]> code.delx.au - gnu-emacs/blob - src/alloc.c
Merge from emacs--rel--22
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22 #include <stdio.h>
23 #include <limits.h> /* For CHAR_BIT. */
24
25 #ifdef STDC_HEADERS
26 #include <stddef.h> /* For offsetof, used by PSEUDOVECSIZE. */
27 #endif
28
29 #ifdef ALLOC_DEBUG
30 #undef INLINE
31 #endif
32
33 /* Note that this declares bzero on OSF/1. How dumb. */
34
35 #include <signal.h>
36
37 #ifdef HAVE_GTK_AND_PTHREAD
38 #include <pthread.h>
39 #endif
40
41 /* This file is part of the core Lisp implementation, and thus must
42 deal with the real data structures. If the Lisp implementation is
43 replaced, this file likely will not be used. */
44
45 #undef HIDE_LISP_IMPLEMENTATION
46 #include "lisp.h"
47 #include "process.h"
48 #include "intervals.h"
49 #include "puresize.h"
50 #include "buffer.h"
51 #include "window.h"
52 #include "keyboard.h"
53 #include "frame.h"
54 #include "blockinput.h"
55 #include "character.h"
56 #include "syssignal.h"
57 #include "termhooks.h" /* For struct terminal. */
58 #include <setjmp.h>
59
60 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
61 memory. Can do this only if using gmalloc.c. */
62
63 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
64 #undef GC_MALLOC_CHECK
65 #endif
66
67 #ifdef HAVE_UNISTD_H
68 #include <unistd.h>
69 #else
70 extern POINTER_TYPE *sbrk ();
71 #endif
72
73 #ifdef HAVE_FCNTL_H
74 #define INCLUDED_FCNTL
75 #include <fcntl.h>
76 #endif
77 #ifndef O_WRONLY
78 #define O_WRONLY 1
79 #endif
80
81 #ifdef WINDOWSNT
82 #include <fcntl.h>
83 #include "w32.h"
84 #endif
85
86 #ifdef DOUG_LEA_MALLOC
87
88 #include <malloc.h>
89 /* malloc.h #defines this as size_t, at least in glibc2. */
90 #ifndef __malloc_size_t
91 #define __malloc_size_t int
92 #endif
93
94 /* Specify maximum number of areas to mmap. It would be nice to use a
95 value that explicitly means "no limit". */
96
97 #define MMAP_MAX_AREAS 100000000
98
99 #else /* not DOUG_LEA_MALLOC */
100
101 /* The following come from gmalloc.c. */
102
103 #define __malloc_size_t size_t
104 extern __malloc_size_t _bytes_used;
105 extern __malloc_size_t __malloc_extra_blocks;
106
107 #endif /* not DOUG_LEA_MALLOC */
108
109 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
110
111 /* When GTK uses the file chooser dialog, different backends can be loaded
112 dynamically. One such a backend is the Gnome VFS backend that gets loaded
113 if you run Gnome. That backend creates several threads and also allocates
114 memory with malloc.
115
116 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
117 functions below are called from malloc, there is a chance that one
118 of these threads preempts the Emacs main thread and the hook variables
119 end up in an inconsistent state. So we have a mutex to prevent that (note
120 that the backend handles concurrent access to malloc within its own threads
121 but Emacs code running in the main thread is not included in that control).
122
123 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
124 happens in one of the backend threads we will have two threads that tries
125 to run Emacs code at once, and the code is not prepared for that.
126 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
127
128 static pthread_mutex_t alloc_mutex;
129
130 #define BLOCK_INPUT_ALLOC \
131 do \
132 { \
133 if (pthread_equal (pthread_self (), main_thread)) \
134 BLOCK_INPUT; \
135 pthread_mutex_lock (&alloc_mutex); \
136 } \
137 while (0)
138 #define UNBLOCK_INPUT_ALLOC \
139 do \
140 { \
141 pthread_mutex_unlock (&alloc_mutex); \
142 if (pthread_equal (pthread_self (), main_thread)) \
143 UNBLOCK_INPUT; \
144 } \
145 while (0)
146
147 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
148
149 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
150 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
151
152 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
153
154 /* Value of _bytes_used, when spare_memory was freed. */
155
156 static __malloc_size_t bytes_used_when_full;
157
158 static __malloc_size_t bytes_used_when_reconsidered;
159
160 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
161 to a struct Lisp_String. */
162
163 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
164 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
165 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
166
167 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
168 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
169 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
170
171 /* Value is the number of bytes/chars of S, a pointer to a struct
172 Lisp_String. This must be used instead of STRING_BYTES (S) or
173 S->size during GC, because S->size contains the mark bit for
174 strings. */
175
176 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
177 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
178
179 /* Number of bytes of consing done since the last gc. */
180
181 int consing_since_gc;
182
183 /* Count the amount of consing of various sorts of space. */
184
185 EMACS_INT cons_cells_consed;
186 EMACS_INT floats_consed;
187 EMACS_INT vector_cells_consed;
188 EMACS_INT symbols_consed;
189 EMACS_INT string_chars_consed;
190 EMACS_INT misc_objects_consed;
191 EMACS_INT intervals_consed;
192 EMACS_INT strings_consed;
193
194 /* Minimum number of bytes of consing since GC before next GC. */
195
196 EMACS_INT gc_cons_threshold;
197
198 /* Similar minimum, computed from Vgc_cons_percentage. */
199
200 EMACS_INT gc_relative_threshold;
201
202 static Lisp_Object Vgc_cons_percentage;
203
204 /* Minimum number of bytes of consing since GC before next GC,
205 when memory is full. */
206
207 EMACS_INT memory_full_cons_threshold;
208
209 /* Nonzero during GC. */
210
211 int gc_in_progress;
212
213 /* Nonzero means abort if try to GC.
214 This is for code which is written on the assumption that
215 no GC will happen, so as to verify that assumption. */
216
217 int abort_on_gc;
218
219 /* Nonzero means display messages at beginning and end of GC. */
220
221 int garbage_collection_messages;
222
223 #ifndef VIRT_ADDR_VARIES
224 extern
225 #endif /* VIRT_ADDR_VARIES */
226 int malloc_sbrk_used;
227
228 #ifndef VIRT_ADDR_VARIES
229 extern
230 #endif /* VIRT_ADDR_VARIES */
231 int malloc_sbrk_unused;
232
233 /* Number of live and free conses etc. */
234
235 static int total_conses, total_markers, total_symbols, total_vector_size;
236 static int total_free_conses, total_free_markers, total_free_symbols;
237 static int total_free_floats, total_floats;
238
239 /* Points to memory space allocated as "spare", to be freed if we run
240 out of memory. We keep one large block, four cons-blocks, and
241 two string blocks. */
242
243 static char *spare_memory[7];
244
245 /* Amount of spare memory to keep in large reserve block. */
246
247 #define SPARE_MEMORY (1 << 14)
248
249 /* Number of extra blocks malloc should get when it needs more core. */
250
251 static int malloc_hysteresis;
252
253 /* Non-nil means defun should do purecopy on the function definition. */
254
255 Lisp_Object Vpurify_flag;
256
257 /* Non-nil means we are handling a memory-full error. */
258
259 Lisp_Object Vmemory_full;
260
261 #ifndef HAVE_SHM
262
263 /* Initialize it to a nonzero value to force it into data space
264 (rather than bss space). That way unexec will remap it into text
265 space (pure), on some systems. We have not implemented the
266 remapping on more recent systems because this is less important
267 nowadays than in the days of small memories and timesharing. */
268
269 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
270 #define PUREBEG (char *) pure
271
272 #else /* HAVE_SHM */
273
274 #define pure PURE_SEG_BITS /* Use shared memory segment */
275 #define PUREBEG (char *)PURE_SEG_BITS
276
277 #endif /* HAVE_SHM */
278
279 /* Pointer to the pure area, and its size. */
280
281 static char *purebeg;
282 static size_t pure_size;
283
284 /* Number of bytes of pure storage used before pure storage overflowed.
285 If this is non-zero, this implies that an overflow occurred. */
286
287 static size_t pure_bytes_used_before_overflow;
288
289 /* Value is non-zero if P points into pure space. */
290
291 #define PURE_POINTER_P(P) \
292 (((PNTR_COMPARISON_TYPE) (P) \
293 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
294 && ((PNTR_COMPARISON_TYPE) (P) \
295 >= (PNTR_COMPARISON_TYPE) purebeg))
296
297 /* Total number of bytes allocated in pure storage. */
298
299 EMACS_INT pure_bytes_used;
300
301 /* Index in pure at which next pure Lisp object will be allocated.. */
302
303 static EMACS_INT pure_bytes_used_lisp;
304
305 /* Number of bytes allocated for non-Lisp objects in pure storage. */
306
307 static EMACS_INT pure_bytes_used_non_lisp;
308
309 /* If nonzero, this is a warning delivered by malloc and not yet
310 displayed. */
311
312 char *pending_malloc_warning;
313
314 /* Pre-computed signal argument for use when memory is exhausted. */
315
316 Lisp_Object Vmemory_signal_data;
317
318 /* Maximum amount of C stack to save when a GC happens. */
319
320 #ifndef MAX_SAVE_STACK
321 #define MAX_SAVE_STACK 16000
322 #endif
323
324 /* Buffer in which we save a copy of the C stack at each GC. */
325
326 static char *stack_copy;
327 static int stack_copy_size;
328
329 /* Non-zero means ignore malloc warnings. Set during initialization.
330 Currently not used. */
331
332 static int ignore_warnings;
333
334 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
335
336 /* Hook run after GC has finished. */
337
338 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
339
340 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
341 EMACS_INT gcs_done; /* accumulated GCs */
342
343 static void mark_buffer P_ ((Lisp_Object));
344 static void mark_terminals P_ ((void));
345 extern void mark_kboards P_ ((void));
346 extern void mark_ttys P_ ((void));
347 extern void mark_backtrace P_ ((void));
348 static void gc_sweep P_ ((void));
349 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
350 static void mark_face_cache P_ ((struct face_cache *));
351
352 #ifdef HAVE_WINDOW_SYSTEM
353 extern void mark_fringe_data P_ ((void));
354 #endif /* HAVE_WINDOW_SYSTEM */
355
356 static struct Lisp_String *allocate_string P_ ((void));
357 static void compact_small_strings P_ ((void));
358 static void free_large_strings P_ ((void));
359 static void sweep_strings P_ ((void));
360
361 extern int message_enable_multibyte;
362
363 /* When scanning the C stack for live Lisp objects, Emacs keeps track
364 of what memory allocated via lisp_malloc is intended for what
365 purpose. This enumeration specifies the type of memory. */
366
367 enum mem_type
368 {
369 MEM_TYPE_NON_LISP,
370 MEM_TYPE_BUFFER,
371 MEM_TYPE_CONS,
372 MEM_TYPE_STRING,
373 MEM_TYPE_MISC,
374 MEM_TYPE_SYMBOL,
375 MEM_TYPE_FLOAT,
376 /* We used to keep separate mem_types for subtypes of vectors such as
377 process, hash_table, frame, terminal, and window, but we never made
378 use of the distinction, so it only caused source-code complexity
379 and runtime slowdown. Minor but pointless. */
380 MEM_TYPE_VECTORLIKE
381 };
382
383 static POINTER_TYPE *lisp_align_malloc P_ ((size_t, enum mem_type));
384 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
385 void refill_memory_reserve ();
386
387
388 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
389
390 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
391 #include <stdio.h> /* For fprintf. */
392 #endif
393
394 /* A unique object in pure space used to make some Lisp objects
395 on free lists recognizable in O(1). */
396
397 static Lisp_Object Vdead;
398
399 #ifdef GC_MALLOC_CHECK
400
401 enum mem_type allocated_mem_type;
402 static int dont_register_blocks;
403
404 #endif /* GC_MALLOC_CHECK */
405
406 /* A node in the red-black tree describing allocated memory containing
407 Lisp data. Each such block is recorded with its start and end
408 address when it is allocated, and removed from the tree when it
409 is freed.
410
411 A red-black tree is a balanced binary tree with the following
412 properties:
413
414 1. Every node is either red or black.
415 2. Every leaf is black.
416 3. If a node is red, then both of its children are black.
417 4. Every simple path from a node to a descendant leaf contains
418 the same number of black nodes.
419 5. The root is always black.
420
421 When nodes are inserted into the tree, or deleted from the tree,
422 the tree is "fixed" so that these properties are always true.
423
424 A red-black tree with N internal nodes has height at most 2
425 log(N+1). Searches, insertions and deletions are done in O(log N).
426 Please see a text book about data structures for a detailed
427 description of red-black trees. Any book worth its salt should
428 describe them. */
429
430 struct mem_node
431 {
432 /* Children of this node. These pointers are never NULL. When there
433 is no child, the value is MEM_NIL, which points to a dummy node. */
434 struct mem_node *left, *right;
435
436 /* The parent of this node. In the root node, this is NULL. */
437 struct mem_node *parent;
438
439 /* Start and end of allocated region. */
440 void *start, *end;
441
442 /* Node color. */
443 enum {MEM_BLACK, MEM_RED} color;
444
445 /* Memory type. */
446 enum mem_type type;
447 };
448
449 /* Base address of stack. Set in main. */
450
451 Lisp_Object *stack_base;
452
453 /* Root of the tree describing allocated Lisp memory. */
454
455 static struct mem_node *mem_root;
456
457 /* Lowest and highest known address in the heap. */
458
459 static void *min_heap_address, *max_heap_address;
460
461 /* Sentinel node of the tree. */
462
463 static struct mem_node mem_z;
464 #define MEM_NIL &mem_z
465
466 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
467 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT));
468 static void lisp_free P_ ((POINTER_TYPE *));
469 static void mark_stack P_ ((void));
470 static int live_vector_p P_ ((struct mem_node *, void *));
471 static int live_buffer_p P_ ((struct mem_node *, void *));
472 static int live_string_p P_ ((struct mem_node *, void *));
473 static int live_cons_p P_ ((struct mem_node *, void *));
474 static int live_symbol_p P_ ((struct mem_node *, void *));
475 static int live_float_p P_ ((struct mem_node *, void *));
476 static int live_misc_p P_ ((struct mem_node *, void *));
477 static void mark_maybe_object P_ ((Lisp_Object));
478 static void mark_memory P_ ((void *, void *, int));
479 static void mem_init P_ ((void));
480 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
481 static void mem_insert_fixup P_ ((struct mem_node *));
482 static void mem_rotate_left P_ ((struct mem_node *));
483 static void mem_rotate_right P_ ((struct mem_node *));
484 static void mem_delete P_ ((struct mem_node *));
485 static void mem_delete_fixup P_ ((struct mem_node *));
486 static INLINE struct mem_node *mem_find P_ ((void *));
487
488
489 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
490 static void check_gcpros P_ ((void));
491 #endif
492
493 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
494
495 /* Recording what needs to be marked for gc. */
496
497 struct gcpro *gcprolist;
498
499 /* Addresses of staticpro'd variables. Initialize it to a nonzero
500 value; otherwise some compilers put it into BSS. */
501
502 #define NSTATICS 0x600
503 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
504
505 /* Index of next unused slot in staticvec. */
506
507 static int staticidx = 0;
508
509 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
510
511
512 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
513 ALIGNMENT must be a power of 2. */
514
515 #define ALIGN(ptr, ALIGNMENT) \
516 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
517 & ~((ALIGNMENT) - 1)))
518
519
520 \f
521 /************************************************************************
522 Malloc
523 ************************************************************************/
524
525 /* Function malloc calls this if it finds we are near exhausting storage. */
526
527 void
528 malloc_warning (str)
529 char *str;
530 {
531 pending_malloc_warning = str;
532 }
533
534
535 /* Display an already-pending malloc warning. */
536
537 void
538 display_malloc_warning ()
539 {
540 call3 (intern ("display-warning"),
541 intern ("alloc"),
542 build_string (pending_malloc_warning),
543 intern ("emergency"));
544 pending_malloc_warning = 0;
545 }
546
547
548 #ifdef DOUG_LEA_MALLOC
549 # define BYTES_USED (mallinfo ().uordblks)
550 #else
551 # define BYTES_USED _bytes_used
552 #endif
553 \f
554 /* Called if we can't allocate relocatable space for a buffer. */
555
556 void
557 buffer_memory_full ()
558 {
559 /* If buffers use the relocating allocator, no need to free
560 spare_memory, because we may have plenty of malloc space left
561 that we could get, and if we don't, the malloc that fails will
562 itself cause spare_memory to be freed. If buffers don't use the
563 relocating allocator, treat this like any other failing
564 malloc. */
565
566 #ifndef REL_ALLOC
567 memory_full ();
568 #endif
569
570 /* This used to call error, but if we've run out of memory, we could
571 get infinite recursion trying to build the string. */
572 xsignal (Qnil, Vmemory_signal_data);
573 }
574
575
576 #ifdef XMALLOC_OVERRUN_CHECK
577
578 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
579 and a 16 byte trailer around each block.
580
581 The header consists of 12 fixed bytes + a 4 byte integer contaning the
582 original block size, while the trailer consists of 16 fixed bytes.
583
584 The header is used to detect whether this block has been allocated
585 through these functions -- as it seems that some low-level libc
586 functions may bypass the malloc hooks.
587 */
588
589
590 #define XMALLOC_OVERRUN_CHECK_SIZE 16
591
592 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
593 { 0x9a, 0x9b, 0xae, 0xaf,
594 0xbf, 0xbe, 0xce, 0xcf,
595 0xea, 0xeb, 0xec, 0xed };
596
597 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
598 { 0xaa, 0xab, 0xac, 0xad,
599 0xba, 0xbb, 0xbc, 0xbd,
600 0xca, 0xcb, 0xcc, 0xcd,
601 0xda, 0xdb, 0xdc, 0xdd };
602
603 /* Macros to insert and extract the block size in the header. */
604
605 #define XMALLOC_PUT_SIZE(ptr, size) \
606 (ptr[-1] = (size & 0xff), \
607 ptr[-2] = ((size >> 8) & 0xff), \
608 ptr[-3] = ((size >> 16) & 0xff), \
609 ptr[-4] = ((size >> 24) & 0xff))
610
611 #define XMALLOC_GET_SIZE(ptr) \
612 (size_t)((unsigned)(ptr[-1]) | \
613 ((unsigned)(ptr[-2]) << 8) | \
614 ((unsigned)(ptr[-3]) << 16) | \
615 ((unsigned)(ptr[-4]) << 24))
616
617
618 /* The call depth in overrun_check functions. For example, this might happen:
619 xmalloc()
620 overrun_check_malloc()
621 -> malloc -> (via hook)_-> emacs_blocked_malloc
622 -> overrun_check_malloc
623 call malloc (hooks are NULL, so real malloc is called).
624 malloc returns 10000.
625 add overhead, return 10016.
626 <- (back in overrun_check_malloc)
627 add overhead again, return 10032
628 xmalloc returns 10032.
629
630 (time passes).
631
632 xfree(10032)
633 overrun_check_free(10032)
634 decrease overhed
635 free(10016) <- crash, because 10000 is the original pointer. */
636
637 static int check_depth;
638
639 /* Like malloc, but wraps allocated block with header and trailer. */
640
641 POINTER_TYPE *
642 overrun_check_malloc (size)
643 size_t size;
644 {
645 register unsigned char *val;
646 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
647
648 val = (unsigned char *) malloc (size + overhead);
649 if (val && check_depth == 1)
650 {
651 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
652 val += XMALLOC_OVERRUN_CHECK_SIZE;
653 XMALLOC_PUT_SIZE(val, size);
654 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
655 }
656 --check_depth;
657 return (POINTER_TYPE *)val;
658 }
659
660
661 /* Like realloc, but checks old block for overrun, and wraps new block
662 with header and trailer. */
663
664 POINTER_TYPE *
665 overrun_check_realloc (block, size)
666 POINTER_TYPE *block;
667 size_t size;
668 {
669 register unsigned char *val = (unsigned char *)block;
670 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
671
672 if (val
673 && check_depth == 1
674 && bcmp (xmalloc_overrun_check_header,
675 val - XMALLOC_OVERRUN_CHECK_SIZE,
676 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
677 {
678 size_t osize = XMALLOC_GET_SIZE (val);
679 if (bcmp (xmalloc_overrun_check_trailer,
680 val + osize,
681 XMALLOC_OVERRUN_CHECK_SIZE))
682 abort ();
683 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
684 val -= XMALLOC_OVERRUN_CHECK_SIZE;
685 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
686 }
687
688 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
689
690 if (val && check_depth == 1)
691 {
692 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
693 val += XMALLOC_OVERRUN_CHECK_SIZE;
694 XMALLOC_PUT_SIZE(val, size);
695 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
696 }
697 --check_depth;
698 return (POINTER_TYPE *)val;
699 }
700
701 /* Like free, but checks block for overrun. */
702
703 void
704 overrun_check_free (block)
705 POINTER_TYPE *block;
706 {
707 unsigned char *val = (unsigned char *)block;
708
709 ++check_depth;
710 if (val
711 && check_depth == 1
712 && bcmp (xmalloc_overrun_check_header,
713 val - XMALLOC_OVERRUN_CHECK_SIZE,
714 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
715 {
716 size_t osize = XMALLOC_GET_SIZE (val);
717 if (bcmp (xmalloc_overrun_check_trailer,
718 val + osize,
719 XMALLOC_OVERRUN_CHECK_SIZE))
720 abort ();
721 #ifdef XMALLOC_CLEAR_FREE_MEMORY
722 val -= XMALLOC_OVERRUN_CHECK_SIZE;
723 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
724 #else
725 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
726 val -= XMALLOC_OVERRUN_CHECK_SIZE;
727 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
728 #endif
729 }
730
731 free (val);
732 --check_depth;
733 }
734
735 #undef malloc
736 #undef realloc
737 #undef free
738 #define malloc overrun_check_malloc
739 #define realloc overrun_check_realloc
740 #define free overrun_check_free
741 #endif
742
743 #ifdef SYNC_INPUT
744 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
745 there's no need to block input around malloc. */
746 #define MALLOC_BLOCK_INPUT ((void)0)
747 #define MALLOC_UNBLOCK_INPUT ((void)0)
748 #else
749 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
750 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
751 #endif
752
753 /* Like malloc but check for no memory and block interrupt input.. */
754
755 POINTER_TYPE *
756 xmalloc (size)
757 size_t size;
758 {
759 register POINTER_TYPE *val;
760
761 MALLOC_BLOCK_INPUT;
762 val = (POINTER_TYPE *) malloc (size);
763 MALLOC_UNBLOCK_INPUT;
764
765 if (!val && size)
766 memory_full ();
767 return val;
768 }
769
770
771 /* Like realloc but check for no memory and block interrupt input.. */
772
773 POINTER_TYPE *
774 xrealloc (block, size)
775 POINTER_TYPE *block;
776 size_t size;
777 {
778 register POINTER_TYPE *val;
779
780 MALLOC_BLOCK_INPUT;
781 /* We must call malloc explicitly when BLOCK is 0, since some
782 reallocs don't do this. */
783 if (! block)
784 val = (POINTER_TYPE *) malloc (size);
785 else
786 val = (POINTER_TYPE *) realloc (block, size);
787 MALLOC_UNBLOCK_INPUT;
788
789 if (!val && size) memory_full ();
790 return val;
791 }
792
793
794 /* Like free but block interrupt input. */
795
796 void
797 xfree (block)
798 POINTER_TYPE *block;
799 {
800 MALLOC_BLOCK_INPUT;
801 free (block);
802 MALLOC_UNBLOCK_INPUT;
803 /* We don't call refill_memory_reserve here
804 because that duplicates doing so in emacs_blocked_free
805 and the criterion should go there. */
806 }
807
808
809 /* Like strdup, but uses xmalloc. */
810
811 char *
812 xstrdup (s)
813 const char *s;
814 {
815 size_t len = strlen (s) + 1;
816 char *p = (char *) xmalloc (len);
817 bcopy (s, p, len);
818 return p;
819 }
820
821
822 /* Unwind for SAFE_ALLOCA */
823
824 Lisp_Object
825 safe_alloca_unwind (arg)
826 Lisp_Object arg;
827 {
828 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
829
830 p->dogc = 0;
831 xfree (p->pointer);
832 p->pointer = 0;
833 free_misc (arg);
834 return Qnil;
835 }
836
837
838 /* Like malloc but used for allocating Lisp data. NBYTES is the
839 number of bytes to allocate, TYPE describes the intended use of the
840 allcated memory block (for strings, for conses, ...). */
841
842 #ifndef USE_LSB_TAG
843 static void *lisp_malloc_loser;
844 #endif
845
846 static POINTER_TYPE *
847 lisp_malloc (nbytes, type)
848 size_t nbytes;
849 enum mem_type type;
850 {
851 register void *val;
852
853 MALLOC_BLOCK_INPUT;
854
855 #ifdef GC_MALLOC_CHECK
856 allocated_mem_type = type;
857 #endif
858
859 val = (void *) malloc (nbytes);
860
861 #ifndef USE_LSB_TAG
862 /* If the memory just allocated cannot be addressed thru a Lisp
863 object's pointer, and it needs to be,
864 that's equivalent to running out of memory. */
865 if (val && type != MEM_TYPE_NON_LISP)
866 {
867 Lisp_Object tem;
868 XSETCONS (tem, (char *) val + nbytes - 1);
869 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
870 {
871 lisp_malloc_loser = val;
872 free (val);
873 val = 0;
874 }
875 }
876 #endif
877
878 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
879 if (val && type != MEM_TYPE_NON_LISP)
880 mem_insert (val, (char *) val + nbytes, type);
881 #endif
882
883 MALLOC_UNBLOCK_INPUT;
884 if (!val && nbytes)
885 memory_full ();
886 return val;
887 }
888
889 /* Free BLOCK. This must be called to free memory allocated with a
890 call to lisp_malloc. */
891
892 static void
893 lisp_free (block)
894 POINTER_TYPE *block;
895 {
896 MALLOC_BLOCK_INPUT;
897 free (block);
898 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
899 mem_delete (mem_find (block));
900 #endif
901 MALLOC_UNBLOCK_INPUT;
902 }
903
904 /* Allocation of aligned blocks of memory to store Lisp data. */
905 /* The entry point is lisp_align_malloc which returns blocks of at most */
906 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
907
908 /* Use posix_memalloc if the system has it and we're using the system's
909 malloc (because our gmalloc.c routines don't have posix_memalign although
910 its memalloc could be used). */
911 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
912 #define USE_POSIX_MEMALIGN 1
913 #endif
914
915 /* BLOCK_ALIGN has to be a power of 2. */
916 #define BLOCK_ALIGN (1 << 10)
917
918 /* Padding to leave at the end of a malloc'd block. This is to give
919 malloc a chance to minimize the amount of memory wasted to alignment.
