]> code.delx.au - gnu-emacs/blob - lispref/numbers.texi
(Integer Basics): Clarify radix explanation.
[gnu-emacs] / lispref / numbers.texi
1 @c -*-texinfo-*-
2 @c This is part of the GNU Emacs Lisp Reference Manual.
3 @c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999, 2003
4 @c Free Software Foundation, Inc.
5 @c See the file elisp.texi for copying conditions.
6 @setfilename ../info/numbers
7 @node Numbers, Strings and Characters, Lisp Data Types, Top
8 @chapter Numbers
9 @cindex integers
10 @cindex numbers
11
12 GNU Emacs supports two numeric data types: @dfn{integers} and
13 @dfn{floating point numbers}. Integers are whole numbers such as
14 @minus{}3, 0, 7, 13, and 511. Their values are exact. Floating point
15 numbers are numbers with fractional parts, such as @minus{}4.5, 0.0, or
16 2.71828. They can also be expressed in exponential notation: 1.5e2
17 equals 150; in this example, @samp{e2} stands for ten to the second
18 power, and that is multiplied by 1.5. Floating point values are not
19 exact; they have a fixed, limited amount of precision.
20
21 @menu
22 * Integer Basics:: Representation and range of integers.
23 * Float Basics:: Representation and range of floating point.
24 * Predicates on Numbers:: Testing for numbers.
25 * Comparison of Numbers:: Equality and inequality predicates.
26 * Numeric Conversions:: Converting float to integer and vice versa.
27 * Arithmetic Operations:: How to add, subtract, multiply and divide.
28 * Rounding Operations:: Explicitly rounding floating point numbers.
29 * Bitwise Operations:: Logical and, or, not, shifting.
30 * Math Functions:: Trig, exponential and logarithmic functions.
31 * Random Numbers:: Obtaining random integers, predictable or not.
32 @end menu
33
34 @node Integer Basics
35 @comment node-name, next, previous, up
36 @section Integer Basics
37
38 The range of values for an integer depends on the machine. The
39 minimum range is @minus{}268435456 to 268435455 (29 bits; i.e.,
40 @ifnottex
41 -2**28
42 @end ifnottex
43 @tex
44 @math{-2^{28}}
45 @end tex
46 to
47 @ifnottex
48 2**28 - 1),
49 @end ifnottex
50 @tex
51 @math{2^{28}-1}),
52 @end tex
53 but some machines may provide a wider range. Many examples in this
54 chapter assume an integer has 29 bits.
55 @cindex overflow
56
57 The Lisp reader reads an integer as a sequence of digits with optional
58 initial sign and optional final period.
59
60 @example
61 1 ; @r{The integer 1.}
62 1. ; @r{The integer 1.}
63 +1 ; @r{Also the integer 1.}
64 -1 ; @r{The integer @minus{}1.}
65 536870913 ; @r{Also the integer 1, due to overflow.}
66 0 ; @r{The integer 0.}
67 -0 ; @r{The integer 0.}
68 @end example
69
70 @cindex integers in specific radix
71 @cindex radix for reading an integer
72 @cindex base for reading an integer
73 @cindex hex numbers
74 @cindex octal numbers
75 @cindex reading numbers in hex, octal, and binary
76 The syntax for integers in bases other than 10 uses @samp{#}
77 followed by a letter that specifies the radix: @samp{b} for binary,
78 @samp{o} for octal, @samp{x} for hex, or @samp{@var{radix}r} to
79 specify radix @var{radix}. Case is not significant for the letter
80 that specifies the radix. Thus, @samp{#b@var{integer}} reads
81 @var{integer} in binary, and @samp{#@var{radix}r@var{integer}} reads
82 @var{integer} in radix @var{radix}. Allowed values of @var{radix} run
83 from 2 to 36. For example:
84
85 @example
86 #b101100 @result{} 44
87 #o54 @result{} 44
88 #x2c @result{} 44
89 #24r1k @result{} 44
90 @end example
91
92 To understand how various functions work on integers, especially the
93 bitwise operators (@pxref{Bitwise Operations}), it is often helpful to
94 view the numbers in their binary form.
95
96 In 29-bit binary, the decimal integer 5 looks like this:
97
98 @example
99 0 0000 0000 0000 0000 0000 0000 0101
100 @end example
101
102 @noindent
103 (We have inserted spaces between groups of 4 bits, and two spaces
104 between groups of 8 bits, to make the binary integer easier to read.)
105
106 The integer @minus{}1 looks like this:
107
108 @example
109 1 1111 1111 1111 1111 1111 1111 1111
110 @end example
111
112 @noindent
113 @cindex two's complement
114 @minus{}1 is represented as 29 ones. (This is called @dfn{two's
115 complement} notation.)
116
117 The negative integer, @minus{}5, is creating by subtracting 4 from
118 @minus{}1. In binary, the decimal integer 4 is 100. Consequently,
119 @minus{}5 looks like this:
120
121 @example
122 1 1111 1111 1111 1111 1111 1111 1011
123 @end example
124
125 In this implementation, the largest 29-bit binary integer value is
126 268,435,455 in decimal. In binary, it looks like this:
127
128 @example
129 0 1111 1111 1111 1111 1111 1111 1111
130 @end example
131
132 Since the arithmetic functions do not check whether integers go
133 outside their range, when you add 1 to 268,435,455, the value is the
134 negative integer @minus{}268,435,456:
135
136 @example
137 (+ 1 268435455)
138 @result{} -268435456
139 @result{} 1 0000 0000 0000 0000 0000 0000 0000
140 @end example
141
142 Many of the functions described in this chapter accept markers for
143 arguments in place of numbers. (@xref{Markers}.) Since the actual
144 arguments to such functions may be either numbers or markers, we often
145 give these arguments the name @var{number-or-marker}. When the argument
146 value is a marker, its position value is used and its buffer is ignored.
