]> code.delx.au - gnu-emacs/blob - src/alloc.c
Revision: miles@gnu.org--gnu-2005/emacs--unicode--0--patch-97
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ALLOC_DEBUG
27 #undef INLINE
28 #endif
29
30 /* Note that this declares bzero on OSF/1. How dumb. */
31
32 #include <signal.h>
33
34 #ifdef HAVE_GTK_AND_PTHREAD
35 #include <pthread.h>
36 #endif
37
38 /* This file is part of the core Lisp implementation, and thus must
39 deal with the real data structures. If the Lisp implementation is
40 replaced, this file likely will not be used. */
41
42 #undef HIDE_LISP_IMPLEMENTATION
43 #include "lisp.h"
44 #include "process.h"
45 #include "intervals.h"
46 #include "puresize.h"
47 #include "buffer.h"
48 #include "window.h"
49 #include "keyboard.h"
50 #include "frame.h"
51 #include "blockinput.h"
52 #include "character.h"
53 #include "syssignal.h"
54 #include <setjmp.h>
55
56 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
57 memory. Can do this only if using gmalloc.c. */
58
59 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
60 #undef GC_MALLOC_CHECK
61 #endif
62
63 #ifdef HAVE_UNISTD_H
64 #include <unistd.h>
65 #else
66 extern POINTER_TYPE *sbrk ();
67 #endif
68
69 #ifdef HAVE_FCNTL_H
70 #define INCLUDED_FCNTL
71 #include <fcntl.h>
72 #endif
73 #ifndef O_WRONLY
74 #define O_WRONLY 1
75 #endif
76
77 #ifdef DOUG_LEA_MALLOC
78
79 #include <malloc.h>
80 /* malloc.h #defines this as size_t, at least in glibc2. */
81 #ifndef __malloc_size_t
82 #define __malloc_size_t int
83 #endif
84
85 /* Specify maximum number of areas to mmap. It would be nice to use a
86 value that explicitly means "no limit". */
87
88 #define MMAP_MAX_AREAS 100000000
89
90 #else /* not DOUG_LEA_MALLOC */
91
92 /* The following come from gmalloc.c. */
93
94 #define __malloc_size_t size_t
95 extern __malloc_size_t _bytes_used;
96 extern __malloc_size_t __malloc_extra_blocks;
97
98 #endif /* not DOUG_LEA_MALLOC */
99
100 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
101
102 /* When GTK uses the file chooser dialog, different backends can be loaded
103 dynamically. One such a backend is the Gnome VFS backend that gets loaded
104 if you run Gnome. That backend creates several threads and also allocates
105 memory with malloc.
106
107 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
108 functions below are called from malloc, there is a chance that one
109 of these threads preempts the Emacs main thread and the hook variables
110 end up in an inconsistent state. So we have a mutex to prevent that (note
111 that the backend handles concurrent access to malloc within its own threads
112 but Emacs code running in the main thread is not included in that control).
113
114 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
115 happens in one of the backend threads we will have two threads that tries
116 to run Emacs code at once, and the code is not prepared for that.
117 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
118
119 static pthread_mutex_t alloc_mutex;
120
121 #define BLOCK_INPUT_ALLOC \
122 do \
123 { \
124 pthread_mutex_lock (&alloc_mutex); \
125 if (pthread_self () == main_thread) \
126 BLOCK_INPUT; \
127 } \
128 while (0)
129 #define UNBLOCK_INPUT_ALLOC \
130 do \
131 { \
132 if (pthread_self () == main_thread) \
133 UNBLOCK_INPUT; \
134 pthread_mutex_unlock (&alloc_mutex); \
135 } \
136 while (0)
137
138 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
139
140 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
141 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
142
143 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
144
145 /* Value of _bytes_used, when spare_memory was freed. */
146
147 static __malloc_size_t bytes_used_when_full;
148
149 static __malloc_size_t bytes_used_when_reconsidered;
150
151 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
152 to a struct Lisp_String. */
153
154 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
155 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
156 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
157
158 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
159 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
160 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
161
162 /* Value is the number of bytes/chars of S, a pointer to a struct
163 Lisp_String. This must be used instead of STRING_BYTES (S) or
164 S->size during GC, because S->size contains the mark bit for
165 strings. */
166
167 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
168 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
169
170 /* Number of bytes of consing done since the last gc. */
171
172 int consing_since_gc;
173
174 /* Count the amount of consing of various sorts of space. */
175
176 EMACS_INT cons_cells_consed;
177 EMACS_INT floats_consed;
178 EMACS_INT vector_cells_consed;
179 EMACS_INT symbols_consed;
180 EMACS_INT string_chars_consed;
181 EMACS_INT misc_objects_consed;
182 EMACS_INT intervals_consed;
183 EMACS_INT strings_consed;
184
185 /* Minimum number of bytes of consing since GC before next GC. */
186
187 EMACS_INT gc_cons_threshold;
188
189 /* Similar minimum, computed from Vgc_cons_percentage. */
190
191 EMACS_INT gc_relative_threshold;
192
193 static Lisp_Object Vgc_cons_percentage;
194
195 /* Minimum number of bytes of consing since GC before next GC,
196 when memory is full. */
197
198 EMACS_INT memory_full_cons_threshold;
199
200 /* Nonzero during GC. */
201
202 int gc_in_progress;
203
204 /* Nonzero means abort if try to GC.
205 This is for code which is written on the assumption that
206 no GC will happen, so as to verify that assumption. */
207
208 int abort_on_gc;
209
210 /* Nonzero means display messages at beginning and end of GC. */
211
212 int garbage_collection_messages;
213
214 #ifndef VIRT_ADDR_VARIES
215 extern
216 #endif /* VIRT_ADDR_VARIES */
217 int malloc_sbrk_used;
218
219 #ifndef VIRT_ADDR_VARIES
220 extern
221 #endif /* VIRT_ADDR_VARIES */
222 int malloc_sbrk_unused;
223
224 /* Number of live and free conses etc. */
225
226 static int total_conses, total_markers, total_symbols, total_vector_size;
227 static int total_free_conses, total_free_markers, total_free_symbols;
228 static int total_free_floats, total_floats;
229
230 /* Points to memory space allocated as "spare", to be freed if we run
231 out of memory. We keep one large block, four cons-blocks, and
232 two string blocks. */
233
234 char *spare_memory[7];
235
236 /* Amount of spare memory to keep in large reserve block. */
237
238 #define SPARE_MEMORY (1 << 14)
239
240 /* Number of extra blocks malloc should get when it needs more core. */
241
242 static int malloc_hysteresis;
243
244 /* Non-nil means defun should do purecopy on the function definition. */
245
246 Lisp_Object Vpurify_flag;
247
248 /* Non-nil means we are handling a memory-full error. */
249
250 Lisp_Object Vmemory_full;
251
252 #ifndef HAVE_SHM
253
254 /* Initialize it to a nonzero value to force it into data space
255 (rather than bss space). That way unexec will remap it into text
256 space (pure), on some systems. We have not implemented the
257 remapping on more recent systems because this is less important
258 nowadays than in the days of small memories and timesharing. */
259
260 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
261 #define PUREBEG (char *) pure
262
263 #else /* HAVE_SHM */
264
265 #define pure PURE_SEG_BITS /* Use shared memory segment */
266 #define PUREBEG (char *)PURE_SEG_BITS
267
268 #endif /* HAVE_SHM */
269
270 /* Pointer to the pure area, and its size. */
271
272 static char *purebeg;
273 static size_t pure_size;
274
275 /* Number of bytes of pure storage used before pure storage overflowed.
276 If this is non-zero, this implies that an overflow occurred. */
277
278 static size_t pure_bytes_used_before_overflow;
279
280 /* Value is non-zero if P points into pure space. */
281
282 #define PURE_POINTER_P(P) \
283 (((PNTR_COMPARISON_TYPE) (P) \
284 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
285 && ((PNTR_COMPARISON_TYPE) (P) \
286 >= (PNTR_COMPARISON_TYPE) purebeg))
287
288 /* Index in pure at which next pure object will be allocated.. */
289
290 EMACS_INT pure_bytes_used;
291
292 /* If nonzero, this is a warning delivered by malloc and not yet
293 displayed. */
294
295 char *pending_malloc_warning;
296
297 /* Pre-computed signal argument for use when memory is exhausted. */
298
299 Lisp_Object Vmemory_signal_data;
300
301 /* Maximum amount of C stack to save when a GC happens. */
302
303 #ifndef MAX_SAVE_STACK
304 #define MAX_SAVE_STACK 16000
305 #endif
306
307 /* Buffer in which we save a copy of the C stack at each GC. */
308
309 char *stack_copy;
310 int stack_copy_size;
311
312 /* Non-zero means ignore malloc warnings. Set during initialization.
313 Currently not used. */
314
315 int ignore_warnings;
316
317 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
318
319 /* Hook run after GC has finished. */
320
321 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
322
323 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
324 EMACS_INT gcs_done; /* accumulated GCs */
325
326 static void mark_buffer P_ ((Lisp_Object));
327 extern void mark_kboards P_ ((void));
328 extern void mark_backtrace P_ ((void));
329 static void gc_sweep P_ ((void));
330 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
331 static void mark_face_cache P_ ((struct face_cache *));
332
333 #ifdef HAVE_WINDOW_SYSTEM
334 extern void mark_fringe_data P_ ((void));
335 static void mark_image P_ ((struct image *));
336 static void mark_image_cache P_ ((struct frame *));
337 #endif /* HAVE_WINDOW_SYSTEM */
338
339 static struct Lisp_String *allocate_string P_ ((void));
340 static void compact_small_strings P_ ((void));
341 static void free_large_strings P_ ((void));
342 static void sweep_strings P_ ((void));
343
344 extern int message_enable_multibyte;
345
346 /* When scanning the C stack for live Lisp objects, Emacs keeps track
347 of what memory allocated via lisp_malloc is intended for what
348 purpose. This enumeration specifies the type of memory. */
349
350 enum mem_type
351 {
352 MEM_TYPE_NON_LISP,
353 MEM_TYPE_BUFFER,
354 MEM_TYPE_CONS,
355 MEM_TYPE_STRING,
356 MEM_TYPE_MISC,
357 MEM_TYPE_SYMBOL,
358 MEM_TYPE_FLOAT,
359 /* Keep the following vector-like types together, with
360 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
361 first. Or change the code of live_vector_p, for instance. */
362 MEM_TYPE_VECTOR,
363 MEM_TYPE_PROCESS,
364 MEM_TYPE_HASH_TABLE,
365 MEM_TYPE_FRAME,
366 MEM_TYPE_WINDOW
367 };
368
369 static POINTER_TYPE *lisp_align_malloc P_ ((size_t, enum mem_type));
370 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
371 void refill_memory_reserve ();
372
373
374 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
375
376 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
377 #include <stdio.h> /* For fprintf. */
378 #endif
379
380 /* A unique object in pure space used to make some Lisp objects
381 on free lists recognizable in O(1). */
382
383 Lisp_Object Vdead;
384
385 #ifdef GC_MALLOC_CHECK
386
387 enum mem_type allocated_mem_type;
388 int dont_register_blocks;
389
390 #endif /* GC_MALLOC_CHECK */
391
392 /* A node in the red-black tree describing allocated memory containing
393 Lisp data. Each such block is recorded with its start and end
394 address when it is allocated, and removed from the tree when it
395 is freed.
396
397 A red-black tree is a balanced binary tree with the following
398 properties:
399
400 1. Every node is either red or black.
401 2. Every leaf is black.
402 3. If a node is red, then both of its children are black.
403 4. Every simple path from a node to a descendant leaf contains
404 the same number of black nodes.
405 5. The root is always black.
406
407 When nodes are inserted into the tree, or deleted from the tree,
408 the tree is "fixed" so that these properties are always true.
409
410 A red-black tree with N internal nodes has height at most 2
411 log(N+1). Searches, insertions and deletions are done in O(log N).
412 Please see a text book about data structures for a detailed
413 description of red-black trees. Any book worth its salt should
414 describe them. */
415
416 struct mem_node
417 {
418 /* Children of this node. These pointers are never NULL. When there
419 is no child, the value is MEM_NIL, which points to a dummy node. */
420 struct mem_node *left, *right;
421
422 /* The parent of this node. In the root node, this is NULL. */
423 struct mem_node *parent;
424
425 /* Start and end of allocated region. */
426 void *start, *end;
427
428 /* Node color. */
429 enum {MEM_BLACK, MEM_RED} color;
430
431 /* Memory type. */
432 enum mem_type type;
433 };
434
435 /* Base address of stack. Set in main. */
436
437 Lisp_Object *stack_base;
438
439 /* Root of the tree describing allocated Lisp memory. */
440
441 static struct mem_node *mem_root;
442
443 /* Lowest and highest known address in the heap. */
444
445 static void *min_heap_address, *max_heap_address;
446
447 /* Sentinel node of the tree. */
448
449 static struct mem_node mem_z;
450 #define MEM_NIL &mem_z
451
452 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
453 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
454 static void lisp_free P_ ((POINTER_TYPE *));
455 static void mark_stack P_ ((void));
456 static int live_vector_p P_ ((struct mem_node *, void *));
457 static int live_buffer_p P_ ((struct mem_node *, void *));
458 static int live_string_p P_ ((struct mem_node *, void *));
459 static int live_cons_p P_ ((struct mem_node *, void *));
460 static int live_symbol_p P_ ((struct mem_node *, void *));
461 static int live_float_p P_ ((struct mem_node *, void *));
462 static int live_misc_p P_ ((struct mem_node *, void *));
463 static void mark_maybe_object P_ ((Lisp_Object));
464 static void mark_memory P_ ((void *, void *));
465 static void mem_init P_ ((void));
466 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
467 static void mem_insert_fixup P_ ((struct mem_node *));
468 static void mem_rotate_left P_ ((struct mem_node *));
469 static void mem_rotate_right P_ ((struct mem_node *));
470 static void mem_delete P_ ((struct mem_node *));
471 static void mem_delete_fixup P_ ((struct mem_node *));
472 static INLINE struct mem_node *mem_find P_ ((void *));
473
474
475 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
476 static void check_gcpros P_ ((void));
477 #endif
478
479 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
480
481 /* Recording what needs to be marked for gc. */
482
483 struct gcpro *gcprolist;
484
485 /* Addresses of staticpro'd variables. Initialize it to a nonzero
486 value; otherwise some compilers put it into BSS. */
487
488 #define NSTATICS 1280
489 Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
490
491 /* Index of next unused slot in staticvec. */
492
493 int staticidx = 0;
494
495 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
496
497
498 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
499 ALIGNMENT must be a power of 2. */
500
501 #define ALIGN(ptr, ALIGNMENT) \
502 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
503 & ~((ALIGNMENT) - 1)))
504
505
506 \f
507 /************************************************************************
508 Malloc
509 ************************************************************************/
510
511 /* Function malloc calls this if it finds we are near exhausting storage. */
512
513 void
514 malloc_warning (str)
515 char *str;
516 {
517 pending_malloc_warning = str;
518 }
519
520
521 /* Display an already-pending malloc warning. */
522
523 void
524 display_malloc_warning ()
525 {
526 call3 (intern ("display-warning"),
527 intern ("alloc"),
528 build_string (pending_malloc_warning),
529 intern ("emergency"));
530 pending_malloc_warning = 0;
531 }
532
533
534 #ifdef DOUG_LEA_MALLOC
535 # define BYTES_USED (mallinfo ().uordblks)
536 #else
537 # define BYTES_USED _bytes_used
538 #endif
539 \f
540 /* Called if we can't allocate relocatable space for a buffer. */
541
542 void
543 buffer_memory_full ()
544 {
545 /* If buffers use the relocating allocator, no need to free
546 spare_memory, because we may have plenty of malloc space left
547 that we could get, and if we don't, the malloc that fails will
548 itself cause spare_memory to be freed. If buffers don't use the
549 relocating allocator, treat this like any other failing
550 malloc. */
551
552 #ifndef REL_ALLOC
553 memory_full ();
554 #endif
555
556 /* This used to call error, but if we've run out of memory, we could
557 get infinite recursion trying to build the string. */
558 while (1)
559 Fsignal (Qnil, Vmemory_signal_data);
560 }
561
562
563 #ifdef XMALLOC_OVERRUN_CHECK
564
565 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
566 and a 16 byte trailer around each block.
567
568 The header consists of 12 fixed bytes + a 4 byte integer contaning the
569 original block size, while the trailer consists of 16 fixed bytes.
570
571 The header is used to detect whether this block has been allocated
572 through these functions -- as it seems that some low-level libc
573 functions may bypass the malloc hooks.
574 */
575
576
577 #define XMALLOC_OVERRUN_CHECK_SIZE 16
578
579 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
580 { 0x9a, 0x9b, 0xae, 0xaf,
581 0xbf, 0xbe, 0xce, 0xcf,
582 0xea, 0xeb, 0xec, 0xed };
583
584 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
585 { 0xaa, 0xab, 0xac, 0xad,
586 0xba, 0xbb, 0xbc, 0xbd,
587 0xca, 0xcb, 0xcc, 0xcd,
588 0xda, 0xdb, 0xdc, 0xdd };
589
590 /* Macros to insert and extract the block size in the header. */
591
592 #define XMALLOC_PUT_SIZE(ptr, size) \
593 (ptr[-1] = (size & 0xff), \
594 ptr[-2] = ((size >> 8) & 0xff), \
595 ptr[-3] = ((size >> 16) & 0xff), \
596 ptr[-4] = ((size >> 24) & 0xff))
597
598 #define XMALLOC_GET_SIZE(ptr) \
599 (size_t)((unsigned)(ptr[-1]) | \
600 ((unsigned)(ptr[-2]) << 8) | \
601 ((unsigned)(ptr[-3]) << 16) | \
602 ((unsigned)(ptr[-4]) << 24))
603
604
605 /* The call depth in overrun_check functions. For example, this might happen:
606 xmalloc()
607 overrun_check_malloc()
608 -> malloc -> (via hook)_-> emacs_blocked_malloc
609 -> overrun_check_malloc
610 call malloc (hooks are NULL, so real malloc is called).
611 malloc returns 10000.
612 add overhead, return 10016.
613 <- (back in overrun_check_malloc)
614 add overhead again, return 10032
615 xmalloc returns 10032.
616
617 (time passes).
618
619 xfree(10032)
620 overrun_check_free(10032)
621 decrease overhed
622 free(10016) <- crash, because 10000 is the original pointer. */
623
624 static int check_depth;
625
626 /* Like malloc, but wraps allocated block with header and trailer. */
627
628 POINTER_TYPE *
629 overrun_check_malloc (size)
630 size_t size;
631 {
632 register unsigned char *val;
633 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
634
635 val = (unsigned char *) malloc (size + overhead);
636 if (val && check_depth == 1)
637 {
638 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
639 val += XMALLOC_OVERRUN_CHECK_SIZE;
640 XMALLOC_PUT_SIZE(val, size);
641 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
642 }
643 --check_depth;
644 return (POINTER_TYPE *)val;
645 }
646
647
648 /* Like realloc, but checks old block for overrun, and wraps new block
649 with header and trailer. */
650
651 POINTER_TYPE *
652 overrun_check_realloc (block, size)
653 POINTER_TYPE *block;
654 size_t size;
655 {
656 register unsigned char *val = (unsigned char *)block;
657 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
658
659 if (val
660 && check_depth == 1
661 && bcmp (xmalloc_overrun_check_header,
662 val - XMALLOC_OVERRUN_CHECK_SIZE,
663 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
664 {
665 size_t osize = XMALLOC_GET_SIZE (val);
666 if (bcmp (xmalloc_overrun_check_trailer,
667 val + osize,
668 XMALLOC_OVERRUN_CHECK_SIZE))
669 abort ();
670 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
671 val -= XMALLOC_OVERRUN_CHECK_SIZE;
672 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
673 }
674
675 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
676
677 if (val && check_depth == 1)
678 {
679 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
680 val += XMALLOC_OVERRUN_CHECK_SIZE;
681 XMALLOC_PUT_SIZE(val, size);
682 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
683 }
684 --check_depth;
685 return (POINTER_TYPE *)val;
686 }
687
688 /* Like free, but checks block for overrun. */
689
690 void
691 overrun_check_free (block)
692 POINTER_TYPE *block;
693 {
694 unsigned char *val = (unsigned char *)block;
695
696 ++check_depth;
697 if (val
698 && check_depth == 1
699 && bcmp (xmalloc_overrun_check_header,
700 val - XMALLOC_OVERRUN_CHECK_SIZE,
701 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
702 {
703 size_t osize = XMALLOC_GET_SIZE (val);
704 if (bcmp (xmalloc_overrun_check_trailer,
705 val + osize,
706 XMALLOC_OVERRUN_CHECK_SIZE))
707 abort ();
708 #ifdef XMALLOC_CLEAR_FREE_MEMORY
709 val -= XMALLOC_OVERRUN_CHECK_SIZE;
710 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
711 #else
712 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
713 val -= XMALLOC_OVERRUN_CHECK_SIZE;
714 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
715 #endif
716 }
717
718 free (val);
719 --check_depth;
720 }
721
722 #undef malloc
723 #undef realloc
724 #undef free
725 #define malloc overrun_check_malloc
726 #define realloc overrun_check_realloc
727 #define free overrun_check_free
728 #endif
729
730
731 /* Like malloc but check for no memory and block interrupt input.. */
732
733 POINTER_TYPE *
734 xmalloc (size)
735 size_t size;
736 {
737 register POINTER_TYPE *val;
738
739 BLOCK_INPUT;
740 val = (POINTER_TYPE *) malloc (size);
741 UNBLOCK_INPUT;
742
743 if (!val && size)
744 memory_full ();
745 return val;
746 }
747
748
749 /* Like realloc but check for no memory and block interrupt input.. */
750
751 POINTER_TYPE *
752 xrealloc (block, size)
753 POINTER_TYPE *block;
754 size_t size;
755 {
756 register POINTER_TYPE *val;
757
758 BLOCK_INPUT;
759 /* We must call malloc explicitly when BLOCK is 0, since some
760 reallocs don't do this. */
761 if (! block)
762 val = (POINTER_TYPE *) malloc (size);
763 else
764 val = (POINTER_TYPE *) realloc (block, size);
765 UNBLOCK_INPUT;
766
767 if (!val && size) memory_full ();
768 return val;
769 }
770
771
772 /* Like free but block interrupt input. */
773
774 void
775 xfree (block)
776 POINTER_TYPE *block;
777 {
778 BLOCK_INPUT;
779 free (block);
780 UNBLOCK_INPUT;
781 /* We don't call refill_memory_reserve here
782 because that duplicates doing so in emacs_blocked_free
783 and the criterion should go there. */
784 }
785
786
787 /* Like strdup, but uses xmalloc. */
788
789 char *
790 xstrdup (s)
791 const char *s;
792 {
793 size_t len = strlen (s) + 1;
794 char *p = (char *) xmalloc (len);
795 bcopy (s, p, len);
796 return p;
797 }
798
799
800 /* Unwind for SAFE_ALLOCA */
801
802 Lisp_Object
803 safe_alloca_unwind (arg)
804 Lisp_Object arg;
805 {
806 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
807
808 p->dogc = 0;
809 xfree (p->pointer);
810 p->pointer = 0;
811 free_misc (arg);
812 return Qnil;
813 }
814
815
816 /* Like malloc but used for allocating Lisp data. NBYTES is the
817 number of bytes to allocate, TYPE describes the intended use of the
818 allcated memory block (for strings, for conses, ...). */
819
820 #ifndef USE_LSB_TAG
821 static void *lisp_malloc_loser;
822 #endif
823
824 static POINTER_TYPE *
825 lisp_malloc (nbytes, type)
826 size_t nbytes;
827 enum mem_type type;
828 {
829 register void *val;
830
831 BLOCK_INPUT;
832
833 #ifdef GC_MALLOC_CHECK
834 allocated_mem_type = type;
835 #endif
836
837 val = (void *) malloc (nbytes);
838
839 #ifndef USE_LSB_TAG
840 /* If the memory just allocated cannot be addressed thru a Lisp
841 object's pointer, and it needs to be,
842 that's equivalent to running out of memory. */
843 if (val && type != MEM_TYPE_NON_LISP)
844 {
845 Lisp_Object tem;
846 XSETCONS (tem, (char *) val + nbytes - 1);
847 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
848 {
849 lisp_malloc_loser = val;
850 free (val);
851 val = 0;
852 }
853 }
854 #endif
855
856 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
857 if (val && type != MEM_TYPE_NON_LISP)
858 mem_insert (val, (char *) val + nbytes, type);
859 #endif
860
861 UNBLOCK_INPUT;
862 if (!val && nbytes)
863 memory_full ();
864 return val;
865 }
866
867 /* Free BLOCK. This must be called to free memory allocated with a
868 call to lisp_malloc. */
869
870 static void
871 lisp_free (block)
872 POINTER_TYPE *block;
873 {
874 BLOCK_INPUT;
875 free (block);
876 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
877 mem_delete (mem_find (block));
878 #endif
879 UNBLOCK_INPUT;
880 }
881
882 /* Allocation of aligned blocks of memory to store Lisp data. */
883 /* The entry point is lisp_align_malloc which returns blocks of at most */
884 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
885
886
887 /* BLOCK_ALIGN has to be a power of 2. */
888 #define BLOCK_ALIGN (1 << 10)
889
890 /* Padding to leave at the end of a malloc'd block. This is to give
891 malloc a chance to minimize the amount of memory wasted to alignment.
