit in the map is
565 automatically not in the set.
566
567 If the length byte has the 0x80 bit set, then that stuff
568 is followed by a range table:
569 2 bytes of flags for character sets (low 8 bits, high 8 bits)
570 See RANGE_TABLE_WORK_BITS below.
571 2 bytes, the number of pairs that follow (upto 32767)
572 pairs, each 2 multibyte characters,
573 each multibyte character represented as 3 bytes. */
574 charset,
575
576 /* Same parameters as charset, but match any character that is
577 not one of those specified. */
578 charset_not,
579
580 /* Start remembering the text that is matched, for storing in a
581 register. Followed by one byte with the register number, in
582 the range 0 to one less than the pattern buffer's re_nsub
583 field. */
584 start_memory,
585
586 /* Stop remembering the text that is matched and store it in a
587 memory register. Followed by one byte with the register
588 number, in the range 0 to one less than `re_nsub' in the
589 pattern buffer. */
590 stop_memory,
591
592 /* Match a duplicate of something remembered. Followed by one
593 byte containing the register number. */
594 duplicate,
595
596 /* Fail unless at beginning of line. */
597 begline,
598
599 /* Fail unless at end of line. */
600 endline,
601
602 /* Succeeds if at beginning of buffer (if emacs) or at beginning
603 of string to be matched (if not). */
604 begbuf,
605
606 /* Analogously, for end of buffer/string. */
607 endbuf,
608
609 /* Followed by two byte relative address to which to jump. */
610 jump,
611
612 /* Followed by two-byte relative address of place to resume at
613 in case of failure. */
614 on_failure_jump,
615
616 /* Like on_failure_jump, but pushes a placeholder instead of the
617 current string position when executed. */
618 on_failure_keep_string_jump,
619
620 /* Just like `on_failure_jump', except that it checks that we
621 don't get stuck in an infinite loop (matching an empty string
622 indefinitely). */
623 on_failure_jump_loop,
624
625 /* Just like `on_failure_jump_loop', except that it checks for
626 a different kind of loop (the kind that shows up with non-greedy
627 operators). This operation has to be immediately preceded
628 by a `no_op'. */
629 on_failure_jump_nastyloop,
630
631 /* A smart `on_failure_jump' used for greedy * and + operators.
632 It analyzes the loop before which it is put and if the
633 loop does not require backtracking, it changes itself to
634 `on_failure_keep_string_jump' and short-circuits the loop,
635 else it just defaults to changing itself into `on_failure_jump'.
636 It assumes that it is pointing to just past a `jump'. */
637 on_failure_jump_smart,
638
639 /* Followed by two-byte relative address and two-byte number n.
640 After matching N times, jump to the address upon failure.
641 Does not work if N starts at 0: use on_failure_jump_loop
642 instead. */
643 succeed_n,
644
645 /* Followed by two-byte relative address, and two-byte number n.
646 Jump to the address N times, then fail. */
647 jump_n,
648
649 /* Set the following two-byte relative address to the
650 subsequent two-byte number. The address *includes* the two
651 bytes of number. */
652 set_number_at,
653
654 wordbeg, /* Succeeds if at word beginning. */
655 wordend, /* Succeeds if at word end. */
656
657 wordbound, /* Succeeds if at a word boundary. */
658 notwordbound, /* Succeeds if not at a word boundary. */
659
660 symbeg, /* Succeeds if at symbol beginning. */
661 symend, /* Succeeds if at symbol end. */
662
663 /* Matches any character whose syntax is specified. Followed by
664 a byte which contains a syntax code, e.g., Sword. */
665 syntaxspec,
666
667 /* Matches any character whose syntax is not that specified. */
668 notsyntaxspec
669
670 #ifdef emacs
671 ,before_dot, /* Succeeds if before point. */
672 at_dot, /* Succeeds if at point. */
673 after_dot, /* Succeeds if after point. */
674
675 /* Matches any character whose category-set contains the specified
676 category. The operator is followed by a byte which contains a
677 category code (mnemonic ASCII character). */
678 categoryspec,
679
680 /* Matches any character whose category-set does not contain the
681 specified category. The operator is followed by a byte which
682 contains the category code (mnemonic ASCII character). */
683 notcategoryspec
684 #endif /* emacs */
685 } re_opcode_t;
686 \f
687 /* Common operations on the compiled pattern. */
688
689 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
690
691 #define STORE_NUMBER(destination, number) \
692 do { \
693 (destination)[0] = (number) & 0377; \
694 (destination)[1] = (number) >> 8; \
695 } while (0)
696
697 /* Same as STORE_NUMBER, except increment DESTINATION to
698 the byte after where the number is stored. Therefore, DESTINATION
699 must be an lvalue. */
700
701 #define STORE_NUMBER_AND_INCR(destination, number) \
702 do { \
703 STORE_NUMBER (destination, number); \
704 (destination) += 2; \
705 } while (0)
706
707 /* Put into DESTINATION a number stored in two contiguous bytes starting
708 at SOURCE. */
709
710 #define EXTRACT_NUMBER(destination, source) \
711 ((destination) = extract_number (source))
712
713 static int
714 extract_number (re_char *source)
715 {
716 unsigned leading_byte = SIGN_EXTEND_CHAR (source[1]);
717 return (leading_byte << 8) + source[0];
718 }
719
720 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
721 SOURCE must be an lvalue. */
722
723 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
724 ((destination) = extract_number_and_incr (&source))
725
726 static int
727 extract_number_and_incr (re_char **source)
728 {
729 int num = extract_number (*source);
730 *source += 2;
731 return num;
732 }
733 \f
734 /* Store a multibyte character in three contiguous bytes starting
735 DESTINATION, and increment DESTINATION to the byte after where the
736 character is stored. Therefore, DESTINATION must be an lvalue. */
737
738 #define STORE_CHARACTER_AND_INCR(destination, character) \
739 do { \
740 (destination)[0] = (character) & 0377; \
741 (destination)[1] = ((character) >> 8) & 0377; \
742 (destination)[2] = (character) >> 16; \
743 (destination) += 3; \
744 } while (0)
745
746 /* Put into DESTINATION a character stored in three contiguous bytes
747 starting at SOURCE. */
748
749 #define EXTRACT_CHARACTER(destination, source) \
750 do { \
751 (destination) = ((source)[0] \
752 | ((source)[1] << 8) \
753 | ((source)[2] << 16)); \
754 } while (0)
755
756
757 /* Macros for charset. */
758
759 /* Size of bitmap of charset P in bytes. P is a start of charset,
760 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
761 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
762
763 /* Nonzero if charset P has range table. */
764 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
765
766 /* Return the address of range table of charset P. But not the start
767 of table itself, but the before where the number of ranges is
768 stored. `2 +' means to skip re_opcode_t and size of bitmap,
769 and the 2 bytes of flags at the start of the range table. */
770 #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
771
772 #ifdef emacs
773 /* Extract the bit flags that start a range table. */
774 #define CHARSET_RANGE_TABLE_BITS(p) \
775 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
776 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
777 #endif
778
779 /* Return the address of end of RANGE_TABLE. COUNT is number of
780 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
781 is start of range and end of range. `* 3' is size of each start
782 and end. */
783 #define CHARSET_RANGE_TABLE_END(range_table, count) \
784 ((range_table) + (count) * 2 * 3)
785
786 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
787 COUNT is number of ranges in RANGE_TABLE. */
788 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
789 do \
790 { \
791 re_wchar_t range_start, range_end; \
792 re_char *rtp; \
793 re_char *range_table_end \
794 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
795 \
796 for (rtp = (range_table); rtp < range_table_end; rtp += 2 * 3) \
797 { \
798 EXTRACT_CHARACTER (range_start, rtp); \
799 EXTRACT_CHARACTER (range_end, rtp + 3); \
800 \
801 if (range_start <= (c) && (c) <= range_end) \
802 { \
803 (not) = !(not); \
804 break; \
805 } \
806 } \
807 } \
808 while (0)
809
810 /* Test if C is in range table of CHARSET. The flag NOT is negated if
811 C is listed in it. */
812 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
813 do \
814 { \
815 /* Number of ranges in range table. */ \
816 int count; \
817 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
818 \
819 EXTRACT_NUMBER_AND_INCR (count, range_table); \
820 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
821 } \
822 while (0)
823 \f
824 /* If DEBUG is defined, Regex prints many voluminous messages about what
825 it is doing (if the variable `debug' is nonzero). If linked with the
826 main program in `iregex.c', you can enter patterns and strings
827 interactively. And if linked with the main program in `main.c' and
828 the other test files, you can run the already-written tests. */
829
830 #ifdef DEBUG
831
832 /* We use standard I/O for debugging. */
833 # include <stdio.h>
834
835 /* It is useful to test things that ``must'' be true when debugging. */
836 # include <assert.h>
837
838 static int debug = -100000;
839
840 # define DEBUG_STATEMENT(e) e
841 # define DEBUG_PRINT(...) if (debug > 0) printf (__VA_ARGS__)
842 # define DEBUG_COMPILES_ARGUMENTS
843 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
844 if (debug > 0) print_partial_compiled_pattern (s, e)
845 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
846 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
847
848
849 /* Print the fastmap in human-readable form. */
850
851 static void
852 print_fastmap (char *fastmap)
853 {
854 unsigned was_a_range = 0;
855 unsigned i = 0;
856
857 while (i < (1 << BYTEWIDTH))
858 {
859 if (fastmap[i++])
860 {
861 was_a_range = 0;
862 putchar (i - 1);
863 while (i < (1 << BYTEWIDTH) && fastmap[i])
864 {
865 was_a_range = 1;
866 i++;
867 }
868 if (was_a_range)
869 {
870 printf ("-");
871 putchar (i - 1);
872 }
873 }
874 }
875 putchar ('\n');
876 }
877
878
879 /* Print a compiled pattern string in human-readable form, starting at
880 the START pointer into it and ending just before the pointer END. */
881
882 static void
883 print_partial_compiled_pattern (re_char *start, re_char *end)
884 {
885 int mcnt, mcnt2;
886 re_char *p = start;
887 re_char *pend = end;
888
889 if (start == NULL)
890 {
891 fprintf (stderr, "(null)\n");
892 return;
893 }
894
895 /* Loop over pattern commands. */
896 while (p < pend)
897 {
898 fprintf (stderr, "%td:\t", p - start);
899
900 switch ((re_opcode_t) *p++)
901 {
902 case no_op:
903 fprintf (stderr, "/no_op");
904 break;
905
906 case succeed:
907 fprintf (stderr, "/succeed");
908 break;
909
910 case exactn:
911 mcnt = *p++;
912 fprintf (stderr, "/exactn/%d", mcnt);
913 do
914 {
915 fprintf (stderr, "/%c", *p++);
916 }
917 while (--mcnt);
918 break;
919
920 case start_memory:
921 fprintf (stderr, "/start_memory/%d", *p++);
922 break;
923
924 case stop_memory:
925 fprintf (stderr, "/stop_memory/%d", *p++);
926 break;
927
928 case duplicate:
929 fprintf (stderr, "/duplicate/%d", *p++);
930 break;
931
932 case anychar:
933 fprintf (stderr, "/anychar");
934 break;
935
936 case charset:
937 case charset_not:
938 {
939 register int c, last = -100;
940 register int in_range = 0;
941 int length = CHARSET_BITMAP_SIZE (p - 1);
942 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
943
944 fprintf (stderr, "/charset [%s",
945 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
946
947 if (p + *p >= pend)
948 fprintf (stderr, " !extends past end of pattern! ");
949
950 for (c = 0; c < 256; c++)
951 if (c / 8 < length
952 && (p[1 + (c/8)] & (1 << (c % 8))))
953 {
954 /* Are we starting a range? */
955 if (last + 1 == c && ! in_range)
956 {
957 fprintf (stderr, "-");
958 in_range = 1;
959 }
960 /* Have we broken a range? */
961 else if (last + 1 != c && in_range)
962 {
963 fprintf (stderr, "%c", last);
964 in_range = 0;
965 }
966
967 if (! in_range)
968 fprintf (stderr, "%c", c);
969
970 last = c;
971 }
972
973 if (in_range)
974 fprintf (stderr, "%c", last);
975
976 fprintf (stderr, "]");
977
978 p += 1 + length;
979
980 if (has_range_table)
981 {
982 int count;
983 fprintf (stderr, "has-range-table");
984
985 /* ??? Should print the range table; for now, just skip it. */
986 p += 2; /* skip range table bits */
987 EXTRACT_NUMBER_AND_INCR (count, p);
988 p = CHARSET_RANGE_TABLE_END (p, count);
989 }
990 }
991 break;
992
993 case begline:
994 fprintf (stderr, "/begline");
995 break;
996
997 case endline:
998 fprintf (stderr, "/endline");
999 break;
1000
1001 case on_failure_jump:
1002 EXTRACT_NUMBER_AND_INCR (mcnt, p);
1003 fprintf (stderr, "/on_failure_jump to %td", p + mcnt - start);
1004 break;
1005
1006 case on_failure_keep_string_jump:
1007 EXTRACT_NUMBER_AND_INCR (mcnt, p);
1008 fprintf (stderr, "/on_failure_keep_string_jump to %td",
1009 p + mcnt - start);
1010 break;
1011
1012 case on_failure_jump_nastyloop:
1013 EXTRACT_NUMBER_AND_INCR (mcnt, p);
1014 fprintf (stderr, "/on_failure_jump_nastyloop to %td",
1015 p + mcnt - start);
1016 break;
1017
1018 case on_failure_jump_loop:
1019 EXTRACT_NUMBER_AND_INCR (mcnt, p);
1020 fprintf (stderr, "/on_failure_jump_loop to %td",
1021 p + mcnt - start);
1022 break;
1023
1024 case on_failure_jump_smart:
1025 EXTRACT_NUMBER_AND_INCR (mcnt, p);
1026 fprintf (stderr, "/on_failure_jump_smart to %td",
1027 p + mcnt - start);
1028 break;
1029
1030 case jump:
1031 EXTRACT_NUMBER_AND_INCR (mcnt, p);
1032 fprintf (stderr, "/jump to %td", p + mcnt - start);
1033 break;
1034
1035 case succeed_n:
1036 EXTRACT_NUMBER_AND_INCR (mcnt, p);
1037 EXTRACT_NUMBER_AND_INCR (mcnt2, p);
1038 fprintf (stderr, "/succeed_n to %td, %d times",
1039 p - 2 + mcnt - start, mcnt2);
1040 break;
1041
1042 case jump_n:
1043 EXTRACT_NUMBER_AND_INCR (mcnt, p);
1044 EXTRACT_NUMBER_AND_INCR (mcnt2, p);
1045 fprintf (stderr, "/jump_n to %td, %d times",
1046 p - 2 + mcnt - start, mcnt2);
1047 break;
1048
1049 case set_number_at:
1050 EXTRACT_NUMBER_AND_INCR (mcnt, p);
1051 EXTRACT_NUMBER_AND_INCR (mcnt2, p);
1052 fprintf (stderr, "/set_number_at location %td to %d",
1053 p - 2 + mcnt - start, mcnt2);
1054 break;
1055
1056 case wordbound:
1057 fprintf (stderr, "/wordbound");
1058 break;
1059
1060 case notwordbound:
1061 fprintf (stderr, "/notwordbound");
1062 break;
1063
1064 case wordbeg:
1065 fprintf (stderr, "/wordbeg");
1066 break;
1067
1068 case wordend:
1069 fprintf (stderr, "/wordend");
1070 break;
1071
1072 case symbeg:
1073 fprintf (stderr, "/symbeg");
1074 break;
1075
1076 case symend:
1077 fprintf (stderr, "/symend");
1078 break;
1079
1080 case syntaxspec:
1081 fprintf (stderr, "/syntaxspec");
1082 mcnt = *p++;
1083 fprintf (stderr, "/%d", mcnt);
1084 break;
1085
1086 case notsyntaxspec:
1087 fprintf (stderr, "/notsyntaxspec");
1088 mcnt = *p++;
1089 fprintf (stderr, "/%d", mcnt);
1090 break;
1091
1092 # ifdef emacs
1093 case before_dot:
1094 fprintf (stderr, "/before_dot");
1095 break;
1096
1097 case at_dot:
1098 fprintf (stderr, "/at_dot");
1099 break;
1100
1101 case after_dot:
1102 fprintf (stderr, "/after_dot");
1103 break;
1104
1105 case categoryspec:
1106 fprintf (stderr, "/categoryspec");
1107 mcnt = *p++;
1108 fprintf (stderr, "/%d", mcnt);
1109 break;
1110
1111 case notcategoryspec:
1112 fprintf (stderr, "/notcategoryspec");
1113 mcnt = *p++;
1114 fprintf (stderr, "/%d", mcnt);
1115 break;
1116 # endif /* emacs */
1117
1118 case begbuf:
1119 fprintf (stderr, "/begbuf");
1120 break;
1121
1122 case endbuf:
1123 fprintf (stderr, "/endbuf");
1124 break;
1125
1126 default:
1127 fprintf (stderr, "?%d", *(p-1));
1128 }
1129
1130 fprintf (stderr, "\n");
1131 }
1132
1133 fprintf (stderr, "%td:\tend of pattern.\n", p - start);
1134 }
1135
1136
1137 static void
1138 print_compiled_pattern (struct re_pattern_buffer *bufp)
1139 {
1140 re_char *buffer = bufp->buffer;
1141
1142 print_partial_compiled_pattern (buffer, buffer + bufp->used);
1143 printf ("%ld bytes used/%ld bytes allocated.\n",
1144 bufp->used, bufp->allocated);
1145
1146 if (bufp->fastmap_accurate && bufp->fastmap)
1147 {
1148 printf ("fastmap: ");
1149 print_fastmap (bufp->fastmap);
1150 }
1151
1152 printf ("re_nsub: %zu\t", bufp->re_nsub);
1153 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1154 printf ("can_be_null: %d\t", bufp->can_be_null);
1155 printf ("no_sub: %d\t", bufp->no_sub);
1156 printf ("not_bol: %d\t", bufp->not_bol);
1157 printf ("not_eol: %d\t", bufp->not_eol);
1158 printf ("syntax: %lx\n", bufp->syntax);
1159 fflush (stdout);
1160 /* Perhaps we should print the translate table? */
1161 }
1162
1163
1164 static void
1165 print_double_string (re_char *where, re_char *string1, ssize_t size1,
1166 re_char *string2, ssize_t size2)
1167 {
1168 ssize_t this_char;
1169
1170 if (where == NULL)
1171 printf ("(null)");
1172 else
1173 {
1174 if (FIRST_STRING_P (where))
1175 {
1176 for (this_char = where - string1; this_char < size1; this_char++)
1177 putchar (string1[this_char]);
1178
1179 where = string2;
1180 }
1181
1182 for (this_char = where - string2; this_char < size2; this_char++)
1183 putchar (string2[this_char]);
1184 }
1185 }
1186
1187 #else /* not DEBUG */
1188
1189 # undef assert
1190 # define assert(e)
1191
1192 # define DEBUG_STATEMENT(e)
1193 # define DEBUG_PRINT(...)
1194 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1195 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1196
1197 #endif /* not DEBUG */
1198 \f
1199 /* Use this to suppress gcc's `...may be used before initialized' warnings. */
1200 #ifdef lint
1201 # define IF_LINT(Code) Code
1202 #else
1203 # define IF_LINT(Code) /* empty */
1204 #endif
1205 \f
1206 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1207 also be assigned to arbitrarily: each pattern buffer stores its own
1208 syntax, so it can be changed between regex compilations. */
1209 /* This has no initializer because initialized variables in Emacs
1210 become read-only after dumping. */
1211 reg_syntax_t re_syntax_options;
1212
1213
1214 /* Specify the precise syntax of regexps for compilation. This provides
1215 for compatibility for various utilities which historically have
1216 different, incompatible syntaxes.
1217
1218 The argument SYNTAX is a bit mask comprised of the various bits
1219 defined in regex.h. We return the old syntax. */
1220
1221 reg_syntax_t
1222 re_set_syntax (reg_syntax_t syntax)
1223 {
1224 reg_syntax_t ret = re_syntax_options;
1225
1226 re_syntax_options = syntax;
1227 return ret;
1228 }
1229 WEAK_ALIAS (__re_set_syntax, re_set_syntax)
1230
1231 /* Regexp to use to replace spaces, or NULL meaning don't. */
1232 static const_re_char *whitespace_regexp;
1233
1234 void
1235 re_set_whitespace_regexp (const char *regexp)
1236 {
1237 whitespace_regexp = (const_re_char *) regexp;
1238 }
1239 WEAK_ALIAS (__re_set_syntax, re_set_syntax)
1240 \f
1241 /* This table gives an error message for each of the error codes listed
1242 in regex.h. Obviously the order here has to be same as there.
1243 POSIX doesn't require that we do anything for REG_NOERROR,
1244 but why not be nice? */
1245
1246 static const char *re_error_msgid[] =
1247 {
1248 gettext_noop ("Success"), /* REG_NOERROR */
1249 gettext_noop ("No match"), /* REG_NOMATCH */
1250 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1251 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1252 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1253 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1254 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1255 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1256 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1257 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1258 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1259 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1260 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1261 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1262 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1263 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1264 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1265 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
1266 };
1267 \f
1268 /* Avoiding alloca during matching, to placate r_alloc. */
1269
1270 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1271 searching and matching functions should not call alloca. On some
1272 systems, alloca is implemented in terms of malloc, and if we're
1273 using the relocating allocator routines, then malloc could cause a
1274 relocation, which might (if the strings being searched are in the
1275 ralloc heap) shift the data out from underneath the regexp
1276 routines.
1277
1278 Here's another reason to avoid allocation: Emacs
1279 processes input from X in a signal handler; processing X input may
1280 call malloc; if input arrives while a matching routine is calling
1281 malloc, then we're scrod. But Emacs can't just block input while
1282 calling matching routines; then we don't notice interrupts when
1283 they come in. So, Emacs blocks input around all regexp calls
1284 except the matching calls, which it leaves unprotected, in the
1285 faith that they will not malloc. */
1286
1287 /* Normally, this is fine. */
1288 #define MATCH_MAY_ALLOCATE
1289
1290 /* The match routines may not allocate if (1) they would do it with malloc
1291 and (2) it's not safe for them to use malloc.
1292 Note that if REL_ALLOC is defined, matching would not use malloc for the
1293 failure stack, but we would still use it for the register vectors;
1294 so REL_ALLOC should not affect this. */
1295 #if defined REGEX_MALLOC && defined emacs
1296 # undef MATCH_MAY_ALLOCATE
1297 #endif
1298
1299 \f
1300 /* Failure stack declarations and macros; both re_compile_fastmap and
1301 re_match_2 use a failure stack. These have to be macros because of
1302 REGEX_ALLOCATE_STACK. */
1303
1304
1305 /* Approximate number of failure points for which to initially allocate space
1306 when matching. If this number is exceeded, we allocate more
1307 space, so it is not a hard limit. */
1308 #ifndef INIT_FAILURE_ALLOC
1309 # define INIT_FAILURE_ALLOC 20
1310 #endif
1311
1312 /* Roughly the maximum number of failure points on the stack. Would be
1313 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1314 This is a variable only so users of regex can assign to it; we never
1315 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1316 before using it, so it should probably be a byte-count instead. */
1317 # if defined MATCH_MAY_ALLOCATE
1318 /* Note that 4400 was enough to cause a crash on Alpha OSF/1,
1319 whose default stack limit is 2mb. In order for a larger
1320 value to work reliably, you have to try to make it accord
1321 with the process stack limit. */
1322 size_t re_max_failures = 40000;
1323 # else
1324 size_t re_max_failures = 4000;
1325 # endif
1326
1327 union fail_stack_elt
1328 {
1329 re_char *pointer;
1330 /* This should be the biggest `int' that's no bigger than a pointer. */
1331 long integer;
1332 };
1333
1334 typedef union fail_stack_elt fail_stack_elt_t;
1335
1336 typedef struct
1337 {
1338 fail_stack_elt_t *stack;
1339 size_t size;
1340 size_t avail; /* Offset of next open position. */
1341 size_t frame; /* Offset of the cur constructed frame. */
1342 } fail_stack_type;
1343
1344 #define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
1345
1346
1347 /* Define macros to initialize and free the failure stack.
1348 Do `return -2' if the alloc fails. */
1349
1350 #ifdef MATCH_MAY_ALLOCATE
1351 # define INIT_FAIL_STACK() \
1352 do { \
1353 fail_stack.stack = \
1354 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1355 * sizeof (fail_stack_elt_t)); \
1356 \
1357 if (fail_stack.stack == NULL) \
1358 return -2; \
1359 \
1360 fail_stack.size = INIT_FAILURE_ALLOC; \
1361 fail_stack.avail = 0; \
1362 fail_stack.frame = 0; \
1363 } while (0)
1364 #else
1365 # define INIT_FAIL_STACK() \
1366 do { \
1367 fail_stack.avail = 0; \
1368 fail_stack.frame = 0; \
1369 } while (0)
1370
1371 # define RETALLOC_IF(addr, n, t) \
1372 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
1373 #endif
1374
1375
1376 /* Double the size of FAIL_STACK, up to a limit
1377 which allows approximately `re_max_failures' items.
