]> code.delx.au - gnu-emacs/blob - src/fns.c
(Fmapcar, Fmapconcat): GCPRO the args array.
[gnu-emacs] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985, 86, 87, 93, 94, 95, 97, 98, 99, 2000, 2001, 02, 03, 2004
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <config.h>
23
24 #ifdef HAVE_UNISTD_H
25 #include <unistd.h>
26 #endif
27 #include <time.h>
28
29 #ifndef MAC_OSX
30 /* On Mac OS X, defining this conflicts with precompiled headers. */
31
32 /* Note on some machines this defines `vector' as a typedef,
33 so make sure we don't use that name in this file. */
34 #undef vector
35 #define vector *****
36
37 #endif /* ! MAC_OSX */
38
39 #include "lisp.h"
40 #include "commands.h"
41 #include "charset.h"
42 #include "coding.h"
43 #include "buffer.h"
44 #include "keyboard.h"
45 #include "keymap.h"
46 #include "intervals.h"
47 #include "frame.h"
48 #include "window.h"
49 #include "blockinput.h"
50 #if defined (HAVE_MENUS) && defined (HAVE_X_WINDOWS)
51 #include "xterm.h"
52 #endif
53
54 #ifndef NULL
55 #define NULL ((POINTER_TYPE *)0)
56 #endif
57
58 /* Nonzero enables use of dialog boxes for questions
59 asked by mouse commands. */
60 int use_dialog_box;
61
62 /* Nonzero enables use of a file dialog for file name
63 questions asked by mouse commands. */
64 int use_file_dialog;
65
66 extern int minibuffer_auto_raise;
67 extern Lisp_Object minibuf_window;
68 extern Lisp_Object Vlocale_coding_system;
69
70 Lisp_Object Qstring_lessp, Qprovide, Qrequire;
71 Lisp_Object Qyes_or_no_p_history;
72 Lisp_Object Qcursor_in_echo_area;
73 Lisp_Object Qwidget_type;
74 Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
75
76 extern Lisp_Object Qinput_method_function;
77
78 static int internal_equal ();
79
80 extern long get_random ();
81 extern void seed_random ();
82
83 #ifndef HAVE_UNISTD_H
84 extern long time ();
85 #endif
86 \f
87 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
88 doc: /* Return the argument unchanged. */)
89 (arg)
90 Lisp_Object arg;
91 {
92 return arg;
93 }
94
95 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
96 doc: /* Return a pseudo-random number.
97 All integers representable in Lisp are equally likely.
98 On most systems, this is 29 bits' worth.
99 With positive integer argument N, return random number in interval [0,N).
100 With argument t, set the random number seed from the current time and pid. */)
101 (n)
102 Lisp_Object n;
103 {
104 EMACS_INT val;
105 Lisp_Object lispy_val;
106 unsigned long denominator;
107
108 if (EQ (n, Qt))
109 seed_random (getpid () + time (NULL));
110 if (NATNUMP (n) && XFASTINT (n) != 0)
111 {
112 /* Try to take our random number from the higher bits of VAL,
113 not the lower, since (says Gentzel) the low bits of `random'
114 are less random than the higher ones. We do this by using the
115 quotient rather than the remainder. At the high end of the RNG
116 it's possible to get a quotient larger than n; discarding
117 these values eliminates the bias that would otherwise appear
118 when using a large n. */
119 denominator = ((unsigned long)1 << VALBITS) / XFASTINT (n);
120 do
121 val = get_random () / denominator;
122 while (val >= XFASTINT (n));
123 }
124 else
125 val = get_random ();
126 XSETINT (lispy_val, val);
127 return lispy_val;
128 }
129 \f
130 /* Random data-structure functions */
131
132 DEFUN ("length", Flength, Slength, 1, 1, 0,
133 doc: /* Return the length of vector, list or string SEQUENCE.
134 A byte-code function object is also allowed.
135 If the string contains multibyte characters, this is not necessarily
136 the number of bytes in the string; it is the number of characters.
137 To get the number of bytes, use `string-bytes'. */)
138 (sequence)
139 register Lisp_Object sequence;
140 {
141 register Lisp_Object val;
142 register int i;
143
144 retry:
145 if (STRINGP (sequence))
146 XSETFASTINT (val, SCHARS (sequence));
147 else if (VECTORP (sequence))
148 XSETFASTINT (val, XVECTOR (sequence)->size);
149 else if (SUB_CHAR_TABLE_P (sequence))
150 XSETFASTINT (val, SUB_CHAR_TABLE_ORDINARY_SLOTS);
151 else if (CHAR_TABLE_P (sequence))
152 XSETFASTINT (val, MAX_CHAR);
153 else if (BOOL_VECTOR_P (sequence))
154 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
155 else if (COMPILEDP (sequence))
156 XSETFASTINT (val, XVECTOR (sequence)->size & PSEUDOVECTOR_SIZE_MASK);
157 else if (CONSP (sequence))
158 {
159 i = 0;
160 while (CONSP (sequence))
161 {
162 sequence = XCDR (sequence);
163 ++i;
164
165 if (!CONSP (sequence))
166 break;
167
168 sequence = XCDR (sequence);
169 ++i;
170 QUIT;
171 }
172
173 if (!NILP (sequence))
174 wrong_type_argument (Qlistp, sequence);
175
176 val = make_number (i);
177 }
178 else if (NILP (sequence))
179 XSETFASTINT (val, 0);
180 else
181 {
182 sequence = wrong_type_argument (Qsequencep, sequence);
183 goto retry;
184 }
185 return val;
186 }
187
188 /* This does not check for quits. That is safe
189 since it must terminate. */
190
191 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
192 doc: /* Return the length of a list, but avoid error or infinite loop.
193 This function never gets an error. If LIST is not really a list,
194 it returns 0. If LIST is circular, it returns a finite value
195 which is at least the number of distinct elements. */)
196 (list)
197 Lisp_Object list;
198 {
199 Lisp_Object tail, halftail, length;
200 int len = 0;
201
202 /* halftail is used to detect circular lists. */
203 halftail = list;
204 for (tail = list; CONSP (tail); tail = XCDR (tail))
205 {
206 if (EQ (tail, halftail) && len != 0)
207 break;
208 len++;
209 if ((len & 1) == 0)
210 halftail = XCDR (halftail);
211 }
212
213 XSETINT (length, len);
214 return length;
215 }
216
217 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
218 doc: /* Return the number of bytes in STRING.
219 If STRING is a multibyte string, this is greater than the length of STRING. */)
220 (string)
221 Lisp_Object string;
222 {
223 CHECK_STRING (string);
224 return make_number (SBYTES (string));
225 }
226
227 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
228 doc: /* Return t if two strings have identical contents.
229 Case is significant, but text properties are ignored.
230 Symbols are also allowed; their print names are used instead. */)
231 (s1, s2)
232 register Lisp_Object s1, s2;
233 {
234 if (SYMBOLP (s1))
235 s1 = SYMBOL_NAME (s1);
236 if (SYMBOLP (s2))
237 s2 = SYMBOL_NAME (s2);
238 CHECK_STRING (s1);
239 CHECK_STRING (s2);
240
241 if (SCHARS (s1) != SCHARS (s2)
242 || SBYTES (s1) != SBYTES (s2)
243 || bcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
244 return Qnil;
245 return Qt;
246 }
247
248 DEFUN ("compare-strings", Fcompare_strings,
249 Scompare_strings, 6, 7, 0,
250 doc: /* Compare the contents of two strings, converting to multibyte if needed.
251 In string STR1, skip the first START1 characters and stop at END1.
252 In string STR2, skip the first START2 characters and stop at END2.
253 END1 and END2 default to the full lengths of the respective strings.
254
255 Case is significant in this comparison if IGNORE-CASE is nil.
256 Unibyte strings are converted to multibyte for comparison.
257
258 The value is t if the strings (or specified portions) match.
259 If string STR1 is less, the value is a negative number N;
260 - 1 - N is the number of characters that match at the beginning.
261 If string STR1 is greater, the value is a positive number N;
262 N - 1 is the number of characters that match at the beginning. */)
263 (str1, start1, end1, str2, start2, end2, ignore_case)
264 Lisp_Object str1, start1, end1, start2, str2, end2, ignore_case;
265 {
266 register int end1_char, end2_char;
267 register int i1, i1_byte, i2, i2_byte;
268
269 CHECK_STRING (str1);
270 CHECK_STRING (str2);
271 if (NILP (start1))
272 start1 = make_number (0);
273 if (NILP (start2))
274 start2 = make_number (0);
275 CHECK_NATNUM (start1);
276 CHECK_NATNUM (start2);
277 if (! NILP (end1))
278 CHECK_NATNUM (end1);
279 if (! NILP (end2))
280 CHECK_NATNUM (end2);
281
282 i1 = XINT (start1);
283 i2 = XINT (start2);
284
285 i1_byte = string_char_to_byte (str1, i1);
286 i2_byte = string_char_to_byte (str2, i2);
287
288 end1_char = SCHARS (str1);
289 if (! NILP (end1) && end1_char > XINT (end1))
290 end1_char = XINT (end1);
291
292 end2_char = SCHARS (str2);
293 if (! NILP (end2) && end2_char > XINT (end2))
294 end2_char = XINT (end2);
295
296 while (i1 < end1_char && i2 < end2_char)
297 {
298 /* When we find a mismatch, we must compare the
299 characters, not just the bytes. */
300 int c1, c2;
301
302 if (STRING_MULTIBYTE (str1))
303 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
304 else
305 {
306 c1 = SREF (str1, i1++);
307 c1 = unibyte_char_to_multibyte (c1);
308 }
309
310 if (STRING_MULTIBYTE (str2))
311 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
312 else
313 {
314 c2 = SREF (str2, i2++);
315 c2 = unibyte_char_to_multibyte (c2);
316 }
317
318 if (c1 == c2)
319 continue;
320
321 if (! NILP (ignore_case))
322 {
323 Lisp_Object tem;
324
325 tem = Fupcase (make_number (c1));
326 c1 = XINT (tem);
327 tem = Fupcase (make_number (c2));
328 c2 = XINT (tem);
329 }
330
331 if (c1 == c2)
332 continue;
333
334 /* Note that I1 has already been incremented
335 past the character that we are comparing;
336 hence we don't add or subtract 1 here. */
337 if (c1 < c2)
338 return make_number (- i1 + XINT (start1));
339 else
340 return make_number (i1 - XINT (start1));
341 }
342
343 if (i1 < end1_char)
344 return make_number (i1 - XINT (start1) + 1);
345 if (i2 < end2_char)
346 return make_number (- i1 + XINT (start1) - 1);
347
348 return Qt;
349 }
350
351 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
352 doc: /* Return t if first arg string is less than second in lexicographic order.
353 Case is significant.
354 Symbols are also allowed; their print names are used instead. */)
355 (s1, s2)
356 register Lisp_Object s1, s2;
357 {
358 register int end;
359 register int i1, i1_byte, i2, i2_byte;
360
361 if (SYMBOLP (s1))
362 s1 = SYMBOL_NAME (s1);
363 if (SYMBOLP (s2))
364 s2 = SYMBOL_NAME (s2);
365 CHECK_STRING (s1);
366 CHECK_STRING (s2);
367
368 i1 = i1_byte = i2 = i2_byte = 0;
369
370 end = SCHARS (s1);
371 if (end > SCHARS (s2))
372 end = SCHARS (s2);
373
374 while (i1 < end)
375 {
376 /* When we find a mismatch, we must compare the
377 characters, not just the bytes. */
378 int c1, c2;
379
380 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
381 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
382
383 if (c1 != c2)
384 return c1 < c2 ? Qt : Qnil;
385 }
386 return i1 < SCHARS (s2) ? Qt : Qnil;
387 }
388 \f
389 static Lisp_Object concat ();
390
391 /* ARGSUSED */
392 Lisp_Object
393 concat2 (s1, s2)
394 Lisp_Object s1, s2;
395 {
396 #ifdef NO_ARG_ARRAY
397 Lisp_Object args[2];
398 args[0] = s1;
399 args[1] = s2;
400 return concat (2, args, Lisp_String, 0);
401 #else
402 return concat (2, &s1, Lisp_String, 0);
403 #endif /* NO_ARG_ARRAY */
404 }
405
406 /* ARGSUSED */
407 Lisp_Object
408 concat3 (s1, s2, s3)
409 Lisp_Object s1, s2, s3;
410 {
411 #ifdef NO_ARG_ARRAY
412 Lisp_Object args[3];
413 args[0] = s1;
414 args[1] = s2;
415 args[2] = s3;
416 return concat (3, args, Lisp_String, 0);
417 #else
418 return concat (3, &s1, Lisp_String, 0);
419 #endif /* NO_ARG_ARRAY */
420 }
421
422 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
423 doc: /* Concatenate all the arguments and make the result a list.
424 The result is a list whose elements are the elements of all the arguments.
425 Each argument may be a list, vector or string.
426 The last argument is not copied, just used as the tail of the new list.
427 usage: (append &rest SEQUENCES) */)
428 (nargs, args)
429 int nargs;
430 Lisp_Object *args;
431 {
432 return concat (nargs, args, Lisp_Cons, 1);
433 }
434
435 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
436 doc: /* Concatenate all the arguments and make the result a string.
437 The result is a string whose elements are the elements of all the arguments.
438 Each argument may be a string or a list or vector of characters (integers).
439 usage: (concat &rest SEQUENCES) */)
440 (nargs, args)
441 int nargs;
442 Lisp_Object *args;
443 {
444 return concat (nargs, args, Lisp_String, 0);
445 }
446
447 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
448 doc: /* Concatenate all the arguments and make the result a vector.
449 The result is a vector whose elements are the elements of all the arguments.
450 Each argument may be a list, vector or string.
451 usage: (vconcat &rest SEQUENCES) */)
452 (nargs, args)
453 int nargs;
454 Lisp_Object *args;
455 {
456 return concat (nargs, args, Lisp_Vectorlike, 0);
457 }
458
459 /* Return a copy of a sub char table ARG. The elements except for a
460 nested sub char table are not copied. */
461 static Lisp_Object
462 copy_sub_char_table (arg)
463 Lisp_Object arg;
464 {
465 Lisp_Object copy = make_sub_char_table (XCHAR_TABLE (arg)->defalt);
466 int i;
467
468 /* Copy all the contents. */
469 bcopy (XCHAR_TABLE (arg)->contents, XCHAR_TABLE (copy)->contents,
470 SUB_CHAR_TABLE_ORDINARY_SLOTS * sizeof (Lisp_Object));
471 /* Recursively copy any sub char-tables in the ordinary slots. */
472 for (i = 32; i < SUB_CHAR_TABLE_ORDINARY_SLOTS; i++)
473 if (SUB_CHAR_TABLE_P (XCHAR_TABLE (arg)->contents[i]))
474 XCHAR_TABLE (copy)->contents[i]
475 = copy_sub_char_table (XCHAR_TABLE (copy)->contents[i]);
476
477 return copy;
478 }
479
480
481 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
482 doc: /* Return a copy of a list, vector, string or char-table.
483 The elements of a list or vector are not copied; they are shared
484 with the original. */)
485 (arg)
486 Lisp_Object arg;
487 {
488 if (NILP (arg)) return arg;
489
490 if (CHAR_TABLE_P (arg))
491 {
492 int i;
493 Lisp_Object copy;
494
495 copy = Fmake_char_table (XCHAR_TABLE (arg)->purpose, Qnil);
496 /* Copy all the slots, including the extra ones. */
497 bcopy (XVECTOR (arg)->contents, XVECTOR (copy)->contents,
498 ((XCHAR_TABLE (arg)->size & PSEUDOVECTOR_SIZE_MASK)
499 * sizeof (Lisp_Object)));
500
501 /* Recursively copy any sub char tables in the ordinary slots
502 for multibyte characters. */
503 for (i = CHAR_TABLE_SINGLE_BYTE_SLOTS;
504 i < CHAR_TABLE_ORDINARY_SLOTS; i++)
505 if (SUB_CHAR_TABLE_P (XCHAR_TABLE (arg)->contents[i]))
506 XCHAR_TABLE (copy)->contents[i]
507 = copy_sub_char_table (XCHAR_TABLE (copy)->contents[i]);
508
509 return copy;
510 }
511
512 if (BOOL_VECTOR_P (arg))
513 {
514 Lisp_Object val;
515 int size_in_chars
516 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
517 / BOOL_VECTOR_BITS_PER_CHAR);
518
519 val = Fmake_bool_vector (Flength (arg), Qnil);
520 bcopy (XBOOL_VECTOR (arg)->data, XBOOL_VECTOR (val)->data,
521 size_in_chars);
522 return val;
523 }
524
525 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
526 arg = wrong_type_argument (Qsequencep, arg);
527 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
528 }
529
530 /* This structure holds information of an argument of `concat' that is
531 a string and has text properties to be copied. */
532 struct textprop_rec
533 {
534 int argnum; /* refer to ARGS (arguments of `concat') */
535 int from; /* refer to ARGS[argnum] (argument string) */
536 int to; /* refer to VAL (the target string) */
537 };
538
539 static Lisp_Object
540 concat (nargs, args, target_type, last_special)
541 int nargs;
542 Lisp_Object *args;
543 enum Lisp_Type target_type;
544 int last_special;
545 {
546 Lisp_Object val;
547 register Lisp_Object tail;
548 register Lisp_Object this;
549 int toindex;
550 int toindex_byte = 0;
551 register int result_len;
552 register int result_len_byte;
553 register int argnum;
554 Lisp_Object last_tail;
555 Lisp_Object prev;
556 int some_multibyte;
557 /* When we make a multibyte string, we can't copy text properties
558 while concatinating each string because the length of resulting
559 string can't be decided until we finish the whole concatination.
560 So, we record strings that have text properties to be copied
561 here, and copy the text properties after the concatination. */
562 struct textprop_rec *textprops = NULL;
563 /* Number of elments in textprops. */
564 int num_textprops = 0;
565
566 tail = Qnil;
567
568 /* In append, the last arg isn't treated like the others */
569 if (last_special && nargs > 0)
570 {
571 nargs--;
572 last_tail = args[nargs];
573 }
574 else
575 last_tail = Qnil;
576
577 /* Canonicalize each argument. */
578 for (argnum = 0; argnum < nargs; argnum++)
579 {
580 this = args[argnum];
581 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
582 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
583 {
584 args[argnum] = wrong_type_argument (Qsequencep, this);
585 }
586 }
587
588 /* Compute total length in chars of arguments in RESULT_LEN.
