]> code.delx.au - gnu-emacs/blob - src/lisp.h
Fix extern symbols defined and not used
[gnu-emacs] / src / lisp.h
1 /* Fundamental definitions for GNU Emacs Lisp interpreter. -*- coding: utf-8 -*-
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2016 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #ifndef EMACS_LISP_H
22 #define EMACS_LISP_H
23
24 #include <setjmp.h>
25 #include <stdalign.h>
26 #include <stdarg.h>
27 #include <stddef.h>
28 #include <float.h>
29 #include <inttypes.h>
30 #include <limits.h>
31
32 #include <intprops.h>
33 #include <verify.h>
34
35 INLINE_HEADER_BEGIN
36
37 /* Define a TYPE constant ID as an externally visible name. Use like this:
38
39 DEFINE_GDB_SYMBOL_BEGIN (TYPE, ID)
40 # define ID (some integer preprocessor expression of type TYPE)
41 DEFINE_GDB_SYMBOL_END (ID)
42
43 This hack is for the benefit of compilers that do not make macro
44 definitions or enums visible to the debugger. It's used for symbols
45 that .gdbinit needs. */
46
47 #define DECLARE_GDB_SYM(type, id) type const id EXTERNALLY_VISIBLE
48 #ifdef MAIN_PROGRAM
49 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) DECLARE_GDB_SYM (type, id)
50 # define DEFINE_GDB_SYMBOL_END(id) = id;
51 #else
52 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) extern DECLARE_GDB_SYM (type, id)
53 # define DEFINE_GDB_SYMBOL_END(val) ;
54 #endif
55
56 /* The ubiquitous max and min macros. */
57 #undef min
58 #undef max
59 #define max(a, b) ((a) > (b) ? (a) : (b))
60 #define min(a, b) ((a) < (b) ? (a) : (b))
61
62 /* Number of elements in an array. */
63 #define ARRAYELTS(arr) (sizeof (arr) / sizeof (arr)[0])
64
65 /* Number of bits in a Lisp_Object tag. */
66 DEFINE_GDB_SYMBOL_BEGIN (int, GCTYPEBITS)
67 #define GCTYPEBITS 3
68 DEFINE_GDB_SYMBOL_END (GCTYPEBITS)
69
70 /* The number of bits needed in an EMACS_INT over and above the number
71 of bits in a pointer. This is 0 on systems where:
72 1. We can specify multiple-of-8 alignment on static variables.
73 2. We know malloc returns a multiple of 8. */
74 #if (defined alignas \
75 && (defined GNU_MALLOC || defined DOUG_LEA_MALLOC || defined __GLIBC__ \
76 || defined DARWIN_OS || defined __sun || defined __MINGW32__ \
77 || defined CYGWIN))
78 # define NONPOINTER_BITS 0
79 #else
80 # define NONPOINTER_BITS GCTYPEBITS
81 #endif
82
83 /* EMACS_INT - signed integer wide enough to hold an Emacs value
84 EMACS_INT_MAX - maximum value of EMACS_INT; can be used in #if
85 pI - printf length modifier for EMACS_INT
86 EMACS_UINT - unsigned variant of EMACS_INT */
87 #ifndef EMACS_INT_MAX
88 # if INTPTR_MAX <= 0
89 # error "INTPTR_MAX misconfigured"
90 # elif INTPTR_MAX <= INT_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
91 typedef int EMACS_INT;
92 typedef unsigned int EMACS_UINT;
93 # define EMACS_INT_MAX INT_MAX
94 # define pI ""
95 # elif INTPTR_MAX <= LONG_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
96 typedef long int EMACS_INT;
97 typedef unsigned long EMACS_UINT;
98 # define EMACS_INT_MAX LONG_MAX
99 # define pI "l"
100 /* Check versus LLONG_MAX, not LLONG_MAX >> NONPOINTER_BITS.
101 In theory this is not safe, but in practice it seems to be OK. */
102 # elif INTPTR_MAX <= LLONG_MAX
103 typedef long long int EMACS_INT;
104 typedef unsigned long long int EMACS_UINT;
105 # define EMACS_INT_MAX LLONG_MAX
106 # define pI "ll"
107 # else
108 # error "INTPTR_MAX too large"
109 # endif
110 #endif
111
112 /* Number of bits to put in each character in the internal representation
113 of bool vectors. This should not vary across implementations. */
114 enum { BOOL_VECTOR_BITS_PER_CHAR =
115 #define BOOL_VECTOR_BITS_PER_CHAR 8
116 BOOL_VECTOR_BITS_PER_CHAR
117 };
118
119 /* An unsigned integer type representing a fixed-length bit sequence,
120 suitable for bool vector words, GC mark bits, etc. Normally it is size_t
121 for speed, but it is unsigned char on weird platforms. */
122 #if BOOL_VECTOR_BITS_PER_CHAR == CHAR_BIT
123 typedef size_t bits_word;
124 # define BITS_WORD_MAX SIZE_MAX
125 enum { BITS_PER_BITS_WORD = CHAR_BIT * sizeof (bits_word) };
126 #else
127 typedef unsigned char bits_word;
128 # define BITS_WORD_MAX ((1u << BOOL_VECTOR_BITS_PER_CHAR) - 1)
129 enum { BITS_PER_BITS_WORD = BOOL_VECTOR_BITS_PER_CHAR };
130 #endif
131 verify (BITS_WORD_MAX >> (BITS_PER_BITS_WORD - 1) == 1);
132
133 /* Number of bits in some machine integer types. */
134 enum
135 {
136 BITS_PER_CHAR = CHAR_BIT,
137 BITS_PER_SHORT = CHAR_BIT * sizeof (short),
138 BITS_PER_LONG = CHAR_BIT * sizeof (long int),
139 BITS_PER_EMACS_INT = CHAR_BIT * sizeof (EMACS_INT)
140 };
141
142 /* printmax_t and uprintmax_t are types for printing large integers.
143 These are the widest integers that are supported for printing.
144 pMd etc. are conversions for printing them.
145 On C99 hosts, there's no problem, as even the widest integers work.
146 Fall back on EMACS_INT on pre-C99 hosts. */
147 #ifdef PRIdMAX
148 typedef intmax_t printmax_t;
149 typedef uintmax_t uprintmax_t;
150 # define pMd PRIdMAX
151 # define pMu PRIuMAX
152 #else
153 typedef EMACS_INT printmax_t;
154 typedef EMACS_UINT uprintmax_t;
155 # define pMd pI"d"
156 # define pMu pI"u"
157 #endif
158
159 /* Use pD to format ptrdiff_t values, which suffice for indexes into
160 buffers and strings. Emacs never allocates objects larger than
161 PTRDIFF_MAX bytes, as they cause problems with pointer subtraction.
162 In C99, pD can always be "t"; configure it here for the sake of
163 pre-C99 libraries such as glibc 2.0 and Solaris 8. */
164 #if PTRDIFF_MAX == INT_MAX
165 # define pD ""
166 #elif PTRDIFF_MAX == LONG_MAX
167 # define pD "l"
168 #elif PTRDIFF_MAX == LLONG_MAX
169 # define pD "ll"
170 #else
171 # define pD "t"
172 #endif
173
174 /* Extra internal type checking? */
175
176 /* Define Emacs versions of <assert.h>'s 'assert (COND)' and <verify.h>'s
177 'assume (COND)'. COND should be free of side effects, as it may or
178 may not be evaluated.
179
180 'eassert (COND)' checks COND at runtime if ENABLE_CHECKING is
181 defined and suppress_checking is false, and does nothing otherwise.
182 Emacs dies if COND is checked and is false. The suppress_checking
183 variable is initialized to 0 in alloc.c. Set it to 1 using a
184 debugger to temporarily disable aborting on detected internal
185 inconsistencies or error conditions.
186
187 In some cases, a good compiler may be able to optimize away the
188 eassert macro even if ENABLE_CHECKING is true, e.g., if XSTRING (x)
189 uses eassert to test STRINGP (x), but a particular use of XSTRING
190 is invoked only after testing that STRINGP (x) is true, making the
191 test redundant.
192
193 eassume is like eassert except that it also causes the compiler to
194 assume that COND is true afterwards, regardless of whether runtime
195 checking is enabled. This can improve performance in some cases,
196 though it can degrade performance in others. It's often suboptimal
197 for COND to call external functions or access volatile storage. */
198
199 #ifndef ENABLE_CHECKING
200 # define eassert(cond) ((void) (false && (cond))) /* Check COND compiles. */
201 # define eassume(cond) assume (cond)
202 #else /* ENABLE_CHECKING */
203
204 extern _Noreturn void die (const char *, const char *, int);
205
206 extern bool suppress_checking EXTERNALLY_VISIBLE;
207
208 # define eassert(cond) \
209 (suppress_checking || (cond) \
210 ? (void) 0 \
211 : die (# cond, __FILE__, __LINE__))
212 # define eassume(cond) \
213 (suppress_checking \
214 ? assume (cond) \
215 : (cond) \
216 ? (void) 0 \
217 : die (# cond, __FILE__, __LINE__))
218 #endif /* ENABLE_CHECKING */
219
220 \f
221 /* Use the configure flag --enable-check-lisp-object-type to make
222 Lisp_Object use a struct type instead of the default int. The flag
223 causes CHECK_LISP_OBJECT_TYPE to be defined. */
224
225 /***** Select the tagging scheme. *****/
226 /* The following option controls the tagging scheme:
227 - USE_LSB_TAG means that we can assume the least 3 bits of pointers are
228 always 0, and we can thus use them to hold tag bits, without
229 restricting our addressing space.
230
231 If ! USE_LSB_TAG, then use the top 3 bits for tagging, thus
232 restricting our possible address range.
233
234 USE_LSB_TAG not only requires the least 3 bits of pointers returned by
235 malloc to be 0 but also needs to be able to impose a mult-of-8 alignment
236 on the few static Lisp_Objects used: lispsym, all the defsubr, and
237 the two special buffers buffer_defaults and buffer_local_symbols. */
238
239 enum Lisp_Bits
240 {
241 /* 2**GCTYPEBITS. This must be a macro that expands to a literal
242 integer constant, for MSVC. */
243 #define GCALIGNMENT 8
244
245 /* Number of bits in a Lisp_Object value, not counting the tag. */
246 VALBITS = BITS_PER_EMACS_INT - GCTYPEBITS,
247
248 /* Number of bits in a Lisp fixnum tag. */
249 INTTYPEBITS = GCTYPEBITS - 1,
250
251 /* Number of bits in a Lisp fixnum value, not counting the tag. */
252 FIXNUM_BITS = VALBITS + 1
253 };
254
255 #if GCALIGNMENT != 1 << GCTYPEBITS
256 # error "GCALIGNMENT and GCTYPEBITS are inconsistent"
257 #endif
258
259 /* The maximum value that can be stored in a EMACS_INT, assuming all
260 bits other than the type bits contribute to a nonnegative signed value.
261 This can be used in #if, e.g., '#if USE_LSB_TAG' below expands to an
262 expression involving VAL_MAX. */
263 #define VAL_MAX (EMACS_INT_MAX >> (GCTYPEBITS - 1))
264
265 /* Whether the least-significant bits of an EMACS_INT contain the tag.
266 On hosts where pointers-as-ints do not exceed VAL_MAX / 2, USE_LSB_TAG is:
267 a. unnecessary, because the top bits of an EMACS_INT are unused, and
268 b. slower, because it typically requires extra masking.
269 So, USE_LSB_TAG is true only on hosts where it might be useful. */
270 DEFINE_GDB_SYMBOL_BEGIN (bool, USE_LSB_TAG)
271 #define USE_LSB_TAG (VAL_MAX / 2 < INTPTR_MAX)
272 DEFINE_GDB_SYMBOL_END (USE_LSB_TAG)
273
274 #if !USE_LSB_TAG && !defined WIDE_EMACS_INT
275 # error "USE_LSB_TAG not supported on this platform; please report this." \
276 "Try 'configure --with-wide-int' to work around the problem."
277 error !;
278 #endif
279
280 #ifndef alignas
281 # error "alignas not defined"
282 #endif
283
284 #ifdef HAVE_STRUCT_ATTRIBUTE_ALIGNED
285 # define GCALIGNED __attribute__ ((aligned (GCALIGNMENT)))
286 #else
287 # define GCALIGNED /* empty */
288 #endif
289
290 /* Some operations are so commonly executed that they are implemented
291 as macros, not functions, because otherwise runtime performance would
292 suffer too much when compiling with GCC without optimization.
293 There's no need to inline everything, just the operations that
294 would otherwise cause a serious performance problem.
295
296 For each such operation OP, define a macro lisp_h_OP that contains
297 the operation's implementation. That way, OP can be implemented
298 via a macro definition like this:
299
300 #define OP(x) lisp_h_OP (x)
301
302 and/or via a function definition like this:
303
304 Lisp_Object (OP) (Lisp_Object x) { return lisp_h_OP (x); }
305
306 without worrying about the implementations diverging, since
307 lisp_h_OP defines the actual implementation. The lisp_h_OP macros
308 are intended to be private to this include file, and should not be
309 used elsewhere.
310
311 FIXME: Remove the lisp_h_OP macros, and define just the inline OP
312 functions, once most developers have access to GCC 4.8 or later and
313 can use "gcc -Og" to debug. Maybe in the year 2016. See
314 Bug#11935.
315
316 Commentary for these macros can be found near their corresponding
317 functions, below. */
318
319 #if CHECK_LISP_OBJECT_TYPE
320 # define lisp_h_XLI(o) ((o).i)
321 # define lisp_h_XIL(i) ((Lisp_Object) { i })
322 #else
323 # define lisp_h_XLI(o) (o)
324 # define lisp_h_XIL(i) (i)
325 #endif
326 #define lisp_h_CHECK_LIST_CONS(x, y) CHECK_TYPE (CONSP (x), Qlistp, y)
327 #define lisp_h_CHECK_NUMBER(x) CHECK_TYPE (INTEGERP (x), Qintegerp, x)
328 #define lisp_h_CHECK_SYMBOL(x) CHECK_TYPE (SYMBOLP (x), Qsymbolp, x)
329 #define lisp_h_CHECK_TYPE(ok, predicate, x) \
330 ((ok) ? (void) 0 : (void) wrong_type_argument (predicate, x))
331 #define lisp_h_CONSP(x) (XTYPE (x) == Lisp_Cons)
332 #define lisp_h_EQ(x, y) (XLI (x) == XLI (y))
333 #define lisp_h_FLOATP(x) (XTYPE (x) == Lisp_Float)
334 #define lisp_h_INTEGERP(x) ((XTYPE (x) & (Lisp_Int0 | ~Lisp_Int1)) == Lisp_Int0)
335 #define lisp_h_MARKERP(x) (MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Marker)
336 #define lisp_h_MISCP(x) (XTYPE (x) == Lisp_Misc)
337 #define lisp_h_NILP(x) EQ (x, Qnil)
338 #define lisp_h_SET_SYMBOL_VAL(sym, v) \
339 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value = (v))
340 #define lisp_h_SYMBOL_CONSTANT_P(sym) (XSYMBOL (sym)->constant)
341 #define lisp_h_SYMBOL_VAL(sym) \
342 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value)
343 #define lisp_h_SYMBOLP(x) (XTYPE (x) == Lisp_Symbol)
344 #define lisp_h_VECTORLIKEP(x) (XTYPE (x) == Lisp_Vectorlike)
345 #define lisp_h_XCAR(c) XCONS (c)->car
346 #define lisp_h_XCDR(c) XCONS (c)->u.cdr
347 #define lisp_h_XCONS(a) \
348 (eassert (CONSP (a)), (struct Lisp_Cons *) XUNTAG (a, Lisp_Cons))
349 #define lisp_h_XHASH(a) XUINT (a)
350 #ifndef GC_CHECK_CONS_LIST
351 # define lisp_h_check_cons_list() ((void) 0)
352 #endif
353 #if USE_LSB_TAG
354 # define lisp_h_make_number(n) \
355 XIL ((EMACS_INT) (((EMACS_UINT) (n) << INTTYPEBITS) + Lisp_Int0))
356 # define lisp_h_XFASTINT(a) XINT (a)
357 # define lisp_h_XINT(a) (XLI (a) >> INTTYPEBITS)
358 # define lisp_h_XSYMBOL(a) \
359 (eassert (SYMBOLP (a)), \
360 (struct Lisp_Symbol *) ((intptr_t) XLI (a) - Lisp_Symbol \
361 + (char *) lispsym))
362 # define lisp_h_XTYPE(a) ((enum Lisp_Type) (XLI (a) & ~VALMASK))
363 # define lisp_h_XUNTAG(a, type) ((void *) (intptr_t) (XLI (a) - (type)))
364 #endif
365
366 /* When compiling via gcc -O0, define the key operations as macros, as
367 Emacs is too slow otherwise. To disable this optimization, compile
368 with -DINLINING=false. */
369 #if (defined __NO_INLINE__ \
370 && ! defined __OPTIMIZE__ && ! defined __OPTIMIZE_SIZE__ \
371 && ! (defined INLINING && ! INLINING))
372 # define DEFINE_KEY_OPS_AS_MACROS true
373 #else
374 # define DEFINE_KEY_OPS_AS_MACROS false
375 #endif
376
377 #if DEFINE_KEY_OPS_AS_MACROS
378 # define XLI(o) lisp_h_XLI (o)
379 # define XIL(i) lisp_h_XIL (i)
380 # define CHECK_LIST_CONS(x, y) lisp_h_CHECK_LIST_CONS (x, y)
381 # define CHECK_NUMBER(x) lisp_h_CHECK_NUMBER (x)
382 # define CHECK_SYMBOL(x) lisp_h_CHECK_SYMBOL (x)
383 # define CHECK_TYPE(ok, predicate, x) lisp_h_CHECK_TYPE (ok, predicate, x)
384 # define CONSP(x) lisp_h_CONSP (x)
385 # define EQ(x, y) lisp_h_EQ (x, y)
386 # define FLOATP(x) lisp_h_FLOATP (x)
387 # define INTEGERP(x) lisp_h_INTEGERP (x)
388 # define MARKERP(x) lisp_h_MARKERP (x)
389 # define MISCP(x) lisp_h_MISCP (x)
390 # define NILP(x) lisp_h_NILP (x)
391 # define SET_SYMBOL_VAL(sym, v) lisp_h_SET_SYMBOL_VAL (sym, v)
392 # define SYMBOL_CONSTANT_P(sym) lisp_h_SYMBOL_CONSTANT_P (sym)
393 # define SYMBOL_VAL(sym) lisp_h_SYMBOL_VAL (sym)
394 # define SYMBOLP(x) lisp_h_SYMBOLP (x)
395 # define VECTORLIKEP(x) lisp_h_VECTORLIKEP (x)
396 # define XCAR(c) lisp_h_XCAR (c)
397 # define XCDR(c) lisp_h_XCDR (c)
398 # define XCONS(a) lisp_h_XCONS (a)
399 # define XHASH(a) lisp_h_XHASH (a)
400 # ifndef GC_CHECK_CONS_LIST
401 # define check_cons_list() lisp_h_check_cons_list ()
402 # endif
403 # if USE_LSB_TAG
404 # define make_number(n) lisp_h_make_number (n)
405 # define XFASTINT(a) lisp_h_XFASTINT (a)
406 # define XINT(a) lisp_h_XINT (a)
407 # define XSYMBOL(a) lisp_h_XSYMBOL (a)
408 # define XTYPE(a) lisp_h_XTYPE (a)
409 # define XUNTAG(a, type) lisp_h_XUNTAG (a, type)
410 # endif
411 #endif
412
413
414 /* Define the fundamental Lisp data structures. */
415
416 /* This is the set of Lisp data types. If you want to define a new
417 data type, read the comments after Lisp_Fwd_Type definition
418 below. */
419
420 /* Lisp integers use 2 tags, to give them one extra bit, thus
421 extending their range from, e.g., -2^28..2^28-1 to -2^29..2^29-1. */
422 #define INTMASK (EMACS_INT_MAX >> (INTTYPEBITS - 1))
423 #define case_Lisp_Int case Lisp_Int0: case Lisp_Int1
424
425 /* Idea stolen from GDB. Pedantic GCC complains about enum bitfields,
426 MSVC doesn't support them, and xlc and Oracle Studio c99 complain
427 vociferously about them. */
428 #if (defined __STRICT_ANSI__ || defined _MSC_VER || defined __IBMC__ \
429 || (defined __SUNPRO_C && __STDC__))
430 #define ENUM_BF(TYPE) unsigned int
431 #else
432 #define ENUM_BF(TYPE) enum TYPE
433 #endif
434
435
436 enum Lisp_Type
437 {
438 /* Symbol. XSYMBOL (object) points to a struct Lisp_Symbol. */
439 Lisp_Symbol = 0,
440
441 /* Miscellaneous. XMISC (object) points to a union Lisp_Misc,
442 whose first member indicates the subtype. */
443 Lisp_Misc = 1,
444
445 /* Integer. XINT (obj) is the integer value. */
446 Lisp_Int0 = 2,
447 Lisp_Int1 = USE_LSB_TAG ? 6 : 3,
448
449 /* String. XSTRING (object) points to a struct Lisp_String.
450 The length of the string, and its contents, are stored therein. */
451 Lisp_String = 4,
452
453 /* Vector of Lisp objects, or something resembling it.
454 XVECTOR (object) points to a struct Lisp_Vector, which contains
455 the size and contents. The size field also contains the type
456 information, if it's not a real vector object. */
457 Lisp_Vectorlike = 5,
458
459 /* Cons. XCONS (object) points to a struct Lisp_Cons. */
460 Lisp_Cons = USE_LSB_TAG ? 3 : 6,
461
462 Lisp_Float = 7
463 };
464
465 /* This is the set of data types that share a common structure.
466 The first member of the structure is a type code from this set.
467 The enum values are arbitrary, but we'll use large numbers to make it
468 more likely that we'll spot the error if a random word in memory is
469 mistakenly interpreted as a Lisp_Misc. */
470 enum Lisp_Misc_Type
471 {
472 Lisp_Misc_Free = 0x5eab,
473 Lisp_Misc_Marker,
474 Lisp_Misc_Overlay,
475 Lisp_Misc_Save_Value,
476 Lisp_Misc_Finalizer,
477 #ifdef HAVE_MODULES
478 Lisp_Misc_User_Ptr,
479 #endif
480 /* Currently floats are not a misc type,
481 but let's define this in case we want to change that. */
482 Lisp_Misc_Float,
483 /* This is not a type code. It is for range checking. */
484 Lisp_Misc_Limit
485 };
486
487 /* These are the types of forwarding objects used in the value slot
488 of symbols for special built-in variables whose value is stored in
489 C variables. */
490 enum Lisp_Fwd_Type
491 {
492 Lisp_Fwd_Int, /* Fwd to a C `int' variable. */
493 Lisp_Fwd_Bool, /* Fwd to a C boolean var. */
494 Lisp_Fwd_Obj, /* Fwd to a C Lisp_Object variable. */
495 Lisp_Fwd_Buffer_Obj, /* Fwd to a Lisp_Object field of buffers. */
496 Lisp_Fwd_Kboard_Obj /* Fwd to a Lisp_Object field of kboards. */
497 };
498
499 /* If you want to define a new Lisp data type, here are some
500 instructions. See the thread at
501 http://lists.gnu.org/archive/html/emacs-devel/2012-10/msg00561.html
502 for more info.
503
504 First, there are already a couple of Lisp types that can be used if
505 your new type does not need to be exposed to Lisp programs nor
506 displayed to users. These are Lisp_Save_Value, a Lisp_Misc
507 subtype; and PVEC_OTHER, a kind of vectorlike object. The former
508 is suitable for temporarily stashing away pointers and integers in
509 a Lisp object. The latter is useful for vector-like Lisp objects
510 that need to be used as part of other objects, but which are never
511 shown to users or Lisp code (search for PVEC_OTHER in xterm.c for
512 an example).
513
514 These two types don't look pretty when printed, so they are
515 unsuitable for Lisp objects that can be exposed to users.
516
517 To define a new data type, add one more Lisp_Misc subtype or one
518 more pseudovector subtype. Pseudovectors are more suitable for
519 objects with several slots that need to support fast random access,
520 while Lisp_Misc types are for everything else. A pseudovector object
521 provides one or more slots for Lisp objects, followed by struct
522 members that are accessible only from C. A Lisp_Misc object is a
523 wrapper for a C struct that can contain anything you like.
524
525 Explicit freeing is discouraged for Lisp objects in general. But if
526 you really need to exploit this, use Lisp_Misc (check free_misc in
527 alloc.c to see why). There is no way to free a vectorlike object.
528
529 To add a new pseudovector type, extend the pvec_type enumeration;
530 to add a new Lisp_Misc, extend the Lisp_Misc_Type enumeration.