892 It should be tuned to the particular malloc library used.
893 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
894 posix_memalign on the other hand would ideally prefer a value of 4
895 because otherwise, there's 1020 bytes wasted between each ablocks.
896 In Emacs, testing shows that those 1020 can most of the time be
897 efficiently used by malloc to place other objects, so a value of 0 can
898 still preferable unless you have a lot of aligned blocks and virtually
899 nothing else. */
900 #define BLOCK_PADDING 0
901 #define BLOCK_BYTES \
902 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
903
904 /* Internal data structures and constants. */
905
906 #define ABLOCKS_SIZE 16
907
908 /* An aligned block of memory. */
909 struct ablock
910 {
911 union
912 {
913 char payload[BLOCK_BYTES];
914 struct ablock *next_free;
915 } x;
916 /* `abase' is the aligned base of the ablocks. */
917 /* It is overloaded to hold the virtual `busy' field that counts
918 the number of used ablock in the parent ablocks.
919 The first ablock has the `busy' field, the others have the `abase'
920 field. To tell the difference, we assume that pointers will have
921 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
922 is used to tell whether the real base of the parent ablocks is `abase'
923 (if not, the word before the first ablock holds a pointer to the
924 real base). */
925 struct ablocks *abase;
926 /* The padding of all but the last ablock is unused. The padding of
927 the last ablock in an ablocks is not allocated. */
928 #if BLOCK_PADDING
929 char padding[BLOCK_PADDING];
930 #endif
931 };
932
933 /* A bunch of consecutive aligned blocks. */
934 struct ablocks
935 {
936 struct ablock blocks[ABLOCKS_SIZE];
937 };
938
939 /* Size of the block requested from malloc or memalign. */
940 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
941
942 #define ABLOCK_ABASE(block) \
943 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
944 ? (struct ablocks *)(block) \
945 : (block)->abase)
946
947 /* Virtual `busy' field. */
948 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
949
950 /* Pointer to the (not necessarily aligned) malloc block. */
951 #ifdef HAVE_POSIX_MEMALIGN
952 #define ABLOCKS_BASE(abase) (abase)
953 #else
954 #define ABLOCKS_BASE(abase) \
955 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
956 #endif
957
958 /* The list of free ablock. */
959 static struct ablock *free_ablock;
960
961 /* Allocate an aligned block of nbytes.
962 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
963 smaller or equal to BLOCK_BYTES. */
964 static POINTER_TYPE *
965 lisp_align_malloc (nbytes, type)
966 size_t nbytes;
967 enum mem_type type;
968 {
969 void *base, *val;
970 struct ablocks *abase;
971
972 eassert (nbytes <= BLOCK_BYTES);
973
974 BLOCK_INPUT;
975
976 #ifdef GC_MALLOC_CHECK
977 allocated_mem_type = type;
978 #endif
979
980 if (!free_ablock)
981 {
982 int i;
983 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
984
985 #ifdef DOUG_LEA_MALLOC
986 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
987 because mapped region contents are not preserved in
988 a dumped Emacs. */
989 mallopt (M_MMAP_MAX, 0);
990 #endif
991
992 #ifdef HAVE_POSIX_MEMALIGN
993 {
994 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
995 if (err)
996 base = NULL;
997 abase = base;
998 }
999 #else
1000 base = malloc (ABLOCKS_BYTES);
1001 abase = ALIGN (base, BLOCK_ALIGN);
1002 #endif
1003
1004 if (base == 0)
1005 {
1006 UNBLOCK_INPUT;
1007 memory_full ();
1008 }
1009
1010 aligned = (base == abase);
1011 if (!aligned)
1012 ((void**)abase)[-1] = base;
1013
1014 #ifdef DOUG_LEA_MALLOC
1015 /* Back to a reasonable maximum of mmap'ed areas. */
1016 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1017 #endif
1018
1019 #ifndef USE_LSB_TAG
1020 /* If the memory just allocated cannot be addressed thru a Lisp
1021 object's pointer, and it needs to be, that's equivalent to
1022 running out of memory. */
1023 if (type != MEM_TYPE_NON_LISP)
1024 {
1025 Lisp_Object tem;
1026 char *end = (char *) base + ABLOCKS_BYTES - 1;
1027 XSETCONS (tem, end);
1028 if ((char *) XCONS (tem) != end)
1029 {
1030 lisp_malloc_loser = base;
1031 free (base);
1032 UNBLOCK_INPUT;
1033 memory_full ();
1034 }
1035 }
1036 #endif
1037
1038 /* Initialize the blocks and put them on the free list.
1039 Is `base' was not properly aligned, we can't use the last block. */
1040 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1041 {
1042 abase->blocks[i].abase = abase;
1043 abase->blocks[i].x.next_free = free_ablock;
1044 free_ablock = &abase->blocks[i];
1045 }
1046 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1047
1048 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1049 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1050 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1051 eassert (ABLOCKS_BASE (abase) == base);
1052 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1053 }
1054
1055 abase = ABLOCK_ABASE (free_ablock);
1056 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1057 val = free_ablock;
1058 free_ablock = free_ablock->x.next_free;
1059
1060 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1061 if (val && type != MEM_TYPE_NON_LISP)
1062 mem_insert (val, (char *) val + nbytes, type);
1063 #endif
1064
1065 UNBLOCK_INPUT;
1066 if (!val && nbytes)
1067 memory_full ();
1068
1069 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1070 return val;
1071 }
1072
1073 static void
1074 lisp_align_free (block)
1075 POINTER_TYPE *block;
1076 {
1077 struct ablock *ablock = block;
1078 struct ablocks *abase = ABLOCK_ABASE (ablock);
1079
1080 BLOCK_INPUT;
1081 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1082 mem_delete (mem_find (block));
1083 #endif
1084 /* Put on free list. */
1085 ablock->x.next_free = free_ablock;
1086 free_ablock = ablock;
1087 /* Update busy count. */
1088 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1089
1090 if (2 > (long) ABLOCKS_BUSY (abase))
1091 { /* All the blocks are free. */
1092 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1093 struct ablock **tem = &free_ablock;
1094 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1095
1096 while (*tem)
1097 {
1098 if (*tem >= (struct ablock *) abase && *tem < atop)
1099 {
1100 i++;
1101 *tem = (*tem)->x.next_free;
1102 }
1103 else
1104 tem = &(*tem)->x.next_free;
1105 }
1106 eassert ((aligned & 1) == aligned);
1107 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1108 free (ABLOCKS_BASE (abase));
1109 }
1110 UNBLOCK_INPUT;
1111 }
1112
1113 /* Return a new buffer structure allocated from the heap with
1114 a call to lisp_malloc. */
1115
1116 struct buffer *
1117 allocate_buffer ()
1118 {
1119 struct buffer *b
1120 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1121 MEM_TYPE_BUFFER);
1122 return b;
1123 }
1124
1125 \f
1126 #ifndef SYSTEM_MALLOC
1127
1128 /* Arranging to disable input signals while we're in malloc.
1129
1130 This only works with GNU malloc. To help out systems which can't
1131 use GNU malloc, all the calls to malloc, realloc, and free
1132 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1133 pair; unfortunately, we have no idea what C library functions
1134 might call malloc, so we can't really protect them unless you're
1135 using GNU malloc. Fortunately, most of the major operating systems
1136 can use GNU malloc. */
1137
1138 #ifndef SYNC_INPUT
1139
1140 #ifndef DOUG_LEA_MALLOC
1141 extern void * (*__malloc_hook) P_ ((size_t, const void *));
1142 extern void * (*__realloc_hook) P_ ((void *, size_t, const void *));
1143 extern void (*__free_hook) P_ ((void *, const void *));
1144 /* Else declared in malloc.h, perhaps with an extra arg. */
1145 #endif /* DOUG_LEA_MALLOC */
1146 static void * (*old_malloc_hook) P_ ((size_t, const void *));
1147 static void * (*old_realloc_hook) P_ ((void *, size_t, const void*));
1148 static void (*old_free_hook) P_ ((void*, const void*));
1149
1150 /* This function is used as the hook for free to call. */
1151
1152 static void
1153 emacs_blocked_free (ptr, ptr2)
1154 void *ptr;
1155 const void *ptr2;
1156 {
1157 EMACS_INT bytes_used_now;
1158
1159 BLOCK_INPUT_ALLOC;
1160
1161 #ifdef GC_MALLOC_CHECK
1162 if (ptr)
1163 {
1164 struct mem_node *m;
1165
1166 m = mem_find (ptr);
1167 if (m == MEM_NIL || m->start != ptr)
1168 {
1169 fprintf (stderr,
1170 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1171 abort ();
1172 }
1173 else
1174 {
1175 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1176 mem_delete (m);
1177 }
1178 }
1179 #endif /* GC_MALLOC_CHECK */
1180
1181 __free_hook = old_free_hook;
1182 free (ptr);
1183
1184 /* If we released our reserve (due to running out of memory),
1185 and we have a fair amount free once again,
1186 try to set aside another reserve in case we run out once more. */
1187 if (! NILP (Vmemory_full)
1188 /* Verify there is enough space that even with the malloc
1189 hysteresis this call won't run out again.
1190 The code here is correct as long as SPARE_MEMORY
1191 is substantially larger than the block size malloc uses. */
1192 && (bytes_used_when_full
1193 > ((bytes_used_when_reconsidered = BYTES_USED)
1194 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1195 refill_memory_reserve ();
1196
1197 __free_hook = emacs_blocked_free;
1198 UNBLOCK_INPUT_ALLOC;
1199 }
1200
1201
1202 /* This function is the malloc hook that Emacs uses. */
1203
1204 static void *
1205 emacs_blocked_malloc (size, ptr)
1206 size_t size;
1207 const void *ptr;
1208 {
1209 void *value;
1210
1211 BLOCK_INPUT_ALLOC;
1212 __malloc_hook = old_malloc_hook;
1213 #ifdef DOUG_LEA_MALLOC
1214 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
1215 #else
1216 __malloc_extra_blocks = malloc_hysteresis;
1217 #endif
1218
1219 value = (void *) malloc (size);
1220
1221 #ifdef GC_MALLOC_CHECK
1222 {
1223 struct mem_node *m = mem_find (value);
1224 if (m != MEM_NIL)
1225 {
1226 fprintf (stderr, "Malloc returned %p which is already in use\n",
1227 value);
1228 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1229 m->start, m->end, (char *) m->end - (char *) m->start,
1230 m->type);
1231 abort ();
1232 }
1233
1234 if (!dont_register_blocks)
1235 {
1236 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1237 allocated_mem_type = MEM_TYPE_NON_LISP;
1238 }
1239 }
1240 #endif /* GC_MALLOC_CHECK */
1241
1242 __malloc_hook = emacs_blocked_malloc;
1243 UNBLOCK_INPUT_ALLOC;
1244
1245 /* fprintf (stderr, "%p malloc\n", value); */
1246 return value;
1247 }
1248
1249
1250 /* This function is the realloc hook that Emacs uses. */
1251
1252 static void *
1253 emacs_blocked_realloc (ptr, size, ptr2)
1254 void *ptr;
1255 size_t size;
1256 const void *ptr2;
1257 {
1258 void *value;
1259
1260 BLOCK_INPUT_ALLOC;
1261 __realloc_hook = old_realloc_hook;
1262
1263 #ifdef GC_MALLOC_CHECK
1264 if (ptr)
1265 {
1266 struct mem_node *m = mem_find (ptr);
1267 if (m == MEM_NIL || m->start != ptr)
1268 {
1269 fprintf (stderr,
1270 "Realloc of %p which wasn't allocated with malloc\n",
1271 ptr);
1272 abort ();
1273 }
1274
1275 mem_delete (m);
1276 }
1277
1278 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1279
1280 /* Prevent malloc from registering blocks. */
1281 dont_register_blocks = 1;
1282 #endif /* GC_MALLOC_CHECK */
1283
1284 value = (void *) realloc (ptr, size);
1285
1286 #ifdef GC_MALLOC_CHECK
1287 dont_register_blocks = 0;
1288
1289 {
1290 struct mem_node *m = mem_find (value);
1291 if (m != MEM_NIL)
1292 {
1293 fprintf (stderr, "Realloc returns memory that is already in use\n");
1294 abort ();
1295 }
1296
1297 /* Can't handle zero size regions in the red-black tree. */
1298 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1299 }
1300
1301 /* fprintf (stderr, "%p <- realloc\n", value); */
1302 #endif /* GC_MALLOC_CHECK */
1303
1304 __realloc_hook = emacs_blocked_realloc;
1305 UNBLOCK_INPUT_ALLOC;
1306
1307 return value;
1308 }
1309
1310
1311 #ifdef HAVE_GTK_AND_PTHREAD
1312 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1313 normal malloc. Some thread implementations need this as they call
1314 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1315 calls malloc because it is the first call, and we have an endless loop. */
1316
1317 void
1318 reset_malloc_hooks ()
1319 {
1320 __free_hook = 0;
1321 __malloc_hook = 0;
1322 __realloc_hook = 0;
1323 }
1324 #endif /* HAVE_GTK_AND_PTHREAD */
1325
1326
1327 /* Called from main to set up malloc to use our hooks. */
1328
1329 void
1330 uninterrupt_malloc ()
1331 {
1332 #ifdef HAVE_GTK_AND_PTHREAD
1333 pthread_mutexattr_t attr;
1334
1335 /* GLIBC has a faster way to do this, but lets keep it portable.
1336 This is according to the Single UNIX Specification. */
1337 pthread_mutexattr_init (&attr);
1338 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1339 pthread_mutex_init (&alloc_mutex, &attr);
1340 #endif /* HAVE_GTK_AND_PTHREAD */
1341
1342 if (__free_hook != emacs_blocked_free)
1343 old_free_hook = __free_hook;
1344 __free_hook = emacs_blocked_free;
1345
1346 if (__malloc_hook != emacs_blocked_malloc)
1347 old_malloc_hook = __malloc_hook;
1348 __malloc_hook = emacs_blocked_malloc;
1349
1350 if (__realloc_hook != emacs_blocked_realloc)
1351 old_realloc_hook = __realloc_hook;
1352 __realloc_hook = emacs_blocked_realloc;
1353 }
1354
1355 #endif /* not SYNC_INPUT */
1356 #endif /* not SYSTEM_MALLOC */
1357
1358
1359 \f
1360 /***********************************************************************
1361 Interval Allocation
1362 ***********************************************************************/
1363
1364 /* Number of intervals allocated in an interval_block structure.
1365 The 1020 is 1024 minus malloc overhead. */
1366
1367 #define INTERVAL_BLOCK_SIZE \
1368 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1369
1370 /* Intervals are allocated in chunks in form of an interval_block
1371 structure. */
1372
1373 struct interval_block
1374 {
1375 /* Place `intervals' first, to preserve alignment. */
1376 struct interval intervals[INTERVAL_BLOCK_SIZE];
1377 struct interval_block *next;
1378 };
1379
1380 /* Current interval block. Its `next' pointer points to older
1381 blocks. */
1382
1383 struct interval_block *interval_block;
1384
1385 /* Index in interval_block above of the next unused interval
1386 structure. */
1387
1388 static int interval_block_index;
1389
1390 /* Number of free and live intervals. */
1391
1392 static int total_free_intervals, total_intervals;
1393
1394 /* List of free intervals. */
1395
1396 INTERVAL interval_free_list;
1397
1398 /* Total number of interval blocks now in use. */
1399
1400 int n_interval_blocks;
1401
1402
1403 /* Initialize interval allocation. */
1404
1405 static void
1406 init_intervals ()
1407 {
1408 interval_block = NULL;
1409 interval_block_index = INTERVAL_BLOCK_SIZE;
1410 interval_free_list = 0;
1411 n_interval_blocks = 0;
1412 }
1413
1414
1415 /* Return a new interval. */
1416
1417 INTERVAL
1418 make_interval ()
1419 {
1420 INTERVAL val;
1421
1422 if (interval_free_list)
1423 {
1424 val = interval_free_list;
1425 interval_free_list = INTERVAL_PARENT (interval_free_list);
1426 }
1427 else
1428 {
1429 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1430 {
1431 register struct interval_block *newi;
1432
1433 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1434 MEM_TYPE_NON_LISP);
1435
1436 newi->next = interval_block;
1437 interval_block = newi;
1438 interval_block_index = 0;
1439 n_interval_blocks++;
1440 }
1441 val = &interval_block->intervals[interval_block_index++];
1442 }
1443 consing_since_gc += sizeof (struct interval);
1444 intervals_consed++;
1445 RESET_INTERVAL (val);
1446 val->gcmarkbit = 0;
1447 return val;
1448 }
1449
1450
1451 /* Mark Lisp objects in interval I. */
1452
1453 static void
1454 mark_interval (i, dummy)
1455 register INTERVAL i;
1456 Lisp_Object dummy;
1457 {
1458 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1459 i->gcmarkbit = 1;
1460 mark_object (i->plist);
1461 }
1462
1463
1464 /* Mark the interval tree rooted in TREE. Don't call this directly;
1465 use the macro MARK_INTERVAL_TREE instead. */
1466
1467 static void
1468 mark_interval_tree (tree)
1469 register INTERVAL tree;
1470 {
1471 /* No need to test if this tree has been marked already; this
1472 function is always called through the MARK_INTERVAL_TREE macro,
1473 which takes care of that. */
1474
1475 traverse_intervals_noorder (tree, mark_interval, Qnil);
1476 }
1477
1478
1479 /* Mark the interval tree rooted in I. */
1480
1481 #define MARK_INTERVAL_TREE(i) \
1482 do { \
1483 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1484 mark_interval_tree (i); \
1485 } while (0)
1486
1487
1488 #define UNMARK_BALANCE_INTERVALS(i) \
1489 do { \
1490 if (! NULL_INTERVAL_P (i)) \
1491 (i) = balance_intervals (i); \
1492 } while (0)
1493
1494 \f
1495 /* Number support. If NO_UNION_TYPE isn't in effect, we
1496 can't create number objects in macros. */
1497 #ifndef make_number
1498 Lisp_Object
1499 make_number (n)
1500 EMACS_INT n;
1501 {
1502 Lisp_Object obj;
1503 obj.s.val = n;
1504 obj.s.type = Lisp_Int;
1505 return obj;
1506 }
1507 #endif
1508 \f
1509 /***********************************************************************
1510 String Allocation
1511 ***********************************************************************/
1512
1513 /* Lisp_Strings are allocated in string_block structures. When a new
1514 string_block is allocated, all the Lisp_Strings it contains are
1515 added to a free-list string_free_list. When a new Lisp_String is
1516 needed, it is taken from that list. During the sweep phase of GC,
1517 string_blocks that are entirely free are freed, except two which
1518 we keep.
1519
1520 String data is allocated from sblock structures. Strings larger
1521 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1522 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1523
1524 Sblocks consist internally of sdata structures, one for each
1525 Lisp_String. The sdata structure points to the Lisp_String it
1526 belongs to. The Lisp_String points back to the `u.data' member of
1527 its sdata structure.
1528
1529 When a Lisp_String is freed during GC, it is put back on
1530 string_free_list, and its `data' member and its sdata's `string'
1531 pointer is set to null. The size of the string is recorded in the
1532 `u.nbytes' member of the sdata. So, sdata structures that are no
1533 longer used, can be easily recognized, and it's easy to compact the
1534 sblocks of small strings which we do in compact_small_strings. */
1535
1536 /* Size in bytes of an sblock structure used for small strings. This
1537 is 8192 minus malloc overhead. */
1538
1539 #define SBLOCK_SIZE 8188
1540
1541 /* Strings larger than this are considered large strings. String data
1542 for large strings is allocated from individual sblocks. */
1543
1544 #define LARGE_STRING_BYTES 1024
1545
1546 /* Structure describing string memory sub-allocated from an sblock.