147
148 @defvar most-positive-fixnum
149 The value of this variable is the largest integer that Emacs Lisp
150 can handle.
151 @end defvar
152
153 @defvar most-negative-fixnum
154 The value of this variable is the smallest integer that Emacs Lisp can
155 handle. It is negative.
156 @end defvar
157
158 @node Float Basics
159 @section Floating Point Basics
160
161 Floating point numbers are useful for representing numbers that are
162 not integral. The precise range of floating point numbers is
163 machine-specific; it is the same as the range of the C data type
164 @code{double} on the machine you are using.
165
166 The read-syntax for floating point numbers requires either a decimal
167 point (with at least one digit following), an exponent, or both. For
168 example, @samp{1500.0}, @samp{15e2}, @samp{15.0e2}, @samp{1.5e3}, and
169 @samp{.15e4} are five ways of writing a floating point number whose
170 value is 1500. They are all equivalent. You can also use a minus sign
171 to write negative floating point numbers, as in @samp{-1.0}.
172
173 @cindex @acronym{IEEE} floating point
174 @cindex positive infinity
175 @cindex negative infinity
176 @cindex infinity
177 @cindex NaN
178 Most modern computers support the @acronym{IEEE} floating point standard,
179 which provides for positive infinity and negative infinity as floating point
180 values. It also provides for a class of values called NaN or
181 ``not-a-number''; numerical functions return such values in cases where
182 there is no correct answer. For example, @code{(/ 0.0 0.0)} returns a
183 NaN. For practical purposes, there's no significant difference between
184 different NaN values in Emacs Lisp, and there's no rule for precisely
185 which NaN value should be used in a particular case, so Emacs Lisp
186 doesn't try to distinguish them. Here are the read syntaxes for
187 these special floating point values:
188
189 @table @asis
190 @item positive infinity
191 @samp{1.0e+INF}
192 @item negative infinity
193 @samp{-1.0e+INF}
194 @item Not-a-number
195 @samp{0.0e+NaN}.
196 @end table
197
198 In addition, the value @code{-0.0} is distinguishable from ordinary
199 zero in @acronym{IEEE} floating point (although @code{equal} and
200 @code{=} consider them equal values).
201
202 You can use @code{logb} to extract the binary exponent of a floating
203 point number (or estimate the logarithm of an integer):
204
205 @defun logb number
206 This function returns the binary exponent of @var{number}. More
207 precisely, the value is the logarithm of @var{number} base 2, rounded
208 down to an integer.
209
210 @example
211 (logb 10)
212 @result{} 3
213 (logb 10.0e20)
214 @result{} 69
215 @end example
216 @end defun
217
218 @node Predicates on Numbers
219 @section Type Predicates for Numbers
220
221 The functions in this section test for numbers, or for a specific
222 type of number. The functions @code{integerp} and @code{floatp} can
223 take any type of Lisp object as argument (they would not be of much
224 use otherwise), but the @code{zerop} predicate requires a number as
225 its argument. See also @code{integer-or-marker-p} and
226 @code{number-or-marker-p}, in @ref{Predicates on Markers}.
227
228 @defun floatp object
229 This predicate tests whether its argument is a floating point
230 number and returns @code{t} if so, @code{nil} otherwise.
231
232 @code{floatp} does not exist in Emacs versions 18 and earlier.
233 @end defun
234
235 @defun integerp object
236 This predicate tests whether its argument is an integer, and returns
237 @code{t} if so, @code{nil} otherwise.
238 @end defun
239
240 @defun numberp object
241 This predicate tests whether its argument is a number (either integer or
242 floating point), and returns @code{t} if so, @code{nil} otherwise.
243 @end defun
244
245 @defun wholenump object
246 @cindex natural numbers
247 The @code{wholenump} predicate (whose name comes from the phrase
248 ``whole-number-p'') tests to see whether its argument is a nonnegative
249 integer, and returns @code{t} if so, @code{nil} otherwise. 0 is
250 considered non-negative.
251
252 @findex natnump
253 @code{natnump} is an obsolete synonym for @code{wholenump}.
254 @end defun
255
256 @defun zerop number
257 This predicate tests whether its argument is zero, and returns @code{t}
258 if so, @code{nil} otherwise. The argument must be a number.
259
260 @code{(zerop x)} is equivalent to @code{(= x 0)}.
261 @end defun
262
263 @node Comparison of Numbers
264 @section Comparison of Numbers
265 @cindex number equality
266
267 To test numbers for numerical equality, you should normally use
268 @code{=}, not @code{eq}. There can be many distinct floating point
269 number objects with the same numeric value. If you use @code{eq} to
270 compare them, then you test whether two values are the same
271 @emph{object}. By contrast, @code{=} compares only the numeric values
272 of the objects.