920 It should be tuned to the particular malloc library used.
921 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
922 posix_memalign on the other hand would ideally prefer a value of 4
923 because otherwise, there's 1020 bytes wasted between each ablocks.
924 In Emacs, testing shows that those 1020 can most of the time be
925 efficiently used by malloc to place other objects, so a value of 0 can
926 still preferable unless you have a lot of aligned blocks and virtually
927 nothing else. */
928 #define BLOCK_PADDING 0
929 #define BLOCK_BYTES \
930 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
931
932 /* Internal data structures and constants. */
933
934 #define ABLOCKS_SIZE 16
935
936 /* An aligned block of memory. */
937 struct ablock
938 {
939 union
940 {
941 char payload[BLOCK_BYTES];
942 struct ablock *next_free;
943 } x;
944 /* `abase' is the aligned base of the ablocks. */
945 /* It is overloaded to hold the virtual `busy' field that counts
946 the number of used ablock in the parent ablocks.
947 The first ablock has the `busy' field, the others have the `abase'
948 field. To tell the difference, we assume that pointers will have
949 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
950 is used to tell whether the real base of the parent ablocks is `abase'
951 (if not, the word before the first ablock holds a pointer to the
952 real base). */
953 struct ablocks *abase;
954 /* The padding of all but the last ablock is unused. The padding of
955 the last ablock in an ablocks is not allocated. */
956 #if BLOCK_PADDING
957 char padding[BLOCK_PADDING];
958 #endif
959 };
960
961 /* A bunch of consecutive aligned blocks. */
962 struct ablocks
963 {
964 struct ablock blocks[ABLOCKS_SIZE];
965 };
966
967 /* Size of the block requested from malloc or memalign. */
968 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
969
970 #define ABLOCK_ABASE(block) \
971 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
972 ? (struct ablocks *)(block) \
973 : (block)->abase)
974
975 /* Virtual `busy' field. */
976 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
977
978 /* Pointer to the (not necessarily aligned) malloc block. */
979 #ifdef USE_POSIX_MEMALIGN
980 #define ABLOCKS_BASE(abase) (abase)
981 #else
982 #define ABLOCKS_BASE(abase) \
983 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
984 #endif
985
986 /* The list of free ablock. */
987 static struct ablock *free_ablock;
988
989 /* Allocate an aligned block of nbytes.
990 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
991 smaller or equal to BLOCK_BYTES. */
992 static POINTER_TYPE *
993 lisp_align_malloc (nbytes, type)
994 size_t nbytes;
995 enum mem_type type;
996 {
997 void *base, *val;
998 struct ablocks *abase;
999
1000 eassert (nbytes <= BLOCK_BYTES);
1001
1002 MALLOC_BLOCK_INPUT;
1003
1004 #ifdef GC_MALLOC_CHECK
1005 allocated_mem_type = type;
1006 #endif
1007
1008 if (!free_ablock)
1009 {
1010 int i;
1011 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
1012
1013 #ifdef DOUG_LEA_MALLOC
1014 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1015 because mapped region contents are not preserved in
1016 a dumped Emacs. */
1017 mallopt (M_MMAP_MAX, 0);
1018 #endif
1019
1020 #ifdef USE_POSIX_MEMALIGN
1021 {
1022 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1023 if (err)
1024 base = NULL;
1025 abase = base;
1026 }
1027 #else
1028 base = malloc (ABLOCKS_BYTES);
1029 abase = ALIGN (base, BLOCK_ALIGN);
1030 #endif
1031
1032 if (base == 0)
1033 {
1034 MALLOC_UNBLOCK_INPUT;
1035 memory_full ();
1036 }
1037
1038 aligned = (base == abase);
1039 if (!aligned)
1040 ((void**)abase)[-1] = base;
1041
1042 #ifdef DOUG_LEA_MALLOC
1043 /* Back to a reasonable maximum of mmap'ed areas. */
1044 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1045 #endif
1046
1047 #ifndef USE_LSB_TAG
1048 /* If the memory just allocated cannot be addressed thru a Lisp
1049 object's pointer, and it needs to be, that's equivalent to
1050 running out of memory. */
1051 if (type != MEM_TYPE_NON_LISP)
1052 {
1053 Lisp_Object tem;
1054 char *end = (char *) base + ABLOCKS_BYTES - 1;
1055 XSETCONS (tem, end);
1056 if ((char *) XCONS (tem) != end)
1057 {
1058 lisp_malloc_loser = base;
1059 free (base);
1060 MALLOC_UNBLOCK_INPUT;
1061 memory_full ();
1062 }
1063 }
1064 #endif
1065
1066 /* Initialize the blocks and put them on the free list.
1067 Is `base' was not properly aligned, we can't use the last block. */
1068 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1069 {
1070 abase->blocks[i].abase = abase;
1071 abase->blocks[i].x.next_free = free_ablock;
1072 free_ablock = &abase->blocks[i];
1073 }
1074 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1075
1076 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1077 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1078 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1079 eassert (ABLOCKS_BASE (abase) == base);
1080 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1081 }
1082
1083 abase = ABLOCK_ABASE (free_ablock);
1084 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1085 val = free_ablock;
1086 free_ablock = free_ablock->x.next_free;
1087
1088 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1089 if (val && type != MEM_TYPE_NON_LISP)
1090 mem_insert (val, (char *) val + nbytes, type);
1091 #endif
1092
1093 MALLOC_UNBLOCK_INPUT;
1094 if (!val && nbytes)
1095 memory_full ();
1096
1097 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1098 return val;
1099 }
1100
1101 static void
1102 lisp_align_free (block)
1103 POINTER_TYPE *block;
1104 {
1105 struct ablock *ablock = block;
1106 struct ablocks *abase = ABLOCK_ABASE (ablock);
1107
1108 MALLOC_BLOCK_INPUT;
1109 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1110 mem_delete (mem_find (block));
1111 #endif
1112 /* Put on free list. */
1113 ablock->x.next_free = free_ablock;
1114 free_ablock = ablock;
1115 /* Update busy count. */
1116 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1117
1118 if (2 > (long) ABLOCKS_BUSY (abase))
1119 { /* All the blocks are free. */
1120 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1121 struct ablock **tem = &free_ablock;
1122 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1123
1124 while (*tem)
1125 {
1126 if (*tem >= (struct ablock *) abase && *tem < atop)
1127 {
1128 i++;
1129 *tem = (*tem)->x.next_free;
1130 }
1131 else
1132 tem = &(*tem)->x.next_free;
1133 }
1134 eassert ((aligned & 1) == aligned);
1135 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1136 #ifdef USE_POSIX_MEMALIGN
1137 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1138 #endif
1139 free (ABLOCKS_BASE (abase));
1140 }
1141 MALLOC_UNBLOCK_INPUT;
1142 }
1143
1144 /* Return a new buffer structure allocated from the heap with
1145 a call to lisp_malloc. */
1146
1147 struct buffer *
1148 allocate_buffer ()
1149 {
1150 struct buffer *b
1151 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1152 MEM_TYPE_BUFFER);
1153 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1154 XSETPVECTYPE (b, PVEC_BUFFER);
1155 return b;
1156 }
1157
1158 \f
1159 #ifndef SYSTEM_MALLOC
1160
1161 /* Arranging to disable input signals while we're in malloc.
1162
1163 This only works with GNU malloc. To help out systems which can't
1164 use GNU malloc, all the calls to malloc, realloc, and free
1165 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1166 pair; unfortunately, we have no idea what C library functions
1167 might call malloc, so we can't really protect them unless you're
1168 using GNU malloc. Fortunately, most of the major operating systems
1169 can use GNU malloc. */
1170
1171 #ifndef SYNC_INPUT
1172 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1173 there's no need to block input around malloc. */
1174
1175 #ifndef DOUG_LEA_MALLOC
1176 extern void * (*__malloc_hook) P_ ((size_t, const void *));
1177 extern void * (*__realloc_hook) P_ ((void *, size_t, const void *));
1178 extern void (*__free_hook) P_ ((void *, const void *));
1179 /* Else declared in malloc.h, perhaps with an extra arg. */
1180 #endif /* DOUG_LEA_MALLOC */
1181 static void * (*old_malloc_hook) P_ ((size_t, const void *));
1182 static void * (*old_realloc_hook) P_ ((void *, size_t, const void*));
1183 static void (*old_free_hook) P_ ((void*, const void*));
1184
1185 /* This function is used as the hook for free to call. */
1186
1187 static void
1188 emacs_blocked_free (ptr, ptr2)
1189 void *ptr;
1190 const void *ptr2;
1191 {
1192 BLOCK_INPUT_ALLOC;
1193
1194 #ifdef GC_MALLOC_CHECK
1195 if (ptr)
1196 {
1197 struct mem_node *m;
1198
1199 m = mem_find (ptr);
1200 if (m == MEM_NIL || m->start != ptr)
1201 {
1202 fprintf (stderr,
1203 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1204 abort ();
1205 }
1206 else
1207 {
1208 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1209 mem_delete (m);
1210 }
1211 }
1212 #endif /* GC_MALLOC_CHECK */
1213
1214 __free_hook = old_free_hook;
1215 free (ptr);
1216
1217 /* If we released our reserve (due to running out of memory),
1218 and we have a fair amount free once again,
1219 try to set aside another reserve in case we run out once more. */
1220 if (! NILP (Vmemory_full)
1221 /* Verify there is enough space that even with the malloc
1222 hysteresis this call won't run out again.
1223 The code here is correct as long as SPARE_MEMORY
1224 is substantially larger than the block size malloc uses. */
1225 && (bytes_used_when_full
1226 > ((bytes_used_when_reconsidered = BYTES_USED)
1227 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1228 refill_memory_reserve ();
1229
1230 __free_hook = emacs_blocked_free;
1231 UNBLOCK_INPUT_ALLOC;
1232 }
1233
1234
1235 /* This function is the malloc hook that Emacs uses. */
1236
1237 static void *
1238 emacs_blocked_malloc (size, ptr)
1239 size_t size;
1240 const void *ptr;
1241 {
1242 void *value;
1243
1244 BLOCK_INPUT_ALLOC;
1245 __malloc_hook = old_malloc_hook;
1246 #ifdef DOUG_LEA_MALLOC
1247 /* Segfaults on my system. --lorentey */
1248 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1249 #else
1250 __malloc_extra_blocks = malloc_hysteresis;
1251 #endif
1252
1253 value = (void *) malloc (size);
1254
1255 #ifdef GC_MALLOC_CHECK
1256 {
1257 struct mem_node *m = mem_find (value);
1258 if (m != MEM_NIL)
1259 {
1260 fprintf (stderr, "Malloc returned %p which is already in use\n",
1261 value);
1262 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1263 m->start, m->end, (char *) m->end - (char *) m->start,
1264 m->type);
1265 abort ();
1266 }
1267
1268 if (!dont_register_blocks)
1269 {
1270 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1271 allocated_mem_type = MEM_TYPE_NON_LISP;
1272 }
1273 }
1274 #endif /* GC_MALLOC_CHECK */
1275
1276 __malloc_hook = emacs_blocked_malloc;
1277 UNBLOCK_INPUT_ALLOC;
1278
1279 /* fprintf (stderr, "%p malloc\n", value); */
1280 return value;
1281 }
1282
1283
1284 /* This function is the realloc hook that Emacs uses. */
1285
1286 static void *
1287 emacs_blocked_realloc (ptr, size, ptr2)
1288 void *ptr;
1289 size_t size;
1290 const void *ptr2;
1291 {
1292 void *value;
1293
1294 BLOCK_INPUT_ALLOC;
1295 __realloc_hook = old_realloc_hook;
1296
1297 #ifdef GC_MALLOC_CHECK
1298 if (ptr)
1299 {
1300 struct mem_node *m = mem_find (ptr);
1301 if (m == MEM_NIL || m->start != ptr)
1302 {
1303 fprintf (stderr,
1304 "Realloc of %p which wasn't allocated with malloc\n",
1305 ptr);
1306 abort ();
1307 }
1308
1309 mem_delete (m);
1310 }
1311
1312 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1313
1314 /* Prevent malloc from registering blocks. */
1315 dont_register_blocks = 1;
1316 #endif /* GC_MALLOC_CHECK */
1317
1318 value = (void *) realloc (ptr, size);
1319
1320 #ifdef GC_MALLOC_CHECK
1321 dont_register_blocks = 0;
1322
1323 {
1324 struct mem_node *m = mem_find (value);
1325 if (m != MEM_NIL)
1326 {
1327 fprintf (stderr, "Realloc returns memory that is already in use\n");
1328 abort ();
1329 }
1330
1331 /* Can't handle zero size regions in the red-black tree. */
1332 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1333 }
1334
1335 /* fprintf (stderr, "%p <- realloc\n", value); */
1336 #endif /* GC_MALLOC_CHECK */
1337
1338 __realloc_hook = emacs_blocked_realloc;
1339 UNBLOCK_INPUT_ALLOC;
1340
1341 return value;
1342 }
1343
1344
1345 #ifdef HAVE_GTK_AND_PTHREAD
1346 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1347 normal malloc. Some thread implementations need this as they call
1348 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1349 calls malloc because it is the first call, and we have an endless loop. */
1350
1351 void
1352 reset_malloc_hooks ()
1353 {
1354 __free_hook = old_free_hook;
1355 __malloc_hook = old_malloc_hook;
1356 __realloc_hook = old_realloc_hook;
1357 }
1358 #endif /* HAVE_GTK_AND_PTHREAD */
1359
1360
1361 /* Called from main to set up malloc to use our hooks. */
1362
1363 void
1364 uninterrupt_malloc ()
1365 {
1366 #ifdef HAVE_GTK_AND_PTHREAD
1367 #ifdef DOUG_LEA_MALLOC
1368 pthread_mutexattr_t attr;
1369
1370 /* GLIBC has a faster way to do this, but lets keep it portable.
1371 This is according to the Single UNIX Specification. */
1372 pthread_mutexattr_init (&attr);
1373 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1374 pthread_mutex_init (&alloc_mutex, &attr);
1375 #else /* !DOUG_LEA_MALLOC */
1376 /* Some systems such as Solaris 2.6 doesn't have a recursive mutex,
1377 and the bundled gmalloc.c doesn't require it. */
1378 pthread_mutex_init (&alloc_mutex, NULL);
1379 #endif /* !DOUG_LEA_MALLOC */
1380 #endif /* HAVE_GTK_AND_PTHREAD */
1381
1382 if (__free_hook != emacs_blocked_free)
1383 old_free_hook = __free_hook;
1384 __free_hook = emacs_blocked_free;
1385
1386 if (__malloc_hook != emacs_blocked_malloc)
1387 old_malloc_hook = __malloc_hook;
1388 __malloc_hook = emacs_blocked_malloc;
1389
1390 if (__realloc_hook != emacs_blocked_realloc)
1391 old_realloc_hook = __realloc_hook;
1392 __realloc_hook = emacs_blocked_realloc;
1393 }
1394
1395 #endif /* not SYNC_INPUT */
1396 #endif /* not SYSTEM_MALLOC */
1397
1398
1399 \f
1400 /***********************************************************************
1401 Interval Allocation
1402 ***********************************************************************/
1403
1404 /* Number of intervals allocated in an interval_block structure.
1405 The 1020 is 1024 minus malloc overhead. */
1406
1407 #define INTERVAL_BLOCK_SIZE \
1408 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1409
1410 /* Intervals are allocated in chunks in form of an interval_block
1411 structure. */
1412
1413 struct interval_block
1414 {
1415 /* Place `intervals' first, to preserve alignment. */
1416 struct interval intervals[INTERVAL_BLOCK_SIZE];
1417 struct interval_block *next;
1418 };
1419
1420 /* Current interval block. Its `next' pointer points to older
1421 blocks. */
1422
1423 static struct interval_block *interval_block;
1424
1425 /* Index in interval_block above of the next unused interval
1426 structure. */
1427
1428 static int interval_block_index;
1429
1430 /* Number of free and live intervals. */
1431
1432 static int total_free_intervals, total_intervals;
1433
1434 /* List of free intervals. */
1435
1436 INTERVAL interval_free_list;
1437
1438 /* Total number of interval blocks now in use. */
1439
1440 static int n_interval_blocks;
1441
1442
1443 /* Initialize interval allocation. */
1444
1445 static void
1446 init_intervals ()
1447 {
1448 interval_block = NULL;
1449 interval_block_index = INTERVAL_BLOCK_SIZE;
1450 interval_free_list = 0;
1451 n_interval_blocks = 0;
1452 }
1453
1454
1455 /* Return a new interval. */
1456
1457 INTERVAL
1458 make_interval ()
1459 {
1460 INTERVAL val;
1461
1462 /* eassert (!handling_signal); */
1463
1464 MALLOC_BLOCK_INPUT;
1465
1466 if (interval_free_list)
1467 {
1468 val = interval_free_list;
1469 interval_free_list = INTERVAL_PARENT (interval_free_list);
1470 }
1471 else
1472 {
1473 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1474 {
1475 register struct interval_block *newi;
1476
1477 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1478 MEM_TYPE_NON_LISP);
1479
1480 newi->next = interval_block;
1481 interval_block = newi;
1482 interval_block_index = 0;
1483 n_interval_blocks++;
1484 }
1485 val = &interval_block->intervals[interval_block_index++];
1486 }
1487
1488 MALLOC_UNBLOCK_INPUT;
1489
1490 consing_since_gc += sizeof (struct interval);
1491 intervals_consed++;
1492 RESET_INTERVAL (val);
1493 val->gcmarkbit = 0;
1494 return val;
1495 }
1496
1497
1498 /* Mark Lisp objects in interval I. */
1499
1500 static void
1501 mark_interval (i, dummy)
1502 register INTERVAL i;
1503 Lisp_Object dummy;
1504 {
1505 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1506 i->gcmarkbit = 1;
1507 mark_object (i->plist);
1508 }
1509
1510
1511 /* Mark the interval tree rooted in TREE. Don't call this directly;
1512 use the macro MARK_INTERVAL_TREE instead. */
1513
1514 static void
1515 mark_interval_tree (tree)
1516 register INTERVAL tree;
1517 {
1518 /* No need to test if this tree has been marked already; this
1519 function is always called through the MARK_INTERVAL_TREE macro,
1520 which takes care of that. */
1521
1522 traverse_intervals_noorder (tree, mark_interval, Qnil);
1523 }
1524
1525
1526 /* Mark the interval tree rooted in I. */
1527
1528 #define MARK_INTERVAL_TREE(i) \
1529 do { \
1530 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1531 mark_interval_tree (i); \
1532 } while (0)
1533
1534
1535 #define UNMARK_BALANCE_INTERVALS(i) \
1536 do { \
1537 if (! NULL_INTERVAL_P (i)) \
1538 (i) = balance_intervals (i); \
1539 } while (0)
1540
1541 \f
1542 /* Number support. If NO_UNION_TYPE isn't in effect, we
1543 can't create number objects in macros. */
1544 #ifndef make_number
1545 Lisp_Object
1546 make_number (n)
1547 EMACS_INT n;
1548 {
1549 Lisp_Object obj;
1550 obj.s.val = n;
1551 obj.s.type = Lisp_Int;
1552 return obj;
1553 }
1554 #endif
1555 \f
1556 /***********************************************************************
1557 String Allocation
1558 ***********************************************************************/
1559
1560 /* Lisp_Strings are allocated in string_block structures. When a new
1561 string_block is allocated, all the Lisp_Strings it contains are
1562 added to a free-list string_free_list. When a new Lisp_String is
1563 needed, it is taken from that list. During the sweep phase of GC,
1564 string_blocks that are entirely free are freed, except two which
1565 we keep.