1547 This is where the contents of Lisp strings are stored. */
1548
1549 struct sdata
1550 {
1551 /* Back-pointer to the string this sdata belongs to. If null, this
1552 structure is free, and the NBYTES member of the union below
1553 contains the string's byte size (the same value that STRING_BYTES
1554 would return if STRING were non-null). If non-null, STRING_BYTES
1555 (STRING) is the size of the data, and DATA contains the string's
1556 contents. */
1557 struct Lisp_String *string;
1558
1559 #ifdef GC_CHECK_STRING_BYTES
1560
1561 EMACS_INT nbytes;
1562 unsigned char data[1];
1563
1564 #define SDATA_NBYTES(S) (S)->nbytes
1565 #define SDATA_DATA(S) (S)->data
1566
1567 #else /* not GC_CHECK_STRING_BYTES */
1568
1569 union
1570 {
1571 /* When STRING in non-null. */
1572 unsigned char data[1];
1573
1574 /* When STRING is null. */
1575 EMACS_INT nbytes;
1576 } u;
1577
1578
1579 #define SDATA_NBYTES(S) (S)->u.nbytes
1580 #define SDATA_DATA(S) (S)->u.data
1581
1582 #endif /* not GC_CHECK_STRING_BYTES */
1583 };
1584
1585
1586 /* Structure describing a block of memory which is sub-allocated to
1587 obtain string data memory for strings. Blocks for small strings
1588 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1589 as large as needed. */
1590
1591 struct sblock
1592 {
1593 /* Next in list. */
1594 struct sblock *next;
1595
1596 /* Pointer to the next free sdata block. This points past the end
1597 of the sblock if there isn't any space left in this block. */
1598 struct sdata *next_free;
1599
1600 /* Start of data. */
1601 struct sdata first_data;
1602 };
1603
1604 /* Number of Lisp strings in a string_block structure. The 1020 is
1605 1024 minus malloc overhead. */
1606
1607 #define STRING_BLOCK_SIZE \
1608 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1609
1610 /* Structure describing a block from which Lisp_String structures
1611 are allocated. */
1612
1613 struct string_block
1614 {
1615 /* Place `strings' first, to preserve alignment. */
1616 struct Lisp_String strings[STRING_BLOCK_SIZE];
1617 struct string_block *next;
1618 };
1619
1620 /* Head and tail of the list of sblock structures holding Lisp string
1621 data. We always allocate from current_sblock. The NEXT pointers
1622 in the sblock structures go from oldest_sblock to current_sblock. */
1623
1624 static struct sblock *oldest_sblock, *current_sblock;
1625
1626 /* List of sblocks for large strings. */
1627
1628 static struct sblock *large_sblocks;
1629
1630 /* List of string_block structures, and how many there are. */
1631
1632 static struct string_block *string_blocks;
1633 static int n_string_blocks;
1634
1635 /* Free-list of Lisp_Strings. */
1636
1637 static struct Lisp_String *string_free_list;
1638
1639 /* Number of live and free Lisp_Strings. */
1640
1641 static int total_strings, total_free_strings;
1642
1643 /* Number of bytes used by live strings. */
1644
1645 static int total_string_size;
1646
1647 /* Given a pointer to a Lisp_String S which is on the free-list
1648 string_free_list, return a pointer to its successor in the
1649 free-list. */
1650
1651 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1652
1653 /* Return a pointer to the sdata structure belonging to Lisp string S.
1654 S must be live, i.e. S->data must not be null. S->data is actually
1655 a pointer to the `u.data' member of its sdata structure; the
1656 structure starts at a constant offset in front of that. */
1657
1658 #ifdef GC_CHECK_STRING_BYTES
1659
1660 #define SDATA_OF_STRING(S) \
1661 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1662 - sizeof (EMACS_INT)))
1663
1664 #else /* not GC_CHECK_STRING_BYTES */
1665
1666 #define SDATA_OF_STRING(S) \
1667 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1668
1669 #endif /* not GC_CHECK_STRING_BYTES */
1670
1671
1672 #ifdef GC_CHECK_STRING_OVERRUN
1673
1674 /* We check for overrun in string data blocks by appending a small
1675 "cookie" after each allocated string data block, and check for the
1676 presence of this cookie during GC. */
1677
1678 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1679 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1680 { 0xde, 0xad, 0xbe, 0xef };
1681
1682 #else
1683 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1684 #endif
1685
1686 /* Value is the size of an sdata structure large enough to hold NBYTES
1687 bytes of string data. The value returned includes a terminating
1688 NUL byte, the size of the sdata structure, and padding. */
1689
1690 #ifdef GC_CHECK_STRING_BYTES
1691
1692 #define SDATA_SIZE(NBYTES) \
1693 ((sizeof (struct Lisp_String *) \
1694 + (NBYTES) + 1 \
1695 + sizeof (EMACS_INT) \
1696 + sizeof (EMACS_INT) - 1) \
1697 & ~(sizeof (EMACS_INT) - 1))
1698
1699 #else /* not GC_CHECK_STRING_BYTES */
1700
1701 #define SDATA_SIZE(NBYTES) \
1702 ((sizeof (struct Lisp_String *) \
1703 + (NBYTES) + 1 \
1704 + sizeof (EMACS_INT) - 1) \
1705 & ~(sizeof (EMACS_INT) - 1))
1706
1707 #endif /* not GC_CHECK_STRING_BYTES */
1708
1709 /* Extra bytes to allocate for each string. */
1710
1711 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1712
1713 /* Initialize string allocation. Called from init_alloc_once. */
1714
1715 void
1716 init_strings ()
1717 {
1718 total_strings = total_free_strings = total_string_size = 0;
1719 oldest_sblock = current_sblock = large_sblocks = NULL;
1720 string_blocks = NULL;
1721 n_string_blocks = 0;
1722 string_free_list = NULL;
1723 }
1724
1725
1726 #ifdef GC_CHECK_STRING_BYTES
1727
1728 static int check_string_bytes_count;
1729
1730 void check_string_bytes P_ ((int));
1731 void check_sblock P_ ((struct sblock *));
1732
1733 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1734
1735
1736 /* Like GC_STRING_BYTES, but with debugging check. */
1737
1738 int
1739 string_bytes (s)
1740 struct Lisp_String *s;
1741 {
1742 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1743 if (!PURE_POINTER_P (s)
1744 && s->data
1745 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1746 abort ();
1747 return nbytes;
1748 }
1749
1750 /* Check validity of Lisp strings' string_bytes member in B. */
1751
1752 void
1753 check_sblock (b)
1754 struct sblock *b;
1755 {
1756 struct sdata *from, *end, *from_end;
1757
1758 end = b->next_free;
1759
1760 for (from = &b->first_data; from < end; from = from_end)
1761 {
1762 /* Compute the next FROM here because copying below may
1763 overwrite data we need to compute it. */
1764 int nbytes;
1765
1766 /* Check that the string size recorded in the string is the
1767 same as the one recorded in the sdata structure. */
1768 if (from->string)
1769 CHECK_STRING_BYTES (from->string);
1770
1771 if (from->string)
1772 nbytes = GC_STRING_BYTES (from->string);
1773 else
1774 nbytes = SDATA_NBYTES (from);
1775
1776 nbytes = SDATA_SIZE (nbytes);
1777 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1778 }
1779 }
1780
1781
1782 /* Check validity of Lisp strings' string_bytes member. ALL_P
1783 non-zero means check all strings, otherwise check only most
1784 recently allocated strings. Used for hunting a bug. */
1785
1786 void
1787 check_string_bytes (all_p)
1788 int all_p;
1789 {
1790 if (all_p)
1791 {
1792 struct sblock *b;
1793
1794 for (b = large_sblocks; b; b = b->next)
1795 {
1796 struct Lisp_String *s = b->first_data.string;
1797 if (s)
1798 CHECK_STRING_BYTES (s);
1799 }
1800
1801 for (b = oldest_sblock; b; b = b->next)
1802 check_sblock (b);
1803 }
1804 else
1805 check_sblock (current_sblock);
1806 }
1807
1808 #endif /* GC_CHECK_STRING_BYTES */
1809
1810 #ifdef GC_CHECK_STRING_FREE_LIST
1811
1812 /* Walk through the string free list looking for bogus next pointers.
1813 This may catch buffer overrun from a previous string. */
1814
1815 static void
1816 check_string_free_list ()
1817 {
1818 struct Lisp_String *s;
1819
1820 /* Pop a Lisp_String off the free-list. */
1821 s = string_free_list;
1822 while (s != NULL)
1823 {
1824 if ((unsigned)s < 1024)
1825 abort();
1826 s = NEXT_FREE_LISP_STRING (s);
1827 }
1828 }
1829 #else
1830 #define check_string_free_list()
1831 #endif
1832
1833 /* Return a new Lisp_String. */
1834
1835 static struct Lisp_String *
1836 allocate_string ()
1837 {
1838 struct Lisp_String *s;
1839
1840 /* If the free-list is empty, allocate a new string_block, and
1841 add all the Lisp_Strings in it to the free-list. */
1842 if (string_free_list == NULL)
1843 {
1844 struct string_block *b;
1845 int i;
1846
1847 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1848 bzero (b, sizeof *b);
1849 b->next = string_blocks;
1850 string_blocks = b;
1851 ++n_string_blocks;
1852
1853 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1854 {
1855 s = b->strings + i;
1856 NEXT_FREE_LISP_STRING (s) = string_free_list;
1857 string_free_list = s;
1858 }
1859
1860 total_free_strings += STRING_BLOCK_SIZE;
1861 }
1862
1863 check_string_free_list ();
1864
1865 /* Pop a Lisp_String off the free-list. */
1866 s = string_free_list;
1867 string_free_list = NEXT_FREE_LISP_STRING (s);
1868
1869 /* Probably not strictly necessary, but play it safe. */
1870 bzero (s, sizeof *s);
1871
1872 --total_free_strings;
1873 ++total_strings;
1874 ++strings_consed;
1875 consing_since_gc += sizeof *s;
1876
1877 #ifdef GC_CHECK_STRING_BYTES
1878 if (!noninteractive
1879 #ifdef MAC_OS8
1880 && current_sblock
1881 #endif
1882 )
1883 {
1884 if (++check_string_bytes_count == 200)
1885 {
1886 check_string_bytes_count = 0;
1887 check_string_bytes (1);
1888 }
1889 else
1890 check_string_bytes (0);
1891 }
1892 #endif /* GC_CHECK_STRING_BYTES */
1893
1894 return s;
1895 }
1896
1897
1898 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1899 plus a NUL byte at the end. Allocate an sdata structure for S, and
1900 set S->data to its `u.data' member. Store a NUL byte at the end of
1901 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1902 S->data if it was initially non-null. */
1903
1904 void
1905 allocate_string_data (s, nchars, nbytes)
1906 struct Lisp_String *s;
1907 int nchars, nbytes;
1908 {
1909 struct sdata *data, *old_data;
1910 struct sblock *b;
1911 int needed, old_nbytes;
1912
1913 /* Determine the number of bytes needed to store NBYTES bytes
1914 of string data. */
1915 needed = SDATA_SIZE (nbytes);
1916
1917 if (nbytes > LARGE_STRING_BYTES)
1918 {
1919 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1920
1921 #ifdef DOUG_LEA_MALLOC
1922 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1923 because mapped region contents are not preserved in
1924 a dumped Emacs.
1925
1926 In case you think of allowing it in a dumped Emacs at the
1927 cost of not being able to re-dump, there's another reason:
1928 mmap'ed data typically have an address towards the top of the
1929 address space, which won't fit into an EMACS_INT (at least on
1930 32-bit systems with the current tagging scheme). --fx */
1931 BLOCK_INPUT;
1932 mallopt (M_MMAP_MAX, 0);
1933 UNBLOCK_INPUT;
1934 #endif
1935
1936 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1937
1938 #ifdef DOUG_LEA_MALLOC
1939 /* Back to a reasonable maximum of mmap'ed areas. */
1940 BLOCK_INPUT;
1941 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1942 UNBLOCK_INPUT;
1943 #endif
1944
1945 b->next_free = &b->first_data;
1946 b->first_data.string = NULL;
1947 b->next = large_sblocks;
1948 large_sblocks = b;
1949 }
1950 else if (current_sblock == NULL
1951 || (((char *) current_sblock + SBLOCK_SIZE
1952 - (char *) current_sblock->next_free)
1953 < (needed + GC_STRING_EXTRA)))
1954 {
1955 /* Not enough room in the current sblock. */
1956 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1957 b->next_free = &b->first_data;
1958 b->first_data.string = NULL;
1959 b->next = NULL;
1960
1961 if (current_sblock)
1962 current_sblock->next = b;
1963 else
1964 oldest_sblock = b;
1965 current_sblock = b;
1966 }
1967 else
1968 b = current_sblock;
1969
1970 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1971 old_nbytes = GC_STRING_BYTES (s);
1972
1973 data = b->next_free;
1974 data->string = s;
1975 s->data = SDATA_DATA (data);
1976 #ifdef GC_CHECK_STRING_BYTES
1977 SDATA_NBYTES (data) = nbytes;
1978 #endif
1979 s->size = nchars;
1980 s->size_byte = nbytes;
1981 s->data[nbytes] = '\0';
1982 #ifdef GC_CHECK_STRING_OVERRUN
1983 bcopy (string_overrun_cookie, (char *) data + needed,
1984 GC_STRING_OVERRUN_COOKIE_SIZE);
1985 #endif
1986 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1987
1988 /* If S had already data assigned, mark that as free by setting its
1989 string back-pointer to null, and recording the size of the data
1990 in it. */
1991 if (old_data)
1992 {
1993 SDATA_NBYTES (old_data) = old_nbytes;
1994 old_data->string = NULL;
1995 }
1996
1997 consing_since_gc += needed;
1998 }
1999
2000
2001 /* Sweep and compact strings. */
2002
2003 static void
2004 sweep_strings ()
2005 {
2006 struct string_block *b, *next;
2007 struct string_block *live_blocks = NULL;
2008
2009 string_free_list = NULL;
2010 total_strings = total_free_strings = 0;
2011 total_string_size = 0;
2012
2013 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2014 for (b = string_blocks; b; b = next)
2015 {
2016 int i, nfree = 0;
2017 struct Lisp_String *free_list_before = string_free_list;
2018
2019 next = b->next;
2020
2021 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2022 {
2023 struct Lisp_String *s = b->strings + i;
2024
2025 if (s->data)
2026 {
2027 /* String was not on free-list before. */
2028 if (STRING_MARKED_P (s))
2029 {
2030 /* String is live; unmark it and its intervals. */
2031 UNMARK_STRING (s);
2032
2033 if (!NULL_INTERVAL_P (s->intervals))
2034 UNMARK_BALANCE_INTERVALS (s->intervals);
2035
2036 ++total_strings;
2037 total_string_size += STRING_BYTES (s);
2038 }
2039 else
2040 {
2041 /* String is dead. Put it on the free-list. */
2042 struct sdata *data = SDATA_OF_STRING (s);
2043
2044 /* Save the size of S in its sdata so that we know
2045 how large that is. Reset the sdata's string
2046 back-pointer so that we know it's free. */
2047 #ifdef GC_CHECK_STRING_BYTES
2048 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2049 abort ();
2050 #else
2051 data->u.nbytes = GC_STRING_BYTES (s);
2052 #endif
2053 data->string = NULL;
2054
2055 /* Reset the strings's `data' member so that we
2056 know it's free. */
2057 s->data = NULL;
2058
2059 /* Put the string on the free-list. */
2060 NEXT_FREE_LISP_STRING (s) = string_free_list;
2061 string_free_list = s;
2062 ++nfree;
2063 }
2064 }
2065 else
2066 {
2067 /* S was on the free-list before. Put it there again. */
2068 NEXT_FREE_LISP_STRING (s) = string_free_list;
2069 string_free_list = s;
2070 ++nfree;
2071 }
2072 }
2073
2074 /* Free blocks that contain free Lisp_Strings only, except
2075 the first two of them. */
2076 if (nfree == STRING_BLOCK_SIZE
2077 && total_free_strings > STRING_BLOCK_SIZE)
2078 {
2079 lisp_free (b);
2080 --n_string_blocks;
2081 string_free_list = free_list_before;
2082 }
2083 else
2084 {
2085 total_free_strings += nfree;
2086 b->next = live_blocks;
2087 live_blocks = b;
2088 }
2089 }
2090
2091 check_string_free_list ();
2092
2093 string_blocks = live_blocks;
2094 free_large_strings ();
2095 compact_small_strings ();
2096
2097 check_string_free_list ();
2098 }
2099
2100
2101 /* Free dead large strings. */
2102
2103 static void
2104 free_large_strings ()
2105 {
2106 struct sblock *b, *next;
2107 struct sblock *live_blocks = NULL;
2108
2109 for (b = large_sblocks; b; b = next)
2110 {
2111 next = b->next;
2112
2113 if (b->first_data.string == NULL)
2114 lisp_free (b);
2115 else
2116 {
2117 b->next = live_blocks;
2118 live_blocks = b;
2119 }
2120 }
2121
2122 large_sblocks = live_blocks;
2123 }
2124
2125
2126 /* Compact data of small strings. Free sblocks that don't contain
2127 data of live strings after compaction. */
2128
2129 static void
2130 compact_small_strings ()
2131 {
2132 struct sblock *b, *tb, *next;
2133 struct sdata *from, *to, *end, *tb_end;
2134 struct sdata *to_end, *from_end;
2135
2136 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2137 to, and TB_END is the end of TB. */
2138 tb = oldest_sblock;
2139 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2140 to = &tb->first_data;
2141
2142 /* Step through the blocks from the oldest to the youngest. We
2143 expect that old blocks will stabilize over time, so that less
2144 copying will happen this way. */
2145 for (b = oldest_sblock; b; b = b->next)
2146 {
2147 end = b->next_free;
2148 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2149
2150 for (from = &b->first_data; from < end; from = from_end)
2151 {
2152 /* Compute the next FROM here because copying below may
2153 overwrite data we need to compute it. */
2154 int nbytes;
2155
2156 #ifdef GC_CHECK_STRING_BYTES
2157 /* Check that the string size recorded in the string is the
2158 same as the one recorded in the sdata structure. */
2159 if (from->string
2160 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2161 abort ();
2162 #endif /* GC_CHECK_STRING_BYTES */
2163
2164 if (from->string)
2165 nbytes = GC_STRING_BYTES (from->string);
2166 else
2167 nbytes = SDATA_NBYTES (from);
2168
2169 if (nbytes > LARGE_STRING_BYTES)
2170 abort ();
2171
2172 nbytes = SDATA_SIZE (nbytes);
2173 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2174
2175 #ifdef GC_CHECK_STRING_OVERRUN
2176 if (bcmp (string_overrun_cookie,
2177 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2178 GC_STRING_OVERRUN_COOKIE_SIZE))
2179 abort ();
2180 #endif
2181
2182 /* FROM->string non-null means it's alive. Copy its data. */
2183 if (from->string)
2184 {
2185 /* If TB is full, proceed with the next sblock. */
2186 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2187 if (to_end > tb_end)
2188 {
2189 tb->next_free = to;
2190 tb = tb->next;
2191 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2192 to = &tb->first_data;
2193 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2194 }
2195
2196 /* Copy, and update the string's `data' pointer. */
2197 if (from != to)
2198 {
2199 xassert (tb != b || to <= from);
2200 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
2201 to->string->data = SDATA_DATA (to);
2202 }
2203
2204 /* Advance past the sdata we copied to. */
2205 to = to_end;
2206 }
2207 }
2208 }
2209
2210 /* The rest of the sblocks following TB don't contain live data, so
2211 we can free them. */
2212 for (b = tb->next; b; b = next)
2213 {
2214 next = b->next;
2215 lisp_free (b);
2216 }
2217
2218 tb->next_free = to;
2219 tb->next = NULL;
2220 current_sblock = tb;
2221 }
2222
2223
2224 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2225 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2226 LENGTH must be an integer.