589 If desired output is a string, also compute length in bytes
590 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
591 whether the result should be a multibyte string. */
592 result_len_byte = 0;
593 result_len = 0;
594 some_multibyte = 0;
595 for (argnum = 0; argnum < nargs; argnum++)
596 {
597 int len;
598 this = args[argnum];
599 len = XFASTINT (Flength (this));
600 if (target_type == Lisp_String)
601 {
602 /* We must count the number of bytes needed in the string
603 as well as the number of characters. */
604 int i;
605 Lisp_Object ch;
606 int this_len_byte;
607
608 if (VECTORP (this))
609 for (i = 0; i < len; i++)
610 {
611 ch = XVECTOR (this)->contents[i];
612 if (! INTEGERP (ch))
613 wrong_type_argument (Qintegerp, ch);
614 this_len_byte = CHAR_BYTES (XINT (ch));
615 result_len_byte += this_len_byte;
616 if (!SINGLE_BYTE_CHAR_P (XINT (ch)))
617 some_multibyte = 1;
618 }
619 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
620 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
621 else if (CONSP (this))
622 for (; CONSP (this); this = XCDR (this))
623 {
624 ch = XCAR (this);
625 if (! INTEGERP (ch))
626 wrong_type_argument (Qintegerp, ch);
627 this_len_byte = CHAR_BYTES (XINT (ch));
628 result_len_byte += this_len_byte;
629 if (!SINGLE_BYTE_CHAR_P (XINT (ch)))
630 some_multibyte = 1;
631 }
632 else if (STRINGP (this))
633 {
634 if (STRING_MULTIBYTE (this))
635 {
636 some_multibyte = 1;
637 result_len_byte += SBYTES (this);
638 }
639 else
640 result_len_byte += count_size_as_multibyte (SDATA (this),
641 SCHARS (this));
642 }
643 }
644
645 result_len += len;
646 }
647
648 if (! some_multibyte)
649 result_len_byte = result_len;
650
651 /* Create the output object. */
652 if (target_type == Lisp_Cons)
653 val = Fmake_list (make_number (result_len), Qnil);
654 else if (target_type == Lisp_Vectorlike)
655 val = Fmake_vector (make_number (result_len), Qnil);
656 else if (some_multibyte)
657 val = make_uninit_multibyte_string (result_len, result_len_byte);
658 else
659 val = make_uninit_string (result_len);
660
661 /* In `append', if all but last arg are nil, return last arg. */
662 if (target_type == Lisp_Cons && EQ (val, Qnil))
663 return last_tail;
664
665 /* Copy the contents of the args into the result. */
666 if (CONSP (val))
667 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
668 else
669 toindex = 0, toindex_byte = 0;
670
671 prev = Qnil;
672 if (STRINGP (val))
673 textprops
674 = (struct textprop_rec *) alloca (sizeof (struct textprop_rec) * nargs);
675
676 for (argnum = 0; argnum < nargs; argnum++)
677 {
678 Lisp_Object thislen;
679 int thisleni = 0;
680 register unsigned int thisindex = 0;
681 register unsigned int thisindex_byte = 0;
682
683 this = args[argnum];
684 if (!CONSP (this))
685 thislen = Flength (this), thisleni = XINT (thislen);
686
687 /* Between strings of the same kind, copy fast. */
688 if (STRINGP (this) && STRINGP (val)
689 && STRING_MULTIBYTE (this) == some_multibyte)
690 {
691 int thislen_byte = SBYTES (this);
692
693 bcopy (SDATA (this), SDATA (val) + toindex_byte,
694 SBYTES (this));
695 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
696 {
697 textprops[num_textprops].argnum = argnum;
698 textprops[num_textprops].from = 0;
699 textprops[num_textprops++].to = toindex;
700 }
701 toindex_byte += thislen_byte;
702 toindex += thisleni;
703 STRING_SET_CHARS (val, SCHARS (val));
704 }
705 /* Copy a single-byte string to a multibyte string. */
706 else if (STRINGP (this) && STRINGP (val))
707 {
708 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
709 {
710 textprops[num_textprops].argnum = argnum;
711 textprops[num_textprops].from = 0;
712 textprops[num_textprops++].to = toindex;
713 }
714 toindex_byte += copy_text (SDATA (this),
715 SDATA (val) + toindex_byte,
716 SCHARS (this), 0, 1);
717 toindex += thisleni;
718 }
719 else
720 /* Copy element by element. */
721 while (1)
722 {
723 register Lisp_Object elt;
724
725 /* Fetch next element of `this' arg into `elt', or break if
726 `this' is exhausted. */
727 if (NILP (this)) break;
728 if (CONSP (this))
729 elt = XCAR (this), this = XCDR (this);
730 else if (thisindex >= thisleni)
731 break;
732 else if (STRINGP (this))
733 {
734 int c;
735 if (STRING_MULTIBYTE (this))
736 {
737 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
738 thisindex,
739 thisindex_byte);
740 XSETFASTINT (elt, c);
741 }
742 else
743 {
744 XSETFASTINT (elt, SREF (this, thisindex++));
745 if (some_multibyte
746 && (XINT (elt) >= 0240
747 || (XINT (elt) >= 0200
748 && ! NILP (Vnonascii_translation_table)))
749 && XINT (elt) < 0400)
750 {
751 c = unibyte_char_to_multibyte (XINT (elt));
752 XSETINT (elt, c);
753 }
754 }
755 }
756 else if (BOOL_VECTOR_P (this))
757 {
758 int byte;
759 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
760 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
761 elt = Qt;
762 else
763 elt = Qnil;
764 thisindex++;
765 }
766 else
767 elt = XVECTOR (this)->contents[thisindex++];
768
769 /* Store this element into the result. */
770 if (toindex < 0)
771 {
772 XSETCAR (tail, elt);
773 prev = tail;
774 tail = XCDR (tail);
775 }
776 else if (VECTORP (val))
777 XVECTOR (val)->contents[toindex++] = elt;
778 else
779 {
780 CHECK_NUMBER (elt);
781 if (SINGLE_BYTE_CHAR_P (XINT (elt)))
782 {
783 if (some_multibyte)
784 toindex_byte
785 += CHAR_STRING (XINT (elt),
786 SDATA (val) + toindex_byte);
787 else
788 SSET (val, toindex_byte++, XINT (elt));
789 toindex++;
790 }
791 else
792 /* If we have any multibyte characters,
793 we already decided to make a multibyte string. */
794 {
795 int c = XINT (elt);
796 /* P exists as a variable
797 to avoid a bug on the Masscomp C compiler. */
798 unsigned char *p = SDATA (val) + toindex_byte;
799
800 toindex_byte += CHAR_STRING (c, p);
801 toindex++;
802 }
803 }
804 }
805 }
806 if (!NILP (prev))
807 XSETCDR (prev, last_tail);
808
809 if (num_textprops > 0)
810 {
811 Lisp_Object props;
812 int last_to_end = -1;
813
814 for (argnum = 0; argnum < num_textprops; argnum++)
815 {
816 this = args[textprops[argnum].argnum];
817 props = text_property_list (this,
818 make_number (0),
819 make_number (SCHARS (this)),
820 Qnil);
821 /* If successive arguments have properites, be sure that the
822 value of `composition' property be the copy. */
823 if (last_to_end == textprops[argnum].to)
824 make_composition_value_copy (props);
825 add_text_properties_from_list (val, props,
826 make_number (textprops[argnum].to));
827 last_to_end = textprops[argnum].to + SCHARS (this);
828 }
829 }
830 return val;
831 }
832 \f
833 static Lisp_Object string_char_byte_cache_string;
834 static int string_char_byte_cache_charpos;
835 static int string_char_byte_cache_bytepos;
836
837 void
838 clear_string_char_byte_cache ()
839 {
840 string_char_byte_cache_string = Qnil;
841 }
842
843 /* Return the character index corresponding to CHAR_INDEX in STRING. */
844
845 int
846 string_char_to_byte (string, char_index)
847 Lisp_Object string;
848 int char_index;
849 {
850 int i, i_byte;
851 int best_below, best_below_byte;
852 int best_above, best_above_byte;
853
854 best_below = best_below_byte = 0;
855 best_above = SCHARS (string);
856 best_above_byte = SBYTES (string);
857 if (best_above == best_above_byte)
858 return char_index;
859
860 if (EQ (string, string_char_byte_cache_string))
861 {
862 if (string_char_byte_cache_charpos < char_index)
863 {
864 best_below = string_char_byte_cache_charpos;
865 best_below_byte = string_char_byte_cache_bytepos;
866 }
867 else
868 {
869 best_above = string_char_byte_cache_charpos;
870 best_above_byte = string_char_byte_cache_bytepos;
871 }
872 }
873
874 if (char_index - best_below < best_above - char_index)
875 {
876 while (best_below < char_index)
877 {
878 int c;
879 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, string,
880 best_below, best_below_byte);
881 }
882 i = best_below;
883 i_byte = best_below_byte;
884 }
885 else
886 {
887 while (best_above > char_index)
888 {
889 unsigned char *pend = SDATA (string) + best_above_byte;
890 unsigned char *pbeg = pend - best_above_byte;
891 unsigned char *p = pend - 1;
892 int bytes;
893
894 while (p > pbeg && !CHAR_HEAD_P (*p)) p--;
895 PARSE_MULTIBYTE_SEQ (p, pend - p, bytes);
896 if (bytes == pend - p)
897 best_above_byte -= bytes;
898 else if (bytes > pend - p)
899 best_above_byte -= (pend - p);
900 else
901 best_above_byte--;
902 best_above--;
903 }
904 i = best_above;
905 i_byte = best_above_byte;
906 }
907
908 string_char_byte_cache_bytepos = i_byte;
909 string_char_byte_cache_charpos = i;
910 string_char_byte_cache_string = string;
911
912 return i_byte;
913 }
914 \f
915 /* Return the character index corresponding to BYTE_INDEX in STRING. */
916
917 int
918 string_byte_to_char (string, byte_index)
919 Lisp_Object string;
920 int byte_index;
921 {
922 int i, i_byte;
923 int best_below, best_below_byte;
924 int best_above, best_above_byte;
925
926 best_below = best_below_byte = 0;
927 best_above = SCHARS (string);
928 best_above_byte = SBYTES (string);
929 if (best_above == best_above_byte)
930 return byte_index;
931
932 if (EQ (string, string_char_byte_cache_string))
933 {
934 if (string_char_byte_cache_bytepos < byte_index)
935 {
936 best_below = string_char_byte_cache_charpos;
937 best_below_byte = string_char_byte_cache_bytepos;
938 }
939 else
940 {
941 best_above = string_char_byte_cache_charpos;
942 best_above_byte = string_char_byte_cache_bytepos;
943 }
944 }
945
946 if (byte_index - best_below_byte < best_above_byte - byte_index)
947 {
948 while (best_below_byte < byte_index)
949 {
950 int c;
951 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, string,
952 best_below, best_below_byte);
953 }
954 i = best_below;
955 i_byte = best_below_byte;
956 }
957 else
958 {
959 while (best_above_byte > byte_index)
960 {
961 unsigned char *pend = SDATA (string) + best_above_byte;
962 unsigned char *pbeg = pend - best_above_byte;
963 unsigned char *p = pend - 1;
964 int bytes;
965
966 while (p > pbeg && !CHAR_HEAD_P (*p)) p--;
967 PARSE_MULTIBYTE_SEQ (p, pend - p, bytes);
968 if (bytes == pend - p)
969 best_above_byte -= bytes;
970 else if (bytes > pend - p)
971 best_above_byte -= (pend - p);
972 else
973 best_above_byte--;
974 best_above--;
975 }
976 i = best_above;
977 i_byte = best_above_byte;
978 }
979
980 string_char_byte_cache_bytepos = i_byte;
981 string_char_byte_cache_charpos = i;
982 string_char_byte_cache_string = string;
983
984 return i;
985 }
986 \f
987 /* Convert STRING to a multibyte string.
988 Single-byte characters 0240 through 0377 are converted
989 by adding nonascii_insert_offset to each. */
990
991 Lisp_Object
992 string_make_multibyte (string)
993 Lisp_Object string;
994 {
995 unsigned char *buf;
996 int nbytes;
997 Lisp_Object ret;
998 USE_SAFE_ALLOCA;
999
1000 if (STRING_MULTIBYTE (string))
1001 return string;
1002
1003 nbytes = count_size_as_multibyte (SDATA (string),
1004 SCHARS (string));
1005 /* If all the chars are ASCII, they won't need any more bytes
1006 once converted. In that case, we can return STRING itself. */
1007 if (nbytes == SBYTES (string))
1008 return string;
1009
1010 SAFE_ALLOCA (buf, unsigned char *, nbytes);
1011 copy_text (SDATA (string), buf, SBYTES (string),
1012 0, 1);
1013
1014 ret = make_multibyte_string (buf, SCHARS (string), nbytes);
1015 SAFE_FREE (nbytes);
1016
1017 return ret;
1018 }
1019
1020
1021 /* Convert STRING to a multibyte string without changing each
1022 character codes. Thus, characters 0200 trough 0237 are converted
1023 to eight-bit-control characters, and characters 0240 through 0377
1024 are converted eight-bit-graphic characters. */
1025
1026 Lisp_Object
1027 string_to_multibyte (string)
1028 Lisp_Object string;
1029 {
1030 unsigned char *buf;
1031 int nbytes;
1032 Lisp_Object ret;
1033 USE_SAFE_ALLOCA;
1034
1035 if (STRING_MULTIBYTE (string))
1036 return string;
1037
1038 nbytes = parse_str_to_multibyte (SDATA (string), SBYTES (string));
1039 /* If all the chars are ASCII or eight-bit-graphic, they won't need
1040 any more bytes once converted. */
1041 if (nbytes == SBYTES (string))
1042 return make_multibyte_string (SDATA (string), nbytes, nbytes);
1043
1044 SAFE_ALLOCA (buf, unsigned char *, nbytes);
1045 bcopy (SDATA (string), buf, SBYTES (string));
1046 str_to_multibyte (buf, nbytes, SBYTES (string));
1047
1048 ret = make_multibyte_string (buf, SCHARS (string), nbytes);
1049 SAFE_FREE (nbytes);
1050
1051 return ret;
1052 }
1053
1054
1055 /* Convert STRING to a single-byte string. */
1056
1057 Lisp_Object
1058 string_make_unibyte (string)
1059 Lisp_Object string;
1060 {
1061 int nchars;
1062 unsigned char *buf;
1063 Lisp_Object ret;
1064 USE_SAFE_ALLOCA;
1065
1066 if (! STRING_MULTIBYTE (string))
1067 return string;
1068
1069 nchars = SCHARS (string);
1070
1071 SAFE_ALLOCA (buf, unsigned char *, nchars);
1072 copy_text (SDATA (string), buf, SBYTES (string),
1073 1, 0);
1074
1075 ret = make_unibyte_string (buf, nchars);
1076 SAFE_FREE (nchars);
1077
1078 return ret;
1079 }
1080
1081 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
1082 1, 1, 0,
1083 doc: /* Return the multibyte equivalent of STRING.
1084 If STRING is unibyte and contains non-ASCII characters, the function
1085 `unibyte-char-to-multibyte' is used to convert each unibyte character
1086 to a multibyte character. In this case, the returned string is a
1087 newly created string with no text properties. If STRING is multibyte
1088 or entirely ASCII, it is returned unchanged. In particular, when
1089 STRING is unibyte and entirely ASCII, the returned string is unibyte.
1090 \(When the characters are all ASCII, Emacs primitives will treat the
1091 string the same way whether it is unibyte or multibyte.) */)
1092 (string)
1093 Lisp_Object string;
1094 {
1095 CHECK_STRING (string);
1096
1097 return string_make_multibyte (string);
1098 }
1099
1100 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
1101 1, 1, 0,
1102 doc: /* Return the unibyte equivalent of STRING.
1103 Multibyte character codes are converted to unibyte according to
1104 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
1105 If the lookup in the translation table fails, this function takes just
1106 the low 8 bits of each character. */)
1107 (string)
1108 Lisp_Object string;
1109 {
1110 CHECK_STRING (string);
1111
1112 return string_make_unibyte (string);
1113 }
1114
1115 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
1116 1, 1, 0,
1117 doc: /* Return a unibyte string with the same individual bytes as STRING.
1118 If STRING is unibyte, the result is STRING itself.
1119 Otherwise it is a newly created string, with no text properties.
1120 If STRING is multibyte and contains a character of charset
1121 `eight-bit-control' or `eight-bit-graphic', it is converted to the
1122 corresponding single byte. */)
1123 (string)
1124 Lisp_Object string;
1125 {
1126 CHECK_STRING (string);
1127
1128 if (STRING_MULTIBYTE (string))
1129 {
1130 int bytes = SBYTES (string);
1131 unsigned char *str = (unsigned char *) xmalloc (bytes);
1132
1133 bcopy (SDATA (string), str, bytes);
1134 bytes = str_as_unibyte (str, bytes);
1135 string = make_unibyte_string (str, bytes);
1136 xfree (str);
1137 }
1138 return string;
1139 }
1140
1141 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1142 1, 1, 0,
1143 doc: /* Return a multibyte string with the same individual bytes as STRING.
1144 If STRING is multibyte, the result is STRING itself.
1145 Otherwise it is a newly created string, with no text properties.
1146 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1147 part of a multibyte form), it is converted to the corresponding
1148 multibyte character of charset `eight-bit-control' or `eight-bit-graphic'. */)
1149 (string)
1150 Lisp_Object string;
1151 {
1152 CHECK_STRING (string);
1153
1154 if (! STRING_MULTIBYTE (string))
1155 {
1156 Lisp_Object new_string;
1157 int nchars, nbytes;
1158
1159 parse_str_as_multibyte (SDATA (string),
1160 SBYTES (string),
1161 &nchars, &nbytes);
1162 new_string = make_uninit_multibyte_string (nchars, nbytes);
1163 bcopy (SDATA (string), SDATA (new_string),
1164 SBYTES (string));
1165 if (nbytes != SBYTES (string))
1166 str_as_multibyte (SDATA (new_string), nbytes,
1167 SBYTES (string), NULL);
1168 string = new_string;
1169 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1170 }
1171 return string;
1172 }
1173
1174 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1175 1, 1, 0,
1176 doc: /* Return a multibyte string with the same individual chars as STRING.
1177 If STRING is multibyte, the result is STRING itself.
1178 Otherwise it is a newly created string, with no text properties.
1179 Characters 0200 through 0237 are converted to eight-bit-control
1180 characters of the same character code. Characters 0240 through 0377
1181 are converted to eight-bit-graphic characters of the same character
1182 codes. */)
1183 (string)
1184 Lisp_Object string;
1185 {
1186 CHECK_STRING (string);
1187
1188 return string_to_multibyte (string);
1189 }
1190
1191 \f
1192 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1193 doc: /* Return a copy of ALIST.
1194 This is an alist which represents the same mapping from objects to objects,
1195 but does not share the alist structure with ALIST.
1196 The objects mapped (cars and cdrs of elements of the alist)
1197 are shared, however.
1198 Elements of ALIST that are not conses are also shared. */)
1199 (alist)
1200 Lisp_Object alist;
1201 {
1202 register Lisp_Object tem;
1203
1204 CHECK_LIST (alist);
1205 if (NILP (alist))
1206 return alist;
1207 alist = concat (1, &alist, Lisp_Cons, 0);
1208 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1209 {
1210 register Lisp_Object car;
1211 car = XCAR (tem);
1212
1213 if (CONSP (car))
1214 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1215 }
1216 return alist;
1217 }
1218
1219 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1220 doc: /* Return a substring of STRING, starting at index FROM and ending before TO.
1221 TO may be nil or omitted; then the substring runs to the end of STRING.
1222 FROM and TO start at 0. If either is negative, it counts from the end.
1223
1224 This function allows vectors as well as strings. */)
1225 (string, from, to)
1226 Lisp_Object string;
1227 register Lisp_Object from, to;
1228 {
1229 Lisp_Object res;
1230 int size;
1231 int size_byte = 0;
1232 int from_char, to_char;
1233 int from_byte = 0, to_byte = 0;
1234
1235 if (! (STRINGP (string) || VECTORP (string)))
1236 wrong_type_argument (Qarrayp, string);
1237
1238 CHECK_NUMBER (from);
1239
1240 if (STRINGP (string))
1241 {
1242 size = SCHARS (string);
1243 size_byte = SBYTES (string);
1244 }
1245 else
1246 size = XVECTOR (string)->size;
1247
1248 if (NILP (to))
1249 {
1250 to_char = size;
1251 to_byte = size_byte;
1252 }
1253 else
1254 {
1255 CHECK_NUMBER (to);
1256
1257 to_char = XINT (to);
1258 if (to_char < 0)
1259 to_char += size;
1260
1261 if (STRINGP (string))
1262 to_byte = string_char_to_byte (string, to_char);
1263 }
1264
1265 from_char = XINT (from);
1266 if (from_char < 0)
1267 from_char += size;
1268 if (STRINGP (string))
1269 from_byte = string_char_to_byte (string, from_char);
1270
1271 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1272 args_out_of_range_3 (string, make_number (from_char),
1273 make_number (to_char));
1274
1275 if (STRINGP (string))
1276 {
1277 res = make_specified_string (SDATA (string) + from_byte,
1278 to_char - from_char, to_byte - from_byte,
1279 STRING_MULTIBYTE (string));
1280 copy_text_properties (make_number (from_char), make_number (to_char),
1281 string, make_number (0), res, Qnil);
1282 }
1283 else
1284 res = Fvector (to_char - from_char,
1285 XVECTOR (string)->contents + from_char);
1286
1287 return res;
1288 }
1289
1290
1291 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1292 doc: /* Return a substring of STRING, without text properties.
1293 It starts at index FROM and ending before TO.
1294 TO may be nil or omitted; then the substring runs to the end of STRING.
1295 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1296 If FROM or TO is negative, it counts from the end.
1297
1298 With one argument, just copy STRING without its properties. */)
1299 (string, from, to)
1300 Lisp_Object string;
1301 register Lisp_Object from, to;
1302 {
1303 int size, size_byte;
1304 int from_char, to_char;
1305 int from_byte, to_byte;
1306
1307 CHECK_STRING (string);
1308
1309 size = SCHARS (string);
1310 size_byte = SBYTES (string);
1311
1312 if (NILP (from))
1313 from_char = from_byte = 0;
1314 else
1315 {
1316 CHECK_NUMBER (from);
1317 from_char = XINT (from);
1318 if (from_char < 0)
1319 from_char += size;
1320
1321 from_byte = string_char_to_byte (string, from_char);
1322 }
1323
1324 if (NILP (to))
1325 {
1326 to_char = size;
1327 to_byte = size_byte;
1328 }
1329 else
1330 {
1331 CHECK_NUMBER (to);
1332
1333 to_char = XINT (to);
1334 if (to_char < 0)
1335 to_char += size;
1336
1337 to_byte = string_char_to_byte (string, to_char);
1338 }
1339
1340 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1341 args_out_of_range_3 (string, make_number (from_char),
1342 make_number (to_char));
1343
1344 return make_specified_string (SDATA (string) + from_byte,
1345 to_char - from_char, to_byte - from_byte,
1346 STRING_MULTIBYTE (string));
1347 }
1348
1349 /* Extract a substring of STRING, giving start and end positions
1350 both in characters and in bytes. */
1351
1352 Lisp_Object
1353 substring_both (string, from, from_byte, to, to_byte)
1354 Lisp_Object string;
1355 int from, from_byte, to, to_byte;
1356 {
1357 Lisp_Object res;
1358 int size;
1359 int size_byte;
1360
1361 if (! (STRINGP (string) || VECTORP (string)))
1362 wrong_type_argument (Qarrayp, string);
1363
1364 if (STRINGP (string))
1365 {
1366 size = SCHARS (string);
1367 size_byte = SBYTES (string);
1368 }
1369 else
1370 size = XVECTOR (string)->size;
1371
1372 if (!(0 <= from && from <= to && to <= size))
1373 args_out_of_range_3 (string, make_number (from), make_number (to));
1374
1375 if (STRINGP (string))
1376 {
1377 res = make_specified_string (SDATA (string) + from_byte,
1378 to - from, to_byte - from_byte,
1379 STRING_MULTIBYTE (string));
1380 copy_text_properties (make_number (from), make_number (to),
1381 string, make_number (0), res, Qnil);
1382 }
1383 else
1384 res = Fvector (to - from,
1385 XVECTOR (string)->contents + from);
1386
1387 return res;
1388 }
1389 \f
1390 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1391 doc: /* Take cdr N times on LIST, returns the result. */)
1392 (n, list)
1393 Lisp_Object n;
1394 register Lisp_Object list;
1395 {
1396 register int i, num;
1397 CHECK_NUMBER (n);
1398 num = XINT (n);
1399 for (i = 0; i < num && !NILP (list); i++)
1400 {
1401 QUIT;
1402 if (! CONSP (list))
1403 wrong_type_argument (Qlistp, list);
1404 list = XCDR (list);
1405 }
1406 return list;
1407 }
1408
1409 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1410 doc: /* Return the Nth element of LIST.
1411 N counts from zero. If LIST is not that long, nil is returned. */)
1412 (n, list)
1413 Lisp_Object n, list;
1414 {
1415 return Fcar (Fnthcdr (n, list));
1416 }
1417
1418 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1419 doc: /* Return element of SEQUENCE at index N. */)
1420 (sequence, n)
1421 register Lisp_Object sequence, n;
1422 {
1423 CHECK_NUMBER (n);
1424 while (1)
1425 {
1426 if (CONSP (sequence) || NILP (sequence))
1427 return Fcar (Fnthcdr (n, sequence));
1428 else if (STRINGP (sequence) || VECTORP (sequence)
1429 || BOOL_VECTOR_P (sequence) || CHAR_TABLE_P (sequence))
1430 return Faref (sequence, n);
1431 else
1432 sequence = wrong_type_argument (Qsequencep, sequence);
1433 }
1434 }
1435
1436 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1437 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1438 The value is actually the tail of LIST whose car is ELT. */)
1439 (elt, list)
1440 register Lisp_Object elt;
1441 Lisp_Object list;
1442 {
1443 register Lisp_Object tail;
1444 for (tail = list; !NILP (tail); tail = XCDR (tail))
1445 {
1446 register Lisp_Object tem;
1447 if (! CONSP (tail))
1448 wrong_type_argument (Qlistp, list);
1449 tem = XCAR (tail);
1450 if (! NILP (Fequal (elt, tem)))
1451 return tail;
1452 QUIT;
1453 }
1454 return Qnil;
1455 }
1456
1457 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1458 doc: /* Return non-nil if ELT is an element of LIST.
1459 Comparison done with EQ. The value is actually the tail of LIST
1460 whose car is ELT. */)
1461 (elt, list)
1462 Lisp_Object elt, list;
1463 {
1464 while (1)
1465 {
1466 if (!CONSP (list) || EQ (XCAR (list), elt))
1467 break;
1468
1469 list = XCDR (list);
1470 if (!CONSP (list) || EQ (XCAR (list), elt))
1471 break;
1472
1473 list = XCDR (list);
1474 if (!CONSP (list) || EQ (XCAR (list), elt))
1475 break;
1476
1477 list = XCDR (list);
1478 QUIT;
1479 }
1480
1481 if (!CONSP (list) && !NILP (list))
1482 list = wrong_type_argument (Qlistp, list);
1483
1484 return list;
1485 }
1486
1487 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1488 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1489 The value is actually the first element of LIST whose car is KEY.