1378
1379 Return 1 if succeeds, and 0 if either ran out of memory
1380 allocating space for it or it was already too large.
1381
1382 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1383
1384 /* Factor to increase the failure stack size by
1385 when we increase it.
1386 This used to be 2, but 2 was too wasteful
1387 because the old discarded stacks added up to as much space
1388 were as ultimate, maximum-size stack. */
1389 #define FAIL_STACK_GROWTH_FACTOR 4
1390
1391 #define GROW_FAIL_STACK(fail_stack) \
1392 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1393 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
1394 ? 0 \
1395 : ((fail_stack).stack \
1396 = REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1397 (fail_stack).size * sizeof (fail_stack_elt_t), \
1398 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1399 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1400 * FAIL_STACK_GROWTH_FACTOR))), \
1401 \
1402 (fail_stack).stack == NULL \
1403 ? 0 \
1404 : ((fail_stack).size \
1405 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1406 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1407 * FAIL_STACK_GROWTH_FACTOR)) \
1408 / sizeof (fail_stack_elt_t)), \
1409 1)))
1410
1411
1412 /* Push a pointer value onto the failure stack.
1413 Assumes the variable `fail_stack'. Probably should only
1414 be called from within `PUSH_FAILURE_POINT'. */
1415 #define PUSH_FAILURE_POINTER(item) \
1416 fail_stack.stack[fail_stack.avail++].pointer = (item)
1417
1418 /* This pushes an integer-valued item onto the failure stack.
1419 Assumes the variable `fail_stack'. Probably should only
1420 be called from within `PUSH_FAILURE_POINT'. */
1421 #define PUSH_FAILURE_INT(item) \
1422 fail_stack.stack[fail_stack.avail++].integer = (item)
1423
1424 /* These POP... operations complement the PUSH... operations.
1425 All assume that `fail_stack' is nonempty. */
1426 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1427 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1428
1429 /* Individual items aside from the registers. */
1430 #define NUM_NONREG_ITEMS 3
1431
1432 /* Used to examine the stack (to detect infinite loops). */
1433 #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
1434 #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
1435 #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1436 #define TOP_FAILURE_HANDLE() fail_stack.frame
1437
1438
1439 #define ENSURE_FAIL_STACK(space) \
1440 while (REMAINING_AVAIL_SLOTS <= space) { \
1441 if (!GROW_FAIL_STACK (fail_stack)) \
1442 return -2; \
1443 DEBUG_PRINT ("\n Doubled stack; size now: %zd\n", (fail_stack).size);\
1444 DEBUG_PRINT (" slots available: %zd\n", REMAINING_AVAIL_SLOTS);\
1445 }
1446
1447 /* Push register NUM onto the stack. */
1448 #define PUSH_FAILURE_REG(num) \
1449 do { \
1450 char *destination; \
1451 long n = num; \
1452 ENSURE_FAIL_STACK(3); \
1453 DEBUG_PRINT (" Push reg %ld (spanning %p -> %p)\n", \
1454 n, regstart[n], regend[n]); \
1455 PUSH_FAILURE_POINTER (regstart[n]); \
1456 PUSH_FAILURE_POINTER (regend[n]); \
1457 PUSH_FAILURE_INT (n); \
1458 } while (0)
1459
1460 /* Change the counter's value to VAL, but make sure that it will
1461 be reset when backtracking. */
1462 #define PUSH_NUMBER(ptr,val) \
1463 do { \
1464 char *destination; \
1465 int c; \
1466 ENSURE_FAIL_STACK(3); \
1467 EXTRACT_NUMBER (c, ptr); \
1468 DEBUG_PRINT (" Push number %p = %d -> %d\n", ptr, c, val); \
1469 PUSH_FAILURE_INT (c); \
1470 PUSH_FAILURE_POINTER (ptr); \
1471 PUSH_FAILURE_INT (-1); \
1472 STORE_NUMBER (ptr, val); \
1473 } while (0)
1474
1475 /* Pop a saved register off the stack. */
1476 #define POP_FAILURE_REG_OR_COUNT() \
1477 do { \
1478 long pfreg = POP_FAILURE_INT (); \
1479 if (pfreg == -1) \
1480 { \
1481 /* It's a counter. */ \
1482 /* Here, we discard `const', making re_match non-reentrant. */ \
1483 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
1484 pfreg = POP_FAILURE_INT (); \
1485 STORE_NUMBER (ptr, pfreg); \
1486 DEBUG_PRINT (" Pop counter %p = %ld\n", ptr, pfreg); \
1487 } \
1488 else \
1489 { \
1490 regend[pfreg] = POP_FAILURE_POINTER (); \
1491 regstart[pfreg] = POP_FAILURE_POINTER (); \
1492 DEBUG_PRINT (" Pop reg %ld (spanning %p -> %p)\n", \
1493 pfreg, regstart[pfreg], regend[pfreg]); \
1494 } \
1495 } while (0)
1496
1497 /* Check that we are not stuck in an infinite loop. */
1498 #define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1499 do { \
1500 ssize_t failure = TOP_FAILURE_HANDLE (); \
1501 /* Check for infinite matching loops */ \
1502 while (failure > 0 \
1503 && (FAILURE_STR (failure) == string_place \
1504 || FAILURE_STR (failure) == NULL)) \
1505 { \
1506 assert (FAILURE_PAT (failure) >= bufp->buffer \
1507 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
1508 if (FAILURE_PAT (failure) == pat_cur) \
1509 { \
1510 cycle = 1; \
1511 break; \
1512 } \
1513 DEBUG_PRINT (" Other pattern: %p\n", FAILURE_PAT (failure)); \
1514 failure = NEXT_FAILURE_HANDLE(failure); \
1515 } \
1516 DEBUG_PRINT (" Other string: %p\n", FAILURE_STR (failure)); \
1517 } while (0)
1518
1519 /* Push the information about the state we will need
1520 if we ever fail back to it.
1521
1522 Requires variables fail_stack, regstart, regend and
1523 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1524 declared.
1525
1526 Does `return FAILURE_CODE' if runs out of memory. */
1527
1528 #define PUSH_FAILURE_POINT(pattern, string_place) \
1529 do { \
1530 char *destination; \
1531 /* Must be int, so when we don't save any registers, the arithmetic \
1532 of 0 + -1 isn't done as unsigned. */ \
1533 \
1534 DEBUG_STATEMENT (nfailure_points_pushed++); \
1535 DEBUG_PRINT ("\nPUSH_FAILURE_POINT:\n"); \
1536 DEBUG_PRINT (" Before push, next avail: %zd\n", (fail_stack).avail); \
1537 DEBUG_PRINT (" size: %zd\n", (fail_stack).size);\
1538 \
1539 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1540 \
1541 DEBUG_PRINT ("\n"); \
1542 \
1543 DEBUG_PRINT (" Push frame index: %zd\n", fail_stack.frame); \
1544 PUSH_FAILURE_INT (fail_stack.frame); \
1545 \
1546 DEBUG_PRINT (" Push string %p: `", string_place); \
1547 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1548 DEBUG_PRINT ("'\n"); \
1549 PUSH_FAILURE_POINTER (string_place); \
1550 \
1551 DEBUG_PRINT (" Push pattern %p: ", pattern); \
1552 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1553 PUSH_FAILURE_POINTER (pattern); \
1554 \
1555 /* Close the frame by moving the frame pointer past it. */ \
1556 fail_stack.frame = fail_stack.avail; \
1557 } while (0)
1558
1559 /* Estimate the size of data pushed by a typical failure stack entry.
1560 An estimate is all we need, because all we use this for
1561 is to choose a limit for how big to make the failure stack. */
1562 /* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
1563 #define TYPICAL_FAILURE_SIZE 20
1564
1565 /* How many items can still be added to the stack without overflowing it. */
1566 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1567
1568
1569 /* Pops what PUSH_FAIL_STACK pushes.
1570
1571 We restore into the parameters, all of which should be lvalues:
1572 STR -- the saved data position.
1573 PAT -- the saved pattern position.
1574 REGSTART, REGEND -- arrays of string positions.
1575
1576 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1577 `pend', `string1', `size1', `string2', and `size2'. */
1578
1579 #define POP_FAILURE_POINT(str, pat) \
1580 do { \
1581 assert (!FAIL_STACK_EMPTY ()); \
1582 \
1583 /* Remove failure points and point to how many regs pushed. */ \
1584 DEBUG_PRINT ("POP_FAILURE_POINT:\n"); \
1585 DEBUG_PRINT (" Before pop, next avail: %zd\n", fail_stack.avail); \
1586 DEBUG_PRINT (" size: %zd\n", fail_stack.size); \
1587 \
1588 /* Pop the saved registers. */ \
1589 while (fail_stack.frame < fail_stack.avail) \
1590 POP_FAILURE_REG_OR_COUNT (); \
1591 \
1592 pat = POP_FAILURE_POINTER (); \
1593 DEBUG_PRINT (" Popping pattern %p: ", pat); \
1594 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1595 \
1596 /* If the saved string location is NULL, it came from an \
1597 on_failure_keep_string_jump opcode, and we want to throw away the \
1598 saved NULL, thus retaining our current position in the string. */ \
1599 str = POP_FAILURE_POINTER (); \
1600 DEBUG_PRINT (" Popping string %p: `", str); \
1601 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1602 DEBUG_PRINT ("'\n"); \
1603 \
1604 fail_stack.frame = POP_FAILURE_INT (); \
1605 DEBUG_PRINT (" Popping frame index: %zd\n", fail_stack.frame); \
1606 \
1607 assert (fail_stack.avail >= 0); \
1608 assert (fail_stack.frame <= fail_stack.avail); \
1609 \
1610 DEBUG_STATEMENT (nfailure_points_popped++); \
1611 } while (0) /* POP_FAILURE_POINT */
1612
1613
1614 \f
1615 /* Registers are set to a sentinel when they haven't yet matched. */
1616 #define REG_UNSET(e) ((e) == NULL)
1617 \f
1618 /* Subroutine declarations and macros for regex_compile. */
1619
1620 static reg_errcode_t regex_compile (re_char *pattern, size_t size,
1621 reg_syntax_t syntax,
1622 struct re_pattern_buffer *bufp);
1623 static void store_op1 (re_opcode_t op, unsigned char *loc, int arg);
1624 static void store_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2);
1625 static void insert_op1 (re_opcode_t op, unsigned char *loc,
1626 int arg, unsigned char *end);
1627 static void insert_op2 (re_opcode_t op, unsigned char *loc,
1628 int arg1, int arg2, unsigned char *end);
1629 static boolean at_begline_loc_p (re_char *pattern, re_char *p,
1630 reg_syntax_t syntax);
1631 static boolean at_endline_loc_p (re_char *p, re_char *pend,
1632 reg_syntax_t syntax);
1633 static re_char *skip_one_char (re_char *p);
1634 static int analyse_first (re_char *p, re_char *pend,
1635 char *fastmap, const int multibyte);
1636
1637 /* Fetch the next character in the uncompiled pattern, with no
1638 translation. */
1639 #define PATFETCH(c) \
1640 do { \
1641 int len; \
1642 if (p == pend) return REG_EEND; \
1643 c = RE_STRING_CHAR_AND_LENGTH (p, len, multibyte); \
1644 p += len; \
1645 } while (0)
1646
1647
1648 /* If `translate' is non-null, return translate[D], else just D. We
1649 cast the subscript to translate because some data is declared as
1650 `char *', to avoid warnings when a string constant is passed. But
1651 when we use a character as a subscript we must make it unsigned. */
1652 #ifndef TRANSLATE
1653 # define TRANSLATE(d) \
1654 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
1655 #endif
1656
1657
1658 /* Macros for outputting the compiled pattern into `buffer'. */
1659
1660 /* If the buffer isn't allocated when it comes in, use this. */
1661 #define INIT_BUF_SIZE 32
1662
1663 /* Make sure we have at least N more bytes of space in buffer. */
1664 #define GET_BUFFER_SPACE(n) \
1665 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
1666 EXTEND_BUFFER ()
1667
1668 /* Make sure we have one more byte of buffer space and then add C to it. */
1669 #define BUF_PUSH(c) \
1670 do { \
1671 GET_BUFFER_SPACE (1); \
1672 *b++ = (unsigned char) (c); \
1673 } while (0)
1674
1675
1676 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1677 #define BUF_PUSH_2(c1, c2) \
1678 do { \
1679 GET_BUFFER_SPACE (2); \
1680 *b++ = (unsigned char) (c1); \
1681 *b++ = (unsigned char) (c2); \
1682 } while (0)
1683
1684
1685 /* Store a jump with opcode OP at LOC to location TO. We store a
1686 relative address offset by the three bytes the jump itself occupies. */
1687 #define STORE_JUMP(op, loc, to) \
1688 store_op1 (op, loc, (to) - (loc) - 3)
1689
1690 /* Likewise, for a two-argument jump. */
1691 #define STORE_JUMP2(op, loc, to, arg) \
1692 store_op2 (op, loc, (to) - (loc) - 3, arg)
1693
1694 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1695 #define INSERT_JUMP(op, loc, to) \
1696 insert_op1 (op, loc, (to) - (loc) - 3, b)
1697
1698 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1699 #define INSERT_JUMP2(op, loc, to, arg) \
1700 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1701
1702
1703 /* This is not an arbitrary limit: the arguments which represent offsets
1704 into the pattern are two bytes long. So if 2^15 bytes turns out to
1705 be too small, many things would have to change. */
1706 # define MAX_BUF_SIZE (1L << 15)
1707
1708 /* Extend the buffer by twice its current size via realloc and
1709 reset the pointers that pointed into the old block to point to the
1710 correct places in the new one. If extending the buffer results in it
1711 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1712 #if __BOUNDED_POINTERS__
1713 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1714 # define MOVE_BUFFER_POINTER(P) \
1715 (__ptrlow (P) = new_buffer + (__ptrlow (P) - old_buffer), \
1716 SET_HIGH_BOUND (P), \
1717 __ptrvalue (P) = new_buffer + (__ptrvalue (P) - old_buffer))
1718 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1719 else \
1720 { \
1721 SET_HIGH_BOUND (b); \
1722 SET_HIGH_BOUND (begalt); \
1723 if (fixup_alt_jump) \
1724 SET_HIGH_BOUND (fixup_alt_jump); \
1725 if (laststart) \
1726 SET_HIGH_BOUND (laststart); \
1727 if (pending_exact) \
1728 SET_HIGH_BOUND (pending_exact); \
1729 }
1730 #else
1731 # define MOVE_BUFFER_POINTER(P) ((P) = new_buffer + ((P) - old_buffer))
1732 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
1733 #endif
1734 #define EXTEND_BUFFER() \
1735 do { \
1736 unsigned char *old_buffer = bufp->buffer; \
1737 if (bufp->allocated == MAX_BUF_SIZE) \
1738 return REG_ESIZE; \
1739 bufp->allocated <<= 1; \
1740 if (bufp->allocated > MAX_BUF_SIZE) \
1741 bufp->allocated = MAX_BUF_SIZE; \
1742 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
1743 if (bufp->buffer == NULL) \
1744 return REG_ESPACE; \
1745 /* If the buffer moved, move all the pointers into it. */ \
1746 if (old_buffer != bufp->buffer) \
1747 { \
1748 unsigned char *new_buffer = bufp->buffer; \
1749 MOVE_BUFFER_POINTER (b); \
1750 MOVE_BUFFER_POINTER (begalt); \
1751 if (fixup_alt_jump) \
1752 MOVE_BUFFER_POINTER (fixup_alt_jump); \
1753 if (laststart) \
1754 MOVE_BUFFER_POINTER (laststart); \
1755 if (pending_exact) \
1756 MOVE_BUFFER_POINTER (pending_exact); \
1757 } \
1758 ELSE_EXTEND_BUFFER_HIGH_BOUND \
1759 } while (0)
1760
1761
1762 /* Since we have one byte reserved for the register number argument to
1763 {start,stop}_memory, the maximum number of groups we can report
1764 things about is what fits in that byte. */
1765 #define MAX_REGNUM 255
1766
1767 /* But patterns can have more than `MAX_REGNUM' registers. We just
1768 ignore the excess. */
1769 typedef int regnum_t;
1770
1771
1772 /* Macros for the compile stack. */
1773
1774 /* Since offsets can go either forwards or backwards, this type needs to
1775 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1776 /* int may be not enough when sizeof(int) == 2. */
1777 typedef long pattern_offset_t;
1778
1779 typedef struct
1780 {
1781 pattern_offset_t begalt_offset;
1782 pattern_offset_t fixup_alt_jump;
1783 pattern_offset_t laststart_offset;
1784 regnum_t regnum;
1785 } compile_stack_elt_t;
1786
1787
1788 typedef struct
1789 {
1790 compile_stack_elt_t *stack;
1791 size_t size;
1792 size_t avail; /* Offset of next open position. */
1793 } compile_stack_type;
1794
1795
1796 #define INIT_COMPILE_STACK_SIZE 32
1797
1798 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1799 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1800
1801 /* The next available element. */
1802 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1803
1804 /* Explicit quit checking is needed for Emacs, which uses polling to
1805 process input events. */
1806 #ifdef emacs
1807 # define IMMEDIATE_QUIT_CHECK \
1808 do { \
1809 if (immediate_quit) QUIT; \
1810 } while (0)
1811 #else
1812 # define IMMEDIATE_QUIT_CHECK ((void)0)
1813 #endif
1814 \f
1815 /* Structure to manage work area for range table. */
1816 struct range_table_work_area
1817 {
1818 int *table; /* actual work area. */
1819 int allocated; /* allocated size for work area in bytes. */
1820 int used; /* actually used size in words. */
1821 int bits; /* flag to record character classes */
1822 };
1823
1824 #ifdef emacs
1825
1826 /* Make sure that WORK_AREA can hold more N multibyte characters.
1827 This is used only in set_image_of_range and set_image_of_range_1.
1828 It expects WORK_AREA to be a pointer.
1829 If it can't get the space, it returns from the surrounding function. */
1830
1831 #define EXTEND_RANGE_TABLE(work_area, n) \
1832 do { \
1833 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
1834 { \
1835 extend_range_table_work_area (&work_area); \
1836 if ((work_area).table == 0) \
1837 return (REG_ESPACE); \
1838 } \
1839 } while (0)
1840
1841 #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1842 (work_area).bits |= (bit)
1843
1844 /* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1845 #define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
1846 do { \
1847 EXTEND_RANGE_TABLE ((work_area), 2); \
1848 (work_area).table[(work_area).used++] = (range_start); \
1849 (work_area).table[(work_area).used++] = (range_end); \
1850 } while (0)
1851
1852 #endif /* emacs */
1853
1854 /* Free allocated memory for WORK_AREA. */
1855 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1856 do { \
1857 if ((work_area).table) \
1858 free ((work_area).table); \
1859 } while (0)
1860
1861 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
1862 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1863 #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
1864 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1865
1866 /* Bits used to implement the multibyte-part of the various character classes
1867 such as [:alnum:] in a charset's range table. */
1868 #define BIT_WORD 0x1
1869 #define BIT_LOWER 0x2
1870 #define BIT_PUNCT 0x4
1871 #define BIT_SPACE 0x8
1872 #define BIT_UPPER 0x10
1873 #define BIT_MULTIBYTE 0x20
1874 \f
1875
1876 /* Set the bit for character C in a list. */
1877 #define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
1878
1879
1880 #ifdef emacs
1881
1882 /* Store characters in the range FROM to TO in the bitmap at B (for
1883 ASCII and unibyte characters) and WORK_AREA (for multibyte
1884 characters) while translating them and paying attention to the
1885 continuity of translated characters.
1886
1887 Implementation note: It is better to implement these fairly big
1888 macros by a function, but it's not that easy because macros called
1889 in this macro assume various local variables already declared. */
1890
1891 /* Both FROM and TO are ASCII characters. */
1892
1893 #define SETUP_ASCII_RANGE(work_area, FROM, TO) \
1894 do { \
1895 int C0, C1; \
1896 \
1897 for (C0 = (FROM); C0 <= (TO); C0++) \
1898 { \
1899 C1 = TRANSLATE (C0); \
1900 if (! ASCII_CHAR_P (C1)) \
1901 { \
1902 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
1903 if ((C1 = RE_CHAR_TO_UNIBYTE (C1)) < 0) \
1904 C1 = C0; \
1905 } \
1906 SET_LIST_BIT (C1); \
1907 } \
1908 } while (0)
1909
1910
1911 /* Both FROM and TO are unibyte characters (0x80..0xFF). */
1912
1913 #define SETUP_UNIBYTE_RANGE(work_area, FROM, TO) \
1914 do { \
1915 int C0, C1, C2, I; \
1916 int USED = RANGE_TABLE_WORK_USED (work_area); \
1917 \
1918 for (C0 = (FROM); C0 <= (TO); C0++) \
1919 { \
1920 C1 = RE_CHAR_TO_MULTIBYTE (C0); \
1921 if (CHAR_BYTE8_P (C1)) \
1922 SET_LIST_BIT (C0); \
1923 else \
1924 { \
1925 C2 = TRANSLATE (C1); \
1926 if (C2 == C1 \
1927 || (C1 = RE_CHAR_TO_UNIBYTE (C2)) < 0) \
1928 C1 = C0; \
1929 SET_LIST_BIT (C1); \
1930 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
1931 { \
1932 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
1933 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
1934 \
1935 if (C2 >= from - 1 && C2 <= to + 1) \
1936 { \
1937 if (C2 == from - 1) \
1938 RANGE_TABLE_WORK_ELT (work_area, I)--; \
1939 else if (C2 == to + 1) \
1940 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
1941 break; \
1942 } \
1943 } \
1944 if (I < USED) \
1945 SET_RANGE_TABLE_WORK_AREA ((work_area), C2, C2); \
1946 } \
1947 } \
1948 } while (0)
1949
1950
1951 /* Both FROM and TO are multibyte characters. */
1952
1953 #define SETUP_MULTIBYTE_RANGE(work_area, FROM, TO) \
1954 do { \
1955 int C0, C1, C2, I, USED = RANGE_TABLE_WORK_USED (work_area); \
1956 \
1957 SET_RANGE_TABLE_WORK_AREA ((work_area), (FROM), (TO)); \
1958 for (C0 = (FROM); C0 <= (TO); C0++) \
1959 { \
1960 C1 = TRANSLATE (C0); \
1961 if ((C2 = RE_CHAR_TO_UNIBYTE (C1)) >= 0 \
1962 || (C1 != C0 && (C2 = RE_CHAR_TO_UNIBYTE (C0)) >= 0)) \
1963 SET_LIST_BIT (C2); \
1964 if (C1 >= (FROM) && C1 <= (TO)) \
1965 continue; \
1966 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
1967 { \
1968 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
1969 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
1970 \
1971 if (C1 >= from - 1 && C1 <= to + 1) \
1972 { \
1973 if (C1 == from - 1) \
1974 RANGE_TABLE_WORK_ELT (work_area, I)--; \
1975 else if (C1 == to + 1) \
1976 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
1977 break; \
1978 } \
1979 } \
1980 if (I < USED) \
1981 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
1982 } \
1983 } while (0)
1984
1985 #endif /* emacs */
1986
1987 /* Get the next unsigned number in the uncompiled pattern. */
1988 #define GET_INTERVAL_COUNT(num) \
1989 do { \
1990 if (p == pend) \
1991 FREE_STACK_RETURN (REG_EBRACE); \
1992 else \
1993 { \
1994 PATFETCH (c); \
1995 while ('0' <= c && c <= '9') \
1996 { \
1997 if (num < 0) \
1998 num = 0; \
1999 if (RE_DUP_MAX / 10 - (RE_DUP_MAX % 10 < c - '0') < num) \
2000 FREE_STACK_RETURN (REG_BADBR); \
2001 num = num * 10 + c - '0'; \
2002 if (p == pend) \
2003 FREE_STACK_RETURN (REG_EBRACE); \
2004 PATFETCH (c); \
2005 } \
2006 } \
2007 } while (0)
2008 \f
2009 #if ! WIDE_CHAR_SUPPORT
2010
2011 /* Map a string to the char class it names (if any). */
2012 re_wctype_t
2013 re_wctype (const_re_char *str)
2014 {
2015 const char *string = (const char *) str;
2016 if (STREQ (string, "alnum")) return RECC_ALNUM;
2017 else if (STREQ (string, "alpha")) return RECC_ALPHA;
2018 else if (STREQ (string, "word")) return RECC_WORD;
2019 else if (STREQ (string, "ascii")) return RECC_ASCII;
2020 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
2021 else if (STREQ (string, "graph")) return RECC_GRAPH;
2022 else if (STREQ (string, "lower")) return RECC_LOWER;
2023 else if (STREQ (string, "print")) return RECC_PRINT;
2024 else if (STREQ (string, "punct")) return RECC_PUNCT;
2025 else if (STREQ (string, "space")) return RECC_SPACE;
2026 else if (STREQ (string, "upper")) return RECC_UPPER;
2027 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
2028 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
2029 else if (STREQ (string, "digit")) return RECC_DIGIT;
2030 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
2031 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
2032 else if (STREQ (string, "blank")) return RECC_BLANK;
2033 else return 0;
2034 }
2035
2036 /* True if CH is in the char class CC. */
2037 boolean
2038 re_iswctype (int ch, re_wctype_t cc)
2039 {
2040 switch (cc)
2041 {
2042 case RECC_ALNUM: return ISALNUM (ch) != 0;
2043 case RECC_ALPHA: return ISALPHA (ch) != 0;
2044 case RECC_BLANK: return ISBLANK (ch) != 0;
2045 case RECC_CNTRL: return ISCNTRL (ch) != 0;
2046 case RECC_DIGIT: return ISDIGIT (ch) != 0;
2047 case RECC_GRAPH: return ISGRAPH (ch) != 0;
2048 case RECC_LOWER: return ISLOWER (ch) != 0;
2049 case RECC_PRINT: return ISPRINT (ch) != 0;
2050 case RECC_PUNCT: return ISPUNCT (ch) != 0;
2051 case RECC_SPACE: return ISSPACE (ch) != 0;
2052 case RECC_UPPER: return ISUPPER (ch) != 0;
2053 case RECC_XDIGIT: return ISXDIGIT (ch) != 0;
2054 case RECC_ASCII: return IS_REAL_ASCII (ch) != 0;
2055 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
2056 case RECC_UNIBYTE: return ISUNIBYTE (ch) != 0;
2057 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
2058 case RECC_WORD: return ISWORD (ch) != 0;
2059 case RECC_ERROR: return false;
2060 default:
2061 abort ();
2062 }
2063 }
2064
2065 /* Return a bit-pattern to use in the range-table bits to match multibyte
2066 chars of class CC. */
2067 static int
2068 re_wctype_to_bit (re_wctype_t cc)
2069 {
2070 switch (cc)
2071 {
2072 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
2073 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2074 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
2075 case RECC_LOWER: return BIT_LOWER;
2076 case RECC_UPPER: return BIT_UPPER;
2077 case RECC_PUNCT: return BIT_PUNCT;
2078 case RECC_SPACE: return BIT_SPACE;
2079 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
2080 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
2081 default:
2082 abort ();
2083 }
2084 }
2085 #endif
2086 \f
2087 /* Filling in the work area of a range. */
2088
2089 /* Actually extend the space in WORK_AREA. */
2090
2091 static void
2092 extend_range_table_work_area (struct range_table_work_area *work_area)
2093 {
2094 work_area->allocated += 16 * sizeof (int);
2095 work_area->table = realloc (work_area->table, work_area->allocated);
2096 }
2097
2098 #if 0
2099 #ifdef emacs
2100
2101 /* Carefully find the ranges of codes that are equivalent
2102 under case conversion to the range start..end when passed through
2103 TRANSLATE. Handle the case where non-letters can come in between
2104 two upper-case letters (which happens in Latin-1).