2227 INIT must be an integer that represents a character. */)
2228 (length, init)
2229 Lisp_Object length, init;
2230 {
2231 register Lisp_Object val;
2232 register unsigned char *p, *end;
2233 int c, nbytes;
2234
2235 CHECK_NATNUM (length);
2236 CHECK_NUMBER (init);
2237
2238 c = XINT (init);
2239 if (ASCII_CHAR_P (c))
2240 {
2241 nbytes = XINT (length);
2242 val = make_uninit_string (nbytes);
2243 p = SDATA (val);
2244 end = p + SCHARS (val);
2245 while (p != end)
2246 *p++ = c;
2247 }
2248 else
2249 {
2250 unsigned char str[MAX_MULTIBYTE_LENGTH];
2251 int len = CHAR_STRING (c, str);
2252
2253 nbytes = len * XINT (length);
2254 val = make_uninit_multibyte_string (XINT (length), nbytes);
2255 p = SDATA (val);
2256 end = p + nbytes;
2257 while (p != end)
2258 {
2259 bcopy (str, p, len);
2260 p += len;
2261 }
2262 }
2263
2264 *p = 0;
2265 return val;
2266 }
2267
2268
2269 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2270 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
2271 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2272 (length, init)
2273 Lisp_Object length, init;
2274 {
2275 register Lisp_Object val;
2276 struct Lisp_Bool_Vector *p;
2277 int real_init, i;
2278 int length_in_chars, length_in_elts, bits_per_value;
2279
2280 CHECK_NATNUM (length);
2281
2282 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2283
2284 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2285 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2286 / BOOL_VECTOR_BITS_PER_CHAR);
2287
2288 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2289 slot `size' of the struct Lisp_Bool_Vector. */
2290 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2291 p = XBOOL_VECTOR (val);
2292
2293 /* Get rid of any bits that would cause confusion. */
2294 p->vector_size = 0;
2295 XSETBOOL_VECTOR (val, p);
2296 p->size = XFASTINT (length);
2297
2298 real_init = (NILP (init) ? 0 : -1);
2299 for (i = 0; i < length_in_chars ; i++)
2300 p->data[i] = real_init;
2301
2302 /* Clear the extraneous bits in the last byte. */
2303 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2304 XBOOL_VECTOR (val)->data[length_in_chars - 1]
2305 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2306
2307 return val;
2308 }
2309
2310
2311 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2312 of characters from the contents. This string may be unibyte or
2313 multibyte, depending on the contents. */
2314
2315 Lisp_Object
2316 make_string (contents, nbytes)
2317 const char *contents;
2318 int nbytes;
2319 {
2320 register Lisp_Object val;
2321 int nchars, multibyte_nbytes;
2322
2323 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2324 if (nbytes == nchars || nbytes != multibyte_nbytes)
2325 /* CONTENTS contains no multibyte sequences or contains an invalid
2326 multibyte sequence. We must make unibyte string. */
2327 val = make_unibyte_string (contents, nbytes);
2328 else
2329 val = make_multibyte_string (contents, nchars, nbytes);
2330 return val;
2331 }
2332
2333
2334 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2335
2336 Lisp_Object
2337 make_unibyte_string (contents, length)
2338 const char *contents;
2339 int length;
2340 {
2341 register Lisp_Object val;
2342 val = make_uninit_string (length);
2343 bcopy (contents, SDATA (val), length);
2344 STRING_SET_UNIBYTE (val);
2345 return val;
2346 }
2347
2348
2349 /* Make a multibyte string from NCHARS characters occupying NBYTES
2350 bytes at CONTENTS. */
2351
2352 Lisp_Object
2353 make_multibyte_string (contents, nchars, nbytes)
2354 const char *contents;
2355 int nchars, nbytes;
2356 {
2357 register Lisp_Object val;
2358 val = make_uninit_multibyte_string (nchars, nbytes);
2359 bcopy (contents, SDATA (val), nbytes);
2360 return val;
2361 }
2362
2363
2364 /* Make a string from NCHARS characters occupying NBYTES bytes at
2365 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2366
2367 Lisp_Object
2368 make_string_from_bytes (contents, nchars, nbytes)
2369 const char *contents;
2370 int nchars, nbytes;
2371 {
2372 register Lisp_Object val;
2373 val = make_uninit_multibyte_string (nchars, nbytes);
2374 bcopy (contents, SDATA (val), nbytes);
2375 if (SBYTES (val) == SCHARS (val))
2376 STRING_SET_UNIBYTE (val);
2377 return val;
2378 }
2379
2380
2381 /* Make a string from NCHARS characters occupying NBYTES bytes at
2382 CONTENTS. The argument MULTIBYTE controls whether to label the
2383 string as multibyte. If NCHARS is negative, it counts the number of
2384 characters by itself. */
2385
2386 Lisp_Object
2387 make_specified_string (contents, nchars, nbytes, multibyte)
2388 const char *contents;
2389 int nchars, nbytes;
2390 int multibyte;
2391 {
2392 register Lisp_Object val;
2393
2394 if (nchars < 0)
2395 {
2396 if (multibyte)
2397 nchars = multibyte_chars_in_text (contents, nbytes);
2398 else
2399 nchars = nbytes;
2400 }
2401 val = make_uninit_multibyte_string (nchars, nbytes);
2402 bcopy (contents, SDATA (val), nbytes);
2403 if (!multibyte)
2404 STRING_SET_UNIBYTE (val);
2405 return val;
2406 }
2407
2408
2409 /* Make a string from the data at STR, treating it as multibyte if the
2410 data warrants. */
2411
2412 Lisp_Object
2413 build_string (str)
2414 const char *str;
2415 {
2416 return make_string (str, strlen (str));
2417 }
2418
2419
2420 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2421 occupying LENGTH bytes. */
2422
2423 Lisp_Object
2424 make_uninit_string (length)
2425 int length;
2426 {
2427 Lisp_Object val;
2428 val = make_uninit_multibyte_string (length, length);
2429 STRING_SET_UNIBYTE (val);
2430 return val;
2431 }
2432
2433
2434 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2435 which occupy NBYTES bytes. */
2436
2437 Lisp_Object
2438 make_uninit_multibyte_string (nchars, nbytes)
2439 int nchars, nbytes;
2440 {
2441 Lisp_Object string;
2442 struct Lisp_String *s;
2443
2444 if (nchars < 0)
2445 abort ();
2446
2447 s = allocate_string ();
2448 allocate_string_data (s, nchars, nbytes);
2449 XSETSTRING (string, s);
2450 string_chars_consed += nbytes;
2451 return string;
2452 }
2453
2454
2455 \f
2456 /***********************************************************************
2457 Float Allocation
2458 ***********************************************************************/
2459
2460 /* We store float cells inside of float_blocks, allocating a new
2461 float_block with malloc whenever necessary. Float cells reclaimed
2462 by GC are put on a free list to be reallocated before allocating
2463 any new float cells from the latest float_block. */
2464
2465 #define FLOAT_BLOCK_SIZE \
2466 (((BLOCK_BYTES - sizeof (struct float_block *) \
2467 /* The compiler might add padding at the end. */ \
2468 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2469 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2470
2471 #define GETMARKBIT(block,n) \
2472 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2473 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2474 & 1)
2475
2476 #define SETMARKBIT(block,n) \
2477 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2478 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2479
2480 #define UNSETMARKBIT(block,n) \
2481 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2482 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2483
2484 #define FLOAT_BLOCK(fptr) \
2485 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2486
2487 #define FLOAT_INDEX(fptr) \
2488 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2489
2490 struct float_block
2491 {
2492 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2493 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2494 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2495 struct float_block *next;
2496 };
2497
2498 #define FLOAT_MARKED_P(fptr) \
2499 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2500
2501 #define FLOAT_MARK(fptr) \
2502 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2503
2504 #define FLOAT_UNMARK(fptr) \
2505 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2506
2507 /* Current float_block. */
2508
2509 struct float_block *float_block;
2510
2511 /* Index of first unused Lisp_Float in the current float_block. */
2512
2513 int float_block_index;
2514
2515 /* Total number of float blocks now in use. */
2516
2517 int n_float_blocks;
2518
2519 /* Free-list of Lisp_Floats. */
2520
2521 struct Lisp_Float *float_free_list;
2522
2523
2524 /* Initialize float allocation. */
2525
2526 void
2527 init_float ()
2528 {
2529 float_block = NULL;
2530 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2531 float_free_list = 0;
2532 n_float_blocks = 0;
2533 }
2534
2535
2536 /* Explicitly free a float cell by putting it on the free-list. */
2537
2538 void
2539 free_float (ptr)
2540 struct Lisp_Float *ptr;
2541 {
2542 ptr->u.chain = float_free_list;
2543 float_free_list = ptr;
2544 }
2545
2546
2547 /* Return a new float object with value FLOAT_VALUE. */
2548
2549 Lisp_Object
2550 make_float (float_value)
2551 double float_value;
2552 {
2553 register Lisp_Object val;
2554
2555 if (float_free_list)
2556 {
2557 /* We use the data field for chaining the free list
2558 so that we won't use the same field that has the mark bit. */
2559 XSETFLOAT (val, float_free_list);
2560 float_free_list = float_free_list->u.chain;
2561 }
2562 else
2563 {
2564 if (float_block_index == FLOAT_BLOCK_SIZE)
2565 {
2566 register struct float_block *new;
2567
2568 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2569 MEM_TYPE_FLOAT);
2570 new->next = float_block;
2571 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2572 float_block = new;
2573 float_block_index = 0;
2574 n_float_blocks++;
2575 }
2576 XSETFLOAT (val, &float_block->floats[float_block_index]);
2577 float_block_index++;
2578 }
2579
2580 XFLOAT_DATA (val) = float_value;
2581 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2582 consing_since_gc += sizeof (struct Lisp_Float);
2583 floats_consed++;
2584 return val;
2585 }
2586
2587
2588 \f
2589 /***********************************************************************
2590 Cons Allocation
2591 ***********************************************************************/
2592
2593 /* We store cons cells inside of cons_blocks, allocating a new
2594 cons_block with malloc whenever necessary. Cons cells reclaimed by
2595 GC are put on a free list to be reallocated before allocating
2596 any new cons cells from the latest cons_block. */
2597
2598 #define CONS_BLOCK_SIZE \
2599 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2600 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2601
2602 #define CONS_BLOCK(fptr) \
2603 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2604
2605 #define CONS_INDEX(fptr) \
2606 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2607
2608 struct cons_block
2609 {
2610 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2611 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2612 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2613 struct cons_block *next;
2614 };
2615
2616 #define CONS_MARKED_P(fptr) \
2617 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2618
2619 #define CONS_MARK(fptr) \
2620 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2621
2622 #define CONS_UNMARK(fptr) \
2623 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2624
2625 /* Current cons_block. */
2626
2627 struct cons_block *cons_block;
2628
2629 /* Index of first unused Lisp_Cons in the current block. */
2630
2631 int cons_block_index;
2632
2633 /* Free-list of Lisp_Cons structures. */
2634
2635 struct Lisp_Cons *cons_free_list;
2636
2637 /* Total number of cons blocks now in use. */
2638
2639 int n_cons_blocks;
2640
2641
2642 /* Initialize cons allocation. */
2643
2644 void
2645 init_cons ()
2646 {
2647 cons_block = NULL;
2648 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2649 cons_free_list = 0;
2650 n_cons_blocks = 0;
2651 }
2652
2653
2654 /* Explicitly free a cons cell by putting it on the free-list. */
2655
2656 void
2657 free_cons (ptr)
2658 struct Lisp_Cons *ptr;
2659 {
2660 ptr->u.chain = cons_free_list;
2661 #if GC_MARK_STACK
2662 ptr->car = Vdead;
2663 #endif
2664 cons_free_list = ptr;
2665 }
2666
2667 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2668 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2669 (car, cdr)
2670 Lisp_Object car, cdr;
2671 {
2672 register Lisp_Object val;
2673
2674 if (cons_free_list)
2675 {
2676 /* We use the cdr for chaining the free list
2677 so that we won't use the same field that has the mark bit. */
2678 XSETCONS (val, cons_free_list);
2679 cons_free_list = cons_free_list->u.chain;
2680 }
2681 else
2682 {
2683 if (cons_block_index == CONS_BLOCK_SIZE)
2684 {
2685 register struct cons_block *new;
2686 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2687 MEM_TYPE_CONS);
2688 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2689 new->next = cons_block;
2690 cons_block = new;
2691 cons_block_index = 0;
2692 n_cons_blocks++;
2693 }
2694 XSETCONS (val, &cons_block->conses[cons_block_index]);
2695 cons_block_index++;
2696 }
2697
2698 XSETCAR (val, car);
2699 XSETCDR (val, cdr);
2700 eassert (!CONS_MARKED_P (XCONS (val)));
2701 consing_since_gc += sizeof (struct Lisp_Cons);
2702 cons_cells_consed++;
2703 return val;
2704 }
2705
2706 /* Get an error now if there's any junk in the cons free list. */
2707 void
2708 check_cons_list ()
2709 {
2710 #ifdef GC_CHECK_CONS_LIST
2711 struct Lisp_Cons *tail = cons_free_list;
2712
2713 while (tail)
2714 tail = tail->u.chain;
2715 #endif
2716 }
2717
2718 /* Make a list of 2, 3, 4 or 5 specified objects. */
2719
2720 Lisp_Object
2721 list2 (arg1, arg2)
2722 Lisp_Object arg1, arg2;
2723 {
2724 return Fcons (arg1, Fcons (arg2, Qnil));
2725 }
2726
2727
2728 Lisp_Object
2729 list3 (arg1, arg2, arg3)
2730 Lisp_Object arg1, arg2, arg3;
2731 {
2732 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2733 }
2734
2735
2736 Lisp_Object
2737 list4 (arg1, arg2, arg3, arg4)
2738 Lisp_Object arg1, arg2, arg3, arg4;
2739 {
2740 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2741 }
2742
2743
2744 Lisp_Object
2745 list5 (arg1, arg2, arg3, arg4, arg5)
2746 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2747 {
2748 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2749 Fcons (arg5, Qnil)))));
2750 }
2751
2752
2753 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2754 doc: /* Return a newly created list with specified arguments as elements.
2755 Any number of arguments, even zero arguments, are allowed.
2756 usage: (list &rest OBJECTS) */)
2757 (nargs, args)
2758 int nargs;
2759 register Lisp_Object *args;
2760 {
2761 register Lisp_Object val;
2762 val = Qnil;
2763
2764 while (nargs > 0)
2765 {
2766 nargs--;
2767 val = Fcons (args[nargs], val);
2768 }
2769 return val;
2770 }
2771
2772
2773 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2774 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2775 (length, init)
2776 register Lisp_Object length, init;
2777 {
2778 register Lisp_Object val;
2779 register int size;
2780
2781 CHECK_NATNUM (length);
2782 size = XFASTINT (length);
2783
2784 val = Qnil;
2785 while (size > 0)
2786 {
2787 val = Fcons (init, val);
2788 --size;
2789
2790 if (size > 0)
2791 {
2792 val = Fcons (init, val);
2793 --size;
2794
2795 if (size > 0)
2796 {
2797 val = Fcons (init, val);
2798 --size;
2799
2800 if (size > 0)
2801 {
2802 val = Fcons (init, val);
2803 --size;
2804
2805 if (size > 0)
2806 {
2807 val = Fcons (init, val);
2808 --size;
2809 }
2810 }
2811 }
2812 }
2813
2814 QUIT;
2815 }
2816
2817 return val;
2818 }
2819
2820
2821 \f
2822 /***********************************************************************
2823 Vector Allocation
2824 ***********************************************************************/
2825
2826 /* Singly-linked list of all vectors. */
2827
2828 struct Lisp_Vector *all_vectors;
2829
2830 /* Total number of vector-like objects now in use. */
2831
2832 int n_vectors;
2833
2834
2835 /* Value is a pointer to a newly allocated Lisp_Vector structure
2836 with room for LEN Lisp_Objects. */
2837
2838 static struct Lisp_Vector *
2839 allocate_vectorlike (len, type)
2840 EMACS_INT len;
2841 enum mem_type type;
2842 {
2843 struct Lisp_Vector *p;
2844 size_t nbytes;
2845
2846 #ifdef DOUG_LEA_MALLOC
2847 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2848 because mapped region contents are not preserved in
2849 a dumped Emacs. */
2850 BLOCK_INPUT;
2851 mallopt (M_MMAP_MAX, 0);
2852 UNBLOCK_INPUT;
2853 #endif
2854
2855 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2856 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2857
2858 #ifdef DOUG_LEA_MALLOC
2859 /* Back to a reasonable maximum of mmap'ed areas. */
2860 BLOCK_INPUT;
2861 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2862 UNBLOCK_INPUT;
2863 #endif
2864
2865 consing_since_gc += nbytes;
2866 vector_cells_consed += len;
2867
2868 p->next = all_vectors;
2869 all_vectors = p;
2870 ++n_vectors;
2871 return p;
2872 }
2873
2874
2875 /* Allocate a vector with NSLOTS slots. */
2876
2877 struct Lisp_Vector *
2878 allocate_vector (nslots)
2879 EMACS_INT nslots;
2880 {
2881 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2882 v->size = nslots;
2883 return v;
2884 }
2885
2886
2887 /* Allocate other vector-like structures. */
2888
2889 struct Lisp_Hash_Table *
2890 allocate_hash_table ()
2891 {
2892 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2893 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2894 EMACS_INT i;
2895
2896 v->size = len;
2897 for (i = 0; i < len; ++i)
2898 v->contents[i] = Qnil;
2899
2900 return (struct Lisp_Hash_Table *) v;
2901 }
2902
2903
2904 struct window *
2905 allocate_window ()
2906 {
2907 EMACS_INT len = VECSIZE (struct window);
2908 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2909 EMACS_INT i;
2910
2911 for (i = 0; i < len; ++i)
2912 v->contents[i] = Qnil;
2913 v->size = len;
2914
2915 return (struct window *) v;
2916 }
2917
2918
2919 struct frame *
2920 allocate_frame ()
2921 {
2922 EMACS_INT len = VECSIZE (struct frame);
2923 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2924 EMACS_INT i;
2925
2926 for (i = 0; i < len; ++i)
2927 v->contents[i] = make_number (0);
2928 v->size = len;
2929 return (struct frame *) v;
2930 }
2931
2932
2933 struct Lisp_Process *
2934 allocate_process ()
2935 {
2936 EMACS_INT len = VECSIZE (struct Lisp_Process);
2937 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2938 EMACS_INT i;
2939
2940 for (i = 0; i < len; ++i)
2941 v->contents[i] = Qnil;
2942 v->size = len;
2943
2944 return (struct Lisp_Process *) v;
2945 }
2946
2947
2948 struct Lisp_Vector *
2949 allocate_other_vector (len)
2950 EMACS_INT len;
2951 {
2952 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2953 EMACS_INT i;
2954
2955 for (i = 0; i < len; ++i)
2956 v->contents[i] = Qnil;
2957 v->size = len;
2958
2959 return v;
2960 }
2961
2962
2963 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2964 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2965 See also the function `vector'. */)
2966 (length, init)
2967 register Lisp_Object length, init;
2968 {
2969 Lisp_Object vector;
2970 register EMACS_INT sizei;
2971 register int index;
2972 register struct Lisp_Vector *p;
2973
2974 CHECK_NATNUM (length);
2975 sizei = XFASTINT (length);
2976
2977 p = allocate_vector (sizei);
2978 for (index = 0; index < sizei; index++)
2979 p->contents[index] = init;
2980
2981 XSETVECTOR (vector, p);
2982 return vector;
2983 }
2984
2985
2986 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2987 doc: /* Return a newly created vector with specified arguments as elements.
2988 Any number of arguments, even zero arguments, are allowed.
2989 usage: (vector &rest OBJECTS) */)
2990 (nargs, args)
2991 register int nargs;
2992 Lisp_Object *args;
2993 {
2994 register Lisp_Object len, val;
2995 register int index;
2996 register struct Lisp_Vector *p;
2997
2998 XSETFASTINT (len, nargs);
2999 val = Fmake_vector (len, Qnil);
3000 p = XVECTOR (val);
3001 for (index = 0; index < nargs; index++)
3002 p->contents[index] = args[index];
3003 return val;
3004 }
3005
3006
3007 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3008 doc: /* Create a byte-code object with specified arguments as elements.
3009 The arguments should be the arglist, bytecode-string, constant vector,
3010 stack size, (optional) doc string, and (optional) interactive spec.
3011 The first four arguments are required; at most six have any
3012 significance.
3013 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3014 (nargs, args)
3015 register int nargs;
3016 Lisp_Object *args;
3017 {
3018 register Lisp_Object len, val;
3019 register int index;
3020 register struct Lisp_Vector *p;
3021
3022 XSETFASTINT (len, nargs);
3023 if (!NILP (Vpurify_flag))
3024 val = make_pure_vector ((EMACS_INT) nargs);
3025 else
3026 val = Fmake_vector (len, Qnil);
3027
3028 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3029 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3030 earlier because they produced a raw 8-bit string for byte-code
3031 and now such a byte-code string is loaded as multibyte while
3032 raw 8-bit characters converted to multibyte form. Thus, now we
3033 must convert them back to the original unibyte form. */
3034 args[1] = Fstring_as_unibyte (args[1]);
3035
3036 p = XVECTOR (val);
3037 for (index = 0; index < nargs; index++)
3038 {
3039 if (!NILP (Vpurify_flag))
3040 args[index] = Fpurecopy (args[index]);
3041 p->contents[index] = args[index];
3042 }
3043 XSETCOMPILED (val, p);
3044 return val;
3045 }
3046
3047
3048 \f
3049 /***********************************************************************
3050 Symbol Allocation
3051 ***********************************************************************/
3052
3053 /* Each symbol_block is just under 1020 bytes long, since malloc
3054 really allocates in units of powers of two and uses 4 bytes for its
3055 own overhead. */
3056
3057 #define SYMBOL_BLOCK_SIZE \
3058 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3059
3060 struct symbol_block
3061 {
3062 /* Place `symbols' first, to preserve alignment. */
3063 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3064 struct symbol_block *next;
3065 };
3066
3067 /* Current symbol block and index of first unused Lisp_Symbol
3068 structure in it. */
3069
3070 struct symbol_block *symbol_block;
3071 int symbol_block_index;
3072
3073 /* List of free symbols. */
3074
3075 struct Lisp_Symbol *symbol_free_list;
3076
3077 /* Total number of symbol blocks now in use. */
3078
3079 int n_symbol_blocks;
3080
3081
3082 /* Initialize symbol allocation. */
3083
3084 void
3085 init_symbol ()
3086 {
3087 symbol_block = NULL;
3088 symbol_block_index = SYMBOL_BLOCK_SIZE;
3089 symbol_free_list = 0;
3090 n_symbol_blocks = 0;
3091 }
3092
3093
3094 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3095 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3096 Its value and function definition are void, and its property list is nil. */)
3097 (name)
3098 Lisp_Object name;
3099 {
3100 register Lisp_Object val;
3101 register struct Lisp_Symbol *p;
3102
3103 CHECK_STRING (name);
3104
3105 if (symbol_free_list)
3106 {
3107 XSETSYMBOL (val, symbol_free_list);
3108 symbol_free_list = symbol_free_list->next;
3109 }
3110 else
3111 {
3112 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3113 {
3114 struct symbol_block *new;
3115 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3116 MEM_TYPE_SYMBOL);
3117 new->next = symbol_block;
3118 symbol_block = new;
3119 symbol_block_index = 0;
3120 n_symbol_blocks++;
3121 }
3122 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3123 symbol_block_index++;
3124 }
3125
3126 p = XSYMBOL (val);
3127 p->xname = name;
3128 p->plist = Qnil;
3129 p->value = Qunbound;
3130 p->function = Qunbound;
3131 p->next = NULL;
3132 p->gcmarkbit = 0;
3133 p->interned = SYMBOL_UNINTERNED;
3134 p->constant = 0;
3135 p->indirect_variable = 0;
3136 consing_since_gc += sizeof (struct Lisp_Symbol);
3137 symbols_consed++;
3138 return val;
3139 }
3140
3141
3142 \f
3143 /***********************************************************************
3144 Marker (Misc) Allocation
3145 ***********************************************************************/
3146
3147 /* Allocation of markers and other objects that share that structure.