273
274 At present, each integer value has a unique Lisp object in Emacs Lisp.
275 Therefore, @code{eq} is equivalent to @code{=} where integers are
276 concerned. It is sometimes convenient to use @code{eq} for comparing an
277 unknown value with an integer, because @code{eq} does not report an
278 error if the unknown value is not a number---it accepts arguments of any
279 type. By contrast, @code{=} signals an error if the arguments are not
280 numbers or markers. However, it is a good idea to use @code{=} if you
281 can, even for comparing integers, just in case we change the
282 representation of integers in a future Emacs version.
283
284 Sometimes it is useful to compare numbers with @code{equal}; it
285 treats two numbers as equal if they have the same data type (both
286 integers, or both floating point) and the same value. By contrast,
287 @code{=} can treat an integer and a floating point number as equal.
288 @xref{Equality Predicates}.
289
290 There is another wrinkle: because floating point arithmetic is not
291 exact, it is often a bad idea to check for equality of two floating
292 point values. Usually it is better to test for approximate equality.
293 Here's a function to do this:
294
295 @example
296 (defvar fuzz-factor 1.0e-6)
297 (defun approx-equal (x y)
298 (or (and (= x 0) (= y 0))
299 (< (/ (abs (- x y))
300 (max (abs x) (abs y)))
301 fuzz-factor)))
302 @end example
303
304 @cindex CL note---integers vrs @code{eq}
305 @quotation
306 @b{Common Lisp note:} Comparing numbers in Common Lisp always requires
307 @code{=} because Common Lisp implements multi-word integers, and two
308 distinct integer objects can have the same numeric value. Emacs Lisp
309 can have just one integer object for any given value because it has a
310 limited range of integer values.
311 @end quotation
312
313 @defun = number-or-marker1 number-or-marker2
314 This function tests whether its arguments are numerically equal, and
315 returns @code{t} if so, @code{nil} otherwise.
316 @end defun
317
318 @defun eql value1 value2
319 This function acts like @code{eq} except when both arguments are
320 numbers. It compares numbers by type and numberic value, so that
321 @code{(eql 1.0 1)} returns @code{nil}, but @code{(eql 1.0 1.0)} and
322 @code{(eql 1 1)} both return @code{t}.
323 @end defun
324
325 @defun /= number-or-marker1 number-or-marker2
326 This function tests whether its arguments are numerically equal, and
327 returns @code{t} if they are not, and @code{nil} if they are.
328 @end defun
329
330 @defun < number-or-marker1 number-or-marker2
331 This function tests whether its first argument is strictly less than
332 its second argument. It returns @code{t} if so, @code{nil} otherwise.
333 @end defun
334
335 @defun <= number-or-marker1 number-or-marker2
336 This function tests whether its first argument is less than or equal
337 to its second argument. It returns @code{t} if so, @code{nil}
338 otherwise.
339 @end defun
340
341 @defun > number-or-marker1 number-or-marker2
342 This function tests whether its first argument is strictly greater
343 than its second argument. It returns @code{t} if so, @code{nil}
344 otherwise.
345 @end defun
346
347 @defun >= number-or-marker1 number-or-marker2
348 This function tests whether its first argument is greater than or
349 equal to its second argument. It returns @code{t} if so, @code{nil}
350 otherwise.
351 @end defun
352
353 @defun max number-or-marker &rest numbers-or-markers
354 This function returns the largest of its arguments.
355 If any of the arguments is floating-point, the value is returned
356 as floating point, even if it was given as an integer.
357
358 @example
359 (max 20)
360 @result{} 20
361 (max 1 2.5)
362 @result{} 2.5
363 (max 1 3 2.5)
364 @result{} 3.0
365 @end example
366 @end defun
367
368 @defun min number-or-marker &rest numbers-or-markers
369 This function returns the smallest of its arguments.
370 If any of the arguments is floating-point, the value is returned
371 as floating point, even if it was given as an integer.
372
373 @example
374 (min -4 1)
375 @result{} -4
376 @end example
377 @end defun
378
379 @defun abs number
380 This function returns the absolute value of @var{number}.
381 @end defun
382
383 @node Numeric Conversions
384 @section Numeric Conversions
385 @cindex rounding in conversions
386
387 To convert an integer to floating point, use the function @code{float}.
388
389 @defun float number
390 This returns @var{number} converted to floating point.
391 If @var{number} is already a floating point number, @code{float} returns
392 it unchanged.
393 @end defun
394
395 There are four functions to convert floating point numbers to integers;
396 they differ in how they round. All accept an argument @var{number}
397 and an optional argument @var{divisor}. Both arguments may be
398 integers or floating point numbers. @var{divisor} may also be
399 @code{nil}. If @var{divisor} is @code{nil} or omitted, these
400 functions convert @var{number} to an integer, or return it unchanged
401 if it already is an integer. If @var{divisor} is non-@code{nil}, they
402 divide @var{number} by @var{divisor} and convert the result to an
403 integer. An @code{arith-error} results if @var{divisor} is 0.
404
405 @defun truncate number &optional divisor
406 This returns @var{number}, converted to an integer by rounding towards
407 zero.
408
409 @example
410 (truncate 1.2)
411 @result{} 1
412 (truncate 1.7)
413 @result{} 1
414 (truncate -1.2)
415 @result{} -1
416 (truncate -1.7)
417 @result{} -1
418 @end example
419 @end defun
420
421 @defun floor number &optional divisor
422 This returns @var{number}, converted to an integer by rounding downward
423 (towards negative infinity).