2105 Also handle the case of groups of more than 2 case-equivalent chars.
2106
2107 The basic method is to look at consecutive characters and see
2108 if they can form a run that can be handled as one.
2109
2110 Returns -1 if successful, REG_ESPACE if ran out of space. */
2111
2112 static int
2113 set_image_of_range_1 (struct range_table_work_area *work_area,
2114 re_wchar_t start, re_wchar_t end,
2115 RE_TRANSLATE_TYPE translate)
2116 {
2117 /* `one_case' indicates a character, or a run of characters,
2118 each of which is an isolate (no case-equivalents).
2119 This includes all ASCII non-letters.
2120
2121 `two_case' indicates a character, or a run of characters,
2122 each of which has two case-equivalent forms.
2123 This includes all ASCII letters.
2124
2125 `strange' indicates a character that has more than one
2126 case-equivalent. */
2127
2128 enum case_type {one_case, two_case, strange};
2129
2130 /* Describe the run that is in progress,
2131 which the next character can try to extend.
2132 If run_type is strange, that means there really is no run.
2133 If run_type is one_case, then run_start...run_end is the run.
2134 If run_type is two_case, then the run is run_start...run_end,
2135 and the case-equivalents end at run_eqv_end. */
2136
2137 enum case_type run_type = strange;
2138 int run_start, run_end, run_eqv_end;
2139
2140 Lisp_Object eqv_table;
2141
2142 if (!RE_TRANSLATE_P (translate))
2143 {
2144 EXTEND_RANGE_TABLE (work_area, 2);
2145 work_area->table[work_area->used++] = (start);
2146 work_area->table[work_area->used++] = (end);
2147 return -1;
2148 }
2149
2150 eqv_table = XCHAR_TABLE (translate)->extras[2];
2151
2152 for (; start <= end; start++)
2153 {
2154 enum case_type this_type;
2155 int eqv = RE_TRANSLATE (eqv_table, start);
2156 int minchar, maxchar;
2157
2158 /* Classify this character */
2159 if (eqv == start)
2160 this_type = one_case;
2161 else if (RE_TRANSLATE (eqv_table, eqv) == start)
2162 this_type = two_case;
2163 else
2164 this_type = strange;
2165
2166 if (start < eqv)
2167 minchar = start, maxchar = eqv;
2168 else
2169 minchar = eqv, maxchar = start;
2170
2171 /* Can this character extend the run in progress? */
2172 if (this_type == strange || this_type != run_type
2173 || !(minchar == run_end + 1
2174 && (run_type == two_case
2175 ? maxchar == run_eqv_end + 1 : 1)))
2176 {
2177 /* No, end the run.
2178 Record each of its equivalent ranges. */
2179 if (run_type == one_case)
2180 {
2181 EXTEND_RANGE_TABLE (work_area, 2);
2182 work_area->table[work_area->used++] = run_start;
2183 work_area->table[work_area->used++] = run_end;
2184 }
2185 else if (run_type == two_case)
2186 {
2187 EXTEND_RANGE_TABLE (work_area, 4);
2188 work_area->table[work_area->used++] = run_start;
2189 work_area->table[work_area->used++] = run_end;
2190 work_area->table[work_area->used++]
2191 = RE_TRANSLATE (eqv_table, run_start);
2192 work_area->table[work_area->used++]
2193 = RE_TRANSLATE (eqv_table, run_end);
2194 }
2195 run_type = strange;
2196 }
2197
2198 if (this_type == strange)
2199 {
2200 /* For a strange character, add each of its equivalents, one
2201 by one. Don't start a range. */
2202 do
2203 {
2204 EXTEND_RANGE_TABLE (work_area, 2);
2205 work_area->table[work_area->used++] = eqv;
2206 work_area->table[work_area->used++] = eqv;
2207 eqv = RE_TRANSLATE (eqv_table, eqv);
2208 }
2209 while (eqv != start);
2210 }
2211
2212 /* Add this char to the run, or start a new run. */
2213 else if (run_type == strange)
2214 {
2215 /* Initialize a new range. */
2216 run_type = this_type;
2217 run_start = start;
2218 run_end = start;
2219 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2220 }
2221 else
2222 {
2223 /* Extend a running range. */
2224 run_end = minchar;
2225 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2226 }
2227 }
2228
2229 /* If a run is still in progress at the end, finish it now
2230 by recording its equivalent ranges. */
2231 if (run_type == one_case)
2232 {
2233 EXTEND_RANGE_TABLE (work_area, 2);
2234 work_area->table[work_area->used++] = run_start;
2235 work_area->table[work_area->used++] = run_end;
2236 }
2237 else if (run_type == two_case)
2238 {
2239 EXTEND_RANGE_TABLE (work_area, 4);
2240 work_area->table[work_area->used++] = run_start;
2241 work_area->table[work_area->used++] = run_end;
2242 work_area->table[work_area->used++]
2243 = RE_TRANSLATE (eqv_table, run_start);
2244 work_area->table[work_area->used++]
2245 = RE_TRANSLATE (eqv_table, run_end);
2246 }
2247
2248 return -1;
2249 }
2250
2251 #endif /* emacs */
2252
2253 /* Record the image of the range start..end when passed through
2254 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2255 and is not even necessarily contiguous.
2256 Normally we approximate it with the smallest contiguous range that contains
2257 all the chars we need. However, for Latin-1 we go to extra effort
2258 to do a better job.
2259
2260 This function is not called for ASCII ranges.
2261
2262 Returns -1 if successful, REG_ESPACE if ran out of space. */
2263
2264 static int
2265 set_image_of_range (struct range_table_work_area *work_area,
2266 re_wchar_t start, re_wchar_t end,
2267 RE_TRANSLATE_TYPE translate)
2268 {
2269 re_wchar_t cmin, cmax;
2270
2271 #ifdef emacs
2272 /* For Latin-1 ranges, use set_image_of_range_1
2273 to get proper handling of ranges that include letters and nonletters.
2274 For a range that includes the whole of Latin-1, this is not necessary.
2275 For other character sets, we don't bother to get this right. */
2276 if (RE_TRANSLATE_P (translate) && start < 04400
2277 && !(start < 04200 && end >= 04377))
2278 {
2279 int newend;
2280 int tem;
2281 newend = end;
2282 if (newend > 04377)
2283 newend = 04377;
2284 tem = set_image_of_range_1 (work_area, start, newend, translate);
2285 if (tem > 0)
2286 return tem;
2287
2288 start = 04400;
2289 if (end < 04400)
2290 return -1;
2291 }
2292 #endif
2293
2294 EXTEND_RANGE_TABLE (work_area, 2);
2295 work_area->table[work_area->used++] = (start);
2296 work_area->table[work_area->used++] = (end);
2297
2298 cmin = -1, cmax = -1;
2299
2300 if (RE_TRANSLATE_P (translate))
2301 {
2302 int ch;
2303
2304 for (ch = start; ch <= end; ch++)
2305 {
2306 re_wchar_t c = TRANSLATE (ch);
2307 if (! (start <= c && c <= end))
2308 {
2309 if (cmin == -1)
2310 cmin = c, cmax = c;
2311 else
2312 {
2313 cmin = MIN (cmin, c);
2314 cmax = MAX (cmax, c);
2315 }
2316 }
2317 }
2318
2319 if (cmin != -1)
2320 {
2321 EXTEND_RANGE_TABLE (work_area, 2);
2322 work_area->table[work_area->used++] = (cmin);
2323 work_area->table[work_area->used++] = (cmax);
2324 }
2325 }
2326
2327 return -1;
2328 }
2329 #endif /* 0 */
2330 \f
2331 #ifndef MATCH_MAY_ALLOCATE
2332
2333 /* If we cannot allocate large objects within re_match_2_internal,
2334 we make the fail stack and register vectors global.
2335 The fail stack, we grow to the maximum size when a regexp
2336 is compiled.
2337 The register vectors, we adjust in size each time we
2338 compile a regexp, according to the number of registers it needs. */
2339
2340 static fail_stack_type fail_stack;
2341
2342 /* Size with which the following vectors are currently allocated.
2343 That is so we can make them bigger as needed,
2344 but never make them smaller. */
2345 static int regs_allocated_size;
2346
2347 static re_char ** regstart, ** regend;
2348 static re_char **best_regstart, **best_regend;
2349
2350 /* Make the register vectors big enough for NUM_REGS registers,
2351 but don't make them smaller. */
2352
2353 static
2354 regex_grow_registers (int num_regs)
2355 {
2356 if (num_regs > regs_allocated_size)
2357 {
2358 RETALLOC_IF (regstart, num_regs, re_char *);
2359 RETALLOC_IF (regend, num_regs, re_char *);
2360 RETALLOC_IF (best_regstart, num_regs, re_char *);
2361 RETALLOC_IF (best_regend, num_regs, re_char *);
2362
2363 regs_allocated_size = num_regs;
2364 }
2365 }
2366
2367 #endif /* not MATCH_MAY_ALLOCATE */
2368 \f
2369 static boolean group_in_compile_stack (compile_stack_type compile_stack,
2370 regnum_t regnum);
2371
2372 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2373 Returns one of error codes defined in `regex.h', or zero for success.
2374
2375 Assumes the `allocated' (and perhaps `buffer') and `translate'
2376 fields are set in BUFP on entry.
2377
2378 If it succeeds, results are put in BUFP (if it returns an error, the
2379 contents of BUFP are undefined):
2380 `buffer' is the compiled pattern;
2381 `syntax' is set to SYNTAX;
2382 `used' is set to the length of the compiled pattern;
2383 `fastmap_accurate' is zero;
2384 `re_nsub' is the number of subexpressions in PATTERN;
2385 `not_bol' and `not_eol' are zero;
2386
2387 The `fastmap' field is neither examined nor set. */
2388
2389 /* Insert the `jump' from the end of last alternative to "here".
2390 The space for the jump has already been allocated. */
2391 #define FIXUP_ALT_JUMP() \
2392 do { \
2393 if (fixup_alt_jump) \
2394 STORE_JUMP (jump, fixup_alt_jump, b); \
2395 } while (0)
2396
2397
2398 /* Return, freeing storage we allocated. */
2399 #define FREE_STACK_RETURN(value) \
2400 do { \
2401 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2402 free (compile_stack.stack); \
2403 return value; \
2404 } while (0)
2405
2406 static reg_errcode_t
2407 regex_compile (const_re_char *pattern, size_t size, reg_syntax_t syntax,
2408 struct re_pattern_buffer *bufp)
2409 {
2410 /* We fetch characters from PATTERN here. */
2411 register re_wchar_t c, c1;
2412
2413 /* Points to the end of the buffer, where we should append. */
2414 register unsigned char *b;
2415
2416 /* Keeps track of unclosed groups. */
2417 compile_stack_type compile_stack;
2418
2419 /* Points to the current (ending) position in the pattern. */
2420 #ifdef AIX
2421 /* `const' makes AIX compiler fail. */
2422 unsigned char *p = pattern;
2423 #else
2424 re_char *p = pattern;
2425 #endif
2426 re_char *pend = pattern + size;
2427
2428 /* How to translate the characters in the pattern. */
2429 RE_TRANSLATE_TYPE translate = bufp->translate;
2430
2431 /* Address of the count-byte of the most recently inserted `exactn'
2432 command. This makes it possible to tell if a new exact-match
2433 character can be added to that command or if the character requires
2434 a new `exactn' command. */
2435 unsigned char *pending_exact = 0;
2436
2437 /* Address of start of the most recently finished expression.
2438 This tells, e.g., postfix * where to find the start of its
2439 operand. Reset at the beginning of groups and alternatives. */
2440 unsigned char *laststart = 0;
2441
2442 /* Address of beginning of regexp, or inside of last group. */
2443 unsigned char *begalt;
2444
2445 /* Place in the uncompiled pattern (i.e., the {) to
2446 which to go back if the interval is invalid. */
2447 re_char *beg_interval;
2448
2449 /* Address of the place where a forward jump should go to the end of
2450 the containing expression. Each alternative of an `or' -- except the
2451 last -- ends with a forward jump of this sort. */
2452 unsigned char *fixup_alt_jump = 0;
2453
2454 /* Work area for range table of charset. */
2455 struct range_table_work_area range_table_work;
2456
2457 /* If the object matched can contain multibyte characters. */
2458 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2459
2460 /* Nonzero if we have pushed down into a subpattern. */
2461 int in_subpattern = 0;
2462
2463 /* These hold the values of p, pattern, and pend from the main
2464 pattern when we have pushed into a subpattern. */
2465 re_char *main_p IF_LINT (= NULL);
2466 re_char *main_pattern IF_LINT (= NULL);
2467 re_char *main_pend IF_LINT (= NULL);
2468
2469 #ifdef DEBUG
2470 debug++;
2471 DEBUG_PRINT ("\nCompiling pattern: ");
2472 if (debug > 0)
2473 {
2474 unsigned debug_count;
2475
2476 for (debug_count = 0; debug_count < size; debug_count++)
2477 putchar (pattern[debug_count]);
2478 putchar ('\n');
2479 }
2480 #endif /* DEBUG */
2481
2482 /* Initialize the compile stack. */
2483 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2484 if (compile_stack.stack == NULL)
2485 return REG_ESPACE;
2486
2487 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2488 compile_stack.avail = 0;
2489
2490 range_table_work.table = 0;
2491 range_table_work.allocated = 0;
2492
2493 /* Initialize the pattern buffer. */
2494 bufp->syntax = syntax;
2495 bufp->fastmap_accurate = 0;
2496 bufp->not_bol = bufp->not_eol = 0;
2497 bufp->used_syntax = 0;
2498
2499 /* Set `used' to zero, so that if we return an error, the pattern
2500 printer (for debugging) will think there's no pattern. We reset it
2501 at the end. */
2502 bufp->used = 0;
2503
2504 /* Always count groups, whether or not bufp->no_sub is set. */
2505 bufp->re_nsub = 0;
2506
2507 #if !defined emacs && !defined SYNTAX_TABLE
2508 /* Initialize the syntax table. */
2509 init_syntax_once ();
2510 #endif
2511
2512 if (bufp->allocated == 0)
2513 {
2514 if (bufp->buffer)
2515 { /* If zero allocated, but buffer is non-null, try to realloc
2516 enough space. This loses if buffer's address is bogus, but
2517 that is the user's responsibility. */
2518 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2519 }
2520 else
2521 { /* Caller did not allocate a buffer. Do it for them. */
2522 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2523 }
2524 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2525
2526 bufp->allocated = INIT_BUF_SIZE;
2527 }
2528
2529 begalt = b = bufp->buffer;
2530
2531 /* Loop through the uncompiled pattern until we're at the end. */
2532 while (1)
2533 {
2534 if (p == pend)
2535 {
2536 /* If this is the end of an included regexp,
2537 pop back to the main regexp and try again. */
2538 if (in_subpattern)
2539 {
2540 in_subpattern = 0;
2541 pattern = main_pattern;
2542 p = main_p;
2543 pend = main_pend;
2544 continue;
2545 }
2546 /* If this is the end of the main regexp, we are done. */
2547 break;
2548 }
2549
2550 PATFETCH (c);
2551
2552 switch (c)
2553 {
2554 case ' ':
2555 {
2556 re_char *p1 = p;
2557
2558 /* If there's no special whitespace regexp, treat
2559 spaces normally. And don't try to do this recursively. */
2560 if (!whitespace_regexp || in_subpattern)
2561 goto normal_char;
2562
2563 /* Peek past following spaces. */
2564 while (p1 != pend)
2565 {
2566 if (*p1 != ' ')
2567 break;
2568 p1++;
2569 }
2570 /* If the spaces are followed by a repetition op,
2571 treat them normally. */
2572 if (p1 != pend
2573 && (*p1 == '*' || *p1 == '+' || *p1 == '?'
2574 || (*p1 == '\\' && p1 + 1 != pend && p1[1] == '{')))
2575 goto normal_char;
2576
2577 /* Replace the spaces with the whitespace regexp. */
2578 in_subpattern = 1;
2579 main_p = p1;
2580 main_pend = pend;
2581 main_pattern = pattern;
2582 p = pattern = whitespace_regexp;
2583 pend = p + strlen ((const char *) p);
2584 break;
2585 }
2586
2587 case '^':
2588 {
2589 if ( /* If at start of pattern, it's an operator. */
2590 p == pattern + 1
2591 /* If context independent, it's an operator. */
2592 || syntax & RE_CONTEXT_INDEP_ANCHORS
2593 /* Otherwise, depends on what's come before. */
2594 || at_begline_loc_p (pattern, p, syntax))
2595 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
2596 else
2597 goto normal_char;
2598 }
2599 break;
2600
2601
2602 case '$':
2603 {
2604 if ( /* If at end of pattern, it's an operator. */
2605 p == pend
2606 /* If context independent, it's an operator. */
2607 || syntax & RE_CONTEXT_INDEP_ANCHORS
2608 /* Otherwise, depends on what's next. */
2609 || at_endline_loc_p (p, pend, syntax))
2610 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
2611 else
2612 goto normal_char;
2613 }
2614 break;
2615
2616
2617 case '+':
2618 case '?':
2619 if ((syntax & RE_BK_PLUS_QM)
2620 || (syntax & RE_LIMITED_OPS))
2621 goto normal_char;
2622 handle_plus:
2623 case '*':
2624 /* If there is no previous pattern... */
2625 if (!laststart)
2626 {
2627 if (syntax & RE_CONTEXT_INVALID_OPS)
2628 FREE_STACK_RETURN (REG_BADRPT);
2629 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2630 goto normal_char;
2631 }
2632
2633 {
2634 /* 1 means zero (many) matches is allowed. */
2635 boolean zero_times_ok = 0, many_times_ok = 0;
2636 boolean greedy = 1;
2637
2638 /* If there is a sequence of repetition chars, collapse it
2639 down to just one (the right one). We can't combine
2640 interval operators with these because of, e.g., `a{2}*',
2641 which should only match an even number of `a's. */
2642
2643 for (;;)
2644 {
2645 if ((syntax & RE_FRUGAL)
2646 && c == '?' && (zero_times_ok || many_times_ok))
2647 greedy = 0;
2648 else
2649 {
2650 zero_times_ok |= c != '+';
2651 many_times_ok |= c != '?';
2652 }
2653
2654 if (p == pend)
2655 break;
2656 else if (*p == '*'
2657 || (!(syntax & RE_BK_PLUS_QM)
2658 && (*p == '+' || *p == '?')))
2659 ;
2660 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
2661 {
2662 if (p+1 == pend)
2663 FREE_STACK_RETURN (REG_EESCAPE);
2664 if (p[1] == '+' || p[1] == '?')
2665 PATFETCH (c); /* Gobble up the backslash. */
2666 else
2667 break;
2668 }
2669 else
2670 break;
2671 /* If we get here, we found another repeat character. */
2672 PATFETCH (c);
2673 }
2674
2675 /* Star, etc. applied to an empty pattern is equivalent
2676 to an empty pattern. */
2677 if (!laststart || laststart == b)
2678 break;
2679
2680 /* Now we know whether or not zero matches is allowed
2681 and also whether or not two or more matches is allowed. */
2682 if (greedy)
2683 {
2684 if (many_times_ok)
2685 {
2686 boolean simple = skip_one_char (laststart) == b;
2687 size_t startoffset = 0;
2688 re_opcode_t ofj =
2689 /* Check if the loop can match the empty string. */
2690 (simple || !analyse_first (laststart, b, NULL, 0))
2691 ? on_failure_jump : on_failure_jump_loop;
2692 assert (skip_one_char (laststart) <= b);
2693
2694 if (!zero_times_ok && simple)
2695 { /* Since simple * loops can be made faster by using
2696 on_failure_keep_string_jump, we turn simple P+
2697 into PP* if P is simple. */
2698 unsigned char *p1, *p2;
2699 startoffset = b - laststart;
2700 GET_BUFFER_SPACE (startoffset);
2701 p1 = b; p2 = laststart;
2702 while (p2 < p1)
2703 *b++ = *p2++;
2704 zero_times_ok = 1;
2705 }
2706
2707 GET_BUFFER_SPACE (6);
2708 if (!zero_times_ok)
2709 /* A + loop. */
2710 STORE_JUMP (ofj, b, b + 6);
2711 else
2712 /* Simple * loops can use on_failure_keep_string_jump
2713 depending on what follows. But since we don't know
2714 that yet, we leave the decision up to
2715 on_failure_jump_smart. */
2716 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
2717 laststart + startoffset, b + 6);
2718 b += 3;
2719 STORE_JUMP (jump, b, laststart + startoffset);
2720 b += 3;
2721 }
2722 else
2723 {
2724 /* A simple ? pattern. */
2725 assert (zero_times_ok);
2726 GET_BUFFER_SPACE (3);
2727 INSERT_JUMP (on_failure_jump, laststart, b + 3);
2728 b += 3;
2729 }
2730 }
2731 else /* not greedy */
2732 { /* I wish the greedy and non-greedy cases could be merged. */
2733
2734 GET_BUFFER_SPACE (7); /* We might use less. */
2735 if (many_times_ok)
2736 {
2737 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2738
2739 /* The non-greedy multiple match looks like
2740 a repeat..until: we only need a conditional jump
2741 at the end of the loop. */
2742 if (emptyp) BUF_PUSH (no_op);
2743 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2744 : on_failure_jump, b, laststart);
2745 b += 3;
2746 if (zero_times_ok)
2747 {
2748 /* The repeat...until naturally matches one or more.