3148 Works like allocation of conses. */
3149
3150 #define MARKER_BLOCK_SIZE \
3151 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3152
3153 struct marker_block
3154 {
3155 /* Place `markers' first, to preserve alignment. */
3156 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3157 struct marker_block *next;
3158 };
3159
3160 struct marker_block *marker_block;
3161 int marker_block_index;
3162
3163 union Lisp_Misc *marker_free_list;
3164
3165 /* Total number of marker blocks now in use. */
3166
3167 int n_marker_blocks;
3168
3169 void
3170 init_marker ()
3171 {
3172 marker_block = NULL;
3173 marker_block_index = MARKER_BLOCK_SIZE;
3174 marker_free_list = 0;
3175 n_marker_blocks = 0;
3176 }
3177
3178 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3179
3180 Lisp_Object
3181 allocate_misc ()
3182 {
3183 Lisp_Object val;
3184
3185 if (marker_free_list)
3186 {
3187 XSETMISC (val, marker_free_list);
3188 marker_free_list = marker_free_list->u_free.chain;
3189 }
3190 else
3191 {
3192 if (marker_block_index == MARKER_BLOCK_SIZE)
3193 {
3194 struct marker_block *new;
3195 new = (struct marker_block *) lisp_malloc (sizeof *new,
3196 MEM_TYPE_MISC);
3197 new->next = marker_block;
3198 marker_block = new;
3199 marker_block_index = 0;
3200 n_marker_blocks++;
3201 total_free_markers += MARKER_BLOCK_SIZE;
3202 }
3203 XSETMISC (val, &marker_block->markers[marker_block_index]);
3204 marker_block_index++;
3205 }
3206
3207 --total_free_markers;
3208 consing_since_gc += sizeof (union Lisp_Misc);
3209 misc_objects_consed++;
3210 XMARKER (val)->gcmarkbit = 0;
3211 return val;
3212 }
3213
3214 /* Free a Lisp_Misc object */
3215
3216 void
3217 free_misc (misc)
3218 Lisp_Object misc;
3219 {
3220 XMISC (misc)->u_marker.type = Lisp_Misc_Free;
3221 XMISC (misc)->u_free.chain = marker_free_list;
3222 marker_free_list = XMISC (misc);
3223
3224 total_free_markers++;
3225 }
3226
3227 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3228 INTEGER. This is used to package C values to call record_unwind_protect.
3229 The unwind function can get the C values back using XSAVE_VALUE. */
3230
3231 Lisp_Object
3232 make_save_value (pointer, integer)
3233 void *pointer;
3234 int integer;
3235 {
3236 register Lisp_Object val;
3237 register struct Lisp_Save_Value *p;
3238
3239 val = allocate_misc ();
3240 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3241 p = XSAVE_VALUE (val);
3242 p->pointer = pointer;
3243 p->integer = integer;
3244 p->dogc = 0;
3245 return val;
3246 }
3247
3248 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3249 doc: /* Return a newly allocated marker which does not point at any place. */)
3250 ()
3251 {
3252 register Lisp_Object val;
3253 register struct Lisp_Marker *p;
3254
3255 val = allocate_misc ();
3256 XMISCTYPE (val) = Lisp_Misc_Marker;
3257 p = XMARKER (val);
3258 p->buffer = 0;
3259 p->bytepos = 0;
3260 p->charpos = 0;
3261 p->next = NULL;
3262 p->insertion_type = 0;
3263 return val;
3264 }
3265
3266 /* Put MARKER back on the free list after using it temporarily. */
3267
3268 void
3269 free_marker (marker)
3270 Lisp_Object marker;
3271 {
3272 unchain_marker (XMARKER (marker));
3273 free_misc (marker);
3274 }
3275
3276 \f
3277 /* Return a newly created vector or string with specified arguments as
3278 elements. If all the arguments are characters that can fit
3279 in a string of events, make a string; otherwise, make a vector.
3280
3281 Any number of arguments, even zero arguments, are allowed. */
3282
3283 Lisp_Object
3284 make_event_array (nargs, args)
3285 register int nargs;
3286 Lisp_Object *args;
3287 {
3288 int i;
3289
3290 for (i = 0; i < nargs; i++)
3291 /* The things that fit in a string
3292 are characters that are in 0...127,
3293 after discarding the meta bit and all the bits above it. */
3294 if (!INTEGERP (args[i])
3295 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3296 return Fvector (nargs, args);
3297
3298 /* Since the loop exited, we know that all the things in it are
3299 characters, so we can make a string. */
3300 {
3301 Lisp_Object result;
3302
3303 result = Fmake_string (make_number (nargs), make_number (0));
3304 for (i = 0; i < nargs; i++)
3305 {
3306 SSET (result, i, XINT (args[i]));
3307 /* Move the meta bit to the right place for a string char. */
3308 if (XINT (args[i]) & CHAR_META)
3309 SSET (result, i, SREF (result, i) | 0x80);
3310 }
3311
3312 return result;
3313 }
3314 }
3315
3316
3317 \f
3318 /************************************************************************
3319 Memory Full Handling
3320 ************************************************************************/
3321
3322
3323 /* Called if malloc returns zero. */
3324
3325 void
3326 memory_full ()
3327 {
3328 int i;
3329
3330 Vmemory_full = Qt;
3331
3332 memory_full_cons_threshold = sizeof (struct cons_block);
3333
3334 /* The first time we get here, free the spare memory. */
3335 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3336 if (spare_memory[i])
3337 {
3338 if (i == 0)
3339 free (spare_memory[i]);
3340 else if (i >= 1 && i <= 4)
3341 lisp_align_free (spare_memory[i]);
3342 else
3343 lisp_free (spare_memory[i]);
3344 spare_memory[i] = 0;
3345 }
3346
3347 /* Record the space now used. When it decreases substantially,
3348 we can refill the memory reserve. */
3349 #ifndef SYSTEM_MALLOC
3350 bytes_used_when_full = BYTES_USED;
3351 #endif
3352
3353 /* This used to call error, but if we've run out of memory, we could
3354 get infinite recursion trying to build the string. */
3355 while (1)
3356 Fsignal (Qnil, Vmemory_signal_data);
3357 }
3358
3359 /* If we released our reserve (due to running out of memory),
3360 and we have a fair amount free once again,
3361 try to set aside another reserve in case we run out once more.
3362
3363 This is called when a relocatable block is freed in ralloc.c,
3364 and also directly from this file, in case we're not using ralloc.c. */
3365
3366 void
3367 refill_memory_reserve ()
3368 {
3369 #ifndef SYSTEM_MALLOC
3370 if (spare_memory[0] == 0)
3371 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3372 if (spare_memory[1] == 0)
3373 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3374 MEM_TYPE_CONS);
3375 if (spare_memory[2] == 0)
3376 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3377 MEM_TYPE_CONS);
3378 if (spare_memory[3] == 0)
3379 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3380 MEM_TYPE_CONS);
3381 if (spare_memory[4] == 0)
3382 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3383 MEM_TYPE_CONS);
3384 if (spare_memory[5] == 0)
3385 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3386 MEM_TYPE_STRING);
3387 if (spare_memory[6] == 0)
3388 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3389 MEM_TYPE_STRING);
3390 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3391 Vmemory_full = Qnil;
3392 #endif
3393 }
3394 \f
3395 /************************************************************************
3396 C Stack Marking
3397 ************************************************************************/
3398
3399 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3400
3401 /* Conservative C stack marking requires a method to identify possibly
3402 live Lisp objects given a pointer value. We do this by keeping
3403 track of blocks of Lisp data that are allocated in a red-black tree
3404 (see also the comment of mem_node which is the type of nodes in
3405 that tree). Function lisp_malloc adds information for an allocated
3406 block to the red-black tree with calls to mem_insert, and function
3407 lisp_free removes it with mem_delete. Functions live_string_p etc
3408 call mem_find to lookup information about a given pointer in the
3409 tree, and use that to determine if the pointer points to a Lisp
3410 object or not. */
3411
3412 /* Initialize this part of alloc.c. */
3413
3414 static void
3415 mem_init ()
3416 {
3417 mem_z.left = mem_z.right = MEM_NIL;
3418 mem_z.parent = NULL;
3419 mem_z.color = MEM_BLACK;
3420 mem_z.start = mem_z.end = NULL;
3421 mem_root = MEM_NIL;
3422 }
3423
3424
3425 /* Value is a pointer to the mem_node containing START. Value is
3426 MEM_NIL if there is no node in the tree containing START. */
3427
3428 static INLINE struct mem_node *
3429 mem_find (start)
3430 void *start;
3431 {
3432 struct mem_node *p;
3433
3434 if (start < min_heap_address || start > max_heap_address)
3435 return MEM_NIL;
3436
3437 /* Make the search always successful to speed up the loop below. */
3438 mem_z.start = start;
3439 mem_z.end = (char *) start + 1;
3440
3441 p = mem_root;
3442 while (start < p->start || start >= p->end)
3443 p = start < p->start ? p->left : p->right;
3444 return p;
3445 }
3446
3447
3448 /* Insert a new node into the tree for a block of memory with start
3449 address START, end address END, and type TYPE. Value is a
3450 pointer to the node that was inserted. */
3451
3452 static struct mem_node *
3453 mem_insert (start, end, type)
3454 void *start, *end;
3455 enum mem_type type;
3456 {
3457 struct mem_node *c, *parent, *x;
3458
3459 if (start < min_heap_address)
3460 min_heap_address = start;
3461 if (end > max_heap_address)
3462 max_heap_address = end;
3463
3464 /* See where in the tree a node for START belongs. In this
3465 particular application, it shouldn't happen that a node is already
3466 present. For debugging purposes, let's check that. */
3467 c = mem_root;
3468 parent = NULL;
3469
3470 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3471
3472 while (c != MEM_NIL)
3473 {
3474 if (start >= c->start && start < c->end)
3475 abort ();
3476 parent = c;
3477 c = start < c->start ? c->left : c->right;
3478 }
3479
3480 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3481
3482 while (c != MEM_NIL)
3483 {
3484 parent = c;
3485 c = start < c->start ? c->left : c->right;
3486 }
3487
3488 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3489
3490 /* Create a new node. */
3491 #ifdef GC_MALLOC_CHECK
3492 x = (struct mem_node *) _malloc_internal (sizeof *x);
3493 if (x == NULL)
3494 abort ();
3495 #else
3496 x = (struct mem_node *) xmalloc (sizeof *x);
3497 #endif
3498 x->start = start;
3499 x->end = end;
3500 x->type = type;
3501 x->parent = parent;
3502 x->left = x->right = MEM_NIL;
3503 x->color = MEM_RED;
3504
3505 /* Insert it as child of PARENT or install it as root. */
3506 if (parent)
3507 {
3508 if (start < parent->start)
3509 parent->left = x;
3510 else
3511 parent->right = x;
3512 }
3513 else
3514 mem_root = x;
3515
3516 /* Re-establish red-black tree properties. */
3517 mem_insert_fixup (x);
3518
3519 return x;
3520 }
3521
3522
3523 /* Re-establish the red-black properties of the tree, and thereby
3524 balance the tree, after node X has been inserted; X is always red. */
3525
3526 static void
3527 mem_insert_fixup (x)
3528 struct mem_node *x;
3529 {
3530 while (x != mem_root && x->parent->color == MEM_RED)
3531 {
3532 /* X is red and its parent is red. This is a violation of
3533 red-black tree property #3. */
3534
3535 if (x->parent == x->parent->parent->left)
3536 {
3537 /* We're on the left side of our grandparent, and Y is our
3538 "uncle". */
3539 struct mem_node *y = x->parent->parent->right;
3540
3541 if (y->color == MEM_RED)
3542 {
3543 /* Uncle and parent are red but should be black because
3544 X is red. Change the colors accordingly and proceed
3545 with the grandparent. */
3546 x->parent->color = MEM_BLACK;
3547 y->color = MEM_BLACK;
3548 x->parent->parent->color = MEM_RED;
3549 x = x->parent->parent;
3550 }
3551 else
3552 {
3553 /* Parent and uncle have different colors; parent is
3554 red, uncle is black. */
3555 if (x == x->parent->right)
3556 {
3557 x = x->parent;
3558 mem_rotate_left (x);
3559 }
3560
3561 x->parent->color = MEM_BLACK;
3562 x->parent->parent->color = MEM_RED;
3563 mem_rotate_right (x->parent->parent);
3564 }
3565 }
3566 else
3567 {
3568 /* This is the symmetrical case of above. */
3569 struct mem_node *y = x->parent->parent->left;
3570
3571 if (y->color == MEM_RED)
3572 {
3573 x->parent->color = MEM_BLACK;
3574 y->color = MEM_BLACK;
3575 x->parent->parent->color = MEM_RED;
3576 x = x->parent->parent;
3577 }
3578 else
3579 {
3580 if (x == x->parent->left)
3581 {
3582 x = x->parent;
3583 mem_rotate_right (x);
3584 }
3585
3586 x->parent->color = MEM_BLACK;
3587 x->parent->parent->color = MEM_RED;
3588 mem_rotate_left (x->parent->parent);
3589 }
3590 }
3591 }
3592
3593 /* The root may have been changed to red due to the algorithm. Set
3594 it to black so that property #5 is satisfied. */
3595 mem_root->color = MEM_BLACK;
3596 }
3597
3598
3599 /* (x) (y)
3600 / \ / \
3601 a (y) ===> (x) c
3602 / \ / \
3603 b c a b */
3604
3605 static void
3606 mem_rotate_left (x)
3607 struct mem_node *x;
3608 {
3609 struct mem_node *y;
3610
3611 /* Turn y's left sub-tree into x's right sub-tree. */
3612 y = x->right;
3613 x->right = y->left;
3614 if (y->left != MEM_NIL)
3615 y->left->parent = x;
3616
3617 /* Y's parent was x's parent. */
3618 if (y != MEM_NIL)
3619 y->parent = x->parent;
3620
3621 /* Get the parent to point to y instead of x. */
3622 if (x->parent)
3623 {
3624 if (x == x->parent->left)
3625 x->parent->left = y;
3626 else
3627 x->parent->right = y;
3628 }
3629 else
3630 mem_root = y;
3631
3632 /* Put x on y's left. */
3633 y->left = x;
3634 if (x != MEM_NIL)
3635 x->parent = y;
3636 }
3637
3638
3639 /* (x) (Y)
3640 / \ / \
3641 (y) c ===> a (x)
3642 / \ / \
3643 a b b c */
3644
3645 static void
3646 mem_rotate_right (x)
3647 struct mem_node *x;
3648 {
3649 struct mem_node *y = x->left;
3650
3651 x->left = y->right;
3652 if (y->right != MEM_NIL)
3653 y->right->parent = x;
3654
3655 if (y != MEM_NIL)
3656 y->parent = x->parent;
3657 if (x->parent)
3658 {
3659 if (x == x->parent->right)
3660 x->parent->right = y;
3661 else
3662 x->parent->left = y;
3663 }
3664 else
3665 mem_root = y;
3666
3667 y->right = x;
3668 if (x != MEM_NIL)
3669 x->parent = y;
3670 }
3671
3672
3673 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3674
3675 static void
3676 mem_delete (z)
3677 struct mem_node *z;
3678 {
3679 struct mem_node *x, *y;
3680
3681 if (!z || z == MEM_NIL)
3682 return;
3683
3684 if (z->left == MEM_NIL || z->right == MEM_NIL)
3685 y = z;
3686 else
3687 {
3688 y = z->right;
3689 while (y->left != MEM_NIL)
3690 y = y->left;
3691 }
3692
3693 if (y->left != MEM_NIL)
3694 x = y->left;
3695 else
3696 x = y->right;
3697
3698 x->parent = y->parent;
3699 if (y->parent)
3700 {
3701 if (y == y->parent->left)
3702 y->parent->left = x;
3703 else
3704 y->parent->right = x;
3705 }
3706 else
3707 mem_root = x;
3708
3709 if (y != z)
3710 {
3711 z->start = y->start;
3712 z->end = y->end;
3713 z->type = y->type;
3714 }
3715
3716 if (y->color == MEM_BLACK)
3717 mem_delete_fixup (x);
3718
3719 #ifdef GC_MALLOC_CHECK
3720 _free_internal (y);
3721 #else
3722 xfree (y);
3723 #endif
3724 }
3725
3726
3727 /* Re-establish the red-black properties of the tree, after a
3728 deletion. */
3729
3730 static void
3731 mem_delete_fixup (x)
3732 struct mem_node *x;
3733 {
3734 while (x != mem_root && x->color == MEM_BLACK)
3735 {
3736 if (x == x->parent->left)
3737 {
3738 struct mem_node *w = x->parent->right;
3739
3740 if (w->color == MEM_RED)
3741 {
3742 w->color = MEM_BLACK;
3743 x->parent->color = MEM_RED;
3744 mem_rotate_left (x->parent);
3745 w = x->parent->right;
3746 }
3747
3748 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3749 {
3750 w->color = MEM_RED;
3751 x = x->parent;
3752 }
3753 else
3754 {
3755 if (w->right->color == MEM_BLACK)
3756 {
3757 w->left->color = MEM_BLACK;
3758 w->color = MEM_RED;
3759 mem_rotate_right (w);
3760 w = x->parent->right;
3761 }
3762 w->color = x->parent->color;
3763 x->parent->color = MEM_BLACK;
3764 w->right->color = MEM_BLACK;
3765 mem_rotate_left (x->parent);
3766 x = mem_root;
3767 }
3768 }
3769 else
3770 {
3771 struct mem_node *w = x->parent->left;
3772
3773 if (w->color == MEM_RED)
3774 {
3775 w->color = MEM_BLACK;
3776 x->parent->color = MEM_RED;
3777 mem_rotate_right (x->parent);
3778 w = x->parent->left;
3779 }
3780
3781 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3782 {
3783 w->color = MEM_RED;
3784 x = x->parent;
3785 }
3786 else
3787 {
3788 if (w->left->color == MEM_BLACK)
3789 {
3790 w->right->color = MEM_BLACK;
3791 w->color = MEM_RED;
3792 mem_rotate_left (w);
3793 w = x->parent->left;
3794 }
3795
3796 w->color = x->parent->color;
3797 x->parent->color = MEM_BLACK;
3798 w->left->color = MEM_BLACK;
3799 mem_rotate_right (x->parent);
3800 x = mem_root;
3801 }
3802 }
3803 }
3804
3805 x->color = MEM_BLACK;
3806 }
3807
3808
3809 /* Value is non-zero if P is a pointer to a live Lisp string on
3810 the heap. M is a pointer to the mem_block for P. */
3811
3812 static INLINE int
3813 live_string_p (m, p)
3814 struct mem_node *m;
3815 void *p;
3816 {
3817 if (m->type == MEM_TYPE_STRING)
3818 {
3819 struct string_block *b = (struct string_block *) m->start;
3820 int offset = (char *) p - (char *) &b->strings[0];
3821
3822 /* P must point to the start of a Lisp_String structure, and it
3823 must not be on the free-list. */
3824 return (offset >= 0
3825 && offset % sizeof b->strings[0] == 0
3826 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3827 && ((struct Lisp_String *) p)->data != NULL);
3828 }
3829 else
3830 return 0;
3831 }
3832
3833
3834 /* Value is non-zero if P is a pointer to a live Lisp cons on
3835 the heap. M is a pointer to the mem_block for P. */
3836
3837 static INLINE int
3838 live_cons_p (m, p)
3839 struct mem_node *m;
3840 void *p;
3841 {
3842 if (m->type == MEM_TYPE_CONS)
3843 {
3844 struct cons_block *b = (struct cons_block *) m->start;
3845 int offset = (char *) p - (char *) &b->conses[0];
3846
3847 /* P must point to the start of a Lisp_Cons, not be
3848 one of the unused cells in the current cons block,
3849 and not be on the free-list. */
3850 return (offset >= 0
3851 && offset % sizeof b->conses[0] == 0
3852 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3853 && (b != cons_block
3854 || offset / sizeof b->conses[0] < cons_block_index)
3855 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3856 }
3857 else
3858 return 0;
3859 }
3860
3861
3862 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3863 the heap. M is a pointer to the mem_block for P. */
3864
3865 static INLINE int
3866 live_symbol_p (m, p)
3867 struct mem_node *m;
3868 void *p;
3869 {
3870 if (m->type == MEM_TYPE_SYMBOL)
3871 {
3872 struct symbol_block *b = (struct symbol_block *) m->start;
3873 int offset = (char *) p - (char *) &b->symbols[0];
3874
3875 /* P must point to the start of a Lisp_Symbol, not be
3876 one of the unused cells in the current symbol block,
3877 and not be on the free-list. */
3878 return (offset >= 0
3879 && offset % sizeof b->symbols[0] == 0
3880 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3881 && (b != symbol_block
3882 || offset / sizeof b->symbols[0] < symbol_block_index)
3883 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3884 }
3885 else
3886 return 0;
3887 }
3888
3889
3890 /* Value is non-zero if P is a pointer to a live Lisp float on
3891 the heap. M is a pointer to the mem_block for P. */
3892
3893 static INLINE int
3894 live_float_p (m, p)
3895 struct mem_node *m;
3896 void *p;
3897 {
3898 if (m->type == MEM_TYPE_FLOAT)
3899 {
3900 struct float_block *b = (struct float_block *) m->start;
3901 int offset = (char *) p - (char *) &b->floats[0];
3902
3903 /* P must point to the start of a Lisp_Float and not be
3904 one of the unused cells in the current float block. */
3905 return (offset >= 0
3906 && offset % sizeof b->floats[0] == 0
3907 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3908 && (b != float_block
3909 || offset / sizeof b->floats[0] < float_block_index));
3910 }
3911 else
3912 return 0;
3913 }
3914
3915
3916 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3917 the heap. M is a pointer to the mem_block for P. */
3918
3919 static INLINE int
3920 live_misc_p (m, p)
3921 struct mem_node *m;
3922 void *p;
3923 {
3924 if (m->type == MEM_TYPE_MISC)
3925 {
3926 struct marker_block *b = (struct marker_block *) m->start;
3927 int offset = (char *) p - (char *) &b->markers[0];
3928
3929 /* P must point to the start of a Lisp_Misc, not be
3930 one of the unused cells in the current misc block,
3931 and not be on the free-list. */
3932 return (offset >= 0
3933 && offset % sizeof b->markers[0] == 0
3934 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3935 && (b != marker_block
3936 || offset / sizeof b->markers[0] < marker_block_index)
3937 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3938 }
3939 else
3940 return 0;
3941 }
3942
3943
3944 /* Value is non-zero if P is a pointer to a live vector-like object.