531
532 For a Lisp_Misc, you will also need to add your entry to union
533 Lisp_Misc (but make sure the first word has the same structure as
534 the others, starting with a 16-bit member of the Lisp_Misc_Type
535 enumeration and a 1-bit GC markbit) and make sure the overall size
536 of the union is not increased by your addition.
537
538 For a new pseudovector, it's highly desirable to limit the size
539 of your data type by VBLOCK_BYTES_MAX bytes (defined in alloc.c).
540 Otherwise you will need to change sweep_vectors (also in alloc.c).
541
542 Then you will need to add switch branches in print.c (in
543 print_object, to print your object, and possibly also in
544 print_preprocess) and to alloc.c, to mark your object (in
545 mark_object) and to free it (in gc_sweep). The latter is also the
546 right place to call any code specific to your data type that needs
547 to run when the object is recycled -- e.g., free any additional
548 resources allocated for it that are not Lisp objects. You can even
549 make a pointer to the function that frees the resources a slot in
550 your object -- this way, the same object could be used to represent
551 several disparate C structures. */
552
553 #ifdef CHECK_LISP_OBJECT_TYPE
554
555 typedef struct { EMACS_INT i; } Lisp_Object;
556
557 #define LISP_INITIALLY(i) {i}
558
559 #undef CHECK_LISP_OBJECT_TYPE
560 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = true };
561 #else /* CHECK_LISP_OBJECT_TYPE */
562
563 /* If a struct type is not wanted, define Lisp_Object as just a number. */
564
565 typedef EMACS_INT Lisp_Object;
566 #define LISP_INITIALLY(i) (i)
567 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = false };
568 #endif /* CHECK_LISP_OBJECT_TYPE */
569
570 #define LISP_INITIALLY_ZERO LISP_INITIALLY (0)
571 \f
572 /* Forward declarations. */
573
574 /* Defined in this file. */
575 union Lisp_Fwd;
576 INLINE bool BOOL_VECTOR_P (Lisp_Object);
577 INLINE bool BUFFER_OBJFWDP (union Lisp_Fwd *);
578 INLINE bool BUFFERP (Lisp_Object);
579 INLINE bool CHAR_TABLE_P (Lisp_Object);
580 INLINE Lisp_Object CHAR_TABLE_REF_ASCII (Lisp_Object, ptrdiff_t);
581 INLINE bool (CONSP) (Lisp_Object);
582 INLINE bool (FLOATP) (Lisp_Object);
583 INLINE bool functionp (Lisp_Object);
584 INLINE bool (INTEGERP) (Lisp_Object);
585 INLINE bool (MARKERP) (Lisp_Object);
586 INLINE bool (MISCP) (Lisp_Object);
587 INLINE bool (NILP) (Lisp_Object);
588 INLINE bool OVERLAYP (Lisp_Object);
589 INLINE bool PROCESSP (Lisp_Object);
590 INLINE bool PSEUDOVECTORP (Lisp_Object, int);
591 INLINE bool SAVE_VALUEP (Lisp_Object);
592 INLINE bool FINALIZERP (Lisp_Object);
593
594 #ifdef HAVE_MODULES
595 INLINE bool USER_PTRP (Lisp_Object);
596 INLINE struct Lisp_User_Ptr *(XUSER_PTR) (Lisp_Object);
597 #endif
598
599 INLINE void set_sub_char_table_contents (Lisp_Object, ptrdiff_t,
600 Lisp_Object);
601 INLINE bool STRINGP (Lisp_Object);
602 INLINE bool SUB_CHAR_TABLE_P (Lisp_Object);
603 INLINE bool SUBRP (Lisp_Object);
604 INLINE bool (SYMBOLP) (Lisp_Object);
605 INLINE bool (VECTORLIKEP) (Lisp_Object);
606 INLINE bool WINDOWP (Lisp_Object);
607 INLINE bool TERMINALP (Lisp_Object);
608 INLINE struct Lisp_Save_Value *XSAVE_VALUE (Lisp_Object);
609 INLINE struct Lisp_Finalizer *XFINALIZER (Lisp_Object);
610 INLINE struct Lisp_Symbol *(XSYMBOL) (Lisp_Object);
611 INLINE void *(XUNTAG) (Lisp_Object, int);
612
613 /* Defined in chartab.c. */
614 extern Lisp_Object char_table_ref (Lisp_Object, int);
615 extern void char_table_set (Lisp_Object, int, Lisp_Object);
616
617 /* Defined in data.c. */
618 extern _Noreturn Lisp_Object wrong_type_argument (Lisp_Object, Lisp_Object);
619 extern _Noreturn void wrong_choice (Lisp_Object, Lisp_Object);
620
621 /* Defined in emacs.c. */
622 #ifdef DOUG_LEA_MALLOC
623 extern bool might_dump;
624 #endif
625 /* True means Emacs has already been initialized.
626 Used during startup to detect startup of dumped Emacs. */
627 extern bool initialized;
628
629 /* Defined in floatfns.c. */
630 extern double extract_float (Lisp_Object);
631
632 \f
633 /* Interned state of a symbol. */
634
635 enum symbol_interned
636 {
637 SYMBOL_UNINTERNED = 0,
638 SYMBOL_INTERNED = 1,
639 SYMBOL_INTERNED_IN_INITIAL_OBARRAY = 2
640 };
641
642 enum symbol_redirect
643 {
644 SYMBOL_PLAINVAL = 4,
645 SYMBOL_VARALIAS = 1,
646 SYMBOL_LOCALIZED = 2,
647 SYMBOL_FORWARDED = 3
648 };
649
650 struct Lisp_Symbol
651 {
652 bool_bf gcmarkbit : 1;
653
654 /* Indicates where the value can be found:
655 0 : it's a plain var, the value is in the `value' field.
656 1 : it's a varalias, the value is really in the `alias' symbol.
657 2 : it's a localized var, the value is in the `blv' object.
658 3 : it's a forwarding variable, the value is in `forward'. */
659 ENUM_BF (symbol_redirect) redirect : 3;
660
661 /* Non-zero means symbol is constant, i.e. changing its value
662 should signal an error. If the value is 3, then the var
663 can be changed, but only by `defconst'. */
664 unsigned constant : 2;
665
666 /* Interned state of the symbol. This is an enumerator from
667 enum symbol_interned. */
668 unsigned interned : 2;
669
670 /* True means that this variable has been explicitly declared
671 special (with `defvar' etc), and shouldn't be lexically bound. */
672 bool_bf declared_special : 1;
673
674 /* True if pointed to from purespace and hence can't be GC'd. */
675 bool_bf pinned : 1;
676
677 /* The symbol's name, as a Lisp string. */
678 Lisp_Object name;
679
680 /* Value of the symbol or Qunbound if unbound. Which alternative of the
681 union is used depends on the `redirect' field above. */
682 union {
683 Lisp_Object value;
684 struct Lisp_Symbol *alias;
685 struct Lisp_Buffer_Local_Value *blv;
686 union Lisp_Fwd *fwd;
687 } val;
688
689 /* Function value of the symbol or Qnil if not fboundp. */
690 Lisp_Object function;
691
692 /* The symbol's property list. */
693 Lisp_Object plist;
694
695 /* Next symbol in obarray bucket, if the symbol is interned. */
696 struct Lisp_Symbol *next;
697 };
698
699 /* Declare a Lisp-callable function. The MAXARGS parameter has the same
700 meaning as in the DEFUN macro, and is used to construct a prototype. */
701 /* We can use the same trick as in the DEFUN macro to generate the
702 appropriate prototype. */
703 #define EXFUN(fnname, maxargs) \
704 extern Lisp_Object fnname DEFUN_ARGS_ ## maxargs
705
706 /* Note that the weird token-substitution semantics of ANSI C makes
707 this work for MANY and UNEVALLED. */
708 #define DEFUN_ARGS_MANY (ptrdiff_t, Lisp_Object *)
709 #define DEFUN_ARGS_UNEVALLED (Lisp_Object)
710 #define DEFUN_ARGS_0 (void)
711 #define DEFUN_ARGS_1 (Lisp_Object)
712 #define DEFUN_ARGS_2 (Lisp_Object, Lisp_Object)
713 #define DEFUN_ARGS_3 (Lisp_Object, Lisp_Object, Lisp_Object)
714 #define DEFUN_ARGS_4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
715 #define DEFUN_ARGS_5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
716 Lisp_Object)
717 #define DEFUN_ARGS_6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
718 Lisp_Object, Lisp_Object)
719 #define DEFUN_ARGS_7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
720 Lisp_Object, Lisp_Object, Lisp_Object)
721 #define DEFUN_ARGS_8 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
722 Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
723
724 /* Yield a signed integer that contains TAG along with PTR.
725
726 Sign-extend pointers when USE_LSB_TAG (this simplifies emacs-module.c),
727 and zero-extend otherwise (that’s a bit faster here).
728 Sign extension matters only when EMACS_INT is wider than a pointer. */
729 #define TAG_PTR(tag, ptr) \
730 (USE_LSB_TAG \
731 ? (intptr_t) (ptr) + (tag) \
732 : (EMACS_INT) (((EMACS_UINT) (tag) << VALBITS) + (uintptr_t) (ptr)))
733
734 /* Yield an integer that contains a symbol tag along with OFFSET.
735 OFFSET should be the offset in bytes from 'lispsym' to the symbol. */
736 #define TAG_SYMOFFSET(offset) TAG_PTR (Lisp_Symbol, offset)
737
738 /* XLI_BUILTIN_LISPSYM (iQwhatever) is equivalent to
739 XLI (builtin_lisp_symbol (Qwhatever)),
740 except the former expands to an integer constant expression. */
741 #define XLI_BUILTIN_LISPSYM(iname) TAG_SYMOFFSET ((iname) * sizeof *lispsym)
742
743 /* Declare extern constants for Lisp symbols. These can be helpful
744 when using a debugger like GDB, on older platforms where the debug
745 format does not represent C macros. */
746 #define DEFINE_LISP_SYMBOL(name) \
747 DEFINE_GDB_SYMBOL_BEGIN (Lisp_Object, name) \
748 DEFINE_GDB_SYMBOL_END (LISP_INITIALLY (XLI_BUILTIN_LISPSYM (i##name)))
749
750 /* By default, define macros for Qt, etc., as this leads to a bit
751 better performance in the core Emacs interpreter. A plugin can
752 define DEFINE_NON_NIL_Q_SYMBOL_MACROS to be false, to be portable to
753 other Emacs instances that assign different values to Qt, etc. */
754 #ifndef DEFINE_NON_NIL_Q_SYMBOL_MACROS
755 # define DEFINE_NON_NIL_Q_SYMBOL_MACROS true
756 #endif
757
758 #include "globals.h"
759
760 /* Convert a Lisp_Object to the corresponding EMACS_INT and vice versa.
761 At the machine level, these operations are no-ops. */
762
763 INLINE EMACS_INT
764 (XLI) (Lisp_Object o)
765 {
766 return lisp_h_XLI (o);
767 }
768
769 INLINE Lisp_Object
770 (XIL) (EMACS_INT i)
771 {
772 return lisp_h_XIL (i);
773 }
774
775 /* In the size word of a vector, this bit means the vector has been marked. */
776
777 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, ARRAY_MARK_FLAG)
778 # define ARRAY_MARK_FLAG PTRDIFF_MIN
779 DEFINE_GDB_SYMBOL_END (ARRAY_MARK_FLAG)
780
781 /* In the size word of a struct Lisp_Vector, this bit means it's really
782 some other vector-like object. */
783 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, PSEUDOVECTOR_FLAG)
784 # define PSEUDOVECTOR_FLAG (PTRDIFF_MAX - PTRDIFF_MAX / 2)
785 DEFINE_GDB_SYMBOL_END (PSEUDOVECTOR_FLAG)
786
787 /* In a pseudovector, the size field actually contains a word with one
788 PSEUDOVECTOR_FLAG bit set, and one of the following values extracted
789 with PVEC_TYPE_MASK to indicate the actual type. */
790 enum pvec_type
791 {
792 PVEC_NORMAL_VECTOR,
793 PVEC_FREE,
794 PVEC_PROCESS,
795 PVEC_FRAME,
796 PVEC_WINDOW,
797 PVEC_BOOL_VECTOR,
798 PVEC_BUFFER,
799 PVEC_HASH_TABLE,
800 PVEC_TERMINAL,
801 PVEC_WINDOW_CONFIGURATION,
802 PVEC_SUBR,
803 PVEC_OTHER,
804 PVEC_XWIDGET,
805 PVEC_XWIDGET_VIEW,
806
807 /* These should be last, check internal_equal to see why. */
808 PVEC_COMPILED,
809 PVEC_CHAR_TABLE,
810 PVEC_SUB_CHAR_TABLE,
811 PVEC_FONT /* Should be last because it's used for range checking. */
812 };
813
814 enum More_Lisp_Bits
815 {
816 /* For convenience, we also store the number of elements in these bits.
817 Note that this size is not necessarily the memory-footprint size, but
818 only the number of Lisp_Object fields (that need to be traced by GC).
819 The distinction is used, e.g., by Lisp_Process, which places extra
820 non-Lisp_Object fields at the end of the structure. */
821 PSEUDOVECTOR_SIZE_BITS = 12,
822 PSEUDOVECTOR_SIZE_MASK = (1 << PSEUDOVECTOR_SIZE_BITS) - 1,
823
824 /* To calculate the memory footprint of the pseudovector, it's useful
825 to store the size of non-Lisp area in word_size units here. */
826 PSEUDOVECTOR_REST_BITS = 12,
827 PSEUDOVECTOR_REST_MASK = (((1 << PSEUDOVECTOR_REST_BITS) - 1)
828 << PSEUDOVECTOR_SIZE_BITS),
829
830 /* Used to extract pseudovector subtype information. */
831 PSEUDOVECTOR_AREA_BITS = PSEUDOVECTOR_SIZE_BITS + PSEUDOVECTOR_REST_BITS,
832 PVEC_TYPE_MASK = 0x3f << PSEUDOVECTOR_AREA_BITS
833 };
834 \f
835 /* These functions extract various sorts of values from a Lisp_Object.
836 For example, if tem is a Lisp_Object whose type is Lisp_Cons,
837 XCONS (tem) is the struct Lisp_Cons * pointing to the memory for
838 that cons. */
839
840 /* Mask for the value (as opposed to the type bits) of a Lisp object. */
841 DEFINE_GDB_SYMBOL_BEGIN (EMACS_INT, VALMASK)
842 # define VALMASK (USE_LSB_TAG ? - (1 << GCTYPEBITS) : VAL_MAX)
843 DEFINE_GDB_SYMBOL_END (VALMASK)
844
845 /* Largest and smallest representable fixnum values. These are the C
846 values. They are macros for use in static initializers. */
847 #define MOST_POSITIVE_FIXNUM (EMACS_INT_MAX >> INTTYPEBITS)
848 #define MOST_NEGATIVE_FIXNUM (-1 - MOST_POSITIVE_FIXNUM)
849
850 #if USE_LSB_TAG
851
852 INLINE Lisp_Object
853 (make_number) (EMACS_INT n)
854 {
855 return lisp_h_make_number (n);
856 }
857
858 INLINE EMACS_INT
859 (XINT) (Lisp_Object a)
860 {
861 return lisp_h_XINT (a);
862 }
863
864 INLINE EMACS_INT
865 (XFASTINT) (Lisp_Object a)
866 {
867 EMACS_INT n = lisp_h_XFASTINT (a);
868 eassume (0 <= n);
869 return n;
870 }
871
872 INLINE struct Lisp_Symbol *
873 (XSYMBOL) (Lisp_Object a)
874 {
875 return lisp_h_XSYMBOL (a);
876 }
877
878 INLINE enum Lisp_Type
879 (XTYPE) (Lisp_Object a)
880 {
881 return lisp_h_XTYPE (a);
882 }
883
884 INLINE void *
885 (XUNTAG) (Lisp_Object a, int type)
886 {
887 return lisp_h_XUNTAG (a, type);
888 }
889
890 #else /* ! USE_LSB_TAG */
891
892 /* Although compiled only if ! USE_LSB_TAG, the following functions
893 also work when USE_LSB_TAG; this is to aid future maintenance when
894 the lisp_h_* macros are eventually removed. */
895
896 /* Make a Lisp integer representing the value of the low order
897 bits of N. */
898 INLINE Lisp_Object
899 make_number (EMACS_INT n)
900 {
901 EMACS_INT int0 = Lisp_Int0;
902 if (USE_LSB_TAG)
903 {
904 EMACS_UINT u = n;
905 n = u << INTTYPEBITS;
906 n += int0;
907 }
908 else
909 {
910 n &= INTMASK;
911 n += (int0 << VALBITS);
912 }
913 return XIL (n);
914 }
915
916 /* Extract A's value as a signed integer. */
917 INLINE EMACS_INT
918 XINT (Lisp_Object a)
919 {
920 EMACS_INT i = XLI (a);
921 if (! USE_LSB_TAG)
922 {
923 EMACS_UINT u = i;
924 i = u << INTTYPEBITS;
925 }
926 return i >> INTTYPEBITS;
927 }
928
929 /* Like XINT (A), but may be faster. A must be nonnegative.
930 If ! USE_LSB_TAG, this takes advantage of the fact that Lisp
931 integers have zero-bits in their tags. */
932 INLINE EMACS_INT
933 XFASTINT (Lisp_Object a)
934 {
935 EMACS_INT int0 = Lisp_Int0;
936 EMACS_INT n = USE_LSB_TAG ? XINT (a) : XLI (a) - (int0 << VALBITS);
937 eassume (0 <= n);
938 return n;
939 }
940
941 /* Extract A's type. */
942 INLINE enum Lisp_Type
943 XTYPE (Lisp_Object a)
944 {
945 EMACS_UINT i = XLI (a);
946 return USE_LSB_TAG ? i & ~VALMASK : i >> VALBITS;
947 }
948
949 /* Extract A's value as a symbol. */
950 INLINE struct Lisp_Symbol *
951 XSYMBOL (Lisp_Object a)
952 {
953 eassert (SYMBOLP (a));
954 intptr_t i = (intptr_t) XUNTAG (a, Lisp_Symbol);
955 void *p = (char *) lispsym + i;
956 return p;
957 }
958
959 /* Extract A's pointer value, assuming A's type is TYPE. */
960 INLINE void *
961 XUNTAG (Lisp_Object a, int type)
962 {
963 intptr_t i = USE_LSB_TAG ? XLI (a) - type : XLI (a) & VALMASK;
964 return (void *) i;
965 }
966
967 #endif /* ! USE_LSB_TAG */
968
969 /* Extract A's value as an unsigned integer. */
970 INLINE EMACS_UINT
971 XUINT (Lisp_Object a)
972 {
973 EMACS_UINT i = XLI (a);
974 return USE_LSB_TAG ? i >> INTTYPEBITS : i & INTMASK;
975 }
976
977 /* Return A's (Lisp-integer sized) hash. Happens to be like XUINT
978 right now, but XUINT should only be applied to objects we know are
979 integers. */
980
981 INLINE EMACS_INT
982 (XHASH) (Lisp_Object a)
983 {
984 return lisp_h_XHASH (a);
985 }
986
987 /* Like make_number (N), but may be faster. N must be in nonnegative range. */
988 INLINE Lisp_Object
989 make_natnum (EMACS_INT n)
990 {
991 eassert (0 <= n && n <= MOST_POSITIVE_FIXNUM);
992 EMACS_INT int0 = Lisp_Int0;
993 return USE_LSB_TAG ? make_number (n) : XIL (n + (int0 << VALBITS));
994 }
995
996 /* Return true if X and Y are the same object. */
997
998 INLINE bool
999 (EQ) (Lisp_Object x, Lisp_Object y)
1000 {
1001 return lisp_h_EQ (x, y);
1002 }
1003
1004 /* Value is true if I doesn't fit into a Lisp fixnum. It is
1005 written this way so that it also works if I is of unsigned
1006 type or if I is a NaN. */
1007
1008 #define FIXNUM_OVERFLOW_P(i) \
1009 (! ((0 <= (i) || MOST_NEGATIVE_FIXNUM <= (i)) && (i) <= MOST_POSITIVE_FIXNUM))
1010
1011 INLINE ptrdiff_t
1012 clip_to_bounds (ptrdiff_t lower, EMACS_INT num, ptrdiff_t upper)
1013 {
1014 return num < lower ? lower : num <= upper ? num : upper;
1015 }
1016 \f
1017
1018 /* Extract a value or address from a Lisp_Object. */
1019
1020 INLINE struct Lisp_Cons *
1021 (XCONS) (Lisp_Object a)
1022 {
1023 return lisp_h_XCONS (a);
1024 }
1025
1026 INLINE struct Lisp_Vector *
1027 XVECTOR (Lisp_Object a)
1028 {
1029 eassert (VECTORLIKEP (a));
1030 return XUNTAG (a, Lisp_Vectorlike);
1031 }
1032
1033 INLINE struct Lisp_String *
1034 XSTRING (Lisp_Object a)
1035 {
1036 eassert (STRINGP (a));
1037 return XUNTAG (a, Lisp_String);
1038 }
1039
1040 /* The index of the C-defined Lisp symbol SYM.