424
425 If @var{divisor} is specified, this uses the kind of division
426 operation that corresponds to @code{mod}, rounding downward.
427
428 @example
429 (floor 1.2)
430 @result{} 1
431 (floor 1.7)
432 @result{} 1
433 (floor -1.2)
434 @result{} -2
435 (floor -1.7)
436 @result{} -2
437 (floor 5.99 3)
438 @result{} 1
439 @end example
440 @end defun
441
442 @defun ceiling number &optional divisor
443 This returns @var{number}, converted to an integer by rounding upward
444 (towards positive infinity).
445
446 @example
447 (ceiling 1.2)
448 @result{} 2
449 (ceiling 1.7)
450 @result{} 2
451 (ceiling -1.2)
452 @result{} -1
453 (ceiling -1.7)
454 @result{} -1
455 @end example
456 @end defun
457
458 @defun round number &optional divisor
459 This returns @var{number}, converted to an integer by rounding towards the
460 nearest integer. Rounding a value equidistant between two integers
461 may choose the integer closer to zero, or it may prefer an even integer,
462 depending on your machine.
463
464 @example
465 (round 1.2)
466 @result{} 1
467 (round 1.7)
468 @result{} 2
469 (round -1.2)
470 @result{} -1
471 (round -1.7)
472 @result{} -2
473 @end example
474 @end defun
475
476 @node Arithmetic Operations
477 @section Arithmetic Operations
478
479 Emacs Lisp provides the traditional four arithmetic operations:
480 addition, subtraction, multiplication, and division. Remainder and modulus
481 functions supplement the division functions. The functions to
482 add or subtract 1 are provided because they are traditional in Lisp and
483 commonly used.
484
485 All of these functions except @code{%} return a floating point value
486 if any argument is floating.
487
488 It is important to note that in Emacs Lisp, arithmetic functions
489 do not check for overflow. Thus @code{(1+ 268435455)} may evaluate to
490 @minus{}268435456, depending on your hardware.
491
492 @defun 1+ number-or-marker
493 This function returns @var{number-or-marker} plus 1.
494 For example,
495
496 @example
497 (setq foo 4)
498 @result{} 4
499 (1+ foo)
500 @result{} 5
501 @end example
502
503 This function is not analogous to the C operator @code{++}---it does not
504 increment a variable. It just computes a sum. Thus, if we continue,
505
506 @example
507 foo
508 @result{} 4
509 @end example
510
511 If you want to increment the variable, you must use @code{setq},
512 like this:
513
514 @example
515 (setq foo (1+ foo))
516 @result{} 5
517 @end example
518 @end defun
519
520 @defun 1- number-or-marker
521 This function returns @var{number-or-marker} minus 1.
522 @end defun
523
524 @defun + &rest numbers-or-markers
525 This function adds its arguments together. When given no arguments,
526 @code{+} returns 0.
527
528 @example
529 (+)
530 @result{} 0
531 (+ 1)
532 @result{} 1
533 (+ 1 2 3 4)
534 @result{} 10
535 @end example
536 @end defun
537
538 @defun - &optional number-or-marker &rest more-numbers-or-markers
539 The @code{-} function serves two purposes: negation and subtraction.
540 When @code{-} has a single argument, the value is the negative of the
541 argument. When there are multiple arguments, @code{-} subtracts each of
542 the @var{more-numbers-or-markers} from @var{number-or-marker},
543 cumulatively. If there are no arguments, the result is 0.
544
545 @example
546 (- 10 1 2 3 4)
547 @result{} 0
548 (- 10)
549 @result{} -10
550 (-)
551 @result{} 0
552 @end example
553 @end defun
554
555 @defun * &rest numbers-or-markers
556 This function multiplies its arguments together, and returns the
557 product. When given no arguments, @code{*} returns 1.
558
559 @example
560 (*)
561 @result{} 1
562 (* 1)
563 @result{} 1
564 (* 1 2 3 4)
565 @result{} 24
566 @end example
567 @end defun
568
569 @defun / dividend divisor &rest divisors
570 This function divides @var{dividend} by @var{divisor} and returns the
571 quotient. If there are additional arguments @var{divisors}, then it
572 divides @var{dividend} by each divisor in turn. Each argument may be a
573 number or a marker.
574
575 If all the arguments are integers, then the result is an integer too.
576 This means the result has to be rounded. On most machines, the result
577 is rounded towards zero after each division, but some machines may round
578 differently with negative arguments. This is because the Lisp function
579 @code{/} is implemented using the C division operator, which also
580 permits machine-dependent rounding. As a practical matter, all known
581 machines round in the standard fashion.
582
583 @cindex @code{arith-error} in division
584 If you divide an integer by 0, an @code{arith-error} error is signaled.
585 (@xref{Errors}.) Floating point division by zero returns either
586 infinity or a NaN if your machine supports @acronym{IEEE} floating point;
587 otherwise, it signals an @code{arith-error} error.
588
589 @example
590 @group
591 (/ 6 2)
592 @result{} 3
593 @end group
594 (/ 5 2)
595 @result{} 2
596 (/ 5.0 2)
597 @result{} 2.5
598 (/ 5 2.0)
599 @result{} 2.5
600 (/ 5.0 2.0)
601 @result{} 2.5
602 (/ 25 3 2)
603 @result{} 4
604 (/ -17 6)
605 @result{} -2
606 @end example
607
608 The result of @code{(/ -17 6)} could in principle be -3 on some
609 machines.