1490 Elements of LIST that are not conses are ignored. */)
1491 (key, list)
1492 Lisp_Object key, list;
1493 {
1494 Lisp_Object result;
1495
1496 while (1)
1497 {
1498 if (!CONSP (list)
1499 || (CONSP (XCAR (list))
1500 && EQ (XCAR (XCAR (list)), key)))
1501 break;
1502
1503 list = XCDR (list);
1504 if (!CONSP (list)
1505 || (CONSP (XCAR (list))
1506 && EQ (XCAR (XCAR (list)), key)))
1507 break;
1508
1509 list = XCDR (list);
1510 if (!CONSP (list)
1511 || (CONSP (XCAR (list))
1512 && EQ (XCAR (XCAR (list)), key)))
1513 break;
1514
1515 list = XCDR (list);
1516 QUIT;
1517 }
1518
1519 if (CONSP (list))
1520 result = XCAR (list);
1521 else if (NILP (list))
1522 result = Qnil;
1523 else
1524 result = wrong_type_argument (Qlistp, list);
1525
1526 return result;
1527 }
1528
1529 /* Like Fassq but never report an error and do not allow quits.
1530 Use only on lists known never to be circular. */
1531
1532 Lisp_Object
1533 assq_no_quit (key, list)
1534 Lisp_Object key, list;
1535 {
1536 while (CONSP (list)
1537 && (!CONSP (XCAR (list))
1538 || !EQ (XCAR (XCAR (list)), key)))
1539 list = XCDR (list);
1540
1541 return CONSP (list) ? XCAR (list) : Qnil;
1542 }
1543
1544 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1545 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1546 The value is actually the first element of LIST whose car equals KEY. */)
1547 (key, list)
1548 Lisp_Object key, list;
1549 {
1550 Lisp_Object result, car;
1551
1552 while (1)
1553 {
1554 if (!CONSP (list)
1555 || (CONSP (XCAR (list))
1556 && (car = XCAR (XCAR (list)),
1557 EQ (car, key) || !NILP (Fequal (car, key)))))
1558 break;
1559
1560 list = XCDR (list);
1561 if (!CONSP (list)
1562 || (CONSP (XCAR (list))
1563 && (car = XCAR (XCAR (list)),
1564 EQ (car, key) || !NILP (Fequal (car, key)))))
1565 break;
1566
1567 list = XCDR (list);
1568 if (!CONSP (list)
1569 || (CONSP (XCAR (list))
1570 && (car = XCAR (XCAR (list)),
1571 EQ (car, key) || !NILP (Fequal (car, key)))))
1572 break;
1573
1574 list = XCDR (list);
1575 QUIT;
1576 }
1577
1578 if (CONSP (list))
1579 result = XCAR (list);
1580 else if (NILP (list))
1581 result = Qnil;
1582 else
1583 result = wrong_type_argument (Qlistp, list);
1584
1585 return result;
1586 }
1587
1588 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1589 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1590 The value is actually the first element of LIST whose cdr is KEY. */)
1591 (key, list)
1592 register Lisp_Object key;
1593 Lisp_Object list;
1594 {
1595 Lisp_Object result;
1596
1597 while (1)
1598 {
1599 if (!CONSP (list)
1600 || (CONSP (XCAR (list))
1601 && EQ (XCDR (XCAR (list)), key)))
1602 break;
1603
1604 list = XCDR (list);
1605 if (!CONSP (list)
1606 || (CONSP (XCAR (list))
1607 && EQ (XCDR (XCAR (list)), key)))
1608 break;
1609
1610 list = XCDR (list);
1611 if (!CONSP (list)
1612 || (CONSP (XCAR (list))
1613 && EQ (XCDR (XCAR (list)), key)))
1614 break;
1615
1616 list = XCDR (list);
1617 QUIT;
1618 }
1619
1620 if (NILP (list))
1621 result = Qnil;
1622 else if (CONSP (list))
1623 result = XCAR (list);
1624 else
1625 result = wrong_type_argument (Qlistp, list);
1626
1627 return result;
1628 }
1629
1630 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1631 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1632 The value is actually the first element of LIST whose cdr equals KEY. */)
1633 (key, list)
1634 Lisp_Object key, list;
1635 {
1636 Lisp_Object result, cdr;
1637
1638 while (1)
1639 {
1640 if (!CONSP (list)
1641 || (CONSP (XCAR (list))
1642 && (cdr = XCDR (XCAR (list)),
1643 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1644 break;
1645
1646 list = XCDR (list);
1647 if (!CONSP (list)
1648 || (CONSP (XCAR (list))
1649 && (cdr = XCDR (XCAR (list)),
1650 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1651 break;
1652
1653 list = XCDR (list);
1654 if (!CONSP (list)
1655 || (CONSP (XCAR (list))
1656 && (cdr = XCDR (XCAR (list)),
1657 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1658 break;
1659
1660 list = XCDR (list);
1661 QUIT;
1662 }
1663
1664 if (CONSP (list))
1665 result = XCAR (list);
1666 else if (NILP (list))
1667 result = Qnil;
1668 else
1669 result = wrong_type_argument (Qlistp, list);
1670
1671 return result;
1672 }
1673 \f
1674 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1675 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1676 The modified LIST is returned. Comparison is done with `eq'.
1677 If the first member of LIST is ELT, there is no way to remove it by side effect;
1678 therefore, write `(setq foo (delq element foo))'
1679 to be sure of changing the value of `foo'. */)
1680 (elt, list)
1681 register Lisp_Object elt;
1682 Lisp_Object list;
1683 {
1684 register Lisp_Object tail, prev;
1685 register Lisp_Object tem;
1686
1687 tail = list;
1688 prev = Qnil;
1689 while (!NILP (tail))
1690 {
1691 if (! CONSP (tail))
1692 wrong_type_argument (Qlistp, list);
1693 tem = XCAR (tail);
1694 if (EQ (elt, tem))
1695 {
1696 if (NILP (prev))
1697 list = XCDR (tail);
1698 else
1699 Fsetcdr (prev, XCDR (tail));
1700 }
1701 else
1702 prev = tail;
1703 tail = XCDR (tail);
1704 QUIT;
1705 }
1706 return list;
1707 }
1708
1709 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1710 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1711 SEQ must be a list, a vector, or a string.
1712 The modified SEQ is returned. Comparison is done with `equal'.
1713 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1714 is not a side effect; it is simply using a different sequence.
1715 Therefore, write `(setq foo (delete element foo))'
1716 to be sure of changing the value of `foo'. */)
1717 (elt, seq)
1718 Lisp_Object elt, seq;
1719 {
1720 if (VECTORP (seq))
1721 {
1722 EMACS_INT i, n;
1723
1724 for (i = n = 0; i < ASIZE (seq); ++i)
1725 if (NILP (Fequal (AREF (seq, i), elt)))
1726 ++n;
1727
1728 if (n != ASIZE (seq))
1729 {
1730 struct Lisp_Vector *p = allocate_vector (n);
1731
1732 for (i = n = 0; i < ASIZE (seq); ++i)
1733 if (NILP (Fequal (AREF (seq, i), elt)))
1734 p->contents[n++] = AREF (seq, i);
1735
1736 XSETVECTOR (seq, p);
1737 }
1738 }
1739 else if (STRINGP (seq))
1740 {
1741 EMACS_INT i, ibyte, nchars, nbytes, cbytes;
1742 int c;
1743
1744 for (i = nchars = nbytes = ibyte = 0;
1745 i < SCHARS (seq);
1746 ++i, ibyte += cbytes)
1747 {
1748 if (STRING_MULTIBYTE (seq))
1749 {
1750 c = STRING_CHAR (SDATA (seq) + ibyte,
1751 SBYTES (seq) - ibyte);
1752 cbytes = CHAR_BYTES (c);
1753 }
1754 else
1755 {
1756 c = SREF (seq, i);
1757 cbytes = 1;
1758 }
1759
1760 if (!INTEGERP (elt) || c != XINT (elt))
1761 {
1762 ++nchars;
1763 nbytes += cbytes;
1764 }
1765 }
1766
1767 if (nchars != SCHARS (seq))
1768 {
1769 Lisp_Object tem;
1770
1771 tem = make_uninit_multibyte_string (nchars, nbytes);
1772 if (!STRING_MULTIBYTE (seq))
1773 STRING_SET_UNIBYTE (tem);
1774
1775 for (i = nchars = nbytes = ibyte = 0;
1776 i < SCHARS (seq);
1777 ++i, ibyte += cbytes)
1778 {
1779 if (STRING_MULTIBYTE (seq))
1780 {
1781 c = STRING_CHAR (SDATA (seq) + ibyte,
1782 SBYTES (seq) - ibyte);
1783 cbytes = CHAR_BYTES (c);
1784 }
1785 else
1786 {
1787 c = SREF (seq, i);
1788 cbytes = 1;
1789 }
1790
1791 if (!INTEGERP (elt) || c != XINT (elt))
1792 {
1793 unsigned char *from = SDATA (seq) + ibyte;
1794 unsigned char *to = SDATA (tem) + nbytes;
1795 EMACS_INT n;
1796
1797 ++nchars;
1798 nbytes += cbytes;
1799
1800 for (n = cbytes; n--; )
1801 *to++ = *from++;
1802 }
1803 }
1804
1805 seq = tem;
1806 }
1807 }
1808 else
1809 {
1810 Lisp_Object tail, prev;
1811
1812 for (tail = seq, prev = Qnil; !NILP (tail); tail = XCDR (tail))
1813 {
1814 if (!CONSP (tail))
1815 wrong_type_argument (Qlistp, seq);
1816
1817 if (!NILP (Fequal (elt, XCAR (tail))))
1818 {
1819 if (NILP (prev))
1820 seq = XCDR (tail);
1821 else
1822 Fsetcdr (prev, XCDR (tail));
1823 }
1824 else
1825 prev = tail;
1826 QUIT;
1827 }
1828 }
1829
1830 return seq;
1831 }
1832
1833 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1834 doc: /* Reverse LIST by modifying cdr pointers.
1835 Return the reversed list. */)
1836 (list)
1837 Lisp_Object list;
1838 {
1839 register Lisp_Object prev, tail, next;
1840
1841 if (NILP (list)) return list;
1842 prev = Qnil;
1843 tail = list;
1844 while (!NILP (tail))
1845 {
1846 QUIT;
1847 if (! CONSP (tail))
1848 wrong_type_argument (Qlistp, list);
1849 next = XCDR (tail);
1850 Fsetcdr (tail, prev);
1851 prev = tail;
1852 tail = next;
1853 }
1854 return prev;
1855 }
1856
1857 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1858 doc: /* Reverse LIST, copying. Return the reversed list.
1859 See also the function `nreverse', which is used more often. */)
1860 (list)
1861 Lisp_Object list;
1862 {
1863 Lisp_Object new;
1864
1865 for (new = Qnil; CONSP (list); list = XCDR (list))
1866 {
1867 QUIT;
1868 new = Fcons (XCAR (list), new);
1869 }
1870 if (!NILP (list))
1871 wrong_type_argument (Qconsp, list);
1872 return new;
1873 }
1874 \f
1875 Lisp_Object merge ();
1876
1877 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1878 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1879 Returns the sorted list. LIST is modified by side effects.
1880 PREDICATE is called with two elements of LIST, and should return t
1881 if the first element is "less" than the second. */)
1882 (list, predicate)
1883 Lisp_Object list, predicate;
1884 {
1885 Lisp_Object front, back;
1886 register Lisp_Object len, tem;
1887 struct gcpro gcpro1, gcpro2;
1888 register int length;
1889
1890 front = list;
1891 len = Flength (list);
1892 length = XINT (len);
1893 if (length < 2)
1894 return list;
1895
1896 XSETINT (len, (length / 2) - 1);
1897 tem = Fnthcdr (len, list);
1898 back = Fcdr (tem);
1899 Fsetcdr (tem, Qnil);
1900
1901 GCPRO2 (front, back);
1902 front = Fsort (front, predicate);
1903 back = Fsort (back, predicate);
1904 UNGCPRO;
1905 return merge (front, back, predicate);
1906 }
1907
1908 Lisp_Object
1909 merge (org_l1, org_l2, pred)
1910 Lisp_Object org_l1, org_l2;
1911 Lisp_Object pred;
1912 {
1913 Lisp_Object value;
1914 register Lisp_Object tail;
1915 Lisp_Object tem;
1916 register Lisp_Object l1, l2;
1917 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1918
1919 l1 = org_l1;
1920 l2 = org_l2;
1921 tail = Qnil;
1922 value = Qnil;
1923
1924 /* It is sufficient to protect org_l1 and org_l2.
1925 When l1 and l2 are updated, we copy the new values
1926 back into the org_ vars. */
1927 GCPRO4 (org_l1, org_l2, pred, value);
1928
1929 while (1)
1930 {
1931 if (NILP (l1))
1932 {
1933 UNGCPRO;
1934 if (NILP (tail))
1935 return l2;
1936 Fsetcdr (tail, l2);
1937 return value;
1938 }
1939 if (NILP (l2))
1940 {
1941 UNGCPRO;
1942 if (NILP (tail))
1943 return l1;
1944 Fsetcdr (tail, l1);
1945 return value;
1946 }
1947 tem = call2 (pred, Fcar (l2), Fcar (l1));
1948 if (NILP (tem))
1949 {
1950 tem = l1;
1951 l1 = Fcdr (l1);
1952 org_l1 = l1;
1953 }
1954 else
1955 {
1956 tem = l2;
1957 l2 = Fcdr (l2);
1958 org_l2 = l2;
1959 }
1960 if (NILP (tail))
1961 value = tem;
1962 else
1963 Fsetcdr (tail, tem);
1964 tail = tem;
1965 }
1966 }
1967
1968 \f
1969 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1970 doc: /* Extract a value from a property list.
1971 PLIST is a property list, which is a list of the form
1972 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1973 corresponding to the given PROP, or nil if PROP is not
1974 one of the properties on the list. */)
1975 (plist, prop)
1976 Lisp_Object plist;
1977 Lisp_Object prop;
1978 {
1979 Lisp_Object tail;
1980
1981 for (tail = plist;
1982 CONSP (tail) && CONSP (XCDR (tail));
1983 tail = XCDR (XCDR (tail)))
1984 {
1985 if (EQ (prop, XCAR (tail)))
1986 return XCAR (XCDR (tail));
1987
1988 /* This function can be called asynchronously
1989 (setup_coding_system). Don't QUIT in that case. */
1990 if (!interrupt_input_blocked)
1991 QUIT;
1992 }
1993
1994 if (!NILP (tail))
1995 wrong_type_argument (Qlistp, prop);
1996
1997 return Qnil;
1998 }
1999
2000 DEFUN ("get", Fget, Sget, 2, 2, 0,
2001 doc: /* Return the value of SYMBOL's PROPNAME property.
2002 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
2003 (symbol, propname)
2004 Lisp_Object symbol, propname;
2005 {
2006 CHECK_SYMBOL (symbol);
2007 return Fplist_get (XSYMBOL (symbol)->plist, propname);
2008 }
2009
2010 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
2011 doc: /* Change value in PLIST of PROP to VAL.
2012 PLIST is a property list, which is a list of the form
2013 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
2014 If PROP is already a property on the list, its value is set to VAL,
2015 otherwise the new PROP VAL pair is added. The new plist is returned;
2016 use `(setq x (plist-put x prop val))' to be sure to use the new value.
2017 The PLIST is modified by side effects. */)
2018 (plist, prop, val)
2019 Lisp_Object plist;
2020 register Lisp_Object prop;
2021 Lisp_Object val;
2022 {
2023 register Lisp_Object tail, prev;
2024 Lisp_Object newcell;
2025 prev = Qnil;
2026 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2027 tail = XCDR (XCDR (tail)))
2028 {
2029 if (EQ (prop, XCAR (tail)))
2030 {
2031 Fsetcar (XCDR (tail), val);
2032 return plist;
2033 }
2034
2035 prev = tail;
2036 QUIT;
2037 }
2038 newcell = Fcons (prop, Fcons (val, Qnil));
2039 if (NILP (prev))
2040 return newcell;
2041 else
2042 Fsetcdr (XCDR (prev), newcell);
2043 return plist;
2044 }
2045
2046 DEFUN ("put", Fput, Sput, 3, 3, 0,
2047 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
2048 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
2049 (symbol, propname, value)
2050 Lisp_Object symbol, propname, value;
2051 {
2052 CHECK_SYMBOL (symbol);
2053 XSYMBOL (symbol)->plist
2054 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
2055 return value;
2056 }
2057 \f
2058 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
2059 doc: /* Extract a value from a property list, comparing with `equal'.
2060 PLIST is a property list, which is a list of the form
2061 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
2062 corresponding to the given PROP, or nil if PROP is not
2063 one of the properties on the list. */)
2064 (plist, prop)
2065 Lisp_Object plist;
2066 Lisp_Object prop;
2067 {
2068 Lisp_Object tail;
2069
2070 for (tail = plist;
2071 CONSP (tail) && CONSP (XCDR (tail));
2072 tail = XCDR (XCDR (tail)))
2073 {
2074 if (! NILP (Fequal (prop, XCAR (tail))))
2075 return XCAR (XCDR (tail));
2076
2077 QUIT;
2078 }
2079
2080 if (!NILP (tail))
2081 wrong_type_argument (Qlistp, prop);
2082
2083 return Qnil;
2084 }
2085
2086 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
2087 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
2088 PLIST is a property list, which is a list of the form
2089 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
2090 If PROP is already a property on the list, its value is set to VAL,
2091 otherwise the new PROP VAL pair is added. The new plist is returned;
2092 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
2093 The PLIST is modified by side effects. */)
2094 (plist, prop, val)
2095 Lisp_Object plist;
2096 register Lisp_Object prop;
2097 Lisp_Object val;
2098 {
2099 register Lisp_Object tail, prev;
2100 Lisp_Object newcell;
2101 prev = Qnil;
2102 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2103 tail = XCDR (XCDR (tail)))
2104 {
2105 if (! NILP (Fequal (prop, XCAR (tail))))
2106 {
2107 Fsetcar (XCDR (tail), val);
2108 return plist;
2109 }
2110
2111 prev = tail;
2112 QUIT;
2113 }
2114 newcell = Fcons (prop, Fcons (val, Qnil));
2115 if (NILP (prev))
2116 return newcell;
2117 else
2118 Fsetcdr (XCDR (prev), newcell);
2119 return plist;
2120 }
2121 \f
2122 DEFUN ("eql", Feql, Seql, 2, 2, 0,
2123 doc: /* Return t if the two args are the same Lisp object.
2124 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
2125 (obj1, obj2)
2126 Lisp_Object obj1, obj2;
2127 {
2128 if (FLOATP (obj1))
2129 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
2130 else
2131 return EQ (obj1, obj2) ? Qt : Qnil;
2132 }
2133
2134 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
2135 doc: /* Return t if two Lisp objects have similar structure and contents.
2136 They must have the same data type.
2137 Conses are compared by comparing the cars and the cdrs.
2138 Vectors and strings are compared element by element.
2139 Numbers are compared by value, but integers cannot equal floats.
2140 (Use `=' if you want integers and floats to be able to be equal.)
2141 Symbols must match exactly. */)
2142 (o1, o2)
2143 register Lisp_Object o1, o2;
2144 {
2145 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
2146 }
2147
2148 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
2149 doc: /* Return t if two Lisp objects have similar structure and contents.
2150 This is like `equal' except that it compares the text properties
2151 of strings. (`equal' ignores text properties.) */)
2152 (o1, o2)
2153 register Lisp_Object o1, o2;
2154 {
2155 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
2156 }
2157
2158 /* DEPTH is current depth of recursion. Signal an error if it
2159 gets too deep.
2160 PROPS, if non-nil, means compare string text properties too. */
2161
2162 static int
2163 internal_equal (o1, o2, depth, props)
2164 register Lisp_Object o1, o2;
2165 int depth, props;
2166 {
2167 if (depth > 200)
2168 error ("Stack overflow in equal");
2169
2170 tail_recurse:
2171 QUIT;
2172 if (EQ (o1, o2))
2173 return 1;
2174 if (XTYPE (o1) != XTYPE (o2))
2175 return 0;
2176
2177 switch (XTYPE (o1))
2178 {
2179 case Lisp_Float:
2180 {
2181 double d1, d2;
2182
2183 d1 = extract_float (o1);
2184 d2 = extract_float (o2);
2185 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2186 though they are not =. */
2187 return d1 == d2 || (d1 != d1 && d2 != d2);
2188 }
2189
2190 case Lisp_Cons:
2191 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2192 return 0;
2193 o1 = XCDR (o1);
2194 o2 = XCDR (o2);
2195 goto tail_recurse;
2196
2197 case Lisp_Misc:
2198 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2199 return 0;
2200 if (OVERLAYP (o1))
2201 {
2202 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2203 depth + 1, props)
2204 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2205 depth + 1))
2206 return 0;
2207 o1 = XOVERLAY (o1)->plist;
2208 o2 = XOVERLAY (o2)->plist;
2209 goto tail_recurse;
2210 }
2211 if (MARKERP (o1))
2212 {
2213 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2214 && (XMARKER (o1)->buffer == 0
2215 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2216 }
2217 break;
2218
2219 case Lisp_Vectorlike:
2220 {
2221 register int i;
2222 EMACS_INT size = XVECTOR (o1)->size;
2223 /* Pseudovectors have the type encoded in the size field, so this test
2224 actually checks that the objects have the same type as well as the
2225 same size. */
2226 if (XVECTOR (o2)->size != size)
2227 return 0;
2228 /* Boolvectors are compared much like strings. */
2229 if (BOOL_VECTOR_P (o1))
2230 {
2231 int size_in_chars
2232 = ((XBOOL_VECTOR (o1)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2233 / BOOL_VECTOR_BITS_PER_CHAR);
2234
2235 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2236 return 0;
2237 if (bcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2238 size_in_chars))
2239 return 0;
2240 return 1;
2241 }
2242 if (WINDOW_CONFIGURATIONP (o1))
2243 return compare_window_configurations (o1, o2, 0);
2244
2245 /* Aside from them, only true vectors, char-tables, and compiled
2246 functions are sensible to compare, so eliminate the others now. */
2247 if (size & PSEUDOVECTOR_FLAG)
2248 {
2249 if (!(size & (PVEC_COMPILED | PVEC_CHAR_TABLE)))
2250 return 0;
2251 size &= PSEUDOVECTOR_SIZE_MASK;
2252 }
2253 for (i = 0; i < size; i++)
2254 {
2255 Lisp_Object v1, v2;
2256 v1 = XVECTOR (o1)->contents [i];
2257 v2 = XVECTOR (o2)->contents [i];
2258 if (!internal_equal (v1, v2, depth + 1, props))
2259 return 0;
2260 }
2261 return 1;
2262 }
2263 break;
2264
2265 case Lisp_String:
2266 if (SCHARS (o1) != SCHARS (o2))
2267 return 0;
2268 if (SBYTES (o1) != SBYTES (o2))
2269 return 0;
2270 if (bcmp (SDATA (o1), SDATA (o2),
2271 SBYTES (o1)))
2272 return 0;
2273 if (props && !compare_string_intervals (o1, o2))
2274 return 0;
2275 return 1;
2276
2277 case Lisp_Int:
2278 case Lisp_Symbol:
2279 case Lisp_Type_Limit:
2280 break;
2281 }
2282
2283 return 0;
2284 }
2285 \f
2286 extern Lisp_Object Fmake_char_internal ();
2287
2288 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2289 doc: /* Store each element of ARRAY with ITEM.