1041 This can be used in a static initializer. */
1042 #define SYMBOL_INDEX(sym) i##sym
1043
1044 INLINE struct Lisp_Float *
1045 XFLOAT (Lisp_Object a)
1046 {
1047 eassert (FLOATP (a));
1048 return XUNTAG (a, Lisp_Float);
1049 }
1050
1051 /* Pseudovector types. */
1052
1053 INLINE struct Lisp_Process *
1054 XPROCESS (Lisp_Object a)
1055 {
1056 eassert (PROCESSP (a));
1057 return XUNTAG (a, Lisp_Vectorlike);
1058 }
1059
1060 INLINE struct window *
1061 XWINDOW (Lisp_Object a)
1062 {
1063 eassert (WINDOWP (a));
1064 return XUNTAG (a, Lisp_Vectorlike);
1065 }
1066
1067 INLINE struct terminal *
1068 XTERMINAL (Lisp_Object a)
1069 {
1070 eassert (TERMINALP (a));
1071 return XUNTAG (a, Lisp_Vectorlike);
1072 }
1073
1074 INLINE struct Lisp_Subr *
1075 XSUBR (Lisp_Object a)
1076 {
1077 eassert (SUBRP (a));
1078 return XUNTAG (a, Lisp_Vectorlike);
1079 }
1080
1081 INLINE struct buffer *
1082 XBUFFER (Lisp_Object a)
1083 {
1084 eassert (BUFFERP (a));
1085 return XUNTAG (a, Lisp_Vectorlike);
1086 }
1087
1088 INLINE struct Lisp_Char_Table *
1089 XCHAR_TABLE (Lisp_Object a)
1090 {
1091 eassert (CHAR_TABLE_P (a));
1092 return XUNTAG (a, Lisp_Vectorlike);
1093 }
1094
1095 INLINE struct Lisp_Sub_Char_Table *
1096 XSUB_CHAR_TABLE (Lisp_Object a)
1097 {
1098 eassert (SUB_CHAR_TABLE_P (a));
1099 return XUNTAG (a, Lisp_Vectorlike);
1100 }
1101
1102 INLINE struct Lisp_Bool_Vector *
1103 XBOOL_VECTOR (Lisp_Object a)
1104 {
1105 eassert (BOOL_VECTOR_P (a));
1106 return XUNTAG (a, Lisp_Vectorlike);
1107 }
1108
1109 /* Construct a Lisp_Object from a value or address. */
1110
1111 INLINE Lisp_Object
1112 make_lisp_ptr (void *ptr, enum Lisp_Type type)
1113 {
1114 Lisp_Object a = XIL (TAG_PTR (type, ptr));
1115 eassert (XTYPE (a) == type && XUNTAG (a, type) == ptr);
1116 return a;
1117 }
1118
1119 INLINE Lisp_Object
1120 make_lisp_symbol (struct Lisp_Symbol *sym)
1121 {
1122 Lisp_Object a = XIL (TAG_SYMOFFSET ((char *) sym - (char *) lispsym));
1123 eassert (XSYMBOL (a) == sym);
1124 return a;
1125 }
1126
1127 INLINE Lisp_Object
1128 builtin_lisp_symbol (int index)
1129 {
1130 return make_lisp_symbol (lispsym + index);
1131 }
1132
1133 #define XSETINT(a, b) ((a) = make_number (b))
1134 #define XSETFASTINT(a, b) ((a) = make_natnum (b))
1135 #define XSETCONS(a, b) ((a) = make_lisp_ptr (b, Lisp_Cons))
1136 #define XSETVECTOR(a, b) ((a) = make_lisp_ptr (b, Lisp_Vectorlike))
1137 #define XSETSTRING(a, b) ((a) = make_lisp_ptr (b, Lisp_String))
1138 #define XSETSYMBOL(a, b) ((a) = make_lisp_symbol (b))
1139 #define XSETFLOAT(a, b) ((a) = make_lisp_ptr (b, Lisp_Float))
1140 #define XSETMISC(a, b) ((a) = make_lisp_ptr (b, Lisp_Misc))
1141
1142 /* Pseudovector types. */
1143
1144 #define XSETPVECTYPE(v, code) \
1145 ((v)->header.size |= PSEUDOVECTOR_FLAG | ((code) << PSEUDOVECTOR_AREA_BITS))
1146 #define XSETPVECTYPESIZE(v, code, lispsize, restsize) \
1147 ((v)->header.size = (PSEUDOVECTOR_FLAG \
1148 | ((code) << PSEUDOVECTOR_AREA_BITS) \
1149 | ((restsize) << PSEUDOVECTOR_SIZE_BITS) \
1150 | (lispsize)))
1151
1152 /* The cast to struct vectorlike_header * avoids aliasing issues. */
1153 #define XSETPSEUDOVECTOR(a, b, code) \
1154 XSETTYPED_PSEUDOVECTOR (a, b, \
1155 (((struct vectorlike_header *) \
1156 XUNTAG (a, Lisp_Vectorlike)) \
1157 ->size), \
1158 code)
1159 #define XSETTYPED_PSEUDOVECTOR(a, b, size, code) \
1160 (XSETVECTOR (a, b), \
1161 eassert ((size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK)) \
1162 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS))))
1163
1164 #define XSETWINDOW_CONFIGURATION(a, b) \
1165 (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW_CONFIGURATION))
1166 #define XSETPROCESS(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_PROCESS))
1167 #define XSETWINDOW(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW))
1168 #define XSETTERMINAL(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_TERMINAL))
1169 #define XSETSUBR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUBR))
1170 #define XSETCOMPILED(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_COMPILED))
1171 #define XSETBUFFER(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BUFFER))
1172 #define XSETCHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_CHAR_TABLE))
1173 #define XSETBOOL_VECTOR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BOOL_VECTOR))
1174 #define XSETSUB_CHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUB_CHAR_TABLE))
1175
1176 /* Efficiently convert a pointer to a Lisp object and back. The
1177 pointer is represented as a Lisp integer, so the garbage collector
1178 does not know about it. The pointer should not have both Lisp_Int1
1179 bits set, which makes this conversion inherently unportable. */
1180
1181 INLINE void *
1182 XINTPTR (Lisp_Object a)
1183 {
1184 return XUNTAG (a, Lisp_Int0);
1185 }
1186
1187 INLINE Lisp_Object
1188 make_pointer_integer (void *p)
1189 {
1190 Lisp_Object a = XIL (TAG_PTR (Lisp_Int0, p));
1191 eassert (INTEGERP (a) && XINTPTR (a) == p);
1192 return a;
1193 }
1194
1195 /* Type checking. */
1196
1197 INLINE void
1198 (CHECK_TYPE) (int ok, Lisp_Object predicate, Lisp_Object x)
1199 {
1200 lisp_h_CHECK_TYPE (ok, predicate, x);
1201 }
1202
1203 /* See the macros in intervals.h. */
1204
1205 typedef struct interval *INTERVAL;
1206
1207 struct GCALIGNED Lisp_Cons
1208 {
1209 /* Car of this cons cell. */
1210 Lisp_Object car;
1211
1212 union
1213 {
1214 /* Cdr of this cons cell. */
1215 Lisp_Object cdr;
1216
1217 /* Used to chain conses on a free list. */
1218 struct Lisp_Cons *chain;
1219 } u;
1220 };
1221
1222 /* Take the car or cdr of something known to be a cons cell. */
1223 /* The _addr functions shouldn't be used outside of the minimal set
1224 of code that has to know what a cons cell looks like. Other code not
1225 part of the basic lisp implementation should assume that the car and cdr
1226 fields are not accessible. (What if we want to switch to
1227 a copying collector someday? Cached cons cell field addresses may be
1228 invalidated at arbitrary points.) */
1229 INLINE Lisp_Object *
1230 xcar_addr (Lisp_Object c)
1231 {
1232 return &XCONS (c)->car;
1233 }
1234 INLINE Lisp_Object *
1235 xcdr_addr (Lisp_Object c)
1236 {
1237 return &XCONS (c)->u.cdr;
1238 }
1239
1240 /* Use these from normal code. */
1241
1242 INLINE Lisp_Object
1243 (XCAR) (Lisp_Object c)
1244 {
1245 return lisp_h_XCAR (c);
1246 }
1247
1248 INLINE Lisp_Object
1249 (XCDR) (Lisp_Object c)
1250 {
1251 return lisp_h_XCDR (c);
1252 }
1253
1254 /* Use these to set the fields of a cons cell.
1255
1256 Note that both arguments may refer to the same object, so 'n'
1257 should not be read after 'c' is first modified. */
1258 INLINE void
1259 XSETCAR (Lisp_Object c, Lisp_Object n)
1260 {
1261 *xcar_addr (c) = n;
1262 }
1263 INLINE void
1264 XSETCDR (Lisp_Object c, Lisp_Object n)
1265 {
1266 *xcdr_addr (c) = n;
1267 }
1268
1269 /* Take the car or cdr of something whose type is not known. */
1270 INLINE Lisp_Object
1271 CAR (Lisp_Object c)
1272 {
1273 return (CONSP (c) ? XCAR (c)
1274 : NILP (c) ? Qnil
1275 : wrong_type_argument (Qlistp, c));
1276 }
1277 INLINE Lisp_Object
1278 CDR (Lisp_Object c)
1279 {
1280 return (CONSP (c) ? XCDR (c)
1281 : NILP (c) ? Qnil
1282 : wrong_type_argument (Qlistp, c));
1283 }
1284
1285 /* Take the car or cdr of something whose type is not known. */
1286 INLINE Lisp_Object
1287 CAR_SAFE (Lisp_Object c)
1288 {
1289 return CONSP (c) ? XCAR (c) : Qnil;
1290 }
1291 INLINE Lisp_Object
1292 CDR_SAFE (Lisp_Object c)
1293 {
1294 return CONSP (c) ? XCDR (c) : Qnil;
1295 }
1296
1297 /* In a string or vector, the sign bit of the `size' is the gc mark bit. */
1298
1299 struct GCALIGNED Lisp_String
1300 {
1301 ptrdiff_t size;
1302 ptrdiff_t size_byte;
1303 INTERVAL intervals; /* Text properties in this string. */
1304 unsigned char *data;
1305 };
1306
1307 /* True if STR is a multibyte string. */
1308 INLINE bool
1309 STRING_MULTIBYTE (Lisp_Object str)
1310 {
1311 return 0 <= XSTRING (str)->size_byte;
1312 }
1313
1314 /* An upper bound on the number of bytes in a Lisp string, not
1315 counting the terminating null. This a tight enough bound to
1316 prevent integer overflow errors that would otherwise occur during
1317 string size calculations. A string cannot contain more bytes than
1318 a fixnum can represent, nor can it be so long that C pointer
1319 arithmetic stops working on the string plus its terminating null.
1320 Although the actual size limit (see STRING_BYTES_MAX in alloc.c)
1321 may be a bit smaller than STRING_BYTES_BOUND, calculating it here
1322 would expose alloc.c internal details that we'd rather keep
1323 private.
1324
1325 This is a macro for use in static initializers. The cast to
1326 ptrdiff_t ensures that the macro is signed. */
1327 #define STRING_BYTES_BOUND \
1328 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, min (SIZE_MAX, PTRDIFF_MAX) - 1))
1329
1330 /* Mark STR as a unibyte string. */
1331 #define STRING_SET_UNIBYTE(STR) \
1332 do { \
1333 if (XSTRING (STR)->size == 0) \
1334 (STR) = empty_unibyte_string; \
1335 else \
1336 XSTRING (STR)->size_byte = -1; \
1337 } while (false)
1338
1339 /* Mark STR as a multibyte string. Assure that STR contains only
1340 ASCII characters in advance. */
1341 #define STRING_SET_MULTIBYTE(STR) \
1342 do { \
1343 if (XSTRING (STR)->size == 0) \
1344 (STR) = empty_multibyte_string; \
1345 else \
1346 XSTRING (STR)->size_byte = XSTRING (STR)->size; \
1347 } while (false)
1348
1349 /* Convenience functions for dealing with Lisp strings. */
1350
1351 INLINE unsigned char *
1352 SDATA (Lisp_Object string)
1353 {
1354 return XSTRING (string)->data;
1355 }
1356 INLINE char *
1357 SSDATA (Lisp_Object string)
1358 {
1359 /* Avoid "differ in sign" warnings. */
1360 return (char *) SDATA (string);
1361 }
1362 INLINE unsigned char
1363 SREF (Lisp_Object string, ptrdiff_t index)
1364 {
1365 return SDATA (string)[index];
1366 }
1367 INLINE void
1368 SSET (Lisp_Object string, ptrdiff_t index, unsigned char new)
1369 {
1370 SDATA (string)[index] = new;
1371 }
1372 INLINE ptrdiff_t
1373 SCHARS (Lisp_Object string)
1374 {
1375 return XSTRING (string)->size;
1376 }
1377
1378 #ifdef GC_CHECK_STRING_BYTES
1379 extern ptrdiff_t string_bytes (struct Lisp_String *);
1380 #endif
1381 INLINE ptrdiff_t
1382 STRING_BYTES (struct Lisp_String *s)
1383 {
1384 #ifdef GC_CHECK_STRING_BYTES
1385 return string_bytes (s);
1386 #else
1387 return s->size_byte < 0 ? s->size : s->size_byte;
1388 #endif
1389 }
1390
1391 INLINE ptrdiff_t
1392 SBYTES (Lisp_Object string)
1393 {
1394 return STRING_BYTES (XSTRING (string));
1395 }
1396 INLINE void
1397 STRING_SET_CHARS (Lisp_Object string, ptrdiff_t newsize)
1398 {
1399 XSTRING (string)->size = newsize;
1400 }
1401
1402 /* Header of vector-like objects. This documents the layout constraints on
1403 vectors and pseudovectors (objects of PVEC_xxx subtype). It also prevents
1404 compilers from being fooled by Emacs's type punning: XSETPSEUDOVECTOR
1405 and PSEUDOVECTORP cast their pointers to struct vectorlike_header *,
1406 because when two such pointers potentially alias, a compiler won't
1407 incorrectly reorder loads and stores to their size fields. See
1408 Bug#8546. */
1409 struct vectorlike_header
1410 {
1411 /* The only field contains various pieces of information:
1412 - The MSB (ARRAY_MARK_FLAG) holds the gcmarkbit.
1413 - The next bit (PSEUDOVECTOR_FLAG) indicates whether this is a plain
1414 vector (0) or a pseudovector (1).
1415 - If PSEUDOVECTOR_FLAG is 0, the rest holds the size (number
1416 of slots) of the vector.
1417 - If PSEUDOVECTOR_FLAG is 1, the rest is subdivided into three fields:
1418 - a) pseudovector subtype held in PVEC_TYPE_MASK field;
1419 - b) number of Lisp_Objects slots at the beginning of the object
1420 held in PSEUDOVECTOR_SIZE_MASK field. These objects are always
1421 traced by the GC;
1422 - c) size of the rest fields held in PSEUDOVECTOR_REST_MASK and
1423 measured in word_size units. Rest fields may also include
1424 Lisp_Objects, but these objects usually needs some special treatment
1425 during GC.
1426 There are some exceptions. For PVEC_FREE, b) is always zero. For
1427 PVEC_BOOL_VECTOR and PVEC_SUBR, both b) and c) are always zero.
1428 Current layout limits the pseudovectors to 63 PVEC_xxx subtypes,
1429 4095 Lisp_Objects in GC-ed area and 4095 word-sized other slots. */
1430 ptrdiff_t size;
1431 };
1432
1433 /* A regular vector is just a header plus an array of Lisp_Objects. */
1434
1435 struct Lisp_Vector
1436 {
1437 struct vectorlike_header header;
1438 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1439 };
1440
1441 /* C11 prohibits alignof (struct Lisp_Vector), so compute it manually. */
1442 enum
1443 {
1444 ALIGNOF_STRUCT_LISP_VECTOR
1445 = alignof (union { struct vectorlike_header a; Lisp_Object b; })
1446 };
1447
1448 /* A boolvector is a kind of vectorlike, with contents like a string. */
1449
1450 struct Lisp_Bool_Vector
1451 {
1452 /* HEADER.SIZE is the vector's size field. It doesn't have the real size,
1453 just the subtype information. */
1454 struct vectorlike_header header;
1455 /* This is the size in bits. */
1456 EMACS_INT size;
1457 /* The actual bits, packed into bytes.
1458 Zeros fill out the last word if needed.
1459 The bits are in little-endian order in the bytes, and
1460 the bytes are in little-endian order in the words. */
1461 bits_word data[FLEXIBLE_ARRAY_MEMBER];
1462 };
1463
1464 INLINE EMACS_INT
1465 bool_vector_size (Lisp_Object a)
1466 {
1467 EMACS_INT size = XBOOL_VECTOR (a)->size;
1468 eassume (0 <= size);
1469 return size;
1470 }
1471
1472 INLINE bits_word *
1473 bool_vector_data (Lisp_Object a)
1474 {
1475 return XBOOL_VECTOR (a)->data;
1476 }
1477
1478 INLINE unsigned char *
1479 bool_vector_uchar_data (Lisp_Object a)
1480 {
1481 return (unsigned char *) bool_vector_data (a);
1482 }
1483
1484 /* The number of data words and bytes in a bool vector with SIZE bits. */
1485
1486 INLINE EMACS_INT
1487 bool_vector_words (EMACS_INT size)
1488 {
1489 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1490 return (size + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
1491 }
1492
1493 INLINE EMACS_INT
1494 bool_vector_bytes (EMACS_INT size)
1495 {
1496 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1497 return (size + BOOL_VECTOR_BITS_PER_CHAR - 1) / BOOL_VECTOR_BITS_PER_CHAR;
1498 }
1499
1500 /* True if A's Ith bit is set. */
1501
1502 INLINE bool
1503 bool_vector_bitref (Lisp_Object a, EMACS_INT i)
1504 {
1505 eassume (0 <= i && i < bool_vector_size (a));
1506 return !! (bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR]
1507 & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR)));
1508 }
1509
1510 INLINE Lisp_Object
1511 bool_vector_ref (Lisp_Object a, EMACS_INT i)
1512 {
1513 return bool_vector_bitref (a, i) ? Qt : Qnil;
1514 }
1515
1516 /* Set A's Ith bit to B. */
1517
1518 INLINE void
1519 bool_vector_set (Lisp_Object a, EMACS_INT i, bool b)
1520 {
1521 unsigned char *addr;
1522
1523 eassume (0 <= i && i < bool_vector_size (a));
1524 addr = &bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR];
1525
1526 if (b)
1527 *addr |= 1 << (i % BOOL_VECTOR_BITS_PER_CHAR);
1528 else
1529 *addr &= ~ (1 << (i % BOOL_VECTOR_BITS_PER_CHAR));
1530 }
1531
1532 /* Some handy constants for calculating sizes
1533 and offsets, mostly of vectorlike objects. */
1534
1535 enum
1536 {
1537 header_size = offsetof (struct Lisp_Vector, contents),
1538 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
1539 word_size = sizeof (Lisp_Object)
1540 };
1541
1542 /* Conveniences for dealing with Lisp arrays. */
1543
1544 INLINE Lisp_Object
1545 AREF (Lisp_Object array, ptrdiff_t idx)
1546 {
1547 return XVECTOR (array)->contents[idx];
1548 }
1549
1550 INLINE Lisp_Object *
1551 aref_addr (Lisp_Object array, ptrdiff_t idx)
1552 {
1553 return & XVECTOR (array)->contents[idx];
1554 }
1555
1556 INLINE ptrdiff_t
1557 ASIZE (Lisp_Object array)
1558 {
1559 ptrdiff_t size = XVECTOR (array)->header.size;
1560 eassume (0 <= size);
1561 return size;
1562 }
1563
1564 INLINE ptrdiff_t
1565 gc_asize (Lisp_Object array)
1566 {
1567 /* Like ASIZE, but also can be used in the garbage collector. */
1568 return XVECTOR (array)->header.size & ~ARRAY_MARK_FLAG;
1569 }
1570
1571 INLINE void
1572 ASET (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1573 {
1574 eassert (0 <= idx && idx < ASIZE (array));
1575 XVECTOR (array)->contents[idx] = val;
1576 }
1577
1578 INLINE void
1579 gc_aset (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1580 {
1581 /* Like ASET, but also can be used in the garbage collector:
1582 sweep_weak_table calls set_hash_key etc. while the table is marked. */
1583 eassert (0 <= idx && idx < gc_asize (array));
1584 XVECTOR (array)->contents[idx] = val;
1585 }
1586
1587 /* True, since Qnil's representation is zero. Every place in the code
1588 that assumes Qnil is zero should verify (NIL_IS_ZERO), to make it easy
1589 to find such assumptions later if we change Qnil to be nonzero. */
1590 enum { NIL_IS_ZERO = XLI_BUILTIN_LISPSYM (iQnil) == 0 };
1591
1592 /* Clear the object addressed by P, with size NBYTES, so that all its
1593 bytes are zero and all its Lisp values are nil. */
1594 INLINE void
1595 memclear (void *p, ptrdiff_t nbytes)
1596 {
1597 eassert (0 <= nbytes);
1598 verify (NIL_IS_ZERO);
1599 /* Since Qnil is zero, memset suffices. */
1600 memset (p, 0, nbytes);
1601 }
1602
1603 /* If a struct is made to look like a vector, this macro returns the length
1604 of the shortest vector that would hold that struct. */
1605
1606 #define VECSIZE(type) \
1607 ((sizeof (type) - header_size + word_size - 1) / word_size)
1608
1609 /* Like VECSIZE, but used when the pseudo-vector has non-Lisp_Object fields
1610 at the end and we need to compute the number of Lisp_Object fields (the
1611 ones that the GC needs to trace). */
1612
1613 #define PSEUDOVECSIZE(type, nonlispfield) \
1614 ((offsetof (type, nonlispfield) - header_size) / word_size)
1615
1616 /* Compute A OP B, using the unsigned comparison operator OP. A and B
1617 should be integer expressions. This is not the same as
1618 mathematical comparison; for example, UNSIGNED_CMP (0, <, -1)
1619 returns true. For efficiency, prefer plain unsigned comparison if A
1620 and B's sizes both fit (after integer promotion). */
1621 #define UNSIGNED_CMP(a, op, b) \
1622 (max (sizeof ((a) + 0), sizeof ((b) + 0)) <= sizeof (unsigned) \
1623 ? ((a) + (unsigned) 0) op ((b) + (unsigned) 0) \
1624 : ((a) + (uintmax_t) 0) op ((b) + (uintmax_t) 0))
1625
1626 /* True iff C is an ASCII character. */
1627 #define ASCII_CHAR_P(c) UNSIGNED_CMP (c, <, 0x80)
1628
1629 /* A char-table is a kind of vectorlike, with contents are like a
1630 vector but with a few other slots. For some purposes, it makes
1631 sense to handle a char-table with type struct Lisp_Vector. An
1632 element of a char table can be any Lisp objects, but if it is a sub
1633 char-table, we treat it a table that contains information of a
1634 specific range of characters. A sub char-table is like a vector but
1635 with two integer fields between the header and Lisp data, which means
1636 that it has to be marked with some precautions (see mark_char_table
1637 in alloc.c). A sub char-table appears only in an element of a char-table,
1638 and there's no way to access it directly from Emacs Lisp program. */
1639
1640 enum CHARTAB_SIZE_BITS
1641 {
1642 CHARTAB_SIZE_BITS_0 = 6,
1643 CHARTAB_SIZE_BITS_1 = 4,
1644 CHARTAB_SIZE_BITS_2 = 5,
1645 CHARTAB_SIZE_BITS_3 = 7
1646 };
1647
1648 extern const int chartab_size[4];
1649
1650 struct Lisp_Char_Table
1651 {
1652 /* HEADER.SIZE is the vector's size field, which also holds the
1653 pseudovector type information. It holds the size, too.
1654 The size counts the defalt, parent, purpose, ascii,
1655 contents, and extras slots. */
1656 struct vectorlike_header header;
1657
1658 /* This holds a default value,
1659 which is used whenever the value for a specific character is nil. */
1660 Lisp_Object defalt;
1661
1662 /* This points to another char table, which we inherit from when the
1663 value for a specific character is nil. The `defalt' slot takes
1664 precedence over this. */
1665 Lisp_Object parent;
1666
1667 /* This is a symbol which says what kind of use this char-table is
1668 meant for. */
1669 Lisp_Object purpose;
1670
1671 /* The bottom sub char-table for characters of the range 0..127. It
1672 is nil if none of ASCII character has a specific value. */
1673 Lisp_Object ascii;
1674
1675 Lisp_Object contents[(1 << CHARTAB_SIZE_BITS_0)];
1676
1677 /* These hold additional data. It is a vector. */
1678 Lisp_Object extras[FLEXIBLE_ARRAY_MEMBER];
1679 };
1680
1681 struct Lisp_Sub_Char_Table
1682 {
1683 /* HEADER.SIZE is the vector's size field, which also holds the
1684 pseudovector type information. It holds the size, too. */
1685 struct vectorlike_header header;
1686
1687 /* Depth of this sub char-table. It should be 1, 2, or 3. A sub
1688 char-table of depth 1 contains 16 elements, and each element
1689 covers 4096 (128*32) characters. A sub char-table of depth 2
1690 contains 32 elements, and each element covers 128 characters. A
1691 sub char-table of depth 3 contains 128 elements, and each element
1692 is for one character. */
1693 int depth;
1694
1695 /* Minimum character covered by the sub char-table. */
1696 int min_char;
1697
1698 /* Use set_sub_char_table_contents to set this. */
1699 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1700 };
1701
1702 INLINE Lisp_Object
1703 CHAR_TABLE_REF_ASCII (Lisp_Object ct, ptrdiff_t idx)
1704 {
1705 struct Lisp_Char_Table *tbl = NULL;
1706 Lisp_Object val;
1707 do
1708 {
1709 tbl = tbl ? XCHAR_TABLE (tbl->parent) : XCHAR_TABLE (ct);
1710 val = (! SUB_CHAR_TABLE_P (tbl->ascii) ? tbl->ascii
1711 : XSUB_CHAR_TABLE (tbl->ascii)->contents[idx]);
1712 if (NILP (val))
1713 val = tbl->defalt;
1714 }
1715 while (NILP (val) && ! NILP (tbl->parent));
1716
1717 return val;
1718 }
1719
1720 /* Almost equivalent to Faref (CT, IDX) with optimization for ASCII
1721 characters. Do not check validity of CT. */
1722 INLINE Lisp_Object
1723 CHAR_TABLE_REF (Lisp_Object ct, int idx)
1724 {
1725 return (ASCII_CHAR_P (idx)
1726 ? CHAR_TABLE_REF_ASCII (ct, idx)
1727 : char_table_ref (ct, idx));
1728 }
1729
1730 /* Equivalent to Faset (CT, IDX, VAL) with optimization for ASCII and
1731 8-bit European characters. Do not check validity of CT. */
1732 INLINE void
1733 CHAR_TABLE_SET (Lisp_Object ct, int idx, Lisp_Object val)
1734 {
1735 if (ASCII_CHAR_P (idx) && SUB_CHAR_TABLE_P (XCHAR_TABLE (ct)->ascii))
1736 set_sub_char_table_contents (XCHAR_TABLE (ct)->ascii, idx, val);
1737 else
1738 char_table_set (ct, idx, val);
1739 }
1740
1741 /* This structure describes a built-in function.