3945 M is a pointer to the mem_block for P. */
3946
3947 static INLINE int
3948 live_vector_p (m, p)
3949 struct mem_node *m;
3950 void *p;
3951 {
3952 return (p == m->start
3953 && m->type >= MEM_TYPE_VECTOR
3954 && m->type <= MEM_TYPE_WINDOW);
3955 }
3956
3957
3958 /* Value is non-zero if P is a pointer to a live buffer. M is a
3959 pointer to the mem_block for P. */
3960
3961 static INLINE int
3962 live_buffer_p (m, p)
3963 struct mem_node *m;
3964 void *p;
3965 {
3966 /* P must point to the start of the block, and the buffer
3967 must not have been killed. */
3968 return (m->type == MEM_TYPE_BUFFER
3969 && p == m->start
3970 && !NILP (((struct buffer *) p)->name));
3971 }
3972
3973 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3974
3975 #if GC_MARK_STACK
3976
3977 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3978
3979 /* Array of objects that are kept alive because the C stack contains
3980 a pattern that looks like a reference to them . */
3981
3982 #define MAX_ZOMBIES 10
3983 static Lisp_Object zombies[MAX_ZOMBIES];
3984
3985 /* Number of zombie objects. */
3986
3987 static int nzombies;
3988
3989 /* Number of garbage collections. */
3990
3991 static int ngcs;
3992
3993 /* Average percentage of zombies per collection. */
3994
3995 static double avg_zombies;
3996
3997 /* Max. number of live and zombie objects. */
3998
3999 static int max_live, max_zombies;
4000
4001 /* Average number of live objects per GC. */
4002
4003 static double avg_live;
4004
4005 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4006 doc: /* Show information about live and zombie objects. */)
4007 ()
4008 {
4009 Lisp_Object args[8], zombie_list = Qnil;
4010 int i;
4011 for (i = 0; i < nzombies; i++)
4012 zombie_list = Fcons (zombies[i], zombie_list);
4013 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4014 args[1] = make_number (ngcs);
4015 args[2] = make_float (avg_live);
4016 args[3] = make_float (avg_zombies);
4017 args[4] = make_float (avg_zombies / avg_live / 100);
4018 args[5] = make_number (max_live);
4019 args[6] = make_number (max_zombies);
4020 args[7] = zombie_list;
4021 return Fmessage (8, args);
4022 }
4023
4024 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4025
4026
4027 /* Mark OBJ if we can prove it's a Lisp_Object. */
4028
4029 static INLINE void
4030 mark_maybe_object (obj)
4031 Lisp_Object obj;
4032 {
4033 void *po = (void *) XPNTR (obj);
4034 struct mem_node *m = mem_find (po);
4035
4036 if (m != MEM_NIL)
4037 {
4038 int mark_p = 0;
4039
4040 switch (XGCTYPE (obj))
4041 {
4042 case Lisp_String:
4043 mark_p = (live_string_p (m, po)
4044 && !STRING_MARKED_P ((struct Lisp_String *) po));
4045 break;
4046
4047 case Lisp_Cons:
4048 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4049 break;
4050
4051 case Lisp_Symbol:
4052 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4053 break;
4054
4055 case Lisp_Float:
4056 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4057 break;
4058
4059 case Lisp_Vectorlike:
4060 /* Note: can't check GC_BUFFERP before we know it's a
4061 buffer because checking that dereferences the pointer
4062 PO which might point anywhere. */
4063 if (live_vector_p (m, po))
4064 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4065 else if (live_buffer_p (m, po))
4066 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4067 break;
4068
4069 case Lisp_Misc:
4070 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
4071 break;
4072
4073 case Lisp_Int:
4074 case Lisp_Type_Limit:
4075 break;
4076 }
4077
4078 if (mark_p)
4079 {
4080 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4081 if (nzombies < MAX_ZOMBIES)
4082 zombies[nzombies] = obj;
4083 ++nzombies;
4084 #endif
4085 mark_object (obj);
4086 }
4087 }
4088 }
4089
4090
4091 /* If P points to Lisp data, mark that as live if it isn't already
4092 marked. */
4093
4094 static INLINE void
4095 mark_maybe_pointer (p)
4096 void *p;
4097 {
4098 struct mem_node *m;
4099
4100 /* Quickly rule out some values which can't point to Lisp data. We
4101 assume that Lisp data is aligned on even addresses. */
4102 if ((EMACS_INT) p & 1)
4103 return;
4104
4105 m = mem_find (p);
4106 if (m != MEM_NIL)
4107 {
4108 Lisp_Object obj = Qnil;
4109
4110 switch (m->type)
4111 {
4112 case MEM_TYPE_NON_LISP:
4113 /* Nothing to do; not a pointer to Lisp memory. */
4114 break;
4115
4116 case MEM_TYPE_BUFFER:
4117 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4118 XSETVECTOR (obj, p);
4119 break;
4120
4121 case MEM_TYPE_CONS:
4122 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4123 XSETCONS (obj, p);
4124 break;
4125
4126 case MEM_TYPE_STRING:
4127 if (live_string_p (m, p)
4128 && !STRING_MARKED_P ((struct Lisp_String *) p))
4129 XSETSTRING (obj, p);
4130 break;
4131
4132 case MEM_TYPE_MISC:
4133 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4134 XSETMISC (obj, p);
4135 break;
4136
4137 case MEM_TYPE_SYMBOL:
4138 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4139 XSETSYMBOL (obj, p);
4140 break;
4141
4142 case MEM_TYPE_FLOAT:
4143 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4144 XSETFLOAT (obj, p);
4145 break;
4146
4147 case MEM_TYPE_VECTOR:
4148 case MEM_TYPE_PROCESS:
4149 case MEM_TYPE_HASH_TABLE:
4150 case MEM_TYPE_FRAME:
4151 case MEM_TYPE_WINDOW:
4152 if (live_vector_p (m, p))
4153 {
4154 Lisp_Object tem;
4155 XSETVECTOR (tem, p);
4156 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4157 obj = tem;
4158 }
4159 break;
4160
4161 default:
4162 abort ();
4163 }
4164
4165 if (!GC_NILP (obj))
4166 mark_object (obj);
4167 }
4168 }
4169
4170
4171 /* Mark Lisp objects referenced from the address range START..END. */
4172
4173 static void
4174 mark_memory (start, end)
4175 void *start, *end;
4176 {
4177 Lisp_Object *p;
4178 void **pp;
4179
4180 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4181 nzombies = 0;
4182 #endif
4183
4184 /* Make START the pointer to the start of the memory region,
4185 if it isn't already. */
4186 if (end < start)
4187 {
4188 void *tem = start;
4189 start = end;
4190 end = tem;
4191 }
4192
4193 /* Mark Lisp_Objects. */
4194 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
4195 mark_maybe_object (*p);
4196
4197 /* Mark Lisp data pointed to. This is necessary because, in some
4198 situations, the C compiler optimizes Lisp objects away, so that
4199 only a pointer to them remains. Example:
4200
4201 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4202 ()
4203 {
4204 Lisp_Object obj = build_string ("test");
4205 struct Lisp_String *s = XSTRING (obj);
4206 Fgarbage_collect ();
4207 fprintf (stderr, "test `%s'\n", s->data);
4208 return Qnil;
4209 }
4210
4211 Here, `obj' isn't really used, and the compiler optimizes it
4212 away. The only reference to the life string is through the
4213 pointer `s'. */
4214
4215 for (pp = (void **) start; (void *) pp < end; ++pp)
4216 mark_maybe_pointer (*pp);
4217 }
4218
4219 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4220 the GCC system configuration. In gcc 3.2, the only systems for
4221 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4222 by others?) and ns32k-pc532-min. */
4223
4224 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4225
4226 static int setjmp_tested_p, longjmps_done;
4227
4228 #define SETJMP_WILL_LIKELY_WORK "\
4229 \n\
4230 Emacs garbage collector has been changed to use conservative stack\n\
4231 marking. Emacs has determined that the method it uses to do the\n\
4232 marking will likely work on your system, but this isn't sure.\n\
4233 \n\
4234 If you are a system-programmer, or can get the help of a local wizard\n\
4235 who is, please take a look at the function mark_stack in alloc.c, and\n\
4236 verify that the methods used are appropriate for your system.\n\
4237 \n\
4238 Please mail the result to <emacs-devel@gnu.org>.\n\
4239 "
4240
4241 #define SETJMP_WILL_NOT_WORK "\
4242 \n\
4243 Emacs garbage collector has been changed to use conservative stack\n\
4244 marking. Emacs has determined that the default method it uses to do the\n\
4245 marking will not work on your system. We will need a system-dependent\n\
4246 solution for your system.\n\
4247 \n\
4248 Please take a look at the function mark_stack in alloc.c, and\n\
4249 try to find a way to make it work on your system.\n\
4250 \n\
4251 Note that you may get false negatives, depending on the compiler.\n\
4252 In particular, you need to use -O with GCC for this test.\n\
4253 \n\
4254 Please mail the result to <emacs-devel@gnu.org>.\n\
4255 "
4256
4257
4258 /* Perform a quick check if it looks like setjmp saves registers in a
4259 jmp_buf. Print a message to stderr saying so. When this test
4260 succeeds, this is _not_ a proof that setjmp is sufficient for
4261 conservative stack marking. Only the sources or a disassembly
4262 can prove that. */
4263
4264 static void
4265 test_setjmp ()
4266 {
4267 char buf[10];
4268 register int x;
4269 jmp_buf jbuf;
4270 int result = 0;
4271
4272 /* Arrange for X to be put in a register. */
4273 sprintf (buf, "1");
4274 x = strlen (buf);
4275 x = 2 * x - 1;
4276
4277 setjmp (jbuf);
4278 if (longjmps_done == 1)
4279 {
4280 /* Came here after the longjmp at the end of the function.
4281
4282 If x == 1, the longjmp has restored the register to its
4283 value before the setjmp, and we can hope that setjmp
4284 saves all such registers in the jmp_buf, although that
4285 isn't sure.
4286
4287 For other values of X, either something really strange is
4288 taking place, or the setjmp just didn't save the register. */
4289
4290 if (x == 1)
4291 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4292 else
4293 {
4294 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4295 exit (1);
4296 }
4297 }
4298
4299 ++longjmps_done;
4300 x = 2;
4301 if (longjmps_done == 1)
4302 longjmp (jbuf, 1);
4303 }
4304
4305 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4306
4307
4308 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4309
4310 /* Abort if anything GCPRO'd doesn't survive the GC. */
4311
4312 static void
4313 check_gcpros ()
4314 {
4315 struct gcpro *p;
4316 int i;
4317
4318 for (p = gcprolist; p; p = p->next)
4319 for (i = 0; i < p->nvars; ++i)
4320 if (!survives_gc_p (p->var[i]))
4321 /* FIXME: It's not necessarily a bug. It might just be that the
4322 GCPRO is unnecessary or should release the object sooner. */
4323 abort ();
4324 }
4325
4326 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4327
4328 static void
4329 dump_zombies ()
4330 {
4331 int i;
4332
4333 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4334 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4335 {
4336 fprintf (stderr, " %d = ", i);
4337 debug_print (zombies[i]);
4338 }
4339 }
4340
4341 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4342
4343
4344 /* Mark live Lisp objects on the C stack.
4345
4346 There are several system-dependent problems to consider when
4347 porting this to new architectures:
4348
4349 Processor Registers
4350
4351 We have to mark Lisp objects in CPU registers that can hold local
4352 variables or are used to pass parameters.
4353
4354 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4355 something that either saves relevant registers on the stack, or
4356 calls mark_maybe_object passing it each register's contents.
4357
4358 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4359 implementation assumes that calling setjmp saves registers we need
4360 to see in a jmp_buf which itself lies on the stack. This doesn't
4361 have to be true! It must be verified for each system, possibly
4362 by taking a look at the source code of setjmp.
4363
4364 Stack Layout
4365
4366 Architectures differ in the way their processor stack is organized.
4367 For example, the stack might look like this
4368
4369 +----------------+
4370 | Lisp_Object | size = 4
4371 +----------------+
4372 | something else | size = 2
4373 +----------------+
4374 | Lisp_Object | size = 4
4375 +----------------+
4376 | ... |
4377
4378 In such a case, not every Lisp_Object will be aligned equally. To
4379 find all Lisp_Object on the stack it won't be sufficient to walk
4380 the stack in steps of 4 bytes. Instead, two passes will be
4381 necessary, one starting at the start of the stack, and a second
4382 pass starting at the start of the stack + 2. Likewise, if the
4383 minimal alignment of Lisp_Objects on the stack is 1, four passes
4384 would be necessary, each one starting with one byte more offset
4385 from the stack start.
4386
4387 The current code assumes by default that Lisp_Objects are aligned
4388 equally on the stack. */
4389
4390 static void
4391 mark_stack ()
4392 {
4393 int i;
4394 jmp_buf j;
4395 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4396 void *end;
4397
4398 /* This trick flushes the register windows so that all the state of
4399 the process is contained in the stack. */
4400 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4401 needed on ia64 too. See mach_dep.c, where it also says inline
4402 assembler doesn't work with relevant proprietary compilers. */
4403 #ifdef sparc
4404 asm ("ta 3");
4405 #endif
4406
4407 /* Save registers that we need to see on the stack. We need to see
4408 registers used to hold register variables and registers used to
4409 pass parameters. */
4410 #ifdef GC_SAVE_REGISTERS_ON_STACK
4411 GC_SAVE_REGISTERS_ON_STACK (end);
4412 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4413
4414 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4415 setjmp will definitely work, test it
4416 and print a message with the result
4417 of the test. */
4418 if (!setjmp_tested_p)
4419 {
4420 setjmp_tested_p = 1;
4421 test_setjmp ();
4422 }
4423 #endif /* GC_SETJMP_WORKS */
4424
4425 setjmp (j);
4426 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4427 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4428
4429 /* This assumes that the stack is a contiguous region in memory. If
4430 that's not the case, something has to be done here to iterate
4431 over the stack segments. */
4432 #ifndef GC_LISP_OBJECT_ALIGNMENT
4433 #ifdef __GNUC__
4434 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4435 #else
4436 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4437 #endif
4438 #endif
4439 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4440 mark_memory ((char *) stack_base + i, end);
4441 /* Allow for marking a secondary stack, like the register stack on the
4442 ia64. */
4443 #ifdef GC_MARK_SECONDARY_STACK
4444 GC_MARK_SECONDARY_STACK ();
4445 #endif
4446
4447 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4448 check_gcpros ();
4449 #endif
4450 }
4451
4452 #endif /* GC_MARK_STACK != 0 */
4453
4454
4455
4456 /* Return 1 if OBJ is a valid lisp object.
4457 Return 0 if OBJ is NOT a valid lisp object.
4458 Return -1 if we cannot validate OBJ.
4459 This function can be quite slow,
4460 so it should only be used in code for manual debugging. */
4461
4462 int
4463 valid_lisp_object_p (obj)
4464 Lisp_Object obj;
4465 {
4466 void *p;
4467 #if !GC_MARK_STACK
4468 int fd;
4469 #else
4470 struct mem_node *m;
4471 #endif
4472
4473 if (INTEGERP (obj))
4474 return 1;
4475
4476 p = (void *) XPNTR (obj);
4477 if (PURE_POINTER_P (p))
4478 return 1;
4479
4480 #if !GC_MARK_STACK
4481 /* We need to determine whether it is safe to access memory at
4482 address P. Obviously, we cannot just access it (we would SEGV
4483 trying), so we trick the o/s to tell us whether p is a valid
4484 pointer. Unfortunately, we cannot use NULL_DEVICE here, as
4485 emacs_write may not validate p in that case. */
4486 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4487 {
4488 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4489 emacs_close (fd);
4490 unlink ("__Valid__Lisp__Object__");
4491 return valid;
4492 }
4493
4494 return -1;
4495 #else
4496
4497 m = mem_find (p);
4498
4499 if (m == MEM_NIL)
4500 return 0;
4501
4502 switch (m->type)
4503 {
4504 case MEM_TYPE_NON_LISP:
4505 return 0;
4506
4507 case MEM_TYPE_BUFFER:
4508 return live_buffer_p (m, p);
4509
4510 case MEM_TYPE_CONS:
4511 return live_cons_p (m, p);
4512
4513 case MEM_TYPE_STRING:
4514 return live_string_p (m, p);
4515
4516 case MEM_TYPE_MISC:
4517 return live_misc_p (m, p);
4518
4519 case MEM_TYPE_SYMBOL:
4520 return live_symbol_p (m, p);
4521
4522 case MEM_TYPE_FLOAT:
4523 return live_float_p (m, p);
4524
4525 case MEM_TYPE_VECTOR:
4526 case MEM_TYPE_PROCESS:
4527 case MEM_TYPE_HASH_TABLE:
4528 case MEM_TYPE_FRAME:
4529 case MEM_TYPE_WINDOW:
4530 return live_vector_p (m, p);
4531
4532 default:
4533 break;
4534 }
4535
4536 return 0;
4537 #endif
4538 }
4539
4540
4541
4542 \f
4543 /***********************************************************************
4544 Pure Storage Management
4545 ***********************************************************************/
4546
4547 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4548 pointer to it. TYPE is the Lisp type for which the memory is
4549 allocated. TYPE < 0 means it's not used for a Lisp object.
4550
4551 If store_pure_type_info is set and TYPE is >= 0, the type of
4552 the allocated object is recorded in pure_types. */
4553
4554 static POINTER_TYPE *
4555 pure_alloc (size, type)
4556 size_t size;
4557 int type;
4558 {
4559 POINTER_TYPE *result;
4560 #ifdef USE_LSB_TAG
4561 size_t alignment = (1 << GCTYPEBITS);
4562 #else
4563 size_t alignment = sizeof (EMACS_INT);
4564
4565 /* Give Lisp_Floats an extra alignment. */
4566 if (type == Lisp_Float)
4567 {
4568 #if defined __GNUC__ && __GNUC__ >= 2
4569 alignment = __alignof (struct Lisp_Float);
4570 #else
4571 alignment = sizeof (struct Lisp_Float);
4572 #endif
4573 }
4574 #endif
4575
4576 again:
4577 result = ALIGN (purebeg + pure_bytes_used, alignment);
4578 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4579
4580 if (pure_bytes_used <= pure_size)
4581 return result;
4582
4583 /* Don't allocate a large amount here,
4584 because it might get mmap'd and then its address
4585 might not be usable. */
4586 purebeg = (char *) xmalloc (10000);
4587 pure_size = 10000;
4588 pure_bytes_used_before_overflow += pure_bytes_used - size;
4589 pure_bytes_used = 0;
4590 goto again;
4591 }
4592
4593
4594 /* Print a warning if PURESIZE is too small. */
4595
4596 void
4597 check_pure_size ()
4598 {
4599 if (pure_bytes_used_before_overflow)
4600 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4601 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4602 }
4603
4604
4605 /* Return a string allocated in pure space. DATA is a buffer holding
4606 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4607 non-zero means make the result string multibyte.
4608
4609 Must get an error if pure storage is full, since if it cannot hold
4610 a large string it may be able to hold conses that point to that
4611 string; then the string is not protected from gc. */
4612
4613 Lisp_Object
4614 make_pure_string (data, nchars, nbytes, multibyte)
4615 char *data;
4616 int nchars, nbytes;
4617 int multibyte;
4618 {
4619 Lisp_Object string;
4620 struct Lisp_String *s;
4621
4622 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4623 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4624 s->size = nchars;
4625 s->size_byte = multibyte ? nbytes : -1;
4626 bcopy (data, s->data, nbytes);
4627 s->data[nbytes] = '\0';
4628 s->intervals = NULL_INTERVAL;
4629 XSETSTRING (string, s);
4630 return string;
4631 }
4632
4633
4634 /* Return a cons allocated from pure space. Give it pure copies
4635 of CAR as car and CDR as cdr. */
4636
4637 Lisp_Object
4638 pure_cons (car, cdr)
4639 Lisp_Object car, cdr;
4640 {
4641 register Lisp_Object new;
4642 struct Lisp_Cons *p;
4643
4644 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4645 XSETCONS (new, p);
4646 XSETCAR (new, Fpurecopy (car));
4647 XSETCDR (new, Fpurecopy (cdr));
4648 return new;
4649 }
4650
4651
4652 /* Value is a float object with value NUM allocated from pure space. */
4653
4654 Lisp_Object
4655 make_pure_float (num)
4656 double num;
4657 {
4658 register Lisp_Object new;
4659 struct Lisp_Float *p;
4660
4661 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4662 XSETFLOAT (new, p);
4663 XFLOAT_DATA (new) = num;
4664 return new;
4665 }
4666
4667
4668 /* Return a vector with room for LEN Lisp_Objects allocated from
4669 pure space. */
4670
4671 Lisp_Object
4672 make_pure_vector (len)
4673 EMACS_INT len;
4674 {
4675 Lisp_Object new;
4676 struct Lisp_Vector *p;
4677 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4678
4679 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4680 XSETVECTOR (new, p);
4681 XVECTOR (new)->size = len;
4682 return new;
4683 }
4684
4685
4686 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4687 doc: /* Make a copy of OBJECT in pure storage.
4688 Recursively copies contents of vectors and cons cells.
4689 Does not copy symbols. Copies strings without text properties. */)
4690 (obj)
4691 register Lisp_Object obj;
4692 {
4693 if (NILP (Vpurify_flag))
4694 return obj;
4695
4696 if (PURE_POINTER_P (XPNTR (obj)))
4697 return obj;
4698
4699 if (CONSP (obj))
4700 return pure_cons (XCAR (obj), XCDR (obj));
4701 else if (FLOATP (obj))
4702 return make_pure_float (XFLOAT_DATA (obj));
4703 else if (STRINGP (obj))
4704 return make_pure_string (SDATA (obj), SCHARS (obj),
4705 SBYTES (obj),
4706 STRING_MULTIBYTE (obj));
4707 else if (COMPILEDP (obj) || VECTORP (obj))
4708 {
4709 register struct Lisp_Vector *vec;
4710 register int i;
4711 EMACS_INT size;
4712
4713 size = XVECTOR (obj)->size;
4714 if (size & PSEUDOVECTOR_FLAG)
4715 size &= PSEUDOVECTOR_SIZE_MASK;
4716 vec = XVECTOR (make_pure_vector (size));
4717 for (i = 0; i < size; i++)
4718 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4719 if (COMPILEDP (obj))
4720 XSETCOMPILED (obj, vec);
4721 else
4722 XSETVECTOR (obj, vec);
4723 return obj;
4724 }
4725 else if (MARKERP (obj))
4726 error ("Attempt to copy a marker to pure storage");
4727
4728 return obj;
4729 }
4730
4731
4732 \f
4733 /***********************************************************************
4734 Protection from GC
4735 ***********************************************************************/
4736
4737 /* Put an entry in staticvec, pointing at the variable with address
4738 VARADDRESS. */
4739
4740 void
4741 staticpro (varaddress)
4742 Lisp_Object *varaddress;
4743 {
4744 staticvec[staticidx++] = varaddress;
4745 if (staticidx >= NSTATICS)
4746 abort ();
4747 }
4748
4749 struct catchtag
4750 {
4751 Lisp_Object tag;
4752 Lisp_Object val;
4753 struct catchtag *next;
4754 };
4755
4756 \f
4757 /***********************************************************************
4758 Protection from GC
4759 ***********************************************************************/
4760
4761 /* Temporarily prevent garbage collection. */
4762
4763 int
4764 inhibit_garbage_collection ()
4765 {
4766 int count = SPECPDL_INDEX ();
4767 int nbits = min (VALBITS, BITS_PER_INT);
4768
4769 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4770 return count;
4771 }
4772
4773
4774 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4775 doc: /* Reclaim storage for Lisp objects no longer needed.