2749 To also match zero times, we need to first jump to
2750 the end of the loop (its conditional jump). */
2751 INSERT_JUMP (jump, laststart, b);
2752 b += 3;
2753 }
2754 }
2755 else
2756 {
2757 /* non-greedy a?? */
2758 INSERT_JUMP (jump, laststart, b + 3);
2759 b += 3;
2760 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2761 b += 3;
2762 }
2763 }
2764 }
2765 pending_exact = 0;
2766 break;
2767
2768
2769 case '.':
2770 laststart = b;
2771 BUF_PUSH (anychar);
2772 break;
2773
2774
2775 case '[':
2776 {
2777 re_char *p1;
2778
2779 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
2780
2781 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2782
2783 /* Ensure that we have enough space to push a charset: the
2784 opcode, the length count, and the bitset; 34 bytes in all. */
2785 GET_BUFFER_SPACE (34);
2786
2787 laststart = b;
2788
2789 /* We test `*p == '^' twice, instead of using an if
2790 statement, so we only need one BUF_PUSH. */
2791 BUF_PUSH (*p == '^' ? charset_not : charset);
2792 if (*p == '^')
2793 p++;
2794
2795 /* Remember the first position in the bracket expression. */
2796 p1 = p;
2797
2798 /* Push the number of bytes in the bitmap. */
2799 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2800
2801 /* Clear the whole map. */
2802 memset (b, 0, (1 << BYTEWIDTH) / BYTEWIDTH);
2803
2804 /* charset_not matches newline according to a syntax bit. */
2805 if ((re_opcode_t) b[-2] == charset_not
2806 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2807 SET_LIST_BIT ('\n');
2808
2809 /* Read in characters and ranges, setting map bits. */
2810 for (;;)
2811 {
2812 boolean escaped_char = false;
2813 const unsigned char *p2 = p;
2814 re_wchar_t ch;
2815
2816 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2817
2818 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2819 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2820 So the translation is done later in a loop. Example:
2821 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
2822 PATFETCH (c);
2823
2824 /* \ might escape characters inside [...] and [^...]. */
2825 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2826 {
2827 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2828
2829 PATFETCH (c);
2830 escaped_char = true;
2831 }
2832 else
2833 {
2834 /* Could be the end of the bracket expression. If it's
2835 not (i.e., when the bracket expression is `[]' so
2836 far), the ']' character bit gets set way below. */
2837 if (c == ']' && p2 != p1)
2838 break;
2839 }
2840
2841 /* See if we're at the beginning of a possible character
2842 class. */
2843
2844 if (!escaped_char &&
2845 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2846 {
2847 /* Leave room for the null. */
2848 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
2849 const unsigned char *class_beg;
2850
2851 PATFETCH (c);
2852 c1 = 0;
2853 class_beg = p;
2854
2855 /* If pattern is `[[:'. */
2856 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2857
2858 for (;;)
2859 {
2860 PATFETCH (c);
2861 if ((c == ':' && *p == ']') || p == pend)
2862 break;
2863 if (c1 < CHAR_CLASS_MAX_LENGTH)
2864 str[c1++] = c;
2865 else
2866 /* This is in any case an invalid class name. */
2867 str[0] = '\0';
2868 }
2869 str[c1] = '\0';
2870
2871 /* If isn't a word bracketed by `[:' and `:]':
2872 undo the ending character, the letters, and
2873 leave the leading `:' and `[' (but set bits for
2874 them). */
2875 if (c == ':' && *p == ']')
2876 {
2877 re_wctype_t cc = re_wctype (str);
2878
2879 if (cc == 0)
2880 FREE_STACK_RETURN (REG_ECTYPE);
2881
2882 /* Throw away the ] at the end of the character
2883 class. */
2884 PATFETCH (c);
2885
2886 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2887
2888 #ifndef emacs
2889 for (ch = 0; ch < (1 << BYTEWIDTH); ++ch)
2890 if (re_iswctype (btowc (ch), cc))
2891 {
2892 c = TRANSLATE (ch);
2893 if (c < (1 << BYTEWIDTH))
2894 SET_LIST_BIT (c);
2895 }
2896 #else /* emacs */
2897 /* Most character classes in a multibyte match
2898 just set a flag. Exceptions are is_blank,
2899 is_digit, is_cntrl, and is_xdigit, since
2900 they can only match ASCII characters. We
2901 don't need to handle them for multibyte.
2902 They are distinguished by a negative wctype. */
2903
2904 /* Setup the gl_state object to its buffer-defined
2905 value. This hardcodes the buffer-global
2906 syntax-table for ASCII chars, while the other chars
2907 will obey syntax-table properties. It's not ideal,
2908 but it's the way it's been done until now. */
2909 SETUP_BUFFER_SYNTAX_TABLE ();
2910
2911 for (ch = 0; ch < 256; ++ch)
2912 {
2913 c = RE_CHAR_TO_MULTIBYTE (ch);
2914 if (! CHAR_BYTE8_P (c)
2915 && re_iswctype (c, cc))
2916 {
2917 SET_LIST_BIT (ch);
2918 c1 = TRANSLATE (c);
2919 if (c1 == c)
2920 continue;
2921 if (ASCII_CHAR_P (c1))
2922 SET_LIST_BIT (c1);
2923 else if ((c1 = RE_CHAR_TO_UNIBYTE (c1)) >= 0)
2924 SET_LIST_BIT (c1);
2925 }
2926 }
2927 SET_RANGE_TABLE_WORK_AREA_BIT
2928 (range_table_work, re_wctype_to_bit (cc));
2929 #endif /* emacs */
2930 /* In most cases the matching rule for char classes
2931 only uses the syntax table for multibyte chars,
2932 so that the content of the syntax-table it is not
2933 hardcoded in the range_table. SPACE and WORD are
2934 the two exceptions. */
2935 if ((1 << cc) & ((1 << RECC_SPACE) | (1 << RECC_WORD)))
2936 bufp->used_syntax = 1;
2937
2938 /* Repeat the loop. */
2939 continue;
2940 }
2941 else
2942 {
2943 /* Go back to right after the "[:". */
2944 p = class_beg;
2945 SET_LIST_BIT ('[');
2946
2947 /* Because the `:' may starts the range, we
2948 can't simply set bit and repeat the loop.
2949 Instead, just set it to C and handle below. */
2950 c = ':';
2951 }
2952 }
2953
2954 if (p < pend && p[0] == '-' && p[1] != ']')
2955 {
2956
2957 /* Discard the `-'. */
2958 PATFETCH (c1);
2959
2960 /* Fetch the character which ends the range. */
2961 PATFETCH (c1);
2962 #ifdef emacs
2963 if (CHAR_BYTE8_P (c1)
2964 && ! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
2965 /* Treat the range from a multibyte character to
2966 raw-byte character as empty. */
2967 c = c1 + 1;
2968 #endif /* emacs */
2969 }
2970 else
2971 /* Range from C to C. */
2972 c1 = c;
2973
2974 if (c > c1)
2975 {
2976 if (syntax & RE_NO_EMPTY_RANGES)
2977 FREE_STACK_RETURN (REG_ERANGEX);
2978 /* Else, repeat the loop. */
2979 }
2980 else
2981 {
2982 #ifndef emacs
2983 /* Set the range into bitmap */
2984 for (; c <= c1; c++)
2985 {
2986 ch = TRANSLATE (c);
2987 if (ch < (1 << BYTEWIDTH))
2988 SET_LIST_BIT (ch);
2989 }
2990 #else /* emacs */
2991 if (c < 128)
2992 {
2993 ch = MIN (127, c1);
2994 SETUP_ASCII_RANGE (range_table_work, c, ch);
2995 c = ch + 1;
2996 if (CHAR_BYTE8_P (c1))
2997 c = BYTE8_TO_CHAR (128);
2998 }
2999 if (c <= c1)
3000 {
3001 if (CHAR_BYTE8_P (c))
3002 {
3003 c = CHAR_TO_BYTE8 (c);
3004 c1 = CHAR_TO_BYTE8 (c1);
3005 for (; c <= c1; c++)
3006 SET_LIST_BIT (c);
3007 }
3008 else if (multibyte)
3009 {
3010 SETUP_MULTIBYTE_RANGE (range_table_work, c, c1);
3011 }
3012 else
3013 {
3014 SETUP_UNIBYTE_RANGE (range_table_work, c, c1);
3015 }
3016 }
3017 #endif /* emacs */
3018 }
3019 }
3020
3021 /* Discard any (non)matching list bytes that are all 0 at the
3022 end of the map. Decrease the map-length byte too. */
3023 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3024 b[-1]--;
3025 b += b[-1];
3026
3027 /* Build real range table from work area. */
3028 if (RANGE_TABLE_WORK_USED (range_table_work)
3029 || RANGE_TABLE_WORK_BITS (range_table_work))
3030 {
3031 int i;
3032 int used = RANGE_TABLE_WORK_USED (range_table_work);
3033
3034 /* Allocate space for COUNT + RANGE_TABLE. Needs two
3035 bytes for flags, two for COUNT, and three bytes for
3036 each character. */
3037 GET_BUFFER_SPACE (4 + used * 3);
3038
3039 /* Indicate the existence of range table. */
3040 laststart[1] |= 0x80;
3041
3042 /* Store the character class flag bits into the range table.
3043 If not in emacs, these flag bits are always 0. */
3044 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
3045 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
3046
3047 STORE_NUMBER_AND_INCR (b, used / 2);
3048 for (i = 0; i < used; i++)
3049 STORE_CHARACTER_AND_INCR
3050 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
3051 }
3052 }
3053 break;
3054
3055
3056 case '(':
3057 if (syntax & RE_NO_BK_PARENS)
3058 goto handle_open;
3059 else
3060 goto normal_char;
3061
3062
3063 case ')':
3064 if (syntax & RE_NO_BK_PARENS)
3065 goto handle_close;
3066 else
3067 goto normal_char;
3068
3069
3070 case '\n':
3071 if (syntax & RE_NEWLINE_ALT)
3072 goto handle_alt;
3073 else
3074 goto normal_char;
3075
3076
3077 case '|':
3078 if (syntax & RE_NO_BK_VBAR)
3079 goto handle_alt;
3080 else
3081 goto normal_char;
3082
3083
3084 case '{':
3085 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3086 goto handle_interval;
3087 else
3088 goto normal_char;
3089
3090
3091 case '\\':
3092 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3093
3094 /* Do not translate the character after the \, so that we can
3095 distinguish, e.g., \B from \b, even if we normally would
3096 translate, e.g., B to b. */
3097 PATFETCH (c);
3098
3099 switch (c)
3100 {
3101 case '(':
3102 if (syntax & RE_NO_BK_PARENS)
3103 goto normal_backslash;
3104
3105 handle_open:
3106 {
3107 int shy = 0;
3108 regnum_t regnum = 0;
3109 if (p+1 < pend)
3110 {
3111 /* Look for a special (?...) construct */
3112 if ((syntax & RE_SHY_GROUPS) && *p == '?')
3113 {
3114 PATFETCH (c); /* Gobble up the '?'. */
3115 while (!shy)
3116 {
3117 PATFETCH (c);
3118 switch (c)
3119 {
3120 case ':': shy = 1; break;
3121 case '0':
3122 /* An explicitly specified regnum must start
3123 with non-0. */
3124 if (regnum == 0)
3125 FREE_STACK_RETURN (REG_BADPAT);
3126 case '1': case '2': case '3': case '4':
3127 case '5': case '6': case '7': case '8': case '9':
3128 regnum = 10*regnum + (c - '0'); break;
3129 default:
3130 /* Only (?:...) is supported right now. */
3131 FREE_STACK_RETURN (REG_BADPAT);
3132 }
3133 }
3134 }
3135 }
3136
3137 if (!shy)
3138 regnum = ++bufp->re_nsub;
3139 else if (regnum)
3140 { /* It's actually not shy, but explicitly numbered. */
3141 shy = 0;
3142 if (regnum > bufp->re_nsub)
3143 bufp->re_nsub = regnum;
3144 else if (regnum > bufp->re_nsub
3145 /* Ideally, we'd want to check that the specified
3146 group can't have matched (i.e. all subgroups
3147 using the same regnum are in other branches of
3148 OR patterns), but we don't currently keep track
3149 of enough info to do that easily. */
3150 || group_in_compile_stack (compile_stack, regnum))
3151 FREE_STACK_RETURN (REG_BADPAT);
3152 }
3153 else
3154 /* It's really shy. */
3155 regnum = - bufp->re_nsub;
3156
3157 if (COMPILE_STACK_FULL)
3158 {
3159 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3160 compile_stack_elt_t);
3161 if (compile_stack.stack == NULL) return REG_ESPACE;
3162
3163 compile_stack.size <<= 1;
3164 }
3165
3166 /* These are the values to restore when we hit end of this
3167 group. They are all relative offsets, so that if the
3168 whole pattern moves because of realloc, they will still
3169 be valid. */
3170 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
3171 COMPILE_STACK_TOP.fixup_alt_jump
3172 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
3173 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
3174 COMPILE_STACK_TOP.regnum = regnum;
3175
3176 /* Do not push a start_memory for groups beyond the last one
3177 we can represent in the compiled pattern. */
3178 if (regnum <= MAX_REGNUM && regnum > 0)
3179 BUF_PUSH_2 (start_memory, regnum);
3180
3181 compile_stack.avail++;
3182
3183 fixup_alt_jump = 0;
3184 laststart = 0;
3185 begalt = b;
3186 /* If we've reached MAX_REGNUM groups, then this open
3187 won't actually generate any code, so we'll have to
3188 clear pending_exact explicitly. */
3189 pending_exact = 0;
3190 break;
3191 }
3192
3193 case ')':
3194 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3195
3196 if (COMPILE_STACK_EMPTY)
3197 {
3198 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3199 goto normal_backslash;
3200 else
3201 FREE_STACK_RETURN (REG_ERPAREN);
3202 }
3203
3204 handle_close:
3205 FIXUP_ALT_JUMP ();
3206
3207 /* See similar code for backslashed left paren above. */
3208 if (COMPILE_STACK_EMPTY)
3209 {
3210 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3211 goto normal_char;
3212 else
3213 FREE_STACK_RETURN (REG_ERPAREN);
3214 }
3215
3216 /* Since we just checked for an empty stack above, this
3217 ``can't happen''. */
3218 assert (compile_stack.avail != 0);
3219 {
3220 /* We don't just want to restore into `regnum', because
3221 later groups should continue to be numbered higher,
3222 as in `(ab)c(de)' -- the second group is #2. */
3223 regnum_t regnum;
3224
3225 compile_stack.avail--;
3226 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
3227 fixup_alt_jump
3228 = COMPILE_STACK_TOP.fixup_alt_jump
3229 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
3230 : 0;
3231 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
3232 regnum = COMPILE_STACK_TOP.regnum;
3233 /* If we've reached MAX_REGNUM groups, then this open
3234 won't actually generate any code, so we'll have to
3235 clear pending_exact explicitly. */
3236 pending_exact = 0;
3237
3238 /* We're at the end of the group, so now we know how many
3239 groups were inside this one. */
3240 if (regnum <= MAX_REGNUM && regnum > 0)
3241 BUF_PUSH_2 (stop_memory, regnum);
3242 }
3243 break;
3244
3245
3246 case '|': /* `\|'. */
3247 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3248 goto normal_backslash;
3249 handle_alt:
3250 if (syntax & RE_LIMITED_OPS)
3251 goto normal_char;
3252
3253 /* Insert before the previous alternative a jump which
3254 jumps to this alternative if the former fails. */
3255 GET_BUFFER_SPACE (3);
3256 INSERT_JUMP (on_failure_jump, begalt, b + 6);
3257 pending_exact = 0;
3258 b += 3;
3259
3260 /* The alternative before this one has a jump after it
3261 which gets executed if it gets matched. Adjust that
3262 jump so it will jump to this alternative's analogous
3263 jump (put in below, which in turn will jump to the next
3264 (if any) alternative's such jump, etc.). The last such
3265 jump jumps to the correct final destination. A picture:
3266 _____ _____
3267 | | | |
3268 | v | v
3269 a | b | c
3270
3271 If we are at `b', then fixup_alt_jump right now points to a
3272 three-byte space after `a'. We'll put in the jump, set
3273 fixup_alt_jump to right after `b', and leave behind three
3274 bytes which we'll fill in when we get to after `c'. */
3275
3276 FIXUP_ALT_JUMP ();
3277
3278 /* Mark and leave space for a jump after this alternative,
3279 to be filled in later either by next alternative or
3280 when know we're at the end of a series of alternatives. */
3281 fixup_alt_jump = b;
3282 GET_BUFFER_SPACE (3);
3283 b += 3;
3284
3285 laststart = 0;
3286 begalt = b;
3287 break;
3288
3289
3290 case '{':
3291 /* If \{ is a literal. */
3292 if (!(syntax & RE_INTERVALS)
3293 /* If we're at `\{' and it's not the open-interval
3294 operator. */
3295 || (syntax & RE_NO_BK_BRACES))
3296 goto normal_backslash;
3297
3298 handle_interval:
3299 {
3300 /* If got here, then the syntax allows intervals. */
3301
3302 /* At least (most) this many matches must be made. */
3303 int lower_bound = 0, upper_bound = -1;
3304
3305 beg_interval = p;
3306
3307 GET_INTERVAL_COUNT (lower_bound);
3308
3309 if (c == ',')
3310 GET_INTERVAL_COUNT (upper_bound);
3311 else
3312 /* Interval such as `{1}' => match exactly once. */
3313 upper_bound = lower_bound;
3314
3315 if (lower_bound < 0
3316 || (0 <= upper_bound && upper_bound < lower_bound))
3317 FREE_STACK_RETURN (REG_BADBR);
3318
3319 if (!(syntax & RE_NO_BK_BRACES))
3320 {
3321 if (c != '\\')
3322 FREE_STACK_RETURN (REG_BADBR);
3323 if (p == pend)
3324 FREE_STACK_RETURN (REG_EESCAPE);
3325 PATFETCH (c);
3326 }
3327
3328 if (c != '}')
3329 FREE_STACK_RETURN (REG_BADBR);
3330
3331 /* We just parsed a valid interval. */
3332
3333 /* If it's invalid to have no preceding re. */
3334 if (!laststart)
3335 {
3336 if (syntax & RE_CONTEXT_INVALID_OPS)
3337 FREE_STACK_RETURN (REG_BADRPT);
3338 else if (syntax & RE_CONTEXT_INDEP_OPS)
3339 laststart = b;
3340 else
3341 goto unfetch_interval;
3342 }
3343
3344 if (upper_bound == 0)
3345 /* If the upper bound is zero, just drop the sub pattern
3346 altogether. */
3347 b = laststart;
3348 else if (lower_bound == 1 && upper_bound == 1)
3349 /* Just match it once: nothing to do here. */
3350 ;
3351
3352 /* Otherwise, we have a nontrivial interval. When
3353 we're all done, the pattern will look like:
3354 set_number_at <jump count> <upper bound>
3355 set_number_at <succeed_n count> <lower bound>
3356 succeed_n <after jump addr> <succeed_n count>
3357 <body of loop>
3358 jump_n <succeed_n addr> <jump count>
3359 (The upper bound and `jump_n' are omitted if
3360 `upper_bound' is 1, though.) */
3361 else
3362 { /* If the upper bound is > 1, we need to insert
3363 more at the end of the loop. */
3364 unsigned int nbytes = (upper_bound < 0 ? 3
3365 : upper_bound > 1 ? 5 : 0);
3366 unsigned int startoffset = 0;
3367
3368 GET_BUFFER_SPACE (20); /* We might use less. */
3369
3370 if (lower_bound == 0)
3371 {
3372 /* A succeed_n that starts with 0 is really a
3373 a simple on_failure_jump_loop. */
3374 INSERT_JUMP (on_failure_jump_loop, laststart,
3375 b + 3 + nbytes);
3376 b += 3;
3377 }
3378 else
3379 {
3380 /* Initialize lower bound of the `succeed_n', even
3381 though it will be set during matching by its
3382 attendant `set_number_at' (inserted next),
3383 because `re_compile_fastmap' needs to know.
3384 Jump to the `jump_n' we might insert below. */
3385 INSERT_JUMP2 (succeed_n, laststart,
3386 b + 5 + nbytes,
3387 lower_bound);
3388 b += 5;
3389
3390 /* Code to initialize the lower bound. Insert
3391 before the `succeed_n'. The `5' is the last two
3392 bytes of this `set_number_at', plus 3 bytes of
3393 the following `succeed_n'. */
3394 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3395 b += 5;
3396 startoffset += 5;
3397 }
3398
3399 if (upper_bound < 0)
3400 {
3401 /* A negative upper bound stands for infinity,
3402 in which case it degenerates to a plain jump. */
3403 STORE_JUMP (jump, b, laststart + startoffset);
3404 b += 3;
3405 }
3406 else if (upper_bound > 1)
3407 { /* More than one repetition is allowed, so
3408 append a backward jump to the `succeed_n'
3409 that starts this interval.
3410
3411 When we've reached this during matching,
3412 we'll have matched the interval once, so
3413 jump back only `upper_bound - 1' times. */
3414 STORE_JUMP2 (jump_n, b, laststart + startoffset,
3415 upper_bound - 1);
3416 b += 5;
3417
3418 /* The location we want to set is the second
3419 parameter of the `jump_n'; that is `b-2' as
3420 an absolute address. `laststart' will be
3421 the `set_number_at' we're about to insert;
3422 `laststart+3' the number to set, the source
3423 for the relative address. But we are
3424 inserting into the middle of the pattern --
3425 so everything is getting moved up by 5.
3426 Conclusion: (b - 2) - (laststart + 3) + 5,
3427 i.e., b - laststart.
3428
3429 We insert this at the beginning of the loop
3430 so that if we fail during matching, we'll
3431 reinitialize the bounds. */
3432 insert_op2 (set_number_at, laststart, b - laststart,
3433 upper_bound - 1, b);
3434 b += 5;
3435 }
3436 }
3437 pending_exact = 0;
3438 beg_interval = NULL;
3439 }
3440 break;
3441
3442 unfetch_interval:
3443 /* If an invalid interval, match the characters as literals. */
3444 assert (beg_interval);
3445 p = beg_interval;
3446 beg_interval = NULL;
3447
3448 /* normal_char and normal_backslash need `c'. */
3449 c = '{';
3450
3451 if (!(syntax & RE_NO_BK_BRACES))
3452 {
3453 assert (p > pattern && p[-1] == '\\');
3454 goto normal_backslash;
3455 }
3456 else
3457 goto normal_char;
3458
3459 #ifdef emacs
3460 /* There is no way to specify the before_dot and after_dot
3461 operators. rms says this is ok. --karl */
3462 case '=':
3463 laststart = b;
3464 BUF_PUSH (at_dot);
3465 break;
3466
3467 case 's':
3468 laststart = b;
3469 PATFETCH (c);
3470 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3471 break;
3472
3473 case 'S':
3474 laststart = b;
3475 PATFETCH (c);
3476 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3477 break;
3478
3479 case 'c':
3480 laststart = b;
3481 PATFETCH (c);
3482 BUF_PUSH_2 (categoryspec, c);
3483 break;
3484
3485 case 'C':
3486 laststart = b;
3487 PATFETCH (c);
3488 BUF_PUSH_2 (notcategoryspec, c);
3489 break;
3490 #endif /* emacs */
3491
3492
3493 case 'w':
3494 if (syntax & RE_NO_GNU_OPS)
3495 goto normal_char;
3496 laststart = b;
3497 BUF_PUSH_2 (syntaxspec, Sword);
3498 break;
3499
3500
3501 case 'W':
3502 if (syntax & RE_NO_GNU_OPS)
3503 goto normal_char;
3504 laststart = b;
3505 BUF_PUSH_2 (notsyntaxspec, Sword);
3506 break;
3507
3508
3509 case '<':
3510 if (syntax & RE_NO_GNU_OPS)
3511 goto normal_char;
3512 laststart = b;
3513 BUF_PUSH (wordbeg);
3514 break;
3515
3516 case '>':
3517 if (syntax & RE_NO_GNU_OPS)
3518 goto normal_char;
3519 laststart = b;
3520 BUF_PUSH (wordend);
3521 break;
3522
3523 case '_':
3524 if (syntax & RE_NO_GNU_OPS)
3525 goto normal_char;
3526 laststart = b;
3527 PATFETCH (c);
3528 if (c == '<')
3529 BUF_PUSH (symbeg);
3530 else if (c == '>')
3531 BUF_PUSH (symend);
3532 else
3533 FREE_STACK_RETURN (REG_BADPAT);
3534 break;
3535
3536 case 'b':
3537 if (syntax & RE_NO_GNU_OPS)
3538 goto normal_char;
3539 BUF_PUSH (wordbound);
3540 break;
3541
3542 case 'B':
3543 if (syntax & RE_NO_GNU_OPS)
3544 goto normal_char;
3545 BUF_PUSH (notwordbound);
3546 break;
3547
3548 case '`':
3549 if (syntax & RE_NO_GNU_OPS)
3550 goto normal_char;
3551 BUF_PUSH (begbuf);
3552 break;
3553
3554 case '\'':
3555 if (syntax & RE_NO_GNU_OPS)
3556 goto normal_char;
3557 BUF_PUSH (endbuf);
3558 break;
3559
3560 case '1': case '2': case '3': case '4': case '5':
3561 case '6': case '7': case '8': case '9':
3562 {
3563 regnum_t reg;
3564
3565 if (syntax & RE_NO_BK_REFS)
3566 goto normal_backslash;
3567
3568 reg = c - '0';
3569
3570 if (reg > bufp->re_nsub || reg < 1
3571 /* Can't back reference to a subexp before its end. */
3572 || group_in_compile_stack (compile_stack, reg))
3573 FREE_STACK_RETURN (REG_ESUBREG);
3574
3575 laststart = b;
3576 BUF_PUSH_2 (duplicate, reg);
3577 }
3578 break;
3579
3580
3581 case '+':
3582 case '?':
3583 if (syntax & RE_BK_PLUS_QM)
3584 goto handle_plus;
3585 else
3586 goto normal_backslash;
3587
3588 default:
3589 normal_backslash:
3590 /* You might think it would be useful for \ to mean
3591 not to translate; but if we don't translate it
3592 it will never match anything. */
3593 goto normal_char;
3594 }
3595 break;
3596
3597
3598 default:
3599 /* Expects the character in `c'. */
3600 normal_char:
3601 /* If no exactn currently being built. */
3602 if (!pending_exact
3603
3604 /* If last exactn not at current position. */
3605 || pending_exact + *pending_exact + 1 != b
3606
3607 /* We have only one byte following the exactn for the count. */
3608 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
3609
3610 /* If followed by a repetition operator. */
3611 || (p != pend && (*p == '*' || *p == '^'))
3612 || ((syntax & RE_BK_PLUS_QM)
3613 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3614 : p != pend && (*p == '+' || *p == '?'))