1566
1567 String data is allocated from sblock structures. Strings larger
1568 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1569 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1570
1571 Sblocks consist internally of sdata structures, one for each
1572 Lisp_String. The sdata structure points to the Lisp_String it
1573 belongs to. The Lisp_String points back to the `u.data' member of
1574 its sdata structure.
1575
1576 When a Lisp_String is freed during GC, it is put back on
1577 string_free_list, and its `data' member and its sdata's `string'
1578 pointer is set to null. The size of the string is recorded in the
1579 `u.nbytes' member of the sdata. So, sdata structures that are no
1580 longer used, can be easily recognized, and it's easy to compact the
1581 sblocks of small strings which we do in compact_small_strings. */
1582
1583 /* Size in bytes of an sblock structure used for small strings. This
1584 is 8192 minus malloc overhead. */
1585
1586 #define SBLOCK_SIZE 8188
1587
1588 /* Strings larger than this are considered large strings. String data
1589 for large strings is allocated from individual sblocks. */
1590
1591 #define LARGE_STRING_BYTES 1024
1592
1593 /* Structure describing string memory sub-allocated from an sblock.
1594 This is where the contents of Lisp strings are stored. */
1595
1596 struct sdata
1597 {
1598 /* Back-pointer to the string this sdata belongs to. If null, this
1599 structure is free, and the NBYTES member of the union below
1600 contains the string's byte size (the same value that STRING_BYTES
1601 would return if STRING were non-null). If non-null, STRING_BYTES
1602 (STRING) is the size of the data, and DATA contains the string's
1603 contents. */
1604 struct Lisp_String *string;
1605
1606 #ifdef GC_CHECK_STRING_BYTES
1607
1608 EMACS_INT nbytes;
1609 unsigned char data[1];
1610
1611 #define SDATA_NBYTES(S) (S)->nbytes
1612 #define SDATA_DATA(S) (S)->data
1613
1614 #else /* not GC_CHECK_STRING_BYTES */
1615
1616 union
1617 {
1618 /* When STRING in non-null. */
1619 unsigned char data[1];
1620
1621 /* When STRING is null. */
1622 EMACS_INT nbytes;
1623 } u;
1624
1625
1626 #define SDATA_NBYTES(S) (S)->u.nbytes
1627 #define SDATA_DATA(S) (S)->u.data
1628
1629 #endif /* not GC_CHECK_STRING_BYTES */
1630 };
1631
1632
1633 /* Structure describing a block of memory which is sub-allocated to
1634 obtain string data memory for strings. Blocks for small strings
1635 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1636 as large as needed. */
1637
1638 struct sblock
1639 {
1640 /* Next in list. */
1641 struct sblock *next;
1642
1643 /* Pointer to the next free sdata block. This points past the end
1644 of the sblock if there isn't any space left in this block. */
1645 struct sdata *next_free;
1646
1647 /* Start of data. */
1648 struct sdata first_data;
1649 };
1650
1651 /* Number of Lisp strings in a string_block structure. The 1020 is
1652 1024 minus malloc overhead. */
1653
1654 #define STRING_BLOCK_SIZE \
1655 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1656
1657 /* Structure describing a block from which Lisp_String structures
1658 are allocated. */
1659
1660 struct string_block
1661 {
1662 /* Place `strings' first, to preserve alignment. */
1663 struct Lisp_String strings[STRING_BLOCK_SIZE];
1664 struct string_block *next;
1665 };
1666
1667 /* Head and tail of the list of sblock structures holding Lisp string
1668 data. We always allocate from current_sblock. The NEXT pointers
1669 in the sblock structures go from oldest_sblock to current_sblock. */
1670
1671 static struct sblock *oldest_sblock, *current_sblock;
1672
1673 /* List of sblocks for large strings. */
1674
1675 static struct sblock *large_sblocks;
1676
1677 /* List of string_block structures, and how many there are. */
1678
1679 static struct string_block *string_blocks;
1680 static int n_string_blocks;
1681
1682 /* Free-list of Lisp_Strings. */
1683
1684 static struct Lisp_String *string_free_list;
1685
1686 /* Number of live and free Lisp_Strings. */
1687
1688 static int total_strings, total_free_strings;
1689
1690 /* Number of bytes used by live strings. */
1691
1692 static int total_string_size;
1693
1694 /* Given a pointer to a Lisp_String S which is on the free-list
1695 string_free_list, return a pointer to its successor in the
1696 free-list. */
1697
1698 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1699
1700 /* Return a pointer to the sdata structure belonging to Lisp string S.
1701 S must be live, i.e. S->data must not be null. S->data is actually
1702 a pointer to the `u.data' member of its sdata structure; the
1703 structure starts at a constant offset in front of that. */
1704
1705 #ifdef GC_CHECK_STRING_BYTES
1706
1707 #define SDATA_OF_STRING(S) \
1708 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1709 - sizeof (EMACS_INT)))
1710
1711 #else /* not GC_CHECK_STRING_BYTES */
1712
1713 #define SDATA_OF_STRING(S) \
1714 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1715
1716 #endif /* not GC_CHECK_STRING_BYTES */
1717
1718
1719 #ifdef GC_CHECK_STRING_OVERRUN
1720
1721 /* We check for overrun in string data blocks by appending a small
1722 "cookie" after each allocated string data block, and check for the
1723 presence of this cookie during GC. */
1724
1725 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1726 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1727 { 0xde, 0xad, 0xbe, 0xef };
1728
1729 #else
1730 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1731 #endif
1732
1733 /* Value is the size of an sdata structure large enough to hold NBYTES
1734 bytes of string data. The value returned includes a terminating
1735 NUL byte, the size of the sdata structure, and padding. */
1736
1737 #ifdef GC_CHECK_STRING_BYTES
1738
1739 #define SDATA_SIZE(NBYTES) \
1740 ((sizeof (struct Lisp_String *) \
1741 + (NBYTES) + 1 \
1742 + sizeof (EMACS_INT) \
1743 + sizeof (EMACS_INT) - 1) \
1744 & ~(sizeof (EMACS_INT) - 1))
1745
1746 #else /* not GC_CHECK_STRING_BYTES */
1747
1748 #define SDATA_SIZE(NBYTES) \
1749 ((sizeof (struct Lisp_String *) \
1750 + (NBYTES) + 1 \
1751 + sizeof (EMACS_INT) - 1) \
1752 & ~(sizeof (EMACS_INT) - 1))
1753
1754 #endif /* not GC_CHECK_STRING_BYTES */
1755
1756 /* Extra bytes to allocate for each string. */
1757
1758 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1759
1760 /* Initialize string allocation. Called from init_alloc_once. */
1761
1762 static void
1763 init_strings ()
1764 {
1765 total_strings = total_free_strings = total_string_size = 0;
1766 oldest_sblock = current_sblock = large_sblocks = NULL;
1767 string_blocks = NULL;
1768 n_string_blocks = 0;
1769 string_free_list = NULL;
1770 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1771 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1772 }
1773
1774
1775 #ifdef GC_CHECK_STRING_BYTES
1776
1777 static int check_string_bytes_count;
1778
1779 static void check_string_bytes P_ ((int));
1780 static void check_sblock P_ ((struct sblock *));
1781
1782 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1783
1784
1785 /* Like GC_STRING_BYTES, but with debugging check. */
1786
1787 int
1788 string_bytes (s)
1789 struct Lisp_String *s;
1790 {
1791 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1792 if (!PURE_POINTER_P (s)
1793 && s->data
1794 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1795 abort ();
1796 return nbytes;
1797 }
1798
1799 /* Check validity of Lisp strings' string_bytes member in B. */
1800
1801 static void
1802 check_sblock (b)
1803 struct sblock *b;
1804 {
1805 struct sdata *from, *end, *from_end;
1806
1807 end = b->next_free;
1808
1809 for (from = &b->first_data; from < end; from = from_end)
1810 {
1811 /* Compute the next FROM here because copying below may
1812 overwrite data we need to compute it. */
1813 int nbytes;
1814
1815 /* Check that the string size recorded in the string is the
1816 same as the one recorded in the sdata structure. */
1817 if (from->string)
1818 CHECK_STRING_BYTES (from->string);
1819
1820 if (from->string)
1821 nbytes = GC_STRING_BYTES (from->string);
1822 else
1823 nbytes = SDATA_NBYTES (from);
1824
1825 nbytes = SDATA_SIZE (nbytes);
1826 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1827 }
1828 }
1829
1830
1831 /* Check validity of Lisp strings' string_bytes member. ALL_P
1832 non-zero means check all strings, otherwise check only most
1833 recently allocated strings. Used for hunting a bug. */
1834
1835 static void
1836 check_string_bytes (all_p)
1837 int all_p;
1838 {
1839 if (all_p)
1840 {
1841 struct sblock *b;
1842
1843 for (b = large_sblocks; b; b = b->next)
1844 {
1845 struct Lisp_String *s = b->first_data.string;
1846 if (s)
1847 CHECK_STRING_BYTES (s);
1848 }
1849
1850 for (b = oldest_sblock; b; b = b->next)
1851 check_sblock (b);
1852 }
1853 else
1854 check_sblock (current_sblock);
1855 }
1856
1857 #endif /* GC_CHECK_STRING_BYTES */
1858
1859 #ifdef GC_CHECK_STRING_FREE_LIST
1860
1861 /* Walk through the string free list looking for bogus next pointers.
1862 This may catch buffer overrun from a previous string. */
1863
1864 static void
1865 check_string_free_list ()
1866 {
1867 struct Lisp_String *s;
1868
1869 /* Pop a Lisp_String off the free-list. */
1870 s = string_free_list;
1871 while (s != NULL)
1872 {
1873 if ((unsigned)s < 1024)
1874 abort();
1875 s = NEXT_FREE_LISP_STRING (s);
1876 }
1877 }
1878 #else
1879 #define check_string_free_list()
1880 #endif
1881
1882 /* Return a new Lisp_String. */
1883
1884 static struct Lisp_String *
1885 allocate_string ()
1886 {
1887 struct Lisp_String *s;
1888
1889 /* eassert (!handling_signal); */
1890
1891 MALLOC_BLOCK_INPUT;
1892
1893 /* If the free-list is empty, allocate a new string_block, and
1894 add all the Lisp_Strings in it to the free-list. */
1895 if (string_free_list == NULL)
1896 {
1897 struct string_block *b;
1898 int i;
1899
1900 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1901 bzero (b, sizeof *b);
1902 b->next = string_blocks;
1903 string_blocks = b;
1904 ++n_string_blocks;
1905
1906 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1907 {
1908 s = b->strings + i;
1909 NEXT_FREE_LISP_STRING (s) = string_free_list;
1910 string_free_list = s;
1911 }
1912
1913 total_free_strings += STRING_BLOCK_SIZE;
1914 }
1915
1916 check_string_free_list ();
1917
1918 /* Pop a Lisp_String off the free-list. */
1919 s = string_free_list;
1920 string_free_list = NEXT_FREE_LISP_STRING (s);
1921
1922 MALLOC_UNBLOCK_INPUT;
1923
1924 /* Probably not strictly necessary, but play it safe. */
1925 bzero (s, sizeof *s);
1926
1927 --total_free_strings;
1928 ++total_strings;
1929 ++strings_consed;
1930 consing_since_gc += sizeof *s;
1931
1932 #ifdef GC_CHECK_STRING_BYTES
1933 if (!noninteractive)
1934 {
1935 if (++check_string_bytes_count == 200)
1936 {
1937 check_string_bytes_count = 0;
1938 check_string_bytes (1);
1939 }
1940 else
1941 check_string_bytes (0);
1942 }
1943 #endif /* GC_CHECK_STRING_BYTES */
1944
1945 return s;
1946 }
1947
1948
1949 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1950 plus a NUL byte at the end. Allocate an sdata structure for S, and
1951 set S->data to its `u.data' member. Store a NUL byte at the end of
1952 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1953 S->data if it was initially non-null. */
1954
1955 void
1956 allocate_string_data (s, nchars, nbytes)
1957 struct Lisp_String *s;
1958 int nchars, nbytes;
1959 {
1960 struct sdata *data, *old_data;
1961 struct sblock *b;
1962 int needed, old_nbytes;
1963
1964 /* Determine the number of bytes needed to store NBYTES bytes
1965 of string data. */
1966 needed = SDATA_SIZE (nbytes);
1967 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1968 old_nbytes = GC_STRING_BYTES (s);
1969
1970 MALLOC_BLOCK_INPUT;
1971
1972 if (nbytes > LARGE_STRING_BYTES)
1973 {
1974 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1975
1976 #ifdef DOUG_LEA_MALLOC
1977 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1978 because mapped region contents are not preserved in
1979 a dumped Emacs.
1980
1981 In case you think of allowing it in a dumped Emacs at the
1982 cost of not being able to re-dump, there's another reason:
1983 mmap'ed data typically have an address towards the top of the
1984 address space, which won't fit into an EMACS_INT (at least on
1985 32-bit systems with the current tagging scheme). --fx */
1986 mallopt (M_MMAP_MAX, 0);
1987 #endif
1988
1989 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1990
1991 #ifdef DOUG_LEA_MALLOC
1992 /* Back to a reasonable maximum of mmap'ed areas. */
1993 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1994 #endif
1995
1996 b->next_free = &b->first_data;
1997 b->first_data.string = NULL;
1998 b->next = large_sblocks;
1999 large_sblocks = b;
2000 }
2001 else if (current_sblock == NULL
2002 || (((char *) current_sblock + SBLOCK_SIZE
2003 - (char *) current_sblock->next_free)
2004 < (needed + GC_STRING_EXTRA)))
2005 {
2006 /* Not enough room in the current sblock. */
2007 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2008 b->next_free = &b->first_data;
2009 b->first_data.string = NULL;
2010 b->next = NULL;
2011
2012 if (current_sblock)
2013 current_sblock->next = b;
2014 else
2015 oldest_sblock = b;
2016 current_sblock = b;
2017 }
2018 else
2019 b = current_sblock;
2020
2021 data = b->next_free;
2022 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2023
2024 MALLOC_UNBLOCK_INPUT;
2025
2026 data->string = s;
2027 s->data = SDATA_DATA (data);
2028 #ifdef GC_CHECK_STRING_BYTES
2029 SDATA_NBYTES (data) = nbytes;
2030 #endif
2031 s->size = nchars;
2032 s->size_byte = nbytes;
2033 s->data[nbytes] = '\0';
2034 #ifdef GC_CHECK_STRING_OVERRUN
2035 bcopy (string_overrun_cookie, (char *) data + needed,
2036 GC_STRING_OVERRUN_COOKIE_SIZE);
2037 #endif
2038
2039 /* If S had already data assigned, mark that as free by setting its
2040 string back-pointer to null, and recording the size of the data
2041 in it. */
2042 if (old_data)
2043 {
2044 SDATA_NBYTES (old_data) = old_nbytes;
2045 old_data->string = NULL;
2046 }
2047
2048 consing_since_gc += needed;
2049 }
2050
2051
2052 /* Sweep and compact strings. */
2053
2054 static void
2055 sweep_strings ()
2056 {
2057 struct string_block *b, *next;
2058 struct string_block *live_blocks = NULL;
2059
2060 string_free_list = NULL;
2061 total_strings = total_free_strings = 0;
2062 total_string_size = 0;
2063
2064 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2065 for (b = string_blocks; b; b = next)
2066 {
2067 int i, nfree = 0;
2068 struct Lisp_String *free_list_before = string_free_list;
2069
2070 next = b->next;
2071
2072 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2073 {
2074 struct Lisp_String *s = b->strings + i;
2075
2076 if (s->data)
2077 {
2078 /* String was not on free-list before. */
2079 if (STRING_MARKED_P (s))
2080 {
2081 /* String is live; unmark it and its intervals. */
2082 UNMARK_STRING (s);
2083
2084 if (!NULL_INTERVAL_P (s->intervals))
2085 UNMARK_BALANCE_INTERVALS (s->intervals);
2086
2087 ++total_strings;
2088 total_string_size += STRING_BYTES (s);
2089 }
2090 else
2091 {
2092 /* String is dead. Put it on the free-list. */
2093 struct sdata *data = SDATA_OF_STRING (s);
2094
2095 /* Save the size of S in its sdata so that we know
2096 how large that is. Reset the sdata's string
2097 back-pointer so that we know it's free. */
2098 #ifdef GC_CHECK_STRING_BYTES
2099 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2100 abort ();
2101 #else
2102 data->u.nbytes = GC_STRING_BYTES (s);
2103 #endif
2104 data->string = NULL;
2105
2106 /* Reset the strings's `data' member so that we
2107 know it's free. */
2108 s->data = NULL;
2109
2110 /* Put the string on the free-list. */
2111 NEXT_FREE_LISP_STRING (s) = string_free_list;
2112 string_free_list = s;
2113 ++nfree;
2114 }
2115 }
2116 else
2117 {
2118 /* S was on the free-list before. Put it there again. */
2119 NEXT_FREE_LISP_STRING (s) = string_free_list;
2120 string_free_list = s;
2121 ++nfree;
2122 }
2123 }
2124
2125 /* Free blocks that contain free Lisp_Strings only, except
2126 the first two of them. */
2127 if (nfree == STRING_BLOCK_SIZE
2128 && total_free_strings > STRING_BLOCK_SIZE)
2129 {
2130 lisp_free (b);
2131 --n_string_blocks;
2132 string_free_list = free_list_before;
2133 }
2134 else
2135 {
2136 total_free_strings += nfree;
2137 b->next = live_blocks;
2138 live_blocks = b;
2139 }
2140 }
2141
2142 check_string_free_list ();
2143
2144 string_blocks = live_blocks;
2145 free_large_strings ();
2146 compact_small_strings ();
2147
2148 check_string_free_list ();
2149 }
2150
2151
2152 /* Free dead large strings. */
2153
2154 static void
2155 free_large_strings ()
2156 {
2157 struct sblock *b, *next;
2158 struct sblock *live_blocks = NULL;
2159
2160 for (b = large_sblocks; b; b = next)
2161 {
2162 next = b->next;
2163
2164 if (b->first_data.string == NULL)
2165 lisp_free (b);
2166 else
2167 {
2168 b->next = live_blocks;
2169 live_blocks = b;
2170 }
2171 }
2172
2173 large_sblocks = live_blocks;
2174 }
2175
2176
2177 /* Compact data of small strings. Free sblocks that don't contain
2178 data of live strings after compaction. */
2179
2180 static void
2181 compact_small_strings ()
2182 {
2183 struct sblock *b, *tb, *next;
2184 struct sdata *from, *to, *end, *tb_end;
2185 struct sdata *to_end, *from_end;
2186
2187 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2188 to, and TB_END is the end of TB. */
2189 tb = oldest_sblock;
2190 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2191 to = &tb->first_data;
2192
2193 /* Step through the blocks from the oldest to the youngest. We
2194 expect that old blocks will stabilize over time, so that less
2195 copying will happen this way. */
2196 for (b = oldest_sblock; b; b = b->next)
2197 {
2198 end = b->next_free;
2199 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2200
2201 for (from = &b->first_data; from < end; from = from_end)
2202 {
2203 /* Compute the next FROM here because copying below may
2204 overwrite data we need to compute it. */
2205 int nbytes;
2206
2207 #ifdef GC_CHECK_STRING_BYTES
2208 /* Check that the string size recorded in the string is the
2209 same as the one recorded in the sdata structure. */
2210 if (from->string
2211 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2212 abort ();
2213 #endif /* GC_CHECK_STRING_BYTES */
2214
2215 if (from->string)
2216 nbytes = GC_STRING_BYTES (from->string);
2217 else
2218 nbytes = SDATA_NBYTES (from);
2219
2220 if (nbytes > LARGE_STRING_BYTES)
2221 abort ();
2222
2223 nbytes = SDATA_SIZE (nbytes);
2224 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2225
2226 #ifdef GC_CHECK_STRING_OVERRUN
2227 if (bcmp (string_overrun_cookie,
2228 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2229 GC_STRING_OVERRUN_COOKIE_SIZE))
2230 abort ();
2231 #endif
2232
2233 /* FROM->string non-null means it's alive. Copy its data. */
2234 if (from->string)
2235 {
2236 /* If TB is full, proceed with the next sblock. */
2237 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2238 if (to_end > tb_end)
2239 {
2240 tb->next_free = to;
2241 tb = tb->next;
2242 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2243 to = &tb->first_data;
2244 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2245 }
2246
2247 /* Copy, and update the string's `data' pointer. */
2248 if (from != to)
2249 {
2250 xassert (tb != b || to <= from);
2251 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
2252 to->string->data = SDATA_DATA (to);
2253 }
2254
2255 /* Advance past the sdata we copied to. */
2256 to = to_end;
2257 }
2258 }
2259 }
2260
2261 /* The rest of the sblocks following TB don't contain live data, so
2262 we can free them. */
2263 for (b = tb->next; b; b = next)
2264 {
2265 next = b->next;
2266 lisp_free (b);
2267 }
2268
2269 tb->next_free = to;
2270 tb->next = NULL;
2271 current_sblock = tb;
2272 }
2273
2274
2275 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2276 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2277 LENGTH must be an integer.