610 @end defun
611
612 @defun % dividend divisor
613 @cindex remainder
614 This function returns the integer remainder after division of @var{dividend}
615 by @var{divisor}. The arguments must be integers or markers.
616
617 For negative arguments, the remainder is in principle machine-dependent
618 since the quotient is; but in practice, all known machines behave alike.
619
620 An @code{arith-error} results if @var{divisor} is 0.
621
622 @example
623 (% 9 4)
624 @result{} 1
625 (% -9 4)
626 @result{} -1
627 (% 9 -4)
628 @result{} 1
629 (% -9 -4)
630 @result{} -1
631 @end example
632
633 For any two integers @var{dividend} and @var{divisor},
634
635 @example
636 @group
637 (+ (% @var{dividend} @var{divisor})
638 (* (/ @var{dividend} @var{divisor}) @var{divisor}))
639 @end group
640 @end example
641
642 @noindent
643 always equals @var{dividend}.
644 @end defun
645
646 @defun mod dividend divisor
647 @cindex modulus
648 This function returns the value of @var{dividend} modulo @var{divisor};
649 in other words, the remainder after division of @var{dividend}
650 by @var{divisor}, but with the same sign as @var{divisor}.
651 The arguments must be numbers or markers.
652
653 Unlike @code{%}, @code{mod} returns a well-defined result for negative
654 arguments. It also permits floating point arguments; it rounds the
655 quotient downward (towards minus infinity) to an integer, and uses that
656 quotient to compute the remainder.
657
658 An @code{arith-error} results if @var{divisor} is 0.
659
660 @example
661 @group
662 (mod 9 4)
663 @result{} 1
664 @end group
665 @group
666 (mod -9 4)
667 @result{} 3
668 @end group
669 @group
670 (mod 9 -4)
671 @result{} -3
672 @end group
673 @group
674 (mod -9 -4)
675 @result{} -1
676 @end group
677 @group
678 (mod 5.5 2.5)
679 @result{} .5
680 @end group
681 @end example
682
683 For any two numbers @var{dividend} and @var{divisor},
684
685 @example
686 @group
687 (+ (mod @var{dividend} @var{divisor})
688 (* (floor @var{dividend} @var{divisor}) @var{divisor}))
689 @end group
690 @end example
691
692 @noindent
693 always equals @var{dividend}, subject to rounding error if either
694 argument is floating point. For @code{floor}, see @ref{Numeric
695 Conversions}.
696 @end defun
697
698 @node Rounding Operations
699 @section Rounding Operations
700 @cindex rounding without conversion
701
702 The functions @code{ffloor}, @code{fceiling}, @code{fround}, and
703 @code{ftruncate} take a floating point argument and return a floating
704 point result whose value is a nearby integer. @code{ffloor} returns the
705 nearest integer below; @code{fceiling}, the nearest integer above;
706 @code{ftruncate}, the nearest integer in the direction towards zero;
707 @code{fround}, the nearest integer.
708
709 @defun ffloor float
710 This function rounds @var{float} to the next lower integral value, and
711 returns that value as a floating point number.
712 @end defun
713
714 @defun fceiling float
715 This function rounds @var{float} to the next higher integral value, and
716 returns that value as a floating point number.
717 @end defun
718
719 @defun ftruncate float
720 This function rounds @var{float} towards zero to an integral value, and
721 returns that value as a floating point number.
722 @end defun
723
724 @defun fround float
725 This function rounds @var{float} to the nearest integral value,
726 and returns that value as a floating point number.
727 @end defun
728
729 @node Bitwise Operations
730 @section Bitwise Operations on Integers
731
732 In a computer, an integer is represented as a binary number, a
733 sequence of @dfn{bits} (digits which are either zero or one). A bitwise
734 operation acts on the individual bits of such a sequence. For example,
735 @dfn{shifting} moves the whole sequence left or right one or more places,
736 reproducing the same pattern ``moved over''.
737
738 The bitwise operations in Emacs Lisp apply only to integers.
739
740 @defun lsh integer1 count
741 @cindex logical shift
742 @code{lsh}, which is an abbreviation for @dfn{logical shift}, shifts the
743 bits in @var{integer1} to the left @var{count} places, or to the right
744 if @var{count} is negative, bringing zeros into the vacated bits. If
745 @var{count} is negative, @code{lsh} shifts zeros into the leftmost
746 (most-significant) bit, producing a positive result even if
747 @var{integer1} is negative. Contrast this with @code{ash}, below.
748
749 Here are two examples of @code{lsh}, shifting a pattern of bits one
750 place to the left. We show only the low-order eight bits of the binary
751 pattern; the rest are all zero.
752
753 @example
754 @group
755 (lsh 5 1)
756 @result{} 10
757 ;; @r{Decimal 5 becomes decimal 10.}
758 00000101 @result{} 00001010
759
760 (lsh 7 1)
761 @result{} 14
762 ;; @r{Decimal 7 becomes decimal 14.}
763 00000111 @result{} 00001110
764 @end group
765 @end example
766
767 @noindent
768 As the examples illustrate, shifting the pattern of bits one place to
769 the left produces a number that is twice the value of the previous
770 number.