3615 || ((syntax & RE_INTERVALS)
3616 && ((syntax & RE_NO_BK_BRACES)
3617 ? p != pend && *p == '{'
3618 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
3619 {
3620 /* Start building a new exactn. */
3621
3622 laststart = b;
3623
3624 BUF_PUSH_2 (exactn, 0);
3625 pending_exact = b - 1;
3626 }
3627
3628 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3629 {
3630 int len;
3631
3632 if (multibyte)
3633 {
3634 c = TRANSLATE (c);
3635 len = CHAR_STRING (c, b);
3636 b += len;
3637 }
3638 else
3639 {
3640 c1 = RE_CHAR_TO_MULTIBYTE (c);
3641 if (! CHAR_BYTE8_P (c1))
3642 {
3643 re_wchar_t c2 = TRANSLATE (c1);
3644
3645 if (c1 != c2 && (c1 = RE_CHAR_TO_UNIBYTE (c2)) >= 0)
3646 c = c1;
3647 }
3648 *b++ = c;
3649 len = 1;
3650 }
3651 (*pending_exact) += len;
3652 }
3653
3654 break;
3655 } /* switch (c) */
3656 } /* while p != pend */
3657
3658
3659 /* Through the pattern now. */
3660
3661 FIXUP_ALT_JUMP ();
3662
3663 if (!COMPILE_STACK_EMPTY)
3664 FREE_STACK_RETURN (REG_EPAREN);
3665
3666 /* If we don't want backtracking, force success
3667 the first time we reach the end of the compiled pattern. */
3668 if (syntax & RE_NO_POSIX_BACKTRACKING)
3669 BUF_PUSH (succeed);
3670
3671 /* We have succeeded; set the length of the buffer. */
3672 bufp->used = b - bufp->buffer;
3673
3674 #ifdef DEBUG
3675 if (debug > 0)
3676 {
3677 re_compile_fastmap (bufp);
3678 DEBUG_PRINT ("\nCompiled pattern: \n");
3679 print_compiled_pattern (bufp);
3680 }
3681 debug--;
3682 #endif /* DEBUG */
3683
3684 #ifndef MATCH_MAY_ALLOCATE
3685 /* Initialize the failure stack to the largest possible stack. This
3686 isn't necessary unless we're trying to avoid calling alloca in
3687 the search and match routines. */
3688 {
3689 int num_regs = bufp->re_nsub + 1;
3690
3691 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
3692 {
3693 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
3694 falk_stack.stack = realloc (fail_stack.stack,
3695 fail_stack.size * sizeof *falk_stack.stack);
3696 }
3697
3698 regex_grow_registers (num_regs);
3699 }
3700 #endif /* not MATCH_MAY_ALLOCATE */
3701
3702 FREE_STACK_RETURN (REG_NOERROR);
3703 } /* regex_compile */
3704 \f
3705 /* Subroutines for `regex_compile'. */
3706
3707 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3708
3709 static void
3710 store_op1 (re_opcode_t op, unsigned char *loc, int arg)
3711 {
3712 *loc = (unsigned char) op;
3713 STORE_NUMBER (loc + 1, arg);
3714 }
3715
3716
3717 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3718
3719 static void
3720 store_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2)
3721 {
3722 *loc = (unsigned char) op;
3723 STORE_NUMBER (loc + 1, arg1);
3724 STORE_NUMBER (loc + 3, arg2);
3725 }
3726
3727
3728 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3729 for OP followed by two-byte integer parameter ARG. */
3730
3731 static void
3732 insert_op1 (re_opcode_t op, unsigned char *loc, int arg, unsigned char *end)
3733 {
3734 register unsigned char *pfrom = end;
3735 register unsigned char *pto = end + 3;
3736
3737 while (pfrom != loc)
3738 *--pto = *--pfrom;
3739
3740 store_op1 (op, loc, arg);
3741 }
3742
3743
3744 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3745
3746 static void
3747 insert_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2, unsigned char *end)
3748 {
3749 register unsigned char *pfrom = end;
3750 register unsigned char *pto = end + 5;
3751
3752 while (pfrom != loc)
3753 *--pto = *--pfrom;
3754
3755 store_op2 (op, loc, arg1, arg2);
3756 }
3757
3758
3759 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3760 after an alternative or a begin-subexpression. We assume there is at
3761 least one character before the ^. */
3762
3763 static boolean
3764 at_begline_loc_p (const_re_char *pattern, const_re_char *p, reg_syntax_t syntax)
3765 {
3766 re_char *prev = p - 2;
3767 boolean odd_backslashes;
3768
3769 /* After a subexpression? */
3770 if (*prev == '(')
3771 odd_backslashes = (syntax & RE_NO_BK_PARENS) == 0;
3772
3773 /* After an alternative? */
3774 else if (*prev == '|')
3775 odd_backslashes = (syntax & RE_NO_BK_VBAR) == 0;
3776
3777 /* After a shy subexpression? */
3778 else if (*prev == ':' && (syntax & RE_SHY_GROUPS))
3779 {
3780 /* Skip over optional regnum. */
3781 while (prev - 1 >= pattern && prev[-1] >= '0' && prev[-1] <= '9')
3782 --prev;
3783
3784 if (!(prev - 2 >= pattern
3785 && prev[-1] == '?' && prev[-2] == '('))
3786 return false;
3787 prev -= 2;
3788 odd_backslashes = (syntax & RE_NO_BK_PARENS) == 0;
3789 }
3790 else
3791 return false;
3792
3793 /* Count the number of preceding backslashes. */
3794 p = prev;
3795 while (prev - 1 >= pattern && prev[-1] == '\\')
3796 --prev;
3797 return (p - prev) & odd_backslashes;
3798 }
3799
3800
3801 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3802 at least one character after the $, i.e., `P < PEND'. */
3803
3804 static boolean
3805 at_endline_loc_p (const_re_char *p, const_re_char *pend, reg_syntax_t syntax)
3806 {
3807 re_char *next = p;
3808 boolean next_backslash = *next == '\\';
3809 re_char *next_next = p + 1 < pend ? p + 1 : 0;
3810
3811 return
3812 /* Before a subexpression? */
3813 (syntax & RE_NO_BK_PARENS ? *next == ')'
3814 : next_backslash && next_next && *next_next == ')')
3815 /* Before an alternative? */
3816 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3817 : next_backslash && next_next && *next_next == '|');
3818 }
3819
3820
3821 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3822 false if it's not. */
3823
3824 static boolean
3825 group_in_compile_stack (compile_stack_type compile_stack, regnum_t regnum)
3826 {
3827 ssize_t this_element;
3828
3829 for (this_element = compile_stack.avail - 1;
3830 this_element >= 0;
3831 this_element--)
3832 if (compile_stack.stack[this_element].regnum == regnum)
3833 return true;
3834
3835 return false;
3836 }
3837 \f
3838 /* analyse_first.
3839 If fastmap is non-NULL, go through the pattern and fill fastmap
3840 with all the possible leading chars. If fastmap is NULL, don't
3841 bother filling it up (obviously) and only return whether the
3842 pattern could potentially match the empty string.
3843
3844 Return 1 if p..pend might match the empty string.
3845 Return 0 if p..pend matches at least one char.
3846 Return -1 if fastmap was not updated accurately. */
3847
3848 static int
3849 analyse_first (const_re_char *p, const_re_char *pend, char *fastmap,
3850 const int multibyte)
3851 {
3852 int j, k;
3853 boolean not;
3854
3855 /* If all elements for base leading-codes in fastmap is set, this
3856 flag is set true. */
3857 boolean match_any_multibyte_characters = false;
3858
3859 assert (p);
3860
3861 /* The loop below works as follows:
3862 - It has a working-list kept in the PATTERN_STACK and which basically
3863 starts by only containing a pointer to the first operation.
3864 - If the opcode we're looking at is a match against some set of
3865 chars, then we add those chars to the fastmap and go on to the
3866 next work element from the worklist (done via `break').
3867 - If the opcode is a control operator on the other hand, we either
3868 ignore it (if it's meaningless at this point, such as `start_memory')
3869 or execute it (if it's a jump). If the jump has several destinations
3870 (i.e. `on_failure_jump'), then we push the other destination onto the
3871 worklist.
3872 We guarantee termination by ignoring backward jumps (more or less),
3873 so that `p' is monotonically increasing. More to the point, we
3874 never set `p' (or push) anything `<= p1'. */
3875
3876 while (p < pend)
3877 {
3878 /* `p1' is used as a marker of how far back a `on_failure_jump'
3879 can go without being ignored. It is normally equal to `p'
3880 (which prevents any backward `on_failure_jump') except right
3881 after a plain `jump', to allow patterns such as:
3882 0: jump 10
3883 3..9: <body>
3884 10: on_failure_jump 3
3885 as used for the *? operator. */
3886 re_char *p1 = p;
3887
3888 switch (*p++)
3889 {
3890 case succeed:
3891 return 1;
3892
3893 case duplicate:
3894 /* If the first character has to match a backreference, that means
3895 that the group was empty (since it already matched). Since this
3896 is the only case that interests us here, we can assume that the
3897 backreference must match the empty string. */
3898 p++;
3899 continue;
3900
3901
3902 /* Following are the cases which match a character. These end
3903 with `break'. */
3904
3905 case exactn:
3906 if (fastmap)
3907 {
3908 /* If multibyte is nonzero, the first byte of each
3909 character is an ASCII or a leading code. Otherwise,
3910 each byte is a character. Thus, this works in both
3911 cases. */
3912 fastmap[p[1]] = 1;
3913 if (! multibyte)
3914 {
3915 /* For the case of matching this unibyte regex
3916 against multibyte, we must set a leading code of
3917 the corresponding multibyte character. */
3918 int c = RE_CHAR_TO_MULTIBYTE (p[1]);
3919
3920 fastmap[CHAR_LEADING_CODE (c)] = 1;
3921 }
3922 }
3923 break;
3924
3925
3926 case anychar:
3927 /* We could put all the chars except for \n (and maybe \0)
3928 but we don't bother since it is generally not worth it. */
3929 if (!fastmap) break;
3930 return -1;
3931
3932
3933 case charset_not:
3934 if (!fastmap) break;
3935 {
3936 /* Chars beyond end of bitmap are possible matches. */
3937 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
3938 j < (1 << BYTEWIDTH); j++)
3939 fastmap[j] = 1;
3940 }
3941
3942 /* Fallthrough */
3943 case charset:
3944 if (!fastmap) break;
3945 not = (re_opcode_t) *(p - 1) == charset_not;
3946 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3947 j >= 0; j--)
3948 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
3949 fastmap[j] = 1;
3950
3951 #ifdef emacs
3952 if (/* Any leading code can possibly start a character
3953 which doesn't match the specified set of characters. */
3954 not
3955 ||
3956 /* If we can match a character class, we can match any
3957 multibyte characters. */
3958 (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3959 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
3960
3961 {
3962 if (match_any_multibyte_characters == false)
3963 {
3964 for (j = MIN_MULTIBYTE_LEADING_CODE;
3965 j <= MAX_MULTIBYTE_LEADING_CODE; j++)
3966 fastmap[j] = 1;
3967 match_any_multibyte_characters = true;
3968 }
3969 }
3970
3971 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3972 && match_any_multibyte_characters == false)
3973 {
3974 /* Set fastmap[I] to 1 where I is a leading code of each
3975 multibyte character in the range table. */
3976 int c, count;
3977 unsigned char lc1, lc2;
3978
3979 /* Make P points the range table. `+ 2' is to skip flag
3980 bits for a character class. */
3981 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
3982
3983 /* Extract the number of ranges in range table into COUNT. */
3984 EXTRACT_NUMBER_AND_INCR (count, p);
3985 for (; count > 0; count--, p += 3)
3986 {
3987 /* Extract the start and end of each range. */
3988 EXTRACT_CHARACTER (c, p);
3989 lc1 = CHAR_LEADING_CODE (c);
3990 p += 3;
3991 EXTRACT_CHARACTER (c, p);
3992 lc2 = CHAR_LEADING_CODE (c);
3993 for (j = lc1; j <= lc2; j++)
3994 fastmap[j] = 1;
3995 }
3996 }
3997 #endif
3998 break;
3999
4000 case syntaxspec:
4001 case notsyntaxspec:
4002 if (!fastmap) break;
4003 #ifndef emacs
4004 not = (re_opcode_t)p[-1] == notsyntaxspec;
4005 k = *p++;
4006 for (j = 0; j < (1 << BYTEWIDTH); j++)
4007 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
4008 fastmap[j] = 1;
4009 break;
4010 #else /* emacs */
4011 /* This match depends on text properties. These end with
4012 aborting optimizations. */
4013 return -1;
4014
4015 case categoryspec:
4016 case notcategoryspec:
4017 if (!fastmap) break;
4018 not = (re_opcode_t)p[-1] == notcategoryspec;
4019 k = *p++;
4020 for (j = (1 << BYTEWIDTH); j >= 0; j--)
4021 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
4022 fastmap[j] = 1;
4023
4024 /* Any leading code can possibly start a character which
4025 has or doesn't has the specified category. */
4026 if (match_any_multibyte_characters == false)
4027 {
4028 for (j = MIN_MULTIBYTE_LEADING_CODE;
4029 j <= MAX_MULTIBYTE_LEADING_CODE; j++)
4030 fastmap[j] = 1;
4031 match_any_multibyte_characters = true;
4032 }
4033 break;
4034
4035 /* All cases after this match the empty string. These end with
4036 `continue'. */
4037
4038 case before_dot:
4039 case at_dot:
4040 case after_dot:
4041 #endif /* !emacs */
4042 case no_op:
4043 case begline:
4044 case endline:
4045 case begbuf:
4046 case endbuf:
4047 case wordbound:
4048 case notwordbound:
4049 case wordbeg:
4050 case wordend:
4051 case symbeg:
4052 case symend:
4053 continue;
4054
4055
4056 case jump:
4057 EXTRACT_NUMBER_AND_INCR (j, p);
4058 if (j < 0)
4059 /* Backward jumps can only go back to code that we've already
4060 visited. `re_compile' should make sure this is true. */
4061 break;
4062 p += j;
4063 switch (*p)
4064 {
4065 case on_failure_jump:
4066 case on_failure_keep_string_jump:
4067 case on_failure_jump_loop:
4068 case on_failure_jump_nastyloop:
4069 case on_failure_jump_smart:
4070 p++;
4071 break;
4072 default:
4073 continue;
4074 };
4075 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
4076 to jump back to "just after here". */
4077 /* Fallthrough */
4078
4079 case on_failure_jump:
4080 case on_failure_keep_string_jump:
4081 case on_failure_jump_nastyloop:
4082 case on_failure_jump_loop:
4083 case on_failure_jump_smart:
4084 EXTRACT_NUMBER_AND_INCR (j, p);
4085 if (p + j <= p1)
4086 ; /* Backward jump to be ignored. */
4087 else
4088 { /* We have to look down both arms.
4089 We first go down the "straight" path so as to minimize
4090 stack usage when going through alternatives. */
4091 int r = analyse_first (p, pend, fastmap, multibyte);
4092 if (r) return r;
4093 p += j;
4094 }
4095 continue;
4096
4097
4098 case jump_n:
4099 /* This code simply does not properly handle forward jump_n. */
4100 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
4101 p += 4;
4102 /* jump_n can either jump or fall through. The (backward) jump
4103 case has already been handled, so we only need to look at the
4104 fallthrough case. */
4105 continue;
4106
4107 case succeed_n:
4108 /* If N == 0, it should be an on_failure_jump_loop instead. */
4109 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
4110 p += 4;
4111 /* We only care about one iteration of the loop, so we don't
4112 need to consider the case where this behaves like an
4113 on_failure_jump. */
4114 continue;
4115
4116
4117 case set_number_at:
4118 p += 4;
4119 continue;
4120
4121
4122 case start_memory:
4123 case stop_memory:
4124 p += 1;
4125 continue;
4126
4127
4128 default:
4129 abort (); /* We have listed all the cases. */
4130 } /* switch *p++ */
4131
4132 /* Getting here means we have found the possible starting
4133 characters for one path of the pattern -- and that the empty
4134 string does not match. We need not follow this path further. */
4135 return 0;
4136 } /* while p */
4137
4138 /* We reached the end without matching anything. */
4139 return 1;
4140
4141 } /* analyse_first */
4142 \f
4143 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4144 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4145 characters can start a string that matches the pattern. This fastmap
4146 is used by re_search to skip quickly over impossible starting points.
4147
4148 Character codes above (1 << BYTEWIDTH) are not represented in the
4149 fastmap, but the leading codes are represented. Thus, the fastmap
4150 indicates which character sets could start a match.
4151
4152 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4153 area as BUFP->fastmap.
4154
4155 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4156 the pattern buffer.
4157
4158 Returns 0 if we succeed, -2 if an internal error. */
4159
4160 int
4161 re_compile_fastmap (struct re_pattern_buffer *bufp)
4162 {
4163 char *fastmap = bufp->fastmap;
4164 int analysis;
4165
4166 assert (fastmap && bufp->buffer);
4167
4168 memset (fastmap, 0, 1 << BYTEWIDTH); /* Assume nothing's valid. */
4169 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4170
4171 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
4172 fastmap, RE_MULTIBYTE_P (bufp));
4173 bufp->can_be_null = (analysis != 0);
4174 return 0;
4175 } /* re_compile_fastmap */
4176 \f
4177 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4178 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4179 this memory for recording register information. STARTS and ENDS
4180 must be allocated using the malloc library routine, and must each
4181 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4182
4183 If NUM_REGS == 0, then subsequent matches should allocate their own
4184 register data.
4185
4186 Unless this function is called, the first search or match using
4187 PATTERN_BUFFER will allocate its own register data, without
4188 freeing the old data. */
4189
4190 void
4191 re_set_registers (struct re_pattern_buffer *bufp, struct re_registers *regs, unsigned int num_regs, regoff_t *starts, regoff_t *ends)
4192 {
4193 if (num_regs)
4194 {
4195 bufp->regs_allocated = REGS_REALLOCATE;
4196 regs->num_regs = num_regs;
4197 regs->start = starts;
4198 regs->end = ends;
4199 }
4200 else
4201 {
4202 bufp->regs_allocated = REGS_UNALLOCATED;
4203 regs->num_regs = 0;
4204 regs->start = regs->end = 0;
4205 }
4206 }
4207 WEAK_ALIAS (__re_set_registers, re_set_registers)
4208 \f
4209 /* Searching routines. */
4210
4211 /* Like re_search_2, below, but only one string is specified, and
4212 doesn't let you say where to stop matching. */
4213
4214 regoff_t
4215 re_search (struct re_pattern_buffer *bufp, const char *string, size_t size,
4216 ssize_t startpos, ssize_t range, struct re_registers *regs)
4217 {
4218 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
4219 regs, size);
4220 }
4221 WEAK_ALIAS (__re_search, re_search)
4222
4223 /* Head address of virtual concatenation of string. */
4224 #define HEAD_ADDR_VSTRING(P) \
4225 (((P) >= size1 ? string2 : string1))
4226
4227 /* Address of POS in the concatenation of virtual string. */
4228 #define POS_ADDR_VSTRING(POS) \
4229 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
4230
4231 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4232 virtual concatenation of STRING1 and STRING2, starting first at index
4233 STARTPOS, then at STARTPOS + 1, and so on.
4234
4235 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4236
4237 RANGE is how far to scan while trying to match. RANGE = 0 means try
4238 only at STARTPOS; in general, the last start tried is STARTPOS +
4239 RANGE.
4240
4241 In REGS, return the indices of the virtual concatenation of STRING1
4242 and STRING2 that matched the entire BUFP->buffer and its contained
4243 subexpressions.
4244
4245 Do not consider matching one past the index STOP in the virtual
4246 concatenation of STRING1 and STRING2.
4247
4248 We return either the position in the strings at which the match was
4249 found, -1 if no match, or -2 if error (such as failure
4250 stack overflow). */
4251
4252 regoff_t
4253 re_search_2 (struct re_pattern_buffer *bufp, const char *str1, size_t size1,
4254 const char *str2, size_t size2, ssize_t startpos, ssize_t range,
4255 struct re_registers *regs, ssize_t stop)
4256 {
4257 regoff_t val;
4258 re_char *string1 = (re_char*) str1;
4259 re_char *string2 = (re_char*) str2;
4260 register char *fastmap = bufp->fastmap;
4261 register RE_TRANSLATE_TYPE translate = bufp->translate;
4262 size_t total_size = size1 + size2;
4263 ssize_t endpos = startpos + range;
4264 boolean anchored_start;
4265 /* Nonzero if we are searching multibyte string. */
4266 const boolean multibyte = RE_TARGET_MULTIBYTE_P (bufp);
4267
4268 /* Check for out-of-range STARTPOS. */
4269 if (startpos < 0 || startpos > total_size)
4270 return -1;
4271
4272 /* Fix up RANGE if it might eventually take us outside
4273 the virtual concatenation of STRING1 and STRING2.
4274 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
4275 if (endpos < 0)
4276 range = 0 - startpos;
4277 else if (endpos > total_size)
4278 range = total_size - startpos;
4279
4280 /* If the search isn't to be a backwards one, don't waste time in a
4281 search for a pattern anchored at beginning of buffer. */
4282 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
4283 {
4284 if (startpos > 0)
4285 return -1;
4286 else
4287 range = 0;
4288 }
4289
4290 #ifdef emacs
4291 /* In a forward search for something that starts with \=.
4292 don't keep searching past point. */
4293 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4294 {
4295 range = PT_BYTE - BEGV_BYTE - startpos;
4296 if (range < 0)
4297 return -1;
4298 }
4299 #endif /* emacs */
4300
4301 /* Update the fastmap now if not correct already. */
4302 if (fastmap && !bufp->fastmap_accurate)
4303 re_compile_fastmap (bufp);
4304
4305 /* See whether the pattern is anchored. */
4306 anchored_start = (bufp->buffer[0] == begline);
4307
4308 #ifdef emacs
4309 gl_state.object = re_match_object; /* Used by SYNTAX_TABLE_BYTE_TO_CHAR. */
4310 {
4311 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
4312
4313 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4314 }
4315 #endif
4316
4317 /* Loop through the string, looking for a place to start matching. */
4318 for (;;)
4319 {
4320 /* If the pattern is anchored,
4321 skip quickly past places we cannot match.