2278 INIT must be an integer that represents a character. */)
2279 (length, init)
2280 Lisp_Object length, init;
2281 {
2282 register Lisp_Object val;
2283 register unsigned char *p, *end;
2284 int c, nbytes;
2285
2286 CHECK_NATNUM (length);
2287 CHECK_NUMBER (init);
2288
2289 c = XINT (init);
2290 if (ASCII_CHAR_P (c))
2291 {
2292 nbytes = XINT (length);
2293 val = make_uninit_string (nbytes);
2294 p = SDATA (val);
2295 end = p + SCHARS (val);
2296 while (p != end)
2297 *p++ = c;
2298 }
2299 else
2300 {
2301 unsigned char str[MAX_MULTIBYTE_LENGTH];
2302 int len = CHAR_STRING (c, str);
2303
2304 nbytes = len * XINT (length);
2305 val = make_uninit_multibyte_string (XINT (length), nbytes);
2306 p = SDATA (val);
2307 end = p + nbytes;
2308 while (p != end)
2309 {
2310 bcopy (str, p, len);
2311 p += len;
2312 }
2313 }
2314
2315 *p = 0;
2316 return val;
2317 }
2318
2319
2320 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2321 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2322 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2323 (length, init)
2324 Lisp_Object length, init;
2325 {
2326 register Lisp_Object val;
2327 struct Lisp_Bool_Vector *p;
2328 int real_init, i;
2329 int length_in_chars, length_in_elts, bits_per_value;
2330
2331 CHECK_NATNUM (length);
2332
2333 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2334
2335 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2336 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2337 / BOOL_VECTOR_BITS_PER_CHAR);
2338
2339 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2340 slot `size' of the struct Lisp_Bool_Vector. */
2341 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2342
2343 /* Get rid of any bits that would cause confusion. */
2344 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2345 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2346 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2347
2348 p = XBOOL_VECTOR (val);
2349 p->size = XFASTINT (length);
2350
2351 real_init = (NILP (init) ? 0 : -1);
2352 for (i = 0; i < length_in_chars ; i++)
2353 p->data[i] = real_init;
2354
2355 /* Clear the extraneous bits in the last byte. */
2356 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2357 p->data[length_in_chars - 1]
2358 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2359
2360 return val;
2361 }
2362
2363
2364 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2365 of characters from the contents. This string may be unibyte or
2366 multibyte, depending on the contents. */
2367
2368 Lisp_Object
2369 make_string (contents, nbytes)
2370 const char *contents;
2371 int nbytes;
2372 {
2373 register Lisp_Object val;
2374 int nchars, multibyte_nbytes;
2375
2376 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2377 if (nbytes == nchars || nbytes != multibyte_nbytes)
2378 /* CONTENTS contains no multibyte sequences or contains an invalid
2379 multibyte sequence. We must make unibyte string. */
2380 val = make_unibyte_string (contents, nbytes);
2381 else
2382 val = make_multibyte_string (contents, nchars, nbytes);
2383 return val;
2384 }
2385
2386
2387 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2388
2389 Lisp_Object
2390 make_unibyte_string (contents, length)
2391 const char *contents;
2392 int length;
2393 {
2394 register Lisp_Object val;
2395 val = make_uninit_string (length);
2396 bcopy (contents, SDATA (val), length);
2397 STRING_SET_UNIBYTE (val);
2398 return val;
2399 }
2400
2401
2402 /* Make a multibyte string from NCHARS characters occupying NBYTES
2403 bytes at CONTENTS. */
2404
2405 Lisp_Object
2406 make_multibyte_string (contents, nchars, nbytes)
2407 const char *contents;
2408 int nchars, nbytes;
2409 {
2410 register Lisp_Object val;
2411 val = make_uninit_multibyte_string (nchars, nbytes);
2412 bcopy (contents, SDATA (val), nbytes);
2413 return val;
2414 }
2415
2416
2417 /* Make a string from NCHARS characters occupying NBYTES bytes at
2418 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2419
2420 Lisp_Object
2421 make_string_from_bytes (contents, nchars, nbytes)
2422 const char *contents;
2423 int nchars, nbytes;
2424 {
2425 register Lisp_Object val;
2426 val = make_uninit_multibyte_string (nchars, nbytes);
2427 bcopy (contents, SDATA (val), nbytes);
2428 if (SBYTES (val) == SCHARS (val))
2429 STRING_SET_UNIBYTE (val);
2430 return val;
2431 }
2432
2433
2434 /* Make a string from NCHARS characters occupying NBYTES bytes at
2435 CONTENTS. The argument MULTIBYTE controls whether to label the
2436 string as multibyte. If NCHARS is negative, it counts the number of
2437 characters by itself. */
2438
2439 Lisp_Object
2440 make_specified_string (contents, nchars, nbytes, multibyte)
2441 const char *contents;
2442 int nchars, nbytes;
2443 int multibyte;
2444 {
2445 register Lisp_Object val;
2446
2447 if (nchars < 0)
2448 {
2449 if (multibyte)
2450 nchars = multibyte_chars_in_text (contents, nbytes);
2451 else
2452 nchars = nbytes;
2453 }
2454 val = make_uninit_multibyte_string (nchars, nbytes);
2455 bcopy (contents, SDATA (val), nbytes);
2456 if (!multibyte)
2457 STRING_SET_UNIBYTE (val);
2458 return val;
2459 }
2460
2461
2462 /* Make a string from the data at STR, treating it as multibyte if the
2463 data warrants. */
2464
2465 Lisp_Object
2466 build_string (str)
2467 const char *str;
2468 {
2469 return make_string (str, strlen (str));
2470 }
2471
2472
2473 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2474 occupying LENGTH bytes. */
2475
2476 Lisp_Object
2477 make_uninit_string (length)
2478 int length;
2479 {
2480 Lisp_Object val;
2481
2482 if (!length)
2483 return empty_unibyte_string;
2484 val = make_uninit_multibyte_string (length, length);
2485 STRING_SET_UNIBYTE (val);
2486 return val;
2487 }
2488
2489
2490 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2491 which occupy NBYTES bytes. */
2492
2493 Lisp_Object
2494 make_uninit_multibyte_string (nchars, nbytes)
2495 int nchars, nbytes;
2496 {
2497 Lisp_Object string;
2498 struct Lisp_String *s;
2499
2500 if (nchars < 0)
2501 abort ();
2502 if (!nbytes)
2503 return empty_multibyte_string;
2504
2505 s = allocate_string ();
2506 allocate_string_data (s, nchars, nbytes);
2507 XSETSTRING (string, s);
2508 string_chars_consed += nbytes;
2509 return string;
2510 }
2511
2512
2513 \f
2514 /***********************************************************************
2515 Float Allocation
2516 ***********************************************************************/
2517
2518 /* We store float cells inside of float_blocks, allocating a new
2519 float_block with malloc whenever necessary. Float cells reclaimed
2520 by GC are put on a free list to be reallocated before allocating
2521 any new float cells from the latest float_block. */
2522
2523 #define FLOAT_BLOCK_SIZE \
2524 (((BLOCK_BYTES - sizeof (struct float_block *) \
2525 /* The compiler might add padding at the end. */ \
2526 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2527 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2528
2529 #define GETMARKBIT(block,n) \
2530 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2531 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2532 & 1)
2533
2534 #define SETMARKBIT(block,n) \
2535 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2536 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2537
2538 #define UNSETMARKBIT(block,n) \
2539 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2540 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2541
2542 #define FLOAT_BLOCK(fptr) \
2543 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2544
2545 #define FLOAT_INDEX(fptr) \
2546 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2547
2548 struct float_block
2549 {
2550 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2551 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2552 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2553 struct float_block *next;
2554 };
2555
2556 #define FLOAT_MARKED_P(fptr) \
2557 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2558
2559 #define FLOAT_MARK(fptr) \
2560 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2561
2562 #define FLOAT_UNMARK(fptr) \
2563 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2564
2565 /* Current float_block. */
2566
2567 struct float_block *float_block;
2568
2569 /* Index of first unused Lisp_Float in the current float_block. */
2570
2571 int float_block_index;
2572
2573 /* Total number of float blocks now in use. */
2574
2575 int n_float_blocks;
2576
2577 /* Free-list of Lisp_Floats. */
2578
2579 struct Lisp_Float *float_free_list;
2580
2581
2582 /* Initialize float allocation. */
2583
2584 static void
2585 init_float ()
2586 {
2587 float_block = NULL;
2588 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2589 float_free_list = 0;
2590 n_float_blocks = 0;
2591 }
2592
2593
2594 /* Explicitly free a float cell by putting it on the free-list. */
2595
2596 static void
2597 free_float (ptr)
2598 struct Lisp_Float *ptr;
2599 {
2600 ptr->u.chain = float_free_list;
2601 float_free_list = ptr;
2602 }
2603
2604
2605 /* Return a new float object with value FLOAT_VALUE. */
2606
2607 Lisp_Object
2608 make_float (float_value)
2609 double float_value;
2610 {
2611 register Lisp_Object val;
2612
2613 /* eassert (!handling_signal); */
2614
2615 MALLOC_BLOCK_INPUT;
2616
2617 if (float_free_list)
2618 {
2619 /* We use the data field for chaining the free list
2620 so that we won't use the same field that has the mark bit. */
2621 XSETFLOAT (val, float_free_list);
2622 float_free_list = float_free_list->u.chain;
2623 }
2624 else
2625 {
2626 if (float_block_index == FLOAT_BLOCK_SIZE)
2627 {
2628 register struct float_block *new;
2629
2630 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2631 MEM_TYPE_FLOAT);
2632 new->next = float_block;
2633 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2634 float_block = new;
2635 float_block_index = 0;
2636 n_float_blocks++;
2637 }
2638 XSETFLOAT (val, &float_block->floats[float_block_index]);
2639 float_block_index++;
2640 }
2641
2642 MALLOC_UNBLOCK_INPUT;
2643
2644 XFLOAT_DATA (val) = float_value;
2645 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2646 consing_since_gc += sizeof (struct Lisp_Float);
2647 floats_consed++;
2648 return val;
2649 }
2650
2651
2652 \f
2653 /***********************************************************************
2654 Cons Allocation
2655 ***********************************************************************/
2656
2657 /* We store cons cells inside of cons_blocks, allocating a new
2658 cons_block with malloc whenever necessary. Cons cells reclaimed by
2659 GC are put on a free list to be reallocated before allocating
2660 any new cons cells from the latest cons_block. */
2661
2662 #define CONS_BLOCK_SIZE \
2663 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2664 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2665
2666 #define CONS_BLOCK(fptr) \
2667 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2668
2669 #define CONS_INDEX(fptr) \
2670 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2671
2672 struct cons_block
2673 {
2674 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2675 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2676 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2677 struct cons_block *next;
2678 };
2679
2680 #define CONS_MARKED_P(fptr) \
2681 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2682
2683 #define CONS_MARK(fptr) \
2684 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2685
2686 #define CONS_UNMARK(fptr) \
2687 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2688
2689 /* Current cons_block. */
2690
2691 struct cons_block *cons_block;
2692
2693 /* Index of first unused Lisp_Cons in the current block. */
2694
2695 int cons_block_index;
2696
2697 /* Free-list of Lisp_Cons structures. */
2698
2699 struct Lisp_Cons *cons_free_list;
2700
2701 /* Total number of cons blocks now in use. */
2702
2703 static int n_cons_blocks;
2704
2705
2706 /* Initialize cons allocation. */
2707
2708 static void
2709 init_cons ()
2710 {
2711 cons_block = NULL;
2712 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2713 cons_free_list = 0;
2714 n_cons_blocks = 0;
2715 }
2716
2717
2718 /* Explicitly free a cons cell by putting it on the free-list. */
2719
2720 void
2721 free_cons (ptr)
2722 struct Lisp_Cons *ptr;
2723 {
2724 ptr->u.chain = cons_free_list;
2725 #if GC_MARK_STACK
2726 ptr->car = Vdead;
2727 #endif
2728 cons_free_list = ptr;
2729 }
2730
2731 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2732 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2733 (car, cdr)
2734 Lisp_Object car, cdr;
2735 {
2736 register Lisp_Object val;
2737
2738 /* eassert (!handling_signal); */
2739
2740 MALLOC_BLOCK_INPUT;
2741
2742 if (cons_free_list)
2743 {
2744 /* We use the cdr for chaining the free list
2745 so that we won't use the same field that has the mark bit. */
2746 XSETCONS (val, cons_free_list);
2747 cons_free_list = cons_free_list->u.chain;
2748 }
2749 else
2750 {
2751 if (cons_block_index == CONS_BLOCK_SIZE)
2752 {
2753 register struct cons_block *new;
2754 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2755 MEM_TYPE_CONS);
2756 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2757 new->next = cons_block;
2758 cons_block = new;
2759 cons_block_index = 0;
2760 n_cons_blocks++;
2761 }
2762 XSETCONS (val, &cons_block->conses[cons_block_index]);
2763 cons_block_index++;
2764 }
2765
2766 MALLOC_UNBLOCK_INPUT;
2767
2768 XSETCAR (val, car);
2769 XSETCDR (val, cdr);
2770 eassert (!CONS_MARKED_P (XCONS (val)));
2771 consing_since_gc += sizeof (struct Lisp_Cons);
2772 cons_cells_consed++;
2773 return val;
2774 }
2775
2776 /* Get an error now if there's any junk in the cons free list. */
2777 void
2778 check_cons_list ()
2779 {
2780 #ifdef GC_CHECK_CONS_LIST
2781 struct Lisp_Cons *tail = cons_free_list;
2782
2783 while (tail)
2784 tail = tail->u.chain;
2785 #endif
2786 }
2787
2788 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2789
2790 Lisp_Object
2791 list1 (arg1)
2792 Lisp_Object arg1;
2793 {
2794 return Fcons (arg1, Qnil);
2795 }
2796
2797 Lisp_Object
2798 list2 (arg1, arg2)
2799 Lisp_Object arg1, arg2;
2800 {
2801 return Fcons (arg1, Fcons (arg2, Qnil));
2802 }
2803
2804
2805 Lisp_Object
2806 list3 (arg1, arg2, arg3)
2807 Lisp_Object arg1, arg2, arg3;
2808 {
2809 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2810 }
2811
2812
2813 Lisp_Object
2814 list4 (arg1, arg2, arg3, arg4)
2815 Lisp_Object arg1, arg2, arg3, arg4;
2816 {
2817 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2818 }
2819
2820
2821 Lisp_Object
2822 list5 (arg1, arg2, arg3, arg4, arg5)
2823 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2824 {
2825 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2826 Fcons (arg5, Qnil)))));
2827 }
2828
2829
2830 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2831 doc: /* Return a newly created list with specified arguments as elements.
2832 Any number of arguments, even zero arguments, are allowed.
2833 usage: (list &rest OBJECTS) */)
2834 (nargs, args)
2835 int nargs;
2836 register Lisp_Object *args;
2837 {
2838 register Lisp_Object val;
2839 val = Qnil;
2840
2841 while (nargs > 0)
2842 {
2843 nargs--;
2844 val = Fcons (args[nargs], val);
2845 }
2846 return val;
2847 }
2848
2849
2850 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2851 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2852 (length, init)
2853 register Lisp_Object length, init;
2854 {
2855 register Lisp_Object val;
2856 register int size;
2857
2858 CHECK_NATNUM (length);
2859 size = XFASTINT (length);
2860
2861 val = Qnil;
2862 while (size > 0)
2863 {
2864 val = Fcons (init, val);
2865 --size;
2866
2867 if (size > 0)
2868 {
2869 val = Fcons (init, val);
2870 --size;
2871
2872 if (size > 0)
2873 {
2874 val = Fcons (init, val);
2875 --size;
2876
2877 if (size > 0)
2878 {
2879 val = Fcons (init, val);
2880 --size;
2881
2882 if (size > 0)
2883 {
2884 val = Fcons (init, val);
2885 --size;
2886 }
2887 }
2888 }
2889 }
2890
2891 QUIT;
2892 }
2893
2894 return val;
2895 }
2896
2897
2898 \f
2899 /***********************************************************************
2900 Vector Allocation
2901 ***********************************************************************/
2902
2903 /* Singly-linked list of all vectors. */
2904
2905 static struct Lisp_Vector *all_vectors;
2906
2907 /* Total number of vector-like objects now in use. */
2908
2909 static int n_vectors;
2910
2911
2912 /* Value is a pointer to a newly allocated Lisp_Vector structure
2913 with room for LEN Lisp_Objects. */
2914
2915 static struct Lisp_Vector *
2916 allocate_vectorlike (len)
2917 EMACS_INT len;
2918 {
2919 struct Lisp_Vector *p;
2920 size_t nbytes;
2921
2922 MALLOC_BLOCK_INPUT;
2923
2924 #ifdef DOUG_LEA_MALLOC
2925 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2926 because mapped region contents are not preserved in
2927 a dumped Emacs. */
2928 mallopt (M_MMAP_MAX, 0);
2929 #endif
2930
2931 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2932 /* eassert (!handling_signal); */
2933
2934 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2935 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2936
2937 #ifdef DOUG_LEA_MALLOC
2938 /* Back to a reasonable maximum of mmap'ed areas. */
2939 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2940 #endif
2941
2942 consing_since_gc += nbytes;
2943 vector_cells_consed += len;
2944
2945 p->next = all_vectors;
2946 all_vectors = p;
2947
2948 MALLOC_UNBLOCK_INPUT;
2949
2950 ++n_vectors;
2951 return p;
2952 }
2953
2954
2955 /* Allocate a vector with NSLOTS slots. */
2956
2957 struct Lisp_Vector *
2958 allocate_vector (nslots)
2959 EMACS_INT nslots;
2960 {
2961 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2962 v->size = nslots;
2963 return v;
2964 }
2965
2966
2967 /* Allocate other vector-like structures. */
2968
2969 struct Lisp_Vector *
2970 allocate_pseudovector (memlen, lisplen, tag)
2971 int memlen, lisplen;
2972 EMACS_INT tag;
2973 {
2974 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2975 EMACS_INT i;
2976
2977 /* Only the first lisplen slots will be traced normally by the GC. */
2978 v->size = lisplen;
2979 for (i = 0; i < lisplen; ++i)
2980 v->contents[i] = Qnil;
2981
2982 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2983 return v;
2984 }
2985
2986 struct Lisp_Hash_Table *
2987 allocate_hash_table (void)
2988 {
2989 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2990 }
2991
2992
2993 struct window *
2994 allocate_window ()
2995 {
2996 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2997 }
2998
2999
3000 struct terminal *
3001 allocate_terminal ()
3002 {
3003 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
3004 next_terminal, PVEC_TERMINAL);
3005 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3006 bzero (&(t->next_terminal),
3007 ((char*)(t+1)) - ((char*)&(t->next_terminal)));
3008
3009 return t;
3010 }
3011
3012 struct frame *
3013 allocate_frame ()
3014 {
3015 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
3016 face_cache, PVEC_FRAME);
3017 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3018 bzero (&(f->face_cache),
3019 ((char*)(f+1)) - ((char*)&(f->face_cache)));
3020 return f;
3021 }
3022
3023
3024 struct Lisp_Process *
3025 allocate_process ()
3026 {
3027 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3028 }
3029
3030
3031 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3032 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3033 See also the function `vector'. */)
3034 (length, init)
3035 register Lisp_Object length, init;
3036 {
3037 Lisp_Object vector;
3038 register EMACS_INT sizei;
3039 register int index;
3040 register struct Lisp_Vector *p;
3041
3042 CHECK_NATNUM (length);
3043 sizei = XFASTINT (length);
3044
3045 p = allocate_vector (sizei);
3046 for (index = 0; index < sizei; index++)
3047 p->contents[index] = init;
3048
3049 XSETVECTOR (vector, p);
3050 return vector;
3051 }
3052
3053
3054 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3055 doc: /* Return a newly created vector with specified arguments as elements.
3056 Any number of arguments, even zero arguments, are allowed.
3057 usage: (vector &rest OBJECTS) */)
3058 (nargs, args)
3059 register int nargs;
3060 Lisp_Object *args;
3061 {
3062 register Lisp_Object len, val;
3063 register int index;
3064 register struct Lisp_Vector *p;
3065
3066 XSETFASTINT (len, nargs);
3067 val = Fmake_vector (len, Qnil);
3068 p = XVECTOR (val);
3069 for (index = 0; index < nargs; index++)
3070 p->contents[index] = args[index];
3071 return val;
3072 }
3073
3074
3075 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3076 doc: /* Create a byte-code object with specified arguments as elements.
3077 The arguments should be the arglist, bytecode-string, constant vector,
3078 stack size, (optional) doc string, and (optional) interactive spec.
3079 The first four arguments are required; at most six have any
3080 significance.
3081 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3082 (nargs, args)
3083 register int nargs;
3084 Lisp_Object *args;
3085 {
3086 register Lisp_Object len, val;
3087 register int index;
3088 register struct Lisp_Vector *p;
3089
3090 XSETFASTINT (len, nargs);
3091 if (!NILP (Vpurify_flag))
3092 val = make_pure_vector ((EMACS_INT) nargs);
3093 else
3094 val = Fmake_vector (len, Qnil);
3095
3096 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3097 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3098 earlier because they produced a raw 8-bit string for byte-code
3099 and now such a byte-code string is loaded as multibyte while
3100 raw 8-bit characters converted to multibyte form. Thus, now we
3101 must convert them back to the original unibyte form. */
3102 args[1] = Fstring_as_unibyte (args[1]);
3103
3104 p = XVECTOR (val);
3105 for (index = 0; index < nargs; index++)
3106 {
3107 if (!NILP (Vpurify_flag))
3108 args[index] = Fpurecopy (args[index]);
3109 p->contents[index] = args[index];
3110 }
3111 XSETPVECTYPE (p, PVEC_COMPILED);
3112 XSETCOMPILED (val, p);
3113 return val;
3114 }
3115
3116
3117 \f
3118 /***********************************************************************
3119 Symbol Allocation
3120 ***********************************************************************/
3121
3122 /* Each symbol_block is just under 1020 bytes long, since malloc
3123 really allocates in units of powers of two and uses 4 bytes for its
3124 own overhead. */
3125
3126 #define SYMBOL_BLOCK_SIZE \
3127 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3128
3129 struct symbol_block
3130 {
3131 /* Place `symbols' first, to preserve alignment. */
3132 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3133 struct symbol_block *next;
3134 };
3135
3136 /* Current symbol block and index of first unused Lisp_Symbol
3137 structure in it. */
3138
3139 static struct symbol_block *symbol_block;
3140 static int symbol_block_index;
3141
3142 /* List of free symbols. */
3143
3144 static struct Lisp_Symbol *symbol_free_list;
3145
3146 /* Total number of symbol blocks now in use. */
3147
3148 static int n_symbol_blocks;
3149
3150
3151 /* Initialize symbol allocation. */
3152
3153 static void
3154 init_symbol ()
3155 {
3156 symbol_block = NULL;
3157 symbol_block_index = SYMBOL_BLOCK_SIZE;
3158 symbol_free_list = 0;
3159 n_symbol_blocks = 0;
3160 }
3161
3162
3163 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3164 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3165 Its value and function definition are void, and its property list is nil. */)
3166 (name)
3167 Lisp_Object name;
3168 {
3169 register Lisp_Object val;
3170 register struct Lisp_Symbol *p;
3171
3172 CHECK_STRING (name);
3173
3174 /* eassert (!handling_signal); */
3175
3176 MALLOC_BLOCK_INPUT;
3177
3178 if (symbol_free_list)
3179 {
3180 XSETSYMBOL (val, symbol_free_list);
3181 symbol_free_list = symbol_free_list->next;
3182 }
3183 else
3184 {
3185 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3186 {
3187 struct symbol_block *new;
3188 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3189 MEM_TYPE_SYMBOL);
3190 new->next = symbol_block;
3191 symbol_block = new;
3192 symbol_block_index = 0;
3193 n_symbol_blocks++;
3194 }
3195 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3196 symbol_block_index++;
3197 }
3198
3199 MALLOC_UNBLOCK_INPUT;
3200
3201 p = XSYMBOL (val);
3202 p->xname = name;
3203 p->plist = Qnil;
3204 p->value = Qunbound;
3205 p->function = Qunbound;
3206 p->next = NULL;
3207 p->gcmarkbit = 0;
3208 p->interned = SYMBOL_UNINTERNED;
3209 p->constant = 0;
3210 p->indirect_variable = 0;
3211 consing_since_gc += sizeof (struct Lisp_Symbol);
3212 symbols_consed++;
3213 return val;
3214 }
3215
3216
3217 \f
3218 /***********************************************************************
3219 Marker (Misc) Allocation
3220 ***********************************************************************/
3221
3222 /* Allocation of markers and other objects that share that structure.