771
772 Shifting a pattern of bits two places to the left produces results
773 like this (with 8-bit binary numbers):
774
775 @example
776 @group
777 (lsh 3 2)
778 @result{} 12
779 ;; @r{Decimal 3 becomes decimal 12.}
780 00000011 @result{} 00001100
781 @end group
782 @end example
783
784 On the other hand, shifting one place to the right looks like this:
785
786 @example
787 @group
788 (lsh 6 -1)
789 @result{} 3
790 ;; @r{Decimal 6 becomes decimal 3.}
791 00000110 @result{} 00000011
792 @end group
793
794 @group
795 (lsh 5 -1)
796 @result{} 2
797 ;; @r{Decimal 5 becomes decimal 2.}
798 00000101 @result{} 00000010
799 @end group
800 @end example
801
802 @noindent
803 As the example illustrates, shifting one place to the right divides the
804 value of a positive integer by two, rounding downward.
805
806 The function @code{lsh}, like all Emacs Lisp arithmetic functions, does
807 not check for overflow, so shifting left can discard significant bits
808 and change the sign of the number. For example, left shifting
809 268,435,455 produces @minus{}2 on a 29-bit machine:
810
811 @example
812 (lsh 268435455 1) ; @r{left shift}
813 @result{} -2
814 @end example
815
816 In binary, in the 29-bit implementation, the argument looks like this:
817
818 @example
819 @group
820 ;; @r{Decimal 268,435,455}
821 0 1111 1111 1111 1111 1111 1111 1111
822 @end group
823 @end example
824
825 @noindent
826 which becomes the following when left shifted:
827
828 @example
829 @group
830 ;; @r{Decimal @minus{}2}
831 1 1111 1111 1111 1111 1111 1111 1110
832 @end group
833 @end example
834 @end defun
835
836 @defun ash integer1 count
837 @cindex arithmetic shift
838 @code{ash} (@dfn{arithmetic shift}) shifts the bits in @var{integer1}
839 to the left @var{count} places, or to the right if @var{count}
840 is negative.
841
842 @code{ash} gives the same results as @code{lsh} except when
843 @var{integer1} and @var{count} are both negative. In that case,
844 @code{ash} puts ones in the empty bit positions on the left, while
845 @code{lsh} puts zeros in those bit positions.
846
847 Thus, with @code{ash}, shifting the pattern of bits one place to the right
848 looks like this:
849
850 @example
851 @group
852 (ash -6 -1) @result{} -3
853 ;; @r{Decimal @minus{}6 becomes decimal @minus{}3.}
854 1 1111 1111 1111 1111 1111 1111 1010
855 @result{}
856 1 1111 1111 1111 1111 1111 1111 1101
857 @end group
858 @end example
859
860 In contrast, shifting the pattern of bits one place to the right with
861 @code{lsh} looks like this:
862
863 @example
864 @group
865 (lsh -6 -1) @result{} 268435453
866 ;; @r{Decimal @minus{}6 becomes decimal 268,435,453.}
867 1 1111 1111 1111 1111 1111 1111 1010
868 @result{}
869 0 1111 1111 1111 1111 1111 1111 1101
870 @end group
871 @end example
872
873 Here are other examples:
874
875 @c !!! Check if lined up in smallbook format! XDVI shows problem
876 @c with smallbook but not with regular book! --rjc 16mar92
877 @smallexample
878 @group
879 ; @r{ 29-bit binary values}
880
881 (lsh 5 2) ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101}
882 @result{} 20 ; = @r{0 0000 0000 0000 0000 0000 0001 0100}
883 @end group
884 @group
885 (ash 5 2)
886 @result{} 20
887 (lsh -5 2) ; -5 = @r{1 1111 1111 1111 1111 1111 1111 1011}
888 @result{} -20 ; = @r{1 1111 1111 1111 1111 1111 1110 1100}
889 (ash -5 2)
890 @result{} -20
891 @end group
892 @group
893 (lsh 5 -2) ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101}
894 @result{} 1 ; = @r{0 0000 0000 0000 0000 0000 0000 0001}
895 @end group
896 @group
897 (ash 5 -2)
898 @result{} 1
899 @end group
900 @group
901 (lsh -5 -2) ; -5 = @r{1 1111 1111 1111 1111 1111 1111 1011}
902 @result{} 134217726 ; = @r{0 0111 1111 1111 1111 1111 1111 1110}
903 @end group
904 @group
905 (ash -5 -2) ; -5 = @r{1 1111 1111 1111 1111 1111 1111 1011}
906 @result{} -2 ; = @r{1 1111 1111 1111 1111 1111 1111 1110}
907 @end group
908 @end smallexample
909 @end defun
910
911 @defun logand &rest ints-or-markers
912 @cindex logical and
913 @cindex bitwise and
914 This function returns the ``logical and'' of the arguments: the
915 @var{n}th bit is set in the result if, and only if, the @var{n}th bit is
916 set in all the arguments. (``Set'' means that the value of the bit is 1
917 rather than 0.)
918
919 For example, using 4-bit binary numbers, the ``logical and'' of 13 and
920 12 is 12: 1101 combined with 1100 produces 1100.
921 In both the binary numbers, the leftmost two bits are set (i.e., they
922 are 1's), so the leftmost two bits of the returned value are set.