1742 It is generated by the DEFUN macro only.
1743 defsubr makes it into a Lisp object. */
1744
1745 struct Lisp_Subr
1746 {
1747 struct vectorlike_header header;
1748 union {
1749 Lisp_Object (*a0) (void);
1750 Lisp_Object (*a1) (Lisp_Object);
1751 Lisp_Object (*a2) (Lisp_Object, Lisp_Object);
1752 Lisp_Object (*a3) (Lisp_Object, Lisp_Object, Lisp_Object);
1753 Lisp_Object (*a4) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1754 Lisp_Object (*a5) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1755 Lisp_Object (*a6) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1756 Lisp_Object (*a7) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1757 Lisp_Object (*a8) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1758 Lisp_Object (*aUNEVALLED) (Lisp_Object args);
1759 Lisp_Object (*aMANY) (ptrdiff_t, Lisp_Object *);
1760 } function;
1761 short min_args, max_args;
1762 const char *symbol_name;
1763 const char *intspec;
1764 const char *doc;
1765 };
1766
1767 enum char_table_specials
1768 {
1769 /* This is the number of slots that every char table must have. This
1770 counts the ordinary slots and the top, defalt, parent, and purpose
1771 slots. */
1772 CHAR_TABLE_STANDARD_SLOTS = PSEUDOVECSIZE (struct Lisp_Char_Table, extras),
1773
1774 /* This is an index of first Lisp_Object field in Lisp_Sub_Char_Table
1775 when the latter is treated as an ordinary Lisp_Vector. */
1776 SUB_CHAR_TABLE_OFFSET = PSEUDOVECSIZE (struct Lisp_Sub_Char_Table, contents)
1777 };
1778
1779 /* Return the number of "extra" slots in the char table CT. */
1780
1781 INLINE int
1782 CHAR_TABLE_EXTRA_SLOTS (struct Lisp_Char_Table *ct)
1783 {
1784 return ((ct->header.size & PSEUDOVECTOR_SIZE_MASK)
1785 - CHAR_TABLE_STANDARD_SLOTS);
1786 }
1787
1788 /* Make sure that sub char-table contents slot is where we think it is. */
1789 verify (offsetof (struct Lisp_Sub_Char_Table, contents)
1790 == offsetof (struct Lisp_Vector, contents[SUB_CHAR_TABLE_OFFSET]));
1791
1792 /***********************************************************************
1793 Symbols
1794 ***********************************************************************/
1795
1796 /* Value is name of symbol. */
1797
1798 INLINE Lisp_Object
1799 (SYMBOL_VAL) (struct Lisp_Symbol *sym)
1800 {
1801 return lisp_h_SYMBOL_VAL (sym);
1802 }
1803
1804 INLINE struct Lisp_Symbol *
1805 SYMBOL_ALIAS (struct Lisp_Symbol *sym)
1806 {
1807 eassert (sym->redirect == SYMBOL_VARALIAS);
1808 return sym->val.alias;
1809 }
1810 INLINE struct Lisp_Buffer_Local_Value *
1811 SYMBOL_BLV (struct Lisp_Symbol *sym)
1812 {
1813 eassert (sym->redirect == SYMBOL_LOCALIZED);
1814 return sym->val.blv;
1815 }
1816 INLINE union Lisp_Fwd *
1817 SYMBOL_FWD (struct Lisp_Symbol *sym)
1818 {
1819 eassert (sym->redirect == SYMBOL_FORWARDED);
1820 return sym->val.fwd;
1821 }
1822
1823 INLINE void
1824 (SET_SYMBOL_VAL) (struct Lisp_Symbol *sym, Lisp_Object v)
1825 {
1826 lisp_h_SET_SYMBOL_VAL (sym, v);
1827 }
1828
1829 INLINE void
1830 SET_SYMBOL_ALIAS (struct Lisp_Symbol *sym, struct Lisp_Symbol *v)
1831 {
1832 eassert (sym->redirect == SYMBOL_VARALIAS);
1833 sym->val.alias = v;
1834 }
1835 INLINE void
1836 SET_SYMBOL_BLV (struct Lisp_Symbol *sym, struct Lisp_Buffer_Local_Value *v)
1837 {
1838 eassert (sym->redirect == SYMBOL_LOCALIZED);
1839 sym->val.blv = v;
1840 }
1841 INLINE void
1842 SET_SYMBOL_FWD (struct Lisp_Symbol *sym, union Lisp_Fwd *v)
1843 {
1844 eassert (sym->redirect == SYMBOL_FORWARDED);
1845 sym->val.fwd = v;
1846 }
1847
1848 INLINE Lisp_Object
1849 SYMBOL_NAME (Lisp_Object sym)
1850 {
1851 return XSYMBOL (sym)->name;
1852 }
1853
1854 /* Value is true if SYM is an interned symbol. */
1855
1856 INLINE bool
1857 SYMBOL_INTERNED_P (Lisp_Object sym)
1858 {
1859 return XSYMBOL (sym)->interned != SYMBOL_UNINTERNED;
1860 }
1861
1862 /* Value is true if SYM is interned in initial_obarray. */
1863
1864 INLINE bool
1865 SYMBOL_INTERNED_IN_INITIAL_OBARRAY_P (Lisp_Object sym)
1866 {
1867 return XSYMBOL (sym)->interned == SYMBOL_INTERNED_IN_INITIAL_OBARRAY;
1868 }
1869
1870 /* Value is non-zero if symbol is considered a constant, i.e. its
1871 value cannot be changed (there is an exception for keyword symbols,
1872 whose value can be set to the keyword symbol itself). */
1873
1874 INLINE int
1875 (SYMBOL_CONSTANT_P) (Lisp_Object sym)
1876 {
1877 return lisp_h_SYMBOL_CONSTANT_P (sym);
1878 }
1879
1880 /* Placeholder for make-docfile to process. The actual symbol
1881 definition is done by lread.c's defsym. */
1882 #define DEFSYM(sym, name) /* empty */
1883
1884 \f
1885 /***********************************************************************
1886 Hash Tables
1887 ***********************************************************************/
1888
1889 /* The structure of a Lisp hash table. */
1890
1891 struct hash_table_test
1892 {
1893 /* Name of the function used to compare keys. */
1894 Lisp_Object name;
1895
1896 /* User-supplied hash function, or nil. */
1897 Lisp_Object user_hash_function;
1898
1899 /* User-supplied key comparison function, or nil. */
1900 Lisp_Object user_cmp_function;
1901
1902 /* C function to compare two keys. */
1903 bool (*cmpfn) (struct hash_table_test *t, Lisp_Object, Lisp_Object);
1904
1905 /* C function to compute hash code. */
1906 EMACS_UINT (*hashfn) (struct hash_table_test *t, Lisp_Object);
1907 };
1908
1909 struct Lisp_Hash_Table
1910 {
1911 /* This is for Lisp; the hash table code does not refer to it. */
1912 struct vectorlike_header header;
1913
1914 /* Nil if table is non-weak. Otherwise a symbol describing the
1915 weakness of the table. */
1916 Lisp_Object weak;
1917
1918 /* When the table is resized, and this is an integer, compute the
1919 new size by adding this to the old size. If a float, compute the
1920 new size by multiplying the old size with this factor. */
1921 Lisp_Object rehash_size;
1922
1923 /* Resize hash table when number of entries/ table size is >= this
1924 ratio, a float. */
1925 Lisp_Object rehash_threshold;
1926
1927 /* Vector of hash codes. If hash[I] is nil, this means that the
1928 I-th entry is unused. */
1929 Lisp_Object hash;
1930
1931 /* Vector used to chain entries. If entry I is free, next[I] is the
1932 entry number of the next free item. If entry I is non-free,
1933 next[I] is the index of the next entry in the collision chain. */
1934 Lisp_Object next;
1935
1936 /* Index of first free entry in free list. */
1937 Lisp_Object next_free;
1938
1939 /* Bucket vector. A non-nil entry is the index of the first item in
1940 a collision chain. This vector's size can be larger than the
1941 hash table size to reduce collisions. */
1942 Lisp_Object index;
1943
1944 /* Only the fields above are traced normally by the GC. The ones below
1945 `count' are special and are either ignored by the GC or traced in
1946 a special way (e.g. because of weakness). */
1947
1948 /* Number of key/value entries in the table. */
1949 ptrdiff_t count;
1950
1951 /* Vector of keys and values. The key of item I is found at index
1952 2 * I, the value is found at index 2 * I + 1.
1953 This is gc_marked specially if the table is weak. */
1954 Lisp_Object key_and_value;
1955
1956 /* The comparison and hash functions. */
1957 struct hash_table_test test;
1958
1959 /* Next weak hash table if this is a weak hash table. The head
1960 of the list is in weak_hash_tables. */
1961 struct Lisp_Hash_Table *next_weak;
1962 };
1963
1964
1965 INLINE bool
1966 HASH_TABLE_P (Lisp_Object a)
1967 {
1968 return PSEUDOVECTORP (a, PVEC_HASH_TABLE);
1969 }
1970
1971 INLINE struct Lisp_Hash_Table *
1972 XHASH_TABLE (Lisp_Object a)
1973 {
1974 eassert (HASH_TABLE_P (a));
1975 return XUNTAG (a, Lisp_Vectorlike);
1976 }
1977
1978 #define XSET_HASH_TABLE(VAR, PTR) \
1979 (XSETPSEUDOVECTOR (VAR, PTR, PVEC_HASH_TABLE))
1980
1981 /* Value is the key part of entry IDX in hash table H. */
1982 INLINE Lisp_Object
1983 HASH_KEY (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1984 {
1985 return AREF (h->key_and_value, 2 * idx);
1986 }
1987
1988 /* Value is the value part of entry IDX in hash table H. */
1989 INLINE Lisp_Object
1990 HASH_VALUE (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1991 {
1992 return AREF (h->key_and_value, 2 * idx + 1);
1993 }
1994
1995 /* Value is the index of the next entry following the one at IDX
1996 in hash table H. */
1997 INLINE Lisp_Object
1998 HASH_NEXT (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1999 {
2000 return AREF (h->next, idx);
2001 }
2002
2003 /* Value is the hash code computed for entry IDX in hash table H. */
2004 INLINE Lisp_Object
2005 HASH_HASH (struct Lisp_Hash_Table *h, ptrdiff_t idx)
2006 {
2007 return AREF (h->hash, idx);
2008 }
2009
2010 /* Value is the index of the element in hash table H that is the
2011 start of the collision list at index IDX in the index vector of H. */
2012 INLINE Lisp_Object
2013 HASH_INDEX (struct Lisp_Hash_Table *h, ptrdiff_t idx)
2014 {
2015 return AREF (h->index, idx);
2016 }
2017
2018 /* Value is the size of hash table H. */
2019 INLINE ptrdiff_t
2020 HASH_TABLE_SIZE (struct Lisp_Hash_Table *h)
2021 {
2022 return ASIZE (h->next);
2023 }
2024
2025 /* Default size for hash tables if not specified. */
2026
2027 enum DEFAULT_HASH_SIZE { DEFAULT_HASH_SIZE = 65 };
2028
2029 /* Default threshold specifying when to resize a hash table. The
2030 value gives the ratio of current entries in the hash table and the
2031 size of the hash table. */
2032
2033 static double const DEFAULT_REHASH_THRESHOLD = 0.8;
2034
2035 /* Default factor by which to increase the size of a hash table. */
2036
2037 static double const DEFAULT_REHASH_SIZE = 1.5;
2038
2039 /* Combine two integers X and Y for hashing. The result might not fit
2040 into a Lisp integer. */
2041
2042 INLINE EMACS_UINT
2043 sxhash_combine (EMACS_UINT x, EMACS_UINT y)
2044 {
2045 return (x << 4) + (x >> (BITS_PER_EMACS_INT - 4)) + y;
2046 }
2047
2048 /* Hash X, returning a value that fits into a fixnum. */
2049
2050 INLINE EMACS_UINT
2051 SXHASH_REDUCE (EMACS_UINT x)
2052 {
2053 return (x ^ x >> (BITS_PER_EMACS_INT - FIXNUM_BITS)) & INTMASK;
2054 }
2055
2056 /* These structures are used for various misc types. */
2057
2058 struct Lisp_Misc_Any /* Supertype of all Misc types. */
2059 {
2060 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_??? */
2061 bool_bf gcmarkbit : 1;
2062 unsigned spacer : 15;
2063 };
2064
2065 struct Lisp_Marker
2066 {
2067 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Marker */
2068 bool_bf gcmarkbit : 1;
2069 unsigned spacer : 13;
2070 /* This flag is temporarily used in the functions
2071 decode/encode_coding_object to record that the marker position
2072 must be adjusted after the conversion. */
2073 bool_bf need_adjustment : 1;
2074 /* True means normal insertion at the marker's position
2075 leaves the marker after the inserted text. */
2076 bool_bf insertion_type : 1;
2077 /* This is the buffer that the marker points into, or 0 if it points nowhere.
2078 Note: a chain of markers can contain markers pointing into different
2079 buffers (the chain is per buffer_text rather than per buffer, so it's
2080 shared between indirect buffers). */
2081 /* This is used for (other than NULL-checking):
2082 - Fmarker_buffer
2083 - Fset_marker: check eq(oldbuf, newbuf) to avoid unchain+rechain.
2084 - unchain_marker: to find the list from which to unchain.
2085 - Fkill_buffer: to only unchain the markers of current indirect buffer.
2086 */
2087 struct buffer *buffer;
2088
2089 /* The remaining fields are meaningless in a marker that
2090 does not point anywhere. */
2091
2092 /* For markers that point somewhere,
2093 this is used to chain of all the markers in a given buffer. */
2094 /* We could remove it and use an array in buffer_text instead.
2095 That would also allow us to preserve it ordered. */
2096 struct Lisp_Marker *next;
2097 /* This is the char position where the marker points. */
2098 ptrdiff_t charpos;
2099 /* This is the byte position.
2100 It's mostly used as a charpos<->bytepos cache (i.e. it's not directly
2101 used to implement the functionality of markers, but rather to (ab)use
2102 markers as a cache for char<->byte mappings). */
2103 ptrdiff_t bytepos;
2104 };
2105
2106 /* START and END are markers in the overlay's buffer, and
2107 PLIST is the overlay's property list. */
2108 struct Lisp_Overlay
2109 /* An overlay's real data content is:
2110 - plist
2111 - buffer (really there are two buffer pointers, one per marker,
2112 and both points to the same buffer)
2113 - insertion type of both ends (per-marker fields)
2114 - start & start byte (of start marker)
2115 - end & end byte (of end marker)
2116 - next (singly linked list of overlays)
2117 - next fields of start and end markers (singly linked list of markers).
2118 I.e. 9words plus 2 bits, 3words of which are for external linked lists.
2119 */
2120 {
2121 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Overlay */
2122 bool_bf gcmarkbit : 1;
2123 unsigned spacer : 15;
2124 struct Lisp_Overlay *next;
2125 Lisp_Object start;
2126 Lisp_Object end;
2127 Lisp_Object plist;
2128 };
2129
2130 /* Types of data which may be saved in a Lisp_Save_Value. */
2131
2132 enum
2133 {
2134 SAVE_UNUSED,
2135 SAVE_INTEGER,
2136 SAVE_FUNCPOINTER,
2137 SAVE_POINTER,
2138 SAVE_OBJECT
2139 };
2140
2141 /* Number of bits needed to store one of the above values. */
2142 enum { SAVE_SLOT_BITS = 3 };
2143
2144 /* Number of slots in a save value where save_type is nonzero. */
2145 enum { SAVE_VALUE_SLOTS = 4 };
2146
2147 /* Bit-width and values for struct Lisp_Save_Value's save_type member. */
2148
2149 enum { SAVE_TYPE_BITS = SAVE_VALUE_SLOTS * SAVE_SLOT_BITS + 1 };
2150
2151 enum Lisp_Save_Type
2152 {
2153 SAVE_TYPE_INT_INT = SAVE_INTEGER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2154 SAVE_TYPE_INT_INT_INT
2155 = (SAVE_INTEGER + (SAVE_TYPE_INT_INT << SAVE_SLOT_BITS)),
2156 SAVE_TYPE_OBJ_OBJ = SAVE_OBJECT + (SAVE_OBJECT << SAVE_SLOT_BITS),
2157 SAVE_TYPE_OBJ_OBJ_OBJ = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ << SAVE_SLOT_BITS),
2158 SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
2159 = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ_OBJ << SAVE_SLOT_BITS),
2160 SAVE_TYPE_PTR_INT = SAVE_POINTER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2161 SAVE_TYPE_PTR_OBJ = SAVE_POINTER + (SAVE_OBJECT << SAVE_SLOT_BITS),
2162 SAVE_TYPE_PTR_PTR = SAVE_POINTER + (SAVE_POINTER << SAVE_SLOT_BITS),
2163 SAVE_TYPE_FUNCPTR_PTR_OBJ
2164 = SAVE_FUNCPOINTER + (SAVE_TYPE_PTR_OBJ << SAVE_SLOT_BITS),
2165
2166 /* This has an extra bit indicating it's raw memory. */
2167 SAVE_TYPE_MEMORY = SAVE_TYPE_PTR_INT + (1 << (SAVE_TYPE_BITS - 1))
2168 };
2169
2170 /* Special object used to hold a different values for later use.
2171
2172 This is mostly used to package C integers and pointers to call
2173 record_unwind_protect when two or more values need to be saved.
2174 For example:
2175
2176 ...
2177 struct my_data *md = get_my_data ();
2178 ptrdiff_t mi = get_my_integer ();
2179 record_unwind_protect (my_unwind, make_save_ptr_int (md, mi));
2180 ...
2181
2182 Lisp_Object my_unwind (Lisp_Object arg)
2183 {
2184 struct my_data *md = XSAVE_POINTER (arg, 0);
2185 ptrdiff_t mi = XSAVE_INTEGER (arg, 1);
2186 ...
2187 }
2188
2189 If ENABLE_CHECKING is in effect, XSAVE_xxx macros do type checking of the
2190 saved objects and raise eassert if type of the saved object doesn't match
2191 the type which is extracted. In the example above, XSAVE_INTEGER (arg, 2)
2192 and XSAVE_OBJECT (arg, 0) are wrong because nothing was saved in slot 2 and
2193 slot 0 is a pointer. */
2194
2195 typedef void (*voidfuncptr) (void);
2196
2197 struct Lisp_Save_Value
2198 {
2199 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Save_Value */
2200 bool_bf gcmarkbit : 1;
2201 unsigned spacer : 32 - (16 + 1 + SAVE_TYPE_BITS);
2202
2203 /* V->data may hold up to SAVE_VALUE_SLOTS entries. The type of
2204 V's data entries are determined by V->save_type. E.g., if
2205 V->save_type == SAVE_TYPE_PTR_OBJ, V->data[0] is a pointer,
2206 V->data[1] is an integer, and V's other data entries are unused.
2207
2208 If V->save_type == SAVE_TYPE_MEMORY, V->data[0].pointer is the address of
2209 a memory area containing V->data[1].integer potential Lisp_Objects. */
2210 ENUM_BF (Lisp_Save_Type) save_type : SAVE_TYPE_BITS;
2211 union {
2212 void *pointer;
2213 voidfuncptr funcpointer;
2214 ptrdiff_t integer;
2215 Lisp_Object object;
2216 } data[SAVE_VALUE_SLOTS];
2217 };
2218
2219 /* Return the type of V's Nth saved value. */
2220 INLINE int
2221 save_type (struct Lisp_Save_Value *v, int n)
2222 {
2223 eassert (0 <= n && n < SAVE_VALUE_SLOTS);
2224 return (v->save_type >> (SAVE_SLOT_BITS * n) & ((1 << SAVE_SLOT_BITS) - 1));
2225 }
2226
2227 /* Get and set the Nth saved pointer. */
2228
2229 INLINE void *
2230 XSAVE_POINTER (Lisp_Object obj, int n)
2231 {
2232 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2233 return XSAVE_VALUE (obj)->data[n].pointer;
2234 }
2235 INLINE void
2236 set_save_pointer (Lisp_Object obj, int n, void *val)
2237 {
2238 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2239 XSAVE_VALUE (obj)->data[n].pointer = val;
2240 }
2241 INLINE voidfuncptr
2242 XSAVE_FUNCPOINTER (Lisp_Object obj, int n)
2243 {
2244 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_FUNCPOINTER);
2245 return XSAVE_VALUE (obj)->data[n].funcpointer;
2246 }
2247
2248 /* Likewise for the saved integer. */
2249
2250 INLINE ptrdiff_t
2251 XSAVE_INTEGER (Lisp_Object obj, int n)
2252 {
2253 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2254 return XSAVE_VALUE (obj)->data[n].integer;
2255 }
2256 INLINE void
2257 set_save_integer (Lisp_Object obj, int n, ptrdiff_t val)
2258 {
2259 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2260 XSAVE_VALUE (obj)->data[n].integer = val;
2261 }
2262
2263 /* Extract Nth saved object. */
2264
2265 INLINE Lisp_Object
2266 XSAVE_OBJECT (Lisp_Object obj, int n)
2267 {
2268 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_OBJECT);
2269 return XSAVE_VALUE (obj)->data[n].object;
2270 }
2271
2272 #ifdef HAVE_MODULES
2273 struct Lisp_User_Ptr
2274 {
2275 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_User_Ptr */
2276 bool_bf gcmarkbit : 1;
2277 unsigned spacer : 15;
2278
2279 void (*finalizer) (void *);
2280 void *p;
2281 };
2282 #endif
2283
2284 /* A finalizer sentinel. */
2285 struct Lisp_Finalizer
2286 {
2287 struct Lisp_Misc_Any base;
2288
2289 /* Circular list of all active weak references. */
2290 struct Lisp_Finalizer *prev;
2291 struct Lisp_Finalizer *next;
2292
2293 /* Call FUNCTION when the finalizer becomes unreachable, even if
2294 FUNCTION contains a reference to the finalizer; i.e., call
2295 FUNCTION when it is reachable _only_ through finalizers. */
2296 Lisp_Object function;
2297 };
2298
2299 /* A miscellaneous object, when it's on the free list. */
2300 struct Lisp_Free
2301 {
2302 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Free */
2303 bool_bf gcmarkbit : 1;
2304 unsigned spacer : 15;
2305 union Lisp_Misc *chain;
2306 };
2307
2308 /* To get the type field of a union Lisp_Misc, use XMISCTYPE.
2309 It uses one of these struct subtypes to get the type field. */
2310
2311 union Lisp_Misc
2312 {
2313 struct Lisp_Misc_Any u_any; /* Supertype of all Misc types. */
2314 struct Lisp_Free u_free;
2315 struct Lisp_Marker u_marker;
2316 struct Lisp_Overlay u_overlay;
2317 struct Lisp_Save_Value u_save_value;
2318 struct Lisp_Finalizer u_finalizer;
2319 #ifdef HAVE_MODULES
2320 struct Lisp_User_Ptr u_user_ptr;
2321 #endif
2322 };
2323
2324 INLINE union Lisp_Misc *
2325 XMISC (Lisp_Object a)
2326 {
2327 return XUNTAG (a, Lisp_Misc);
2328 }
2329
2330 INLINE struct Lisp_Misc_Any *
2331 XMISCANY (Lisp_Object a)
2332 {
2333 eassert (MISCP (a));
2334 return & XMISC (a)->u_any;
2335 }
2336
2337 INLINE enum Lisp_Misc_Type
2338 XMISCTYPE (Lisp_Object a)
2339 {
2340 return XMISCANY (a)->type;
2341 }
2342
2343 INLINE struct Lisp_Marker *
2344 XMARKER (Lisp_Object a)
2345 {
2346 eassert (MARKERP (a));
2347 return & XMISC (a)->u_marker;
2348 }
2349
2350 INLINE struct Lisp_Overlay *
2351 XOVERLAY (Lisp_Object a)
2352 {
2353 eassert (OVERLAYP (a));
2354 return & XMISC (a)->u_overlay;
2355 }
2356
2357 INLINE struct Lisp_Save_Value *
2358 XSAVE_VALUE (Lisp_Object a)
2359 {
2360 eassert (SAVE_VALUEP (a));
2361 return & XMISC (a)->u_save_value;
2362 }
2363
2364 INLINE struct Lisp_Finalizer *
2365 XFINALIZER (Lisp_Object a)
2366 {
2367 eassert (FINALIZERP (a));
2368 return & XMISC (a)->u_finalizer;
2369 }
2370
2371 #ifdef HAVE_MODULES
2372 INLINE struct Lisp_User_Ptr *
2373 XUSER_PTR (Lisp_Object a)
2374 {
2375 eassert (USER_PTRP (a));
2376 return & XMISC (a)->u_user_ptr;
2377 }
2378 #endif
2379
2380 \f
2381 /* Forwarding pointer to an int variable.
2382 This is allowed only in the value cell of a symbol,
2383 and it means that the symbol's value really lives in the
2384 specified int variable. */
2385 struct Lisp_Intfwd
2386 {
2387 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Int */
2388 EMACS_INT *intvar;
2389 };
2390
2391 /* Boolean forwarding pointer to an int variable.
2392 This is like Lisp_Intfwd except that the ostensible
2393 "value" of the symbol is t if the bool variable is true,
2394 nil if it is false. */
2395 struct Lisp_Boolfwd
2396 {
2397 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Bool */
2398 bool *boolvar;
2399 };
2400
2401 /* Forwarding pointer to a Lisp_Object variable.
2402 This is allowed only in the value cell of a symbol,
2403 and it means that the symbol's value really lives in the
2404 specified variable. */
2405 struct Lisp_Objfwd
2406 {
2407 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Obj */
2408 Lisp_Object *objvar;
2409 };
2410
2411 /* Like Lisp_Objfwd except that value lives in a slot in the
2412 current buffer. Value is byte index of slot within buffer. */
2413 struct Lisp_Buffer_Objfwd
2414 {
2415 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Buffer_Obj */
2416 int offset;
2417 /* One of Qnil, Qintegerp, Qsymbolp, Qstringp, Qfloatp or Qnumberp. */
2418 Lisp_Object predicate;
2419 };
2420
2421 /* struct Lisp_Buffer_Local_Value is used in a symbol value cell when
2422 the symbol has buffer-local or frame-local bindings. (Exception:
2423 some buffer-local variables are built-in, with their values stored
2424 in the buffer structure itself. They are handled differently,
2425 using struct Lisp_Buffer_Objfwd.)