3223 Works like allocation of conses. */
3224
3225 #define MARKER_BLOCK_SIZE \
3226 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3227
3228 struct marker_block
3229 {
3230 /* Place `markers' first, to preserve alignment. */
3231 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3232 struct marker_block *next;
3233 };
3234
3235 static struct marker_block *marker_block;
3236 static int marker_block_index;
3237
3238 static union Lisp_Misc *marker_free_list;
3239
3240 /* Total number of marker blocks now in use. */
3241
3242 static int n_marker_blocks;
3243
3244 static void
3245 init_marker ()
3246 {
3247 marker_block = NULL;
3248 marker_block_index = MARKER_BLOCK_SIZE;
3249 marker_free_list = 0;
3250 n_marker_blocks = 0;
3251 }
3252
3253 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3254
3255 Lisp_Object
3256 allocate_misc ()
3257 {
3258 Lisp_Object val;
3259
3260 /* eassert (!handling_signal); */
3261
3262 MALLOC_BLOCK_INPUT;
3263
3264 if (marker_free_list)
3265 {
3266 XSETMISC (val, marker_free_list);
3267 marker_free_list = marker_free_list->u_free.chain;
3268 }
3269 else
3270 {
3271 if (marker_block_index == MARKER_BLOCK_SIZE)
3272 {
3273 struct marker_block *new;
3274 new = (struct marker_block *) lisp_malloc (sizeof *new,
3275 MEM_TYPE_MISC);
3276 new->next = marker_block;
3277 marker_block = new;
3278 marker_block_index = 0;
3279 n_marker_blocks++;
3280 total_free_markers += MARKER_BLOCK_SIZE;
3281 }
3282 XSETMISC (val, &marker_block->markers[marker_block_index]);
3283 marker_block_index++;
3284 }
3285
3286 MALLOC_UNBLOCK_INPUT;
3287
3288 --total_free_markers;
3289 consing_since_gc += sizeof (union Lisp_Misc);
3290 misc_objects_consed++;
3291 XMISCANY (val)->gcmarkbit = 0;
3292 return val;
3293 }
3294
3295 /* Free a Lisp_Misc object */
3296
3297 void
3298 free_misc (misc)
3299 Lisp_Object misc;
3300 {
3301 XMISCTYPE (misc) = Lisp_Misc_Free;
3302 XMISC (misc)->u_free.chain = marker_free_list;
3303 marker_free_list = XMISC (misc);
3304
3305 total_free_markers++;
3306 }
3307
3308 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3309 INTEGER. This is used to package C values to call record_unwind_protect.
3310 The unwind function can get the C values back using XSAVE_VALUE. */
3311
3312 Lisp_Object
3313 make_save_value (pointer, integer)
3314 void *pointer;
3315 int integer;
3316 {
3317 register Lisp_Object val;
3318 register struct Lisp_Save_Value *p;
3319
3320 val = allocate_misc ();
3321 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3322 p = XSAVE_VALUE (val);
3323 p->pointer = pointer;
3324 p->integer = integer;
3325 p->dogc = 0;
3326 return val;
3327 }
3328
3329 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3330 doc: /* Return a newly allocated marker which does not point at any place. */)
3331 ()
3332 {
3333 register Lisp_Object val;
3334 register struct Lisp_Marker *p;
3335
3336 val = allocate_misc ();
3337 XMISCTYPE (val) = Lisp_Misc_Marker;
3338 p = XMARKER (val);
3339 p->buffer = 0;
3340 p->bytepos = 0;
3341 p->charpos = 0;
3342 p->next = NULL;
3343 p->insertion_type = 0;
3344 return val;
3345 }
3346
3347 /* Put MARKER back on the free list after using it temporarily. */
3348
3349 void
3350 free_marker (marker)
3351 Lisp_Object marker;
3352 {
3353 unchain_marker (XMARKER (marker));
3354 free_misc (marker);
3355 }
3356
3357 \f
3358 /* Return a newly created vector or string with specified arguments as
3359 elements. If all the arguments are characters that can fit
3360 in a string of events, make a string; otherwise, make a vector.
3361
3362 Any number of arguments, even zero arguments, are allowed. */
3363
3364 Lisp_Object
3365 make_event_array (nargs, args)
3366 register int nargs;
3367 Lisp_Object *args;
3368 {
3369 int i;
3370
3371 for (i = 0; i < nargs; i++)
3372 /* The things that fit in a string
3373 are characters that are in 0...127,
3374 after discarding the meta bit and all the bits above it. */
3375 if (!INTEGERP (args[i])
3376 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3377 return Fvector (nargs, args);
3378
3379 /* Since the loop exited, we know that all the things in it are
3380 characters, so we can make a string. */
3381 {
3382 Lisp_Object result;
3383
3384 result = Fmake_string (make_number (nargs), make_number (0));
3385 for (i = 0; i < nargs; i++)
3386 {
3387 SSET (result, i, XINT (args[i]));
3388 /* Move the meta bit to the right place for a string char. */
3389 if (XINT (args[i]) & CHAR_META)
3390 SSET (result, i, SREF (result, i) | 0x80);
3391 }
3392
3393 return result;
3394 }
3395 }
3396
3397
3398 \f
3399 /************************************************************************
3400 Memory Full Handling
3401 ************************************************************************/
3402
3403
3404 /* Called if malloc returns zero. */
3405
3406 void
3407 memory_full ()
3408 {
3409 int i;
3410
3411 Vmemory_full = Qt;
3412
3413 memory_full_cons_threshold = sizeof (struct cons_block);
3414
3415 /* The first time we get here, free the spare memory. */
3416 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3417 if (spare_memory[i])
3418 {
3419 if (i == 0)
3420 free (spare_memory[i]);
3421 else if (i >= 1 && i <= 4)
3422 lisp_align_free (spare_memory[i]);
3423 else
3424 lisp_free (spare_memory[i]);
3425 spare_memory[i] = 0;
3426 }
3427
3428 /* Record the space now used. When it decreases substantially,
3429 we can refill the memory reserve. */
3430 #ifndef SYSTEM_MALLOC
3431 bytes_used_when_full = BYTES_USED;
3432 #endif
3433
3434 /* This used to call error, but if we've run out of memory, we could
3435 get infinite recursion trying to build the string. */
3436 xsignal (Qnil, Vmemory_signal_data);
3437 }
3438
3439 /* If we released our reserve (due to running out of memory),
3440 and we have a fair amount free once again,
3441 try to set aside another reserve in case we run out once more.
3442
3443 This is called when a relocatable block is freed in ralloc.c,
3444 and also directly from this file, in case we're not using ralloc.c. */
3445
3446 void
3447 refill_memory_reserve ()
3448 {
3449 #ifndef SYSTEM_MALLOC
3450 if (spare_memory[0] == 0)
3451 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3452 if (spare_memory[1] == 0)
3453 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3454 MEM_TYPE_CONS);
3455 if (spare_memory[2] == 0)
3456 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3457 MEM_TYPE_CONS);
3458 if (spare_memory[3] == 0)
3459 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3460 MEM_TYPE_CONS);
3461 if (spare_memory[4] == 0)
3462 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3463 MEM_TYPE_CONS);
3464 if (spare_memory[5] == 0)
3465 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3466 MEM_TYPE_STRING);
3467 if (spare_memory[6] == 0)
3468 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3469 MEM_TYPE_STRING);
3470 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3471 Vmemory_full = Qnil;
3472 #endif
3473 }
3474 \f
3475 /************************************************************************
3476 C Stack Marking
3477 ************************************************************************/
3478
3479 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3480
3481 /* Conservative C stack marking requires a method to identify possibly
3482 live Lisp objects given a pointer value. We do this by keeping
3483 track of blocks of Lisp data that are allocated in a red-black tree
3484 (see also the comment of mem_node which is the type of nodes in
3485 that tree). Function lisp_malloc adds information for an allocated
3486 block to the red-black tree with calls to mem_insert, and function
3487 lisp_free removes it with mem_delete. Functions live_string_p etc
3488 call mem_find to lookup information about a given pointer in the
3489 tree, and use that to determine if the pointer points to a Lisp
3490 object or not. */
3491
3492 /* Initialize this part of alloc.c. */
3493
3494 static void
3495 mem_init ()
3496 {
3497 mem_z.left = mem_z.right = MEM_NIL;
3498 mem_z.parent = NULL;
3499 mem_z.color = MEM_BLACK;
3500 mem_z.start = mem_z.end = NULL;
3501 mem_root = MEM_NIL;
3502 }
3503
3504
3505 /* Value is a pointer to the mem_node containing START. Value is
3506 MEM_NIL if there is no node in the tree containing START. */
3507
3508 static INLINE struct mem_node *
3509 mem_find (start)
3510 void *start;
3511 {
3512 struct mem_node *p;
3513
3514 if (start < min_heap_address || start > max_heap_address)
3515 return MEM_NIL;
3516
3517 /* Make the search always successful to speed up the loop below. */
3518 mem_z.start = start;
3519 mem_z.end = (char *) start + 1;
3520
3521 p = mem_root;
3522 while (start < p->start || start >= p->end)
3523 p = start < p->start ? p->left : p->right;
3524 return p;
3525 }
3526
3527
3528 /* Insert a new node into the tree for a block of memory with start
3529 address START, end address END, and type TYPE. Value is a
3530 pointer to the node that was inserted. */
3531
3532 static struct mem_node *
3533 mem_insert (start, end, type)
3534 void *start, *end;
3535 enum mem_type type;
3536 {
3537 struct mem_node *c, *parent, *x;
3538
3539 if (min_heap_address == NULL || start < min_heap_address)
3540 min_heap_address = start;
3541 if (max_heap_address == NULL || end > max_heap_address)
3542 max_heap_address = end;
3543
3544 /* See where in the tree a node for START belongs. In this
3545 particular application, it shouldn't happen that a node is already
3546 present. For debugging purposes, let's check that. */
3547 c = mem_root;
3548 parent = NULL;
3549
3550 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3551
3552 while (c != MEM_NIL)
3553 {
3554 if (start >= c->start && start < c->end)
3555 abort ();
3556 parent = c;
3557 c = start < c->start ? c->left : c->right;
3558 }
3559
3560 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3561
3562 while (c != MEM_NIL)
3563 {
3564 parent = c;
3565 c = start < c->start ? c->left : c->right;
3566 }
3567
3568 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3569
3570 /* Create a new node. */
3571 #ifdef GC_MALLOC_CHECK
3572 x = (struct mem_node *) _malloc_internal (sizeof *x);
3573 if (x == NULL)
3574 abort ();
3575 #else
3576 x = (struct mem_node *) xmalloc (sizeof *x);
3577 #endif
3578 x->start = start;
3579 x->end = end;
3580 x->type = type;
3581 x->parent = parent;
3582 x->left = x->right = MEM_NIL;
3583 x->color = MEM_RED;
3584
3585 /* Insert it as child of PARENT or install it as root. */
3586 if (parent)
3587 {
3588 if (start < parent->start)
3589 parent->left = x;
3590 else
3591 parent->right = x;
3592 }
3593 else
3594 mem_root = x;
3595
3596 /* Re-establish red-black tree properties. */
3597 mem_insert_fixup (x);
3598
3599 return x;
3600 }
3601
3602
3603 /* Re-establish the red-black properties of the tree, and thereby
3604 balance the tree, after node X has been inserted; X is always red. */
3605
3606 static void
3607 mem_insert_fixup (x)
3608 struct mem_node *x;
3609 {
3610 while (x != mem_root && x->parent->color == MEM_RED)
3611 {
3612 /* X is red and its parent is red. This is a violation of
3613 red-black tree property #3. */
3614
3615 if (x->parent == x->parent->parent->left)
3616 {
3617 /* We're on the left side of our grandparent, and Y is our
3618 "uncle". */
3619 struct mem_node *y = x->parent->parent->right;
3620
3621 if (y->color == MEM_RED)
3622 {
3623 /* Uncle and parent are red but should be black because
3624 X is red. Change the colors accordingly and proceed
3625 with the grandparent. */
3626 x->parent->color = MEM_BLACK;
3627 y->color = MEM_BLACK;
3628 x->parent->parent->color = MEM_RED;
3629 x = x->parent->parent;
3630 }
3631 else
3632 {
3633 /* Parent and uncle have different colors; parent is
3634 red, uncle is black. */
3635 if (x == x->parent->right)
3636 {
3637 x = x->parent;
3638 mem_rotate_left (x);
3639 }
3640
3641 x->parent->color = MEM_BLACK;
3642 x->parent->parent->color = MEM_RED;
3643 mem_rotate_right (x->parent->parent);
3644 }
3645 }
3646 else
3647 {
3648 /* This is the symmetrical case of above. */
3649 struct mem_node *y = x->parent->parent->left;
3650
3651 if (y->color == MEM_RED)
3652 {
3653 x->parent->color = MEM_BLACK;
3654 y->color = MEM_BLACK;
3655 x->parent->parent->color = MEM_RED;
3656 x = x->parent->parent;
3657 }
3658 else
3659 {
3660 if (x == x->parent->left)
3661 {
3662 x = x->parent;
3663 mem_rotate_right (x);
3664 }
3665
3666 x->parent->color = MEM_BLACK;
3667 x->parent->parent->color = MEM_RED;
3668 mem_rotate_left (x->parent->parent);
3669 }
3670 }
3671 }
3672
3673 /* The root may have been changed to red due to the algorithm. Set
3674 it to black so that property #5 is satisfied. */
3675 mem_root->color = MEM_BLACK;
3676 }
3677
3678
3679 /* (x) (y)
3680 / \ / \
3681 a (y) ===> (x) c
3682 / \ / \
3683 b c a b */
3684
3685 static void
3686 mem_rotate_left (x)
3687 struct mem_node *x;
3688 {
3689 struct mem_node *y;
3690
3691 /* Turn y's left sub-tree into x's right sub-tree. */
3692 y = x->right;
3693 x->right = y->left;
3694 if (y->left != MEM_NIL)
3695 y->left->parent = x;
3696
3697 /* Y's parent was x's parent. */
3698 if (y != MEM_NIL)
3699 y->parent = x->parent;
3700
3701 /* Get the parent to point to y instead of x. */
3702 if (x->parent)
3703 {
3704 if (x == x->parent->left)
3705 x->parent->left = y;
3706 else
3707 x->parent->right = y;
3708 }
3709 else
3710 mem_root = y;
3711
3712 /* Put x on y's left. */
3713 y->left = x;
3714 if (x != MEM_NIL)
3715 x->parent = y;
3716 }
3717
3718
3719 /* (x) (Y)
3720 / \ / \
3721 (y) c ===> a (x)
3722 / \ / \
3723 a b b c */
3724
3725 static void
3726 mem_rotate_right (x)
3727 struct mem_node *x;
3728 {
3729 struct mem_node *y = x->left;
3730
3731 x->left = y->right;
3732 if (y->right != MEM_NIL)
3733 y->right->parent = x;
3734
3735 if (y != MEM_NIL)
3736 y->parent = x->parent;
3737 if (x->parent)
3738 {
3739 if (x == x->parent->right)
3740 x->parent->right = y;
3741 else
3742 x->parent->left = y;
3743 }
3744 else
3745 mem_root = y;
3746
3747 y->right = x;
3748 if (x != MEM_NIL)
3749 x->parent = y;
3750 }
3751
3752
3753 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3754
3755 static void
3756 mem_delete (z)
3757 struct mem_node *z;
3758 {
3759 struct mem_node *x, *y;
3760
3761 if (!z || z == MEM_NIL)
3762 return;
3763
3764 if (z->left == MEM_NIL || z->right == MEM_NIL)
3765 y = z;
3766 else
3767 {
3768 y = z->right;
3769 while (y->left != MEM_NIL)
3770 y = y->left;
3771 }
3772
3773 if (y->left != MEM_NIL)
3774 x = y->left;
3775 else
3776 x = y->right;
3777
3778 x->parent = y->parent;
3779 if (y->parent)
3780 {
3781 if (y == y->parent->left)
3782 y->parent->left = x;
3783 else
3784 y->parent->right = x;
3785 }
3786 else
3787 mem_root = x;
3788
3789 if (y != z)
3790 {
3791 z->start = y->start;
3792 z->end = y->end;
3793 z->type = y->type;
3794 }
3795
3796 if (y->color == MEM_BLACK)
3797 mem_delete_fixup (x);
3798
3799 #ifdef GC_MALLOC_CHECK
3800 _free_internal (y);
3801 #else
3802 xfree (y);
3803 #endif
3804 }
3805
3806
3807 /* Re-establish the red-black properties of the tree, after a
3808 deletion. */
3809
3810 static void
3811 mem_delete_fixup (x)
3812 struct mem_node *x;
3813 {
3814 while (x != mem_root && x->color == MEM_BLACK)
3815 {
3816 if (x == x->parent->left)
3817 {
3818 struct mem_node *w = x->parent->right;
3819
3820 if (w->color == MEM_RED)
3821 {
3822 w->color = MEM_BLACK;
3823 x->parent->color = MEM_RED;
3824 mem_rotate_left (x->parent);
3825 w = x->parent->right;
3826 }
3827
3828 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3829 {
3830 w->color = MEM_RED;
3831 x = x->parent;
3832 }
3833 else
3834 {
3835 if (w->right->color == MEM_BLACK)
3836 {
3837 w->left->color = MEM_BLACK;
3838 w->color = MEM_RED;
3839 mem_rotate_right (w);
3840 w = x->parent->right;
3841 }
3842 w->color = x->parent->color;
3843 x->parent->color = MEM_BLACK;
3844 w->right->color = MEM_BLACK;
3845 mem_rotate_left (x->parent);
3846 x = mem_root;
3847 }
3848 }
3849 else
3850 {
3851 struct mem_node *w = x->parent->left;
3852
3853 if (w->color == MEM_RED)
3854 {
3855 w->color = MEM_BLACK;
3856 x->parent->color = MEM_RED;
3857 mem_rotate_right (x->parent);
3858 w = x->parent->left;
3859 }
3860
3861 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3862 {
3863 w->color = MEM_RED;
3864 x = x->parent;
3865 }
3866 else
3867 {
3868 if (w->left->color == MEM_BLACK)
3869 {
3870 w->right->color = MEM_BLACK;
3871 w->color = MEM_RED;
3872 mem_rotate_left (w);
3873 w = x->parent->left;
3874 }
3875
3876 w->color = x->parent->color;
3877 x->parent->color = MEM_BLACK;
3878 w->left->color = MEM_BLACK;
3879 mem_rotate_right (x->parent);
3880 x = mem_root;
3881 }
3882 }
3883 }
3884
3885 x->color = MEM_BLACK;
3886 }
3887
3888
3889 /* Value is non-zero if P is a pointer to a live Lisp string on
3890 the heap. M is a pointer to the mem_block for P. */
3891
3892 static INLINE int
3893 live_string_p (m, p)
3894 struct mem_node *m;
3895 void *p;
3896 {
3897 if (m->type == MEM_TYPE_STRING)
3898 {
3899 struct string_block *b = (struct string_block *) m->start;
3900 int offset = (char *) p - (char *) &b->strings[0];
3901
3902 /* P must point to the start of a Lisp_String structure, and it
3903 must not be on the free-list. */
3904 return (offset >= 0
3905 && offset % sizeof b->strings[0] == 0
3906 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3907 && ((struct Lisp_String *) p)->data != NULL);
3908 }
3909 else
3910 return 0;
3911 }
3912
3913
3914 /* Value is non-zero if P is a pointer to a live Lisp cons on
3915 the heap. M is a pointer to the mem_block for P. */
3916
3917 static INLINE int
3918 live_cons_p (m, p)
3919 struct mem_node *m;
3920 void *p;
3921 {
3922 if (m->type == MEM_TYPE_CONS)
3923 {
3924 struct cons_block *b = (struct cons_block *) m->start;
3925 int offset = (char *) p - (char *) &b->conses[0];
3926
3927 /* P must point to the start of a Lisp_Cons, not be
3928 one of the unused cells in the current cons block,
3929 and not be on the free-list. */
3930 return (offset >= 0
3931 && offset % sizeof b->conses[0] == 0
3932 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3933 && (b != cons_block
3934 || offset / sizeof b->conses[0] < cons_block_index)
3935 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3936 }
3937 else
3938 return 0;
3939 }
3940
3941
3942 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3943 the heap. M is a pointer to the mem_block for P. */
3944
3945 static INLINE int
3946 live_symbol_p (m, p)
3947 struct mem_node *m;
3948 void *p;
3949 {
3950 if (m->type == MEM_TYPE_SYMBOL)
3951 {
3952 struct symbol_block *b = (struct symbol_block *) m->start;
3953 int offset = (char *) p - (char *) &b->symbols[0];
3954
3955 /* P must point to the start of a Lisp_Symbol, not be
3956 one of the unused cells in the current symbol block,
3957 and not be on the free-list. */
3958 return (offset >= 0
3959 && offset % sizeof b->symbols[0] == 0
3960 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3961 && (b != symbol_block
3962 || offset / sizeof b->symbols[0] < symbol_block_index)
3963 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3964 }
3965 else
3966 return 0;
3967 }
3968
3969
3970 /* Value is non-zero if P is a pointer to a live Lisp float on
3971 the heap. M is a pointer to the mem_block for P. */
3972
3973 static INLINE int
3974 live_float_p (m, p)
3975 struct mem_node *m;
3976 void *p;
3977 {
3978 if (m->type == MEM_TYPE_FLOAT)
3979 {
3980 struct float_block *b = (struct float_block *) m->start;
3981 int offset = (char *) p - (char *) &b->floats[0];
3982
3983 /* P must point to the start of a Lisp_Float and not be
3984 one of the unused cells in the current float block. */
3985 return (offset >= 0
3986 && offset % sizeof b->floats[0] == 0
3987 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3988 && (b != float_block
3989 || offset / sizeof b->floats[0] < float_block_index));
3990 }
3991 else
3992 return 0;
3993 }
3994
3995
3996 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3997 the heap. M is a pointer to the mem_block for P. */
3998
3999 static INLINE int
4000 live_misc_p (m, p)
4001 struct mem_node *m;
4002 void *p;
4003 {
4004 if (m->type == MEM_TYPE_MISC)
4005 {
4006 struct marker_block *b = (struct marker_block *) m->start;
4007 int offset = (char *) p - (char *) &b->markers[0];
4008
4009 /* P must point to the start of a Lisp_Misc, not be
4010 one of the unused cells in the current misc block,
4011 and not be on the free-list. */
4012 return (offset >= 0
4013 && offset % sizeof b->markers[0] == 0
4014 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4015 && (b != marker_block
4016 || offset / sizeof b->markers[0] < marker_block_index)
4017 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4018 }
4019 else
4020 return 0;
4021 }
4022
4023
4024 /* Value is non-zero if P is a pointer to a live vector-like object.