923 However, for the rightmost two bits, each is zero in at least one of
924 the arguments, so the rightmost two bits of the returned value are 0's.
925
926 @noindent
927 Therefore,
928
929 @example
930 @group
931 (logand 13 12)
932 @result{} 12
933 @end group
934 @end example
935
936 If @code{logand} is not passed any argument, it returns a value of
937 @minus{}1. This number is an identity element for @code{logand}
938 because its binary representation consists entirely of ones. If
939 @code{logand} is passed just one argument, it returns that argument.
940
941 @smallexample
942 @group
943 ; @r{ 29-bit binary values}
944
945 (logand 14 13) ; 14 = @r{0 0000 0000 0000 0000 0000 0000 1110}
946 ; 13 = @r{0 0000 0000 0000 0000 0000 0000 1101}
947 @result{} 12 ; 12 = @r{0 0000 0000 0000 0000 0000 0000 1100}
948 @end group
949
950 @group
951 (logand 14 13 4) ; 14 = @r{0 0000 0000 0000 0000 0000 0000 1110}
952 ; 13 = @r{0 0000 0000 0000 0000 0000 0000 1101}
953 ; 4 = @r{0 0000 0000 0000 0000 0000 0000 0100}
954 @result{} 4 ; 4 = @r{0 0000 0000 0000 0000 0000 0000 0100}
955 @end group
956
957 @group
958 (logand)
959 @result{} -1 ; -1 = @r{1 1111 1111 1111 1111 1111 1111 1111}
960 @end group
961 @end smallexample
962 @end defun
963
964 @defun logior &rest ints-or-markers
965 @cindex logical inclusive or
966 @cindex bitwise or
967 This function returns the ``inclusive or'' of its arguments: the @var{n}th bit
968 is set in the result if, and only if, the @var{n}th bit is set in at least
969 one of the arguments. If there are no arguments, the result is zero,
970 which is an identity element for this operation. If @code{logior} is
971 passed just one argument, it returns that argument.
972
973 @smallexample
974 @group
975 ; @r{ 29-bit binary values}
976
977 (logior 12 5) ; 12 = @r{0 0000 0000 0000 0000 0000 0000 1100}
978 ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101}
979 @result{} 13 ; 13 = @r{0 0000 0000 0000 0000 0000 0000 1101}
980 @end group
981
982 @group
983 (logior 12 5 7) ; 12 = @r{0 0000 0000 0000 0000 0000 0000 1100}
984 ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101}
985 ; 7 = @r{0 0000 0000 0000 0000 0000 0000 0111}
986 @result{} 15 ; 15 = @r{0 0000 0000 0000 0000 0000 0000 1111}
987 @end group
988 @end smallexample
989 @end defun
990
991 @defun logxor &rest ints-or-markers
992 @cindex bitwise exclusive or
993 @cindex logical exclusive or
994 This function returns the ``exclusive or'' of its arguments: the
995 @var{n}th bit is set in the result if, and only if, the @var{n}th bit is
996 set in an odd number of the arguments. If there are no arguments, the
997 result is 0, which is an identity element for this operation. If
998 @code{logxor} is passed just one argument, it returns that argument.
999
1000 @smallexample
1001 @group
1002 ; @r{ 29-bit binary values}
1003
1004 (logxor 12 5) ; 12 = @r{0 0000 0000 0000 0000 0000 0000 1100}
1005 ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101}
1006 @result{} 9 ; 9 = @r{0 0000 0000 0000 0000 0000 0000 1001}
1007 @end group
1008
1009 @group
1010 (logxor 12 5 7) ; 12 = @r{0 0000 0000 0000 0000 0000 0000 1100}
1011 ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101}
1012 ; 7 = @r{0 0000 0000 0000 0000 0000 0000 0111}
1013 @result{} 14 ; 14 = @r{0 0000 0000 0000 0000 0000 0000 1110}
1014 @end group
1015 @end smallexample
1016 @end defun
1017
1018 @defun lognot integer
1019 @cindex logical not
1020 @cindex bitwise not
1021 This function returns the logical complement of its argument: the @var{n}th
1022 bit is one in the result if, and only if, the @var{n}th bit is zero in
1023 @var{integer}, and vice-versa.
1024
1025 @example
1026 (lognot 5)
1027 @result{} -6
1028 ;; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101}
1029 ;; @r{becomes}
1030 ;; -6 = @r{1 1111 1111 1111 1111 1111 1111 1010}
1031 @end example
1032 @end defun
1033
1034 @node Math Functions
1035 @section Standard Mathematical Functions
1036 @cindex transcendental functions
1037 @cindex mathematical functions
1038
1039 These mathematical functions allow integers as well as floating point
1040 numbers as arguments.
1041
1042 @defun sin arg
1043 @defunx cos arg
1044 @defunx tan arg
1045 These are the ordinary trigonometric functions, with argument measured
1046 in radians.
1047 @end defun
1048
1049 @defun asin arg
1050 The value of @code{(asin @var{arg})} is a number between
1051 @ifnottex
1052 @minus{}pi/2
1053 @end ifnottex
1054 @tex
1055 @math{-\pi/2}
1056 @end tex
1057 and
1058 @ifnottex
1059 pi/2
1060 @end ifnottex
1061 @tex
1062 @math{\pi/2}
1063 @end tex
1064 (inclusive) whose sine is @var{arg}; if, however, @var{arg} is out of
1065 range (outside [-1, 1]), it signals a @code{domain-error} error.