2426
2427 The `realvalue' slot holds the variable's current value, or a
2428 forwarding pointer to where that value is kept. This value is the
2429 one that corresponds to the loaded binding. To read or set the
2430 variable, you must first make sure the right binding is loaded;
2431 then you can access the value in (or through) `realvalue'.
2432
2433 `buffer' and `frame' are the buffer and frame for which the loaded
2434 binding was found. If those have changed, to make sure the right
2435 binding is loaded it is necessary to find which binding goes with
2436 the current buffer and selected frame, then load it. To load it,
2437 first unload the previous binding, then copy the value of the new
2438 binding into `realvalue' (or through it). Also update
2439 LOADED-BINDING to point to the newly loaded binding.
2440
2441 `local_if_set' indicates that merely setting the variable creates a
2442 local binding for the current buffer. Otherwise the latter, setting
2443 the variable does not do that; only make-local-variable does that. */
2444
2445 struct Lisp_Buffer_Local_Value
2446 {
2447 /* True means that merely setting the variable creates a local
2448 binding for the current buffer. */
2449 bool_bf local_if_set : 1;
2450 /* True means this variable can have frame-local bindings, otherwise, it is
2451 can have buffer-local bindings. The two cannot be combined. */
2452 bool_bf frame_local : 1;
2453 /* True means that the binding now loaded was found.
2454 Presumably equivalent to (defcell!=valcell). */
2455 bool_bf found : 1;
2456 /* If non-NULL, a forwarding to the C var where it should also be set. */
2457 union Lisp_Fwd *fwd; /* Should never be (Buffer|Kboard)_Objfwd. */
2458 /* The buffer or frame for which the loaded binding was found. */
2459 Lisp_Object where;
2460 /* A cons cell that holds the default value. It has the form
2461 (SYMBOL . DEFAULT-VALUE). */
2462 Lisp_Object defcell;
2463 /* The cons cell from `where's parameter alist.
2464 It always has the form (SYMBOL . VALUE)
2465 Note that if `forward' is non-nil, VALUE may be out of date.
2466 Also if the currently loaded binding is the default binding, then
2467 this is `eq'ual to defcell. */
2468 Lisp_Object valcell;
2469 };
2470
2471 /* Like Lisp_Objfwd except that value lives in a slot in the
2472 current kboard. */
2473 struct Lisp_Kboard_Objfwd
2474 {
2475 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Kboard_Obj */
2476 int offset;
2477 };
2478
2479 union Lisp_Fwd
2480 {
2481 struct Lisp_Intfwd u_intfwd;
2482 struct Lisp_Boolfwd u_boolfwd;
2483 struct Lisp_Objfwd u_objfwd;
2484 struct Lisp_Buffer_Objfwd u_buffer_objfwd;
2485 struct Lisp_Kboard_Objfwd u_kboard_objfwd;
2486 };
2487
2488 INLINE enum Lisp_Fwd_Type
2489 XFWDTYPE (union Lisp_Fwd *a)
2490 {
2491 return a->u_intfwd.type;
2492 }
2493
2494 INLINE struct Lisp_Buffer_Objfwd *
2495 XBUFFER_OBJFWD (union Lisp_Fwd *a)
2496 {
2497 eassert (BUFFER_OBJFWDP (a));
2498 return &a->u_buffer_objfwd;
2499 }
2500 \f
2501 /* Lisp floating point type. */
2502 struct Lisp_Float
2503 {
2504 union
2505 {
2506 double data;
2507 struct Lisp_Float *chain;
2508 } u;
2509 };
2510
2511 INLINE double
2512 XFLOAT_DATA (Lisp_Object f)
2513 {
2514 return XFLOAT (f)->u.data;
2515 }
2516
2517 /* Most hosts nowadays use IEEE floating point, so they use IEC 60559
2518 representations, have infinities and NaNs, and do not trap on
2519 exceptions. Define IEEE_FLOATING_POINT if this host is one of the
2520 typical ones. The C11 macro __STDC_IEC_559__ is close to what is
2521 wanted here, but is not quite right because Emacs does not require
2522 all the features of C11 Annex F (and does not require C11 at all,
2523 for that matter). */
2524 enum
2525 {
2526 IEEE_FLOATING_POINT
2527 = (FLT_RADIX == 2 && FLT_MANT_DIG == 24
2528 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
2529 };
2530
2531 /* A character, declared with the following typedef, is a member
2532 of some character set associated with the current buffer. */
2533 #ifndef _UCHAR_T /* Protect against something in ctab.h on AIX. */
2534 #define _UCHAR_T
2535 typedef unsigned char UCHAR;
2536 #endif
2537
2538 /* Meanings of slots in a Lisp_Compiled: */
2539
2540 enum Lisp_Compiled
2541 {
2542 COMPILED_ARGLIST = 0,
2543 COMPILED_BYTECODE = 1,
2544 COMPILED_CONSTANTS = 2,
2545 COMPILED_STACK_DEPTH = 3,
2546 COMPILED_DOC_STRING = 4,
2547 COMPILED_INTERACTIVE = 5
2548 };
2549
2550 /* Flag bits in a character. These also get used in termhooks.h.
2551 Richard Stallman <rms@gnu.ai.mit.edu> thinks that MULE
2552 (MUlti-Lingual Emacs) might need 22 bits for the character value
2553 itself, so we probably shouldn't use any bits lower than 0x0400000. */
2554 enum char_bits
2555 {
2556 CHAR_ALT = 0x0400000,
2557 CHAR_SUPER = 0x0800000,
2558 CHAR_HYPER = 0x1000000,
2559 CHAR_SHIFT = 0x2000000,
2560 CHAR_CTL = 0x4000000,
2561 CHAR_META = 0x8000000,
2562
2563 CHAR_MODIFIER_MASK =
2564 CHAR_ALT | CHAR_SUPER | CHAR_HYPER | CHAR_SHIFT | CHAR_CTL | CHAR_META,
2565
2566 /* Actually, the current Emacs uses 22 bits for the character value
2567 itself. */
2568 CHARACTERBITS = 22
2569 };
2570 \f
2571 /* Data type checking. */
2572
2573 INLINE bool
2574 (NILP) (Lisp_Object x)
2575 {
2576 return lisp_h_NILP (x);
2577 }
2578
2579 INLINE bool
2580 NUMBERP (Lisp_Object x)
2581 {
2582 return INTEGERP (x) || FLOATP (x);
2583 }
2584 INLINE bool
2585 NATNUMP (Lisp_Object x)
2586 {
2587 return INTEGERP (x) && 0 <= XINT (x);
2588 }
2589
2590 INLINE bool
2591 RANGED_INTEGERP (intmax_t lo, Lisp_Object x, intmax_t hi)
2592 {
2593 return INTEGERP (x) && lo <= XINT (x) && XINT (x) <= hi;
2594 }
2595
2596 #define TYPE_RANGED_INTEGERP(type, x) \
2597 (INTEGERP (x) \
2598 && (TYPE_SIGNED (type) ? TYPE_MINIMUM (type) <= XINT (x) : 0 <= XINT (x)) \
2599 && XINT (x) <= TYPE_MAXIMUM (type))
2600
2601 INLINE bool
2602 (CONSP) (Lisp_Object x)
2603 {
2604 return lisp_h_CONSP (x);
2605 }
2606 INLINE bool
2607 (FLOATP) (Lisp_Object x)
2608 {
2609 return lisp_h_FLOATP (x);
2610 }
2611 INLINE bool
2612 (MISCP) (Lisp_Object x)
2613 {
2614 return lisp_h_MISCP (x);
2615 }
2616 INLINE bool
2617 (SYMBOLP) (Lisp_Object x)
2618 {
2619 return lisp_h_SYMBOLP (x);
2620 }
2621 INLINE bool
2622 (INTEGERP) (Lisp_Object x)
2623 {
2624 return lisp_h_INTEGERP (x);
2625 }
2626 INLINE bool
2627 (VECTORLIKEP) (Lisp_Object x)
2628 {
2629 return lisp_h_VECTORLIKEP (x);
2630 }
2631 INLINE bool
2632 (MARKERP) (Lisp_Object x)
2633 {
2634 return lisp_h_MARKERP (x);
2635 }
2636
2637 INLINE bool
2638 STRINGP (Lisp_Object x)
2639 {
2640 return XTYPE (x) == Lisp_String;
2641 }
2642 INLINE bool
2643 VECTORP (Lisp_Object x)
2644 {
2645 return VECTORLIKEP (x) && ! (ASIZE (x) & PSEUDOVECTOR_FLAG);
2646 }
2647 INLINE bool
2648 OVERLAYP (Lisp_Object x)
2649 {
2650 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Overlay;
2651 }
2652 INLINE bool
2653 SAVE_VALUEP (Lisp_Object x)
2654 {
2655 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Save_Value;
2656 }
2657
2658 INLINE bool
2659 FINALIZERP (Lisp_Object x)
2660 {
2661 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Finalizer;
2662 }
2663
2664 #ifdef HAVE_MODULES
2665 INLINE bool
2666 USER_PTRP (Lisp_Object x)
2667 {
2668 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_User_Ptr;
2669 }
2670 #endif
2671
2672 INLINE bool
2673 AUTOLOADP (Lisp_Object x)
2674 {
2675 return CONSP (x) && EQ (Qautoload, XCAR (x));
2676 }
2677
2678 INLINE bool
2679 BUFFER_OBJFWDP (union Lisp_Fwd *a)
2680 {
2681 return XFWDTYPE (a) == Lisp_Fwd_Buffer_Obj;
2682 }
2683
2684 INLINE bool
2685 PSEUDOVECTOR_TYPEP (struct vectorlike_header *a, int code)
2686 {
2687 return ((a->size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK))
2688 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS)));
2689 }
2690
2691 /* True if A is a pseudovector whose code is CODE. */
2692 INLINE bool
2693 PSEUDOVECTORP (Lisp_Object a, int code)
2694 {
2695 if (! VECTORLIKEP (a))
2696 return false;
2697 else
2698 {
2699 /* Converting to struct vectorlike_header * avoids aliasing issues. */
2700 struct vectorlike_header *h = XUNTAG (a, Lisp_Vectorlike);
2701 return PSEUDOVECTOR_TYPEP (h, code);
2702 }
2703 }
2704
2705
2706 /* Test for specific pseudovector types. */
2707
2708 INLINE bool
2709 WINDOW_CONFIGURATIONP (Lisp_Object a)
2710 {
2711 return PSEUDOVECTORP (a, PVEC_WINDOW_CONFIGURATION);
2712 }
2713
2714 INLINE bool
2715 PROCESSP (Lisp_Object a)
2716 {
2717 return PSEUDOVECTORP (a, PVEC_PROCESS);
2718 }
2719
2720 INLINE bool
2721 WINDOWP (Lisp_Object a)
2722 {
2723 return PSEUDOVECTORP (a, PVEC_WINDOW);
2724 }
2725
2726 INLINE bool
2727 TERMINALP (Lisp_Object a)
2728 {
2729 return PSEUDOVECTORP (a, PVEC_TERMINAL);
2730 }
2731
2732 INLINE bool
2733 SUBRP (Lisp_Object a)
2734 {
2735 return PSEUDOVECTORP (a, PVEC_SUBR);
2736 }
2737
2738 INLINE bool
2739 COMPILEDP (Lisp_Object a)
2740 {
2741 return PSEUDOVECTORP (a, PVEC_COMPILED);
2742 }
2743
2744 INLINE bool
2745 BUFFERP (Lisp_Object a)
2746 {
2747 return PSEUDOVECTORP (a, PVEC_BUFFER);
2748 }
2749
2750 INLINE bool
2751 CHAR_TABLE_P (Lisp_Object a)
2752 {
2753 return PSEUDOVECTORP (a, PVEC_CHAR_TABLE);
2754 }
2755
2756 INLINE bool
2757 SUB_CHAR_TABLE_P (Lisp_Object a)
2758 {
2759 return PSEUDOVECTORP (a, PVEC_SUB_CHAR_TABLE);
2760 }
2761
2762 INLINE bool
2763 BOOL_VECTOR_P (Lisp_Object a)
2764 {
2765 return PSEUDOVECTORP (a, PVEC_BOOL_VECTOR);
2766 }
2767
2768 INLINE bool
2769 FRAMEP (Lisp_Object a)
2770 {
2771 return PSEUDOVECTORP (a, PVEC_FRAME);
2772 }
2773
2774 /* Test for image (image . spec) */
2775 INLINE bool
2776 IMAGEP (Lisp_Object x)
2777 {
2778 return CONSP (x) && EQ (XCAR (x), Qimage);
2779 }
2780
2781 /* Array types. */
2782 INLINE bool
2783 ARRAYP (Lisp_Object x)
2784 {
2785 return VECTORP (x) || STRINGP (x) || CHAR_TABLE_P (x) || BOOL_VECTOR_P (x);
2786 }
2787 \f
2788 INLINE void
2789 CHECK_LIST (Lisp_Object x)
2790 {
2791 CHECK_TYPE (CONSP (x) || NILP (x), Qlistp, x);
2792 }
2793
2794 INLINE void
2795 (CHECK_LIST_CONS) (Lisp_Object x, Lisp_Object y)
2796 {
2797 lisp_h_CHECK_LIST_CONS (x, y);
2798 }
2799
2800 INLINE void
2801 (CHECK_SYMBOL) (Lisp_Object x)
2802 {
2803 lisp_h_CHECK_SYMBOL (x);
2804 }
2805
2806 INLINE void
2807 (CHECK_NUMBER) (Lisp_Object x)
2808 {
2809 lisp_h_CHECK_NUMBER (x);
2810 }
2811
2812 INLINE void
2813 CHECK_STRING (Lisp_Object x)
2814 {
2815 CHECK_TYPE (STRINGP (x), Qstringp, x);
2816 }
2817 INLINE void
2818 CHECK_STRING_CAR (Lisp_Object x)
2819 {
2820 CHECK_TYPE (STRINGP (XCAR (x)), Qstringp, XCAR (x));
2821 }
2822 INLINE void
2823 CHECK_CONS (Lisp_Object x)
2824 {
2825 CHECK_TYPE (CONSP (x), Qconsp, x);
2826 }
2827 INLINE void
2828 CHECK_VECTOR (Lisp_Object x)
2829 {
2830 CHECK_TYPE (VECTORP (x), Qvectorp, x);
2831 }
2832 INLINE void
2833 CHECK_BOOL_VECTOR (Lisp_Object x)
2834 {
2835 CHECK_TYPE (BOOL_VECTOR_P (x), Qbool_vector_p, x);
2836 }
2837 /* This is a bit special because we always need size afterwards. */
2838 INLINE ptrdiff_t
2839 CHECK_VECTOR_OR_STRING (Lisp_Object x)
2840 {
2841 if (VECTORP (x))
2842 return ASIZE (x);
2843 if (STRINGP (x))
2844 return SCHARS (x);
2845 wrong_type_argument (Qarrayp, x);
2846 }
2847 INLINE void
2848 CHECK_ARRAY (Lisp_Object x, Lisp_Object predicate)
2849 {
2850 CHECK_TYPE (ARRAYP (x), predicate, x);
2851 }
2852 INLINE void
2853 CHECK_BUFFER (Lisp_Object x)
2854 {
2855 CHECK_TYPE (BUFFERP (x), Qbufferp, x);
2856 }
2857 INLINE void
2858 CHECK_WINDOW (Lisp_Object x)
2859 {
2860 CHECK_TYPE (WINDOWP (x), Qwindowp, x);
2861 }
2862 #ifdef subprocesses
2863 INLINE void
2864 CHECK_PROCESS (Lisp_Object x)
2865 {
2866 CHECK_TYPE (PROCESSP (x), Qprocessp, x);
2867 }
2868 #endif
2869 INLINE void
2870 CHECK_NATNUM (Lisp_Object x)
2871 {
2872 CHECK_TYPE (NATNUMP (x), Qwholenump, x);
2873 }
2874
2875 #define CHECK_RANGED_INTEGER(x, lo, hi) \
2876 do { \
2877 CHECK_NUMBER (x); \
2878 if (! ((lo) <= XINT (x) && XINT (x) <= (hi))) \
2879 args_out_of_range_3 \
2880 (x, \
2881 make_number ((lo) < 0 && (lo) < MOST_NEGATIVE_FIXNUM \
2882 ? MOST_NEGATIVE_FIXNUM \
2883 : (lo)), \
2884 make_number (min (hi, MOST_POSITIVE_FIXNUM))); \
2885 } while (false)
2886 #define CHECK_TYPE_RANGED_INTEGER(type, x) \
2887 do { \
2888 if (TYPE_SIGNED (type)) \
2889 CHECK_RANGED_INTEGER (x, TYPE_MINIMUM (type), TYPE_MAXIMUM (type)); \
2890 else \
2891 CHECK_RANGED_INTEGER (x, 0, TYPE_MAXIMUM (type)); \
2892 } while (false)
2893
2894 #define CHECK_NUMBER_COERCE_MARKER(x) \
2895 do { \
2896 if (MARKERP ((x))) \
2897 XSETFASTINT (x, marker_position (x)); \
2898 else \
2899 CHECK_TYPE (INTEGERP (x), Qinteger_or_marker_p, x); \
2900 } while (false)
2901
2902 INLINE double
2903 XFLOATINT (Lisp_Object n)
2904 {
2905 return extract_float (n);
2906 }
2907
2908 INLINE void
2909 CHECK_NUMBER_OR_FLOAT (Lisp_Object x)
2910 {
2911 CHECK_TYPE (NUMBERP (x), Qnumberp, x);
2912 }
2913
2914 #define CHECK_NUMBER_OR_FLOAT_COERCE_MARKER(x) \
2915 do { \
2916 if (MARKERP (x)) \
2917 XSETFASTINT (x, marker_position (x)); \
2918 else \
2919 CHECK_TYPE (NUMBERP (x), Qnumber_or_marker_p, x); \
2920 } while (false)
2921
2922 /* Since we can't assign directly to the CAR or CDR fields of a cons
2923 cell, use these when checking that those fields contain numbers. */
2924 INLINE void
2925 CHECK_NUMBER_CAR (Lisp_Object x)
2926 {
2927 Lisp_Object tmp = XCAR (x);
2928 CHECK_NUMBER (tmp);
2929 XSETCAR (x, tmp);
2930 }
2931
2932 INLINE void
2933 CHECK_NUMBER_CDR (Lisp_Object x)
2934 {
2935 Lisp_Object tmp = XCDR (x);
2936 CHECK_NUMBER (tmp);
2937 XSETCDR (x, tmp);
2938 }
2939 \f
2940 /* Define a built-in function for calling from Lisp.
2941 `lname' should be the name to give the function in Lisp,
2942 as a null-terminated C string.
2943 `fnname' should be the name of the function in C.
2944 By convention, it starts with F.
2945 `sname' should be the name for the C constant structure
2946 that records information on this function for internal use.
2947 By convention, it should be the same as `fnname' but with S instead of F.
2948 It's too bad that C macros can't compute this from `fnname'.
2949 `minargs' should be a number, the minimum number of arguments allowed.
2950 `maxargs' should be a number, the maximum number of arguments allowed,
2951 or else MANY or UNEVALLED.
2952 MANY means pass a vector of evaluated arguments,
2953 in the form of an integer number-of-arguments
2954 followed by the address of a vector of Lisp_Objects
2955 which contains the argument values.
2956 UNEVALLED means pass the list of unevaluated arguments
2957 `intspec' says how interactive arguments are to be fetched.
2958 If the string starts with a `(', `intspec' is evaluated and the resulting
2959 list is the list of arguments.
2960 If it's a string that doesn't start with `(', the value should follow
2961 the one of the doc string for `interactive'.
2962 A null string means call interactively with no arguments.
2963 `doc' is documentation for the user. */
2964
2965 /* This version of DEFUN declares a function prototype with the right
2966 arguments, so we can catch errors with maxargs at compile-time. */
2967 #ifdef _MSC_VER
2968 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2969 Lisp_Object fnname DEFUN_ARGS_ ## maxargs ; \
2970 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2971 { { (PVEC_SUBR << PSEUDOVECTOR_AREA_BITS) \
2972 | (sizeof (struct Lisp_Subr) / sizeof (EMACS_INT)) }, \
2973 { (Lisp_Object (__cdecl *)(void))fnname }, \
2974 minargs, maxargs, lname, intspec, 0}; \
2975 Lisp_Object fnname
2976 #else /* not _MSC_VER */
2977 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2978 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2979 { { PVEC_SUBR << PSEUDOVECTOR_AREA_BITS }, \
2980 { .a ## maxargs = fnname }, \
2981 minargs, maxargs, lname, intspec, 0}; \
2982 Lisp_Object fnname
2983 #endif
2984
2985 /* True if OBJ is a Lisp function. */
2986 INLINE bool
2987 FUNCTIONP (Lisp_Object obj)
2988 {
2989 return functionp (obj);
2990 }
2991
2992 /* defsubr (Sname);
2993 is how we define the symbol for function `name' at start-up time. */
2994 extern void defsubr (struct Lisp_Subr *);
2995
2996 enum maxargs
2997 {
2998 MANY = -2,
2999 UNEVALLED = -1
3000 };
3001
3002 /* Call a function F that accepts many args, passing it ARRAY's elements. */
3003 #define CALLMANY(f, array) (f) (ARRAYELTS (array), array)
3004
3005 /* Call a function F that accepts many args, passing it the remaining args,
3006 E.g., 'return CALLN (Fformat, fmt, text);' is less error-prone than
3007 '{ Lisp_Object a[2]; a[0] = fmt; a[1] = text; return Fformat (2, a); }'.
3008 CALLN is overkill for simple usages like 'Finsert (1, &text);'. */
3009 #define CALLN(f, ...) CALLMANY (f, ((Lisp_Object []) {__VA_ARGS__}))
3010
3011 extern void defvar_lisp (struct Lisp_Objfwd *, const char *, Lisp_Object *);
3012 extern void defvar_lisp_nopro (struct Lisp_Objfwd *, const char *, Lisp_Object *);
3013 extern void defvar_bool (struct Lisp_Boolfwd *, const char *, bool *);
3014 extern void defvar_int (struct Lisp_Intfwd *, const char *, EMACS_INT *);
3015 extern void defvar_kboard (struct Lisp_Kboard_Objfwd *, const char *, int);
3016
3017 /* Macros we use to define forwarded Lisp variables.
3018 These are used in the syms_of_FILENAME functions.
3019
3020 An ordinary (not in buffer_defaults, per-buffer, or per-keyboard)
3021 lisp variable is actually a field in `struct emacs_globals'. The
3022 field's name begins with "f_", which is a convention enforced by
3023 these macros. Each such global has a corresponding #define in
3024 globals.h; the plain name should be used in the code.
3025
3026 E.g., the global "cons_cells_consed" is declared as "int
3027 f_cons_cells_consed" in globals.h, but there is a define:
3028
3029 #define cons_cells_consed globals.f_cons_cells_consed
3030
3031 All C code uses the `cons_cells_consed' name. This is all done
3032 this way to support indirection for multi-threaded Emacs. */
3033
3034 #define DEFVAR_LISP(lname, vname, doc) \
3035 do { \
3036 static struct Lisp_Objfwd o_fwd; \
3037 defvar_lisp (&o_fwd, lname, &globals.f_ ## vname); \
3038 } while (false)
3039 #define DEFVAR_LISP_NOPRO(lname, vname, doc) \
3040 do { \
3041 static struct Lisp_Objfwd o_fwd; \
3042 defvar_lisp_nopro (&o_fwd, lname, &globals.f_ ## vname); \
3043 } while (false)
3044 #define DEFVAR_BOOL(lname, vname, doc) \
3045 do { \
3046 static struct Lisp_Boolfwd b_fwd; \
3047 defvar_bool (&b_fwd, lname, &globals.f_ ## vname); \
3048 } while (false)
3049 #define DEFVAR_INT(lname, vname, doc) \
3050 do { \
3051 static struct Lisp_Intfwd i_fwd; \
3052 defvar_int (&i_fwd, lname, &globals.f_ ## vname); \
3053 } while (false)
3054
3055 #define DEFVAR_BUFFER_DEFAULTS(lname, vname, doc) \
3056 do { \
3057 static struct Lisp_Objfwd o_fwd; \
3058 defvar_lisp_nopro (&o_fwd, lname, &BVAR (&buffer_defaults, vname)); \
3059 } while (false)
3060
3061 #define DEFVAR_KBOARD(lname, vname, doc) \
3062 do { \
3063 static struct Lisp_Kboard_Objfwd ko_fwd; \
3064 defvar_kboard (&ko_fwd, lname, offsetof (KBOARD, vname ## _)); \
3065 } while (false)
3066 \f
3067 /* Save and restore the instruction and environment pointers,
3068 without affecting the signal mask. */
3069
3070 #ifdef HAVE__SETJMP
3071 typedef jmp_buf sys_jmp_buf;
3072 # define sys_setjmp(j) _setjmp (j)
3073 # define sys_longjmp(j, v) _longjmp (j, v)
3074 #elif defined HAVE_SIGSETJMP
3075 typedef sigjmp_buf sys_jmp_buf;
3076 # define sys_setjmp(j) sigsetjmp (j, 0)
3077 # define sys_longjmp(j, v) siglongjmp (j, v)
3078 #else
3079 /* A platform that uses neither _longjmp nor siglongjmp; assume
3080 longjmp does not affect the sigmask. */
3081 typedef jmp_buf sys_jmp_buf;
3082 # define sys_setjmp(j) setjmp (j)
3083 # define sys_longjmp(j, v) longjmp (j, v)
3084 #endif
3085
3086 \f
3087 /* Elisp uses several stacks:
3088 - the C stack.