4025 M is a pointer to the mem_block for P. */
4026
4027 static INLINE int
4028 live_vector_p (m, p)
4029 struct mem_node *m;
4030 void *p;
4031 {
4032 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
4033 }
4034
4035
4036 /* Value is non-zero if P is a pointer to a live buffer. M is a
4037 pointer to the mem_block for P. */
4038
4039 static INLINE int
4040 live_buffer_p (m, p)
4041 struct mem_node *m;
4042 void *p;
4043 {
4044 /* P must point to the start of the block, and the buffer
4045 must not have been killed. */
4046 return (m->type == MEM_TYPE_BUFFER
4047 && p == m->start
4048 && !NILP (((struct buffer *) p)->name));
4049 }
4050
4051 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4052
4053 #if GC_MARK_STACK
4054
4055 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4056
4057 /* Array of objects that are kept alive because the C stack contains
4058 a pattern that looks like a reference to them . */
4059
4060 #define MAX_ZOMBIES 10
4061 static Lisp_Object zombies[MAX_ZOMBIES];
4062
4063 /* Number of zombie objects. */
4064
4065 static int nzombies;
4066
4067 /* Number of garbage collections. */
4068
4069 static int ngcs;
4070
4071 /* Average percentage of zombies per collection. */
4072
4073 static double avg_zombies;
4074
4075 /* Max. number of live and zombie objects. */
4076
4077 static int max_live, max_zombies;
4078
4079 /* Average number of live objects per GC. */
4080
4081 static double avg_live;
4082
4083 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4084 doc: /* Show information about live and zombie objects. */)
4085 ()
4086 {
4087 Lisp_Object args[8], zombie_list = Qnil;
4088 int i;
4089 for (i = 0; i < nzombies; i++)
4090 zombie_list = Fcons (zombies[i], zombie_list);
4091 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4092 args[1] = make_number (ngcs);
4093 args[2] = make_float (avg_live);
4094 args[3] = make_float (avg_zombies);
4095 args[4] = make_float (avg_zombies / avg_live / 100);
4096 args[5] = make_number (max_live);
4097 args[6] = make_number (max_zombies);
4098 args[7] = zombie_list;
4099 return Fmessage (8, args);
4100 }
4101
4102 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4103
4104
4105 /* Mark OBJ if we can prove it's a Lisp_Object. */
4106
4107 static INLINE void
4108 mark_maybe_object (obj)
4109 Lisp_Object obj;
4110 {
4111 void *po = (void *) XPNTR (obj);
4112 struct mem_node *m = mem_find (po);
4113
4114 if (m != MEM_NIL)
4115 {
4116 int mark_p = 0;
4117
4118 switch (XTYPE (obj))
4119 {
4120 case Lisp_String:
4121 mark_p = (live_string_p (m, po)
4122 && !STRING_MARKED_P ((struct Lisp_String *) po));
4123 break;
4124
4125 case Lisp_Cons:
4126 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4127 break;
4128
4129 case Lisp_Symbol:
4130 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4131 break;
4132
4133 case Lisp_Float:
4134 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4135 break;
4136
4137 case Lisp_Vectorlike:
4138 /* Note: can't check BUFFERP before we know it's a
4139 buffer because checking that dereferences the pointer
4140 PO which might point anywhere. */
4141 if (live_vector_p (m, po))
4142 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4143 else if (live_buffer_p (m, po))
4144 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4145 break;
4146
4147 case Lisp_Misc:
4148 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4149 break;
4150
4151 case Lisp_Int:
4152 case Lisp_Type_Limit:
4153 break;
4154 }
4155
4156 if (mark_p)
4157 {
4158 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4159 if (nzombies < MAX_ZOMBIES)
4160 zombies[nzombies] = obj;
4161 ++nzombies;
4162 #endif
4163 mark_object (obj);
4164 }
4165 }
4166 }
4167
4168
4169 /* If P points to Lisp data, mark that as live if it isn't already
4170 marked. */
4171
4172 static INLINE void
4173 mark_maybe_pointer (p)
4174 void *p;
4175 {
4176 struct mem_node *m;
4177
4178 /* Quickly rule out some values which can't point to Lisp data. */
4179 if ((EMACS_INT) p %
4180 #ifdef USE_LSB_TAG
4181 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4182 #else
4183 2 /* We assume that Lisp data is aligned on even addresses. */
4184 #endif
4185 )
4186 return;
4187
4188 m = mem_find (p);
4189 if (m != MEM_NIL)
4190 {
4191 Lisp_Object obj = Qnil;
4192
4193 switch (m->type)
4194 {
4195 case MEM_TYPE_NON_LISP:
4196 /* Nothing to do; not a pointer to Lisp memory. */
4197 break;
4198
4199 case MEM_TYPE_BUFFER:
4200 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4201 XSETVECTOR (obj, p);
4202 break;
4203
4204 case MEM_TYPE_CONS:
4205 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4206 XSETCONS (obj, p);
4207 break;
4208
4209 case MEM_TYPE_STRING:
4210 if (live_string_p (m, p)
4211 && !STRING_MARKED_P ((struct Lisp_String *) p))
4212 XSETSTRING (obj, p);
4213 break;
4214
4215 case MEM_TYPE_MISC:
4216 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4217 XSETMISC (obj, p);
4218 break;
4219
4220 case MEM_TYPE_SYMBOL:
4221 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4222 XSETSYMBOL (obj, p);
4223 break;
4224
4225 case MEM_TYPE_FLOAT:
4226 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4227 XSETFLOAT (obj, p);
4228 break;
4229
4230 case MEM_TYPE_VECTORLIKE:
4231 if (live_vector_p (m, p))
4232 {
4233 Lisp_Object tem;
4234 XSETVECTOR (tem, p);
4235 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4236 obj = tem;
4237 }
4238 break;
4239
4240 default:
4241 abort ();
4242 }
4243
4244 if (!NILP (obj))
4245 mark_object (obj);
4246 }
4247 }
4248
4249
4250 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4251 or END+OFFSET..START. */
4252
4253 static void
4254 mark_memory (start, end, offset)
4255 void *start, *end;
4256 int offset;
4257 {
4258 Lisp_Object *p;
4259 void **pp;
4260
4261 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4262 nzombies = 0;
4263 #endif
4264
4265 /* Make START the pointer to the start of the memory region,
4266 if it isn't already. */
4267 if (end < start)
4268 {
4269 void *tem = start;
4270 start = end;
4271 end = tem;
4272 }
4273
4274 /* Mark Lisp_Objects. */
4275 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4276 mark_maybe_object (*p);
4277
4278 /* Mark Lisp data pointed to. This is necessary because, in some
4279 situations, the C compiler optimizes Lisp objects away, so that
4280 only a pointer to them remains. Example:
4281
4282 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4283 ()
4284 {
4285 Lisp_Object obj = build_string ("test");
4286 struct Lisp_String *s = XSTRING (obj);
4287 Fgarbage_collect ();
4288 fprintf (stderr, "test `%s'\n", s->data);
4289 return Qnil;
4290 }
4291
4292 Here, `obj' isn't really used, and the compiler optimizes it
4293 away. The only reference to the life string is through the
4294 pointer `s'. */
4295
4296 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4297 mark_maybe_pointer (*pp);
4298 }
4299
4300 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4301 the GCC system configuration. In gcc 3.2, the only systems for
4302 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4303 by others?) and ns32k-pc532-min. */
4304
4305 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4306
4307 static int setjmp_tested_p, longjmps_done;
4308
4309 #define SETJMP_WILL_LIKELY_WORK "\
4310 \n\
4311 Emacs garbage collector has been changed to use conservative stack\n\
4312 marking. Emacs has determined that the method it uses to do the\n\
4313 marking will likely work on your system, but this isn't sure.\n\
4314 \n\
4315 If you are a system-programmer, or can get the help of a local wizard\n\
4316 who is, please take a look at the function mark_stack in alloc.c, and\n\
4317 verify that the methods used are appropriate for your system.\n\
4318 \n\
4319 Please mail the result to <emacs-devel@gnu.org>.\n\
4320 "
4321
4322 #define SETJMP_WILL_NOT_WORK "\
4323 \n\
4324 Emacs garbage collector has been changed to use conservative stack\n\
4325 marking. Emacs has determined that the default method it uses to do the\n\
4326 marking will not work on your system. We will need a system-dependent\n\
4327 solution for your system.\n\
4328 \n\
4329 Please take a look at the function mark_stack in alloc.c, and\n\
4330 try to find a way to make it work on your system.\n\
4331 \n\
4332 Note that you may get false negatives, depending on the compiler.\n\
4333 In particular, you need to use -O with GCC for this test.\n\
4334 \n\
4335 Please mail the result to <emacs-devel@gnu.org>.\n\
4336 "
4337
4338
4339 /* Perform a quick check if it looks like setjmp saves registers in a
4340 jmp_buf. Print a message to stderr saying so. When this test
4341 succeeds, this is _not_ a proof that setjmp is sufficient for
4342 conservative stack marking. Only the sources or a disassembly
4343 can prove that. */
4344
4345 static void
4346 test_setjmp ()
4347 {
4348 char buf[10];
4349 register int x;
4350 jmp_buf jbuf;
4351 int result = 0;
4352
4353 /* Arrange for X to be put in a register. */
4354 sprintf (buf, "1");
4355 x = strlen (buf);
4356 x = 2 * x - 1;
4357
4358 setjmp (jbuf);
4359 if (longjmps_done == 1)
4360 {
4361 /* Came here after the longjmp at the end of the function.
4362
4363 If x == 1, the longjmp has restored the register to its
4364 value before the setjmp, and we can hope that setjmp
4365 saves all such registers in the jmp_buf, although that
4366 isn't sure.
4367
4368 For other values of X, either something really strange is
4369 taking place, or the setjmp just didn't save the register. */
4370
4371 if (x == 1)
4372 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4373 else
4374 {
4375 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4376 exit (1);
4377 }
4378 }
4379
4380 ++longjmps_done;
4381 x = 2;
4382 if (longjmps_done == 1)
4383 longjmp (jbuf, 1);
4384 }
4385
4386 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4387
4388
4389 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4390
4391 /* Abort if anything GCPRO'd doesn't survive the GC. */
4392
4393 static void
4394 check_gcpros ()
4395 {
4396 struct gcpro *p;
4397 int i;
4398
4399 for (p = gcprolist; p; p = p->next)
4400 for (i = 0; i < p->nvars; ++i)
4401 if (!survives_gc_p (p->var[i]))
4402 /* FIXME: It's not necessarily a bug. It might just be that the
4403 GCPRO is unnecessary or should release the object sooner. */
4404 abort ();
4405 }
4406
4407 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4408
4409 static void
4410 dump_zombies ()
4411 {
4412 int i;
4413
4414 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4415 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4416 {
4417 fprintf (stderr, " %d = ", i);
4418 debug_print (zombies[i]);
4419 }
4420 }
4421
4422 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4423
4424
4425 /* Mark live Lisp objects on the C stack.
4426
4427 There are several system-dependent problems to consider when
4428 porting this to new architectures:
4429
4430 Processor Registers
4431
4432 We have to mark Lisp objects in CPU registers that can hold local
4433 variables or are used to pass parameters.
4434
4435 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4436 something that either saves relevant registers on the stack, or
4437 calls mark_maybe_object passing it each register's contents.
4438
4439 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4440 implementation assumes that calling setjmp saves registers we need
4441 to see in a jmp_buf which itself lies on the stack. This doesn't
4442 have to be true! It must be verified for each system, possibly
4443 by taking a look at the source code of setjmp.
4444
4445 Stack Layout
4446
4447 Architectures differ in the way their processor stack is organized.
4448 For example, the stack might look like this
4449
4450 +----------------+
4451 | Lisp_Object | size = 4
4452 +----------------+
4453 | something else | size = 2
4454 +----------------+
4455 | Lisp_Object | size = 4
4456 +----------------+
4457 | ... |
4458
4459 In such a case, not every Lisp_Object will be aligned equally. To
4460 find all Lisp_Object on the stack it won't be sufficient to walk
4461 the stack in steps of 4 bytes. Instead, two passes will be
4462 necessary, one starting at the start of the stack, and a second
4463 pass starting at the start of the stack + 2. Likewise, if the
4464 minimal alignment of Lisp_Objects on the stack is 1, four passes
4465 would be necessary, each one starting with one byte more offset
4466 from the stack start.
4467
4468 The current code assumes by default that Lisp_Objects are aligned
4469 equally on the stack. */
4470
4471 static void
4472 mark_stack ()
4473 {
4474 int i;
4475 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4476 union aligned_jmpbuf {
4477 Lisp_Object o;
4478 jmp_buf j;
4479 } j;
4480 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4481 void *end;
4482
4483 /* This trick flushes the register windows so that all the state of
4484 the process is contained in the stack. */
4485 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4486 needed on ia64 too. See mach_dep.c, where it also says inline
4487 assembler doesn't work with relevant proprietary compilers. */
4488 #ifdef sparc
4489 asm ("ta 3");
4490 #endif
4491
4492 /* Save registers that we need to see on the stack. We need to see
4493 registers used to hold register variables and registers used to
4494 pass parameters. */
4495 #ifdef GC_SAVE_REGISTERS_ON_STACK
4496 GC_SAVE_REGISTERS_ON_STACK (end);
4497 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4498
4499 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4500 setjmp will definitely work, test it
4501 and print a message with the result
4502 of the test. */
4503 if (!setjmp_tested_p)
4504 {
4505 setjmp_tested_p = 1;
4506 test_setjmp ();
4507 }
4508 #endif /* GC_SETJMP_WORKS */
4509
4510 setjmp (j.j);
4511 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4512 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4513
4514 /* This assumes that the stack is a contiguous region in memory. If
4515 that's not the case, something has to be done here to iterate
4516 over the stack segments. */
4517 #ifndef GC_LISP_OBJECT_ALIGNMENT
4518 #ifdef __GNUC__
4519 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4520 #else
4521 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4522 #endif
4523 #endif
4524 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4525 mark_memory (stack_base, end, i);
4526 /* Allow for marking a secondary stack, like the register stack on the
4527 ia64. */
4528 #ifdef GC_MARK_SECONDARY_STACK
4529 GC_MARK_SECONDARY_STACK ();
4530 #endif
4531
4532 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4533 check_gcpros ();
4534 #endif
4535 }
4536
4537 #endif /* GC_MARK_STACK != 0 */
4538
4539
4540 /* Determine whether it is safe to access memory at address P. */
4541 static int
4542 valid_pointer_p (p)
4543 void *p;
4544 {
4545 #ifdef WINDOWSNT
4546 return w32_valid_pointer_p (p, 16);
4547 #else
4548 int fd;
4549
4550 /* Obviously, we cannot just access it (we would SEGV trying), so we
4551 trick the o/s to tell us whether p is a valid pointer.
4552 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4553 not validate p in that case. */
4554
4555 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4556 {
4557 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4558 emacs_close (fd);
4559 unlink ("__Valid__Lisp__Object__");
4560 return valid;
4561 }
4562
4563 return -1;
4564 #endif
4565 }
4566
4567 /* Return 1 if OBJ is a valid lisp object.
4568 Return 0 if OBJ is NOT a valid lisp object.
4569 Return -1 if we cannot validate OBJ.
4570 This function can be quite slow,
4571 so it should only be used in code for manual debugging. */
4572
4573 int
4574 valid_lisp_object_p (obj)
4575 Lisp_Object obj;
4576 {
4577 void *p;
4578 #if GC_MARK_STACK
4579 struct mem_node *m;
4580 #endif
4581
4582 if (INTEGERP (obj))
4583 return 1;
4584
4585 p = (void *) XPNTR (obj);
4586 if (PURE_POINTER_P (p))
4587 return 1;
4588
4589 #if !GC_MARK_STACK
4590 return valid_pointer_p (p);
4591 #else
4592
4593 m = mem_find (p);
4594
4595 if (m == MEM_NIL)
4596 {
4597 int valid = valid_pointer_p (p);
4598 if (valid <= 0)
4599 return valid;
4600
4601 if (SUBRP (obj))
4602 return 1;
4603
4604 return 0;
4605 }
4606
4607 switch (m->type)
4608 {
4609 case MEM_TYPE_NON_LISP:
4610 return 0;
4611
4612 case MEM_TYPE_BUFFER:
4613 return live_buffer_p (m, p);
4614
4615 case MEM_TYPE_CONS:
4616 return live_cons_p (m, p);
4617
4618 case MEM_TYPE_STRING:
4619 return live_string_p (m, p);
4620
4621 case MEM_TYPE_MISC:
4622 return live_misc_p (m, p);
4623
4624 case MEM_TYPE_SYMBOL:
4625 return live_symbol_p (m, p);
4626
4627 case MEM_TYPE_FLOAT:
4628 return live_float_p (m, p);
4629
4630 case MEM_TYPE_VECTORLIKE:
4631 return live_vector_p (m, p);
4632
4633 default:
4634 break;
4635 }
4636
4637 return 0;
4638 #endif
4639 }
4640
4641
4642
4643 \f
4644 /***********************************************************************
4645 Pure Storage Management
4646 ***********************************************************************/
4647
4648 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4649 pointer to it. TYPE is the Lisp type for which the memory is
4650 allocated. TYPE < 0 means it's not used for a Lisp object. */
4651
4652 static POINTER_TYPE *
4653 pure_alloc (size, type)
4654 size_t size;
4655 int type;
4656 {
4657 POINTER_TYPE *result;
4658 #ifdef USE_LSB_TAG
4659 size_t alignment = (1 << GCTYPEBITS);
4660 #else
4661 size_t alignment = sizeof (EMACS_INT);
4662
4663 /* Give Lisp_Floats an extra alignment. */
4664 if (type == Lisp_Float)
4665 {
4666 #if defined __GNUC__ && __GNUC__ >= 2
4667 alignment = __alignof (struct Lisp_Float);
4668 #else
4669 alignment = sizeof (struct Lisp_Float);
4670 #endif
4671 }
4672 #endif
4673
4674 again:
4675 if (type >= 0)
4676 {
4677 /* Allocate space for a Lisp object from the beginning of the free
4678 space with taking account of alignment. */
4679 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4680 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4681 }
4682 else
4683 {
4684 /* Allocate space for a non-Lisp object from the end of the free
4685 space. */
4686 pure_bytes_used_non_lisp += size;
4687 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4688 }
4689 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4690
4691 if (pure_bytes_used <= pure_size)
4692 return result;
4693
4694 /* Don't allocate a large amount here,
4695 because it might get mmap'd and then its address
4696 might not be usable. */
4697 purebeg = (char *) xmalloc (10000);
4698 pure_size = 10000;
4699 pure_bytes_used_before_overflow += pure_bytes_used - size;
4700 pure_bytes_used = 0;
4701 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4702 goto again;
4703 }
4704
4705
4706 /* Print a warning if PURESIZE is too small. */
4707
4708 void
4709 check_pure_size ()
4710 {
4711 if (pure_bytes_used_before_overflow)
4712 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4713 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4714 }
4715
4716
4717 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4718 the non-Lisp data pool of the pure storage, and return its start
4719 address. Return NULL if not found. */
4720
4721 static char *
4722 find_string_data_in_pure (data, nbytes)
4723 char *data;
4724 int nbytes;
4725 {
4726 int i, skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4727 unsigned char *p;
4728 char *non_lisp_beg;
4729
4730 if (pure_bytes_used_non_lisp < nbytes + 1)
4731 return NULL;
4732
4733 /* Set up the Boyer-Moore table. */
4734 skip = nbytes + 1;
4735 for (i = 0; i < 256; i++)
4736 bm_skip[i] = skip;
4737
4738 p = (unsigned char *) data;
4739 while (--skip > 0)
4740 bm_skip[*p++] = skip;
4741
4742 last_char_skip = bm_skip['\0'];
4743
4744 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4745 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4746
4747 /* See the comments in the function `boyer_moore' (search.c) for the
4748 use of `infinity'. */
4749 infinity = pure_bytes_used_non_lisp + 1;
4750 bm_skip['\0'] = infinity;
4751
4752 p = (unsigned char *) non_lisp_beg + nbytes;
4753 start = 0;
4754 do
4755 {
4756 /* Check the last character (== '\0'). */
4757 do
4758 {
4759 start += bm_skip[*(p + start)];
4760 }
4761 while (start <= start_max);
4762
4763 if (start < infinity)
4764 /* Couldn't find the last character. */
4765 return NULL;
4766
4767 /* No less than `infinity' means we could find the last
4768 character at `p[start - infinity]'. */
4769 start -= infinity;
4770
4771 /* Check the remaining characters. */
4772 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4773 /* Found. */
4774 return non_lisp_beg + start;
4775
4776 start += last_char_skip;
4777 }
4778 while (start <= start_max);
4779
4780 return NULL;
4781 }
4782
4783
4784 /* Return a string allocated in pure space. DATA is a buffer holding
4785 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4786 non-zero means make the result string multibyte.
4787
4788 Must get an error if pure storage is full, since if it cannot hold
4789 a large string it may be able to hold conses that point to that
4790 string; then the string is not protected from gc. */
4791
4792 Lisp_Object
4793 make_pure_string (data, nchars, nbytes, multibyte)
4794 char *data;
4795 int nchars, nbytes;
4796 int multibyte;
4797 {
4798 Lisp_Object string;
4799 struct Lisp_String *s;
4800
4801 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4802 s->data = find_string_data_in_pure (data, nbytes);
4803 if (s->data == NULL)
4804 {
4805 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4806 bcopy (data, s->data, nbytes);
4807 s->data[nbytes] = '\0';
4808 }
4809 s->size = nchars;
4810 s->size_byte = multibyte ? nbytes : -1;
4811 s->intervals = NULL_INTERVAL;
4812 XSETSTRING (string, s);
4813 return string;
4814 }
4815
4816
4817 /* Return a cons allocated from pure space. Give it pure copies
4818 of CAR as car and CDR as cdr. */
4819
4820 Lisp_Object
4821 pure_cons (car, cdr)
4822 Lisp_Object car, cdr;
4823 {
4824 register Lisp_Object new;
4825 struct Lisp_Cons *p;
4826
4827 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4828 XSETCONS (new, p);
4829 XSETCAR (new, Fpurecopy (car));
4830 XSETCDR (new, Fpurecopy (cdr));
4831 return new;
4832 }
4833
4834
4835 /* Value is a float object with value NUM allocated from pure space. */
4836
4837 static Lisp_Object
4838 make_pure_float (num)
4839 double num;
4840 {
4841 register Lisp_Object new;
4842 struct Lisp_Float *p;
4843
4844 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4845 XSETFLOAT (new, p);
4846 XFLOAT_DATA (new) = num;
4847 return new;
4848 }
4849
4850
4851 /* Return a vector with room for LEN Lisp_Objects allocated from
4852 pure space. */
4853
4854 Lisp_Object
4855 make_pure_vector (len)
4856 EMACS_INT len;
4857 {
4858 Lisp_Object new;
4859 struct Lisp_Vector *p;
4860 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4861
4862 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4863 XSETVECTOR (new, p);
4864 XVECTOR (new)->size = len;
4865 return new;
4866 }
4867
4868
4869 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4870 doc: /* Make a copy of object OBJ in pure storage.