4322 We don't bother to treat startpos == 0 specially
4323 because that case doesn't repeat. */
4324 if (anchored_start && startpos > 0)
4325 {
4326 if (! ((startpos <= size1 ? string1[startpos - 1]
4327 : string2[startpos - size1 - 1])
4328 == '\n'))
4329 goto advance;
4330 }
4331
4332 /* If a fastmap is supplied, skip quickly over characters that
4333 cannot be the start of a match. If the pattern can match the
4334 null string, however, we don't need to skip characters; we want
4335 the first null string. */
4336 if (fastmap && startpos < total_size && !bufp->can_be_null)
4337 {
4338 register re_char *d;
4339 register re_wchar_t buf_ch;
4340
4341 d = POS_ADDR_VSTRING (startpos);
4342
4343 if (range > 0) /* Searching forwards. */
4344 {
4345 ssize_t irange = range, lim = 0;
4346
4347 if (startpos < size1 && startpos + range >= size1)
4348 lim = range - (size1 - startpos);
4349
4350 /* Written out as an if-else to avoid testing `translate'
4351 inside the loop. */
4352 if (RE_TRANSLATE_P (translate))
4353 {
4354 if (multibyte)
4355 while (range > lim)
4356 {
4357 int buf_charlen;
4358
4359 buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
4360 buf_ch = RE_TRANSLATE (translate, buf_ch);
4361 if (fastmap[CHAR_LEADING_CODE (buf_ch)])
4362 break;
4363
4364 range -= buf_charlen;
4365 d += buf_charlen;
4366 }
4367 else
4368 while (range > lim)
4369 {
4370 register re_wchar_t ch, translated;
4371
4372 buf_ch = *d;
4373 ch = RE_CHAR_TO_MULTIBYTE (buf_ch);
4374 translated = RE_TRANSLATE (translate, ch);
4375 if (translated != ch
4376 && (ch = RE_CHAR_TO_UNIBYTE (translated)) >= 0)
4377 buf_ch = ch;
4378 if (fastmap[buf_ch])
4379 break;
4380 d++;
4381 range--;
4382 }
4383 }
4384 else
4385 {
4386 if (multibyte)
4387 while (range > lim)
4388 {
4389 int buf_charlen;
4390
4391 buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
4392 if (fastmap[CHAR_LEADING_CODE (buf_ch)])
4393 break;
4394 range -= buf_charlen;
4395 d += buf_charlen;
4396 }
4397 else
4398 while (range > lim && !fastmap[*d])
4399 {
4400 d++;
4401 range--;
4402 }
4403 }
4404 startpos += irange - range;
4405 }
4406 else /* Searching backwards. */
4407 {
4408 if (multibyte)
4409 {
4410 buf_ch = STRING_CHAR (d);
4411 buf_ch = TRANSLATE (buf_ch);
4412 if (! fastmap[CHAR_LEADING_CODE (buf_ch)])
4413 goto advance;
4414 }
4415 else
4416 {
4417 register re_wchar_t ch, translated;
4418
4419 buf_ch = *d;
4420 ch = RE_CHAR_TO_MULTIBYTE (buf_ch);
4421 translated = TRANSLATE (ch);
4422 if (translated != ch
4423 && (ch = RE_CHAR_TO_UNIBYTE (translated)) >= 0)
4424 buf_ch = ch;
4425 if (! fastmap[TRANSLATE (buf_ch)])
4426 goto advance;
4427 }
4428 }
4429 }
4430
4431 /* If can't match the null string, and that's all we have left, fail. */
4432 if (range >= 0 && startpos == total_size && fastmap
4433 && !bufp->can_be_null)
4434 return -1;
4435
4436 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4437 startpos, regs, stop);
4438
4439 if (val >= 0)
4440 return startpos;
4441
4442 if (val == -2)
4443 return -2;
4444
4445 advance:
4446 if (!range)
4447 break;
4448 else if (range > 0)
4449 {
4450 /* Update STARTPOS to the next character boundary. */
4451 if (multibyte)
4452 {
4453 re_char *p = POS_ADDR_VSTRING (startpos);
4454 int len = BYTES_BY_CHAR_HEAD (*p);
4455
4456 range -= len;
4457 if (range < 0)
4458 break;
4459 startpos += len;
4460 }
4461 else
4462 {
4463 range--;
4464 startpos++;
4465 }
4466 }
4467 else
4468 {
4469 range++;
4470 startpos--;
4471
4472 /* Update STARTPOS to the previous character boundary. */
4473 if (multibyte)
4474 {
4475 re_char *p = POS_ADDR_VSTRING (startpos) + 1;
4476 re_char *p0 = p;
4477 re_char *phead = HEAD_ADDR_VSTRING (startpos);
4478
4479 /* Find the head of multibyte form. */
4480 PREV_CHAR_BOUNDARY (p, phead);
4481 range += p0 - 1 - p;
4482 if (range > 0)
4483 break;
4484
4485 startpos -= p0 - 1 - p;
4486 }
4487 }
4488 }
4489 return -1;
4490 } /* re_search_2 */
4491 WEAK_ALIAS (__re_search_2, re_search_2)
4492 \f
4493 /* Declarations and macros for re_match_2. */
4494
4495 static int bcmp_translate (re_char *s1, re_char *s2,
4496 register ssize_t len,
4497 RE_TRANSLATE_TYPE translate,
4498 const int multibyte);
4499
4500 /* This converts PTR, a pointer into one of the search strings `string1'
4501 and `string2' into an offset from the beginning of that string. */
4502 #define POINTER_TO_OFFSET(ptr) \
4503 (FIRST_STRING_P (ptr) \
4504 ? (ptr) - string1 \
4505 : (ptr) - string2 + (ptrdiff_t) size1)
4506
4507 /* Call before fetching a character with *d. This switches over to
4508 string2 if necessary.
4509 Check re_match_2_internal for a discussion of why end_match_2 might
4510 not be within string2 (but be equal to end_match_1 instead). */
4511 #define PREFETCH() \
4512 while (d == dend) \
4513 { \
4514 /* End of string2 => fail. */ \
4515 if (dend == end_match_2) \
4516 goto fail; \
4517 /* End of string1 => advance to string2. */ \
4518 d = string2; \
4519 dend = end_match_2; \
4520 }
4521
4522 /* Call before fetching a char with *d if you already checked other limits.
4523 This is meant for use in lookahead operations like wordend, etc..
4524 where we might need to look at parts of the string that might be
4525 outside of the LIMITs (i.e past `stop'). */
4526 #define PREFETCH_NOLIMIT() \
4527 if (d == end1) \
4528 { \
4529 d = string2; \
4530 dend = end_match_2; \
4531 } \
4532
4533 /* Test if at very beginning or at very end of the virtual concatenation
4534 of `string1' and `string2'. If only one string, it's `string2'. */
4535 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
4536 #define AT_STRINGS_END(d) ((d) == end2)
4537
4538 /* Disabled due to a compiler bug -- see comment at case wordbound */
4539
4540 /* The comment at case wordbound is following one, but we don't use
4541 AT_WORD_BOUNDARY anymore to support multibyte form.
4542
4543 The DEC Alpha C compiler 3.x generates incorrect code for the
4544 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4545 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4546 macro and introducing temporary variables works around the bug. */
4547
4548 #if 0
4549 /* Test if D points to a character which is word-constituent. We have
4550 two special cases to check for: if past the end of string1, look at
4551 the first character in string2; and if before the beginning of
4552 string2, look at the last character in string1. */
4553 #define WORDCHAR_P(d) \
4554 (SYNTAX ((d) == end1 ? *string2 \
4555 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4556 == Sword)
4557
4558 /* Test if the character before D and the one at D differ with respect
4559 to being word-constituent. */
4560 #define AT_WORD_BOUNDARY(d) \
4561 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4562 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4563 #endif
4564
4565 /* Free everything we malloc. */
4566 #ifdef MATCH_MAY_ALLOCATE
4567 # define FREE_VAR(var) \
4568 do { \
4569 if (var) \
4570 { \
4571 REGEX_FREE (var); \
4572 var = NULL; \
4573 } \
4574 } while (0)
4575 # define FREE_VARIABLES() \
4576 do { \
4577 REGEX_FREE_STACK (fail_stack.stack); \
4578 FREE_VAR (regstart); \
4579 FREE_VAR (regend); \
4580 FREE_VAR (best_regstart); \
4581 FREE_VAR (best_regend); \
4582 } while (0)
4583 #else
4584 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4585 #endif /* not MATCH_MAY_ALLOCATE */
4586
4587 \f
4588 /* Optimization routines. */
4589
4590 /* If the operation is a match against one or more chars,
4591 return a pointer to the next operation, else return NULL. */
4592 static re_char *
4593 skip_one_char (const_re_char *p)
4594 {
4595 switch (*p++)
4596 {
4597 case anychar:
4598 break;
4599
4600 case exactn:
4601 p += *p + 1;
4602 break;
4603
4604 case charset_not:
4605 case charset:
4606 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4607 {
4608 int mcnt;
4609 p = CHARSET_RANGE_TABLE (p - 1);
4610 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4611 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4612 }
4613 else
4614 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4615 break;
4616
4617 case syntaxspec:
4618 case notsyntaxspec:
4619 #ifdef emacs
4620 case categoryspec:
4621 case notcategoryspec:
4622 #endif /* emacs */
4623 p++;
4624 break;
4625
4626 default:
4627 p = NULL;
4628 }
4629 return p;
4630 }
4631
4632
4633 /* Jump over non-matching operations. */
4634 static re_char *
4635 skip_noops (const_re_char *p, const_re_char *pend)
4636 {
4637 int mcnt;
4638 while (p < pend)
4639 {
4640 switch (*p)
4641 {
4642 case start_memory:
4643 case stop_memory:
4644 p += 2; break;
4645 case no_op:
4646 p += 1; break;
4647 case jump:
4648 p += 1;
4649 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4650 p += mcnt;
4651 break;
4652 default:
4653 return p;
4654 }
4655 }
4656 assert (p == pend);
4657 return p;
4658 }
4659
4660 /* Non-zero if "p1 matches something" implies "p2 fails". */
4661 static int
4662 mutually_exclusive_p (struct re_pattern_buffer *bufp, const_re_char *p1,
4663 const_re_char *p2)
4664 {
4665 re_opcode_t op2;
4666 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4667 unsigned char *pend = bufp->buffer + bufp->used;
4668
4669 assert (p1 >= bufp->buffer && p1 < pend
4670 && p2 >= bufp->buffer && p2 <= pend);
4671
4672 /* Skip over open/close-group commands.
4673 If what follows this loop is a ...+ construct,
4674 look at what begins its body, since we will have to
4675 match at least one of that. */
4676 p2 = skip_noops (p2, pend);
4677 /* The same skip can be done for p1, except that this function
4678 is only used in the case where p1 is a simple match operator. */
4679 /* p1 = skip_noops (p1, pend); */
4680
4681 assert (p1 >= bufp->buffer && p1 < pend
4682 && p2 >= bufp->buffer && p2 <= pend);
4683
4684 op2 = p2 == pend ? succeed : *p2;
4685
4686 switch (op2)
4687 {
4688 case succeed:
4689 case endbuf:
4690 /* If we're at the end of the pattern, we can change. */
4691 if (skip_one_char (p1))
4692 {
4693 DEBUG_PRINT (" End of pattern: fast loop.\n");
4694 return 1;
4695 }
4696 break;
4697
4698 case endline:
4699 case exactn:
4700 {
4701 register re_wchar_t c
4702 = (re_opcode_t) *p2 == endline ? '\n'
4703 : RE_STRING_CHAR (p2 + 2, multibyte);
4704
4705 if ((re_opcode_t) *p1 == exactn)
4706 {
4707 if (c != RE_STRING_CHAR (p1 + 2, multibyte))
4708 {
4709 DEBUG_PRINT (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4710 return 1;
4711 }
4712 }
4713
4714 else if ((re_opcode_t) *p1 == charset
4715 || (re_opcode_t) *p1 == charset_not)
4716 {
4717 int not = (re_opcode_t) *p1 == charset_not;
4718
4719 /* Test if C is listed in charset (or charset_not)
4720 at `p1'. */
4721 if (! multibyte || IS_REAL_ASCII (c))
4722 {
4723 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4724 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4725 not = !not;
4726 }
4727 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4728 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
4729
4730 /* `not' is equal to 1 if c would match, which means
4731 that we can't change to pop_failure_jump. */
4732 if (!not)
4733 {
4734 DEBUG_PRINT (" No match => fast loop.\n");
4735 return 1;
4736 }
4737 }
4738 else if ((re_opcode_t) *p1 == anychar
4739 && c == '\n')
4740 {
4741 DEBUG_PRINT (" . != \\n => fast loop.\n");
4742 return 1;
4743 }
4744 }
4745 break;
4746
4747 case charset:
4748 {
4749 if ((re_opcode_t) *p1 == exactn)
4750 /* Reuse the code above. */
4751 return mutually_exclusive_p (bufp, p2, p1);
4752
4753 /* It is hard to list up all the character in charset
4754 P2 if it includes multibyte character. Give up in
4755 such case. */
4756 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4757 {
4758 /* Now, we are sure that P2 has no range table.
4759 So, for the size of bitmap in P2, `p2[1]' is
4760 enough. But P1 may have range table, so the
4761 size of bitmap table of P1 is extracted by
4762 using macro `CHARSET_BITMAP_SIZE'.
4763
4764 In a multibyte case, we know that all the character
4765 listed in P2 is ASCII. In a unibyte case, P1 has only a
4766 bitmap table. So, in both cases, it is enough to test
4767 only the bitmap table of P1. */
4768
4769 if ((re_opcode_t) *p1 == charset)
4770 {
4771 int idx;
4772 /* We win if the charset inside the loop
4773 has no overlap with the one after the loop. */
4774 for (idx = 0;
4775 (idx < (int) p2[1]
4776 && idx < CHARSET_BITMAP_SIZE (p1));
4777 idx++)
4778 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4779 break;
4780
4781 if (idx == p2[1]
4782 || idx == CHARSET_BITMAP_SIZE (p1))
4783 {
4784 DEBUG_PRINT (" No match => fast loop.\n");
4785 return 1;
4786 }
4787 }
4788 else if ((re_opcode_t) *p1 == charset_not)
4789 {
4790 int idx;
4791 /* We win if the charset_not inside the loop lists
4792 every character listed in the charset after. */
4793 for (idx = 0; idx < (int) p2[1]; idx++)
4794 if (! (p2[2 + idx] == 0
4795 || (idx < CHARSET_BITMAP_SIZE (p1)
4796 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4797 break;
4798
4799 if (idx == p2[1])
4800 {
4801 DEBUG_PRINT (" No match => fast loop.\n");
4802 return 1;
4803 }
4804 }
4805 }
4806 }
4807 break;
4808
4809 case charset_not:
4810 switch (*p1)
4811 {
4812 case exactn:
4813 case charset:
4814 /* Reuse the code above. */
4815 return mutually_exclusive_p (bufp, p2, p1);
4816 case charset_not:
4817 /* When we have two charset_not, it's very unlikely that
4818 they don't overlap. The union of the two sets of excluded
4819 chars should cover all possible chars, which, as a matter of
4820 fact, is virtually impossible in multibyte buffers. */
4821 break;
4822 }
4823 break;
4824
4825 case wordend:
4826 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == Sword);
4827 case symend:
4828 return ((re_opcode_t) *p1 == syntaxspec
4829 && (p1[1] == Ssymbol || p1[1] == Sword));
4830 case notsyntaxspec:
4831 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == p2[1]);
4832
4833 case wordbeg:
4834 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == Sword);
4835 case symbeg:
4836 return ((re_opcode_t) *p1 == notsyntaxspec
4837 && (p1[1] == Ssymbol || p1[1] == Sword));
4838 case syntaxspec:
4839 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == p2[1]);
4840
4841 case wordbound:
4842 return (((re_opcode_t) *p1 == notsyntaxspec
4843 || (re_opcode_t) *p1 == syntaxspec)
4844 && p1[1] == Sword);
4845
4846 #ifdef emacs
4847 case categoryspec:
4848 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4849 case notcategoryspec:
4850 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4851 #endif /* emacs */
4852
4853 default:
4854 ;
4855 }
4856
4857 /* Safe default. */
4858 return 0;
4859 }
4860
4861 \f
4862 /* Matching routines. */
4863
4864 #ifndef emacs /* Emacs never uses this. */
4865 /* re_match is like re_match_2 except it takes only a single string. */
4866
4867 regoff_t
4868 re_match (struct re_pattern_buffer *bufp, const char *string,
4869 size_t size, ssize_t pos, struct re_registers *regs)
4870 {
4871 regoff_t result = re_match_2_internal (bufp, NULL, 0, (re_char*) string,
4872 size, pos, regs, size);
4873 return result;
4874 }
4875 WEAK_ALIAS (__re_match, re_match)
4876 #endif /* not emacs */
4877
4878 #ifdef emacs
4879 /* In Emacs, this is the string or buffer in which we
4880 are matching. It is used for looking up syntax properties. */
4881 Lisp_Object re_match_object;
4882 #endif
4883
4884 /* re_match_2 matches the compiled pattern in BUFP against the
4885 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4886 and SIZE2, respectively). We start matching at POS, and stop
4887 matching at STOP.
4888
4889 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4890 store offsets for the substring each group matched in REGS. See the
4891 documentation for exactly how many groups we fill.
4892
4893 We return -1 if no match, -2 if an internal error (such as the
4894 failure stack overflowing). Otherwise, we return the length of the
4895 matched substring. */
4896
4897 regoff_t
4898 re_match_2 (struct re_pattern_buffer *bufp, const char *string1,
4899 size_t size1, const char *string2, size_t size2, ssize_t pos,
4900 struct re_registers *regs, ssize_t stop)
4901 {
4902 regoff_t result;
4903
4904 #ifdef emacs
4905 ssize_t charpos;
4906 gl_state.object = re_match_object; /* Used by SYNTAX_TABLE_BYTE_TO_CHAR. */
4907 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
4908 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4909 #endif
4910
4911 result = re_match_2_internal (bufp, (re_char*) string1, size1,
4912 (re_char*) string2, size2,
4913 pos, regs, stop);
4914 return result;
4915 }
4916 WEAK_ALIAS (__re_match_2, re_match_2)
4917
4918
4919 /* This is a separate function so that we can force an alloca cleanup
4920 afterwards. */
4921 static regoff_t
4922 re_match_2_internal (struct re_pattern_buffer *bufp, const_re_char *string1,
4923 size_t size1, const_re_char *string2, size_t size2,
4924 ssize_t pos, struct re_registers *regs, ssize_t stop)
4925 {
4926 /* General temporaries. */
4927 int mcnt;
4928 size_t reg;
4929
4930 /* Just past the end of the corresponding string. */
4931 re_char *end1, *end2;
4932
4933 /* Pointers into string1 and string2, just past the last characters in
4934 each to consider matching. */
4935 re_char *end_match_1, *end_match_2;
4936
4937 /* Where we are in the data, and the end of the current string. */
4938 re_char *d, *dend;
4939
4940 /* Used sometimes to remember where we were before starting matching
4941 an operator so that we can go back in case of failure. This "atomic"
4942 behavior of matching opcodes is indispensable to the correctness
4943 of the on_failure_keep_string_jump optimization. */
4944 re_char *dfail;
4945
4946 /* Where we are in the pattern, and the end of the pattern. */
4947 re_char *p = bufp->buffer;
4948 re_char *pend = p + bufp->used;
4949
4950 /* We use this to map every character in the string. */
4951 RE_TRANSLATE_TYPE translate = bufp->translate;
4952
4953 /* Nonzero if BUFP is setup from a multibyte regex. */
4954 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4955
4956 /* Nonzero if STRING1/STRING2 are multibyte. */
4957 const boolean target_multibyte = RE_TARGET_MULTIBYTE_P (bufp);
4958
4959 /* Failure point stack. Each place that can handle a failure further
4960 down the line pushes a failure point on this stack. It consists of
4961 regstart, and regend for all registers corresponding to
4962 the subexpressions we're currently inside, plus the number of such
4963 registers, and, finally, two char *'s. The first char * is where
4964 to resume scanning the pattern; the second one is where to resume
4965 scanning the strings. */
4966 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
4967 fail_stack_type fail_stack;
4968 #endif
4969 #ifdef DEBUG_COMPILES_ARGUMENTS
4970 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4971 #endif
4972
4973 #if defined REL_ALLOC && defined REGEX_MALLOC
4974 /* This holds the pointer to the failure stack, when
4975 it is allocated relocatably. */
4976 fail_stack_elt_t *failure_stack_ptr;
4977 #endif
4978
4979 /* We fill all the registers internally, independent of what we
4980 return, for use in backreferences. The number here includes
4981 an element for register zero. */
4982 size_t num_regs = bufp->re_nsub + 1;
4983
4984 /* Information on the contents of registers. These are pointers into
4985 the input strings; they record just what was matched (on this
4986 attempt) by a subexpression part of the pattern, that is, the
4987 regnum-th regstart pointer points to where in the pattern we began
4988 matching and the regnum-th regend points to right after where we
4989 stopped matching the regnum-th subexpression. (The zeroth register
4990 keeps track of what the whole pattern matches.) */
4991 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4992 re_char **regstart, **regend;
4993 #endif
4994
4995 /* The following record the register info as found in the above
4996 variables when we find a match better than any we've seen before.
4997 This happens as we backtrack through the failure points, which in
4998 turn happens only if we have not yet matched the entire string. */
4999 unsigned best_regs_set = false;
5000 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5001 re_char **best_regstart, **best_regend;
5002 #endif
5003
5004 /* Logically, this is `best_regend[0]'. But we don't want to have to
5005 allocate space for that if we're not allocating space for anything
5006 else (see below). Also, we never need info about register 0 for
5007 any of the other register vectors, and it seems rather a kludge to
5008 treat `best_regend' differently than the rest. So we keep track of
5009 the end of the best match so far in a separate variable. We
5010 initialize this to NULL so that when we backtrack the first time
5011 and need to test it, it's not garbage. */
5012 re_char *match_end = NULL;
5013
5014 #ifdef DEBUG_COMPILES_ARGUMENTS
5015 /* Counts the total number of registers pushed. */
5016 unsigned num_regs_pushed = 0;
5017 #endif
5018
5019 DEBUG_PRINT ("\n\nEntering re_match_2.\n");
5020
5021 INIT_FAIL_STACK ();
5022
5023 #ifdef MATCH_MAY_ALLOCATE
5024 /* Do not bother to initialize all the register variables if there are
5025 no groups in the pattern, as it takes a fair amount of time. If
5026 there are groups, we include space for register 0 (the whole
5027 pattern), even though we never use it, since it simplifies the
5028 array indexing. We should fix this. */
5029 if (bufp->re_nsub)
5030 {
5031 regstart = REGEX_TALLOC (num_regs, re_char *);
5032 regend = REGEX_TALLOC (num_regs, re_char *);
5033 best_regstart = REGEX_TALLOC (num_regs, re_char *);
5034 best_regend = REGEX_TALLOC (num_regs, re_char *);
5035
5036 if (!(regstart && regend && best_regstart && best_regend))
5037 {
5038 FREE_VARIABLES ();
5039 return -2;
5040 }
5041 }
5042 else
5043 {
5044 /* We must initialize all our variables to NULL, so that
5045 `FREE_VARIABLES' doesn't try to free them. */
5046 regstart = regend = best_regstart = best_regend = NULL;
5047 }
5048 #endif /* MATCH_MAY_ALLOCATE */
5049
5050 /* The starting position is bogus. */
5051 if (pos < 0 || pos > size1 + size2)
5052 {
5053 FREE_VARIABLES ();
5054 return -1;
5055 }
5056
5057 /* Initialize subexpression text positions to -1 to mark ones that no
5058 start_memory/stop_memory has been seen for. Also initialize the
5059 register information struct. */
5060 for (reg = 1; reg < num_regs; reg++)
5061 regstart[reg] = regend[reg] = NULL;
5062
5063 /* We move `string1' into `string2' if the latter's empty -- but not if
5064 `string1' is null. */
5065 if (size2 == 0 && string1 != NULL)
5066 {
5067 string2 = string1;
5068 size2 = size1;
5069 string1 = 0;
5070 size1 = 0;
5071 }
5072 end1 = string1 + size1;
5073 end2 = string2 + size2;
5074
5075 /* `p' scans through the pattern as `d' scans through the data.
5076 `dend' is the end of the input string that `d' points within. `d'
5077 is advanced into the following input string whenever necessary, but
5078 this happens before fetching; therefore, at the beginning of the
5079 loop, `d' can be pointing at the end of a string, but it cannot
5080 equal `string2'. */
5081 if (pos >= size1)
5082 {
5083 /* Only match within string2. */
5084 d = string2 + pos - size1;
5085 dend = end_match_2 = string2 + stop - size1;
5086 end_match_1 = end1; /* Just to give it a value. */
5087 }
5088 else
5089 {
5090 if (stop < size1)
5091 {
5092 /* Only match within string1. */
5093 end_match_1 = string1 + stop;
5094 /* BEWARE!
5095 When we reach end_match_1, PREFETCH normally switches to string2.
5096 But in the present case, this means that just doing a PREFETCH
5097 makes us jump from `stop' to `gap' within the string.