3089 - the bytecode stack: used internally by the bytecode interpreter.
3090 Allocated from the C stack.
3091 - The specpdl stack: keeps track of active unwind-protect and
3092 dynamic-let-bindings. Allocated from the `specpdl' array, a manually
3093 managed stack.
3094 - The handler stack: keeps track of active catch tags and condition-case
3095 handlers. Allocated in a manually managed stack implemented by a
3096 doubly-linked list allocated via xmalloc and never freed. */
3097
3098 /* Structure for recording Lisp call stack for backtrace purposes. */
3099
3100 /* The special binding stack holds the outer values of variables while
3101 they are bound by a function application or a let form, stores the
3102 code to be executed for unwind-protect forms.
3103
3104 NOTE: The specbinding union is defined here, because SPECPDL_INDEX is
3105 used all over the place, needs to be fast, and needs to know the size of
3106 union specbinding. But only eval.c should access it. */
3107
3108 enum specbind_tag {
3109 SPECPDL_UNWIND, /* An unwind_protect function on Lisp_Object. */
3110 SPECPDL_UNWIND_PTR, /* Likewise, on void *. */
3111 SPECPDL_UNWIND_INT, /* Likewise, on int. */
3112 SPECPDL_UNWIND_VOID, /* Likewise, with no arg. */
3113 SPECPDL_BACKTRACE, /* An element of the backtrace. */
3114 SPECPDL_LET, /* A plain and simple dynamic let-binding. */
3115 /* Tags greater than SPECPDL_LET must be "subkinds" of LET. */
3116 SPECPDL_LET_LOCAL, /* A buffer-local let-binding. */
3117 SPECPDL_LET_DEFAULT /* A global binding for a localized var. */
3118 };
3119
3120 union specbinding
3121 {
3122 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3123 struct {
3124 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3125 void (*func) (Lisp_Object);
3126 Lisp_Object arg;
3127 } unwind;
3128 struct {
3129 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3130 void (*func) (void *);
3131 void *arg;
3132 } unwind_ptr;
3133 struct {
3134 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3135 void (*func) (int);
3136 int arg;
3137 } unwind_int;
3138 struct {
3139 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3140 void (*func) (void);
3141 } unwind_void;
3142 struct {
3143 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3144 /* `where' is not used in the case of SPECPDL_LET. */
3145 Lisp_Object symbol, old_value, where;
3146 } let;
3147 struct {
3148 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3149 bool_bf debug_on_exit : 1;
3150 Lisp_Object function;
3151 Lisp_Object *args;
3152 ptrdiff_t nargs;
3153 } bt;
3154 };
3155
3156 extern union specbinding *specpdl;
3157 extern union specbinding *specpdl_ptr;
3158 extern ptrdiff_t specpdl_size;
3159
3160 INLINE ptrdiff_t
3161 SPECPDL_INDEX (void)
3162 {
3163 return specpdl_ptr - specpdl;
3164 }
3165
3166 /* This structure helps implement the `catch/throw' and `condition-case/signal'
3167 control structures. A struct handler contains all the information needed to
3168 restore the state of the interpreter after a non-local jump.
3169
3170 handler structures are chained together in a doubly linked list; the `next'
3171 member points to the next outer catchtag and the `nextfree' member points in
3172 the other direction to the next inner element (which is typically the next
3173 free element since we mostly use it on the deepest handler).
3174
3175 A call like (throw TAG VAL) searches for a catchtag whose `tag_or_ch'
3176 member is TAG, and then unbinds to it. The `val' member is used to
3177 hold VAL while the stack is unwound; `val' is returned as the value
3178 of the catch form. If there is a handler of type CATCHER_ALL, it will
3179 be treated as a handler for all invocations of `throw'; in this case
3180 `val' will be set to (TAG . VAL).
3181
3182 All the other members are concerned with restoring the interpreter
3183 state.
3184
3185 Members are volatile if their values need to survive _longjmp when
3186 a 'struct handler' is a local variable. */
3187
3188 enum handlertype { CATCHER, CONDITION_CASE, CATCHER_ALL };
3189
3190 struct handler
3191 {
3192 enum handlertype type;
3193 Lisp_Object tag_or_ch;
3194 Lisp_Object val;
3195 struct handler *next;
3196 struct handler *nextfree;
3197
3198 /* The bytecode interpreter can have several handlers active at the same
3199 time, so when we longjmp to one of them, it needs to know which handler
3200 this was and what was the corresponding internal state. This is stored
3201 here, and when we longjmp we make sure that handlerlist points to the
3202 proper handler. */
3203 Lisp_Object *bytecode_top;
3204 int bytecode_dest;
3205
3206 /* Most global vars are reset to their value via the specpdl mechanism,
3207 but a few others are handled by storing their value here. */
3208 sys_jmp_buf jmp;
3209 EMACS_INT lisp_eval_depth;
3210 ptrdiff_t pdlcount;
3211 int poll_suppress_count;
3212 int interrupt_input_blocked;
3213 struct byte_stack *byte_stack;
3214 };
3215
3216 extern Lisp_Object memory_signal_data;
3217
3218 /* An address near the bottom of the stack.
3219 Tells GC how to save a copy of the stack. */
3220 extern char *stack_bottom;
3221
3222 /* Check quit-flag and quit if it is non-nil.
3223 Typing C-g does not directly cause a quit; it only sets Vquit_flag.
3224 So the program needs to do QUIT at times when it is safe to quit.
3225 Every loop that might run for a long time or might not exit
3226 ought to do QUIT at least once, at a safe place.
3227 Unless that is impossible, of course.
3228 But it is very desirable to avoid creating loops where QUIT is impossible.
3229
3230 Exception: if you set immediate_quit to true,
3231 then the handler that responds to the C-g does the quit itself.
3232 This is a good thing to do around a loop that has no side effects
3233 and (in particular) cannot call arbitrary Lisp code.
3234
3235 If quit-flag is set to `kill-emacs' the SIGINT handler has received
3236 a request to exit Emacs when it is safe to do. */
3237
3238 extern void process_pending_signals (void);
3239 extern bool volatile pending_signals;
3240
3241 extern void process_quit_flag (void);
3242 #define QUIT \
3243 do { \
3244 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
3245 process_quit_flag (); \
3246 else if (pending_signals) \
3247 process_pending_signals (); \
3248 } while (false)
3249
3250
3251 /* True if ought to quit now. */
3252
3253 #define QUITP (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
3254 \f
3255 extern Lisp_Object Vascii_downcase_table;
3256 extern Lisp_Object Vascii_canon_table;
3257 \f
3258 /* Call staticpro (&var) to protect static variable `var'. */
3259
3260 void staticpro (Lisp_Object *);
3261 \f
3262 /* Forward declarations for prototypes. */
3263 struct window;
3264 struct frame;
3265
3266 /* Copy COUNT Lisp_Objects from ARGS to contents of V starting from OFFSET. */
3267
3268 INLINE void
3269 vcopy (Lisp_Object v, ptrdiff_t offset, Lisp_Object *args, ptrdiff_t count)
3270 {
3271 eassert (0 <= offset && 0 <= count && offset + count <= ASIZE (v));
3272 memcpy (XVECTOR (v)->contents + offset, args, count * sizeof *args);
3273 }
3274
3275 /* Functions to modify hash tables. */
3276
3277 INLINE void
3278 set_hash_key_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3279 {
3280 gc_aset (h->key_and_value, 2 * idx, val);
3281 }
3282
3283 INLINE void
3284 set_hash_value_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3285 {
3286 gc_aset (h->key_and_value, 2 * idx + 1, val);
3287 }
3288
3289 /* Use these functions to set Lisp_Object
3290 or pointer slots of struct Lisp_Symbol. */
3291
3292 INLINE void
3293 set_symbol_function (Lisp_Object sym, Lisp_Object function)
3294 {
3295 XSYMBOL (sym)->function = function;
3296 }
3297
3298 INLINE void
3299 set_symbol_plist (Lisp_Object sym, Lisp_Object plist)
3300 {
3301 XSYMBOL (sym)->plist = plist;
3302 }
3303
3304 INLINE void
3305 set_symbol_next (Lisp_Object sym, struct Lisp_Symbol *next)
3306 {
3307 XSYMBOL (sym)->next = next;
3308 }
3309
3310 /* Buffer-local (also frame-local) variable access functions. */
3311
3312 INLINE int
3313 blv_found (struct Lisp_Buffer_Local_Value *blv)
3314 {
3315 eassert (blv->found == !EQ (blv->defcell, blv->valcell));
3316 return blv->found;
3317 }
3318
3319 /* Set overlay's property list. */
3320
3321 INLINE void
3322 set_overlay_plist (Lisp_Object overlay, Lisp_Object plist)
3323 {
3324 XOVERLAY (overlay)->plist = plist;
3325 }
3326
3327 /* Get text properties of S. */
3328
3329 INLINE INTERVAL
3330 string_intervals (Lisp_Object s)
3331 {
3332 return XSTRING (s)->intervals;
3333 }
3334
3335 /* Set text properties of S to I. */
3336
3337 INLINE void
3338 set_string_intervals (Lisp_Object s, INTERVAL i)
3339 {
3340 XSTRING (s)->intervals = i;
3341 }
3342
3343 /* Set a Lisp slot in TABLE to VAL. Most code should use this instead
3344 of setting slots directly. */
3345
3346 INLINE void
3347 set_char_table_defalt (Lisp_Object table, Lisp_Object val)
3348 {
3349 XCHAR_TABLE (table)->defalt = val;
3350 }
3351 INLINE void
3352 set_char_table_purpose (Lisp_Object table, Lisp_Object val)
3353 {
3354 XCHAR_TABLE (table)->purpose = val;
3355 }
3356
3357 /* Set different slots in (sub)character tables. */
3358
3359 INLINE void
3360 set_char_table_extras (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3361 {
3362 eassert (0 <= idx && idx < CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (table)));
3363 XCHAR_TABLE (table)->extras[idx] = val;
3364 }
3365
3366 INLINE void
3367 set_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3368 {
3369 eassert (0 <= idx && idx < (1 << CHARTAB_SIZE_BITS_0));
3370 XCHAR_TABLE (table)->contents[idx] = val;
3371 }
3372
3373 INLINE void
3374 set_sub_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3375 {
3376 XSUB_CHAR_TABLE (table)->contents[idx] = val;
3377 }
3378
3379 /* Defined in data.c. */
3380 extern Lisp_Object indirect_function (Lisp_Object);
3381 extern Lisp_Object find_symbol_value (Lisp_Object);
3382 enum Arith_Comparison {
3383 ARITH_EQUAL,
3384 ARITH_NOTEQUAL,
3385 ARITH_LESS,
3386 ARITH_GRTR,
3387 ARITH_LESS_OR_EQUAL,
3388 ARITH_GRTR_OR_EQUAL
3389 };
3390 extern Lisp_Object arithcompare (Lisp_Object num1, Lisp_Object num2,
3391 enum Arith_Comparison comparison);
3392
3393 /* Convert the integer I to an Emacs representation, either the integer
3394 itself, or a cons of two or three integers, or if all else fails a float.
3395 I should not have side effects. */
3396 #define INTEGER_TO_CONS(i) \
3397 (! FIXNUM_OVERFLOW_P (i) \
3398 ? make_number (i) \
3399 : EXPR_SIGNED (i) ? intbig_to_lisp (i) : uintbig_to_lisp (i))
3400 extern Lisp_Object intbig_to_lisp (intmax_t);
3401 extern Lisp_Object uintbig_to_lisp (uintmax_t);
3402
3403 /* Convert the Emacs representation CONS back to an integer of type
3404 TYPE, storing the result the variable VAR. Signal an error if CONS
3405 is not a valid representation or is out of range for TYPE. */
3406 #define CONS_TO_INTEGER(cons, type, var) \
3407 (TYPE_SIGNED (type) \
3408 ? ((var) = cons_to_signed (cons, TYPE_MINIMUM (type), TYPE_MAXIMUM (type))) \
3409 : ((var) = cons_to_unsigned (cons, TYPE_MAXIMUM (type))))
3410 extern intmax_t cons_to_signed (Lisp_Object, intmax_t, intmax_t);
3411 extern uintmax_t cons_to_unsigned (Lisp_Object, uintmax_t);
3412
3413 extern struct Lisp_Symbol *indirect_variable (struct Lisp_Symbol *);
3414 extern _Noreturn void args_out_of_range (Lisp_Object, Lisp_Object);
3415 extern _Noreturn void args_out_of_range_3 (Lisp_Object, Lisp_Object,
3416 Lisp_Object);
3417 extern Lisp_Object do_symval_forwarding (union Lisp_Fwd *);
3418 extern void set_internal (Lisp_Object, Lisp_Object, Lisp_Object, bool);
3419 extern void syms_of_data (void);
3420 extern void swap_in_global_binding (struct Lisp_Symbol *);
3421
3422 /* Defined in cmds.c */
3423 extern void syms_of_cmds (void);
3424 extern void keys_of_cmds (void);
3425
3426 /* Defined in coding.c. */
3427 extern Lisp_Object detect_coding_system (const unsigned char *, ptrdiff_t,
3428 ptrdiff_t, bool, bool, Lisp_Object);
3429 extern void init_coding (void);
3430 extern void init_coding_once (void);
3431 extern void syms_of_coding (void);
3432
3433 /* Defined in character.c. */
3434 extern ptrdiff_t chars_in_text (const unsigned char *, ptrdiff_t);
3435 extern ptrdiff_t multibyte_chars_in_text (const unsigned char *, ptrdiff_t);
3436 extern void syms_of_character (void);
3437
3438 /* Defined in charset.c. */
3439 extern void init_charset (void);
3440 extern void init_charset_once (void);
3441 extern void syms_of_charset (void);
3442 /* Structure forward declarations. */
3443 struct charset;
3444
3445 /* Defined in syntax.c. */
3446 extern void init_syntax_once (void);
3447 extern void syms_of_syntax (void);
3448
3449 /* Defined in fns.c. */
3450 enum { NEXT_ALMOST_PRIME_LIMIT = 11 };
3451 extern EMACS_INT next_almost_prime (EMACS_INT) ATTRIBUTE_CONST;
3452 extern Lisp_Object larger_vector (Lisp_Object, ptrdiff_t, ptrdiff_t);
3453 extern void sweep_weak_hash_tables (void);
3454 EMACS_UINT hash_string (char const *, ptrdiff_t);
3455 EMACS_UINT sxhash (Lisp_Object, int);
3456 Lisp_Object make_hash_table (struct hash_table_test, Lisp_Object, Lisp_Object,
3457 Lisp_Object, Lisp_Object);
3458 ptrdiff_t hash_lookup (struct Lisp_Hash_Table *, Lisp_Object, EMACS_UINT *);
3459 ptrdiff_t hash_put (struct Lisp_Hash_Table *, Lisp_Object, Lisp_Object,
3460 EMACS_UINT);
3461 void hash_remove_from_table (struct Lisp_Hash_Table *, Lisp_Object);
3462 extern struct hash_table_test hashtest_eq, hashtest_eql, hashtest_equal;
3463 extern void validate_subarray (Lisp_Object, Lisp_Object, Lisp_Object,
3464 ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
3465 extern Lisp_Object substring_both (Lisp_Object, ptrdiff_t, ptrdiff_t,
3466 ptrdiff_t, ptrdiff_t);
3467 extern Lisp_Object merge (Lisp_Object, Lisp_Object, Lisp_Object);
3468 extern Lisp_Object do_yes_or_no_p (Lisp_Object);
3469 extern Lisp_Object concat2 (Lisp_Object, Lisp_Object);
3470 extern Lisp_Object concat3 (Lisp_Object, Lisp_Object, Lisp_Object);
3471 extern Lisp_Object nconc2 (Lisp_Object, Lisp_Object);
3472 extern Lisp_Object assq_no_quit (Lisp_Object, Lisp_Object);
3473 extern Lisp_Object assoc_no_quit (Lisp_Object, Lisp_Object);
3474 extern void clear_string_char_byte_cache (void);
3475 extern ptrdiff_t string_char_to_byte (Lisp_Object, ptrdiff_t);
3476 extern ptrdiff_t string_byte_to_char (Lisp_Object, ptrdiff_t);
3477 extern Lisp_Object string_to_multibyte (Lisp_Object);
3478 extern Lisp_Object string_make_unibyte (Lisp_Object);
3479 extern void syms_of_fns (void);
3480
3481 /* Defined in floatfns.c. */
3482 extern void syms_of_floatfns (void);
3483 extern Lisp_Object fmod_float (Lisp_Object x, Lisp_Object y);
3484
3485 /* Defined in fringe.c. */
3486 extern void syms_of_fringe (void);
3487 extern void init_fringe (void);
3488 #ifdef HAVE_WINDOW_SYSTEM
3489 extern void mark_fringe_data (void);
3490 extern void init_fringe_once (void);
3491 #endif /* HAVE_WINDOW_SYSTEM */
3492
3493 /* Defined in image.c. */
3494 extern int x_bitmap_mask (struct frame *, ptrdiff_t);
3495 extern void reset_image_types (void);
3496 extern void syms_of_image (void);
3497
3498 /* Defined in insdel.c. */
3499 extern void move_gap_both (ptrdiff_t, ptrdiff_t);
3500 extern _Noreturn void buffer_overflow (void);
3501 extern void make_gap (ptrdiff_t);
3502 extern void make_gap_1 (struct buffer *, ptrdiff_t);
3503 extern ptrdiff_t copy_text (const unsigned char *, unsigned char *,
3504 ptrdiff_t, bool, bool);
3505 extern int count_combining_before (const unsigned char *,
3506 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3507 extern int count_combining_after (const unsigned char *,
3508 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3509 extern void insert (const char *, ptrdiff_t);
3510 extern void insert_and_inherit (const char *, ptrdiff_t);
3511 extern void insert_1_both (const char *, ptrdiff_t, ptrdiff_t,
3512 bool, bool, bool);
3513 extern void insert_from_gap (ptrdiff_t, ptrdiff_t, bool text_at_gap_tail);
3514 extern void insert_from_string (Lisp_Object, ptrdiff_t, ptrdiff_t,
3515 ptrdiff_t, ptrdiff_t, bool);
3516 extern void insert_from_buffer (struct buffer *, ptrdiff_t, ptrdiff_t, bool);
3517 extern void insert_char (int);
3518 extern void insert_string (const char *);
3519 extern void insert_before_markers (const char *, ptrdiff_t);
3520 extern void insert_before_markers_and_inherit (const char *, ptrdiff_t);
3521 extern void insert_from_string_before_markers (Lisp_Object, ptrdiff_t,
3522 ptrdiff_t, ptrdiff_t,
3523 ptrdiff_t, bool);
3524 extern void del_range (ptrdiff_t, ptrdiff_t);
3525 extern Lisp_Object del_range_1 (ptrdiff_t, ptrdiff_t, bool, bool);
3526 extern void del_range_byte (ptrdiff_t, ptrdiff_t, bool);
3527 extern void del_range_both (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t, bool);
3528 extern Lisp_Object del_range_2 (ptrdiff_t, ptrdiff_t,
3529 ptrdiff_t, ptrdiff_t, bool);
3530 extern void modify_text (ptrdiff_t, ptrdiff_t);
3531 extern void prepare_to_modify_buffer (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3532 extern void prepare_to_modify_buffer_1 (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3533 extern void invalidate_buffer_caches (struct buffer *, ptrdiff_t, ptrdiff_t);
3534 extern void signal_after_change (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3535 extern void adjust_after_insert (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3536 ptrdiff_t, ptrdiff_t);
3537 extern void adjust_markers_for_delete (ptrdiff_t, ptrdiff_t,
3538 ptrdiff_t, ptrdiff_t);
3539 extern void replace_range (ptrdiff_t, ptrdiff_t, Lisp_Object, bool, bool, bool);
3540 extern void replace_range_2 (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3541 const char *, ptrdiff_t, ptrdiff_t, bool);
3542 extern void syms_of_insdel (void);
3543
3544 /* Defined in dispnew.c. */
3545 #if (defined PROFILING \
3546 && (defined __FreeBSD__ || defined GNU_LINUX || defined __MINGW32__))
3547 _Noreturn void __executable_start (void);
3548 #endif
3549 extern Lisp_Object Vwindow_system;
3550 extern Lisp_Object sit_for (Lisp_Object, bool, int);
3551
3552 /* Defined in xdisp.c. */
3553 extern bool noninteractive_need_newline;
3554 extern Lisp_Object echo_area_buffer[2];
3555 extern void add_to_log (char const *, ...);
3556 extern void vadd_to_log (char const *, va_list);
3557 extern void check_message_stack (void);
3558 extern void setup_echo_area_for_printing (bool);
3559 extern bool push_message (void);
3560 extern void pop_message_unwind (void);
3561 extern Lisp_Object restore_message_unwind (Lisp_Object);
3562 extern void restore_message (void);
3563 extern Lisp_Object current_message (void);
3564 extern void clear_message (bool, bool);
3565 extern void message (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3566 extern void message1 (const char *);
3567 extern void message1_nolog (const char *);
3568 extern void message3 (Lisp_Object);
3569 extern void message3_nolog (Lisp_Object);
3570 extern void message_dolog (const char *, ptrdiff_t, bool, bool);
3571 extern void message_with_string (const char *, Lisp_Object, bool);
3572 extern void message_log_maybe_newline (void);
3573 extern void update_echo_area (void);
3574 extern void truncate_echo_area (ptrdiff_t);
3575 extern void redisplay (void);
3576
3577 void set_frame_cursor_types (struct frame *, Lisp_Object);
3578 extern void syms_of_xdisp (void);
3579 extern void init_xdisp (void);
3580 extern Lisp_Object safe_eval (Lisp_Object);
3581 extern bool pos_visible_p (struct window *, ptrdiff_t, int *,
3582 int *, int *, int *, int *, int *);
3583
3584 /* Defined in xsettings.c. */
3585 extern void syms_of_xsettings (void);
3586
3587 /* Defined in vm-limit.c. */
3588 extern void memory_warnings (void *, void (*warnfun) (const char *));
3589
3590 /* Defined in character.c. */
3591 extern void parse_str_as_multibyte (const unsigned char *, ptrdiff_t,
3592 ptrdiff_t *, ptrdiff_t *);
3593
3594 /* Defined in alloc.c. */
3595 extern void *my_heap_start (void);
3596 extern void check_pure_size (void);
3597 extern void free_misc (Lisp_Object);
3598 extern void allocate_string_data (struct Lisp_String *, EMACS_INT, EMACS_INT);
3599 extern void malloc_warning (const char *);
3600 extern _Noreturn void memory_full (size_t);
3601 extern _Noreturn void buffer_memory_full (ptrdiff_t);
3602 extern bool survives_gc_p (Lisp_Object);
3603 extern void mark_object (Lisp_Object);
3604 #if defined REL_ALLOC && !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3605 extern void refill_memory_reserve (void);
3606 #endif
3607 extern void alloc_unexec_pre (void);
3608 extern void alloc_unexec_post (void);
3609 extern const char *pending_malloc_warning;
3610 extern Lisp_Object zero_vector;
3611 extern Lisp_Object *stack_base;
3612 extern EMACS_INT consing_since_gc;
3613 extern EMACS_INT gc_relative_threshold;
3614 extern EMACS_INT memory_full_cons_threshold;
3615 extern Lisp_Object list1 (Lisp_Object);
3616 extern Lisp_Object list2 (Lisp_Object, Lisp_Object);
3617 extern Lisp_Object list3 (Lisp_Object, Lisp_Object, Lisp_Object);
3618 extern Lisp_Object list4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3619 extern Lisp_Object list5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object,
3620 Lisp_Object);
3621 enum constype {CONSTYPE_HEAP, CONSTYPE_PURE};
3622 extern Lisp_Object listn (enum constype, ptrdiff_t, Lisp_Object, ...);
3623
3624 /* Build a frequently used 2/3/4-integer lists. */
3625
3626 INLINE Lisp_Object
3627 list2i (EMACS_INT x, EMACS_INT y)
3628 {
3629 return list2 (make_number (x), make_number (y));
3630 }
3631
3632 INLINE Lisp_Object
3633 list3i (EMACS_INT x, EMACS_INT y, EMACS_INT w)
3634 {
3635 return list3 (make_number (x), make_number (y), make_number (w));
3636 }
3637
3638 INLINE Lisp_Object
3639 list4i (EMACS_INT x, EMACS_INT y, EMACS_INT w, EMACS_INT h)
3640 {
3641 return list4 (make_number (x), make_number (y),
3642 make_number (w), make_number (h));
3643 }
3644
3645 extern Lisp_Object make_uninit_bool_vector (EMACS_INT);
3646 extern Lisp_Object bool_vector_fill (Lisp_Object, Lisp_Object);
3647 extern _Noreturn void string_overflow (void);
3648 extern Lisp_Object make_string (const char *, ptrdiff_t);
3649 extern Lisp_Object make_formatted_string (char *, const char *, ...)