2290 ARRAY is a vector, string, char-table, or bool-vector. */)
2291 (array, item)
2292 Lisp_Object array, item;
2293 {
2294 register int size, index, charval;
2295 retry:
2296 if (VECTORP (array))
2297 {
2298 register Lisp_Object *p = XVECTOR (array)->contents;
2299 size = XVECTOR (array)->size;
2300 for (index = 0; index < size; index++)
2301 p[index] = item;
2302 }
2303 else if (CHAR_TABLE_P (array))
2304 {
2305 register Lisp_Object *p = XCHAR_TABLE (array)->contents;
2306 size = CHAR_TABLE_ORDINARY_SLOTS;
2307 for (index = 0; index < size; index++)
2308 p[index] = item;
2309 XCHAR_TABLE (array)->defalt = Qnil;
2310 }
2311 else if (STRINGP (array))
2312 {
2313 register unsigned char *p = SDATA (array);
2314 CHECK_NUMBER (item);
2315 charval = XINT (item);
2316 size = SCHARS (array);
2317 if (STRING_MULTIBYTE (array))
2318 {
2319 unsigned char str[MAX_MULTIBYTE_LENGTH];
2320 int len = CHAR_STRING (charval, str);
2321 int size_byte = SBYTES (array);
2322 unsigned char *p1 = p, *endp = p + size_byte;
2323 int i;
2324
2325 if (size != size_byte)
2326 while (p1 < endp)
2327 {
2328 int this_len = MULTIBYTE_FORM_LENGTH (p1, endp - p1);
2329 if (len != this_len)
2330 error ("Attempt to change byte length of a string");
2331 p1 += this_len;
2332 }
2333 for (i = 0; i < size_byte; i++)
2334 *p++ = str[i % len];
2335 }
2336 else
2337 for (index = 0; index < size; index++)
2338 p[index] = charval;
2339 }
2340 else if (BOOL_VECTOR_P (array))
2341 {
2342 register unsigned char *p = XBOOL_VECTOR (array)->data;
2343 int size_in_chars
2344 = ((XBOOL_VECTOR (array)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2345 / BOOL_VECTOR_BITS_PER_CHAR);
2346
2347 charval = (! NILP (item) ? -1 : 0);
2348 for (index = 0; index < size_in_chars - 1; index++)
2349 p[index] = charval;
2350 if (index < size_in_chars)
2351 {
2352 /* Mask out bits beyond the vector size. */
2353 if (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)
2354 charval &= (1 << (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2355 p[index] = charval;
2356 }
2357 }
2358 else
2359 {
2360 array = wrong_type_argument (Qarrayp, array);
2361 goto retry;
2362 }
2363 return array;
2364 }
2365
2366 DEFUN ("clear-string", Fclear_string, Sclear_string,
2367 1, 1, 0,
2368 doc: /* Clear the contents of STRING.
2369 This makes STRING unibyte and may change its length. */)
2370 (string)
2371 Lisp_Object string;
2372 {
2373 int len = SBYTES (string);
2374 bzero (SDATA (string), len);
2375 STRING_SET_CHARS (string, len);
2376 STRING_SET_UNIBYTE (string);
2377 return Qnil;
2378 }
2379 \f
2380 DEFUN ("char-table-subtype", Fchar_table_subtype, Schar_table_subtype,
2381 1, 1, 0,
2382 doc: /* Return the subtype of char-table CHAR-TABLE. The value is a symbol. */)
2383 (char_table)
2384 Lisp_Object char_table;
2385 {
2386 CHECK_CHAR_TABLE (char_table);
2387
2388 return XCHAR_TABLE (char_table)->purpose;
2389 }
2390
2391 DEFUN ("char-table-parent", Fchar_table_parent, Schar_table_parent,
2392 1, 1, 0,
2393 doc: /* Return the parent char-table of CHAR-TABLE.
2394 The value is either nil or another char-table.
2395 If CHAR-TABLE holds nil for a given character,
2396 then the actual applicable value is inherited from the parent char-table
2397 \(or from its parents, if necessary). */)
2398 (char_table)
2399 Lisp_Object char_table;
2400 {
2401 CHECK_CHAR_TABLE (char_table);
2402
2403 return XCHAR_TABLE (char_table)->parent;
2404 }
2405
2406 DEFUN ("set-char-table-parent", Fset_char_table_parent, Sset_char_table_parent,
2407 2, 2, 0,
2408 doc: /* Set the parent char-table of CHAR-TABLE to PARENT.
2409 Return PARENT. PARENT must be either nil or another char-table. */)
2410 (char_table, parent)
2411 Lisp_Object char_table, parent;
2412 {
2413 Lisp_Object temp;
2414
2415 CHECK_CHAR_TABLE (char_table);
2416
2417 if (!NILP (parent))
2418 {
2419 CHECK_CHAR_TABLE (parent);
2420
2421 for (temp = parent; !NILP (temp); temp = XCHAR_TABLE (temp)->parent)
2422 if (EQ (temp, char_table))
2423 error ("Attempt to make a chartable be its own parent");
2424 }
2425
2426 XCHAR_TABLE (char_table)->parent = parent;
2427
2428 return parent;
2429 }
2430
2431 DEFUN ("char-table-extra-slot", Fchar_table_extra_slot, Schar_table_extra_slot,
2432 2, 2, 0,
2433 doc: /* Return the value of CHAR-TABLE's extra-slot number N. */)
2434 (char_table, n)
2435 Lisp_Object char_table, n;
2436 {
2437 CHECK_CHAR_TABLE (char_table);
2438 CHECK_NUMBER (n);
2439 if (XINT (n) < 0
2440 || XINT (n) >= CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (char_table)))
2441 args_out_of_range (char_table, n);
2442
2443 return XCHAR_TABLE (char_table)->extras[XINT (n)];
2444 }
2445
2446 DEFUN ("set-char-table-extra-slot", Fset_char_table_extra_slot,
2447 Sset_char_table_extra_slot,
2448 3, 3, 0,
2449 doc: /* Set CHAR-TABLE's extra-slot number N to VALUE. */)
2450 (char_table, n, value)
2451 Lisp_Object char_table, n, value;
2452 {
2453 CHECK_CHAR_TABLE (char_table);
2454 CHECK_NUMBER (n);
2455 if (XINT (n) < 0
2456 || XINT (n) >= CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (char_table)))
2457 args_out_of_range (char_table, n);
2458
2459 return XCHAR_TABLE (char_table)->extras[XINT (n)] = value;
2460 }
2461 \f
2462 DEFUN ("char-table-range", Fchar_table_range, Schar_table_range,
2463 2, 2, 0,
2464 doc: /* Return the value in CHAR-TABLE for a range of characters RANGE.
2465 RANGE should be nil (for the default value)
2466 a vector which identifies a character set or a row of a character set,
2467 a character set name, or a character code. */)
2468 (char_table, range)
2469 Lisp_Object char_table, range;
2470 {
2471 CHECK_CHAR_TABLE (char_table);
2472
2473 if (EQ (range, Qnil))
2474 return XCHAR_TABLE (char_table)->defalt;
2475 else if (INTEGERP (range))
2476 return Faref (char_table, range);
2477 else if (SYMBOLP (range))
2478 {
2479 Lisp_Object charset_info;
2480
2481 charset_info = Fget (range, Qcharset);
2482 CHECK_VECTOR (charset_info);
2483
2484 return Faref (char_table,
2485 make_number (XINT (XVECTOR (charset_info)->contents[0])
2486 + 128));
2487 }
2488 else if (VECTORP (range))
2489 {
2490 if (XVECTOR (range)->size == 1)
2491 return Faref (char_table,
2492 make_number (XINT (XVECTOR (range)->contents[0]) + 128));
2493 else
2494 {
2495 int size = XVECTOR (range)->size;
2496 Lisp_Object *val = XVECTOR (range)->contents;
2497 Lisp_Object ch = Fmake_char_internal (size <= 0 ? Qnil : val[0],
2498 size <= 1 ? Qnil : val[1],
2499 size <= 2 ? Qnil : val[2]);
2500 return Faref (char_table, ch);
2501 }
2502 }
2503 else
2504 error ("Invalid RANGE argument to `char-table-range'");
2505 return Qt;
2506 }
2507
2508 DEFUN ("set-char-table-range", Fset_char_table_range, Sset_char_table_range,
2509 3, 3, 0,
2510 doc: /* Set the value in CHAR-TABLE for a range of characters RANGE to VALUE.
2511 RANGE should be t (for all characters), nil (for the default value),
2512 a character set, a vector which identifies a character set, a row of a
2513 character set, or a character code. Return VALUE. */)
2514 (char_table, range, value)
2515 Lisp_Object char_table, range, value;
2516 {
2517 int i;
2518
2519 CHECK_CHAR_TABLE (char_table);
2520
2521 if (EQ (range, Qt))
2522 for (i = 0; i < CHAR_TABLE_ORDINARY_SLOTS; i++)
2523 XCHAR_TABLE (char_table)->contents[i] = value;
2524 else if (EQ (range, Qnil))
2525 XCHAR_TABLE (char_table)->defalt = value;
2526 else if (SYMBOLP (range))
2527 {
2528 Lisp_Object charset_info;
2529 int charset_id;
2530
2531 charset_info = Fget (range, Qcharset);
2532 if (! VECTORP (charset_info)
2533 || ! NATNUMP (AREF (charset_info, 0))
2534 || (charset_id = XINT (AREF (charset_info, 0)),
2535 ! CHARSET_DEFINED_P (charset_id)))
2536 error ("Invalid charset: %s", SDATA (SYMBOL_NAME (range)));
2537
2538 if (charset_id == CHARSET_ASCII)
2539 for (i = 0; i < 128; i++)
2540 XCHAR_TABLE (char_table)->contents[i] = value;
2541 else if (charset_id == CHARSET_8_BIT_CONTROL)
2542 for (i = 128; i < 160; i++)
2543 XCHAR_TABLE (char_table)->contents[i] = value;
2544 else if (charset_id == CHARSET_8_BIT_GRAPHIC)
2545 for (i = 160; i < 256; i++)
2546 XCHAR_TABLE (char_table)->contents[i] = value;
2547 else
2548 XCHAR_TABLE (char_table)->contents[charset_id + 128] = value;
2549 }
2550 else if (INTEGERP (range))
2551 Faset (char_table, range, value);
2552 else if (VECTORP (range))
2553 {
2554 if (XVECTOR (range)->size == 1)
2555 return Faset (char_table,
2556 make_number (XINT (XVECTOR (range)->contents[0]) + 128),
2557 value);
2558 else
2559 {
2560 int size = XVECTOR (range)->size;
2561 Lisp_Object *val = XVECTOR (range)->contents;
2562 Lisp_Object ch = Fmake_char_internal (size <= 0 ? Qnil : val[0],
2563 size <= 1 ? Qnil : val[1],
2564 size <= 2 ? Qnil : val[2]);
2565 return Faset (char_table, ch, value);
2566 }
2567 }
2568 else
2569 error ("Invalid RANGE argument to `set-char-table-range'");
2570
2571 return value;
2572 }
2573
2574 DEFUN ("set-char-table-default", Fset_char_table_default,
2575 Sset_char_table_default, 3, 3, 0,
2576 doc: /* Set the default value in CHAR-TABLE for generic character CH to VALUE.
2577 The generic character specifies the group of characters.
2578 See also the documentation of `make-char'. */)
2579 (char_table, ch, value)
2580 Lisp_Object char_table, ch, value;
2581 {
2582 int c, charset, code1, code2;
2583 Lisp_Object temp;
2584
2585 CHECK_CHAR_TABLE (char_table);
2586 CHECK_NUMBER (ch);
2587
2588 c = XINT (ch);
2589 SPLIT_CHAR (c, charset, code1, code2);
2590
2591 /* Since we may want to set the default value for a character set
2592 not yet defined, we check only if the character set is in the
2593 valid range or not, instead of it is already defined or not. */
2594 if (! CHARSET_VALID_P (charset))
2595 invalid_character (c);
2596
2597 if (charset == CHARSET_ASCII)
2598 return (XCHAR_TABLE (char_table)->defalt = value);
2599
2600 /* Even if C is not a generic char, we had better behave as if a
2601 generic char is specified. */
2602 if (!CHARSET_DEFINED_P (charset) || CHARSET_DIMENSION (charset) == 1)
2603 code1 = 0;
2604 temp = XCHAR_TABLE (char_table)->contents[charset + 128];
2605 if (!code1)
2606 {
2607 if (SUB_CHAR_TABLE_P (temp))
2608 XCHAR_TABLE (temp)->defalt = value;
2609 else
2610 XCHAR_TABLE (char_table)->contents[charset + 128] = value;
2611 return value;
2612 }
2613 if (SUB_CHAR_TABLE_P (temp))
2614 char_table = temp;
2615 else
2616 char_table = (XCHAR_TABLE (char_table)->contents[charset + 128]
2617 = make_sub_char_table (temp));
2618 temp = XCHAR_TABLE (char_table)->contents[code1];
2619 if (SUB_CHAR_TABLE_P (temp))
2620 XCHAR_TABLE (temp)->defalt = value;
2621 else
2622 XCHAR_TABLE (char_table)->contents[code1] = value;
2623 return value;
2624 }
2625
2626 /* Look up the element in TABLE at index CH,
2627 and return it as an integer.
2628 If the element is nil, return CH itself.
2629 (Actually we do that for any non-integer.) */
2630
2631 int
2632 char_table_translate (table, ch)
2633 Lisp_Object table;
2634 int ch;
2635 {
2636 Lisp_Object value;
2637 value = Faref (table, make_number (ch));
2638 if (! INTEGERP (value))
2639 return ch;
2640 return XINT (value);
2641 }
2642
2643 static void
2644 optimize_sub_char_table (table, chars)
2645 Lisp_Object *table;
2646 int chars;
2647 {
2648 Lisp_Object elt;
2649 int from, to;
2650
2651 if (chars == 94)
2652 from = 33, to = 127;
2653 else
2654 from = 32, to = 128;
2655
2656 if (!SUB_CHAR_TABLE_P (*table))
2657 return;
2658 elt = XCHAR_TABLE (*table)->contents[from++];
2659 for (; from < to; from++)
2660 if (NILP (Fequal (elt, XCHAR_TABLE (*table)->contents[from])))
2661 return;
2662 *table = elt;
2663 }
2664
2665 DEFUN ("optimize-char-table", Foptimize_char_table, Soptimize_char_table,
2666 1, 1, 0, doc: /* Optimize char table TABLE. */)
2667 (table)
2668 Lisp_Object table;
2669 {
2670 Lisp_Object elt;
2671 int dim;
2672 int i, j;
2673
2674 CHECK_CHAR_TABLE (table);
2675
2676 for (i = CHAR_TABLE_SINGLE_BYTE_SLOTS; i < CHAR_TABLE_ORDINARY_SLOTS; i++)
2677 {
2678 elt = XCHAR_TABLE (table)->contents[i];
2679 if (!SUB_CHAR_TABLE_P (elt))
2680 continue;
2681 dim = CHARSET_DIMENSION (i - 128);
2682 if (dim == 2)
2683 for (j = 32; j < SUB_CHAR_TABLE_ORDINARY_SLOTS; j++)
2684 optimize_sub_char_table (XCHAR_TABLE (elt)->contents + j, dim);
2685 optimize_sub_char_table (XCHAR_TABLE (table)->contents + i, dim);
2686 }
2687 return Qnil;
2688 }
2689
2690 \f
2691 /* Map C_FUNCTION or FUNCTION over SUBTABLE, calling it for each
2692 character or group of characters that share a value.
2693 DEPTH is the current depth in the originally specified
2694 chartable, and INDICES contains the vector indices
2695 for the levels our callers have descended.
2696
2697 ARG is passed to C_FUNCTION when that is called. */
2698
2699 void
2700 map_char_table (c_function, function, table, subtable, arg, depth, indices)
2701 void (*c_function) P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
2702 Lisp_Object function, table, subtable, arg, *indices;
2703 int depth;
2704 {
2705 int i, to;
2706
2707 if (depth == 0)
2708 {
2709 /* At first, handle ASCII and 8-bit European characters. */
2710 for (i = 0; i < CHAR_TABLE_SINGLE_BYTE_SLOTS; i++)
2711 {
2712 Lisp_Object elt= XCHAR_TABLE (subtable)->contents[i];
2713 if (NILP (elt))
2714 elt = XCHAR_TABLE (subtable)->defalt;
2715 if (NILP (elt))
2716 elt = Faref (subtable, make_number (i));
2717 if (c_function)
2718 (*c_function) (arg, make_number (i), elt);
2719 else
2720 call2 (function, make_number (i), elt);
2721 }
2722 #if 0 /* If the char table has entries for higher characters,
2723 we should report them. */
2724 if (NILP (current_buffer->enable_multibyte_characters))
2725 return;
2726 #endif
2727 to = CHAR_TABLE_ORDINARY_SLOTS;
2728 }
2729 else
2730 {
2731 int charset = XFASTINT (indices[0]) - 128;
2732
2733 i = 32;
2734 to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
2735 if (CHARSET_CHARS (charset) == 94)
2736 i++, to--;
2737 }
2738
2739 for (; i < to; i++)
2740 {
2741 Lisp_Object elt;
2742 int charset;
2743
2744 elt = XCHAR_TABLE (subtable)->contents[i];
2745 XSETFASTINT (indices[depth], i);
2746 charset = XFASTINT (indices[0]) - 128;
2747 if (depth == 0
2748 && (!CHARSET_DEFINED_P (charset)
2749 || charset == CHARSET_8_BIT_CONTROL
2750 || charset == CHARSET_8_BIT_GRAPHIC))
2751 continue;
2752
2753 if (SUB_CHAR_TABLE_P (elt))
2754 {
2755 if (depth >= 3)
2756 error ("Too deep char table");
2757 map_char_table (c_function, function, table, elt, arg, depth + 1, indices);
2758 }
2759 else
2760 {
2761 int c1, c2, c;
2762
2763 c1 = depth >= 1 ? XFASTINT (indices[1]) : 0;
2764 c2 = depth >= 2 ? XFASTINT (indices[2]) : 0;
2765 c = MAKE_CHAR (charset, c1, c2);
2766
2767 if (NILP (elt))
2768 elt = XCHAR_TABLE (subtable)->defalt;
2769 if (NILP (elt))
2770 elt = Faref (table, make_number (c));
2771
2772 if (c_function)
2773 (*c_function) (arg, make_number (c), elt);
2774 else
2775 call2 (function, make_number (c), elt);
2776 }
2777 }
2778 }
2779
2780 static void void_call2 P_ ((Lisp_Object a, Lisp_Object b, Lisp_Object c));
2781 static void
2782 void_call2 (a, b, c)
2783 Lisp_Object a, b, c;
2784 {
2785 call2 (a, b, c);
2786 }
2787
2788 DEFUN ("map-char-table", Fmap_char_table, Smap_char_table,
2789 2, 2, 0,
2790 doc: /* Call FUNCTION for each (normal and generic) characters in CHAR-TABLE.
2791 FUNCTION is called with two arguments--a key and a value.
2792 The key is always a possible IDX argument to `aref'. */)
2793 (function, char_table)
2794 Lisp_Object function, char_table;
2795 {
2796 /* The depth of char table is at most 3. */
2797 Lisp_Object indices[3];
2798
2799 CHECK_CHAR_TABLE (char_table);
2800
2801 /* When Lisp_Object is represented as a union, `call2' cannot directly
2802 be passed to map_char_table because it returns a Lisp_Object rather
2803 than returning nothing.
2804 Casting leads to crashes on some architectures. -stef */
2805 map_char_table (void_call2, Qnil, char_table, char_table, function, 0, indices);
2806 return Qnil;
2807 }
2808
2809 /* Return a value for character C in char-table TABLE. Store the
2810 actual index for that value in *IDX. Ignore the default value of
2811 TABLE. */
2812
2813 Lisp_Object
2814 char_table_ref_and_index (table, c, idx)
2815 Lisp_Object table;
2816 int c, *idx;
2817 {
2818 int charset, c1, c2;
2819 Lisp_Object elt;
2820
2821 if (SINGLE_BYTE_CHAR_P (c))
2822 {
2823 *idx = c;
2824 return XCHAR_TABLE (table)->contents[c];
2825 }
2826 SPLIT_CHAR (c, charset, c1, c2);
2827 elt = XCHAR_TABLE (table)->contents[charset + 128];
2828 *idx = MAKE_CHAR (charset, 0, 0);
2829 if (!SUB_CHAR_TABLE_P (elt))
2830 return elt;
2831 if (c1 < 32 || NILP (XCHAR_TABLE (elt)->contents[c1]))
2832 return XCHAR_TABLE (elt)->defalt;
2833 elt = XCHAR_TABLE (elt)->contents[c1];
2834 *idx = MAKE_CHAR (charset, c1, 0);
2835 if (!SUB_CHAR_TABLE_P (elt))
2836 return elt;
2837 if (c2 < 32 || NILP (XCHAR_TABLE (elt)->contents[c2]))
2838 return XCHAR_TABLE (elt)->defalt;
2839 *idx = c;
2840 return XCHAR_TABLE (elt)->contents[c2];
2841 }
2842
2843 \f
2844 /* ARGSUSED */
2845 Lisp_Object
2846 nconc2 (s1, s2)
2847 Lisp_Object s1, s2;
2848 {
2849 #ifdef NO_ARG_ARRAY
2850 Lisp_Object args[2];
2851 args[0] = s1;
2852 args[1] = s2;
2853 return Fnconc (2, args);
2854 #else
2855 return Fnconc (2, &s1);
2856 #endif /* NO_ARG_ARRAY */
2857 }
2858
2859 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2860 doc: /* Concatenate any number of lists by altering them.
2861 Only the last argument is not altered, and need not be a list.
2862 usage: (nconc &rest LISTS) */)
2863 (nargs, args)
2864 int nargs;
2865 Lisp_Object *args;
2866 {
2867 register int argnum;
2868 register Lisp_Object tail, tem, val;
2869
2870 val = tail = Qnil;
2871
2872 for (argnum = 0; argnum < nargs; argnum++)
2873 {
2874 tem = args[argnum];
2875 if (NILP (tem)) continue;
2876
2877 if (NILP (val))
2878 val = tem;
2879
2880 if (argnum + 1 == nargs) break;
2881
2882 if (!CONSP (tem))
2883 tem = wrong_type_argument (Qlistp, tem);
2884
2885 while (CONSP (tem))
2886 {
2887 tail = tem;
2888 tem = XCDR (tail);
2889 QUIT;
2890 }
2891
2892 tem = args[argnum + 1];
2893 Fsetcdr (tail, tem);
2894 if (NILP (tem))
2895 args[argnum + 1] = tail;
2896 }
2897
2898 return val;
2899 }
2900 \f
2901 /* This is the guts of all mapping functions.
2902 Apply FN to each element of SEQ, one by one,
2903 storing the results into elements of VALS, a C vector of Lisp_Objects.