4776 Garbage collection happens automatically if you cons more than
4777 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4778 `garbage-collect' normally returns a list with info on amount of space in use:
4779 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4780 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4781 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4782 (USED-STRINGS . FREE-STRINGS))
4783 However, if there was overflow in pure space, `garbage-collect'
4784 returns nil, because real GC can't be done. */)
4785 ()
4786 {
4787 register struct specbinding *bind;
4788 struct catchtag *catch;
4789 struct handler *handler;
4790 char stack_top_variable;
4791 register int i;
4792 int message_p;
4793 Lisp_Object total[8];
4794 int count = SPECPDL_INDEX ();
4795 EMACS_TIME t1, t2, t3;
4796
4797 if (abort_on_gc)
4798 abort ();
4799
4800 /* Can't GC if pure storage overflowed because we can't determine
4801 if something is a pure object or not. */
4802 if (pure_bytes_used_before_overflow)
4803 return Qnil;
4804
4805 CHECK_CONS_LIST ();
4806
4807 /* Don't keep undo information around forever.
4808 Do this early on, so it is no problem if the user quits. */
4809 {
4810 register struct buffer *nextb = all_buffers;
4811
4812 while (nextb)
4813 {
4814 /* If a buffer's undo list is Qt, that means that undo is
4815 turned off in that buffer. Calling truncate_undo_list on
4816 Qt tends to return NULL, which effectively turns undo back on.
4817 So don't call truncate_undo_list if undo_list is Qt. */
4818 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
4819 truncate_undo_list (nextb);
4820
4821 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4822 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4823 {
4824 /* If a buffer's gap size is more than 10% of the buffer
4825 size, or larger than 2000 bytes, then shrink it
4826 accordingly. Keep a minimum size of 20 bytes. */
4827 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4828
4829 if (nextb->text->gap_size > size)
4830 {
4831 struct buffer *save_current = current_buffer;
4832 current_buffer = nextb;
4833 make_gap (-(nextb->text->gap_size - size));
4834 current_buffer = save_current;
4835 }
4836 }
4837
4838 nextb = nextb->next;
4839 }
4840 }
4841
4842 EMACS_GET_TIME (t1);
4843
4844 /* In case user calls debug_print during GC,
4845 don't let that cause a recursive GC. */
4846 consing_since_gc = 0;
4847
4848 /* Save what's currently displayed in the echo area. */
4849 message_p = push_message ();
4850 record_unwind_protect (pop_message_unwind, Qnil);
4851
4852 /* Save a copy of the contents of the stack, for debugging. */
4853 #if MAX_SAVE_STACK > 0
4854 if (NILP (Vpurify_flag))
4855 {
4856 i = &stack_top_variable - stack_bottom;
4857 if (i < 0) i = -i;
4858 if (i < MAX_SAVE_STACK)
4859 {
4860 if (stack_copy == 0)
4861 stack_copy = (char *) xmalloc (stack_copy_size = i);
4862 else if (stack_copy_size < i)
4863 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4864 if (stack_copy)
4865 {
4866 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4867 bcopy (stack_bottom, stack_copy, i);
4868 else
4869 bcopy (&stack_top_variable, stack_copy, i);
4870 }
4871 }
4872 }
4873 #endif /* MAX_SAVE_STACK > 0 */
4874
4875 if (garbage_collection_messages)
4876 message1_nolog ("Garbage collecting...");
4877
4878 BLOCK_INPUT;
4879
4880 shrink_regexp_cache ();
4881
4882 gc_in_progress = 1;
4883
4884 /* clear_marks (); */
4885
4886 /* Mark all the special slots that serve as the roots of accessibility. */
4887
4888 for (i = 0; i < staticidx; i++)
4889 mark_object (*staticvec[i]);
4890
4891 for (bind = specpdl; bind != specpdl_ptr; bind++)
4892 {
4893 mark_object (bind->symbol);
4894 mark_object (bind->old_value);
4895 }
4896 mark_kboards ();
4897
4898 #ifdef USE_GTK
4899 {
4900 extern void xg_mark_data ();
4901 xg_mark_data ();
4902 }
4903 #endif
4904
4905 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4906 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4907 mark_stack ();
4908 #else
4909 {
4910 register struct gcpro *tail;
4911 for (tail = gcprolist; tail; tail = tail->next)
4912 for (i = 0; i < tail->nvars; i++)
4913 mark_object (tail->var[i]);
4914 }
4915 #endif
4916
4917 mark_byte_stack ();
4918 for (catch = catchlist; catch; catch = catch->next)
4919 {
4920 mark_object (catch->tag);
4921 mark_object (catch->val);
4922 }
4923 for (handler = handlerlist; handler; handler = handler->next)
4924 {
4925 mark_object (handler->handler);
4926 mark_object (handler->var);
4927 }
4928 mark_backtrace ();
4929
4930 #ifdef HAVE_WINDOW_SYSTEM
4931 mark_fringe_data ();
4932 #endif
4933
4934 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4935 mark_stack ();
4936 #endif
4937
4938 /* Everything is now marked, except for the things that require special
4939 finalization, i.e. the undo_list.
4940 Look thru every buffer's undo list
4941 for elements that update markers that were not marked,
4942 and delete them. */
4943 {
4944 register struct buffer *nextb = all_buffers;
4945
4946 while (nextb)
4947 {
4948 /* If a buffer's undo list is Qt, that means that undo is
4949 turned off in that buffer. Calling truncate_undo_list on
4950 Qt tends to return NULL, which effectively turns undo back on.
4951 So don't call truncate_undo_list if undo_list is Qt. */
4952 if (! EQ (nextb->undo_list, Qt))
4953 {
4954 Lisp_Object tail, prev;
4955 tail = nextb->undo_list;
4956 prev = Qnil;
4957 while (CONSP (tail))
4958 {
4959 if (GC_CONSP (XCAR (tail))
4960 && GC_MARKERP (XCAR (XCAR (tail)))
4961 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4962 {
4963 if (NILP (prev))
4964 nextb->undo_list = tail = XCDR (tail);
4965 else
4966 {
4967 tail = XCDR (tail);
4968 XSETCDR (prev, tail);
4969 }
4970 }
4971 else
4972 {
4973 prev = tail;
4974 tail = XCDR (tail);
4975 }
4976 }
4977 }
4978 /* Now that we have stripped the elements that need not be in the
4979 undo_list any more, we can finally mark the list. */
4980 mark_object (nextb->undo_list);
4981
4982 nextb = nextb->next;
4983 }
4984 }
4985
4986 gc_sweep ();
4987
4988 /* Clear the mark bits that we set in certain root slots. */
4989
4990 unmark_byte_stack ();
4991 VECTOR_UNMARK (&buffer_defaults);
4992 VECTOR_UNMARK (&buffer_local_symbols);
4993
4994 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4995 dump_zombies ();
4996 #endif
4997
4998 UNBLOCK_INPUT;
4999
5000 CHECK_CONS_LIST ();
5001
5002 /* clear_marks (); */
5003 gc_in_progress = 0;
5004
5005 consing_since_gc = 0;
5006 if (gc_cons_threshold < 10000)
5007 gc_cons_threshold = 10000;
5008
5009 if (FLOATP (Vgc_cons_percentage))
5010 { /* Set gc_cons_combined_threshold. */
5011 EMACS_INT total = 0;
5012
5013 total += total_conses * sizeof (struct Lisp_Cons);
5014 total += total_symbols * sizeof (struct Lisp_Symbol);
5015 total += total_markers * sizeof (union Lisp_Misc);
5016 total += total_string_size;
5017 total += total_vector_size * sizeof (Lisp_Object);
5018 total += total_floats * sizeof (struct Lisp_Float);
5019 total += total_intervals * sizeof (struct interval);
5020 total += total_strings * sizeof (struct Lisp_String);
5021
5022 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5023 }
5024 else
5025 gc_relative_threshold = 0;
5026
5027 if (garbage_collection_messages)
5028 {
5029 if (message_p || minibuf_level > 0)
5030 restore_message ();
5031 else
5032 message1_nolog ("Garbage collecting...done");
5033 }
5034
5035 unbind_to (count, Qnil);
5036
5037 total[0] = Fcons (make_number (total_conses),
5038 make_number (total_free_conses));
5039 total[1] = Fcons (make_number (total_symbols),
5040 make_number (total_free_symbols));
5041 total[2] = Fcons (make_number (total_markers),
5042 make_number (total_free_markers));
5043 total[3] = make_number (total_string_size);
5044 total[4] = make_number (total_vector_size);
5045 total[5] = Fcons (make_number (total_floats),
5046 make_number (total_free_floats));
5047 total[6] = Fcons (make_number (total_intervals),
5048 make_number (total_free_intervals));
5049 total[7] = Fcons (make_number (total_strings),
5050 make_number (total_free_strings));
5051
5052 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5053 {
5054 /* Compute average percentage of zombies. */
5055 double nlive = 0;
5056
5057 for (i = 0; i < 7; ++i)
5058 if (CONSP (total[i]))
5059 nlive += XFASTINT (XCAR (total[i]));
5060
5061 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5062 max_live = max (nlive, max_live);
5063 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5064 max_zombies = max (nzombies, max_zombies);
5065 ++ngcs;
5066 }
5067 #endif
5068
5069 if (!NILP (Vpost_gc_hook))
5070 {
5071 int count = inhibit_garbage_collection ();
5072 safe_run_hooks (Qpost_gc_hook);
5073 unbind_to (count, Qnil);
5074 }
5075
5076 /* Accumulate statistics. */
5077 EMACS_GET_TIME (t2);
5078 EMACS_SUB_TIME (t3, t2, t1);
5079 if (FLOATP (Vgc_elapsed))
5080 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5081 EMACS_SECS (t3) +
5082 EMACS_USECS (t3) * 1.0e-6);
5083 gcs_done++;
5084
5085 return Flist (sizeof total / sizeof *total, total);
5086 }
5087
5088
5089 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5090 only interesting objects referenced from glyphs are strings. */
5091
5092 static void
5093 mark_glyph_matrix (matrix)
5094 struct glyph_matrix *matrix;
5095 {
5096 struct glyph_row *row = matrix->rows;
5097 struct glyph_row *end = row + matrix->nrows;
5098
5099 for (; row < end; ++row)
5100 if (row->enabled_p)
5101 {
5102 int area;
5103 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5104 {
5105 struct glyph *glyph = row->glyphs[area];
5106 struct glyph *end_glyph = glyph + row->used[area];
5107
5108 for (; glyph < end_glyph; ++glyph)
5109 if (GC_STRINGP (glyph->object)
5110 && !STRING_MARKED_P (XSTRING (glyph->object)))
5111 mark_object (glyph->object);
5112 }
5113 }
5114 }
5115
5116
5117 /* Mark Lisp faces in the face cache C. */
5118
5119 static void
5120 mark_face_cache (c)
5121 struct face_cache *c;
5122 {
5123 if (c)
5124 {
5125 int i, j;
5126 for (i = 0; i < c->used; ++i)
5127 {
5128 struct face *face = FACE_FROM_ID (c->f, i);
5129
5130 if (face)
5131 {
5132 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5133 mark_object (face->lface[j]);
5134 }
5135 }
5136 }
5137 }
5138
5139
5140 #ifdef HAVE_WINDOW_SYSTEM
5141
5142 /* Mark Lisp objects in image IMG. */
5143
5144 static void
5145 mark_image (img)
5146 struct image *img;
5147 {
5148 mark_object (img->spec);
5149
5150 if (!NILP (img->data.lisp_val))
5151 mark_object (img->data.lisp_val);
5152 }
5153
5154
5155 /* Mark Lisp objects in image cache of frame F. It's done this way so
5156 that we don't have to include xterm.h here. */
5157
5158 static void
5159 mark_image_cache (f)
5160 struct frame *f;
5161 {
5162 forall_images_in_image_cache (f, mark_image);
5163 }
5164
5165 #endif /* HAVE_X_WINDOWS */
5166
5167
5168 \f
5169 /* Mark reference to a Lisp_Object.
5170 If the object referred to has not been seen yet, recursively mark
5171 all the references contained in it. */
5172
5173 #define LAST_MARKED_SIZE 500
5174 Lisp_Object last_marked[LAST_MARKED_SIZE];
5175 int last_marked_index;
5176
5177 /* For debugging--call abort when we cdr down this many
5178 links of a list, in mark_object. In debugging,
5179 the call to abort will hit a breakpoint.
5180 Normally this is zero and the check never goes off. */
5181 int mark_object_loop_halt;
5182
5183 void
5184 mark_object (arg)
5185 Lisp_Object arg;
5186 {
5187 register Lisp_Object obj = arg;
5188 #ifdef GC_CHECK_MARKED_OBJECTS
5189 void *po;
5190 struct mem_node *m;
5191 #endif
5192 int cdr_count = 0;
5193
5194 loop:
5195
5196 if (PURE_POINTER_P (XPNTR (obj)))
5197 return;
5198
5199 last_marked[last_marked_index++] = obj;
5200 if (last_marked_index == LAST_MARKED_SIZE)
5201 last_marked_index = 0;
5202
5203 /* Perform some sanity checks on the objects marked here. Abort if
5204 we encounter an object we know is bogus. This increases GC time
5205 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5206 #ifdef GC_CHECK_MARKED_OBJECTS
5207
5208 po = (void *) XPNTR (obj);
5209
5210 /* Check that the object pointed to by PO is known to be a Lisp
5211 structure allocated from the heap. */
5212 #define CHECK_ALLOCATED() \
5213 do { \
5214 m = mem_find (po); \
5215 if (m == MEM_NIL) \
5216 abort (); \
5217 } while (0)
5218
5219 /* Check that the object pointed to by PO is live, using predicate
5220 function LIVEP. */
5221 #define CHECK_LIVE(LIVEP) \
5222 do { \
5223 if (!LIVEP (m, po)) \
5224 abort (); \
5225 } while (0)
5226
5227 /* Check both of the above conditions. */
5228 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5229 do { \
5230 CHECK_ALLOCATED (); \
5231 CHECK_LIVE (LIVEP); \
5232 } while (0) \
5233
5234 #else /* not GC_CHECK_MARKED_OBJECTS */
5235
5236 #define CHECK_ALLOCATED() (void) 0
5237 #define CHECK_LIVE(LIVEP) (void) 0
5238 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5239
5240 #endif /* not GC_CHECK_MARKED_OBJECTS */
5241
5242 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
5243 {
5244 case Lisp_String:
5245 {
5246 register struct Lisp_String *ptr = XSTRING (obj);
5247 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5248 MARK_INTERVAL_TREE (ptr->intervals);
5249 MARK_STRING (ptr);
5250 #ifdef GC_CHECK_STRING_BYTES
5251 /* Check that the string size recorded in the string is the
5252 same as the one recorded in the sdata structure. */
5253 CHECK_STRING_BYTES (ptr);
5254 #endif /* GC_CHECK_STRING_BYTES */
5255 }
5256 break;
5257
5258 case Lisp_Vectorlike:
5259 #ifdef GC_CHECK_MARKED_OBJECTS
5260 m = mem_find (po);
5261 if (m == MEM_NIL && !GC_SUBRP (obj)
5262 && po != &buffer_defaults
5263 && po != &buffer_local_symbols)
5264 abort ();
5265 #endif /* GC_CHECK_MARKED_OBJECTS */
5266
5267 if (GC_BUFFERP (obj))
5268 {
5269 if (!VECTOR_MARKED_P (XBUFFER (obj)))
5270 {
5271 #ifdef GC_CHECK_MARKED_OBJECTS
5272 if (po != &buffer_defaults && po != &buffer_local_symbols)
5273 {
5274 struct buffer *b;
5275 for (b = all_buffers; b && b != po; b = b->next)
5276 ;
5277 if (b == NULL)
5278 abort ();
5279 }
5280 #endif /* GC_CHECK_MARKED_OBJECTS */
5281 mark_buffer (obj);
5282 }
5283 }
5284 else if (GC_SUBRP (obj))
5285 break;
5286 else if (GC_COMPILEDP (obj))
5287 /* We could treat this just like a vector, but it is better to
5288 save the COMPILED_CONSTANTS element for last and avoid
5289 recursion there. */
5290 {
5291 register struct Lisp_Vector *ptr = XVECTOR (obj);
5292 register EMACS_INT size = ptr->size;
5293 register int i;
5294
5295 if (VECTOR_MARKED_P (ptr))
5296 break; /* Already marked */
5297
5298 CHECK_LIVE (live_vector_p);
5299 VECTOR_MARK (ptr); /* Else mark it */
5300 size &= PSEUDOVECTOR_SIZE_MASK;
5301 for (i = 0; i < size; i++) /* and then mark its elements */
5302 {
5303 if (i != COMPILED_CONSTANTS)
5304 mark_object (ptr->contents[i]);
5305 }
5306 obj = ptr->contents[COMPILED_CONSTANTS];
5307 goto loop;
5308 }
5309 else if (GC_FRAMEP (obj))
5310 {
5311 register struct frame *ptr = XFRAME (obj);
5312
5313 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5314 VECTOR_MARK (ptr); /* Else mark it */
5315
5316 CHECK_LIVE (live_vector_p);
5317 mark_object (ptr->name);
5318 mark_object (ptr->icon_name);
5319 mark_object (ptr->title);
5320 mark_object (ptr->focus_frame);
5321 mark_object (ptr->selected_window);
5322 mark_object (ptr->minibuffer_window);
5323 mark_object (ptr->param_alist);
5324 mark_object (ptr->scroll_bars);
5325 mark_object (ptr->condemned_scroll_bars);
5326 mark_object (ptr->menu_bar_items);
5327 mark_object (ptr->face_alist);
5328 mark_object (ptr->menu_bar_vector);
5329 mark_object (ptr->buffer_predicate);
5330 mark_object (ptr->buffer_list);
5331 mark_object (ptr->menu_bar_window);
5332 mark_object (ptr->tool_bar_window);
5333 mark_face_cache (ptr->face_cache);
5334 #ifdef HAVE_WINDOW_SYSTEM
5335 mark_image_cache (ptr);
5336 mark_object (ptr->tool_bar_items);
5337 mark_object (ptr->desired_tool_bar_string);
5338 mark_object (ptr->current_tool_bar_string);
5339 #endif /* HAVE_WINDOW_SYSTEM */
5340 }
5341 else if (GC_BOOL_VECTOR_P (obj))
5342 {
5343 register struct Lisp_Vector *ptr = XVECTOR (obj);
5344
5345 if (VECTOR_MARKED_P (ptr))
5346 break; /* Already marked */
5347 CHECK_LIVE (live_vector_p);
5348 VECTOR_MARK (ptr); /* Else mark it */
5349 }
5350 else if (GC_WINDOWP (obj))
5351 {
5352 register struct Lisp_Vector *ptr = XVECTOR (obj);
5353 struct window *w = XWINDOW (obj);
5354 register int i;
5355
5356 /* Stop if already marked. */
5357 if (VECTOR_MARKED_P (ptr))
5358 break;
5359
5360 /* Mark it. */
5361 CHECK_LIVE (live_vector_p);
5362 VECTOR_MARK (ptr);
5363
5364 /* There is no Lisp data above The member CURRENT_MATRIX in
5365 struct WINDOW. Stop marking when that slot is reached. */
5366 for (i = 0;
5367 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
5368 i++)
5369 mark_object (ptr->contents[i]);
5370
5371 /* Mark glyphs for leaf windows. Marking window matrices is
5372 sufficient because frame matrices use the same glyph
5373 memory. */
5374 if (NILP (w->hchild)
5375 && NILP (w->vchild)
5376 && w->current_matrix)
5377 {
5378 mark_glyph_matrix (w->current_matrix);
5379 mark_glyph_matrix (w->desired_matrix);
5380 }
5381 }
5382 else if (GC_HASH_TABLE_P (obj))
5383 {
5384 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5385
5386 /* Stop if already marked. */
5387 if (VECTOR_MARKED_P (h))
5388 break;
5389
5390 /* Mark it. */
5391 CHECK_LIVE (live_vector_p);
5392 VECTOR_MARK (h);
5393
5394 /* Mark contents. */
5395 /* Do not mark next_free or next_weak.
5396 Being in the next_weak chain
5397 should not keep the hash table alive.
5398 No need to mark `count' since it is an integer. */
5399 mark_object (h->test);
5400 mark_object (h->weak);
5401 mark_object (h->rehash_size);
5402 mark_object (h->rehash_threshold);
5403 mark_object (h->hash);
5404 mark_object (h->next);
5405 mark_object (h->index);
5406 mark_object (h->user_hash_function);
5407 mark_object (h->user_cmp_function);
5408
5409 /* If hash table is not weak, mark all keys and values.
5410 For weak tables, mark only the vector. */
5411 if (GC_NILP (h->weak))
5412 mark_object (h->key_and_value);
5413 else
5414 VECTOR_MARK (XVECTOR (h->key_and_value));
5415 }
5416 else
5417 {
5418 register struct Lisp_Vector *ptr = XVECTOR (obj);
5419 register EMACS_INT size = ptr->size;
5420 register int i;
5421
5422 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5423 CHECK_LIVE (live_vector_p);
5424 VECTOR_MARK (ptr); /* Else mark it */
5425 if (size & PSEUDOVECTOR_FLAG)
5426 size &= PSEUDOVECTOR_SIZE_MASK;
5427
5428 for (i = 0; i < size; i++) /* and then mark its elements */
5429 mark_object (ptr->contents[i]);
5430 }
5431 break;
5432
5433 case Lisp_Symbol:
5434 {
5435 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5436 struct Lisp_Symbol *ptrx;
5437
5438 if (ptr->gcmarkbit) break;
5439 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5440 ptr->gcmarkbit = 1;
5441 mark_object (ptr->value);
5442 mark_object (ptr->function);
5443 mark_object (ptr->plist);
5444
5445 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5446 MARK_STRING (XSTRING (ptr->xname));
5447 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5448
5449 /* Note that we do not mark the obarray of the symbol.