3650 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3651 extern Lisp_Object make_unibyte_string (const char *, ptrdiff_t);
3652
3653 /* Make unibyte string from C string when the length isn't known. */
3654
3655 INLINE Lisp_Object
3656 build_unibyte_string (const char *str)
3657 {
3658 return make_unibyte_string (str, strlen (str));
3659 }
3660
3661 extern Lisp_Object make_multibyte_string (const char *, ptrdiff_t, ptrdiff_t);
3662 extern Lisp_Object make_event_array (ptrdiff_t, Lisp_Object *);
3663 extern Lisp_Object make_uninit_string (EMACS_INT);
3664 extern Lisp_Object make_uninit_multibyte_string (EMACS_INT, EMACS_INT);
3665 extern Lisp_Object make_string_from_bytes (const char *, ptrdiff_t, ptrdiff_t);
3666 extern Lisp_Object make_specified_string (const char *,
3667 ptrdiff_t, ptrdiff_t, bool);
3668 extern Lisp_Object make_pure_string (const char *, ptrdiff_t, ptrdiff_t, bool);
3669 extern Lisp_Object make_pure_c_string (const char *, ptrdiff_t);
3670
3671 /* Make a string allocated in pure space, use STR as string data. */
3672
3673 INLINE Lisp_Object
3674 build_pure_c_string (const char *str)
3675 {
3676 return make_pure_c_string (str, strlen (str));
3677 }
3678
3679 /* Make a string from the data at STR, treating it as multibyte if the
3680 data warrants. */
3681
3682 INLINE Lisp_Object
3683 build_string (const char *str)
3684 {
3685 return make_string (str, strlen (str));
3686 }
3687
3688 extern Lisp_Object pure_cons (Lisp_Object, Lisp_Object);
3689 extern void make_byte_code (struct Lisp_Vector *);
3690 extern struct Lisp_Vector *allocate_vector (EMACS_INT);
3691
3692 /* Make an uninitialized vector for SIZE objects. NOTE: you must
3693 be sure that GC cannot happen until the vector is completely
3694 initialized. E.g. the following code is likely to crash:
3695
3696 v = make_uninit_vector (3);
3697 ASET (v, 0, obj0);
3698 ASET (v, 1, Ffunction_can_gc ());
3699 ASET (v, 2, obj1); */
3700
3701 INLINE Lisp_Object
3702 make_uninit_vector (ptrdiff_t size)
3703 {
3704 Lisp_Object v;
3705 struct Lisp_Vector *p;
3706
3707 p = allocate_vector (size);
3708 XSETVECTOR (v, p);
3709 return v;
3710 }
3711
3712 /* Like above, but special for sub char-tables. */
3713
3714 INLINE Lisp_Object
3715 make_uninit_sub_char_table (int depth, int min_char)
3716 {
3717 int slots = SUB_CHAR_TABLE_OFFSET + chartab_size[depth];
3718 Lisp_Object v = make_uninit_vector (slots);
3719
3720 XSETPVECTYPE (XVECTOR (v), PVEC_SUB_CHAR_TABLE);
3721 XSUB_CHAR_TABLE (v)->depth = depth;
3722 XSUB_CHAR_TABLE (v)->min_char = min_char;
3723 return v;
3724 }
3725
3726 extern struct Lisp_Vector *allocate_pseudovector (int, int, int,
3727 enum pvec_type);
3728
3729 /* Allocate partially initialized pseudovector where all Lisp_Object
3730 slots are set to Qnil but the rest (if any) is left uninitialized. */
3731
3732 #define ALLOCATE_PSEUDOVECTOR(type, field, tag) \
3733 ((type *) allocate_pseudovector (VECSIZE (type), \
3734 PSEUDOVECSIZE (type, field), \
3735 PSEUDOVECSIZE (type, field), tag))
3736
3737 /* Allocate fully initialized pseudovector where all Lisp_Object
3738 slots are set to Qnil and the rest (if any) is zeroed. */
3739
3740 #define ALLOCATE_ZEROED_PSEUDOVECTOR(type, field, tag) \
3741 ((type *) allocate_pseudovector (VECSIZE (type), \
3742 PSEUDOVECSIZE (type, field), \
3743 VECSIZE (type), tag))
3744
3745 extern bool gc_in_progress;
3746 extern bool abort_on_gc;
3747 extern Lisp_Object make_float (double);
3748 extern void display_malloc_warning (void);
3749 extern ptrdiff_t inhibit_garbage_collection (void);
3750 extern Lisp_Object make_save_int_int_int (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3751 extern Lisp_Object make_save_obj_obj_obj_obj (Lisp_Object, Lisp_Object,
3752 Lisp_Object, Lisp_Object);
3753 extern Lisp_Object make_save_ptr (void *);
3754 extern Lisp_Object make_save_ptr_int (void *, ptrdiff_t);
3755 extern Lisp_Object make_save_ptr_ptr (void *, void *);
3756 extern Lisp_Object make_save_funcptr_ptr_obj (void (*) (void), void *,
3757 Lisp_Object);
3758 extern Lisp_Object make_save_memory (Lisp_Object *, ptrdiff_t);
3759 extern void free_save_value (Lisp_Object);
3760 extern Lisp_Object build_overlay (Lisp_Object, Lisp_Object, Lisp_Object);
3761 extern void free_marker (Lisp_Object);
3762 extern void free_cons (struct Lisp_Cons *);
3763 extern void init_alloc_once (void);
3764 extern void init_alloc (void);
3765 extern void syms_of_alloc (void);
3766 extern struct buffer * allocate_buffer (void);
3767 extern int valid_lisp_object_p (Lisp_Object);
3768 #ifdef GC_CHECK_CONS_LIST
3769 extern void check_cons_list (void);
3770 #else
3771 INLINE void (check_cons_list) (void) { lisp_h_check_cons_list (); }
3772 #endif
3773
3774 #if !defined DOUG_LEA_MALLOC && !defined HYBRID_MALLOC && !defined SYSTEM_MALLOC
3775 /* Defined in gmalloc.c. */
3776 extern size_t __malloc_extra_blocks;
3777 extern void *aligned_alloc (size_t, size_t);
3778 #endif
3779 extern void malloc_enable_thread (void);
3780
3781 #ifdef REL_ALLOC
3782 /* Defined in ralloc.c. */
3783 extern void *r_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3784 extern void r_alloc_free (void **);
3785 extern void *r_re_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3786 extern void r_alloc_reset_variable (void **, void **);
3787 extern void r_alloc_inhibit_buffer_relocation (int);
3788 #endif
3789
3790 /* Defined in chartab.c. */
3791 extern Lisp_Object copy_char_table (Lisp_Object);
3792 extern Lisp_Object char_table_ref_and_range (Lisp_Object, int,
3793 int *, int *);
3794 extern void char_table_set_range (Lisp_Object, int, int, Lisp_Object);
3795 extern void map_char_table (void (*) (Lisp_Object, Lisp_Object,
3796 Lisp_Object),
3797 Lisp_Object, Lisp_Object, Lisp_Object);
3798 extern void map_char_table_for_charset (void (*c_function) (Lisp_Object, Lisp_Object),
3799 Lisp_Object, Lisp_Object,
3800 Lisp_Object, struct charset *,
3801 unsigned, unsigned);
3802 extern Lisp_Object uniprop_table (Lisp_Object);
3803 extern void syms_of_chartab (void);
3804
3805 /* Defined in print.c. */
3806 extern Lisp_Object Vprin1_to_string_buffer;
3807 extern void debug_print (Lisp_Object) EXTERNALLY_VISIBLE;
3808 extern void temp_output_buffer_setup (const char *);
3809 extern int print_level;
3810 extern void write_string (const char *);
3811 extern void print_error_message (Lisp_Object, Lisp_Object, const char *,
3812 Lisp_Object);
3813 extern Lisp_Object internal_with_output_to_temp_buffer
3814 (const char *, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3815 #define FLOAT_TO_STRING_BUFSIZE 350
3816 extern int float_to_string (char *, double);
3817 extern void init_print_once (void);
3818 extern void syms_of_print (void);
3819
3820 /* Defined in doprnt.c. */
3821 extern ptrdiff_t doprnt (char *, ptrdiff_t, const char *, const char *,
3822 va_list);
3823 extern ptrdiff_t esprintf (char *, char const *, ...)
3824 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3825 extern ptrdiff_t exprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3826 char const *, ...)
3827 ATTRIBUTE_FORMAT_PRINTF (5, 6);
3828 extern ptrdiff_t evxprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3829 char const *, va_list)
3830 ATTRIBUTE_FORMAT_PRINTF (5, 0);
3831
3832 /* Defined in lread.c. */
3833 extern Lisp_Object check_obarray (Lisp_Object);
3834 extern Lisp_Object intern_1 (const char *, ptrdiff_t);
3835 extern Lisp_Object intern_c_string_1 (const char *, ptrdiff_t);
3836 extern Lisp_Object intern_driver (Lisp_Object, Lisp_Object, Lisp_Object);
3837 extern void init_symbol (Lisp_Object, Lisp_Object);
3838 extern Lisp_Object oblookup (Lisp_Object, const char *, ptrdiff_t, ptrdiff_t);
3839 INLINE void
3840 LOADHIST_ATTACH (Lisp_Object x)
3841 {
3842 if (initialized)
3843 Vcurrent_load_list = Fcons (x, Vcurrent_load_list);
3844 }
3845 extern int openp (Lisp_Object, Lisp_Object, Lisp_Object,
3846 Lisp_Object *, Lisp_Object, bool);
3847 extern Lisp_Object string_to_number (char const *, int, bool);
3848 extern void map_obarray (Lisp_Object, void (*) (Lisp_Object, Lisp_Object),
3849 Lisp_Object);
3850 extern void dir_warning (const char *, Lisp_Object);
3851 extern void init_obarray (void);
3852 extern void init_lread (void);
3853 extern void syms_of_lread (void);
3854
3855 INLINE Lisp_Object
3856 intern (const char *str)
3857 {
3858 return intern_1 (str, strlen (str));
3859 }
3860
3861 INLINE Lisp_Object
3862 intern_c_string (const char *str)
3863 {
3864 return intern_c_string_1 (str, strlen (str));
3865 }
3866
3867 /* Defined in eval.c. */
3868 extern Lisp_Object Vautoload_queue;
3869 extern Lisp_Object Vrun_hooks;
3870 extern Lisp_Object Vsignaling_function;
3871 extern Lisp_Object inhibit_lisp_code;
3872 extern struct handler *handlerlist;
3873
3874 /* To run a normal hook, use the appropriate function from the list below.
3875 The calling convention:
3876
3877 if (!NILP (Vrun_hooks))
3878 call1 (Vrun_hooks, Qmy_funny_hook);
3879
3880 should no longer be used. */
3881 extern void run_hook (Lisp_Object);
3882 extern void run_hook_with_args_2 (Lisp_Object, Lisp_Object, Lisp_Object);
3883 extern Lisp_Object run_hook_with_args (ptrdiff_t nargs, Lisp_Object *args,
3884 Lisp_Object (*funcall)
3885 (ptrdiff_t nargs, Lisp_Object *args));
3886 extern _Noreturn void xsignal (Lisp_Object, Lisp_Object);
3887 extern _Noreturn void xsignal0 (Lisp_Object);
3888 extern _Noreturn void xsignal1 (Lisp_Object, Lisp_Object);
3889 extern _Noreturn void xsignal2 (Lisp_Object, Lisp_Object, Lisp_Object);
3890 extern _Noreturn void xsignal3 (Lisp_Object, Lisp_Object, Lisp_Object,
3891 Lisp_Object);
3892 extern _Noreturn void signal_error (const char *, Lisp_Object);
3893 extern Lisp_Object eval_sub (Lisp_Object form);
3894 extern Lisp_Object apply1 (Lisp_Object, Lisp_Object);
3895 extern Lisp_Object call0 (Lisp_Object);
3896 extern Lisp_Object call1 (Lisp_Object, Lisp_Object);
3897 extern Lisp_Object call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3898 extern Lisp_Object call3 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3899 extern Lisp_Object call4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3900 extern Lisp_Object call5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3901 extern Lisp_Object call6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3902 extern Lisp_Object call7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3903 extern Lisp_Object internal_catch (Lisp_Object, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3904 extern Lisp_Object internal_lisp_condition_case (Lisp_Object, Lisp_Object, Lisp_Object);
3905 extern Lisp_Object internal_condition_case (Lisp_Object (*) (void), Lisp_Object, Lisp_Object (*) (Lisp_Object));
3906 extern Lisp_Object internal_condition_case_1 (Lisp_Object (*) (Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3907 extern Lisp_Object internal_condition_case_2 (Lisp_Object (*) (Lisp_Object, Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3908 extern Lisp_Object internal_condition_case_n
3909 (Lisp_Object (*) (ptrdiff_t, Lisp_Object *), ptrdiff_t, Lisp_Object *,
3910 Lisp_Object, Lisp_Object (*) (Lisp_Object, ptrdiff_t, Lisp_Object *));
3911 extern struct handler *push_handler (Lisp_Object, enum handlertype);
3912 extern struct handler *push_handler_nosignal (Lisp_Object, enum handlertype);
3913 extern void specbind (Lisp_Object, Lisp_Object);
3914 extern void record_unwind_protect (void (*) (Lisp_Object), Lisp_Object);
3915 extern void record_unwind_protect_ptr (void (*) (void *), void *);
3916 extern void record_unwind_protect_int (void (*) (int), int);
3917 extern void record_unwind_protect_void (void (*) (void));
3918 extern void record_unwind_protect_nothing (void);
3919 extern void clear_unwind_protect (ptrdiff_t);
3920 extern void set_unwind_protect (ptrdiff_t, void (*) (Lisp_Object), Lisp_Object);
3921 extern void set_unwind_protect_ptr (ptrdiff_t, void (*) (void *), void *);
3922 extern Lisp_Object unbind_to (ptrdiff_t, Lisp_Object);
3923 extern _Noreturn void error (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3924 extern _Noreturn void verror (const char *, va_list)
3925 ATTRIBUTE_FORMAT_PRINTF (1, 0);
3926 extern void un_autoload (Lisp_Object);
3927 extern Lisp_Object call_debugger (Lisp_Object arg);
3928 extern void *near_C_stack_top (void);
3929 extern void init_eval_once (void);
3930 extern Lisp_Object safe_call (ptrdiff_t, Lisp_Object, ...);
3931 extern Lisp_Object safe_call1 (Lisp_Object, Lisp_Object);
3932 extern Lisp_Object safe_call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3933 extern void init_eval (void);
3934 extern void syms_of_eval (void);
3935 extern void unwind_body (Lisp_Object);
3936 extern ptrdiff_t record_in_backtrace (Lisp_Object, Lisp_Object *, ptrdiff_t);
3937 extern void mark_specpdl (void);
3938 extern void get_backtrace (Lisp_Object array);
3939 Lisp_Object backtrace_top_function (void);
3940 extern bool let_shadows_buffer_binding_p (struct Lisp_Symbol *symbol);
3941 extern bool let_shadows_global_binding_p (Lisp_Object symbol);
3942
3943 #ifdef HAVE_MODULES
3944 /* Defined in alloc.c. */
3945 extern Lisp_Object make_user_ptr (void (*finalizer) (void *), void *p);
3946
3947 /* Defined in emacs-module.c. */
3948 extern void module_init (void);
3949 extern void syms_of_module (void);
3950 #endif
3951
3952 /* Defined in editfns.c. */
3953 extern void insert1 (Lisp_Object);
3954 extern Lisp_Object save_excursion_save (void);
3955 extern Lisp_Object save_restriction_save (void);
3956 extern void save_excursion_restore (Lisp_Object);
3957 extern void save_restriction_restore (Lisp_Object);
3958 extern _Noreturn void time_overflow (void);
3959 extern Lisp_Object make_buffer_string (ptrdiff_t, ptrdiff_t, bool);
3960 extern Lisp_Object make_buffer_string_both (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3961 ptrdiff_t, bool);
3962 extern void init_editfns (bool);
3963 extern void syms_of_editfns (void);
3964
3965 /* Defined in buffer.c. */
3966 extern bool mouse_face_overlay_overlaps (Lisp_Object);
3967 extern _Noreturn void nsberror (Lisp_Object);
3968 extern void adjust_overlays_for_insert (ptrdiff_t, ptrdiff_t);
3969 extern void adjust_overlays_for_delete (ptrdiff_t, ptrdiff_t);
3970 extern void fix_start_end_in_overlays (ptrdiff_t, ptrdiff_t);
3971 extern void report_overlay_modification (Lisp_Object, Lisp_Object, bool,
3972 Lisp_Object, Lisp_Object, Lisp_Object);
3973 extern bool overlay_touches_p (ptrdiff_t);
3974 extern Lisp_Object other_buffer_safely (Lisp_Object);
3975 extern Lisp_Object get_truename_buffer (Lisp_Object);
3976 extern void init_buffer_once (void);
3977 extern void init_buffer (int);
3978 extern void syms_of_buffer (void);
3979 extern void keys_of_buffer (void);
3980
3981 /* Defined in marker.c. */
3982
3983 extern ptrdiff_t marker_position (Lisp_Object);
3984 extern ptrdiff_t marker_byte_position (Lisp_Object);
3985 extern void clear_charpos_cache (struct buffer *);
3986 extern ptrdiff_t buf_charpos_to_bytepos (struct buffer *, ptrdiff_t);
3987 extern ptrdiff_t buf_bytepos_to_charpos (struct buffer *, ptrdiff_t);
3988 extern void unchain_marker (struct Lisp_Marker *marker);
3989 extern Lisp_Object set_marker_restricted (Lisp_Object, Lisp_Object, Lisp_Object);
3990 extern Lisp_Object set_marker_both (Lisp_Object, Lisp_Object, ptrdiff_t, ptrdiff_t);
3991 extern Lisp_Object set_marker_restricted_both (Lisp_Object, Lisp_Object,
3992 ptrdiff_t, ptrdiff_t);
3993 extern Lisp_Object build_marker (struct buffer *, ptrdiff_t, ptrdiff_t);
3994 extern void syms_of_marker (void);
3995
3996 /* Defined in fileio.c. */
3997
3998 extern Lisp_Object expand_and_dir_to_file (Lisp_Object, Lisp_Object);
3999 extern Lisp_Object write_region (Lisp_Object, Lisp_Object, Lisp_Object,
4000 Lisp_Object, Lisp_Object, Lisp_Object,
4001 Lisp_Object, int);
4002 extern void close_file_unwind (int);
4003 extern void fclose_unwind (void *);
4004 extern void restore_point_unwind (Lisp_Object);
4005 extern _Noreturn void report_file_errno (const char *, Lisp_Object, int);
4006 extern _Noreturn void report_file_error (const char *, Lisp_Object);
4007 extern _Noreturn void report_file_notify_error (const char *, Lisp_Object);
4008 extern bool internal_delete_file (Lisp_Object);
4009 extern Lisp_Object emacs_readlinkat (int, const char *);
4010 extern bool file_directory_p (const char *);
4011 extern bool file_accessible_directory_p (Lisp_Object);
4012 extern void init_fileio (void);
4013 extern void syms_of_fileio (void);
4014 extern Lisp_Object make_temp_name (Lisp_Object, bool);
4015
4016 /* Defined in search.c. */
4017 extern void shrink_regexp_cache (void);
4018 extern void restore_search_regs (void);
4019 extern void record_unwind_save_match_data (void);
4020 struct re_registers;
4021 extern struct re_pattern_buffer *compile_pattern (Lisp_Object,
4022 struct re_registers *,
4023 Lisp_Object, bool, bool);
4024 extern ptrdiff_t fast_string_match_internal (Lisp_Object, Lisp_Object,
4025 Lisp_Object);
4026
4027 INLINE ptrdiff_t
4028 fast_string_match (Lisp_Object regexp, Lisp_Object string)
4029 {
4030 return fast_string_match_internal (regexp, string, Qnil);
4031 }
4032
4033 INLINE ptrdiff_t
4034 fast_string_match_ignore_case (Lisp_Object regexp, Lisp_Object string)
4035 {
4036 return fast_string_match_internal (regexp, string, Vascii_canon_table);
4037 }
4038
4039 extern ptrdiff_t fast_c_string_match_ignore_case (Lisp_Object, const char *,
4040 ptrdiff_t);
4041 extern ptrdiff_t fast_looking_at (Lisp_Object, ptrdiff_t, ptrdiff_t,
4042 ptrdiff_t, ptrdiff_t, Lisp_Object);
4043 extern ptrdiff_t find_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4044 ptrdiff_t, ptrdiff_t *, ptrdiff_t *, bool);
4045 extern ptrdiff_t scan_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4046 ptrdiff_t, bool);
4047 extern ptrdiff_t scan_newline_from_point (ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
4048 extern ptrdiff_t find_newline_no_quit (ptrdiff_t, ptrdiff_t,
4049 ptrdiff_t, ptrdiff_t *);
4050 extern ptrdiff_t find_before_next_newline (ptrdiff_t, ptrdiff_t,
4051 ptrdiff_t, ptrdiff_t *);
4052 extern void syms_of_search (void);
4053 extern void clear_regexp_cache (void);
4054
4055 /* Defined in minibuf.c. */
4056
4057 extern Lisp_Object Vminibuffer_list;
4058 extern Lisp_Object last_minibuf_string;
4059 extern Lisp_Object get_minibuffer (EMACS_INT);
4060 extern void init_minibuf_once (void);
4061 extern void syms_of_minibuf (void);
4062
4063 /* Defined in callint.c. */
4064
4065 extern void syms_of_callint (void);
4066
4067 /* Defined in casefiddle.c. */
4068
4069 extern void syms_of_casefiddle (void);
4070 extern void keys_of_casefiddle (void);
4071
4072 /* Defined in casetab.c. */
4073
4074 extern void init_casetab_once (void);
4075 extern void syms_of_casetab (void);
4076
4077 /* Defined in keyboard.c. */
4078
4079 extern Lisp_Object echo_message_buffer;
4080 extern struct kboard *echo_kboard;
4081 extern void cancel_echoing (void);
4082 extern bool input_pending;
4083 #ifdef HAVE_STACK_OVERFLOW_HANDLING
4084 extern sigjmp_buf return_to_command_loop;
4085 #endif
4086 extern Lisp_Object menu_bar_items (Lisp_Object);
4087 extern Lisp_Object tool_bar_items (Lisp_Object, int *);
4088 extern void discard_mouse_events (void);
4089 #ifdef USABLE_SIGIO
4090 void handle_input_available_signal (int);
4091 #endif
4092 extern Lisp_Object pending_funcalls;
4093 extern bool detect_input_pending (void);
4094 extern bool detect_input_pending_ignore_squeezables (void);
4095 extern bool detect_input_pending_run_timers (bool);
4096 extern void safe_run_hooks (Lisp_Object);
4097 extern void cmd_error_internal (Lisp_Object, const char *);
4098 extern Lisp_Object command_loop_1 (void);
4099 extern Lisp_Object read_menu_command (void);
4100 extern Lisp_Object recursive_edit_1 (void);
4101 extern void record_auto_save (void);
4102 extern void force_auto_save_soon (void);
4103 extern void init_keyboard (void);
4104 extern void syms_of_keyboard (void);
4105 extern void keys_of_keyboard (void);
4106
4107 /* Defined in indent.c. */
4108 extern ptrdiff_t current_column (void);
4109 extern void invalidate_current_column (void);
4110 extern bool indented_beyond_p (ptrdiff_t, ptrdiff_t, EMACS_INT);
4111 extern void syms_of_indent (void);
4112
4113 /* Defined in frame.c. */
4114 extern void store_frame_param (struct frame *, Lisp_Object, Lisp_Object);
4115 extern void store_in_alist (Lisp_Object *, Lisp_Object, Lisp_Object);
4116 extern Lisp_Object do_switch_frame (Lisp_Object, int, int, Lisp_Object);
4117 extern Lisp_Object get_frame_param (struct frame *, Lisp_Object);
4118 extern void frames_discard_buffer (Lisp_Object);
4119 extern void syms_of_frame (void);
4120
4121 /* Defined in emacs.c. */
4122 extern char **initial_argv;
4123 extern int initial_argc;
4124 #if defined (HAVE_X_WINDOWS) || defined (HAVE_NS)
4125 extern bool display_arg;
4126 #endif
4127 extern Lisp_Object decode_env_path (const char *, const char *, bool);
4128 extern Lisp_Object empty_unibyte_string, empty_multibyte_string;
4129 extern _Noreturn void terminate_due_to_signal (int, int);
4130 #ifdef WINDOWSNT
4131 extern Lisp_Object Vlibrary_cache;
4132 #endif
4133 #if HAVE_SETLOCALE
4134 void fixup_locale (void);
4135 void synchronize_system_messages_locale (void);
4136 void synchronize_system_time_locale (void);
4137 #else
4138 INLINE void fixup_locale (void) {}
4139 INLINE void synchronize_system_messages_locale (void) {}
4140 INLINE void synchronize_system_time_locale (void) {}
4141 #endif
4142 extern void shut_down_emacs (int, Lisp_Object);
4143
4144 /* True means don't do interactive redisplay and don't change tty modes. */
4145 extern bool noninteractive;
4146
4147 /* True means remove site-lisp directories from load-path. */
4148 extern bool no_site_lisp;
4149
4150 /* Pipe used to send exit notification to the daemon parent at
4151 startup. On Windows, we use a kernel event instead. */
4152 #ifndef WINDOWSNT
4153 extern int daemon_pipe[2];
4154 #define IS_DAEMON (daemon_pipe[1] != 0)
4155 #define DAEMON_RUNNING (daemon_pipe[1] >= 0)
4156 #else /* WINDOWSNT */
4157 extern void *w32_daemon_event;
4158 #define IS_DAEMON (w32_daemon_event != NULL)
4159 #define DAEMON_RUNNING (w32_daemon_event != INVALID_HANDLE_VALUE)
4160 #endif
4161
4162 /* True if handling a fatal error already. */
4163 extern bool fatal_error_in_progress;
4164
4165 /* True means don't do use window-system-specific display code. */
4166 extern bool inhibit_window_system;
4167 /* True means that a filter or a sentinel is running. */
4168 extern bool running_asynch_code;
4169
4170 /* Defined in process.c. */
4171 extern void kill_buffer_processes (Lisp_Object);
4172 extern int wait_reading_process_output (intmax_t, int, int, bool, Lisp_Object,
4173 struct Lisp_Process *, int);
4174 /* Max value for the first argument of wait_reading_process_output. */
4175 #if __GNUC__ == 3 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 5)
4176 /* Work around a bug in GCC 3.4.2, known to be fixed in GCC 4.6.3.