2904 LENI is the length of VALS, which should also be the length of SEQ. */
2905
2906 static void
2907 mapcar1 (leni, vals, fn, seq)
2908 int leni;
2909 Lisp_Object *vals;
2910 Lisp_Object fn, seq;
2911 {
2912 register Lisp_Object tail;
2913 Lisp_Object dummy;
2914 register int i;
2915 struct gcpro gcpro1, gcpro2, gcpro3;
2916
2917 if (vals)
2918 {
2919 /* Don't let vals contain any garbage when GC happens. */
2920 for (i = 0; i < leni; i++)
2921 vals[i] = Qnil;
2922
2923 GCPRO3 (dummy, fn, seq);
2924 gcpro1.var = vals;
2925 gcpro1.nvars = leni;
2926 }
2927 else
2928 GCPRO2 (fn, seq);
2929 /* We need not explicitly protect `tail' because it is used only on lists, and
2930 1) lists are not relocated and 2) the list is marked via `seq' so will not be freed */
2931
2932 if (VECTORP (seq))
2933 {
2934 for (i = 0; i < leni; i++)
2935 {
2936 dummy = XVECTOR (seq)->contents[i];
2937 dummy = call1 (fn, dummy);
2938 if (vals)
2939 vals[i] = dummy;
2940 }
2941 }
2942 else if (BOOL_VECTOR_P (seq))
2943 {
2944 for (i = 0; i < leni; i++)
2945 {
2946 int byte;
2947 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2948 if (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR)))
2949 dummy = Qt;
2950 else
2951 dummy = Qnil;
2952
2953 dummy = call1 (fn, dummy);
2954 if (vals)
2955 vals[i] = dummy;
2956 }
2957 }
2958 else if (STRINGP (seq))
2959 {
2960 int i_byte;
2961
2962 for (i = 0, i_byte = 0; i < leni;)
2963 {
2964 int c;
2965 int i_before = i;
2966
2967 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2968 XSETFASTINT (dummy, c);
2969 dummy = call1 (fn, dummy);
2970 if (vals)
2971 vals[i_before] = dummy;
2972 }
2973 }
2974 else /* Must be a list, since Flength did not get an error */
2975 {
2976 tail = seq;
2977 for (i = 0; i < leni; i++)
2978 {
2979 dummy = call1 (fn, Fcar (tail));
2980 if (vals)
2981 vals[i] = dummy;
2982 tail = XCDR (tail);
2983 }
2984 }
2985
2986 UNGCPRO;
2987 }
2988
2989 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2990 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2991 In between each pair of results, stick in SEPARATOR. Thus, " " as
2992 SEPARATOR results in spaces between the values returned by FUNCTION.
2993 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2994 (function, sequence, separator)
2995 Lisp_Object function, sequence, separator;
2996 {
2997 Lisp_Object len;
2998 register int leni;
2999 int nargs;
3000 register Lisp_Object *args;
3001 register int i;
3002 struct gcpro gcpro1;
3003 Lisp_Object ret;
3004 USE_SAFE_ALLOCA;
3005
3006 len = Flength (sequence);
3007 leni = XINT (len);
3008 nargs = leni + leni - 1;
3009 if (nargs < 0) return build_string ("");
3010
3011 SAFE_ALLOCA_LISP (args, nargs);
3012
3013 GCPRO1 (separator);
3014 mapcar1 (leni, args, function, sequence);
3015 UNGCPRO;
3016
3017 for (i = leni - 1; i >= 0; i--)
3018 args[i + i] = args[i];
3019
3020 for (i = 1; i < nargs; i += 2)
3021 args[i] = separator;
3022
3023 GCPRO1 (*args);
3024 gcpro1.nvars = nargs;
3025 ret = Fconcat (nargs, args);
3026 UNGCPRO;
3027
3028 SAFE_FREE_LISP (nargs);
3029
3030 return ret;
3031 }
3032
3033 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
3034 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
3035 The result is a list just as long as SEQUENCE.
3036 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
3037 (function, sequence)
3038 Lisp_Object function, sequence;
3039 {
3040 register Lisp_Object len;
3041 register int leni;
3042 register Lisp_Object *args;
3043 struct gcpro gcpro1;
3044 Lisp_Object ret;
3045 USE_SAFE_ALLOCA;
3046
3047 len = Flength (sequence);
3048 leni = XFASTINT (len);
3049
3050 SAFE_ALLOCA_LISP (args, leni);
3051
3052 mapcar1 (leni, args, function, sequence);
3053
3054 GCPRO1 (*args);
3055 gcpro1.nvars = leni;
3056 ret = Flist (leni, args);
3057 UNGCPRO;
3058
3059 SAFE_FREE_LISP (leni);
3060
3061 return ret;
3062 }
3063
3064 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
3065 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
3066 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
3067 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
3068 (function, sequence)
3069 Lisp_Object function, sequence;
3070 {
3071 register int leni;
3072
3073 leni = XFASTINT (Flength (sequence));
3074 mapcar1 (leni, 0, function, sequence);
3075
3076 return sequence;
3077 }
3078 \f
3079 /* Anything that calls this function must protect from GC! */
3080
3081 DEFUN ("y-or-n-p", Fy_or_n_p, Sy_or_n_p, 1, 1, 0,
3082 doc: /* Ask user a "y or n" question. Return t if answer is "y".
3083 Takes one argument, which is the string to display to ask the question.
3084 It should end in a space; `y-or-n-p' adds `(y or n) ' to it.
3085 No confirmation of the answer is requested; a single character is enough.
3086 Also accepts Space to mean yes, or Delete to mean no. \(Actually, it uses
3087 the bindings in `query-replace-map'; see the documentation of that variable
3088 for more information. In this case, the useful bindings are `act', `skip',
3089 `recenter', and `quit'.\)
3090
3091 Under a windowing system a dialog box will be used if `last-nonmenu-event'
3092 is nil and `use-dialog-box' is non-nil. */)
3093 (prompt)
3094 Lisp_Object prompt;
3095 {
3096 register Lisp_Object obj, key, def, map;
3097 register int answer;
3098 Lisp_Object xprompt;
3099 Lisp_Object args[2];
3100 struct gcpro gcpro1, gcpro2;
3101 int count = SPECPDL_INDEX ();
3102
3103 specbind (Qcursor_in_echo_area, Qt);
3104
3105 map = Fsymbol_value (intern ("query-replace-map"));
3106
3107 CHECK_STRING (prompt);
3108 xprompt = prompt;
3109 GCPRO2 (prompt, xprompt);
3110
3111 #ifdef HAVE_X_WINDOWS
3112 if (display_hourglass_p)
3113 cancel_hourglass ();
3114 #endif
3115
3116 while (1)
3117 {
3118
3119 #ifdef HAVE_MENUS
3120 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3121 && use_dialog_box
3122 && have_menus_p ())
3123 {
3124 Lisp_Object pane, menu;
3125 redisplay_preserve_echo_area (3);
3126 pane = Fcons (Fcons (build_string ("Yes"), Qt),
3127 Fcons (Fcons (build_string ("No"), Qnil),
3128 Qnil));
3129 menu = Fcons (prompt, pane);
3130 obj = Fx_popup_dialog (Qt, menu);
3131 answer = !NILP (obj);
3132 break;
3133 }
3134 #endif /* HAVE_MENUS */
3135 cursor_in_echo_area = 1;
3136 choose_minibuf_frame ();
3137
3138 {
3139 Lisp_Object pargs[3];
3140
3141 /* Colorize prompt according to `minibuffer-prompt' face. */
3142 pargs[0] = build_string ("%s(y or n) ");
3143 pargs[1] = intern ("face");
3144 pargs[2] = intern ("minibuffer-prompt");
3145 args[0] = Fpropertize (3, pargs);
3146 args[1] = xprompt;
3147 Fmessage (2, args);
3148 }
3149
3150 if (minibuffer_auto_raise)
3151 {
3152 Lisp_Object mini_frame;
3153
3154 mini_frame = WINDOW_FRAME (XWINDOW (minibuf_window));
3155
3156 Fraise_frame (mini_frame);
3157 }
3158
3159 obj = read_filtered_event (1, 0, 0, 0);
3160 cursor_in_echo_area = 0;
3161 /* If we need to quit, quit with cursor_in_echo_area = 0. */
3162 QUIT;
3163
3164 key = Fmake_vector (make_number (1), obj);
3165 def = Flookup_key (map, key, Qt);
3166
3167 if (EQ (def, intern ("skip")))
3168 {
3169 answer = 0;
3170 break;
3171 }
3172 else if (EQ (def, intern ("act")))
3173 {
3174 answer = 1;
3175 break;
3176 }
3177 else if (EQ (def, intern ("recenter")))
3178 {
3179 Frecenter (Qnil);
3180 xprompt = prompt;
3181 continue;
3182 }
3183 else if (EQ (def, intern ("quit")))
3184 Vquit_flag = Qt;
3185 /* We want to exit this command for exit-prefix,
3186 and this is the only way to do it. */
3187 else if (EQ (def, intern ("exit-prefix")))
3188 Vquit_flag = Qt;
3189
3190 QUIT;
3191
3192 /* If we don't clear this, then the next call to read_char will
3193 return quit_char again, and we'll enter an infinite loop. */
3194 Vquit_flag = Qnil;
3195
3196 Fding (Qnil);
3197 Fdiscard_input ();
3198 if (EQ (xprompt, prompt))
3199 {
3200 args[0] = build_string ("Please answer y or n. ");
3201 args[1] = prompt;
3202 xprompt = Fconcat (2, args);
3203 }
3204 }
3205 UNGCPRO;
3206
3207 if (! noninteractive)
3208 {
3209 cursor_in_echo_area = -1;
3210 message_with_string (answer ? "%s(y or n) y" : "%s(y or n) n",
3211 xprompt, 0);
3212 }
3213
3214 unbind_to (count, Qnil);
3215 return answer ? Qt : Qnil;
3216 }
3217 \f
3218 /* This is how C code calls `yes-or-no-p' and allows the user
3219 to redefined it.
3220
3221 Anything that calls this function must protect from GC! */
3222
3223 Lisp_Object
3224 do_yes_or_no_p (prompt)
3225 Lisp_Object prompt;
3226 {
3227 return call1 (intern ("yes-or-no-p"), prompt);
3228 }
3229
3230 /* Anything that calls this function must protect from GC! */
3231
3232 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
3233 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
3234 Takes one argument, which is the string to display to ask the question.
3235 It should end in a space; `yes-or-no-p' adds `(yes or no) ' to it.
3236 The user must confirm the answer with RET,
3237 and can edit it until it has been confirmed.
3238
3239 Under a windowing system a dialog box will be used if `last-nonmenu-event'
3240 is nil, and `use-dialog-box' is non-nil. */)
3241 (prompt)
3242 Lisp_Object prompt;
3243 {
3244 register Lisp_Object ans;
3245 Lisp_Object args[2];
3246 struct gcpro gcpro1;
3247
3248 CHECK_STRING (prompt);
3249
3250 #ifdef HAVE_MENUS
3251 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3252 && use_dialog_box
3253 && have_menus_p ())
3254 {
3255 Lisp_Object pane, menu, obj;
3256 redisplay_preserve_echo_area (4);
3257 pane = Fcons (Fcons (build_string ("Yes"), Qt),
3258 Fcons (Fcons (build_string ("No"), Qnil),
3259 Qnil));
3260 GCPRO1 (pane);
3261 menu = Fcons (prompt, pane);
3262 obj = Fx_popup_dialog (Qt, menu);
3263 UNGCPRO;
3264 return obj;
3265 }
3266 #endif /* HAVE_MENUS */
3267
3268 args[0] = prompt;
3269 args[1] = build_string ("(yes or no) ");
3270 prompt = Fconcat (2, args);
3271
3272 GCPRO1 (prompt);
3273
3274 while (1)
3275 {
3276 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
3277 Qyes_or_no_p_history, Qnil,
3278 Qnil));
3279 if (SCHARS (ans) == 3 && !strcmp (SDATA (ans), "yes"))
3280 {
3281 UNGCPRO;
3282 return Qt;
3283 }
3284 if (SCHARS (ans) == 2 && !strcmp (SDATA (ans), "no"))
3285 {
3286 UNGCPRO;
3287 return Qnil;
3288 }
3289
3290 Fding (Qnil);
3291 Fdiscard_input ();
3292 message ("Please answer yes or no.");
3293 Fsleep_for (make_number (2), Qnil);
3294 }
3295 }
3296 \f
3297 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
3298 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
3299
3300 Each of the three load averages is multiplied by 100, then converted
3301 to integer.
3302
3303 When USE-FLOATS is non-nil, floats will be used instead of integers.
3304 These floats are not multiplied by 100.
3305
3306 If the 5-minute or 15-minute load averages are not available, return a
3307 shortened list, containing only those averages which are available.
3308
3309 An error is thrown if the load average can't be obtained. In some
3310 cases making it work would require Emacs being installed setuid or
3311 setgid so that it can read kernel information, and that usually isn't
3312 advisable. */)
3313 (use_floats)
3314 Lisp_Object use_floats;
3315 {
3316 double load_ave[3];
3317 int loads = getloadavg (load_ave, 3);
3318 Lisp_Object ret = Qnil;
3319
3320 if (loads < 0)
3321 error ("load-average not implemented for this operating system");
3322
3323 while (loads-- > 0)
3324 {
3325 Lisp_Object load = (NILP (use_floats) ?
3326 make_number ((int) (100.0 * load_ave[loads]))
3327 : make_float (load_ave[loads]));
3328 ret = Fcons (load, ret);
3329 }
3330
3331 return ret;
3332 }
3333 \f
3334 Lisp_Object Vfeatures, Qsubfeatures;
3335 extern Lisp_Object Vafter_load_alist;
3336
3337 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
3338 doc: /* Returns t if FEATURE is present in this Emacs.
3339
3340 Use this to conditionalize execution of lisp code based on the
3341 presence or absence of emacs or environment extensions.
3342 Use `provide' to declare that a feature is available. This function
3343 looks at the value of the variable `features'. The optional argument
3344 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
3345 (feature, subfeature)
3346 Lisp_Object feature, subfeature;
3347 {
3348 register Lisp_Object tem;
3349 CHECK_SYMBOL (feature);
3350 tem = Fmemq (feature, Vfeatures);
3351 if (!NILP (tem) && !NILP (subfeature))
3352 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
3353 return (NILP (tem)) ? Qnil : Qt;
3354 }
3355
3356 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
3357 doc: /* Announce that FEATURE is a feature of the current Emacs.
3358 The optional argument SUBFEATURES should be a list of symbols listing
3359 particular subfeatures supported in this version of FEATURE. */)
3360 (feature, subfeatures)
3361 Lisp_Object feature, subfeatures;
3362 {
3363 register Lisp_Object tem;
3364 CHECK_SYMBOL (feature);
3365 CHECK_LIST (subfeatures);
3366 if (!NILP (Vautoload_queue))
3367 Vautoload_queue = Fcons (Fcons (Vfeatures, Qnil), Vautoload_queue);
3368 tem = Fmemq (feature, Vfeatures);
3369 if (NILP (tem))
3370 Vfeatures = Fcons (feature, Vfeatures);
3371 if (!NILP (subfeatures))
3372 Fput (feature, Qsubfeatures, subfeatures);
3373 LOADHIST_ATTACH (Fcons (Qprovide, feature));
3374
3375 /* Run any load-hooks for this file. */
3376 tem = Fassq (feature, Vafter_load_alist);
3377 if (CONSP (tem))
3378 Fprogn (XCDR (tem));
3379
3380 return feature;
3381 }
3382 \f
3383 /* `require' and its subroutines. */
3384
3385 /* List of features currently being require'd, innermost first. */
3386
3387 Lisp_Object require_nesting_list;
3388
3389 Lisp_Object
3390 require_unwind (old_value)
3391 Lisp_Object old_value;
3392 {
3393 return require_nesting_list = old_value;
3394 }
3395
3396 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
3397 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
3398 If FEATURE is not a member of the list `features', then the feature
3399 is not loaded; so load the file FILENAME.
3400 If FILENAME is omitted, the printname of FEATURE is used as the file name,
3401 and `load' will try to load this name appended with the suffix `.elc' or
3402 `.el', in that order. The name without appended suffix will not be used.
3403 If the optional third argument NOERROR is non-nil,
3404 then return nil if the file is not found instead of signaling an error.
3405 Normally the return value is FEATURE.
3406 The normal messages at start and end of loading FILENAME are suppressed. */)
3407 (feature, filename, noerror)
3408 Lisp_Object feature, filename, noerror;
3409 {
3410 register Lisp_Object tem;
3411 struct gcpro gcpro1, gcpro2;
3412
3413 CHECK_SYMBOL (feature);
3414
3415 tem = Fmemq (feature, Vfeatures);
3416
3417 if (NILP (tem))
3418 {
3419 int count = SPECPDL_INDEX ();
3420 int nesting = 0;
3421
3422 LOADHIST_ATTACH (Fcons (Qrequire, feature));
3423
3424 /* This is to make sure that loadup.el gives a clear picture
3425 of what files are preloaded and when. */
3426 if (! NILP (Vpurify_flag))
3427 error ("(require %s) while preparing to dump",
3428 SDATA (SYMBOL_NAME (feature)));
3429
3430 /* A certain amount of recursive `require' is legitimate,
3431 but if we require the same feature recursively 3 times,
3432 signal an error. */
3433 tem = require_nesting_list;
3434 while (! NILP (tem))
3435 {
3436 if (! NILP (Fequal (feature, XCAR (tem))))
3437 nesting++;
3438 tem = XCDR (tem);
3439 }
3440 if (nesting > 3)
3441 error ("Recursive `require' for feature `%s'",
3442 SDATA (SYMBOL_NAME (feature)));
3443
3444 /* Update the list for any nested `require's that occur. */
3445 record_unwind_protect (require_unwind, require_nesting_list);
3446 require_nesting_list = Fcons (feature, require_nesting_list);
3447
3448 /* Value saved here is to be restored into Vautoload_queue */
3449 record_unwind_protect (un_autoload, Vautoload_queue);
3450 Vautoload_queue = Qt;
3451
3452 /* Load the file. */
3453 GCPRO2 (feature, filename);
3454 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
3455 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
3456 UNGCPRO;
3457
3458 /* If load failed entirely, return nil. */
3459 if (NILP (tem))
3460 return unbind_to (count, Qnil);
3461
3462 tem = Fmemq (feature, Vfeatures);
3463 if (NILP (tem))
3464 error ("Required feature `%s' was not provided",
3465 SDATA (SYMBOL_NAME (feature)));
3466
3467 /* Once loading finishes, don't undo it. */
3468 Vautoload_queue = Qt;
3469 feature = unbind_to (count, feature);
3470 }
3471
3472 return feature;
3473 }
3474 \f
3475 /* Primitives for work of the "widget" library.
3476 In an ideal world, this section would not have been necessary.
3477 However, lisp function calls being as slow as they are, it turns
3478 out that some functions in the widget library (wid-edit.el) are the
3479 bottleneck of Widget operation. Here is their translation to C,
3480 for the sole reason of efficiency. */
3481
3482 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
3483 doc: /* Return non-nil if PLIST has the property PROP.
3484 PLIST is a property list, which is a list of the form
3485 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
3486 Unlike `plist-get', this allows you to distinguish between a missing
3487 property and a property with the value nil.
3488 The value is actually the tail of PLIST whose car is PROP. */)
3489 (plist, prop)
3490 Lisp_Object plist, prop;
3491 {
3492 while (CONSP (plist) && !EQ (XCAR (plist), prop))
3493 {
3494 QUIT;
3495 plist = XCDR (plist);
3496 plist = CDR (plist);
3497 }
3498 return plist;
3499 }
3500
3501 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
3502 doc: /* In WIDGET, set PROPERTY to VALUE.
3503 The value can later be retrieved with `widget-get'. */)
3504 (widget, property, value)
3505 Lisp_Object widget, property, value;
3506 {
3507 CHECK_CONS (widget);
3508 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
3509 return value;
3510 }
3511
3512 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
3513 doc: /* In WIDGET, get the value of PROPERTY.
3514 The value could either be specified when the widget was created, or
3515 later with `widget-put'. */)
3516 (widget, property)
3517 Lisp_Object widget, property;
3518 {
3519 Lisp_Object tmp;
3520
3521 while (1)
3522 {
3523 if (NILP (widget))
3524 return Qnil;
3525 CHECK_CONS (widget);
3526 tmp = Fplist_member (XCDR (widget), property);
3527 if (CONSP (tmp))
3528 {
3529 tmp = XCDR (tmp);
3530 return CAR (tmp);
3531 }
3532 tmp = XCAR (widget);
3533 if (NILP (tmp))
3534 return Qnil;
3535 widget = Fget (tmp, Qwidget_type);
3536 }
3537 }
3538
3539 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
3540 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
3541 ARGS are passed as extra arguments to the function.
3542 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
3543 (nargs, args)
3544 int nargs;
3545 Lisp_Object *args;
3546 {
3547 /* This function can GC. */
3548 Lisp_Object newargs[3];
3549 struct gcpro gcpro1, gcpro2;
3550 Lisp_Object result;
3551
3552 newargs[0] = Fwidget_get (args[0], args[1]);
3553 newargs[1] = args[0];
3554 newargs[2] = Flist (nargs - 2, args + 2);
3555 GCPRO2 (newargs[0], newargs[2]);
3556 result = Fapply (3, newargs);
3557 UNGCPRO;
3558 return result;
3559 }
3560
3561 #ifdef HAVE_LANGINFO_CODESET
3562 #include <langinfo.h>
3563 #endif
3564
3565 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
3566 doc: /* Access locale data ITEM for the current C locale, if available.
3567 ITEM should be one of the following:
3568
3569 `codeset', returning the character set as a string (locale item CODESET);
3570
3571 `days', returning a 7-element vector of day names (locale items DAY_n);
3572
3573 `months', returning a 12-element vector of month names (locale items MON_n);
3574
3575 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
3576 both measured in milimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
3577
3578 If the system can't provide such information through a call to
3579 `nl_langinfo', or if ITEM isn't from the list above, return nil.