1066 @end defun
1067
1068 @defun acos arg
1069 The value of @code{(acos @var{arg})} is a number between 0 and
1070 @ifnottex
1071 pi
1072 @end ifnottex
1073 @tex
1074 @math{\pi}
1075 @end tex
1076 (inclusive) whose cosine is @var{arg}; if, however, @var{arg} is out
1077 of range (outside [-1, 1]), it signals a @code{domain-error} error.
1078 @end defun
1079
1080 @defun atan y &optional x
1081 The value of @code{(atan @var{y})} is a number between
1082 @ifnottex
1083 @minus{}pi/2
1084 @end ifnottex
1085 @tex
1086 @math{-\pi/2}
1087 @end tex
1088 and
1089 @ifnottex
1090 pi/2
1091 @end ifnottex
1092 @tex
1093 @math{\pi/2}
1094 @end tex
1095 (exclusive) whose tangent is @var{y}. If the optional second
1096 argument @var{x} is given, the value of @code{(atan y x)} is the
1097 angle in radians between the vector @code{[@var{x}, @var{y}]} and the
1098 @code{X} axis.
1099 @end defun
1100
1101 @defun exp arg
1102 This is the exponential function; it returns
1103 @tex
1104 @math{e}
1105 @end tex
1106 @ifnottex
1107 @i{e}
1108 @end ifnottex
1109 to the power @var{arg}.
1110 @tex
1111 @math{e}
1112 @end tex
1113 @ifnottex
1114 @i{e}
1115 @end ifnottex
1116 is a fundamental mathematical constant also called the base of natural
1117 logarithms.
1118 @end defun
1119
1120 @defun log arg &optional base
1121 This function returns the logarithm of @var{arg}, with base @var{base}.
1122 If you don't specify @var{base}, the base
1123 @tex
1124 @math{e}
1125 @end tex
1126 @ifnottex
1127 @i{e}
1128 @end ifnottex
1129 is used. If @var{arg} is negative, it signals a @code{domain-error}
1130 error.
1131 @end defun
1132
1133 @ignore
1134 @defun expm1 arg
1135 This function returns @code{(1- (exp @var{arg}))}, but it is more
1136 accurate than that when @var{arg} is negative and @code{(exp @var{arg})}
1137 is close to 1.
1138 @end defun
1139
1140 @defun log1p arg
1141 This function returns @code{(log (1+ @var{arg}))}, but it is more
1142 accurate than that when @var{arg} is so small that adding 1 to it would
1143 lose accuracy.
1144 @end defun
1145 @end ignore
1146
1147 @defun log10 arg
1148 This function returns the logarithm of @var{arg}, with base 10. If
1149 @var{arg} is negative, it signals a @code{domain-error} error.
1150 @code{(log10 @var{x})} @equiv{} @code{(log @var{x} 10)}, at least
1151 approximately.
1152 @end defun
1153
1154 @defun expt x y
1155 This function returns @var{x} raised to power @var{y}. If both
1156 arguments are integers and @var{y} is positive, the result is an
1157 integer; in this case, overflow causes truncation, so watch out.
1158 @end defun
1159
1160 @defun sqrt arg
1161 This returns the square root of @var{arg}. If @var{arg} is negative,
1162 it signals a @code{domain-error} error.
1163 @end defun
1164
1165 @node Random Numbers
1166 @section Random Numbers
1167 @cindex random numbers
1168
1169 A deterministic computer program cannot generate true random numbers.
1170 For most purposes, @dfn{pseudo-random numbers} suffice. A series of
1171 pseudo-random numbers is generated in a deterministic fashion. The
1172 numbers are not truly random, but they have certain properties that
1173 mimic a random series. For example, all possible values occur equally
1174 often in a pseudo-random series.
1175
1176 In Emacs, pseudo-random numbers are generated from a ``seed'' number.
1177 Starting from any given seed, the @code{random} function always
1178 generates the same sequence of numbers. Emacs always starts with the
1179 same seed value, so the sequence of values of @code{random} is actually
1180 the same in each Emacs run! For example, in one operating system, the
1181 first call to @code{(random)} after you start Emacs always returns
1182 -1457731, and the second one always returns -7692030. This
1183 repeatability is helpful for debugging.
1184
1185 If you want random numbers that don't always come out the same, execute
1186 @code{(random t)}. This chooses a new seed based on the current time of
1187 day and on Emacs's process @acronym{ID} number.
1188
1189 @defun random &optional limit
1190 This function returns a pseudo-random integer. Repeated calls return a
1191 series of pseudo-random integers.
1192
1193 If @var{limit} is a positive integer, the value is chosen to be
1194 nonnegative and less than @var{limit}.
1195
1196 If @var{limit} is @code{t}, it means to choose a new seed based on the
1197 current time of day and on Emacs's process @acronym{ID} number.
1198 @c "Emacs'" is incorrect usage!
1199
1200 On some machines, any integer representable in Lisp may be the result
1201 of @code{random}. On other machines, the result can never be larger
1202 than a certain maximum or less than a certain (negative) minimum.
1203 @end defun
1204
1205 @ignore
1206 arch-tag: 574e8dd2-d513-4616-9844-c9a27869782e
1207 @end ignore