4177 The bug merely causes a bogus warning, but the warning is annoying. */
4178 # define WAIT_READING_MAX min (TYPE_MAXIMUM (time_t), INTMAX_MAX)
4179 #else
4180 # define WAIT_READING_MAX INTMAX_MAX
4181 #endif
4182 #ifdef HAVE_TIMERFD
4183 extern void add_timer_wait_descriptor (int);
4184 #endif
4185 extern void add_keyboard_wait_descriptor (int);
4186 extern void delete_keyboard_wait_descriptor (int);
4187 #ifdef HAVE_GPM
4188 extern void add_gpm_wait_descriptor (int);
4189 extern void delete_gpm_wait_descriptor (int);
4190 #endif
4191 extern void init_process_emacs (void);
4192 extern void syms_of_process (void);
4193 extern void setup_process_coding_systems (Lisp_Object);
4194
4195 /* Defined in callproc.c. */
4196 #ifndef DOS_NT
4197 _Noreturn
4198 #endif
4199 extern int child_setup (int, int, int, char **, bool, Lisp_Object);
4200 extern void init_callproc_1 (void);
4201 extern void init_callproc (void);
4202 extern void set_initial_environment (void);
4203 extern void syms_of_callproc (void);
4204
4205 /* Defined in doc.c. */
4206 enum text_quoting_style
4207 {
4208 /* Use curved single quotes ‘like this’. */
4209 CURVE_QUOTING_STYLE,
4210
4211 /* Use grave accent and apostrophe `like this'. */
4212 GRAVE_QUOTING_STYLE,
4213
4214 /* Use apostrophes 'like this'. */
4215 STRAIGHT_QUOTING_STYLE
4216 };
4217 extern enum text_quoting_style text_quoting_style (void);
4218 extern Lisp_Object read_doc_string (Lisp_Object);
4219 extern Lisp_Object get_doc_string (Lisp_Object, bool, bool);
4220 extern void syms_of_doc (void);
4221 extern int read_bytecode_char (bool);
4222
4223 /* Defined in bytecode.c. */
4224 extern void syms_of_bytecode (void);
4225 extern struct byte_stack *byte_stack_list;
4226 extern void relocate_byte_stack (void);
4227 extern Lisp_Object exec_byte_code (Lisp_Object, Lisp_Object, Lisp_Object,
4228 Lisp_Object, ptrdiff_t, Lisp_Object *);
4229
4230 /* Defined in macros.c. */
4231 extern void init_macros (void);
4232 extern void syms_of_macros (void);
4233
4234 /* Defined in undo.c. */
4235 extern void truncate_undo_list (struct buffer *);
4236 extern void record_insert (ptrdiff_t, ptrdiff_t);
4237 extern void record_delete (ptrdiff_t, Lisp_Object, bool);
4238 extern void record_first_change (void);
4239 extern void record_change (ptrdiff_t, ptrdiff_t);
4240 extern void record_property_change (ptrdiff_t, ptrdiff_t,
4241 Lisp_Object, Lisp_Object,
4242 Lisp_Object);
4243 extern void syms_of_undo (void);
4244
4245 /* Defined in textprop.c. */
4246 extern void report_interval_modification (Lisp_Object, Lisp_Object);
4247
4248 /* Defined in menu.c. */
4249 extern void syms_of_menu (void);
4250
4251 /* Defined in xmenu.c. */
4252 extern void syms_of_xmenu (void);
4253
4254 /* Defined in termchar.h. */
4255 struct tty_display_info;
4256
4257 /* Defined in termhooks.h. */
4258 struct terminal;
4259
4260 /* Defined in sysdep.c. */
4261 extern char *emacs_get_current_dir_name (void);
4262 extern void stuff_char (char c);
4263 extern void init_foreground_group (void);
4264 extern void sys_subshell (void);
4265 extern void sys_suspend (void);
4266 extern void discard_tty_input (void);
4267 extern void init_sys_modes (struct tty_display_info *);
4268 extern void reset_sys_modes (struct tty_display_info *);
4269 extern void init_all_sys_modes (void);
4270 extern void reset_all_sys_modes (void);
4271 extern void child_setup_tty (int);
4272 extern void setup_pty (int);
4273 extern int set_window_size (int, int, int);
4274 extern EMACS_INT get_random (void);
4275 extern void seed_random (void *, ptrdiff_t);
4276 extern void init_random (void);
4277 extern void emacs_backtrace (int);
4278 extern _Noreturn void emacs_abort (void) NO_INLINE;
4279 extern int emacs_open (const char *, int, int);
4280 extern int emacs_pipe (int[2]);
4281 extern int emacs_close (int);
4282 extern ptrdiff_t emacs_read (int, void *, ptrdiff_t);
4283 extern ptrdiff_t emacs_write (int, void const *, ptrdiff_t);
4284 extern ptrdiff_t emacs_write_sig (int, void const *, ptrdiff_t);
4285 extern void emacs_perror (char const *);
4286
4287 extern void unlock_all_files (void);
4288 extern void lock_file (Lisp_Object);
4289 extern void unlock_file (Lisp_Object);
4290 extern void unlock_buffer (struct buffer *);
4291 extern void syms_of_filelock (void);
4292 extern int str_collate (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4293
4294 /* Defined in sound.c. */
4295 extern void syms_of_sound (void);
4296
4297 /* Defined in category.c. */
4298 extern void init_category_once (void);
4299 extern Lisp_Object char_category_set (int);
4300 extern void syms_of_category (void);
4301
4302 /* Defined in ccl.c. */
4303 extern void syms_of_ccl (void);
4304
4305 /* Defined in dired.c. */
4306 extern void syms_of_dired (void);
4307 extern Lisp_Object directory_files_internal (Lisp_Object, Lisp_Object,
4308 Lisp_Object, Lisp_Object,
4309 bool, Lisp_Object);
4310
4311 /* Defined in term.c. */
4312 extern int *char_ins_del_vector;
4313 extern void syms_of_term (void);
4314 extern _Noreturn void fatal (const char *msgid, ...)
4315 ATTRIBUTE_FORMAT_PRINTF (1, 2);
4316
4317 /* Defined in terminal.c. */
4318 extern void syms_of_terminal (void);
4319
4320 /* Defined in font.c. */
4321 extern void syms_of_font (void);
4322 extern void init_font (void);
4323
4324 #ifdef HAVE_WINDOW_SYSTEM
4325 /* Defined in fontset.c. */
4326 extern void syms_of_fontset (void);
4327 #endif
4328
4329 /* Defined in inotify.c */
4330 #ifdef HAVE_INOTIFY
4331 extern void syms_of_inotify (void);
4332 #endif
4333
4334 /* Defined in kqueue.c */
4335 #ifdef HAVE_KQUEUE
4336 extern void globals_of_kqueue (void);
4337 extern void syms_of_kqueue (void);
4338 #endif
4339
4340 /* Defined in gfilenotify.c */
4341 #ifdef HAVE_GFILENOTIFY
4342 extern void globals_of_gfilenotify (void);
4343 extern void syms_of_gfilenotify (void);
4344 #endif
4345
4346 #ifdef HAVE_W32NOTIFY
4347 /* Defined on w32notify.c. */
4348 extern void syms_of_w32notify (void);
4349 #endif
4350
4351 /* Defined in xfaces.c. */
4352 extern Lisp_Object Vface_alternative_font_family_alist;
4353 extern Lisp_Object Vface_alternative_font_registry_alist;
4354 extern void syms_of_xfaces (void);
4355
4356 #ifdef HAVE_X_WINDOWS
4357 /* Defined in xfns.c. */
4358 extern void syms_of_xfns (void);
4359
4360 /* Defined in xsmfns.c. */
4361 extern void syms_of_xsmfns (void);
4362
4363 /* Defined in xselect.c. */
4364 extern void syms_of_xselect (void);
4365
4366 /* Defined in xterm.c. */
4367 extern void init_xterm (void);
4368 extern void syms_of_xterm (void);
4369 #endif /* HAVE_X_WINDOWS */
4370
4371 #ifdef HAVE_WINDOW_SYSTEM
4372 /* Defined in xterm.c, nsterm.m, w32term.c. */
4373 extern char *x_get_keysym_name (int);
4374 #endif /* HAVE_WINDOW_SYSTEM */
4375
4376 #ifdef HAVE_LIBXML2
4377 /* Defined in xml.c. */
4378 extern void syms_of_xml (void);
4379 extern void xml_cleanup_parser (void);
4380 #endif
4381
4382 #ifdef HAVE_ZLIB
4383 /* Defined in decompress.c. */
4384 extern void syms_of_decompress (void);
4385 #endif
4386
4387 #ifdef HAVE_DBUS
4388 /* Defined in dbusbind.c. */
4389 void init_dbusbind (void);
4390 void syms_of_dbusbind (void);
4391 #endif
4392
4393
4394 /* Defined in profiler.c. */
4395 extern bool profiler_memory_running;
4396 extern void malloc_probe (size_t);
4397 extern void syms_of_profiler (void);
4398
4399
4400 #ifdef DOS_NT
4401 /* Defined in msdos.c, w32.c. */
4402 extern char *emacs_root_dir (void);
4403 #endif /* DOS_NT */
4404
4405 /* Defined in lastfile.c. */
4406 extern char my_edata[];
4407 extern char my_endbss[];
4408 extern char *my_endbss_static;
4409
4410 /* True means ^G can quit instantly. */
4411 extern bool immediate_quit;
4412
4413 extern void *xmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4414 extern void *xzalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4415 extern void *xrealloc (void *, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
4416 extern void xfree (void *);
4417 extern void *xnmalloc (ptrdiff_t, ptrdiff_t) ATTRIBUTE_MALLOC_SIZE ((1,2));
4418 extern void *xnrealloc (void *, ptrdiff_t, ptrdiff_t)
4419 ATTRIBUTE_ALLOC_SIZE ((2,3));
4420 extern void *xpalloc (void *, ptrdiff_t *, ptrdiff_t, ptrdiff_t, ptrdiff_t);
4421
4422 extern char *xstrdup (const char *) ATTRIBUTE_MALLOC;
4423 extern char *xlispstrdup (Lisp_Object) ATTRIBUTE_MALLOC;
4424 extern void dupstring (char **, char const *);
4425
4426 /* Make DEST a copy of STRING's data. Return a pointer to DEST's terminating
4427 null byte. This is like stpcpy, except the source is a Lisp string. */
4428
4429 INLINE char *
4430 lispstpcpy (char *dest, Lisp_Object string)
4431 {
4432 ptrdiff_t len = SBYTES (string);
4433 memcpy (dest, SDATA (string), len + 1);
4434 return dest + len;
4435 }
4436
4437 extern void xputenv (const char *);
4438
4439 extern char *egetenv_internal (const char *, ptrdiff_t);
4440
4441 INLINE char *
4442 egetenv (const char *var)
4443 {
4444 /* When VAR is a string literal, strlen can be optimized away. */
4445 return egetenv_internal (var, strlen (var));
4446 }
4447
4448 /* Set up the name of the machine we're running on. */
4449 extern void init_system_name (void);
4450
4451 /* Return the absolute value of X. X should be a signed integer
4452 expression without side effects, and X's absolute value should not
4453 exceed the maximum for its promoted type. This is called 'eabs'
4454 because 'abs' is reserved by the C standard. */
4455 #define eabs(x) ((x) < 0 ? -(x) : (x))
4456
4457 /* Return a fixnum or float, depending on whether VAL fits in a Lisp
4458 fixnum. */
4459
4460 #define make_fixnum_or_float(val) \
4461 (FIXNUM_OVERFLOW_P (val) ? make_float (val) : make_number (val))
4462
4463 /* SAFE_ALLOCA normally allocates memory on the stack, but if size is
4464 larger than MAX_ALLOCA, use xmalloc to avoid overflowing the stack. */
4465
4466 enum MAX_ALLOCA { MAX_ALLOCA = 16 * 1024 };
4467
4468 extern void *record_xmalloc (size_t) ATTRIBUTE_ALLOC_SIZE ((1));
4469
4470 #define USE_SAFE_ALLOCA \
4471 ptrdiff_t sa_avail = MAX_ALLOCA; \
4472 ptrdiff_t sa_count = SPECPDL_INDEX (); bool sa_must_free = false
4473
4474 #define AVAIL_ALLOCA(size) (sa_avail -= (size), alloca (size))
4475
4476 /* SAFE_ALLOCA allocates a simple buffer. */
4477
4478 #define SAFE_ALLOCA(size) ((size) <= sa_avail \
4479 ? AVAIL_ALLOCA (size) \
4480 : (sa_must_free = true, record_xmalloc (size)))
4481
4482 /* SAFE_NALLOCA sets BUF to a newly allocated array of MULTIPLIER *
4483 NITEMS items, each of the same type as *BUF. MULTIPLIER must
4484 positive. The code is tuned for MULTIPLIER being a constant. */
4485
4486 #define SAFE_NALLOCA(buf, multiplier, nitems) \
4487 do { \
4488 if ((nitems) <= sa_avail / sizeof *(buf) / (multiplier)) \
4489 (buf) = AVAIL_ALLOCA (sizeof *(buf) * (multiplier) * (nitems)); \
4490 else \
4491 { \
4492 (buf) = xnmalloc (nitems, sizeof *(buf) * (multiplier)); \
4493 sa_must_free = true; \
4494 record_unwind_protect_ptr (xfree, buf); \
4495 } \
4496 } while (false)
4497
4498 /* SAFE_ALLOCA_STRING allocates a C copy of a Lisp string. */
4499
4500 #define SAFE_ALLOCA_STRING(ptr, string) \
4501 do { \
4502 (ptr) = SAFE_ALLOCA (SBYTES (string) + 1); \
4503 memcpy (ptr, SDATA (string), SBYTES (string) + 1); \
4504 } while (false)
4505
4506 /* SAFE_FREE frees xmalloced memory and enables GC as needed. */
4507
4508 #define SAFE_FREE() \
4509 do { \
4510 if (sa_must_free) { \
4511 sa_must_free = false; \
4512 unbind_to (sa_count, Qnil); \
4513 } \
4514 } while (false)
4515
4516 /* SAFE_ALLOCA_LISP allocates an array of Lisp_Objects. */
4517
4518 #define SAFE_ALLOCA_LISP(buf, nelt) \
4519 do { \
4520 ptrdiff_t alloca_nbytes; \
4521 if (INT_MULTIPLY_WRAPV (nelt, word_size, &alloca_nbytes) \
4522 || SIZE_MAX < alloca_nbytes) \
4523 memory_full (SIZE_MAX); \
4524 else if (alloca_nbytes <= sa_avail) \
4525 (buf) = AVAIL_ALLOCA (alloca_nbytes); \
4526 else \
4527 { \
4528 Lisp_Object arg_; \
4529 (buf) = xmalloc (alloca_nbytes); \
4530 arg_ = make_save_memory (buf, nelt); \
4531 sa_must_free = true; \
4532 record_unwind_protect (free_save_value, arg_); \
4533 } \
4534 } while (false)
4535
4536
4537 /* If USE_STACK_LISP_OBJECTS, define macros that and functions that allocate
4538 block-scoped conses and strings. These objects are not
4539 managed by the garbage collector, so they are dangerous: passing them
4540 out of their scope (e.g., to user code) results in undefined behavior.
4541 Conversely, they have better performance because GC is not involved.
4542
4543 This feature is experimental and requires careful debugging.
4544 Build with CPPFLAGS='-DUSE_STACK_LISP_OBJECTS=0' to disable it. */
4545
4546 #ifndef USE_STACK_LISP_OBJECTS
4547 # define USE_STACK_LISP_OBJECTS true
4548 #endif
4549
4550 #ifdef GC_CHECK_STRING_BYTES
4551 enum { defined_GC_CHECK_STRING_BYTES = true };
4552 #else
4553 enum { defined_GC_CHECK_STRING_BYTES = false };
4554 #endif
4555
4556 /* Struct inside unions that are typically no larger and aligned enough. */
4557
4558 union Aligned_Cons
4559 {
4560 struct Lisp_Cons s;
4561 double d; intmax_t i; void *p;
4562 };
4563
4564 union Aligned_String
4565 {
4566 struct Lisp_String s;
4567 double d; intmax_t i; void *p;
4568 };
4569
4570 /* True for stack-based cons and string implementations, respectively.
4571 Use stack-based strings only if stack-based cons also works.
4572 Otherwise, STACK_CONS would create heap-based cons cells that
4573 could point to stack-based strings, which is a no-no. */
4574
4575 enum
4576 {
4577 USE_STACK_CONS = (USE_STACK_LISP_OBJECTS
4578 && alignof (union Aligned_Cons) % GCALIGNMENT == 0),
4579 USE_STACK_STRING = (USE_STACK_CONS
4580 && !defined_GC_CHECK_STRING_BYTES
4581 && alignof (union Aligned_String) % GCALIGNMENT == 0)
4582 };
4583
4584 /* Auxiliary macros used for auto allocation of Lisp objects. Please
4585 use these only in macros like AUTO_CONS that declare a local
4586 variable whose lifetime will be clear to the programmer. */
4587 #define STACK_CONS(a, b) \
4588 make_lisp_ptr (&(union Aligned_Cons) { { a, { b } } }.s, Lisp_Cons)
4589 #define AUTO_CONS_EXPR(a, b) \
4590 (USE_STACK_CONS ? STACK_CONS (a, b) : Fcons (a, b))
4591
4592 /* Declare NAME as an auto Lisp cons or short list if possible, a
4593 GC-based one otherwise. This is in the sense of the C keyword
4594 'auto'; i.e., the object has the lifetime of the containing block.
4595 The resulting object should not be made visible to user Lisp code. */
4596
4597 #define AUTO_CONS(name, a, b) Lisp_Object name = AUTO_CONS_EXPR (a, b)
4598 #define AUTO_LIST1(name, a) \
4599 Lisp_Object name = (USE_STACK_CONS ? STACK_CONS (a, Qnil) : list1 (a))
4600 #define AUTO_LIST2(name, a, b) \
4601 Lisp_Object name = (USE_STACK_CONS \
4602 ? STACK_CONS (a, STACK_CONS (b, Qnil)) \
4603 : list2 (a, b))
4604 #define AUTO_LIST3(name, a, b, c) \
4605 Lisp_Object name = (USE_STACK_CONS \
4606 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, Qnil))) \
4607 : list3 (a, b, c))
4608 #define AUTO_LIST4(name, a, b, c, d) \
4609 Lisp_Object name \
4610 = (USE_STACK_CONS \
4611 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, \
4612 STACK_CONS (d, Qnil)))) \
4613 : list4 (a, b, c, d))
4614
4615 /* Check whether stack-allocated strings are ASCII-only. */
4616
4617 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
4618 extern const char *verify_ascii (const char *);
4619 #else
4620 # define verify_ascii(str) (str)
4621 #endif
4622
4623 /* Declare NAME as an auto Lisp string if possible, a GC-based one if not.
4624 Take its value from STR. STR is not necessarily copied and should
4625 contain only ASCII characters. The resulting Lisp string should
4626 not be modified or made visible to user code. */
4627
4628 #define AUTO_STRING(name, str) \
4629 Lisp_Object name = \
4630 (USE_STACK_STRING \
4631 ? (make_lisp_ptr \
4632 ((&(union Aligned_String) \
4633 {{strlen (str), -1, 0, (unsigned char *) verify_ascii (str)}}.s), \
4634 Lisp_String)) \
4635 : build_string (verify_ascii (str)))
4636
4637 /* Loop over all tails of a list, checking for cycles.
4638 FIXME: Make tortoise and n internal declarations.
4639 FIXME: Unroll the loop body so we don't need `n'. */
4640 #define FOR_EACH_TAIL(hare, list, tortoise, n) \
4641 for ((tortoise) = (hare) = (list), (n) = true; \
4642 CONSP (hare); \
4643 (hare = XCDR (hare), (n) = !(n), \
4644 ((n) \
4645 ? (EQ (hare, tortoise) \
4646 ? xsignal1 (Qcircular_list, list) \
4647 : (void) 0) \
4648 /* Move tortoise before the next iteration, in case */ \
4649 /* the next iteration does an Fsetcdr. */ \
4650 : (void) ((tortoise) = XCDR (tortoise)))))
4651
4652 /* Do a `for' loop over alist values. */
4653
4654 #define FOR_EACH_ALIST_VALUE(head_var, list_var, value_var) \
4655 for ((list_var) = (head_var); \
4656 (CONSP (list_var) && ((value_var) = XCDR (XCAR (list_var)), true)); \
4657 (list_var) = XCDR (list_var))
4658
4659 /* Check whether it's time for GC, and run it if so. */
4660
4661 INLINE void
4662 maybe_gc (void)
4663 {
4664 if ((consing_since_gc > gc_cons_threshold
4665 && consing_since_gc > gc_relative_threshold)
4666 || (!NILP (Vmemory_full)
4667 && consing_since_gc > memory_full_cons_threshold))
4668 Fgarbage_collect ();
4669 }
4670
4671 INLINE bool
4672 functionp (Lisp_Object object)
4673 {
4674 if (SYMBOLP (object) && !NILP (Ffboundp (object)))
4675 {
4676 object = Findirect_function (object, Qt);
4677
4678 if (CONSP (object) && EQ (XCAR (object), Qautoload))
4679 {
4680 /* Autoloaded symbols are functions, except if they load
4681 macros or keymaps. */
4682 int i;
4683 for (i = 0; i < 4 && CONSP (object); i++)
4684 object = XCDR (object);
4685
4686 return ! (CONSP (object) && !NILP (XCAR (object)));
4687 }
4688 }
4689
4690 if (SUBRP (object))
4691 return XSUBR (object)->max_args != UNEVALLED;
4692 else if (COMPILEDP (object))
4693 return true;
4694 else if (CONSP (object))
4695 {
4696 Lisp_Object car = XCAR (object);
4697 return EQ (car, Qlambda) || EQ (car, Qclosure);
4698 }
4699 else
4700 return false;
4701 }
4702
4703 INLINE_HEADER_END
4704
4705 #endif /* EMACS_LISP_H */