3580
3581 See also Info node `(libc)Locales'.
3582
3583 The data read from the system are decoded using `locale-coding-system'. */)
3584 (item)
3585 Lisp_Object item;
3586 {
3587 char *str = NULL;
3588 #ifdef HAVE_LANGINFO_CODESET
3589 Lisp_Object val;
3590 if (EQ (item, Qcodeset))
3591 {
3592 str = nl_langinfo (CODESET);
3593 return build_string (str);
3594 }
3595 #ifdef DAY_1
3596 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
3597 {
3598 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
3599 int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
3600 int i;
3601 synchronize_system_time_locale ();
3602 for (i = 0; i < 7; i++)
3603 {
3604 str = nl_langinfo (days[i]);
3605 val = make_unibyte_string (str, strlen (str));
3606 /* Fixme: Is this coding system necessarily right, even if
3607 it is consistent with CODESET? If not, what to do? */
3608 Faset (v, make_number (i),
3609 code_convert_string_norecord (val, Vlocale_coding_system,
3610 0));
3611 }
3612 return v;
3613 }
3614 #endif /* DAY_1 */
3615 #ifdef MON_1
3616 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
3617 {
3618 struct Lisp_Vector *p = allocate_vector (12);
3619 int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
3620 MON_8, MON_9, MON_10, MON_11, MON_12};
3621 int i;
3622 synchronize_system_time_locale ();
3623 for (i = 0; i < 12; i++)
3624 {
3625 str = nl_langinfo (months[i]);
3626 val = make_unibyte_string (str, strlen (str));
3627 p->contents[i] =
3628 code_convert_string_norecord (val, Vlocale_coding_system, 0);
3629 }
3630 XSETVECTOR (val, p);
3631 return val;
3632 }
3633 #endif /* MON_1 */
3634 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
3635 but is in the locale files. This could be used by ps-print. */
3636 #ifdef PAPER_WIDTH
3637 else if (EQ (item, Qpaper))
3638 {
3639 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
3640 make_number (nl_langinfo (PAPER_HEIGHT)));
3641 }
3642 #endif /* PAPER_WIDTH */
3643 #endif /* HAVE_LANGINFO_CODESET*/
3644 return Qnil;
3645 }
3646 \f
3647 /* base64 encode/decode functions (RFC 2045).
3648 Based on code from GNU recode. */
3649
3650 #define MIME_LINE_LENGTH 76
3651
3652 #define IS_ASCII(Character) \
3653 ((Character) < 128)
3654 #define IS_BASE64(Character) \
3655 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
3656 #define IS_BASE64_IGNORABLE(Character) \
3657 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
3658 || (Character) == '\f' || (Character) == '\r')
3659
3660 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
3661 character or return retval if there are no characters left to
3662 process. */
3663 #define READ_QUADRUPLET_BYTE(retval) \
3664 do \
3665 { \
3666 if (i == length) \
3667 { \
3668 if (nchars_return) \
3669 *nchars_return = nchars; \
3670 return (retval); \
3671 } \
3672 c = from[i++]; \
3673 } \
3674 while (IS_BASE64_IGNORABLE (c))
3675
3676 /* Table of characters coding the 64 values. */
3677 static char base64_value_to_char[64] =
3678 {
3679 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
3680 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
3681 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
3682 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
3683 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
3684 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
3685 '8', '9', '+', '/' /* 60-63 */
3686 };
3687
3688 /* Table of base64 values for first 128 characters. */
3689 static short base64_char_to_value[128] =
3690 {
3691 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
3692 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
3693 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
3694 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
3695 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
3696 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
3697 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
3698 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
3699 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
3700 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
3701 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
3702 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
3703 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
3704 };
3705
3706 /* The following diagram shows the logical steps by which three octets
3707 get transformed into four base64 characters.
3708
3709 .--------. .--------. .--------.
3710 |aaaaaabb| |bbbbcccc| |ccdddddd|
3711 `--------' `--------' `--------'
3712 6 2 4 4 2 6
3713 .--------+--------+--------+--------.
3714 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
3715 `--------+--------+--------+--------'
3716
3717 .--------+--------+--------+--------.
3718 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
3719 `--------+--------+--------+--------'
3720
3721 The octets are divided into 6 bit chunks, which are then encoded into
3722 base64 characters. */
3723
3724
3725 static int base64_encode_1 P_ ((const char *, char *, int, int, int));
3726 static int base64_decode_1 P_ ((const char *, char *, int, int, int *));
3727
3728 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
3729 2, 3, "r",
3730 doc: /* Base64-encode the region between BEG and END.
3731 Return the length of the encoded text.
3732 Optional third argument NO-LINE-BREAK means do not break long lines
3733 into shorter lines. */)
3734 (beg, end, no_line_break)
3735 Lisp_Object beg, end, no_line_break;
3736 {
3737 char *encoded;
3738 int allength, length;
3739 int ibeg, iend, encoded_length;
3740 int old_pos = PT;
3741 USE_SAFE_ALLOCA;
3742
3743 validate_region (&beg, &end);
3744
3745 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3746 iend = CHAR_TO_BYTE (XFASTINT (end));
3747 move_gap_both (XFASTINT (beg), ibeg);
3748
3749 /* We need to allocate enough room for encoding the text.
3750 We need 33 1/3% more space, plus a newline every 76
3751 characters, and then we round up. */
3752 length = iend - ibeg;
3753 allength = length + length/3 + 1;
3754 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3755
3756 SAFE_ALLOCA (encoded, char *, allength);
3757 encoded_length = base64_encode_1 (BYTE_POS_ADDR (ibeg), encoded, length,
3758 NILP (no_line_break),
3759 !NILP (current_buffer->enable_multibyte_characters));
3760 if (encoded_length > allength)
3761 abort ();
3762
3763 if (encoded_length < 0)
3764 {
3765 /* The encoding wasn't possible. */
3766 SAFE_FREE (allength);
3767 error ("Multibyte character in data for base64 encoding");
3768 }
3769
3770 /* Now we have encoded the region, so we insert the new contents
3771 and delete the old. (Insert first in order to preserve markers.) */
3772 SET_PT_BOTH (XFASTINT (beg), ibeg);
3773 insert (encoded, encoded_length);
3774 SAFE_FREE (allength);
3775 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
3776
3777 /* If point was outside of the region, restore it exactly; else just
3778 move to the beginning of the region. */
3779 if (old_pos >= XFASTINT (end))
3780 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3781 else if (old_pos > XFASTINT (beg))
3782 old_pos = XFASTINT (beg);
3783 SET_PT (old_pos);
3784
3785 /* We return the length of the encoded text. */
3786 return make_number (encoded_length);
3787 }
3788
3789 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3790 1, 2, 0,
3791 doc: /* Base64-encode STRING and return the result.
3792 Optional second argument NO-LINE-BREAK means do not break long lines
3793 into shorter lines. */)
3794 (string, no_line_break)
3795 Lisp_Object string, no_line_break;
3796 {
3797 int allength, length, encoded_length;
3798 char *encoded;
3799 Lisp_Object encoded_string;
3800 USE_SAFE_ALLOCA;
3801
3802 CHECK_STRING (string);
3803
3804 /* We need to allocate enough room for encoding the text.
3805 We need 33 1/3% more space, plus a newline every 76
3806 characters, and then we round up. */
3807 length = SBYTES (string);
3808 allength = length + length/3 + 1;
3809 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3810
3811 /* We need to allocate enough room for decoding the text. */
3812 SAFE_ALLOCA (encoded, char *, allength);
3813
3814 encoded_length = base64_encode_1 (SDATA (string),
3815 encoded, length, NILP (no_line_break),
3816 STRING_MULTIBYTE (string));
3817 if (encoded_length > allength)
3818 abort ();
3819
3820 if (encoded_length < 0)
3821 {
3822 /* The encoding wasn't possible. */
3823 SAFE_FREE (allength);
3824 error ("Multibyte character in data for base64 encoding");
3825 }
3826
3827 encoded_string = make_unibyte_string (encoded, encoded_length);
3828 SAFE_FREE (allength);
3829
3830 return encoded_string;
3831 }
3832
3833 static int
3834 base64_encode_1 (from, to, length, line_break, multibyte)
3835 const char *from;
3836 char *to;
3837 int length;
3838 int line_break;
3839 int multibyte;
3840 {
3841 int counter = 0, i = 0;
3842 char *e = to;
3843 int c;
3844 unsigned int value;
3845 int bytes;
3846
3847 while (i < length)
3848 {
3849 if (multibyte)
3850 {
3851 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3852 if (c >= 256)
3853 return -1;
3854 i += bytes;
3855 }
3856 else
3857 c = from[i++];
3858
3859 /* Wrap line every 76 characters. */
3860
3861 if (line_break)
3862 {
3863 if (counter < MIME_LINE_LENGTH / 4)
3864 counter++;
3865 else
3866 {
3867 *e++ = '\n';
3868 counter = 1;
3869 }
3870 }
3871
3872 /* Process first byte of a triplet. */
3873
3874 *e++ = base64_value_to_char[0x3f & c >> 2];
3875 value = (0x03 & c) << 4;
3876
3877 /* Process second byte of a triplet. */
3878
3879 if (i == length)
3880 {
3881 *e++ = base64_value_to_char[value];
3882 *e++ = '=';
3883 *e++ = '=';
3884 break;
3885 }
3886
3887 if (multibyte)
3888 {
3889 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3890 if (c >= 256)
3891 return -1;
3892 i += bytes;
3893 }
3894 else
3895 c = from[i++];
3896
3897 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3898 value = (0x0f & c) << 2;
3899
3900 /* Process third byte of a triplet. */
3901
3902 if (i == length)
3903 {
3904 *e++ = base64_value_to_char[value];
3905 *e++ = '=';
3906 break;
3907 }
3908
3909 if (multibyte)
3910 {
3911 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3912 if (c >= 256)
3913 return -1;
3914 i += bytes;
3915 }
3916 else
3917 c = from[i++];
3918
3919 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3920 *e++ = base64_value_to_char[0x3f & c];
3921 }
3922
3923 return e - to;
3924 }
3925
3926
3927 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3928 2, 2, "r",
3929 doc: /* Base64-decode the region between BEG and END.
3930 Return the length of the decoded text.
3931 If the region can't be decoded, signal an error and don't modify the buffer. */)
3932 (beg, end)
3933 Lisp_Object beg, end;
3934 {
3935 int ibeg, iend, length, allength;
3936 char *decoded;
3937 int old_pos = PT;
3938 int decoded_length;
3939 int inserted_chars;
3940 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
3941 USE_SAFE_ALLOCA;
3942
3943 validate_region (&beg, &end);
3944
3945 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3946 iend = CHAR_TO_BYTE (XFASTINT (end));
3947
3948 length = iend - ibeg;
3949
3950 /* We need to allocate enough room for decoding the text. If we are
3951 working on a multibyte buffer, each decoded code may occupy at
3952 most two bytes. */
3953 allength = multibyte ? length * 2 : length;
3954 SAFE_ALLOCA (decoded, char *, allength);
3955
3956 move_gap_both (XFASTINT (beg), ibeg);
3957 decoded_length = base64_decode_1 (BYTE_POS_ADDR (ibeg), decoded, length,
3958 multibyte, &inserted_chars);
3959 if (decoded_length > allength)
3960 abort ();
3961
3962 if (decoded_length < 0)
3963 {
3964 /* The decoding wasn't possible. */
3965 SAFE_FREE (allength);
3966 error ("Invalid base64 data");
3967 }
3968
3969 /* Now we have decoded the region, so we insert the new contents
3970 and delete the old. (Insert first in order to preserve markers.) */
3971 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3972 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3973 SAFE_FREE (allength);
3974
3975 /* Delete the original text. */
3976 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3977 iend + decoded_length, 1);
3978
3979 /* If point was outside of the region, restore it exactly; else just
3980 move to the beginning of the region. */
3981 if (old_pos >= XFASTINT (end))
3982 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3983 else if (old_pos > XFASTINT (beg))
3984 old_pos = XFASTINT (beg);
3985 SET_PT (old_pos > ZV ? ZV : old_pos);
3986
3987 return make_number (inserted_chars);
3988 }
3989
3990 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3991 1, 1, 0,
3992 doc: /* Base64-decode STRING and return the result. */)
3993 (string)
3994 Lisp_Object string;
3995 {
3996 char *decoded;
3997 int length, decoded_length;
3998 Lisp_Object decoded_string;
3999 USE_SAFE_ALLOCA;
4000
4001 CHECK_STRING (string);
4002
4003 length = SBYTES (string);
4004 /* We need to allocate enough room for decoding the text. */
4005 SAFE_ALLOCA (decoded, char *, length);
4006
4007 /* The decoded result should be unibyte. */
4008 decoded_length = base64_decode_1 (SDATA (string), decoded, length,
4009 0, NULL);
4010 if (decoded_length > length)
4011 abort ();
4012 else if (decoded_length >= 0)
4013 decoded_string = make_unibyte_string (decoded, decoded_length);
4014 else
4015 decoded_string = Qnil;
4016
4017 SAFE_FREE (length);
4018 if (!STRINGP (decoded_string))
4019 error ("Invalid base64 data");
4020
4021 return decoded_string;
4022 }
4023
4024 /* Base64-decode the data at FROM of LENGHT bytes into TO. If
4025 MULTIBYTE is nonzero, the decoded result should be in multibyte
4026 form. If NCHARS_RETRUN is not NULL, store the number of produced
4027 characters in *NCHARS_RETURN. */
4028
4029 static int
4030 base64_decode_1 (from, to, length, multibyte, nchars_return)
4031 const char *from;
4032 char *to;
4033 int length;
4034 int multibyte;
4035 int *nchars_return;
4036 {
4037 int i = 0;
4038 char *e = to;
4039 unsigned char c;
4040 unsigned long value;
4041 int nchars = 0;
4042
4043 while (1)
4044 {
4045 /* Process first byte of a quadruplet. */
4046
4047 READ_QUADRUPLET_BYTE (e-to);
4048
4049 if (!IS_BASE64 (c))
4050 return -1;
4051 value = base64_char_to_value[c] << 18;
4052
4053 /* Process second byte of a quadruplet. */
4054
4055 READ_QUADRUPLET_BYTE (-1);
4056
4057 if (!IS_BASE64 (c))
4058 return -1;
4059 value |= base64_char_to_value[c] << 12;
4060
4061 c = (unsigned char) (value >> 16);
4062 if (multibyte)
4063 e += CHAR_STRING (c, e);
4064 else
4065 *e++ = c;
4066 nchars++;
4067
4068 /* Process third byte of a quadruplet. */
4069
4070 READ_QUADRUPLET_BYTE (-1);
4071
4072 if (c == '=')
4073 {
4074 READ_QUADRUPLET_BYTE (-1);
4075
4076 if (c != '=')
4077 return -1;
4078 continue;
4079 }
4080
4081 if (!IS_BASE64 (c))
4082 return -1;
4083 value |= base64_char_to_value[c] << 6;
4084
4085 c = (unsigned char) (0xff & value >> 8);
4086 if (multibyte)
4087 e += CHAR_STRING (c, e);
4088 else
4089 *e++ = c;
4090 nchars++;
4091
4092 /* Process fourth byte of a quadruplet. */
4093
4094 READ_QUADRUPLET_BYTE (-1);
4095
4096 if (c == '=')
4097 continue;
4098
4099 if (!IS_BASE64 (c))
4100 return -1;
4101 value |= base64_char_to_value[c];
4102
4103 c = (unsigned char) (0xff & value);
4104 if (multibyte)
4105 e += CHAR_STRING (c, e);
4106 else
4107 *e++ = c;
4108 nchars++;
4109 }
4110 }
4111
4112
4113 \f
4114 /***********************************************************************
4115 ***** *****
4116 ***** Hash Tables *****
4117 ***** *****
4118 ***********************************************************************/
4119
4120 /* Implemented by gerd@gnu.org. This hash table implementation was
4121 inspired by CMUCL hash tables. */
4122
4123 /* Ideas:
4124
4125 1. For small tables, association lists are probably faster than
4126 hash tables because they have lower overhead.
4127
4128 For uses of hash tables where the O(1) behavior of table
4129 operations is not a requirement, it might therefore be a good idea
4130 not to hash. Instead, we could just do a linear search in the
4131 key_and_value vector of the hash table. This could be done
4132 if a `:linear-search t' argument is given to make-hash-table. */
4133
4134
4135 /* The list of all weak hash tables. Don't staticpro this one. */
4136
4137 Lisp_Object Vweak_hash_tables;
4138
4139 /* Various symbols. */
4140
4141 Lisp_Object Qhash_table_p, Qeq, Qeql, Qequal, Qkey, Qvalue;
4142 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
4143 Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
4144
4145 /* Function prototypes. */
4146
4147 static struct Lisp_Hash_Table *check_hash_table P_ ((Lisp_Object));
4148 static int get_key_arg P_ ((Lisp_Object, int, Lisp_Object *, char *));
4149 static void maybe_resize_hash_table P_ ((struct Lisp_Hash_Table *));
4150 static int cmpfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
4151 Lisp_Object, unsigned));
4152 static int cmpfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
4153 Lisp_Object, unsigned));
4154 static int cmpfn_user_defined P_ ((struct Lisp_Hash_Table *, Lisp_Object,
4155 unsigned, Lisp_Object, unsigned));
4156 static unsigned hashfn_eq P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4157 static unsigned hashfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4158 static unsigned hashfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4159 static unsigned hashfn_user_defined P_ ((struct Lisp_Hash_Table *,
4160 Lisp_Object));
4161 static unsigned sxhash_string P_ ((unsigned char *, int));
4162 static unsigned sxhash_list P_ ((Lisp_Object, int));
4163 static unsigned sxhash_vector P_ ((Lisp_Object, int));
4164 static unsigned sxhash_bool_vector P_ ((Lisp_Object));
4165 static int sweep_weak_table P_ ((struct Lisp_Hash_Table *, int));
4166
4167
4168 \f
4169 /***********************************************************************
4170 Utilities
4171 ***********************************************************************/
4172
4173 /* If OBJ is a Lisp hash table, return a pointer to its struct
4174 Lisp_Hash_Table. Otherwise, signal an error. */
4175
4176 static struct Lisp_Hash_Table *
4177 check_hash_table (obj)
4178 Lisp_Object obj;
4179 {
4180 CHECK_HASH_TABLE (obj);
4181 return XHASH_TABLE (obj);
4182 }
4183
4184
4185 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
4186 number. */
4187
4188 int
4189 next_almost_prime (n)
4190 int n;
4191 {
4192 if (n % 2 == 0)
4193 n += 1;
4194 if (n % 3 == 0)
4195 n += 2;
4196 if (n % 7 == 0)
4197 n += 4;
4198 return n;
4199 }
4200
4201
4202 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
4203 which USED[I] is non-zero. If found at index I in ARGS, set
4204 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
4205 -1. This function is used to extract a keyword/argument pair from
4206 a DEFUN parameter list. */
4207
4208 static int
4209 get_key_arg (key, nargs, args, used)
4210 Lisp_Object key;
4211 int nargs;
4212 Lisp_Object *args;
4213 char *used;
4214 {
4215 int i;
4216
4217 for (i = 0; i < nargs - 1; ++i)
4218 if (!used[i] && EQ (args[i], key))
4219 break;
4220
4221 if (i >= nargs - 1)
4222 i = -1;
4223 else
4224 {
4225 used[i++] = 1;
4226 used[i] = 1;
4227 }
4228
4229 return i;
4230 }
4231
4232
4233 /* Return a Lisp vector which has the same contents as VEC but has
4234 size NEW_SIZE, NEW_SIZE >= VEC->size. Entries in the resulting
4235 vector that are not copied from VEC are set to INIT. */
4236
4237 Lisp_Object
4238 larger_vector (vec, new_size, init)
4239 Lisp_Object vec;
4240 int new_size;
4241 Lisp_Object init;
4242 {
4243 struct Lisp_Vector *v;
4244 int i, old_size;
4245
4246 xassert (VECTORP (vec));
4247 old_size = XVECTOR (vec)->size;
4248 xassert (new_size >= old_size);
4249
4250 v = allocate_vector (new_size);
4251 bcopy (XVECTOR (vec)->contents, v->contents,
4252 old_size * sizeof *v->contents);
4253 for (i = old_size; i < new_size; ++i)
4254 v->contents[i] = init;
4255 XSETVECTOR (vec, v);
4256 return vec;
4257 }
4258
4259
4260 /***********************************************************************
4261 Low-level Functions
4262 ***********************************************************************/
4263
4264 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
4265 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
4266 KEY2 are the same. */
4267
4268 static int
4269 cmpfn_eql (h, key1, hash1, key2, hash2)
4270 struct Lisp_Hash_Table *h;
4271 Lisp_Object key1, key2;
4272 unsigned hash1, hash2;
4273 {
4274 return (FLOATP (key1)
4275 && FLOATP (key2)
4276 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
4277 }
4278
4279
4280 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
4281 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
4282 KEY2 are the same. */
4283
4284 static int
4285 cmpfn_equal (h, key1, hash1, key2, hash2)
4286 struct Lisp_Hash_Table *h;
4287 Lisp_Object key1, key2;
4288 unsigned hash1, hash2;
4289 {
4290 return hash1 == hash2 && !NILP (Fequal (key1, key2));
4291 }
4292
4293
4294 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
4295 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
4296 if KEY1 and KEY2 are the same. */
4297
4298 static int
4299 cmpfn_user_defined (h, key1, hash1, key2, hash2)
4300 struct Lisp_Hash_Table *h;
4301 Lisp_Object key1, key2;
4302 unsigned hash1, hash2;
4303 {
4304 if (hash1 == hash2)
4305 {
4306 Lisp_Object args[3];
4307
4308 args[0] = h->user_cmp_function;
4309 args[1] = key1;
4310 args[2] = key2;
4311 return !NILP (Ffuncall (3, args));
4312 }
4313 else
4314 return 0;
4315 }
4316
4317
4318 /* Value is a hash code for KEY for use in hash table H which uses
4319 `eq' to compare keys. The hash code returned is guaranteed to fit
4320 in a Lisp integer. */
4321
4322 static unsigned
4323 hashfn_eq (h, key)
4324 struct Lisp_Hash_Table *h;
4325 Lisp_Object key;
4326 {
4327 unsigned hash = XUINT (key) ^ XGCTYPE (key);
4328 xassert ((hash & ~INTMASK) == 0);
4329 return hash;
4330 }
4331
4332
4333 /* Value is a hash code for KEY for use in hash table H which uses
4334 `eql' to compare keys. The hash code returned is guaranteed to fit
4335 in a Lisp integer. */
4336
4337 static unsigned
4338 hashfn_eql (h, key)
4339 struct Lisp_Hash_Table *h;
4340 Lisp_Object key;
4341 {
4342 unsigned hash;
4343 if (FLOATP (key))
4344 hash = sxhash (key, 0);
4345 else
4346 hash = XUINT (key) ^ XGCTYPE (key);
4347 xassert ((hash & ~INTMASK) == 0);
4348 return hash;
4349 }
4350
4351
4352 /* Value is a hash code for KEY for use in hash table H which uses
4353 `equal' to compare keys. The hash code returned is guaranteed to fit
4354 in a Lisp integer. */
4355
4356 static unsigned
4357 hashfn_equal (h, key)
4358 struct Lisp_Hash_Table *h;
4359 Lisp_Object key;
4360 {
4361 unsigned hash = sxhash (key, 0);
4362 xassert ((hash & ~INTMASK) == 0);
4363 return hash;
4364 }
4365
4366
4367 /* Value is a hash code for KEY for use in hash table H which uses as
4368 user-defined function to compare keys. The hash code returned is
4369 guaranteed to fit in a Lisp integer. */
4370
4371 static unsigned
4372 hashfn_user_defined (h, key)
4373 struct Lisp_Hash_Table *h;
4374 Lisp_Object key;
4375 {
4376 Lisp_Object args[2], hash;
4377
4378 args[0] = h->user_hash_function;
4379 args[1] = key;
4380 hash = Ffuncall (2, args);
4381 if (!INTEGERP (hash))
4382 Fsignal (Qerror,
4383 list2 (build_string ("Invalid hash code returned from \
4384 user-supplied hash function"),
4385 hash));
4386 return XUINT (hash);
4387 }
4388
4389
4390 /* Create and initialize a new hash table.