5098 What we really want here is for the search to stop as
5099 soon as we hit end_match_1. That's why we set end_match_2
5100 to end_match_1 (since PREFETCH fails as soon as we hit
5101 end_match_2). */
5102 end_match_2 = end_match_1;
5103 }
5104 else
5105 { /* It's important to use this code when stop == size so that
5106 moving `d' from end1 to string2 will not prevent the d == dend
5107 check from catching the end of string. */
5108 end_match_1 = end1;
5109 end_match_2 = string2 + stop - size1;
5110 }
5111 d = string1 + pos;
5112 dend = end_match_1;
5113 }
5114
5115 DEBUG_PRINT ("The compiled pattern is: ");
5116 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5117 DEBUG_PRINT ("The string to match is: `");
5118 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5119 DEBUG_PRINT ("'\n");
5120
5121 /* This loops over pattern commands. It exits by returning from the
5122 function if the match is complete, or it drops through if the match
5123 fails at this starting point in the input data. */
5124 for (;;)
5125 {
5126 DEBUG_PRINT ("\n%p: ", p);
5127
5128 if (p == pend)
5129 {
5130 ptrdiff_t dcnt;
5131
5132 /* End of pattern means we might have succeeded. */
5133 DEBUG_PRINT ("end of pattern ... ");
5134
5135 /* If we haven't matched the entire string, and we want the
5136 longest match, try backtracking. */
5137 if (d != end_match_2)
5138 {
5139 /* 1 if this match ends in the same string (string1 or string2)
5140 as the best previous match. */
5141 boolean same_str_p = (FIRST_STRING_P (match_end)
5142 == FIRST_STRING_P (d));
5143 /* 1 if this match is the best seen so far. */
5144 boolean best_match_p;
5145
5146 /* AIX compiler got confused when this was combined
5147 with the previous declaration. */
5148 if (same_str_p)
5149 best_match_p = d > match_end;
5150 else
5151 best_match_p = !FIRST_STRING_P (d);
5152
5153 DEBUG_PRINT ("backtracking.\n");
5154
5155 if (!FAIL_STACK_EMPTY ())
5156 { /* More failure points to try. */
5157
5158 /* If exceeds best match so far, save it. */
5159 if (!best_regs_set || best_match_p)
5160 {
5161 best_regs_set = true;
5162 match_end = d;
5163
5164 DEBUG_PRINT ("\nSAVING match as best so far.\n");
5165
5166 for (reg = 1; reg < num_regs; reg++)
5167 {
5168 best_regstart[reg] = regstart[reg];
5169 best_regend[reg] = regend[reg];
5170 }
5171 }
5172 goto fail;
5173 }
5174
5175 /* If no failure points, don't restore garbage. And if
5176 last match is real best match, don't restore second
5177 best one. */
5178 else if (best_regs_set && !best_match_p)
5179 {
5180 restore_best_regs:
5181 /* Restore best match. It may happen that `dend ==
5182 end_match_1' while the restored d is in string2.
5183 For example, the pattern `x.*y.*z' against the
5184 strings `x-' and `y-z-', if the two strings are
5185 not consecutive in memory. */
5186 DEBUG_PRINT ("Restoring best registers.\n");
5187
5188 d = match_end;
5189 dend = ((d >= string1 && d <= end1)
5190 ? end_match_1 : end_match_2);
5191
5192 for (reg = 1; reg < num_regs; reg++)
5193 {
5194 regstart[reg] = best_regstart[reg];
5195 regend[reg] = best_regend[reg];
5196 }
5197 }
5198 } /* d != end_match_2 */
5199
5200 succeed_label:
5201 DEBUG_PRINT ("Accepting match.\n");
5202
5203 /* If caller wants register contents data back, do it. */
5204 if (regs && !bufp->no_sub)
5205 {
5206 /* Have the register data arrays been allocated? */
5207 if (bufp->regs_allocated == REGS_UNALLOCATED)
5208 { /* No. So allocate them with malloc. We need one
5209 extra element beyond `num_regs' for the `-1' marker
5210 GNU code uses. */
5211 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5212 regs->start = TALLOC (regs->num_regs, regoff_t);
5213 regs->end = TALLOC (regs->num_regs, regoff_t);
5214 if (regs->start == NULL || regs->end == NULL)
5215 {
5216 FREE_VARIABLES ();
5217 return -2;
5218 }
5219 bufp->regs_allocated = REGS_REALLOCATE;
5220 }
5221 else if (bufp->regs_allocated == REGS_REALLOCATE)
5222 { /* Yes. If we need more elements than were already
5223 allocated, reallocate them. If we need fewer, just
5224 leave it alone. */
5225 if (regs->num_regs < num_regs + 1)
5226 {
5227 regs->num_regs = num_regs + 1;
5228 RETALLOC (regs->start, regs->num_regs, regoff_t);
5229 RETALLOC (regs->end, regs->num_regs, regoff_t);
5230 if (regs->start == NULL || regs->end == NULL)
5231 {
5232 FREE_VARIABLES ();
5233 return -2;
5234 }
5235 }
5236 }
5237 else
5238 {
5239 /* These braces fend off a "empty body in an else-statement"
5240 warning under GCC when assert expands to nothing. */
5241 assert (bufp->regs_allocated == REGS_FIXED);
5242 }
5243
5244 /* Convert the pointer data in `regstart' and `regend' to
5245 indices. Register zero has to be set differently,
5246 since we haven't kept track of any info for it. */
5247 if (regs->num_regs > 0)
5248 {
5249 regs->start[0] = pos;
5250 regs->end[0] = POINTER_TO_OFFSET (d);
5251 }
5252
5253 /* Go through the first `min (num_regs, regs->num_regs)'
5254 registers, since that is all we initialized. */
5255 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
5256 {
5257 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
5258 regs->start[reg] = regs->end[reg] = -1;
5259 else
5260 {
5261 regs->start[reg] = POINTER_TO_OFFSET (regstart[reg]);
5262 regs->end[reg] = POINTER_TO_OFFSET (regend[reg]);
5263 }
5264 }
5265
5266 /* If the regs structure we return has more elements than
5267 were in the pattern, set the extra elements to -1. If
5268 we (re)allocated the registers, this is the case,
5269 because we always allocate enough to have at least one
5270 -1 at the end. */
5271 for (reg = num_regs; reg < regs->num_regs; reg++)
5272 regs->start[reg] = regs->end[reg] = -1;
5273 } /* regs && !bufp->no_sub */
5274
5275 DEBUG_PRINT ("%u failure points pushed, %u popped (%u remain).\n",
5276 nfailure_points_pushed, nfailure_points_popped,
5277 nfailure_points_pushed - nfailure_points_popped);
5278 DEBUG_PRINT ("%u registers pushed.\n", num_regs_pushed);
5279
5280 dcnt = POINTER_TO_OFFSET (d) - pos;
5281
5282 DEBUG_PRINT ("Returning %td from re_match_2.\n", dcnt);
5283
5284 FREE_VARIABLES ();
5285 return dcnt;
5286 }
5287
5288 /* Otherwise match next pattern command. */
5289 switch (*p++)
5290 {
5291 /* Ignore these. Used to ignore the n of succeed_n's which
5292 currently have n == 0. */
5293 case no_op:
5294 DEBUG_PRINT ("EXECUTING no_op.\n");
5295 break;
5296
5297 case succeed:
5298 DEBUG_PRINT ("EXECUTING succeed.\n");
5299 goto succeed_label;
5300
5301 /* Match the next n pattern characters exactly. The following
5302 byte in the pattern defines n, and the n bytes after that
5303 are the characters to match. */
5304 case exactn:
5305 mcnt = *p++;
5306 DEBUG_PRINT ("EXECUTING exactn %d.\n", mcnt);
5307
5308 /* Remember the start point to rollback upon failure. */
5309 dfail = d;
5310
5311 #ifndef emacs
5312 /* This is written out as an if-else so we don't waste time
5313 testing `translate' inside the loop. */
5314 if (RE_TRANSLATE_P (translate))
5315 do
5316 {
5317 PREFETCH ();
5318 if (RE_TRANSLATE (translate, *d) != *p++)
5319 {
5320 d = dfail;
5321 goto fail;
5322 }
5323 d++;
5324 }
5325 while (--mcnt);
5326 else
5327 do
5328 {
5329 PREFETCH ();
5330 if (*d++ != *p++)
5331 {
5332 d = dfail;
5333 goto fail;
5334 }
5335 }
5336 while (--mcnt);
5337 #else /* emacs */
5338 /* The cost of testing `translate' is comparatively small. */
5339 if (target_multibyte)
5340 do
5341 {
5342 int pat_charlen, buf_charlen;
5343 int pat_ch, buf_ch;
5344
5345 PREFETCH ();
5346 if (multibyte)
5347 pat_ch = STRING_CHAR_AND_LENGTH (p, pat_charlen);
5348 else
5349 {
5350 pat_ch = RE_CHAR_TO_MULTIBYTE (*p);
5351 pat_charlen = 1;
5352 }
5353 buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
5354
5355 if (TRANSLATE (buf_ch) != pat_ch)
5356 {
5357 d = dfail;
5358 goto fail;
5359 }
5360
5361 p += pat_charlen;
5362 d += buf_charlen;
5363 mcnt -= pat_charlen;
5364 }
5365 while (mcnt > 0);
5366 else
5367 do
5368 {
5369 int pat_charlen;
5370 int pat_ch, buf_ch;
5371
5372 PREFETCH ();
5373 if (multibyte)
5374 {
5375 pat_ch = STRING_CHAR_AND_LENGTH (p, pat_charlen);
5376 pat_ch = RE_CHAR_TO_UNIBYTE (pat_ch);
5377 }
5378 else
5379 {
5380 pat_ch = *p;
5381 pat_charlen = 1;
5382 }
5383 buf_ch = RE_CHAR_TO_MULTIBYTE (*d);
5384 if (! CHAR_BYTE8_P (buf_ch))
5385 {
5386 buf_ch = TRANSLATE (buf_ch);
5387 buf_ch = RE_CHAR_TO_UNIBYTE (buf_ch);
5388 if (buf_ch < 0)
5389 buf_ch = *d;
5390 }
5391 else
5392 buf_ch = *d;
5393 if (buf_ch != pat_ch)
5394 {
5395 d = dfail;
5396 goto fail;
5397 }
5398 p += pat_charlen;
5399 d++;
5400 }
5401 while (--mcnt);
5402 #endif
5403 break;
5404
5405
5406 /* Match any character except possibly a newline or a null. */
5407 case anychar:
5408 {
5409 int buf_charlen;
5410 re_wchar_t buf_ch;
5411
5412 DEBUG_PRINT ("EXECUTING anychar.\n");
5413
5414 PREFETCH ();
5415 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, buf_charlen,
5416 target_multibyte);
5417 buf_ch = TRANSLATE (buf_ch);
5418
5419 if ((!(bufp->syntax & RE_DOT_NEWLINE)
5420 && buf_ch == '\n')
5421 || ((bufp->syntax & RE_DOT_NOT_NULL)
5422 && buf_ch == '\000'))
5423 goto fail;
5424
5425 DEBUG_PRINT (" Matched `%d'.\n", *d);
5426 d += buf_charlen;
5427 }
5428 break;
5429
5430
5431 case charset:
5432 case charset_not:
5433 {
5434 register unsigned int c;
5435 boolean not = (re_opcode_t) *(p - 1) == charset_not;
5436 int len;
5437
5438 /* Start of actual range_table, or end of bitmap if there is no
5439 range table. */
5440 re_char *range_table IF_LINT (= NULL);
5441
5442 /* Nonzero if there is a range table. */
5443 int range_table_exists;
5444
5445 /* Number of ranges of range table. This is not included
5446 in the initial byte-length of the command. */
5447 int count = 0;
5448
5449 /* Whether matching against a unibyte character. */
5450 boolean unibyte_char = false;
5451
5452 DEBUG_PRINT ("EXECUTING charset%s.\n", not ? "_not" : "");
5453
5454 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
5455
5456 if (range_table_exists)
5457 {
5458 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
5459 EXTRACT_NUMBER_AND_INCR (count, range_table);
5460 }
5461
5462 PREFETCH ();
5463 c = RE_STRING_CHAR_AND_LENGTH (d, len, target_multibyte);
5464 if (target_multibyte)
5465 {
5466 int c1;
5467
5468 c = TRANSLATE (c);
5469 c1 = RE_CHAR_TO_UNIBYTE (c);
5470 if (c1 >= 0)
5471 {
5472 unibyte_char = true;
5473 c = c1;
5474 }
5475 }
5476 else
5477 {
5478 int c1 = RE_CHAR_TO_MULTIBYTE (c);
5479
5480 if (! CHAR_BYTE8_P (c1))
5481 {
5482 c1 = TRANSLATE (c1);
5483 c1 = RE_CHAR_TO_UNIBYTE (c1);
5484 if (c1 >= 0)
5485 {
5486 unibyte_char = true;
5487 c = c1;
5488 }
5489 }
5490 else
5491 unibyte_char = true;
5492 }
5493
5494 if (unibyte_char && c < (1 << BYTEWIDTH))
5495 { /* Lookup bitmap. */
5496 /* Cast to `unsigned' instead of `unsigned char' in
5497 case the bit list is a full 32 bytes long. */
5498 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
5499 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5500 not = !not;
5501 }
5502 #ifdef emacs
5503 else if (range_table_exists)
5504 {
5505 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
5506
5507 if ( (class_bits & BIT_LOWER && ISLOWER (c))
5508 | (class_bits & BIT_MULTIBYTE)
5509 | (class_bits & BIT_PUNCT && ISPUNCT (c))
5510 | (class_bits & BIT_SPACE && ISSPACE (c))
5511 | (class_bits & BIT_UPPER && ISUPPER (c))
5512 | (class_bits & BIT_WORD && ISWORD (c)))
5513 not = !not;
5514 else
5515 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5516 }
5517 #endif /* emacs */
5518
5519 if (range_table_exists)
5520 p = CHARSET_RANGE_TABLE_END (range_table, count);
5521 else
5522 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
5523
5524 if (!not) goto fail;
5525
5526 d += len;
5527 }
5528 break;
5529
5530
5531 /* The beginning of a group is represented by start_memory.
5532 The argument is the register number. The text
5533 matched within the group is recorded (in the internal
5534 registers data structure) under the register number. */
5535 case start_memory:
5536 DEBUG_PRINT ("EXECUTING start_memory %d:\n", *p);
5537
5538 /* In case we need to undo this operation (via backtracking). */
5539 PUSH_FAILURE_REG (*p);
5540
5541 regstart[*p] = d;
5542 regend[*p] = NULL; /* probably unnecessary. -sm */
5543 DEBUG_PRINT (" regstart: %td\n", POINTER_TO_OFFSET (regstart[*p]));
5544
5545 /* Move past the register number and inner group count. */
5546 p += 1;
5547 break;
5548
5549
5550 /* The stop_memory opcode represents the end of a group. Its
5551 argument is the same as start_memory's: the register number. */
5552 case stop_memory:
5553 DEBUG_PRINT ("EXECUTING stop_memory %d:\n", *p);
5554
5555 assert (!REG_UNSET (regstart[*p]));
5556 /* Strictly speaking, there should be code such as:
5557
5558 assert (REG_UNSET (regend[*p]));
5559 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5560
5561 But the only info to be pushed is regend[*p] and it is known to
5562 be UNSET, so there really isn't anything to push.
5563 Not pushing anything, on the other hand deprives us from the
5564 guarantee that regend[*p] is UNSET since undoing this operation
5565 will not reset its value properly. This is not important since
5566 the value will only be read on the next start_memory or at
5567 the very end and both events can only happen if this stop_memory
5568 is *not* undone. */
5569
5570 regend[*p] = d;
5571 DEBUG_PRINT (" regend: %td\n", POINTER_TO_OFFSET (regend[*p]));
5572
5573 /* Move past the register number and the inner group count. */
5574 p += 1;
5575 break;
5576
5577
5578 /* \<digit> has been turned into a `duplicate' command which is
5579 followed by the numeric value of <digit> as the register number. */
5580 case duplicate:
5581 {
5582 register re_char *d2, *dend2;
5583 int regno = *p++; /* Get which register to match against. */
5584 DEBUG_PRINT ("EXECUTING duplicate %d.\n", regno);
5585
5586 /* Can't back reference a group which we've never matched. */
5587 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5588 goto fail;
5589
5590 /* Where in input to try to start matching. */
5591 d2 = regstart[regno];
5592
5593 /* Remember the start point to rollback upon failure. */
5594 dfail = d;
5595
5596 /* Where to stop matching; if both the place to start and
5597 the place to stop matching are in the same string, then
5598 set to the place to stop, otherwise, for now have to use
5599 the end of the first string. */
5600
5601 dend2 = ((FIRST_STRING_P (regstart[regno])
5602 == FIRST_STRING_P (regend[regno]))
5603 ? regend[regno] : end_match_1);
5604 for (;;)
5605 {
5606 ptrdiff_t dcnt;
5607
5608 /* If necessary, advance to next segment in register
5609 contents. */
5610 while (d2 == dend2)
5611 {
5612 if (dend2 == end_match_2) break;
5613 if (dend2 == regend[regno]) break;
5614
5615 /* End of string1 => advance to string2. */
5616 d2 = string2;
5617 dend2 = regend[regno];
5618 }
5619 /* At end of register contents => success */
5620 if (d2 == dend2) break;
5621
5622 /* If necessary, advance to next segment in data. */
5623 PREFETCH ();
5624
5625 /* How many characters left in this segment to match. */
5626 dcnt = dend - d;
5627
5628 /* Want how many consecutive characters we can match in
5629 one shot, so, if necessary, adjust the count. */
5630 if (dcnt > dend2 - d2)
5631 dcnt = dend2 - d2;
5632
5633 /* Compare that many; failure if mismatch, else move
5634 past them. */
5635 if (RE_TRANSLATE_P (translate)
5636 ? bcmp_translate (d, d2, dcnt, translate, target_multibyte)
5637 : memcmp (d, d2, dcnt))
5638 {
5639 d = dfail;
5640 goto fail;
5641 }
5642 d += dcnt, d2 += dcnt;
5643 }
5644 }
5645 break;
5646
5647
5648 /* begline matches the empty string at the beginning of the string
5649 (unless `not_bol' is set in `bufp'), and after newlines. */
5650 case begline:
5651 DEBUG_PRINT ("EXECUTING begline.\n");
5652
5653 if (AT_STRINGS_BEG (d))
5654 {
5655 if (!bufp->not_bol) break;
5656 }
5657 else
5658 {
5659 unsigned c;
5660 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
5661 if (c == '\n')
5662 break;
5663 }
5664 /* In all other cases, we fail. */
5665 goto fail;
5666
5667
5668 /* endline is the dual of begline. */
5669 case endline:
5670 DEBUG_PRINT ("EXECUTING endline.\n");
5671
5672 if (AT_STRINGS_END (d))
5673 {
5674 if (!bufp->not_eol) break;
5675 }
5676 else
5677 {
5678 PREFETCH_NOLIMIT ();
5679 if (*d == '\n')
5680 break;
5681 }
5682 goto fail;
5683
5684
5685 /* Match at the very beginning of the data. */
5686 case begbuf:
5687 DEBUG_PRINT ("EXECUTING begbuf.\n");
5688 if (AT_STRINGS_BEG (d))
5689 break;
5690 goto fail;
5691
5692
5693 /* Match at the very end of the data. */
5694 case endbuf:
5695 DEBUG_PRINT ("EXECUTING endbuf.\n");
5696 if (AT_STRINGS_END (d))
5697 break;
5698 goto fail;
5699
5700
5701 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5702 pushes NULL as the value for the string on the stack. Then
5703 `POP_FAILURE_POINT' will keep the current value for the
5704 string, instead of restoring it. To see why, consider
5705 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5706 then the . fails against the \n. But the next thing we want
5707 to do is match the \n against the \n; if we restored the
5708 string value, we would be back at the foo.
5709
5710 Because this is used only in specific cases, we don't need to
5711 check all the things that `on_failure_jump' does, to make
5712 sure the right things get saved on the stack. Hence we don't
5713 share its code. The only reason to push anything on the
5714 stack at all is that otherwise we would have to change
5715 `anychar's code to do something besides goto fail in this
5716 case; that seems worse than this. */
5717 case on_failure_keep_string_jump:
5718 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5719 DEBUG_PRINT ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5720 mcnt, p + mcnt);
5721
5722 PUSH_FAILURE_POINT (p - 3, NULL);
5723 break;
5724
5725 /* A nasty loop is introduced by the non-greedy *? and +?.
5726 With such loops, the stack only ever contains one failure point
5727 at a time, so that a plain on_failure_jump_loop kind of
5728 cycle detection cannot work. Worse yet, such a detection
5729 can not only fail to detect a cycle, but it can also wrongly
5730 detect a cycle (between different instantiations of the same
5731 loop).
5732 So the method used for those nasty loops is a little different:
5733 We use a special cycle-detection-stack-frame which is pushed
5734 when the on_failure_jump_nastyloop failure-point is *popped*.
5735 This special frame thus marks the beginning of one iteration
5736 through the loop and we can hence easily check right here
5737 whether something matched between the beginning and the end of
5738 the loop. */
5739 case on_failure_jump_nastyloop:
5740 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5741 DEBUG_PRINT ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5742 mcnt, p + mcnt);
5743
5744 assert ((re_opcode_t)p[-4] == no_op);
5745 {
5746 int cycle = 0;
5747 CHECK_INFINITE_LOOP (p - 4, d);
5748 if (!cycle)
5749 /* If there's a cycle, just continue without pushing
5750 this failure point. The failure point is the "try again"
5751 option, which shouldn't be tried.
5752 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5753 PUSH_FAILURE_POINT (p - 3, d);
5754 }
5755 break;
5756
5757 /* Simple loop detecting on_failure_jump: just check on the
5758 failure stack if the same spot was already hit earlier. */
5759 case on_failure_jump_loop:
5760 on_failure:
5761 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5762 DEBUG_PRINT ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5763 mcnt, p + mcnt);
5764 {
5765 int cycle = 0;
5766 CHECK_INFINITE_LOOP (p - 3, d);
5767 if (cycle)
5768 /* If there's a cycle, get out of the loop, as if the matching
5769 had failed. We used to just `goto fail' here, but that was
5770 aborting the search a bit too early: we want to keep the
5771 empty-loop-match and keep matching after the loop.
5772 We want (x?)*y\1z to match both xxyz and xxyxz. */
5773 p += mcnt;
5774 else
5775 PUSH_FAILURE_POINT (p - 3, d);
5776 }
5777 break;
5778
5779
5780 /* Uses of on_failure_jump:
5781
5782 Each alternative starts with an on_failure_jump that points
5783 to the beginning of the next alternative. Each alternative
5784 except the last ends with a jump that in effect jumps past
5785 the rest of the alternatives. (They really jump to the
5786 ending jump of the following alternative, because tensioning
5787 these jumps is a hassle.)
5788
5789 Repeats start with an on_failure_jump that points past both
5790 the repetition text and either the following jump or
5791 pop_failure_jump back to this on_failure_jump. */
5792 case on_failure_jump:
5793 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5794 DEBUG_PRINT ("EXECUTING on_failure_jump %d (to %p):\n",
5795 mcnt, p + mcnt);
5796
5797 PUSH_FAILURE_POINT (p -3, d);
5798 break;
5799
5800 /* This operation is used for greedy *.
5801 Compare the beginning of the repeat with what in the
5802 pattern follows its end. If we can establish that there
5803 is nothing that they would both match, i.e., that we
5804 would have to backtrack because of (as in, e.g., `a*a')
5805 then we can use a non-backtracking loop based on
5806 on_failure_keep_string_jump instead of on_failure_jump. */
5807 case on_failure_jump_smart:
5808 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5809 DEBUG_PRINT ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5810 mcnt, p + mcnt);
5811 {
5812 re_char *p1 = p; /* Next operation. */
5813 /* Here, we discard `const', making re_match non-reentrant. */
5814 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
5815 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
5816
5817 p -= 3; /* Reset so that we will re-execute the
5818 instruction once it's been changed. */
5819
5820 EXTRACT_NUMBER (mcnt, p2 - 2);
5821
5822 /* Ensure this is a indeed the trivial kind of loop
5823 we are expecting. */
5824 assert (skip_one_char (p1) == p2 - 3);
5825 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
5826 DEBUG_STATEMENT (debug += 2);
5827 if (mutually_exclusive_p (bufp, p1, p2))
5828 {
5829 /* Use a fast `on_failure_keep_string_jump' loop. */
5830 DEBUG_PRINT (" smart exclusive => fast loop.\n");
5831 *p3 = (unsigned char) on_failure_keep_string_jump;
5832 STORE_NUMBER (p2 - 2, mcnt + 3);
5833 }
5834 else
5835 {
5836 /* Default to a safe `on_failure_jump' loop. */
5837 DEBUG_PRINT (" smart default => slow loop.\n");
5838 *p3 = (unsigned char) on_failure_jump;
5839 }
5840 DEBUG_STATEMENT (debug -= 2);
5841 }
5842 break;
5843
5844 /* Unconditionally jump (without popping any failure points). */
5845 case jump:
5846 unconditional_jump:
5847 IMMEDIATE_QUIT_CHECK;
5848 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
5849 DEBUG_PRINT ("EXECUTING jump %d ", mcnt);
5850 p += mcnt; /* Do the jump. */
5851 DEBUG_PRINT ("(to %p).\n", p);
5852 break;
5853
5854
5855 /* Have to succeed matching what follows at least n times.