4871 Recursively copies contents of vectors and cons cells.
4872 Does not copy symbols. Copies strings without text properties. */)
4873 (obj)
4874 register Lisp_Object obj;
4875 {
4876 if (NILP (Vpurify_flag))
4877 return obj;
4878
4879 if (PURE_POINTER_P (XPNTR (obj)))
4880 return obj;
4881
4882 if (CONSP (obj))
4883 return pure_cons (XCAR (obj), XCDR (obj));
4884 else if (FLOATP (obj))
4885 return make_pure_float (XFLOAT_DATA (obj));
4886 else if (STRINGP (obj))
4887 return make_pure_string (SDATA (obj), SCHARS (obj),
4888 SBYTES (obj),
4889 STRING_MULTIBYTE (obj));
4890 else if (COMPILEDP (obj) || VECTORP (obj))
4891 {
4892 register struct Lisp_Vector *vec;
4893 register int i;
4894 EMACS_INT size;
4895
4896 size = XVECTOR (obj)->size;
4897 if (size & PSEUDOVECTOR_FLAG)
4898 size &= PSEUDOVECTOR_SIZE_MASK;
4899 vec = XVECTOR (make_pure_vector (size));
4900 for (i = 0; i < size; i++)
4901 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4902 if (COMPILEDP (obj))
4903 {
4904 XSETPVECTYPE (vec, PVEC_COMPILED);
4905 XSETCOMPILED (obj, vec);
4906 }
4907 else
4908 XSETVECTOR (obj, vec);
4909 return obj;
4910 }
4911 else if (MARKERP (obj))
4912 error ("Attempt to copy a marker to pure storage");
4913
4914 return obj;
4915 }
4916
4917
4918 \f
4919 /***********************************************************************
4920 Protection from GC
4921 ***********************************************************************/
4922
4923 /* Put an entry in staticvec, pointing at the variable with address
4924 VARADDRESS. */
4925
4926 void
4927 staticpro (varaddress)
4928 Lisp_Object *varaddress;
4929 {
4930 staticvec[staticidx++] = varaddress;
4931 if (staticidx >= NSTATICS)
4932 abort ();
4933 }
4934
4935 struct catchtag
4936 {
4937 Lisp_Object tag;
4938 Lisp_Object val;
4939 struct catchtag *next;
4940 };
4941
4942 \f
4943 /***********************************************************************
4944 Protection from GC
4945 ***********************************************************************/
4946
4947 /* Temporarily prevent garbage collection. */
4948
4949 int
4950 inhibit_garbage_collection ()
4951 {
4952 int count = SPECPDL_INDEX ();
4953 int nbits = min (VALBITS, BITS_PER_INT);
4954
4955 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4956 return count;
4957 }
4958
4959
4960 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4961 doc: /* Reclaim storage for Lisp objects no longer needed.
4962 Garbage collection happens automatically if you cons more than
4963 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4964 `garbage-collect' normally returns a list with info on amount of space in use:
4965 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4966 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4967 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4968 (USED-STRINGS . FREE-STRINGS))
4969 However, if there was overflow in pure space, `garbage-collect'
4970 returns nil, because real GC can't be done. */)
4971 ()
4972 {
4973 register struct specbinding *bind;
4974 struct catchtag *catch;
4975 struct handler *handler;
4976 char stack_top_variable;
4977 register int i;
4978 int message_p;
4979 Lisp_Object total[8];
4980 int count = SPECPDL_INDEX ();
4981 EMACS_TIME t1, t2, t3;
4982
4983 if (abort_on_gc)
4984 abort ();
4985
4986 /* Can't GC if pure storage overflowed because we can't determine
4987 if something is a pure object or not. */
4988 if (pure_bytes_used_before_overflow)
4989 return Qnil;
4990
4991 CHECK_CONS_LIST ();
4992
4993 /* Don't keep undo information around forever.
4994 Do this early on, so it is no problem if the user quits. */
4995 {
4996 register struct buffer *nextb = all_buffers;
4997
4998 while (nextb)
4999 {
5000 /* If a buffer's undo list is Qt, that means that undo is
5001 turned off in that buffer. Calling truncate_undo_list on
5002 Qt tends to return NULL, which effectively turns undo back on.
5003 So don't call truncate_undo_list if undo_list is Qt. */
5004 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
5005 truncate_undo_list (nextb);
5006
5007 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5008 if (nextb->base_buffer == 0 && !NILP (nextb->name)
5009 && ! nextb->text->inhibit_shrinking)
5010 {
5011 /* If a buffer's gap size is more than 10% of the buffer
5012 size, or larger than 2000 bytes, then shrink it
5013 accordingly. Keep a minimum size of 20 bytes. */
5014 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5015
5016 if (nextb->text->gap_size > size)
5017 {
5018 struct buffer *save_current = current_buffer;
5019 current_buffer = nextb;
5020 make_gap (-(nextb->text->gap_size - size));
5021 current_buffer = save_current;
5022 }
5023 }
5024
5025 nextb = nextb->next;
5026 }
5027 }
5028
5029 EMACS_GET_TIME (t1);
5030
5031 /* In case user calls debug_print during GC,
5032 don't let that cause a recursive GC. */
5033 consing_since_gc = 0;
5034
5035 /* Save what's currently displayed in the echo area. */
5036 message_p = push_message ();
5037 record_unwind_protect (pop_message_unwind, Qnil);
5038
5039 /* Save a copy of the contents of the stack, for debugging. */
5040 #if MAX_SAVE_STACK > 0
5041 if (NILP (Vpurify_flag))
5042 {
5043 i = &stack_top_variable - stack_bottom;
5044 if (i < 0) i = -i;
5045 if (i < MAX_SAVE_STACK)
5046 {
5047 if (stack_copy == 0)
5048 stack_copy = (char *) xmalloc (stack_copy_size = i);
5049 else if (stack_copy_size < i)
5050 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
5051 if (stack_copy)
5052 {
5053 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
5054 bcopy (stack_bottom, stack_copy, i);
5055 else
5056 bcopy (&stack_top_variable, stack_copy, i);
5057 }
5058 }
5059 }
5060 #endif /* MAX_SAVE_STACK > 0 */
5061
5062 if (garbage_collection_messages)
5063 message1_nolog ("Garbage collecting...");
5064
5065 BLOCK_INPUT;
5066
5067 shrink_regexp_cache ();
5068
5069 gc_in_progress = 1;
5070
5071 /* clear_marks (); */
5072
5073 /* Mark all the special slots that serve as the roots of accessibility. */
5074
5075 for (i = 0; i < staticidx; i++)
5076 mark_object (*staticvec[i]);
5077
5078 for (bind = specpdl; bind != specpdl_ptr; bind++)
5079 {
5080 mark_object (bind->symbol);
5081 mark_object (bind->old_value);
5082 }
5083 mark_terminals ();
5084 mark_kboards ();
5085 mark_ttys ();
5086
5087 #ifdef USE_GTK
5088 {
5089 extern void xg_mark_data ();
5090 xg_mark_data ();
5091 }
5092 #endif
5093
5094 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5095 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5096 mark_stack ();
5097 #else
5098 {
5099 register struct gcpro *tail;
5100 for (tail = gcprolist; tail; tail = tail->next)
5101 for (i = 0; i < tail->nvars; i++)
5102 mark_object (tail->var[i]);
5103 }
5104 #endif
5105
5106 mark_byte_stack ();
5107 for (catch = catchlist; catch; catch = catch->next)
5108 {
5109 mark_object (catch->tag);
5110 mark_object (catch->val);
5111 }
5112 for (handler = handlerlist; handler; handler = handler->next)
5113 {
5114 mark_object (handler->handler);
5115 mark_object (handler->var);
5116 }
5117 mark_backtrace ();
5118
5119 #ifdef HAVE_WINDOW_SYSTEM
5120 mark_fringe_data ();
5121 #endif
5122
5123 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5124 mark_stack ();
5125 #endif
5126
5127 /* Everything is now marked, except for the things that require special
5128 finalization, i.e. the undo_list.
5129 Look thru every buffer's undo list
5130 for elements that update markers that were not marked,
5131 and delete them. */
5132 {
5133 register struct buffer *nextb = all_buffers;
5134
5135 while (nextb)
5136 {
5137 /* If a buffer's undo list is Qt, that means that undo is
5138 turned off in that buffer. Calling truncate_undo_list on
5139 Qt tends to return NULL, which effectively turns undo back on.
5140 So don't call truncate_undo_list if undo_list is Qt. */
5141 if (! EQ (nextb->undo_list, Qt))
5142 {
5143 Lisp_Object tail, prev;
5144 tail = nextb->undo_list;
5145 prev = Qnil;
5146 while (CONSP (tail))
5147 {
5148 if (CONSP (XCAR (tail))
5149 && MARKERP (XCAR (XCAR (tail)))
5150 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5151 {
5152 if (NILP (prev))
5153 nextb->undo_list = tail = XCDR (tail);
5154 else
5155 {
5156 tail = XCDR (tail);
5157 XSETCDR (prev, tail);
5158 }
5159 }
5160 else
5161 {
5162 prev = tail;
5163 tail = XCDR (tail);
5164 }
5165 }
5166 }
5167 /* Now that we have stripped the elements that need not be in the
5168 undo_list any more, we can finally mark the list. */
5169 mark_object (nextb->undo_list);
5170
5171 nextb = nextb->next;
5172 }
5173 }
5174
5175 gc_sweep ();
5176
5177 /* Clear the mark bits that we set in certain root slots. */
5178
5179 unmark_byte_stack ();
5180 VECTOR_UNMARK (&buffer_defaults);
5181 VECTOR_UNMARK (&buffer_local_symbols);
5182
5183 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5184 dump_zombies ();
5185 #endif
5186
5187 UNBLOCK_INPUT;
5188
5189 CHECK_CONS_LIST ();
5190
5191 /* clear_marks (); */
5192 gc_in_progress = 0;
5193
5194 consing_since_gc = 0;
5195 if (gc_cons_threshold < 10000)
5196 gc_cons_threshold = 10000;
5197
5198 if (FLOATP (Vgc_cons_percentage))
5199 { /* Set gc_cons_combined_threshold. */
5200 EMACS_INT total = 0;
5201
5202 total += total_conses * sizeof (struct Lisp_Cons);
5203 total += total_symbols * sizeof (struct Lisp_Symbol);
5204 total += total_markers * sizeof (union Lisp_Misc);
5205 total += total_string_size;
5206 total += total_vector_size * sizeof (Lisp_Object);
5207 total += total_floats * sizeof (struct Lisp_Float);
5208 total += total_intervals * sizeof (struct interval);
5209 total += total_strings * sizeof (struct Lisp_String);
5210
5211 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5212 }
5213 else
5214 gc_relative_threshold = 0;
5215
5216 if (garbage_collection_messages)
5217 {
5218 if (message_p || minibuf_level > 0)
5219 restore_message ();
5220 else
5221 message1_nolog ("Garbage collecting...done");
5222 }
5223
5224 unbind_to (count, Qnil);
5225
5226 total[0] = Fcons (make_number (total_conses),
5227 make_number (total_free_conses));
5228 total[1] = Fcons (make_number (total_symbols),
5229 make_number (total_free_symbols));
5230 total[2] = Fcons (make_number (total_markers),
5231 make_number (total_free_markers));
5232 total[3] = make_number (total_string_size);
5233 total[4] = make_number (total_vector_size);
5234 total[5] = Fcons (make_number (total_floats),
5235 make_number (total_free_floats));
5236 total[6] = Fcons (make_number (total_intervals),
5237 make_number (total_free_intervals));
5238 total[7] = Fcons (make_number (total_strings),
5239 make_number (total_free_strings));
5240
5241 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5242 {
5243 /* Compute average percentage of zombies. */
5244 double nlive = 0;
5245
5246 for (i = 0; i < 7; ++i)
5247 if (CONSP (total[i]))
5248 nlive += XFASTINT (XCAR (total[i]));
5249
5250 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5251 max_live = max (nlive, max_live);
5252 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5253 max_zombies = max (nzombies, max_zombies);
5254 ++ngcs;
5255 }
5256 #endif
5257
5258 if (!NILP (Vpost_gc_hook))
5259 {
5260 int count = inhibit_garbage_collection ();
5261 safe_run_hooks (Qpost_gc_hook);
5262 unbind_to (count, Qnil);
5263 }
5264
5265 /* Accumulate statistics. */
5266 EMACS_GET_TIME (t2);
5267 EMACS_SUB_TIME (t3, t2, t1);
5268 if (FLOATP (Vgc_elapsed))
5269 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5270 EMACS_SECS (t3) +
5271 EMACS_USECS (t3) * 1.0e-6);
5272 gcs_done++;
5273
5274 return Flist (sizeof total / sizeof *total, total);
5275 }
5276
5277
5278 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5279 only interesting objects referenced from glyphs are strings. */
5280
5281 static void
5282 mark_glyph_matrix (matrix)
5283 struct glyph_matrix *matrix;
5284 {
5285 struct glyph_row *row = matrix->rows;
5286 struct glyph_row *end = row + matrix->nrows;
5287
5288 for (; row < end; ++row)
5289 if (row->enabled_p)
5290 {
5291 int area;
5292 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5293 {
5294 struct glyph *glyph = row->glyphs[area];
5295 struct glyph *end_glyph = glyph + row->used[area];
5296
5297 for (; glyph < end_glyph; ++glyph)
5298 if (STRINGP (glyph->object)
5299 && !STRING_MARKED_P (XSTRING (glyph->object)))
5300 mark_object (glyph->object);
5301 }
5302 }
5303 }
5304
5305
5306 /* Mark Lisp faces in the face cache C. */
5307
5308 static void
5309 mark_face_cache (c)
5310 struct face_cache *c;
5311 {
5312 if (c)
5313 {
5314 int i, j;
5315 for (i = 0; i < c->used; ++i)
5316 {
5317 struct face *face = FACE_FROM_ID (c->f, i);
5318
5319 if (face)
5320 {
5321 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5322 mark_object (face->lface[j]);
5323 }
5324 }
5325 }
5326 }
5327
5328
5329 \f
5330 /* Mark reference to a Lisp_Object.
5331 If the object referred to has not been seen yet, recursively mark
5332 all the references contained in it. */
5333
5334 #define LAST_MARKED_SIZE 500
5335 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5336 int last_marked_index;
5337
5338 /* For debugging--call abort when we cdr down this many
5339 links of a list, in mark_object. In debugging,
5340 the call to abort will hit a breakpoint.
5341 Normally this is zero and the check never goes off. */
5342 static int mark_object_loop_halt;
5343
5344 /* Return non-zero if the object was not yet marked. */
5345 static int
5346 mark_vectorlike (ptr)
5347 struct Lisp_Vector *ptr;
5348 {
5349 register EMACS_INT size = ptr->size;
5350 register int i;
5351
5352 if (VECTOR_MARKED_P (ptr))
5353 return 0; /* Already marked */
5354 VECTOR_MARK (ptr); /* Else mark it */
5355 if (size & PSEUDOVECTOR_FLAG)
5356 size &= PSEUDOVECTOR_SIZE_MASK;
5357
5358 /* Note that this size is not the memory-footprint size, but only
5359 the number of Lisp_Object fields that we should trace.
5360 The distinction is used e.g. by Lisp_Process which places extra
5361 non-Lisp_Object fields at the end of the structure. */
5362 for (i = 0; i < size; i++) /* and then mark its elements */
5363 mark_object (ptr->contents[i]);
5364 return 1;
5365 }
5366
5367 void
5368 mark_object (arg)
5369 Lisp_Object arg;
5370 {
5371 register Lisp_Object obj = arg;
5372 #ifdef GC_CHECK_MARKED_OBJECTS
5373 void *po;
5374 struct mem_node *m;
5375 #endif
5376 int cdr_count = 0;
5377
5378 loop:
5379
5380 if (PURE_POINTER_P (XPNTR (obj)))
5381 return;
5382
5383 last_marked[last_marked_index++] = obj;
5384 if (last_marked_index == LAST_MARKED_SIZE)
5385 last_marked_index = 0;
5386
5387 /* Perform some sanity checks on the objects marked here. Abort if
5388 we encounter an object we know is bogus. This increases GC time
5389 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5390 #ifdef GC_CHECK_MARKED_OBJECTS
5391
5392 po = (void *) XPNTR (obj);
5393
5394 /* Check that the object pointed to by PO is known to be a Lisp
5395 structure allocated from the heap. */
5396 #define CHECK_ALLOCATED() \
5397 do { \
5398 m = mem_find (po); \
5399 if (m == MEM_NIL) \
5400 abort (); \
5401 } while (0)
5402
5403 /* Check that the object pointed to by PO is live, using predicate
5404 function LIVEP. */
5405 #define CHECK_LIVE(LIVEP) \
5406 do { \
5407 if (!LIVEP (m, po)) \
5408 abort (); \
5409 } while (0)
5410
5411 /* Check both of the above conditions. */
5412 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5413 do { \
5414 CHECK_ALLOCATED (); \
5415 CHECK_LIVE (LIVEP); \
5416 } while (0) \
5417
5418 #else /* not GC_CHECK_MARKED_OBJECTS */
5419
5420 #define CHECK_ALLOCATED() (void) 0
5421 #define CHECK_LIVE(LIVEP) (void) 0
5422 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5423
5424 #endif /* not GC_CHECK_MARKED_OBJECTS */
5425
5426 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5427 {
5428 case Lisp_String:
5429 {
5430 register struct Lisp_String *ptr = XSTRING (obj);
5431 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5432 MARK_INTERVAL_TREE (ptr->intervals);
5433 MARK_STRING (ptr);
5434 #ifdef GC_CHECK_STRING_BYTES
5435 /* Check that the string size recorded in the string is the
5436 same as the one recorded in the sdata structure. */
5437 CHECK_STRING_BYTES (ptr);
5438 #endif /* GC_CHECK_STRING_BYTES */
5439 }
5440 break;
5441
5442 case Lisp_Vectorlike:
5443 #ifdef GC_CHECK_MARKED_OBJECTS
5444 m = mem_find (po);
5445 if (m == MEM_NIL && !SUBRP (obj)
5446 && po != &buffer_defaults
5447 && po != &buffer_local_symbols)
5448 abort ();
5449 #endif /* GC_CHECK_MARKED_OBJECTS */
5450
5451 if (BUFFERP (obj))
5452 {
5453 if (!VECTOR_MARKED_P (XBUFFER (obj)))
5454 {
5455 #ifdef GC_CHECK_MARKED_OBJECTS
5456 if (po != &buffer_defaults && po != &buffer_local_symbols)
5457 {
5458 struct buffer *b;
5459 for (b = all_buffers; b && b != po; b = b->next)
5460 ;
5461 if (b == NULL)
5462 abort ();
5463 }
5464 #endif /* GC_CHECK_MARKED_OBJECTS */
5465 mark_buffer (obj);
5466 }
5467 }
5468 else if (SUBRP (obj))
5469 break;
5470 else if (COMPILEDP (obj))
5471 /* We could treat this just like a vector, but it is better to
5472 save the COMPILED_CONSTANTS element for last and avoid
5473 recursion there. */
5474 {
5475 register struct Lisp_Vector *ptr = XVECTOR (obj);
5476 register EMACS_INT size = ptr->size;
5477 register int i;
5478
5479 if (VECTOR_MARKED_P (ptr))
5480 break; /* Already marked */
5481
5482 CHECK_LIVE (live_vector_p);
5483 VECTOR_MARK (ptr); /* Else mark it */
5484 size &= PSEUDOVECTOR_SIZE_MASK;
5485 for (i = 0; i < size; i++) /* and then mark its elements */
5486 {
5487 if (i != COMPILED_CONSTANTS)
5488 mark_object (ptr->contents[i]);
5489 }
5490 obj = ptr->contents[COMPILED_CONSTANTS];
5491 goto loop;
5492 }
5493 else if (FRAMEP (obj))
5494 {
5495 register struct frame *ptr = XFRAME (obj);
5496 if (mark_vectorlike (XVECTOR (obj)))
5497 mark_face_cache (ptr->face_cache);
5498 }
5499 else if (WINDOWP (obj))
5500 {
5501 register struct Lisp_Vector *ptr = XVECTOR (obj);
5502 struct window *w = XWINDOW (obj);
5503 if (mark_vectorlike (ptr))
5504 {
5505 /* Mark glyphs for leaf windows. Marking window matrices is
5506 sufficient because frame matrices use the same glyph
5507 memory. */
5508 if (NILP (w->hchild)
5509 && NILP (w->vchild)
5510 && w->current_matrix)
5511 {
5512 mark_glyph_matrix (w->current_matrix);
5513 mark_glyph_matrix (w->desired_matrix);
5514 }
5515 }
5516 }
5517 else if (HASH_TABLE_P (obj))
5518 {
5519 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5520 if (mark_vectorlike ((struct Lisp_Vector *)h))
5521 { /* If hash table is not weak, mark all keys and values.
5522 For weak tables, mark only the vector. */
5523 if (NILP (h->weak))
5524 mark_object (h->key_and_value);
5525 else
5526 VECTOR_MARK (XVECTOR (h->key_and_value));
5527 }
5528 }
5529 else
5530 mark_vectorlike (XVECTOR (obj));
5531 break;
5532
5533 case Lisp_Symbol:
5534 {
5535 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5536 struct Lisp_Symbol *ptrx;
5537
5538 if (ptr->gcmarkbit) break;
5539 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5540 ptr->gcmarkbit = 1;
5541 mark_object (ptr->value);
5542 mark_object (ptr->function);
5543 mark_object (ptr->plist);
5544
5545 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5546 MARK_STRING (XSTRING (ptr->xname));
5547 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5548
5549 /* Note that we do not mark the obarray of the symbol.
5550 It is safe not to do so because nothing accesses that
5551 slot except to check whether it is nil. */
5552 ptr = ptr->next;
5553 if (ptr)
5554 {
5555 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5556 XSETSYMBOL (obj, ptrx);
5557 goto loop;
5558 }
5559 }
5560 break;
5561
5562 case Lisp_Misc:
5563 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5564 if (XMISCANY (obj)->gcmarkbit)
5565 break;
5566 XMISCANY (obj)->gcmarkbit = 1;
5567
5568 switch (XMISCTYPE (obj))
5569 {
5570 case Lisp_Misc_Buffer_Local_Value:
5571 {
5572 register struct Lisp_Buffer_Local_Value *ptr
5573 = XBUFFER_LOCAL_VALUE (obj);
5574 /* If the cdr is nil, avoid recursion for the car. */
5575 if (EQ (ptr->cdr, Qnil))
5576 {
5577 obj = ptr->realvalue;
5578 goto loop;
5579 }
5580 mark_object (ptr->realvalue);
5581 mark_object (ptr->buffer);
5582 mark_object (ptr->frame);
5583 obj = ptr->cdr;
5584 goto loop;
5585 }
5586
5587 case Lisp_Misc_Marker:
5588 /* DO NOT mark thru the marker's chain.