5450 It is safe not to do so because nothing accesses that
5451 slot except to check whether it is nil. */
5452 ptr = ptr->next;
5453 if (ptr)
5454 {
5455 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5456 XSETSYMBOL (obj, ptrx);
5457 goto loop;
5458 }
5459 }
5460 break;
5461
5462 case Lisp_Misc:
5463 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5464 if (XMARKER (obj)->gcmarkbit)
5465 break;
5466 XMARKER (obj)->gcmarkbit = 1;
5467
5468 switch (XMISCTYPE (obj))
5469 {
5470 case Lisp_Misc_Buffer_Local_Value:
5471 case Lisp_Misc_Some_Buffer_Local_Value:
5472 {
5473 register struct Lisp_Buffer_Local_Value *ptr
5474 = XBUFFER_LOCAL_VALUE (obj);
5475 /* If the cdr is nil, avoid recursion for the car. */
5476 if (EQ (ptr->cdr, Qnil))
5477 {
5478 obj = ptr->realvalue;
5479 goto loop;
5480 }
5481 mark_object (ptr->realvalue);
5482 mark_object (ptr->buffer);
5483 mark_object (ptr->frame);
5484 obj = ptr->cdr;
5485 goto loop;
5486 }
5487
5488 case Lisp_Misc_Marker:
5489 /* DO NOT mark thru the marker's chain.
5490 The buffer's markers chain does not preserve markers from gc;
5491 instead, markers are removed from the chain when freed by gc. */
5492 break;
5493
5494 case Lisp_Misc_Intfwd:
5495 case Lisp_Misc_Boolfwd:
5496 case Lisp_Misc_Objfwd:
5497 case Lisp_Misc_Buffer_Objfwd:
5498 case Lisp_Misc_Kboard_Objfwd:
5499 /* Don't bother with Lisp_Buffer_Objfwd,
5500 since all markable slots in current buffer marked anyway. */
5501 /* Don't need to do Lisp_Objfwd, since the places they point
5502 are protected with staticpro. */
5503 break;
5504
5505 case Lisp_Misc_Save_Value:
5506 #if GC_MARK_STACK
5507 {
5508 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5509 /* If DOGC is set, POINTER is the address of a memory
5510 area containing INTEGER potential Lisp_Objects. */
5511 if (ptr->dogc)
5512 {
5513 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5514 int nelt;
5515 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5516 mark_maybe_object (*p);
5517 }
5518 }
5519 #endif
5520 break;
5521
5522 case Lisp_Misc_Overlay:
5523 {
5524 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5525 mark_object (ptr->start);
5526 mark_object (ptr->end);
5527 mark_object (ptr->plist);
5528 if (ptr->next)
5529 {
5530 XSETMISC (obj, ptr->next);
5531 goto loop;
5532 }
5533 }
5534 break;
5535
5536 default:
5537 abort ();
5538 }
5539 break;
5540
5541 case Lisp_Cons:
5542 {
5543 register struct Lisp_Cons *ptr = XCONS (obj);
5544 if (CONS_MARKED_P (ptr)) break;
5545 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5546 CONS_MARK (ptr);
5547 /* If the cdr is nil, avoid recursion for the car. */
5548 if (EQ (ptr->u.cdr, Qnil))
5549 {
5550 obj = ptr->car;
5551 cdr_count = 0;
5552 goto loop;
5553 }
5554 mark_object (ptr->car);
5555 obj = ptr->u.cdr;
5556 cdr_count++;
5557 if (cdr_count == mark_object_loop_halt)
5558 abort ();
5559 goto loop;
5560 }
5561
5562 case Lisp_Float:
5563 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5564 FLOAT_MARK (XFLOAT (obj));
5565 break;
5566
5567 case Lisp_Int:
5568 break;
5569
5570 default:
5571 abort ();
5572 }
5573
5574 #undef CHECK_LIVE
5575 #undef CHECK_ALLOCATED
5576 #undef CHECK_ALLOCATED_AND_LIVE
5577 }
5578
5579 /* Mark the pointers in a buffer structure. */
5580
5581 static void
5582 mark_buffer (buf)
5583 Lisp_Object buf;
5584 {
5585 register struct buffer *buffer = XBUFFER (buf);
5586 register Lisp_Object *ptr, tmp;
5587 Lisp_Object base_buffer;
5588
5589 VECTOR_MARK (buffer);
5590
5591 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5592
5593 /* For now, we just don't mark the undo_list. It's done later in
5594 a special way just before the sweep phase, and after stripping
5595 some of its elements that are not needed any more. */
5596
5597 if (buffer->overlays_before)
5598 {
5599 XSETMISC (tmp, buffer->overlays_before);
5600 mark_object (tmp);
5601 }
5602 if (buffer->overlays_after)
5603 {
5604 XSETMISC (tmp, buffer->overlays_after);
5605 mark_object (tmp);
5606 }
5607
5608 for (ptr = &buffer->name;
5609 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5610 ptr++)
5611 mark_object (*ptr);
5612
5613 /* If this is an indirect buffer, mark its base buffer. */
5614 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5615 {
5616 XSETBUFFER (base_buffer, buffer->base_buffer);
5617 mark_buffer (base_buffer);
5618 }
5619 }
5620
5621
5622 /* Value is non-zero if OBJ will survive the current GC because it's
5623 either marked or does not need to be marked to survive. */
5624
5625 int
5626 survives_gc_p (obj)
5627 Lisp_Object obj;
5628 {
5629 int survives_p;
5630
5631 switch (XGCTYPE (obj))
5632 {
5633 case Lisp_Int:
5634 survives_p = 1;
5635 break;
5636
5637 case Lisp_Symbol:
5638 survives_p = XSYMBOL (obj)->gcmarkbit;
5639 break;
5640
5641 case Lisp_Misc:
5642 survives_p = XMARKER (obj)->gcmarkbit;
5643 break;
5644
5645 case Lisp_String:
5646 survives_p = STRING_MARKED_P (XSTRING (obj));
5647 break;
5648
5649 case Lisp_Vectorlike:
5650 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5651 break;
5652
5653 case Lisp_Cons:
5654 survives_p = CONS_MARKED_P (XCONS (obj));
5655 break;
5656
5657 case Lisp_Float:
5658 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5659 break;
5660
5661 default:
5662 abort ();
5663 }
5664
5665 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5666 }
5667
5668
5669 \f
5670 /* Sweep: find all structures not marked, and free them. */
5671
5672 static void
5673 gc_sweep ()
5674 {
5675 /* Remove or mark entries in weak hash tables.
5676 This must be done before any object is unmarked. */
5677 sweep_weak_hash_tables ();
5678
5679 sweep_strings ();
5680 #ifdef GC_CHECK_STRING_BYTES
5681 if (!noninteractive)
5682 check_string_bytes (1);
5683 #endif
5684
5685 /* Put all unmarked conses on free list */
5686 {
5687 register struct cons_block *cblk;
5688 struct cons_block **cprev = &cons_block;
5689 register int lim = cons_block_index;
5690 register int num_free = 0, num_used = 0;
5691
5692 cons_free_list = 0;
5693
5694 for (cblk = cons_block; cblk; cblk = *cprev)
5695 {
5696 register int i;
5697 int this_free = 0;
5698 for (i = 0; i < lim; i++)
5699 if (!CONS_MARKED_P (&cblk->conses[i]))
5700 {
5701 this_free++;
5702 cblk->conses[i].u.chain = cons_free_list;
5703 cons_free_list = &cblk->conses[i];
5704 #if GC_MARK_STACK
5705 cons_free_list->car = Vdead;
5706 #endif
5707 }
5708 else
5709 {
5710 num_used++;
5711 CONS_UNMARK (&cblk->conses[i]);
5712 }
5713 lim = CONS_BLOCK_SIZE;
5714 /* If this block contains only free conses and we have already
5715 seen more than two blocks worth of free conses then deallocate
5716 this block. */
5717 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5718 {
5719 *cprev = cblk->next;
5720 /* Unhook from the free list. */
5721 cons_free_list = cblk->conses[0].u.chain;
5722 lisp_align_free (cblk);
5723 n_cons_blocks--;
5724 }
5725 else
5726 {
5727 num_free += this_free;
5728 cprev = &cblk->next;
5729 }
5730 }
5731 total_conses = num_used;
5732 total_free_conses = num_free;
5733 }
5734
5735 /* Put all unmarked floats on free list */
5736 {
5737 register struct float_block *fblk;
5738 struct float_block **fprev = &float_block;
5739 register int lim = float_block_index;
5740 register int num_free = 0, num_used = 0;
5741
5742 float_free_list = 0;
5743
5744 for (fblk = float_block; fblk; fblk = *fprev)
5745 {
5746 register int i;
5747 int this_free = 0;
5748 for (i = 0; i < lim; i++)
5749 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5750 {
5751 this_free++;
5752 fblk->floats[i].u.chain = float_free_list;
5753 float_free_list = &fblk->floats[i];
5754 }
5755 else
5756 {
5757 num_used++;
5758 FLOAT_UNMARK (&fblk->floats[i]);
5759 }
5760 lim = FLOAT_BLOCK_SIZE;
5761 /* If this block contains only free floats and we have already
5762 seen more than two blocks worth of free floats then deallocate
5763 this block. */
5764 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5765 {
5766 *fprev = fblk->next;
5767 /* Unhook from the free list. */
5768 float_free_list = fblk->floats[0].u.chain;
5769 lisp_align_free (fblk);
5770 n_float_blocks--;
5771 }
5772 else
5773 {
5774 num_free += this_free;
5775 fprev = &fblk->next;
5776 }
5777 }
5778 total_floats = num_used;
5779 total_free_floats = num_free;
5780 }
5781
5782 /* Put all unmarked intervals on free list */
5783 {
5784 register struct interval_block *iblk;
5785 struct interval_block **iprev = &interval_block;
5786 register int lim = interval_block_index;
5787 register int num_free = 0, num_used = 0;
5788
5789 interval_free_list = 0;
5790
5791 for (iblk = interval_block; iblk; iblk = *iprev)
5792 {
5793 register int i;
5794 int this_free = 0;
5795
5796 for (i = 0; i < lim; i++)
5797 {
5798 if (!iblk->intervals[i].gcmarkbit)
5799 {
5800 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5801 interval_free_list = &iblk->intervals[i];
5802 this_free++;
5803 }
5804 else
5805 {
5806 num_used++;
5807 iblk->intervals[i].gcmarkbit = 0;
5808 }
5809 }
5810 lim = INTERVAL_BLOCK_SIZE;
5811 /* If this block contains only free intervals and we have already
5812 seen more than two blocks worth of free intervals then
5813 deallocate this block. */
5814 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5815 {
5816 *iprev = iblk->next;
5817 /* Unhook from the free list. */
5818 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5819 lisp_free (iblk);
5820 n_interval_blocks--;
5821 }
5822 else
5823 {
5824 num_free += this_free;
5825 iprev = &iblk->next;
5826 }
5827 }
5828 total_intervals = num_used;
5829 total_free_intervals = num_free;
5830 }
5831
5832 /* Put all unmarked symbols on free list */
5833 {
5834 register struct symbol_block *sblk;
5835 struct symbol_block **sprev = &symbol_block;
5836 register int lim = symbol_block_index;
5837 register int num_free = 0, num_used = 0;
5838
5839 symbol_free_list = NULL;
5840
5841 for (sblk = symbol_block; sblk; sblk = *sprev)
5842 {
5843 int this_free = 0;
5844 struct Lisp_Symbol *sym = sblk->symbols;
5845 struct Lisp_Symbol *end = sym + lim;
5846
5847 for (; sym < end; ++sym)
5848 {
5849 /* Check if the symbol was created during loadup. In such a case
5850 it might be pointed to by pure bytecode which we don't trace,
5851 so we conservatively assume that it is live. */
5852 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5853
5854 if (!sym->gcmarkbit && !pure_p)
5855 {
5856 sym->next = symbol_free_list;
5857 symbol_free_list = sym;
5858 #if GC_MARK_STACK
5859 symbol_free_list->function = Vdead;
5860 #endif
5861 ++this_free;
5862 }
5863 else
5864 {
5865 ++num_used;
5866 if (!pure_p)
5867 UNMARK_STRING (XSTRING (sym->xname));
5868 sym->gcmarkbit = 0;
5869 }
5870 }
5871
5872 lim = SYMBOL_BLOCK_SIZE;
5873 /* If this block contains only free symbols and we have already
5874 seen more than two blocks worth of free symbols then deallocate
5875 this block. */
5876 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5877 {
5878 *sprev = sblk->next;
5879 /* Unhook from the free list. */
5880 symbol_free_list = sblk->symbols[0].next;
5881 lisp_free (sblk);
5882 n_symbol_blocks--;
5883 }
5884 else
5885 {
5886 num_free += this_free;
5887 sprev = &sblk->next;
5888 }
5889 }
5890 total_symbols = num_used;
5891 total_free_symbols = num_free;
5892 }
5893
5894 /* Put all unmarked misc's on free list.
5895 For a marker, first unchain it from the buffer it points into. */
5896 {
5897 register struct marker_block *mblk;
5898 struct marker_block **mprev = &marker_block;
5899 register int lim = marker_block_index;
5900 register int num_free = 0, num_used = 0;
5901
5902 marker_free_list = 0;
5903
5904 for (mblk = marker_block; mblk; mblk = *mprev)
5905 {
5906 register int i;
5907 int this_free = 0;
5908
5909 for (i = 0; i < lim; i++)
5910 {
5911 if (!mblk->markers[i].u_marker.gcmarkbit)
5912 {
5913 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
5914 unchain_marker (&mblk->markers[i].u_marker);
5915 /* Set the type of the freed object to Lisp_Misc_Free.
5916 We could leave the type alone, since nobody checks it,
5917 but this might catch bugs faster. */
5918 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5919 mblk->markers[i].u_free.chain = marker_free_list;
5920 marker_free_list = &mblk->markers[i];
5921 this_free++;
5922 }
5923 else
5924 {
5925 num_used++;
5926 mblk->markers[i].u_marker.gcmarkbit = 0;
5927 }
5928 }
5929 lim = MARKER_BLOCK_SIZE;
5930 /* If this block contains only free markers and we have already
5931 seen more than two blocks worth of free markers then deallocate
5932 this block. */
5933 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5934 {
5935 *mprev = mblk->next;
5936 /* Unhook from the free list. */
5937 marker_free_list = mblk->markers[0].u_free.chain;
5938 lisp_free (mblk);
5939 n_marker_blocks--;
5940 }
5941 else
5942 {
5943 num_free += this_free;
5944 mprev = &mblk->next;
5945 }
5946 }
5947
5948 total_markers = num_used;
5949 total_free_markers = num_free;
5950 }
5951
5952 /* Free all unmarked buffers */
5953 {
5954 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5955
5956 while (buffer)
5957 if (!VECTOR_MARKED_P (buffer))
5958 {
5959 if (prev)
5960 prev->next = buffer->next;
5961 else
5962 all_buffers = buffer->next;
5963 next = buffer->next;
5964 lisp_free (buffer);
5965 buffer = next;
5966 }
5967 else
5968 {
5969 VECTOR_UNMARK (buffer);
5970 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
5971 prev = buffer, buffer = buffer->next;
5972 }
5973 }
5974
5975 /* Free all unmarked vectors */
5976 {
5977 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5978 total_vector_size = 0;
5979
5980 while (vector)
5981 if (!VECTOR_MARKED_P (vector))
5982 {
5983 if (prev)
5984 prev->next = vector->next;
5985 else
5986 all_vectors = vector->next;
5987 next = vector->next;
5988 lisp_free (vector);
5989 n_vectors--;
5990 vector = next;
5991
5992 }
5993 else
5994 {
5995 VECTOR_UNMARK (vector);
5996 if (vector->size & PSEUDOVECTOR_FLAG)
5997 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5998 else
5999 total_vector_size += vector->size;
6000 prev = vector, vector = vector->next;
6001 }
6002 }
6003
6004 #ifdef GC_CHECK_STRING_BYTES
6005 if (!noninteractive)
6006 check_string_bytes (1);
6007 #endif
6008 }
6009
6010
6011
6012 \f
6013 /* Debugging aids. */
6014
6015 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6016 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6017 This may be helpful in debugging Emacs's memory usage.
6018 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6019 ()
6020 {
6021 Lisp_Object end;
6022
6023 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6024
6025 return end;
6026 }
6027
6028 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6029 doc: /* Return a list of counters that measure how much consing there has been.
6030 Each of these counters increments for a certain kind of object.
6031 The counters wrap around from the largest positive integer to zero.
6032 Garbage collection does not decrease them.
6033 The elements of the value are as follows:
6034 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6035 All are in units of 1 = one object consed
6036 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6037 objects consed.
6038 MISCS include overlays, markers, and some internal types.
6039 Frames, windows, buffers, and subprocesses count as vectors
6040 (but the contents of a buffer's text do not count here). */)
6041 ()
6042 {
6043 Lisp_Object consed[8];
6044
6045 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6046 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6047 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6048 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6049 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6050 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6051 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6052 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6053
6054 return Flist (8, consed);
6055 }
6056
6057 int suppress_checking;
6058 void
6059 die (msg, file, line)
6060 const char *msg;
6061 const char *file;
6062 int line;
6063 {
6064 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
6065 file, line, msg);
6066 abort ();
6067 }
6068 \f
6069 /* Initialization */
6070
6071 void
6072 init_alloc_once ()
6073 {
6074 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6075 purebeg = PUREBEG;
6076 pure_size = PURESIZE;
6077 pure_bytes_used = 0;
6078 pure_bytes_used_before_overflow = 0;
6079
6080 /* Initialize the list of free aligned blocks. */
6081 free_ablock = NULL;
6082
6083 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6084 mem_init ();
6085 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6086 #endif
6087
6088 all_vectors = 0;
6089 ignore_warnings = 1;
6090 #ifdef DOUG_LEA_MALLOC
6091 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6092 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6093 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6094 #endif
6095 init_strings ();
6096 init_cons ();
6097 init_symbol ();
6098 init_marker ();
6099 init_float ();
6100 init_intervals ();
6101
6102 #ifdef REL_ALLOC
6103 malloc_hysteresis = 32;
6104 #else
6105 malloc_hysteresis = 0;
6106 #endif
6107
6108 refill_memory_reserve ();
6109
6110 ignore_warnings = 0;
6111 gcprolist = 0;
6112 byte_stack_list = 0;
6113 staticidx = 0;
6114 consing_since_gc = 0;
6115 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6116 gc_relative_threshold = 0;
6117
6118 #ifdef VIRT_ADDR_VARIES
6119 malloc_sbrk_unused = 1<<22; /* A large number */
6120 malloc_sbrk_used = 100000; /* as reasonable as any number */
6121 #endif /* VIRT_ADDR_VARIES */
6122 }
6123
6124 void
6125 init_alloc ()
6126 {
6127 gcprolist = 0;
6128 byte_stack_list = 0;
6129 #if GC_MARK_STACK
6130 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6131 setjmp_tested_p = longjmps_done = 0;
6132 #endif
6133 #endif
6134 Vgc_elapsed = make_float (0.0);
6135 gcs_done = 0;
6136 }
6137
6138 void
6139 syms_of_alloc ()
6140 {
6141 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6142 doc: /* *Number of bytes of consing between garbage collections.
6143 Garbage collection can happen automatically once this many bytes have been
6144 allocated since the last garbage collection. All data types count.
6145
6146 Garbage collection happens automatically only when `eval' is called.
6147
6148 By binding this temporarily to a large number, you can effectively
6149 prevent garbage collection during a part of the program.
6150 See also `gc-cons-percentage'. */);
6151
6152 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6153 doc: /* *Portion of the heap used for allocation.
6154 Garbage collection can happen automatically once this portion of the heap
6155 has been allocated since the last garbage collection.
6156 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6157 Vgc_cons_percentage = make_float (0.1);
6158
6159 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6160 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6161
6162 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6163 doc: /* Number of cons cells that have been consed so far. */);
6164
6165 DEFVAR_INT ("floats-consed", &floats_consed,
6166 doc: /* Number of floats that have been consed so far. */);
6167
6168 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6169 doc: /* Number of vector cells that have been consed so far. */);
6170
6171 DEFVAR_INT ("symbols-consed", &symbols_consed,
6172 doc: /* Number of symbols that have been consed so far. */);
6173
6174 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6175 doc: /* Number of string characters that have been consed so far. */);
6176
6177 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6178 doc: /* Number of miscellaneous objects that have been consed so far. */);
6179
6180 DEFVAR_INT ("intervals-consed", &intervals_consed,
6181 doc: /* Number of intervals that have been consed so far. */);
6182
6183 DEFVAR_INT ("strings-consed", &strings_consed,
6184 doc: /* Number of strings that have been consed so far. */);
6185
6186 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6187 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6188 This means that certain objects should be allocated in shared (pure) space. */);
6189
6190 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6191 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6192 garbage_collection_messages = 0;
6193
6194 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6195 doc: /* Hook run after garbage collection has finished. */);
6196 Vpost_gc_hook = Qnil;
6197 Qpost_gc_hook = intern ("post-gc-hook");
6198 staticpro (&Qpost_gc_hook);
6199
6200 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6201 doc: /* Precomputed `signal' argument for memory-full error. */);
6202 /* We build this in advance because if we wait until we need it, we might
6203 not be able to allocate the memory to hold it. */
6204 Vmemory_signal_data
6205 = list2 (Qerror,
6206 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6207
6208 DEFVAR_LISP ("memory-full", &Vmemory_full,
6209 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6210 Vmemory_full = Qnil;
6211
6212 staticpro (&Qgc_cons_threshold);
6213 Qgc_cons_threshold = intern ("gc-cons-threshold");
6214
6215 staticpro (&Qchar_table_extra_slots);
6216 Qchar_table_extra_slots = intern ("char-table-extra-slots");
6217
6218 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6219 doc: /* Accumulated time elapsed in garbage collections.
6220 The time is in seconds as a floating point value. */);
6221 DEFVAR_INT ("gcs-done", &gcs_done,
6222 doc: /* Accumulated number of garbage collections done. */);
6223
6224 defsubr (&Scons);
6225 defsubr (&Slist);
6226 defsubr (&Svector);
6227 defsubr (&Smake_byte_code);
6228 defsubr (&Smake_list);
6229 defsubr (&Smake_vector);
6230 defsubr (&Smake_string);
6231 defsubr (&Smake_bool_vector);
6232 defsubr (&Smake_symbol);
6233 defsubr (&Smake_marker);
6234 defsubr (&Spurecopy);
6235 defsubr (&Sgarbage_collect);
6236 defsubr (&Smemory_limit);
6237 defsubr (&Smemory_use_counts);
6238
6239 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6240 defsubr (&Sgc_status);
6241 #endif
6242 }
6243
6244 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6245 (do not change this comment) */