4391
4392 TEST specifies the test the hash table will use to compare keys.
4393 It must be either one of the predefined tests `eq', `eql' or
4394 `equal' or a symbol denoting a user-defined test named TEST with
4395 test and hash functions USER_TEST and USER_HASH.
4396
4397 Give the table initial capacity SIZE, SIZE >= 0, an integer.
4398
4399 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
4400 new size when it becomes full is computed by adding REHASH_SIZE to
4401 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
4402 table's new size is computed by multiplying its old size with
4403 REHASH_SIZE.
4404
4405 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
4406 be resized when the ratio of (number of entries in the table) /
4407 (table size) is >= REHASH_THRESHOLD.
4408
4409 WEAK specifies the weakness of the table. If non-nil, it must be
4410 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
4411
4412 Lisp_Object
4413 make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4414 user_test, user_hash)
4415 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4416 Lisp_Object user_test, user_hash;
4417 {
4418 struct Lisp_Hash_Table *h;
4419 Lisp_Object table;
4420 int index_size, i, sz;
4421
4422 /* Preconditions. */
4423 xassert (SYMBOLP (test));
4424 xassert (INTEGERP (size) && XINT (size) >= 0);
4425 xassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
4426 || (FLOATP (rehash_size) && XFLOATINT (rehash_size) > 1.0));
4427 xassert (FLOATP (rehash_threshold)
4428 && XFLOATINT (rehash_threshold) > 0
4429 && XFLOATINT (rehash_threshold) <= 1.0);
4430
4431 if (XFASTINT (size) == 0)
4432 size = make_number (1);
4433
4434 /* Allocate a table and initialize it. */
4435 h = allocate_hash_table ();
4436
4437 /* Initialize hash table slots. */
4438 sz = XFASTINT (size);
4439
4440 h->test = test;
4441 if (EQ (test, Qeql))
4442 {
4443 h->cmpfn = cmpfn_eql;
4444 h->hashfn = hashfn_eql;
4445 }
4446 else if (EQ (test, Qeq))
4447 {
4448 h->cmpfn = NULL;
4449 h->hashfn = hashfn_eq;
4450 }
4451 else if (EQ (test, Qequal))
4452 {
4453 h->cmpfn = cmpfn_equal;
4454 h->hashfn = hashfn_equal;
4455 }
4456 else
4457 {
4458 h->user_cmp_function = user_test;
4459 h->user_hash_function = user_hash;
4460 h->cmpfn = cmpfn_user_defined;
4461 h->hashfn = hashfn_user_defined;
4462 }
4463
4464 h->weak = weak;
4465 h->rehash_threshold = rehash_threshold;
4466 h->rehash_size = rehash_size;
4467 h->count = make_number (0);
4468 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
4469 h->hash = Fmake_vector (size, Qnil);
4470 h->next = Fmake_vector (size, Qnil);
4471 /* Cast to int here avoids losing with gcc 2.95 on Tru64/Alpha... */
4472 index_size = next_almost_prime ((int) (sz / XFLOATINT (rehash_threshold)));
4473 h->index = Fmake_vector (make_number (index_size), Qnil);
4474
4475 /* Set up the free list. */
4476 for (i = 0; i < sz - 1; ++i)
4477 HASH_NEXT (h, i) = make_number (i + 1);
4478 h->next_free = make_number (0);
4479
4480 XSET_HASH_TABLE (table, h);
4481 xassert (HASH_TABLE_P (table));
4482 xassert (XHASH_TABLE (table) == h);
4483
4484 /* Maybe add this hash table to the list of all weak hash tables. */
4485 if (NILP (h->weak))
4486 h->next_weak = Qnil;
4487 else
4488 {
4489 h->next_weak = Vweak_hash_tables;
4490 Vweak_hash_tables = table;
4491 }
4492
4493 return table;
4494 }
4495
4496
4497 /* Return a copy of hash table H1. Keys and values are not copied,
4498 only the table itself is. */
4499
4500 Lisp_Object
4501 copy_hash_table (h1)
4502 struct Lisp_Hash_Table *h1;
4503 {
4504 Lisp_Object table;
4505 struct Lisp_Hash_Table *h2;
4506 struct Lisp_Vector *next;
4507
4508 h2 = allocate_hash_table ();
4509 next = h2->vec_next;
4510 bcopy (h1, h2, sizeof *h2);
4511 h2->vec_next = next;
4512 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
4513 h2->hash = Fcopy_sequence (h1->hash);
4514 h2->next = Fcopy_sequence (h1->next);
4515 h2->index = Fcopy_sequence (h1->index);
4516 XSET_HASH_TABLE (table, h2);
4517
4518 /* Maybe add this hash table to the list of all weak hash tables. */
4519 if (!NILP (h2->weak))
4520 {
4521 h2->next_weak = Vweak_hash_tables;
4522 Vweak_hash_tables = table;
4523 }
4524
4525 return table;
4526 }
4527
4528
4529 /* Resize hash table H if it's too full. If H cannot be resized
4530 because it's already too large, throw an error. */
4531
4532 static INLINE void
4533 maybe_resize_hash_table (h)
4534 struct Lisp_Hash_Table *h;
4535 {
4536 if (NILP (h->next_free))
4537 {
4538 int old_size = HASH_TABLE_SIZE (h);
4539 int i, new_size, index_size;
4540
4541 if (INTEGERP (h->rehash_size))
4542 new_size = old_size + XFASTINT (h->rehash_size);
4543 else
4544 new_size = old_size * XFLOATINT (h->rehash_size);
4545 new_size = max (old_size + 1, new_size);
4546 index_size = next_almost_prime ((int)
4547 (new_size
4548 / XFLOATINT (h->rehash_threshold)));
4549 if (max (index_size, 2 * new_size) > MOST_POSITIVE_FIXNUM)
4550 error ("Hash table too large to resize");
4551
4552 h->key_and_value = larger_vector (h->key_and_value, 2 * new_size, Qnil);
4553 h->next = larger_vector (h->next, new_size, Qnil);
4554 h->hash = larger_vector (h->hash, new_size, Qnil);
4555 h->index = Fmake_vector (make_number (index_size), Qnil);
4556
4557 /* Update the free list. Do it so that new entries are added at
4558 the end of the free list. This makes some operations like
4559 maphash faster. */
4560 for (i = old_size; i < new_size - 1; ++i)
4561 HASH_NEXT (h, i) = make_number (i + 1);
4562
4563 if (!NILP (h->next_free))
4564 {
4565 Lisp_Object last, next;
4566
4567 last = h->next_free;
4568 while (next = HASH_NEXT (h, XFASTINT (last)),
4569 !NILP (next))
4570 last = next;
4571
4572 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
4573 }
4574 else
4575 XSETFASTINT (h->next_free, old_size);
4576
4577 /* Rehash. */
4578 for (i = 0; i < old_size; ++i)
4579 if (!NILP (HASH_HASH (h, i)))
4580 {
4581 unsigned hash_code = XUINT (HASH_HASH (h, i));
4582 int start_of_bucket = hash_code % XVECTOR (h->index)->size;
4583 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4584 HASH_INDEX (h, start_of_bucket) = make_number (i);
4585 }
4586 }
4587 }
4588
4589
4590 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
4591 the hash code of KEY. Value is the index of the entry in H
4592 matching KEY, or -1 if not found. */
4593
4594 int
4595 hash_lookup (h, key, hash)
4596 struct Lisp_Hash_Table *h;
4597 Lisp_Object key;
4598 unsigned *hash;
4599 {
4600 unsigned hash_code;
4601 int start_of_bucket;
4602 Lisp_Object idx;
4603
4604 hash_code = h->hashfn (h, key);
4605 if (hash)
4606 *hash = hash_code;
4607
4608 start_of_bucket = hash_code % XVECTOR (h->index)->size;
4609 idx = HASH_INDEX (h, start_of_bucket);
4610
4611 /* We need not gcpro idx since it's either an integer or nil. */
4612 while (!NILP (idx))
4613 {
4614 int i = XFASTINT (idx);
4615 if (EQ (key, HASH_KEY (h, i))
4616 || (h->cmpfn
4617 && h->cmpfn (h, key, hash_code,
4618 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4619 break;
4620 idx = HASH_NEXT (h, i);
4621 }
4622
4623 return NILP (idx) ? -1 : XFASTINT (idx);
4624 }
4625
4626
4627 /* Put an entry into hash table H that associates KEY with VALUE.
4628 HASH is a previously computed hash code of KEY.
4629 Value is the index of the entry in H matching KEY. */
4630
4631 int
4632 hash_put (h, key, value, hash)
4633 struct Lisp_Hash_Table *h;
4634 Lisp_Object key, value;
4635 unsigned hash;
4636 {
4637 int start_of_bucket, i;
4638
4639 xassert ((hash & ~INTMASK) == 0);
4640
4641 /* Increment count after resizing because resizing may fail. */
4642 maybe_resize_hash_table (h);
4643 h->count = make_number (XFASTINT (h->count) + 1);
4644
4645 /* Store key/value in the key_and_value vector. */
4646 i = XFASTINT (h->next_free);
4647 h->next_free = HASH_NEXT (h, i);
4648 HASH_KEY (h, i) = key;
4649 HASH_VALUE (h, i) = value;
4650
4651 /* Remember its hash code. */
4652 HASH_HASH (h, i) = make_number (hash);
4653
4654 /* Add new entry to its collision chain. */
4655 start_of_bucket = hash % XVECTOR (h->index)->size;
4656 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4657 HASH_INDEX (h, start_of_bucket) = make_number (i);
4658 return i;
4659 }
4660
4661
4662 /* Remove the entry matching KEY from hash table H, if there is one. */
4663
4664 void
4665 hash_remove (h, key)
4666 struct Lisp_Hash_Table *h;
4667 Lisp_Object key;
4668 {
4669 unsigned hash_code;
4670 int start_of_bucket;
4671 Lisp_Object idx, prev;
4672
4673 hash_code = h->hashfn (h, key);
4674 start_of_bucket = hash_code % XVECTOR (h->index)->size;
4675 idx = HASH_INDEX (h, start_of_bucket);
4676 prev = Qnil;
4677
4678 /* We need not gcpro idx, prev since they're either integers or nil. */
4679 while (!NILP (idx))
4680 {
4681 int i = XFASTINT (idx);
4682
4683 if (EQ (key, HASH_KEY (h, i))
4684 || (h->cmpfn
4685 && h->cmpfn (h, key, hash_code,
4686 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4687 {
4688 /* Take entry out of collision chain. */
4689 if (NILP (prev))
4690 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
4691 else
4692 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
4693
4694 /* Clear slots in key_and_value and add the slots to
4695 the free list. */
4696 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
4697 HASH_NEXT (h, i) = h->next_free;
4698 h->next_free = make_number (i);
4699 h->count = make_number (XFASTINT (h->count) - 1);
4700 xassert (XINT (h->count) >= 0);
4701 break;
4702 }
4703 else
4704 {
4705 prev = idx;
4706 idx = HASH_NEXT (h, i);
4707 }
4708 }
4709 }
4710
4711
4712 /* Clear hash table H. */
4713
4714 void
4715 hash_clear (h)
4716 struct Lisp_Hash_Table *h;
4717 {
4718 if (XFASTINT (h->count) > 0)
4719 {
4720 int i, size = HASH_TABLE_SIZE (h);
4721
4722 for (i = 0; i < size; ++i)
4723 {
4724 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
4725 HASH_KEY (h, i) = Qnil;
4726 HASH_VALUE (h, i) = Qnil;
4727 HASH_HASH (h, i) = Qnil;
4728 }
4729
4730 for (i = 0; i < XVECTOR (h->index)->size; ++i)
4731 XVECTOR (h->index)->contents[i] = Qnil;
4732
4733 h->next_free = make_number (0);
4734 h->count = make_number (0);
4735 }
4736 }
4737
4738
4739 \f
4740 /************************************************************************
4741 Weak Hash Tables
4742 ************************************************************************/
4743
4744 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
4745 entries from the table that don't survive the current GC.
4746 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
4747 non-zero if anything was marked. */
4748
4749 static int
4750 sweep_weak_table (h, remove_entries_p)
4751 struct Lisp_Hash_Table *h;
4752 int remove_entries_p;
4753 {
4754 int bucket, n, marked;
4755
4756 n = XVECTOR (h->index)->size & ~ARRAY_MARK_FLAG;
4757 marked = 0;
4758
4759 for (bucket = 0; bucket < n; ++bucket)
4760 {
4761 Lisp_Object idx, next, prev;
4762
4763 /* Follow collision chain, removing entries that
4764 don't survive this garbage collection. */
4765 prev = Qnil;
4766 for (idx = HASH_INDEX (h, bucket); !GC_NILP (idx); idx = next)
4767 {
4768 int i = XFASTINT (idx);
4769 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
4770 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
4771 int remove_p;
4772
4773 if (EQ (h->weak, Qkey))
4774 remove_p = !key_known_to_survive_p;
4775 else if (EQ (h->weak, Qvalue))
4776 remove_p = !value_known_to_survive_p;
4777 else if (EQ (h->weak, Qkey_or_value))
4778 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
4779 else if (EQ (h->weak, Qkey_and_value))
4780 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
4781 else
4782 abort ();
4783
4784 next = HASH_NEXT (h, i);
4785
4786 if (remove_entries_p)
4787 {
4788 if (remove_p)
4789 {
4790 /* Take out of collision chain. */
4791 if (GC_NILP (prev))
4792 HASH_INDEX (h, bucket) = next;
4793 else
4794 HASH_NEXT (h, XFASTINT (prev)) = next;
4795
4796 /* Add to free list. */
4797 HASH_NEXT (h, i) = h->next_free;
4798 h->next_free = idx;
4799
4800 /* Clear key, value, and hash. */
4801 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
4802 HASH_HASH (h, i) = Qnil;
4803
4804 h->count = make_number (XFASTINT (h->count) - 1);
4805 }
4806 }
4807 else
4808 {
4809 if (!remove_p)
4810 {
4811 /* Make sure key and value survive. */
4812 if (!key_known_to_survive_p)
4813 {
4814 mark_object (HASH_KEY (h, i));
4815 marked = 1;
4816 }
4817
4818 if (!value_known_to_survive_p)
4819 {
4820 mark_object (HASH_VALUE (h, i));
4821 marked = 1;
4822 }
4823 }
4824 }
4825 }
4826 }
4827
4828 return marked;
4829 }
4830
4831 /* Remove elements from weak hash tables that don't survive the
4832 current garbage collection. Remove weak tables that don't survive
4833 from Vweak_hash_tables. Called from gc_sweep. */
4834
4835 void
4836 sweep_weak_hash_tables ()
4837 {
4838 Lisp_Object table, used, next;
4839 struct Lisp_Hash_Table *h;
4840 int marked;
4841
4842 /* Mark all keys and values that are in use. Keep on marking until
4843 there is no more change. This is necessary for cases like
4844 value-weak table A containing an entry X -> Y, where Y is used in a
4845 key-weak table B, Z -> Y. If B comes after A in the list of weak
4846 tables, X -> Y might be removed from A, although when looking at B
4847 one finds that it shouldn't. */
4848 do
4849 {
4850 marked = 0;
4851 for (table = Vweak_hash_tables; !GC_NILP (table); table = h->next_weak)
4852 {
4853 h = XHASH_TABLE (table);
4854 if (h->size & ARRAY_MARK_FLAG)
4855 marked |= sweep_weak_table (h, 0);
4856 }
4857 }
4858 while (marked);
4859
4860 /* Remove tables and entries that aren't used. */
4861 for (table = Vweak_hash_tables, used = Qnil; !GC_NILP (table); table = next)
4862 {
4863 h = XHASH_TABLE (table);
4864 next = h->next_weak;
4865
4866 if (h->size & ARRAY_MARK_FLAG)
4867 {
4868 /* TABLE is marked as used. Sweep its contents. */
4869 if (XFASTINT (h->count) > 0)
4870 sweep_weak_table (h, 1);
4871
4872 /* Add table to the list of used weak hash tables. */
4873 h->next_weak = used;
4874 used = table;
4875 }
4876 }
4877
4878 Vweak_hash_tables = used;
4879 }
4880
4881
4882 \f
4883 /***********************************************************************
4884 Hash Code Computation
4885 ***********************************************************************/
4886
4887 /* Maximum depth up to which to dive into Lisp structures. */
4888
4889 #define SXHASH_MAX_DEPTH 3
4890
4891 /* Maximum length up to which to take list and vector elements into
4892 account. */
4893
4894 #define SXHASH_MAX_LEN 7
4895
4896 /* Combine two integers X and Y for hashing. */
4897
4898 #define SXHASH_COMBINE(X, Y) \
4899 ((((unsigned)(X) << 4) + (((unsigned)(X) >> 24) & 0x0fffffff)) \
4900 + (unsigned)(Y))
4901
4902
4903 /* Return a hash for string PTR which has length LEN. The hash
4904 code returned is guaranteed to fit in a Lisp integer. */
4905
4906 static unsigned
4907 sxhash_string (ptr, len)
4908 unsigned char *ptr;
4909 int len;
4910 {
4911 unsigned char *p = ptr;
4912 unsigned char *end = p + len;
4913 unsigned char c;
4914 unsigned hash = 0;
4915
4916 while (p != end)
4917 {
4918 c = *p++;
4919 if (c >= 0140)
4920 c -= 40;
4921 hash = ((hash << 3) + (hash >> 28) + c);
4922 }
4923
4924 return hash & INTMASK;
4925 }
4926
4927
4928 /* Return a hash for list LIST. DEPTH is the current depth in the
4929 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4930
4931 static unsigned
4932 sxhash_list (list, depth)
4933 Lisp_Object list;
4934 int depth;
4935 {
4936 unsigned hash = 0;
4937 int i;
4938
4939 if (depth < SXHASH_MAX_DEPTH)
4940 for (i = 0;
4941 CONSP (list) && i < SXHASH_MAX_LEN;
4942 list = XCDR (list), ++i)
4943 {
4944 unsigned hash2 = sxhash (XCAR (list), depth + 1);
4945 hash = SXHASH_COMBINE (hash, hash2);
4946 }
4947
4948 return hash;
4949 }
4950
4951
4952 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4953 the Lisp structure. */
4954
4955 static unsigned
4956 sxhash_vector (vec, depth)
4957 Lisp_Object vec;
4958 int depth;
4959 {
4960 unsigned hash = XVECTOR (vec)->size;
4961 int i, n;
4962
4963 n = min (SXHASH_MAX_LEN, XVECTOR (vec)->size);
4964 for (i = 0; i < n; ++i)
4965 {
4966 unsigned hash2 = sxhash (XVECTOR (vec)->contents[i], depth + 1);
4967 hash = SXHASH_COMBINE (hash, hash2);
4968 }
4969
4970 return hash;
4971 }
4972
4973
4974 /* Return a hash for bool-vector VECTOR. */
4975
4976 static unsigned
4977 sxhash_bool_vector (vec)
4978 Lisp_Object vec;
4979 {
4980 unsigned hash = XBOOL_VECTOR (vec)->size;
4981 int i, n;
4982
4983 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->vector_size);
4984 for (i = 0; i < n; ++i)
4985 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4986
4987 return hash;
4988 }
4989
4990
4991 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4992 structure. Value is an unsigned integer clipped to INTMASK. */
4993
4994 unsigned
4995 sxhash (obj, depth)
4996 Lisp_Object obj;
4997 int depth;
4998 {
4999 unsigned hash;
5000
5001 if (depth > SXHASH_MAX_DEPTH)
5002 return 0;
5003
5004 switch (XTYPE (obj))
5005 {
5006 case Lisp_Int:
5007 hash = XUINT (obj);
5008 break;
5009
5010 case Lisp_Symbol:
5011 hash = sxhash_string (SDATA (SYMBOL_NAME (obj)),
5012 SCHARS (SYMBOL_NAME (obj)));
5013 break;
5014
5015 case Lisp_Misc:
5016 hash = XUINT (obj);
5017 break;
5018
5019 case Lisp_String:
5020 hash = sxhash_string (SDATA (obj), SCHARS (obj));
5021 break;
5022
5023 /* This can be everything from a vector to an overlay. */
5024 case Lisp_Vectorlike:
5025 if (VECTORP (obj))
5026 /* According to the CL HyperSpec, two arrays are equal only if
5027 they are `eq', except for strings and bit-vectors. In
5028 Emacs, this works differently. We have to compare element
5029 by element. */
5030 hash = sxhash_vector (obj, depth);
5031 else if (BOOL_VECTOR_P (obj))
5032 hash = sxhash_bool_vector (obj);
5033 else
5034 /* Others are `equal' if they are `eq', so let's take their
5035 address as hash. */
5036 hash = XUINT (obj);
5037 break;
5038
5039 case Lisp_Cons:
5040 hash = sxhash_list (obj, depth);
5041 break;
5042
5043 case Lisp_Float:
5044 {
5045 unsigned char *p = (unsigned char *) &XFLOAT_DATA (obj);
5046 unsigned char *e = p + sizeof XFLOAT_DATA (obj);
5047 for (hash = 0; p < e; ++p)
5048 hash = SXHASH_COMBINE (hash, *p);
5049 break;
5050 }
5051
5052 default:
5053 abort ();
5054 }
5055
5056 return hash & INTMASK;
5057 }
5058
5059
5060 \f
5061 /***********************************************************************
5062 Lisp Interface
5063 ***********************************************************************/
5064
5065
5066 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
5067 doc: /* Compute a hash code for OBJ and return it as integer. */)
5068 (obj)
5069 Lisp_Object obj;
5070 {
5071 unsigned hash = sxhash (obj, 0);;
5072 return make_number (hash);
5073 }
5074
5075
5076 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
5077 doc: /* Create and return a new hash table.
5078
5079 Arguments are specified as keyword/argument pairs. The following
5080 arguments are defined:
5081
5082 :test TEST -- TEST must be a symbol that specifies how to compare
5083 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
5084 `equal'. User-supplied test and hash functions can be specified via
5085 `define-hash-table-test'.
5086
5087 :size SIZE -- A hint as to how many elements will be put in the table.
5088 Default is 65.
5089
5090 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
5091 fills up. If REHASH-SIZE is an integer, add that many space. If it
5092 is a float, it must be > 1.0, and the new size is computed by
5093 multiplying the old size with that factor. Default is 1.5.
5094
5095 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
5096 Resize the hash table when ratio of the number of entries in the
5097 table. Default is 0.8.
5098
5099 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
5100 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
5101 returned is a weak table. Key/value pairs are removed from a weak
5102 hash table when there are no non-weak references pointing to their
5103 key, value, one of key or value, or both key and value, depending on
5104 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
5105 is nil.