5856 After that, handle like `on_failure_jump'. */
5857 case succeed_n:
5858 /* Signedness doesn't matter since we only compare MCNT to 0. */
5859 EXTRACT_NUMBER (mcnt, p + 2);
5860 DEBUG_PRINT ("EXECUTING succeed_n %d.\n", mcnt);
5861
5862 /* Originally, mcnt is how many times we HAVE to succeed. */
5863 if (mcnt != 0)
5864 {
5865 /* Here, we discard `const', making re_match non-reentrant. */
5866 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
5867 mcnt--;
5868 p += 4;
5869 PUSH_NUMBER (p2, mcnt);
5870 }
5871 else
5872 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5873 goto on_failure;
5874 break;
5875
5876 case jump_n:
5877 /* Signedness doesn't matter since we only compare MCNT to 0. */
5878 EXTRACT_NUMBER (mcnt, p + 2);
5879 DEBUG_PRINT ("EXECUTING jump_n %d.\n", mcnt);
5880
5881 /* Originally, this is how many times we CAN jump. */
5882 if (mcnt != 0)
5883 {
5884 /* Here, we discard `const', making re_match non-reentrant. */
5885 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
5886 mcnt--;
5887 PUSH_NUMBER (p2, mcnt);
5888 goto unconditional_jump;
5889 }
5890 /* If don't have to jump any more, skip over the rest of command. */
5891 else
5892 p += 4;
5893 break;
5894
5895 case set_number_at:
5896 {
5897 unsigned char *p2; /* Location of the counter. */
5898 DEBUG_PRINT ("EXECUTING set_number_at.\n");
5899
5900 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5901 /* Here, we discard `const', making re_match non-reentrant. */
5902 p2 = (unsigned char*) p + mcnt;
5903 /* Signedness doesn't matter since we only copy MCNT's bits. */
5904 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5905 DEBUG_PRINT (" Setting %p to %d.\n", p2, mcnt);
5906 PUSH_NUMBER (p2, mcnt);
5907 break;
5908 }
5909
5910 case wordbound:
5911 case notwordbound:
5912 {
5913 boolean not = (re_opcode_t) *(p - 1) == notwordbound;
5914 DEBUG_PRINT ("EXECUTING %swordbound.\n", not ? "not" : "");
5915
5916 /* We SUCCEED (or FAIL) in one of the following cases: */
5917
5918 /* Case 1: D is at the beginning or the end of string. */
5919 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5920 not = !not;
5921 else
5922 {
5923 /* C1 is the character before D, S1 is the syntax of C1, C2
5924 is the character at D, and S2 is the syntax of C2. */
5925 re_wchar_t c1, c2;
5926 int s1, s2;
5927 int dummy;
5928 #ifdef emacs
5929 ssize_t offset = PTR_TO_OFFSET (d - 1);
5930 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5931 UPDATE_SYNTAX_TABLE (charpos);
5932 #endif
5933 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5934 s1 = SYNTAX (c1);
5935 #ifdef emacs
5936 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
5937 #endif
5938 PREFETCH_NOLIMIT ();
5939 GET_CHAR_AFTER (c2, d, dummy);
5940 s2 = SYNTAX (c2);
5941
5942 if (/* Case 2: Only one of S1 and S2 is Sword. */
5943 ((s1 == Sword) != (s2 == Sword))
5944 /* Case 3: Both of S1 and S2 are Sword, and macro
5945 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5946 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
5947 not = !not;
5948 }
5949 if (not)
5950 break;
5951 else
5952 goto fail;
5953 }
5954
5955 case wordbeg:
5956 DEBUG_PRINT ("EXECUTING wordbeg.\n");
5957
5958 /* We FAIL in one of the following cases: */
5959
5960 /* Case 1: D is at the end of string. */
5961 if (AT_STRINGS_END (d))
5962 goto fail;
5963 else
5964 {
5965 /* C1 is the character before D, S1 is the syntax of C1, C2
5966 is the character at D, and S2 is the syntax of C2. */
5967 re_wchar_t c1, c2;
5968 int s1, s2;
5969 int dummy;
5970 #ifdef emacs
5971 ssize_t offset = PTR_TO_OFFSET (d);
5972 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5973 UPDATE_SYNTAX_TABLE (charpos);
5974 #endif
5975 PREFETCH ();
5976 GET_CHAR_AFTER (c2, d, dummy);
5977 s2 = SYNTAX (c2);
5978
5979 /* Case 2: S2 is not Sword. */
5980 if (s2 != Sword)
5981 goto fail;
5982
5983 /* Case 3: D is not at the beginning of string ... */
5984 if (!AT_STRINGS_BEG (d))
5985 {
5986 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5987 #ifdef emacs
5988 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
5989 #endif
5990 s1 = SYNTAX (c1);
5991
5992 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
5993 returns 0. */
5994 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5995 goto fail;
5996 }
5997 }
5998 break;
5999
6000 case wordend:
6001 DEBUG_PRINT ("EXECUTING wordend.\n");
6002
6003 /* We FAIL in one of the following cases: */
6004
6005 /* Case 1: D is at the beginning of string. */
6006 if (AT_STRINGS_BEG (d))
6007 goto fail;
6008 else
6009 {
6010 /* C1 is the character before D, S1 is the syntax of C1, C2
6011 is the character at D, and S2 is the syntax of C2. */
6012 re_wchar_t c1, c2;
6013 int s1, s2;
6014 int dummy;
6015 #ifdef emacs
6016 ssize_t offset = PTR_TO_OFFSET (d) - 1;
6017 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6018 UPDATE_SYNTAX_TABLE (charpos);
6019 #endif
6020 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6021 s1 = SYNTAX (c1);
6022
6023 /* Case 2: S1 is not Sword. */
6024 if (s1 != Sword)
6025 goto fail;
6026
6027 /* Case 3: D is not at the end of string ... */
6028 if (!AT_STRINGS_END (d))
6029 {
6030 PREFETCH_NOLIMIT ();
6031 GET_CHAR_AFTER (c2, d, dummy);
6032 #ifdef emacs
6033 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
6034 #endif
6035 s2 = SYNTAX (c2);
6036
6037 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
6038 returns 0. */
6039 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
6040 goto fail;
6041 }
6042 }
6043 break;
6044
6045 case symbeg:
6046 DEBUG_PRINT ("EXECUTING symbeg.\n");
6047
6048 /* We FAIL in one of the following cases: */
6049
6050 /* Case 1: D is at the end of string. */
6051 if (AT_STRINGS_END (d))
6052 goto fail;
6053 else
6054 {
6055 /* C1 is the character before D, S1 is the syntax of C1, C2
6056 is the character at D, and S2 is the syntax of C2. */
6057 re_wchar_t c1, c2;
6058 int s1, s2;
6059 #ifdef emacs
6060 ssize_t offset = PTR_TO_OFFSET (d);
6061 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6062 UPDATE_SYNTAX_TABLE (charpos);
6063 #endif
6064 PREFETCH ();
6065 c2 = RE_STRING_CHAR (d, target_multibyte);
6066 s2 = SYNTAX (c2);
6067
6068 /* Case 2: S2 is neither Sword nor Ssymbol. */
6069 if (s2 != Sword && s2 != Ssymbol)
6070 goto fail;
6071
6072 /* Case 3: D is not at the beginning of string ... */
6073 if (!AT_STRINGS_BEG (d))
6074 {
6075 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6076 #ifdef emacs
6077 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
6078 #endif
6079 s1 = SYNTAX (c1);
6080
6081 /* ... and S1 is Sword or Ssymbol. */
6082 if (s1 == Sword || s1 == Ssymbol)
6083 goto fail;
6084 }
6085 }
6086 break;
6087
6088 case symend:
6089 DEBUG_PRINT ("EXECUTING symend.\n");
6090
6091 /* We FAIL in one of the following cases: */
6092
6093 /* Case 1: D is at the beginning of string. */
6094 if (AT_STRINGS_BEG (d))
6095 goto fail;
6096 else
6097 {
6098 /* C1 is the character before D, S1 is the syntax of C1, C2
6099 is the character at D, and S2 is the syntax of C2. */
6100 re_wchar_t c1, c2;
6101 int s1, s2;
6102 #ifdef emacs
6103 ssize_t offset = PTR_TO_OFFSET (d) - 1;
6104 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6105 UPDATE_SYNTAX_TABLE (charpos);
6106 #endif
6107 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6108 s1 = SYNTAX (c1);
6109
6110 /* Case 2: S1 is neither Ssymbol nor Sword. */
6111 if (s1 != Sword && s1 != Ssymbol)
6112 goto fail;
6113
6114 /* Case 3: D is not at the end of string ... */
6115 if (!AT_STRINGS_END (d))
6116 {
6117 PREFETCH_NOLIMIT ();
6118 c2 = RE_STRING_CHAR (d, target_multibyte);
6119 #ifdef emacs
6120 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
6121 #endif
6122 s2 = SYNTAX (c2);
6123
6124 /* ... and S2 is Sword or Ssymbol. */
6125 if (s2 == Sword || s2 == Ssymbol)
6126 goto fail;
6127 }
6128 }
6129 break;
6130
6131 case syntaxspec:
6132 case notsyntaxspec:
6133 {
6134 boolean not = (re_opcode_t) *(p - 1) == notsyntaxspec;
6135 mcnt = *p++;
6136 DEBUG_PRINT ("EXECUTING %ssyntaxspec %d.\n", not ? "not" : "",
6137 mcnt);
6138 PREFETCH ();
6139 #ifdef emacs
6140 {
6141 ssize_t offset = PTR_TO_OFFSET (d);
6142 ssize_t pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6143 UPDATE_SYNTAX_TABLE (pos1);
6144 }
6145 #endif
6146 {
6147 int len;
6148 re_wchar_t c;
6149
6150 GET_CHAR_AFTER (c, d, len);
6151 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
6152 goto fail;
6153 d += len;
6154 }
6155 }
6156 break;
6157
6158 #ifdef emacs
6159 case before_dot:
6160 DEBUG_PRINT ("EXECUTING before_dot.\n");
6161 if (PTR_BYTE_POS (d) >= PT_BYTE)
6162 goto fail;
6163 break;
6164
6165 case at_dot:
6166 DEBUG_PRINT ("EXECUTING at_dot.\n");
6167 if (PTR_BYTE_POS (d) != PT_BYTE)
6168 goto fail;
6169 break;
6170
6171 case after_dot:
6172 DEBUG_PRINT ("EXECUTING after_dot.\n");
6173 if (PTR_BYTE_POS (d) <= PT_BYTE)
6174 goto fail;
6175 break;
6176
6177 case categoryspec:
6178 case notcategoryspec:
6179 {
6180 boolean not = (re_opcode_t) *(p - 1) == notcategoryspec;
6181 mcnt = *p++;
6182 DEBUG_PRINT ("EXECUTING %scategoryspec %d.\n",
6183 not ? "not" : "", mcnt);
6184 PREFETCH ();
6185
6186 {
6187 int len;
6188 re_wchar_t c;
6189 GET_CHAR_AFTER (c, d, len);
6190 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
6191 goto fail;
6192 d += len;
6193 }
6194 }
6195 break;
6196
6197 #endif /* emacs */
6198
6199 default:
6200 abort ();
6201 }
6202 continue; /* Successfully executed one pattern command; keep going. */
6203
6204
6205 /* We goto here if a matching operation fails. */
6206 fail:
6207 IMMEDIATE_QUIT_CHECK;
6208 if (!FAIL_STACK_EMPTY ())
6209 {
6210 re_char *str, *pat;
6211 /* A restart point is known. Restore to that state. */
6212 DEBUG_PRINT ("\nFAIL:\n");
6213 POP_FAILURE_POINT (str, pat);
6214 switch (*pat++)
6215 {
6216 case on_failure_keep_string_jump:
6217 assert (str == NULL);
6218 goto continue_failure_jump;
6219
6220 case on_failure_jump_nastyloop:
6221 assert ((re_opcode_t)pat[-2] == no_op);
6222 PUSH_FAILURE_POINT (pat - 2, str);
6223 /* Fallthrough */
6224
6225 case on_failure_jump_loop:
6226 case on_failure_jump:
6227 case succeed_n:
6228 d = str;
6229 continue_failure_jump:
6230 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
6231 p = pat + mcnt;
6232 break;
6233
6234 case no_op:
6235 /* A special frame used for nastyloops. */
6236 goto fail;
6237
6238 default:
6239 abort ();
6240 }
6241
6242 assert (p >= bufp->buffer && p <= pend);
6243
6244 if (d >= string1 && d <= end1)
6245 dend = end_match_1;
6246 }
6247 else
6248 break; /* Matching at this starting point really fails. */
6249 } /* for (;;) */
6250
6251 if (best_regs_set)
6252 goto restore_best_regs;
6253
6254 FREE_VARIABLES ();
6255
6256 return -1; /* Failure to match. */
6257 }
6258 \f
6259 /* Subroutine definitions for re_match_2. */
6260
6261 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6262 bytes; nonzero otherwise. */
6263
6264 static int
6265 bcmp_translate (const_re_char *s1, const_re_char *s2, register ssize_t len,
6266 RE_TRANSLATE_TYPE translate, const int target_multibyte)
6267 {
6268 register re_char *p1 = s1, *p2 = s2;
6269 re_char *p1_end = s1 + len;
6270 re_char *p2_end = s2 + len;
6271
6272 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6273 different lengths, but relying on a single `len' would break this. -sm */
6274 while (p1 < p1_end && p2 < p2_end)
6275 {
6276 int p1_charlen, p2_charlen;
6277 re_wchar_t p1_ch, p2_ch;
6278
6279 GET_CHAR_AFTER (p1_ch, p1, p1_charlen);
6280 GET_CHAR_AFTER (p2_ch, p2, p2_charlen);
6281
6282 if (RE_TRANSLATE (translate, p1_ch)
6283 != RE_TRANSLATE (translate, p2_ch))
6284 return 1;
6285
6286 p1 += p1_charlen, p2 += p2_charlen;
6287 }
6288
6289 if (p1 != p1_end || p2 != p2_end)
6290 return 1;
6291
6292 return 0;
6293 }
6294 \f
6295 /* Entry points for GNU code. */
6296
6297 /* re_compile_pattern is the GNU regular expression compiler: it
6298 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6299 Returns 0 if the pattern was valid, otherwise an error string.
6300
6301 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6302 are set in BUFP on entry.
6303
6304 We call regex_compile to do the actual compilation. */
6305
6306 const char *
6307 re_compile_pattern (const char *pattern, size_t length,
6308 struct re_pattern_buffer *bufp)
6309 {
6310 reg_errcode_t ret;
6311
6312 /* GNU code is written to assume at least RE_NREGS registers will be set
6313 (and at least one extra will be -1). */
6314 bufp->regs_allocated = REGS_UNALLOCATED;
6315
6316 /* And GNU code determines whether or not to get register information
6317 by passing null for the REGS argument to re_match, etc., not by
6318 setting no_sub. */
6319 bufp->no_sub = 0;
6320
6321 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
6322
6323 if (!ret)
6324 return NULL;
6325 return gettext (re_error_msgid[(int) ret]);
6326 }
6327 WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
6328 \f
6329 /* Entry points compatible with 4.2 BSD regex library. We don't define
6330 them unless specifically requested. */
6331
6332 #if defined _REGEX_RE_COMP || defined _LIBC
6333
6334 /* BSD has one and only one pattern buffer. */
6335 static struct re_pattern_buffer re_comp_buf;
6336
6337 char *
6338 # ifdef _LIBC
6339 /* Make these definitions weak in libc, so POSIX programs can redefine
6340 these names if they don't use our functions, and still use
6341 regcomp/regexec below without link errors. */
6342 weak_function
6343 # endif
6344 re_comp (const char *s)
6345 {
6346 reg_errcode_t ret;
6347
6348 if (!s)
6349 {
6350 if (!re_comp_buf.buffer)
6351 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6352 return (char *) gettext ("No previous regular expression");
6353 return 0;
6354 }
6355
6356 if (!re_comp_buf.buffer)
6357 {
6358 re_comp_buf.buffer = malloc (200);
6359 if (re_comp_buf.buffer == NULL)
6360 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6361 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6362 re_comp_buf.allocated = 200;
6363
6364 re_comp_buf.fastmap = malloc (1 << BYTEWIDTH);
6365 if (re_comp_buf.fastmap == NULL)
6366 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6367 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6368 }
6369
6370 /* Since `re_exec' always passes NULL for the `regs' argument, we
6371 don't need to initialize the pattern buffer fields which affect it. */
6372
6373 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
6374
6375 if (!ret)
6376 return NULL;
6377
6378 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6379 return (char *) gettext (re_error_msgid[(int) ret]);
6380 }
6381
6382
6383 int
6384 # ifdef _LIBC
6385 weak_function
6386 # endif
6387 re_exec (const char *s)
6388 {
6389 const size_t len = strlen (s);
6390 return re_search (&re_comp_buf, s, len, 0, len, 0) >= 0;
6391 }
6392 #endif /* _REGEX_RE_COMP */
6393 \f
6394 /* POSIX.2 functions. Don't define these for Emacs. */
6395
6396 #ifndef emacs
6397
6398 /* regcomp takes a regular expression as a string and compiles it.
6399
6400 PREG is a regex_t *. We do not expect any fields to be initialized,
6401 since POSIX says we shouldn't. Thus, we set
6402
6403 `buffer' to the compiled pattern;
6404 `used' to the length of the compiled pattern;
6405 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6406 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6407 RE_SYNTAX_POSIX_BASIC;
6408 `fastmap' to an allocated space for the fastmap;
6409 `fastmap_accurate' to zero;
6410 `re_nsub' to the number of subexpressions in PATTERN.
6411
6412 PATTERN is the address of the pattern string.
6413
6414 CFLAGS is a series of bits which affect compilation.
6415
6416 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6417 use POSIX basic syntax.
6418
6419 If REG_NEWLINE is set, then . and [^...] don't match newline.
6420 Also, regexec will try a match beginning after every newline.
6421
6422 If REG_ICASE is set, then we considers upper- and lowercase
6423 versions of letters to be equivalent when matching.
6424
6425 If REG_NOSUB is set, then when PREG is passed to regexec, that
6426 routine will report only success or failure, and nothing about the
6427 registers.
6428
6429 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
6430 the return codes and their meanings.) */
6431
6432 reg_errcode_t
6433 regcomp (regex_t *_Restrict_ preg, const char *_Restrict_ pattern,
6434 int cflags)
6435 {
6436 reg_errcode_t ret;
6437 reg_syntax_t syntax
6438 = (cflags & REG_EXTENDED) ?
6439 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6440
6441 /* regex_compile will allocate the space for the compiled pattern. */
6442 preg->buffer = 0;
6443 preg->allocated = 0;
6444 preg->used = 0;
6445
6446 /* Try to allocate space for the fastmap. */
6447 preg->fastmap = malloc (1 << BYTEWIDTH);
6448
6449 if (cflags & REG_ICASE)
6450 {
6451 unsigned i;
6452
6453 preg->translate = malloc (CHAR_SET_SIZE * sizeof *preg->translate);
6454 if (preg->translate == NULL)
6455 return (int) REG_ESPACE;
6456
6457 /* Map uppercase characters to corresponding lowercase ones. */
6458 for (i = 0; i < CHAR_SET_SIZE; i++)
6459 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
6460 }
6461 else
6462 preg->translate = NULL;
6463
6464 /* If REG_NEWLINE is set, newlines are treated differently. */
6465 if (cflags & REG_NEWLINE)
6466 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6467 syntax &= ~RE_DOT_NEWLINE;
6468 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
6469 }
6470 else
6471 syntax |= RE_NO_NEWLINE_ANCHOR;
6472
6473 preg->no_sub = !!(cflags & REG_NOSUB);
6474
6475 /* POSIX says a null character in the pattern terminates it, so we
6476 can use strlen here in compiling the pattern. */
6477 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
6478
6479 /* POSIX doesn't distinguish between an unmatched open-group and an
6480 unmatched close-group: both are REG_EPAREN. */
6481 if (ret == REG_ERPAREN)
6482 ret = REG_EPAREN;
6483
6484 if (ret == REG_NOERROR && preg->fastmap)
6485 { /* Compute the fastmap now, since regexec cannot modify the pattern
6486 buffer. */
6487 re_compile_fastmap (preg);
6488 if (preg->can_be_null)
6489 { /* The fastmap can't be used anyway. */
6490 free (preg->fastmap);
6491 preg->fastmap = NULL;
6492 }
6493 }
6494 return ret;
6495 }
6496 WEAK_ALIAS (__regcomp, regcomp)
6497
6498
6499 /* regexec searches for a given pattern, specified by PREG, in the
6500 string STRING.
6501
6502 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
6503 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
6504 least NMATCH elements, and we set them to the offsets of the
6505 corresponding matched substrings.
6506
6507 EFLAGS specifies `execution flags' which affect matching: if
6508 REG_NOTBOL is set, then ^ does not match at the beginning of the
6509 string; if REG_NOTEOL is set, then $ does not match at the end.
6510
6511 We return 0 if we find a match and REG_NOMATCH if not. */
6512
6513 reg_errcode_t
6514 regexec (const regex_t *_Restrict_ preg, const char *_Restrict_ string,
6515 size_t nmatch, regmatch_t pmatch[_Restrict_arr_], int eflags)
6516 {
6517 regoff_t ret;
6518 struct re_registers regs;
6519 regex_t private_preg;
6520 size_t len = strlen (string);
6521 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
6522
6523 private_preg = *preg;
6524
6525 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6526 private_preg.not_eol = !!(eflags & REG_NOTEOL);
6527
6528 /* The user has told us exactly how many registers to return
6529 information about, via `nmatch'. We have to pass that on to the
6530 matching routines. */
6531 private_preg.regs_allocated = REGS_FIXED;
6532
6533 if (want_reg_info)
6534 {
6535 regs.num_regs = nmatch;
6536 regs.start = TALLOC (nmatch * 2, regoff_t);
6537 if (regs.start == NULL)
6538 return REG_NOMATCH;
6539 regs.end = regs.start + nmatch;
6540 }
6541
6542 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6543 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6544 was a little bit longer but still only matching the real part.
6545 This works because the `endline' will check for a '\n' and will find a
6546 '\0', correctly deciding that this is not the end of a line.
6547 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6548 a convenient '\0' there. For all we know, the string could be preceded
6549 by '\n' which would throw things off. */
6550
6551 /* Perform the searching operation. */
6552 ret = re_search (&private_preg, string, len,
6553 /* start: */ 0, /* range: */ len,
6554 want_reg_info ? &regs : 0);
6555
6556 /* Copy the register information to the POSIX structure. */
6557 if (want_reg_info)
6558 {
6559 if (ret >= 0)
6560 {
6561 unsigned r;
6562
6563 for (r = 0; r < nmatch; r++)
6564 {
6565 pmatch[r].rm_so = regs.start[r];
6566 pmatch[r].rm_eo = regs.end[r];
6567 }
6568 }
6569
6570 /* If we needed the temporary register info, free the space now. */
6571 free (regs.start);
6572 }
6573
6574 /* We want zero return to mean success, unlike `re_search'. */
6575 return ret >= 0 ? REG_NOERROR : REG_NOMATCH;
6576 }
6577 WEAK_ALIAS (__regexec, regexec)
6578
6579
6580 /* Returns a message corresponding to an error code, ERR_CODE, returned
6581 from either regcomp or regexec. We don't use PREG here.
6582
6583 ERR_CODE was previously called ERRCODE, but that name causes an
6584 error with msvc8 compiler. */
6585
6586 size_t
6587 regerror (int err_code, const regex_t *preg, char *errbuf, size_t errbuf_size)
6588 {
6589 const char *msg;
6590 size_t msg_size;
6591
6592 if (err_code < 0
6593 || err_code >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
6594 /* Only error codes returned by the rest of the code should be passed
6595 to this routine. If we are given anything else, or if other regex
6596 code generates an invalid error code, then the program has a bug.
6597 Dump core so we can fix it. */
6598 abort ();
6599
6600 msg = gettext (re_error_msgid[err_code]);
6601
6602 msg_size = strlen (msg) + 1; /* Includes the null. */
6603
6604 if (errbuf_size != 0)
6605 {
6606 if (msg_size > errbuf_size)
6607 {
6608 memcpy (errbuf, msg, errbuf_size - 1);
6609 errbuf[errbuf_size - 1] = 0;
6610 }
6611 else
6612 strcpy (errbuf, msg);
6613 }
6614
6615 return msg_size;
6616 }
6617 WEAK_ALIAS (__regerror, regerror)
6618
6619
6620 /* Free dynamically allocated space used by PREG. */
6621
6622 void
6623 regfree (regex_t *preg)
6624 {
6625 free (preg->buffer);
6626 preg->buffer = NULL;
6627
6628 preg->allocated = 0;
6629 preg->used = 0;
6630
6631 free (preg->fastmap);
6632 preg->fastmap = NULL;
6633 preg->fastmap_accurate = 0;
6634
6635 free (preg->translate);
6636 preg->translate = NULL;
6637 }
6638 WEAK_ALIAS (__regfree, regfree)
6639
6640 #endif /* not emacs */