5589 The buffer's markers chain does not preserve markers from gc;
5590 instead, markers are removed from the chain when freed by gc. */
5591 break;
5592
5593 case Lisp_Misc_Intfwd:
5594 case Lisp_Misc_Boolfwd:
5595 case Lisp_Misc_Objfwd:
5596 case Lisp_Misc_Buffer_Objfwd:
5597 case Lisp_Misc_Kboard_Objfwd:
5598 /* Don't bother with Lisp_Buffer_Objfwd,
5599 since all markable slots in current buffer marked anyway. */
5600 /* Don't need to do Lisp_Objfwd, since the places they point
5601 are protected with staticpro. */
5602 break;
5603
5604 case Lisp_Misc_Save_Value:
5605 #if GC_MARK_STACK
5606 {
5607 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5608 /* If DOGC is set, POINTER is the address of a memory
5609 area containing INTEGER potential Lisp_Objects. */
5610 if (ptr->dogc)
5611 {
5612 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5613 int nelt;
5614 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5615 mark_maybe_object (*p);
5616 }
5617 }
5618 #endif
5619 break;
5620
5621 case Lisp_Misc_Overlay:
5622 {
5623 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5624 mark_object (ptr->start);
5625 mark_object (ptr->end);
5626 mark_object (ptr->plist);
5627 if (ptr->next)
5628 {
5629 XSETMISC (obj, ptr->next);
5630 goto loop;
5631 }
5632 }
5633 break;
5634
5635 default:
5636 abort ();
5637 }
5638 break;
5639
5640 case Lisp_Cons:
5641 {
5642 register struct Lisp_Cons *ptr = XCONS (obj);
5643 if (CONS_MARKED_P (ptr)) break;
5644 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5645 CONS_MARK (ptr);
5646 /* If the cdr is nil, avoid recursion for the car. */
5647 if (EQ (ptr->u.cdr, Qnil))
5648 {
5649 obj = ptr->car;
5650 cdr_count = 0;
5651 goto loop;
5652 }
5653 mark_object (ptr->car);
5654 obj = ptr->u.cdr;
5655 cdr_count++;
5656 if (cdr_count == mark_object_loop_halt)
5657 abort ();
5658 goto loop;
5659 }
5660
5661 case Lisp_Float:
5662 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5663 FLOAT_MARK (XFLOAT (obj));
5664 break;
5665
5666 case Lisp_Int:
5667 break;
5668
5669 default:
5670 abort ();
5671 }
5672
5673 #undef CHECK_LIVE
5674 #undef CHECK_ALLOCATED
5675 #undef CHECK_ALLOCATED_AND_LIVE
5676 }
5677
5678 /* Mark the pointers in a buffer structure. */
5679
5680 static void
5681 mark_buffer (buf)
5682 Lisp_Object buf;
5683 {
5684 register struct buffer *buffer = XBUFFER (buf);
5685 register Lisp_Object *ptr, tmp;
5686 Lisp_Object base_buffer;
5687
5688 VECTOR_MARK (buffer);
5689
5690 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5691
5692 /* For now, we just don't mark the undo_list. It's done later in
5693 a special way just before the sweep phase, and after stripping
5694 some of its elements that are not needed any more. */
5695
5696 if (buffer->overlays_before)
5697 {
5698 XSETMISC (tmp, buffer->overlays_before);
5699 mark_object (tmp);
5700 }
5701 if (buffer->overlays_after)
5702 {
5703 XSETMISC (tmp, buffer->overlays_after);
5704 mark_object (tmp);
5705 }
5706
5707 /* buffer-local Lisp variables start at `undo_list',
5708 tho only the ones from `name' on are GC'd normally. */
5709 for (ptr = &buffer->name;
5710 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5711 ptr++)
5712 mark_object (*ptr);
5713
5714 /* If this is an indirect buffer, mark its base buffer. */
5715 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5716 {
5717 XSETBUFFER (base_buffer, buffer->base_buffer);
5718 mark_buffer (base_buffer);
5719 }
5720 }
5721
5722 /* Mark the Lisp pointers in the terminal objects.
5723 Called by the Fgarbage_collector. */
5724
5725 static void
5726 mark_terminals (void)
5727 {
5728 struct terminal *t;
5729 for (t = terminal_list; t; t = t->next_terminal)
5730 {
5731 eassert (t->name != NULL);
5732 #ifdef HAVE_WINDOW_SYSTEM
5733 mark_image_cache (t->image_cache);
5734 #endif /* HAVE_WINDOW_SYSTEM */
5735 mark_vectorlike ((struct Lisp_Vector *)t);
5736 }
5737 }
5738
5739
5740
5741 /* Value is non-zero if OBJ will survive the current GC because it's
5742 either marked or does not need to be marked to survive. */
5743
5744 int
5745 survives_gc_p (obj)
5746 Lisp_Object obj;
5747 {
5748 int survives_p;
5749
5750 switch (XTYPE (obj))
5751 {
5752 case Lisp_Int:
5753 survives_p = 1;
5754 break;
5755
5756 case Lisp_Symbol:
5757 survives_p = XSYMBOL (obj)->gcmarkbit;
5758 break;
5759
5760 case Lisp_Misc:
5761 survives_p = XMISCANY (obj)->gcmarkbit;
5762 break;
5763
5764 case Lisp_String:
5765 survives_p = STRING_MARKED_P (XSTRING (obj));
5766 break;
5767
5768 case Lisp_Vectorlike:
5769 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5770 break;
5771
5772 case Lisp_Cons:
5773 survives_p = CONS_MARKED_P (XCONS (obj));
5774 break;
5775
5776 case Lisp_Float:
5777 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5778 break;
5779
5780 default:
5781 abort ();
5782 }
5783
5784 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5785 }
5786
5787
5788 \f
5789 /* Sweep: find all structures not marked, and free them. */
5790
5791 static void
5792 gc_sweep ()
5793 {
5794 /* Remove or mark entries in weak hash tables.
5795 This must be done before any object is unmarked. */
5796 sweep_weak_hash_tables ();
5797
5798 sweep_strings ();
5799 #ifdef GC_CHECK_STRING_BYTES
5800 if (!noninteractive)
5801 check_string_bytes (1);
5802 #endif
5803
5804 /* Put all unmarked conses on free list */
5805 {
5806 register struct cons_block *cblk;
5807 struct cons_block **cprev = &cons_block;
5808 register int lim = cons_block_index;
5809 register int num_free = 0, num_used = 0;
5810
5811 cons_free_list = 0;
5812
5813 for (cblk = cons_block; cblk; cblk = *cprev)
5814 {
5815 register int i = 0;
5816 int this_free = 0;
5817 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5818
5819 /* Scan the mark bits an int at a time. */
5820 for (i = 0; i <= ilim; i++)
5821 {
5822 if (cblk->gcmarkbits[i] == -1)
5823 {
5824 /* Fast path - all cons cells for this int are marked. */
5825 cblk->gcmarkbits[i] = 0;
5826 num_used += BITS_PER_INT;
5827 }
5828 else
5829 {
5830 /* Some cons cells for this int are not marked.
5831 Find which ones, and free them. */
5832 int start, pos, stop;
5833
5834 start = i * BITS_PER_INT;
5835 stop = lim - start;
5836 if (stop > BITS_PER_INT)
5837 stop = BITS_PER_INT;
5838 stop += start;
5839
5840 for (pos = start; pos < stop; pos++)
5841 {
5842 if (!CONS_MARKED_P (&cblk->conses[pos]))
5843 {
5844 this_free++;
5845 cblk->conses[pos].u.chain = cons_free_list;
5846 cons_free_list = &cblk->conses[pos];
5847 #if GC_MARK_STACK
5848 cons_free_list->car = Vdead;
5849 #endif
5850 }
5851 else
5852 {
5853 num_used++;
5854 CONS_UNMARK (&cblk->conses[pos]);
5855 }
5856 }
5857 }
5858 }
5859
5860 lim = CONS_BLOCK_SIZE;
5861 /* If this block contains only free conses and we have already
5862 seen more than two blocks worth of free conses then deallocate
5863 this block. */
5864 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5865 {
5866 *cprev = cblk->next;
5867 /* Unhook from the free list. */
5868 cons_free_list = cblk->conses[0].u.chain;
5869 lisp_align_free (cblk);
5870 n_cons_blocks--;
5871 }
5872 else
5873 {
5874 num_free += this_free;
5875 cprev = &cblk->next;
5876 }
5877 }
5878 total_conses = num_used;
5879 total_free_conses = num_free;
5880 }
5881
5882 /* Put all unmarked floats on free list */
5883 {
5884 register struct float_block *fblk;
5885 struct float_block **fprev = &float_block;
5886 register int lim = float_block_index;
5887 register int num_free = 0, num_used = 0;
5888
5889 float_free_list = 0;
5890
5891 for (fblk = float_block; fblk; fblk = *fprev)
5892 {
5893 register int i;
5894 int this_free = 0;
5895 for (i = 0; i < lim; i++)
5896 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5897 {
5898 this_free++;
5899 fblk->floats[i].u.chain = float_free_list;
5900 float_free_list = &fblk->floats[i];
5901 }
5902 else
5903 {
5904 num_used++;
5905 FLOAT_UNMARK (&fblk->floats[i]);
5906 }
5907 lim = FLOAT_BLOCK_SIZE;
5908 /* If this block contains only free floats and we have already
5909 seen more than two blocks worth of free floats then deallocate
5910 this block. */
5911 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5912 {
5913 *fprev = fblk->next;
5914 /* Unhook from the free list. */
5915 float_free_list = fblk->floats[0].u.chain;
5916 lisp_align_free (fblk);
5917 n_float_blocks--;
5918 }
5919 else
5920 {
5921 num_free += this_free;
5922 fprev = &fblk->next;
5923 }
5924 }
5925 total_floats = num_used;
5926 total_free_floats = num_free;
5927 }
5928
5929 /* Put all unmarked intervals on free list */
5930 {
5931 register struct interval_block *iblk;
5932 struct interval_block **iprev = &interval_block;
5933 register int lim = interval_block_index;
5934 register int num_free = 0, num_used = 0;
5935
5936 interval_free_list = 0;
5937
5938 for (iblk = interval_block; iblk; iblk = *iprev)
5939 {
5940 register int i;
5941 int this_free = 0;
5942
5943 for (i = 0; i < lim; i++)
5944 {
5945 if (!iblk->intervals[i].gcmarkbit)
5946 {
5947 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5948 interval_free_list = &iblk->intervals[i];
5949 this_free++;
5950 }
5951 else
5952 {
5953 num_used++;
5954 iblk->intervals[i].gcmarkbit = 0;
5955 }
5956 }
5957 lim = INTERVAL_BLOCK_SIZE;
5958 /* If this block contains only free intervals and we have already
5959 seen more than two blocks worth of free intervals then
5960 deallocate this block. */
5961 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5962 {
5963 *iprev = iblk->next;
5964 /* Unhook from the free list. */
5965 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5966 lisp_free (iblk);
5967 n_interval_blocks--;
5968 }
5969 else
5970 {
5971 num_free += this_free;
5972 iprev = &iblk->next;
5973 }
5974 }
5975 total_intervals = num_used;
5976 total_free_intervals = num_free;
5977 }
5978
5979 /* Put all unmarked symbols on free list */
5980 {
5981 register struct symbol_block *sblk;
5982 struct symbol_block **sprev = &symbol_block;
5983 register int lim = symbol_block_index;
5984 register int num_free = 0, num_used = 0;
5985
5986 symbol_free_list = NULL;
5987
5988 for (sblk = symbol_block; sblk; sblk = *sprev)
5989 {
5990 int this_free = 0;
5991 struct Lisp_Symbol *sym = sblk->symbols;
5992 struct Lisp_Symbol *end = sym + lim;
5993
5994 for (; sym < end; ++sym)
5995 {
5996 /* Check if the symbol was created during loadup. In such a case
5997 it might be pointed to by pure bytecode which we don't trace,
5998 so we conservatively assume that it is live. */
5999 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
6000
6001 if (!sym->gcmarkbit && !pure_p)
6002 {
6003 sym->next = symbol_free_list;
6004 symbol_free_list = sym;
6005 #if GC_MARK_STACK
6006 symbol_free_list->function = Vdead;
6007 #endif
6008 ++this_free;
6009 }
6010 else
6011 {
6012 ++num_used;
6013 if (!pure_p)
6014 UNMARK_STRING (XSTRING (sym->xname));
6015 sym->gcmarkbit = 0;
6016 }
6017 }
6018
6019 lim = SYMBOL_BLOCK_SIZE;
6020 /* If this block contains only free symbols and we have already
6021 seen more than two blocks worth of free symbols then deallocate
6022 this block. */
6023 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6024 {
6025 *sprev = sblk->next;
6026 /* Unhook from the free list. */
6027 symbol_free_list = sblk->symbols[0].next;
6028 lisp_free (sblk);
6029 n_symbol_blocks--;
6030 }
6031 else
6032 {
6033 num_free += this_free;
6034 sprev = &sblk->next;
6035 }
6036 }
6037 total_symbols = num_used;
6038 total_free_symbols = num_free;
6039 }
6040
6041 /* Put all unmarked misc's on free list.
6042 For a marker, first unchain it from the buffer it points into. */
6043 {
6044 register struct marker_block *mblk;
6045 struct marker_block **mprev = &marker_block;
6046 register int lim = marker_block_index;
6047 register int num_free = 0, num_used = 0;
6048
6049 marker_free_list = 0;
6050
6051 for (mblk = marker_block; mblk; mblk = *mprev)
6052 {
6053 register int i;
6054 int this_free = 0;
6055
6056 for (i = 0; i < lim; i++)
6057 {
6058 if (!mblk->markers[i].u_any.gcmarkbit)
6059 {
6060 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
6061 unchain_marker (&mblk->markers[i].u_marker);
6062 /* Set the type of the freed object to Lisp_Misc_Free.
6063 We could leave the type alone, since nobody checks it,
6064 but this might catch bugs faster. */
6065 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
6066 mblk->markers[i].u_free.chain = marker_free_list;
6067 marker_free_list = &mblk->markers[i];
6068 this_free++;
6069 }
6070 else
6071 {
6072 num_used++;
6073 mblk->markers[i].u_any.gcmarkbit = 0;
6074 }
6075 }
6076 lim = MARKER_BLOCK_SIZE;
6077 /* If this block contains only free markers and we have already
6078 seen more than two blocks worth of free markers then deallocate
6079 this block. */
6080 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6081 {
6082 *mprev = mblk->next;
6083 /* Unhook from the free list. */
6084 marker_free_list = mblk->markers[0].u_free.chain;
6085 lisp_free (mblk);
6086 n_marker_blocks--;
6087 }
6088 else
6089 {
6090 num_free += this_free;
6091 mprev = &mblk->next;
6092 }
6093 }
6094
6095 total_markers = num_used;
6096 total_free_markers = num_free;
6097 }
6098
6099 /* Free all unmarked buffers */
6100 {
6101 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6102
6103 while (buffer)
6104 if (!VECTOR_MARKED_P (buffer))
6105 {
6106 if (prev)
6107 prev->next = buffer->next;
6108 else
6109 all_buffers = buffer->next;
6110 next = buffer->next;
6111 lisp_free (buffer);
6112 buffer = next;
6113 }
6114 else
6115 {
6116 VECTOR_UNMARK (buffer);
6117 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6118 prev = buffer, buffer = buffer->next;
6119 }
6120 }
6121
6122 /* Free all unmarked vectors */
6123 {
6124 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6125 total_vector_size = 0;
6126
6127 while (vector)
6128 if (!VECTOR_MARKED_P (vector))
6129 {
6130 if (prev)
6131 prev->next = vector->next;
6132 else
6133 all_vectors = vector->next;
6134 next = vector->next;
6135 lisp_free (vector);
6136 n_vectors--;
6137 vector = next;
6138
6139 }
6140 else
6141 {
6142 VECTOR_UNMARK (vector);
6143 if (vector->size & PSEUDOVECTOR_FLAG)
6144 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6145 else
6146 total_vector_size += vector->size;
6147 prev = vector, vector = vector->next;
6148 }
6149 }
6150
6151 #ifdef GC_CHECK_STRING_BYTES
6152 if (!noninteractive)
6153 check_string_bytes (1);
6154 #endif
6155 }
6156
6157
6158
6159 \f
6160 /* Debugging aids. */
6161
6162 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6163 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6164 This may be helpful in debugging Emacs's memory usage.
6165 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6166 ()
6167 {
6168 Lisp_Object end;
6169
6170 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6171
6172 return end;
6173 }
6174
6175 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6176 doc: /* Return a list of counters that measure how much consing there has been.
6177 Each of these counters increments for a certain kind of object.
6178 The counters wrap around from the largest positive integer to zero.
6179 Garbage collection does not decrease them.
6180 The elements of the value are as follows:
6181 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6182 All are in units of 1 = one object consed
6183 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6184 objects consed.
6185 MISCS include overlays, markers, and some internal types.
6186 Frames, windows, buffers, and subprocesses count as vectors
6187 (but the contents of a buffer's text do not count here). */)
6188 ()
6189 {
6190 Lisp_Object consed[8];
6191
6192 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6193 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6194 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6195 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6196 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6197 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6198 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6199 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6200
6201 return Flist (8, consed);
6202 }
6203
6204 int suppress_checking;
6205
6206 void
6207 die (msg, file, line)
6208 const char *msg;
6209 const char *file;
6210 int line;
6211 {
6212 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6213 file, line, msg);
6214 abort ();
6215 }
6216 \f
6217 /* Initialization */
6218
6219 void
6220 init_alloc_once ()
6221 {
6222 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6223 purebeg = PUREBEG;
6224 pure_size = PURESIZE;
6225 pure_bytes_used = 0;
6226 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6227 pure_bytes_used_before_overflow = 0;
6228
6229 /* Initialize the list of free aligned blocks. */
6230 free_ablock = NULL;
6231
6232 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6233 mem_init ();
6234 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6235 #endif
6236
6237 all_vectors = 0;
6238 ignore_warnings = 1;
6239 #ifdef DOUG_LEA_MALLOC
6240 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6241 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6242 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6243 #endif
6244 init_strings ();
6245 init_cons ();
6246 init_symbol ();
6247 init_marker ();
6248 init_float ();
6249 init_intervals ();
6250 init_weak_hash_tables ();
6251
6252 #ifdef REL_ALLOC
6253 malloc_hysteresis = 32;
6254 #else
6255 malloc_hysteresis = 0;
6256 #endif
6257
6258 refill_memory_reserve ();
6259
6260 ignore_warnings = 0;
6261 gcprolist = 0;
6262 byte_stack_list = 0;
6263 staticidx = 0;
6264 consing_since_gc = 0;
6265 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6266 gc_relative_threshold = 0;
6267
6268 #ifdef VIRT_ADDR_VARIES
6269 malloc_sbrk_unused = 1<<22; /* A large number */
6270 malloc_sbrk_used = 100000; /* as reasonable as any number */
6271 #endif /* VIRT_ADDR_VARIES */
6272 }
6273
6274 void
6275 init_alloc ()
6276 {
6277 gcprolist = 0;
6278 byte_stack_list = 0;
6279 #if GC_MARK_STACK
6280 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6281 setjmp_tested_p = longjmps_done = 0;
6282 #endif
6283 #endif
6284 Vgc_elapsed = make_float (0.0);
6285 gcs_done = 0;
6286 }
6287
6288 void
6289 syms_of_alloc ()
6290 {
6291 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6292 doc: /* *Number of bytes of consing between garbage collections.
6293 Garbage collection can happen automatically once this many bytes have been
6294 allocated since the last garbage collection. All data types count.
6295
6296 Garbage collection happens automatically only when `eval' is called.
6297
6298 By binding this temporarily to a large number, you can effectively
6299 prevent garbage collection during a part of the program.
6300 See also `gc-cons-percentage'. */);
6301
6302 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6303 doc: /* *Portion of the heap used for allocation.
6304 Garbage collection can happen automatically once this portion of the heap
6305 has been allocated since the last garbage collection.
6306 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6307 Vgc_cons_percentage = make_float (0.1);
6308
6309 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6310 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6311
6312 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6313 doc: /* Number of cons cells that have been consed so far. */);
6314
6315 DEFVAR_INT ("floats-consed", &floats_consed,
6316 doc: /* Number of floats that have been consed so far. */);
6317
6318 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6319 doc: /* Number of vector cells that have been consed so far. */);
6320
6321 DEFVAR_INT ("symbols-consed", &symbols_consed,
6322 doc: /* Number of symbols that have been consed so far. */);
6323
6324 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6325 doc: /* Number of string characters that have been consed so far. */);
6326
6327 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6328 doc: /* Number of miscellaneous objects that have been consed so far. */);
6329
6330 DEFVAR_INT ("intervals-consed", &intervals_consed,
6331 doc: /* Number of intervals that have been consed so far. */);
6332
6333 DEFVAR_INT ("strings-consed", &strings_consed,
6334 doc: /* Number of strings that have been consed so far. */);
6335
6336 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6337 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6338 This means that certain objects should be allocated in shared (pure) space. */);
6339
6340 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6341 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6342 garbage_collection_messages = 0;
6343
6344 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6345 doc: /* Hook run after garbage collection has finished. */);
6346 Vpost_gc_hook = Qnil;
6347 Qpost_gc_hook = intern ("post-gc-hook");
6348 staticpro (&Qpost_gc_hook);
6349
6350 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6351 doc: /* Precomputed `signal' argument for memory-full error. */);
6352 /* We build this in advance because if we wait until we need it, we might
6353 not be able to allocate the memory to hold it. */
6354 Vmemory_signal_data
6355 = list2 (Qerror,
6356 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6357
6358 DEFVAR_LISP ("memory-full", &Vmemory_full,
6359 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6360 Vmemory_full = Qnil;
6361
6362 staticpro (&Qgc_cons_threshold);
6363 Qgc_cons_threshold = intern ("gc-cons-threshold");
6364
6365 staticpro (&Qchar_table_extra_slots);
6366 Qchar_table_extra_slots = intern ("char-table-extra-slots");
6367
6368 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6369 doc: /* Accumulated time elapsed in garbage collections.
6370 The time is in seconds as a floating point value. */);
6371 DEFVAR_INT ("gcs-done", &gcs_done,
6372 doc: /* Accumulated number of garbage collections done. */);
6373
6374 defsubr (&Scons);
6375 defsubr (&Slist);
6376 defsubr (&Svector);
6377 defsubr (&Smake_byte_code);
6378 defsubr (&Smake_list);
6379 defsubr (&Smake_vector);
6380 defsubr (&Smake_string);
6381 defsubr (&Smake_bool_vector);
6382 defsubr (&Smake_symbol);
6383 defsubr (&Smake_marker);
6384 defsubr (&Spurecopy);
6385 defsubr (&Sgarbage_collect);
6386 defsubr (&Smemory_limit);
6387 defsubr (&Smemory_use_counts);
6388
6389 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6390 defsubr (&Sgc_status);
6391 #endif
6392 }
6393
6394 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6395 (do not change this comment) */