5106
5107 usage: (make-hash-table &rest KEYWORD-ARGS) */)
5108 (nargs, args)
5109 int nargs;
5110 Lisp_Object *args;
5111 {
5112 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
5113 Lisp_Object user_test, user_hash;
5114 char *used;
5115 int i;
5116
5117 /* The vector `used' is used to keep track of arguments that
5118 have been consumed. */
5119 used = (char *) alloca (nargs * sizeof *used);
5120 bzero (used, nargs * sizeof *used);
5121
5122 /* See if there's a `:test TEST' among the arguments. */
5123 i = get_key_arg (QCtest, nargs, args, used);
5124 test = i < 0 ? Qeql : args[i];
5125 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
5126 {
5127 /* See if it is a user-defined test. */
5128 Lisp_Object prop;
5129
5130 prop = Fget (test, Qhash_table_test);
5131 if (!CONSP (prop) || !CONSP (XCDR (prop)))
5132 Fsignal (Qerror, list2 (build_string ("Invalid hash table test"),
5133 test));
5134 user_test = XCAR (prop);
5135 user_hash = XCAR (XCDR (prop));
5136 }
5137 else
5138 user_test = user_hash = Qnil;
5139
5140 /* See if there's a `:size SIZE' argument. */
5141 i = get_key_arg (QCsize, nargs, args, used);
5142 size = i < 0 ? Qnil : args[i];
5143 if (NILP (size))
5144 size = make_number (DEFAULT_HASH_SIZE);
5145 else if (!INTEGERP (size) || XINT (size) < 0)
5146 Fsignal (Qerror,
5147 list2 (build_string ("Invalid hash table size"),
5148 size));
5149
5150 /* Look for `:rehash-size SIZE'. */
5151 i = get_key_arg (QCrehash_size, nargs, args, used);
5152 rehash_size = i < 0 ? make_float (DEFAULT_REHASH_SIZE) : args[i];
5153 if (!NUMBERP (rehash_size)
5154 || (INTEGERP (rehash_size) && XINT (rehash_size) <= 0)
5155 || XFLOATINT (rehash_size) <= 1.0)
5156 Fsignal (Qerror,
5157 list2 (build_string ("Invalid hash table rehash size"),
5158 rehash_size));
5159
5160 /* Look for `:rehash-threshold THRESHOLD'. */
5161 i = get_key_arg (QCrehash_threshold, nargs, args, used);
5162 rehash_threshold = i < 0 ? make_float (DEFAULT_REHASH_THRESHOLD) : args[i];
5163 if (!FLOATP (rehash_threshold)
5164 || XFLOATINT (rehash_threshold) <= 0.0
5165 || XFLOATINT (rehash_threshold) > 1.0)
5166 Fsignal (Qerror,
5167 list2 (build_string ("Invalid hash table rehash threshold"),
5168 rehash_threshold));
5169
5170 /* Look for `:weakness WEAK'. */
5171 i = get_key_arg (QCweakness, nargs, args, used);
5172 weak = i < 0 ? Qnil : args[i];
5173 if (EQ (weak, Qt))
5174 weak = Qkey_and_value;
5175 if (!NILP (weak)
5176 && !EQ (weak, Qkey)
5177 && !EQ (weak, Qvalue)
5178 && !EQ (weak, Qkey_or_value)
5179 && !EQ (weak, Qkey_and_value))
5180 Fsignal (Qerror, list2 (build_string ("Invalid hash table weakness"),
5181 weak));
5182
5183 /* Now, all args should have been used up, or there's a problem. */
5184 for (i = 0; i < nargs; ++i)
5185 if (!used[i])
5186 Fsignal (Qerror,
5187 list2 (build_string ("Invalid argument list"), args[i]));
5188
5189 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
5190 user_test, user_hash);
5191 }
5192
5193
5194 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
5195 doc: /* Return a copy of hash table TABLE. */)
5196 (table)
5197 Lisp_Object table;
5198 {
5199 return copy_hash_table (check_hash_table (table));
5200 }
5201
5202
5203 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
5204 doc: /* Return the number of elements in TABLE. */)
5205 (table)
5206 Lisp_Object table;
5207 {
5208 return check_hash_table (table)->count;
5209 }
5210
5211
5212 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
5213 Shash_table_rehash_size, 1, 1, 0,
5214 doc: /* Return the current rehash size of TABLE. */)
5215 (table)
5216 Lisp_Object table;
5217 {
5218 return check_hash_table (table)->rehash_size;
5219 }
5220
5221
5222 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
5223 Shash_table_rehash_threshold, 1, 1, 0,
5224 doc: /* Return the current rehash threshold of TABLE. */)
5225 (table)
5226 Lisp_Object table;
5227 {
5228 return check_hash_table (table)->rehash_threshold;
5229 }
5230
5231
5232 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
5233 doc: /* Return the size of TABLE.
5234 The size can be used as an argument to `make-hash-table' to create
5235 a hash table than can hold as many elements of TABLE holds
5236 without need for resizing. */)
5237 (table)
5238 Lisp_Object table;
5239 {
5240 struct Lisp_Hash_Table *h = check_hash_table (table);
5241 return make_number (HASH_TABLE_SIZE (h));
5242 }
5243
5244
5245 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
5246 doc: /* Return the test TABLE uses. */)
5247 (table)
5248 Lisp_Object table;
5249 {
5250 return check_hash_table (table)->test;
5251 }
5252
5253
5254 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
5255 1, 1, 0,
5256 doc: /* Return the weakness of TABLE. */)
5257 (table)
5258 Lisp_Object table;
5259 {
5260 return check_hash_table (table)->weak;
5261 }
5262
5263
5264 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
5265 doc: /* Return t if OBJ is a Lisp hash table object. */)
5266 (obj)
5267 Lisp_Object obj;
5268 {
5269 return HASH_TABLE_P (obj) ? Qt : Qnil;
5270 }
5271
5272
5273 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
5274 doc: /* Clear hash table TABLE. */)
5275 (table)
5276 Lisp_Object table;
5277 {
5278 hash_clear (check_hash_table (table));
5279 return Qnil;
5280 }
5281
5282
5283 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
5284 doc: /* Look up KEY in TABLE and return its associated value.
5285 If KEY is not found, return DFLT which defaults to nil. */)
5286 (key, table, dflt)
5287 Lisp_Object key, table, dflt;
5288 {
5289 struct Lisp_Hash_Table *h = check_hash_table (table);
5290 int i = hash_lookup (h, key, NULL);
5291 return i >= 0 ? HASH_VALUE (h, i) : dflt;
5292 }
5293
5294
5295 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
5296 doc: /* Associate KEY with VALUE in hash table TABLE.
5297 If KEY is already present in table, replace its current value with
5298 VALUE. */)
5299 (key, value, table)
5300 Lisp_Object key, value, table;
5301 {
5302 struct Lisp_Hash_Table *h = check_hash_table (table);
5303 int i;
5304 unsigned hash;
5305
5306 i = hash_lookup (h, key, &hash);
5307 if (i >= 0)
5308 HASH_VALUE (h, i) = value;
5309 else
5310 hash_put (h, key, value, hash);
5311
5312 return value;
5313 }
5314
5315
5316 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
5317 doc: /* Remove KEY from TABLE. */)
5318 (key, table)
5319 Lisp_Object key, table;
5320 {
5321 struct Lisp_Hash_Table *h = check_hash_table (table);
5322 hash_remove (h, key);
5323 return Qnil;
5324 }
5325
5326
5327 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
5328 doc: /* Call FUNCTION for all entries in hash table TABLE.
5329 FUNCTION is called with 2 arguments KEY and VALUE. */)
5330 (function, table)
5331 Lisp_Object function, table;
5332 {
5333 struct Lisp_Hash_Table *h = check_hash_table (table);
5334 Lisp_Object args[3];
5335 int i;
5336
5337 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
5338 if (!NILP (HASH_HASH (h, i)))
5339 {
5340 args[0] = function;
5341 args[1] = HASH_KEY (h, i);
5342 args[2] = HASH_VALUE (h, i);
5343 Ffuncall (3, args);
5344 }
5345
5346 return Qnil;
5347 }
5348
5349
5350 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
5351 Sdefine_hash_table_test, 3, 3, 0,
5352 doc: /* Define a new hash table test with name NAME, a symbol.
5353
5354 In hash tables created with NAME specified as test, use TEST to
5355 compare keys, and HASH for computing hash codes of keys.
5356
5357 TEST must be a function taking two arguments and returning non-nil if
5358 both arguments are the same. HASH must be a function taking one
5359 argument and return an integer that is the hash code of the argument.
5360 Hash code computation should use the whole value range of integers,
5361 including negative integers. */)
5362 (name, test, hash)
5363 Lisp_Object name, test, hash;
5364 {
5365 return Fput (name, Qhash_table_test, list2 (test, hash));
5366 }
5367
5368
5369 \f
5370 /************************************************************************
5371 MD5
5372 ************************************************************************/
5373
5374 #include "md5.h"
5375 #include "coding.h"
5376
5377 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
5378 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
5379
5380 A message digest is a cryptographic checksum of a document, and the
5381 algorithm to calculate it is defined in RFC 1321.
5382
5383 The two optional arguments START and END are character positions
5384 specifying for which part of OBJECT the message digest should be
5385 computed. If nil or omitted, the digest is computed for the whole
5386 OBJECT.
5387
5388 The MD5 message digest is computed from the result of encoding the
5389 text in a coding system, not directly from the internal Emacs form of
5390 the text. The optional fourth argument CODING-SYSTEM specifies which
5391 coding system to encode the text with. It should be the same coding
5392 system that you used or will use when actually writing the text into a
5393 file.
5394
5395 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
5396 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
5397 system would be chosen by default for writing this text into a file.
5398
5399 If OBJECT is a string, the most preferred coding system (see the
5400 command `prefer-coding-system') is used.
5401
5402 If NOERROR is non-nil, silently assume the `raw-text' coding if the
5403 guesswork fails. Normally, an error is signaled in such case. */)
5404 (object, start, end, coding_system, noerror)
5405 Lisp_Object object, start, end, coding_system, noerror;
5406 {
5407 unsigned char digest[16];
5408 unsigned char value[33];
5409 int i;
5410 int size;
5411 int size_byte = 0;
5412 int start_char = 0, end_char = 0;
5413 int start_byte = 0, end_byte = 0;
5414 register int b, e;
5415 register struct buffer *bp;
5416 int temp;
5417
5418 if (STRINGP (object))
5419 {
5420 if (NILP (coding_system))
5421 {
5422 /* Decide the coding-system to encode the data with. */
5423
5424 if (STRING_MULTIBYTE (object))
5425 /* use default, we can't guess correct value */
5426 coding_system = SYMBOL_VALUE (XCAR (Vcoding_category_list));
5427 else
5428 coding_system = Qraw_text;
5429 }
5430
5431 if (NILP (Fcoding_system_p (coding_system)))
5432 {
5433 /* Invalid coding system. */
5434
5435 if (!NILP (noerror))
5436 coding_system = Qraw_text;
5437 else
5438 while (1)
5439 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
5440 }
5441
5442 if (STRING_MULTIBYTE (object))
5443 object = code_convert_string1 (object, coding_system, Qnil, 1);
5444
5445 size = SCHARS (object);
5446 size_byte = SBYTES (object);
5447
5448 if (!NILP (start))
5449 {
5450 CHECK_NUMBER (start);
5451
5452 start_char = XINT (start);
5453
5454 if (start_char < 0)
5455 start_char += size;
5456
5457 start_byte = string_char_to_byte (object, start_char);
5458 }
5459
5460 if (NILP (end))
5461 {
5462 end_char = size;
5463 end_byte = size_byte;
5464 }
5465 else
5466 {
5467 CHECK_NUMBER (end);
5468
5469 end_char = XINT (end);
5470
5471 if (end_char < 0)
5472 end_char += size;
5473
5474 end_byte = string_char_to_byte (object, end_char);
5475 }
5476
5477 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
5478 args_out_of_range_3 (object, make_number (start_char),
5479 make_number (end_char));
5480 }
5481 else
5482 {
5483 struct buffer *prev = current_buffer;
5484
5485 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
5486
5487 CHECK_BUFFER (object);
5488
5489 bp = XBUFFER (object);
5490 if (bp != current_buffer)
5491 set_buffer_internal (bp);
5492
5493 if (NILP (start))
5494 b = BEGV;
5495 else
5496 {
5497 CHECK_NUMBER_COERCE_MARKER (start);
5498 b = XINT (start);
5499 }
5500
5501 if (NILP (end))
5502 e = ZV;
5503 else
5504 {
5505 CHECK_NUMBER_COERCE_MARKER (end);
5506 e = XINT (end);
5507 }
5508
5509 if (b > e)
5510 temp = b, b = e, e = temp;
5511
5512 if (!(BEGV <= b && e <= ZV))
5513 args_out_of_range (start, end);
5514
5515 if (NILP (coding_system))
5516 {
5517 /* Decide the coding-system to encode the data with.
5518 See fileio.c:Fwrite-region */
5519
5520 if (!NILP (Vcoding_system_for_write))
5521 coding_system = Vcoding_system_for_write;
5522 else
5523 {
5524 int force_raw_text = 0;
5525
5526 coding_system = XBUFFER (object)->buffer_file_coding_system;
5527 if (NILP (coding_system)
5528 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
5529 {
5530 coding_system = Qnil;
5531 if (NILP (current_buffer->enable_multibyte_characters))
5532 force_raw_text = 1;
5533 }
5534
5535 if (NILP (coding_system) && !NILP (Fbuffer_file_name(object)))
5536 {
5537 /* Check file-coding-system-alist. */
5538 Lisp_Object args[4], val;
5539
5540 args[0] = Qwrite_region; args[1] = start; args[2] = end;
5541 args[3] = Fbuffer_file_name(object);
5542 val = Ffind_operation_coding_system (4, args);
5543 if (CONSP (val) && !NILP (XCDR (val)))
5544 coding_system = XCDR (val);
5545 }
5546
5547 if (NILP (coding_system)
5548 && !NILP (XBUFFER (object)->buffer_file_coding_system))
5549 {
5550 /* If we still have not decided a coding system, use the
5551 default value of buffer-file-coding-system. */
5552 coding_system = XBUFFER (object)->buffer_file_coding_system;
5553 }
5554
5555 if (!force_raw_text
5556 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
5557 /* Confirm that VAL can surely encode the current region. */
5558 coding_system = call4 (Vselect_safe_coding_system_function,
5559 make_number (b), make_number (e),
5560 coding_system, Qnil);
5561
5562 if (force_raw_text)
5563 coding_system = Qraw_text;
5564 }
5565
5566 if (NILP (Fcoding_system_p (coding_system)))
5567 {
5568 /* Invalid coding system. */
5569
5570 if (!NILP (noerror))
5571 coding_system = Qraw_text;
5572 else
5573 while (1)
5574 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
5575 }
5576 }
5577
5578 object = make_buffer_string (b, e, 0);
5579 if (prev != current_buffer)
5580 set_buffer_internal (prev);
5581 /* Discard the unwind protect for recovering the current
5582 buffer. */
5583 specpdl_ptr--;
5584
5585 if (STRING_MULTIBYTE (object))
5586 object = code_convert_string1 (object, coding_system, Qnil, 1);
5587 }
5588
5589 md5_buffer (SDATA (object) + start_byte,
5590 SBYTES (object) - (size_byte - end_byte),
5591 digest);
5592
5593 for (i = 0; i < 16; i++)
5594 sprintf (&value[2 * i], "%02x", digest[i]);
5595 value[32] = '\0';
5596
5597 return make_string (value, 32);
5598 }
5599
5600 \f
5601 void
5602 syms_of_fns ()
5603 {
5604 /* Hash table stuff. */
5605 Qhash_table_p = intern ("hash-table-p");
5606 staticpro (&Qhash_table_p);
5607 Qeq = intern ("eq");
5608 staticpro (&Qeq);
5609 Qeql = intern ("eql");
5610 staticpro (&Qeql);
5611 Qequal = intern ("equal");
5612 staticpro (&Qequal);
5613 QCtest = intern (":test");
5614 staticpro (&QCtest);
5615 QCsize = intern (":size");
5616 staticpro (&QCsize);
5617 QCrehash_size = intern (":rehash-size");
5618 staticpro (&QCrehash_size);
5619 QCrehash_threshold = intern (":rehash-threshold");
5620 staticpro (&QCrehash_threshold);
5621 QCweakness = intern (":weakness");
5622 staticpro (&QCweakness);
5623 Qkey = intern ("key");
5624 staticpro (&Qkey);
5625 Qvalue = intern ("value");
5626 staticpro (&Qvalue);
5627 Qhash_table_test = intern ("hash-table-test");
5628 staticpro (&Qhash_table_test);
5629 Qkey_or_value = intern ("key-or-value");
5630 staticpro (&Qkey_or_value);
5631 Qkey_and_value = intern ("key-and-value");
5632 staticpro (&Qkey_and_value);
5633
5634 defsubr (&Ssxhash);
5635 defsubr (&Smake_hash_table);
5636 defsubr (&Scopy_hash_table);
5637 defsubr (&Shash_table_count);
5638 defsubr (&Shash_table_rehash_size);
5639 defsubr (&Shash_table_rehash_threshold);
5640 defsubr (&Shash_table_size);
5641 defsubr (&Shash_table_test);
5642 defsubr (&Shash_table_weakness);
5643 defsubr (&Shash_table_p);
5644 defsubr (&Sclrhash);
5645 defsubr (&Sgethash);
5646 defsubr (&Sputhash);
5647 defsubr (&Sremhash);
5648 defsubr (&Smaphash);
5649 defsubr (&Sdefine_hash_table_test);
5650
5651 Qstring_lessp = intern ("string-lessp");
5652 staticpro (&Qstring_lessp);
5653 Qprovide = intern ("provide");
5654 staticpro (&Qprovide);
5655 Qrequire = intern ("require");
5656 staticpro (&Qrequire);
5657 Qyes_or_no_p_history = intern ("yes-or-no-p-history");
5658 staticpro (&Qyes_or_no_p_history);
5659 Qcursor_in_echo_area = intern ("cursor-in-echo-area");
5660 staticpro (&Qcursor_in_echo_area);
5661 Qwidget_type = intern ("widget-type");
5662 staticpro (&Qwidget_type);
5663
5664 staticpro (&string_char_byte_cache_string);
5665 string_char_byte_cache_string = Qnil;
5666
5667 require_nesting_list = Qnil;
5668 staticpro (&require_nesting_list);
5669
5670 Fset (Qyes_or_no_p_history, Qnil);
5671
5672 DEFVAR_LISP ("features", &Vfeatures,
5673 doc: /* A list of symbols which are the features of the executing emacs.
5674 Used by `featurep' and `require', and altered by `provide'. */);
5675 Vfeatures = Qnil;
5676 Qsubfeatures = intern ("subfeatures");
5677 staticpro (&Qsubfeatures);
5678
5679 #ifdef HAVE_LANGINFO_CODESET
5680 Qcodeset = intern ("codeset");
5681 staticpro (&Qcodeset);
5682 Qdays = intern ("days");
5683 staticpro (&Qdays);
5684 Qmonths = intern ("months");
5685 staticpro (&Qmonths);
5686 Qpaper = intern ("paper");
5687 staticpro (&Qpaper);
5688 #endif /* HAVE_LANGINFO_CODESET */
5689
5690 DEFVAR_BOOL ("use-dialog-box", &use_dialog_box,
5691 doc: /* *Non-nil means mouse commands use dialog boxes to ask questions.
5692 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
5693 invoked by mouse clicks and mouse menu items. */);
5694 use_dialog_box = 1;
5695
5696 DEFVAR_BOOL ("use-file-dialog", &use_file_dialog,
5697 doc: /* *Non-nil means mouse commands use a file dialog to ask for files.
5698 This applies to commands from menus and tool bar buttons. The value of
5699 `use-dialog-box' takes precedence over this variable, so a file dialog is only
5700 used if both `use-dialog-box' and this variable are non-nil. */);
5701 use_file_dialog = 1;
5702
5703 defsubr (&Sidentity);
5704 defsubr (&Srandom);
5705 defsubr (&Slength);
5706 defsubr (&Ssafe_length);
5707 defsubr (&Sstring_bytes);
5708 defsubr (&Sstring_equal);
5709 defsubr (&Scompare_strings);
5710 defsubr (&Sstring_lessp);
5711 defsubr (&Sappend);
5712 defsubr (&Sconcat);
5713 defsubr (&Svconcat);
5714 defsubr (&Scopy_sequence);
5715 defsubr (&Sstring_make_multibyte);
5716 defsubr (&Sstring_make_unibyte);
5717 defsubr (&Sstring_as_multibyte);
5718 defsubr (&Sstring_as_unibyte);
5719 defsubr (&Sstring_to_multibyte);
5720 defsubr (&Scopy_alist);
5721 defsubr (&Ssubstring);
5722 defsubr (&Ssubstring_no_properties);
5723 defsubr (&Snthcdr);
5724 defsubr (&Snth);
5725 defsubr (&Selt);
5726 defsubr (&Smember);
5727 defsubr (&Smemq);
5728 defsubr (&Sassq);
5729 defsubr (&Sassoc);
5730 defsubr (&Srassq);
5731 defsubr (&Srassoc);
5732 defsubr (&Sdelq);
5733 defsubr (&Sdelete);
5734 defsubr (&Snreverse);
5735 defsubr (&Sreverse);
5736 defsubr (&Ssort);
5737 defsubr (&Splist_get);
5738 defsubr (&Sget);
5739 defsubr (&Splist_put);
5740 defsubr (&Sput);
5741 defsubr (&Slax_plist_get);
5742 defsubr (&Slax_plist_put);
5743 defsubr (&Seql);
5744 defsubr (&Sequal);
5745 defsubr (&Sequal_including_properties);
5746 defsubr (&Sfillarray);
5747 defsubr (&Sclear_string);
5748 defsubr (&Schar_table_subtype);
5749 defsubr (&Schar_table_parent);
5750 defsubr (&Sset_char_table_parent);
5751 defsubr (&Schar_table_extra_slot);
5752 defsubr (&Sset_char_table_extra_slot);
5753 defsubr (&Schar_table_range);
5754 defsubr (&Sset_char_table_range);
5755 defsubr (&Sset_char_table_default);
5756 defsubr (&Soptimize_char_table);
5757 defsubr (&Smap_char_table);
5758 defsubr (&Snconc);
5759 defsubr (&Smapcar);
5760 defsubr (&Smapc);
5761 defsubr (&Smapconcat);
5762 defsubr (&Sy_or_n_p);
5763 defsubr (&Syes_or_no_p);
5764 defsubr (&Sload_average);
5765 defsubr (&Sfeaturep);
5766 defsubr (&Srequire);
5767 defsubr (&Sprovide);
5768 defsubr (&Splist_member);
5769 defsubr (&Swidget_put);
5770 defsubr (&Swidget_get);
5771 defsubr (&Swidget_apply);
5772 defsubr (&Sbase64_encode_region);
5773 defsubr (&Sbase64_decode_region);
5774 defsubr (&Sbase64_encode_string);
5775 defsubr (&Sbase64_decode_string);
5776 defsubr (&Smd5);
5777 defsubr (&Slocale_info);
5778 }
5779
5780
5781 void
5782 init_fns ()
5783 {
5784 Vweak_hash_tables = Qnil;
5785 }
5786
5787 /* arch-tag: 787f8219-5b74-46bd-8469-7e1cc475fa31
5788 (do not change this comment) */